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Preface

Applications of functional differential equations have been the driving force for
many researchers to study real-world problems. Given this context, the Department
ofMathematics, Ariel University, Israel, has been organizing a series of international
conferences on Functional Differential Equations and Applications.

This proceeding is the outcome of the Seventh International Conference on Func-
tional Differential Equations and Applications, held at Ariel University, Ariel, Israel,
from September 22–27, 2019. Researchers from Israel, the USA, Greece, Romania,
Russia,CzechRepublic, Poland, Slovakia,Ukraine, India,Georgia andGreecepartic-
ipated in the conference. The main focus on the conference was on the applications
of functional differential equations, especially stability theory, positive solutions of
differential equations, applications of boundary value problems, impulsive equa-
tions, integro-differential equations, feedback control and many other applications
of functional differential equations.

A total of 84 researchers participated in the conference. Lectures were delivered
on the oscillation and non-oscillation of solutions of ordinary and delay differential
equations, and the stability of solutions of manymathematical models in engineering
andmedicines. A total of 20 articles were selected for publication in the proceedings.
These are given chapter-wise as below.

The entire volume is divided into three parts. Part I addresses the dynamics of
models in engineering. This part consists of six chapters. The chapters include topics
on the dynamical behaviour of models in nanostructures, porous media, switched
time-delay systems, ground robot path controlled by airborne autopilot with time-
delay, diffusion–kinetic model of curing epoxy cancer and nonlinear equations of
oscillations in modelling the magnetic separations. Part II addresses the dynamics
of models in biology, medicine and ecology. This part consists of five chapters. This
section includes topics on the dynamical behaviour of models of infectious disease,
radiophysical sounding signals, bladder cancer treatment by using immunotherapy
and a biological model with time-delay systems. Part III addresses the qualitative
theory of differential equations. This section consists of nine chapters. The chapters
included in this section are on the solutions of the modified Helmholtz equation,
oscillation theory of differential equations, positive solutions of the Cantilever beam

v



vi Preface

equation, bounded solutions to differential equations, periodic solutions of impulsive
equations andmanymore. All the chapters are interesting and hope this will be useful
to readers in their future research work.

We owe thanks to all participants of the conference and the authors of the chap-
ters in this volume. We are thankful to the authorities of Ariel University for their
support in organizing the conference. We should also mention here that it was a great
pleasure to work with Shamim Ahmad, the Senior Editor of Springer Nature, and
the production team, especially to Banu Dhayalan who took utmost care during the
preparation of the volume.

Ariel, Israel
Ranchi, India
Ariel, Israel

Alexander Domoshnitsky
Seshadev Padhi
Alexander Rasin
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Dynamics of Models in Engineering



Dynamical Behaviour of
Integro-Differential Equations Arising in
Nano-Structures

Angela Slavova

Abstract Computational Nanotechnology has become an indispensable tool not
only in predicting, but also in engineering the properties of multi-functional nano-
structured materials. The presence of nano-heterogeneities in these materials affects
or disturbs their elastic field at the local and the global scale and thus greatly influences
their mechanical properties. In this paper we shall study dynamical behaviour of
2D dynamic coupled problem in multifunctional nano-heterogeneous piezoelectric
composites. More in detail, we shall present first modeling of two-dimensional anti-
plane (SH) wave propagation problem in piezoelectric anisotropic solids containing
nano-holes or nano-inclusions. Nano-heterogeneities are considered in two aspects
as wave scatters provoking scattered and diffraction wave fields and also as stress
concentrators creating local stress concentrations in the considered solid.There are
only few numerical results for dynamic behavior of bounded piezoelectric domain
with heterogeneities under anti-plane load.

Keywords Integro differential equations · Nano structures · Nano heterogeneous
piezoelectric composites · Cellular nano scale networks

1 Introduction

In the present work we propose, develop and validate for different mechanical mod-
els computational tools based on the application of the theory of integro-differential
equations for solution of 2D dynamic coupled problems in multifunctional nano-
heterogeneous piezoelectric composites. We study two-dimensional in-plane (P-SV)
and anti-plane (SH) wave propagation problems in piezoelectric anisotropic solids
containing nano-inhomogeneities. The model is based on the principles of elastody-
namics,wave propagation theory and surface/interface elasticity theory. The obtained
results and conclusions may be potentially useful for characterizing the mechanical
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Fig. 1 The geometry: PEM
inclusions in a bounded PEM
matrix
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stabilities of an array of nanowires or nano-tubes structures made by piezoelectric
material under different type of dynamic loads.

Let G ∈ R2 is a bounded piezoelectric domain (PEM) with a set of inhomo-
geneities I = ∪Ik ∈ G (holes, inclusions, nano–holes, nano–inclusions) subjected
to time–harmonic load on the boundary ∂G, see Fig. 1. Note that heterogeneities are
of macro size if their diameter is greater than 10−6 m, while heterogeneities are of
nano–size if their diameter is less than 10−7 m.

The aim is to find the field in every point of M = G\I , and to evaluate stress
concentration around the inhomogeneities.

Using the methods of continuum mechanics the problem can be formulated in
terms of boundary value problem for a system of 2-nd order differential equations,
see [3], Chap.2. Let us for simplicity first formulate the problem in the case G is
rectangular with a single circle inhomogeneity I , see Fig. 2.

There is a certain lack of work for solution of 2D in-plane and ant-plane dynamic
problems for piezoelectric solids with nanoinclusions or nano-cavities [3–6]. The
reason is that such a goal requires multidisciplinary knowledge and skills blend-
ing continuum mechanics, piezoelectricity, computational mechanics, material sci-
ence, mathematical physics, and numerical method programming. Moreover, we
shall apply Cellular Nanoscale Networks (CNN) [1, 8] in our investigations in order

http://dx.doi.org/10.1007/978-981-16-6297-3_2
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to obtain more accurate numerical results. In Sect. 2 we state the problem under
consideration. We define the boundary conditions which play important role in the
solutions. In Sect. 3 we propose CNN architecture which approximates the obtained
integro-differential equation. We study the dynamics of CNN model via describing
functionmethod [7]. Section4 dealswith travelingwave solutions of theCNNmodel.
In Sect. 5 we propose numerical simulations and validation for specific piezoelectric
material. Feedback stabilization of the model is provided in Sect. 6.

2 Statement of the Problem

Following [5] let us define system of equations

∣
∣
∣
∣

cN
44�uN

3 + eN
15�uN

4 + ρN ω2u3 = 0,
eN
15�uN

3 − εN
15�uN

4 = 0,
(1)

Here x = (x1, x2),� = ∂2

∂x2
1

+ ∂2

∂x2
2
is Laplace operator, N = M for x ∈ M and N = I

for x ∈ I ; uN
3 is mechanical displacement, uN

4 is electric potential (the usual notation
in mechanics is φN , but in order to have possibility for summation in formulas
we use generalized notations uN

J , J = 3, 4), ρN is the mass density, cN
44 > 0 is the

shear stiffness, eN
15 �= 0 is the piezoelectric constant and εN

11 > 0 is the dielectric
permittivity; ω is the frequency of the applied on ∂G load.

Let us define generalized stress σi J , i = 1, 2; J = 3, 4 as

∣
∣
∣
∣
∣

σ N
i3 = cN

44
∂uN

3
∂xi

+ eN
15

∂uN
4

∂xi
,

σ N
i4 = eN

15
∂uN

3
∂xi

− εN
11

∂uN
4

∂xi
,

(2)

Note that σ N
i3 is called mechanical stress, while σ N

i4 is called electrical displace-
ment(the usual notation in mechanics is DN

i = σ N
i4 , i = 1, 2).

Generalized traction at the point x on the line segment with normal vector n =
(n1, n2) is defined as ∣

∣
∣
∣

t N
3 = σ N

13n1 + σ N
23n2,

t N
4 = σ N

14n1 + σ N
24n2,

(3)

At every point x ∈ S = ∂ I we can define normal vector n and unit tangential vector
l such that (l, n) forms right coordinate system.

On the exterior boundary ∂G boundary conditions are prescribed traction on the
part of the boundary and prescribed displacement on the complemented part:

∣
∣
∣
∣

t M0
J on ∂Gt ,

uM0
J on ∂Gu = ∂G\∂Gt .

(4)
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Here, the traction and the displacement vectors are defined as t0M
J = (t0M

3 , t0M
4 ) and

u0M
J = (u0M

3 , u0M
4 ) respectively.

Boundary Conditions for Heterogeneities at Macro–Scale
(A) In the case I is a hole, formally we can consider that the constants in I are
cI
44 = 0, eI

15 = 0, ε I
11 = 0 and boundary conditions on S are

t M
J = 0 on S, (5)

Here, the traction vectors is defined as t M
J = (t M

3 , t M
4 ). Then the boundary value

problem (BVP) is: the equation (1) and boundary conditions (4), (5).
(B) In the case I is an inclusion, the constants in I are cI

44 > 0, eI
15 �= 0, ε I

11 > 0; the
constants in M are cM

44 > 0, eM
15 �= 0, εM

11 > 0 and boundary conditions on S are

∣
∣
∣
∣

uM
J = uI

J on S,

t I
J + t M

J = 0 on S,
(6)

The BVP is now: the Eq. (1) and boundary conditions (4), (6). Note, that nI
i =

−nM
i , i = 1, 2, where nI

i and nM
i are the components of the outward normal for

element along S considered as a boundary of the inclusion ormatrix correspondingly.
Additionally we have that t M

J = (t M
3 , t M

4 ), N = I, M .

Boundary Conditions for Nano–Heterogeneities
Assume that the interface between the nano–inclusion I and its surroundingmatrix M
is regarded as a thin material surface S that possesses its own mechanical properties
cS
44, eS

15, ε
S
11 and surface tension τ 0.

More specifically, τ 0 is the residual surface tension under unstrained conditions
that will induce an additional static deformation, but in dynamic analysis this is often
ignored, i.e. τ 0 = 0.
(C) In the case I is a nano–hole, formally we can consider that the constants in I are
cI
44 = 0, eI

15 = 0, ε I
11 = 0 and boundary conditions on S are

t M
J = ∂σ S

l J

∂l
on S, (7)

In this case BVP is: the Eq. (1) and boundary conditions (4), (7).
Boundary conditions (7) can be written in the following form for the mechanical

and electrical part correspondingly:

t M
3 = σ M

n3 = ∂σ S
l3

∂l
, t M

4 = σ M
n4 = ∂σ S

l4

∂l

where t M
3 and t M

4 are the normal component of mechanical stress and electrical

displacement (see Eq.(eq2)) in the matrix, while ∂σ S
l3

∂l and ∂σ S
l4

∂l = ∂ DS
l

∂l are tangential
derivatives of tangential components of stress σ S

l3 and tangential electrical displace-
ment σ S

l4 = DS
l along the nano–hole boundary S.
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(D) In the case I is a nano–inclusion, the constants in I are cI
44 > 0, eI

15 �= 0, ε I
11 > 0;

the constants in M are cM
44 > 0, eM

15 �= 0, εM
11 > 0.

On the heterogeneity boundary S where are defined constants cS
44, eS

15, ε
S
11 and

with the notation for generalized displacement uS along S the generalized tangential
stress on S is defined as: ∣

∣
∣
∣
∣

σ S
l3 = cS

44
∂uS

3
∂l + eS

15
∂uS

4
∂l ,

σ S
l4 = eS

15
∂uS

3
∂l − εS

11
∂uS

4
∂l ,

(8)

Boundary conditions on S are

∣
∣
∣
∣
∣

uM
J = uI

J onS,

t I
J + t M

J = ∂σ S
l J

∂l on S,
(9)

Then BVP is: the Eq. (1) and boundary conditions (4), (9).
Boundary conditions (9) can be written in the following form for the mechanical

and electrical part correspondingly:

t I
3 + t M

3 = ∂σ S
l3

∂l
, t I

4 + t M
4 = ∂σ S

l4

∂l

where t N
3 , t N

4 , N = I, M are the normal component of mechanical stress and elec-

trical displacement (see Eq. (2)) in the inclusion and in the matrix, while ∂σ S
l3

∂l and
∂σ S

l4
∂l = ∂ DS

l
∂l are tangential derivatives of tangential components of stress σ S

l3 and tan-
gential electrical displacement σ S

l4 = DS
l along the interface boundary S. Here, it is

take into consideration that nM
i = −nI

i = −ni , i = 1, 2. Note that for the mechan-
ical displacement uN

3 and for the potential of the electric field uN
4 = φ continuity

conditions are satisfied, see first row of Eq. (9).

3 Integro-Differential CNN Model

Cellular Nonlinear/Nanoscale Networks (CNN) have been introduced in 1988 by
Chua and Yang [1] as a new class of information processing systems which shows
important potential applications (Fig. 3). The concept of CNN is based on some
aspects of neurobiology and adapted to integrated circuits. CNN are defined as spatial
arrangements of locally coupled dynamical systems, referred to as cells. The CNN
dynamics are determined by a dynamic law of an isolated cell, by the coupling
laws between the cells and by boundary and initial conditions. The cell coupling is
confined to the local neighborhood of a cell within a defined sphere of influence. The
dynamic law and the coupling laws of a cell are often combined and described by
nonlinear ordinary differential- or difference equations (ODE), respectively, referred
to as the state equations of cells. Thus a CNN is given by a system of coupled ODE
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Fig. 3 a CNN architecture; b cell circuit; c output function of CNN

with a very compact representation in the case of translation invariant state equations.
Despite of having a compact representation, CNN can show complex dynamics like
chaotic behavior, self-organization, and pattern formation or nonlinear oscillation and
wave propagation. Furthermore, Reaction-Diffusion Cellular Nonlinear/Nanoscale
Networks (RD-CNN) have been applied for modeling complex systems [8].

Cellular Nanoscale Networks (CNN) [1, 8] are complex nonlinear dynamical
systems, and therefore one can expect interesting phenomena like bifurcations and
chaos to occur in such nets. It was shown that as the cell self-feedback coefficients
are changed to a critical value, a CNNwith opposite-sign template may change from
stable to unstable. Namely speaking, this phenomenon arises as the loss of stability
and the birth of a limit cycles.

We will give general definition of a CNN which follows the original one [1]:

Definition 1 An M × M cellular neural network is defined mathematically by four
specifications:

(1) CNN cell dynamics;
(2) CNN synaptic law which represents the interactions (spatial coupling) within

the neighbor cells;
(3) Boundary conditions;
(4) Initial conditions.

In terms of the definition we can present the dynamical systems describing CNN.
For general CNN whose cells are made of time-invariant circuit elements, each cell
C(i j) is characterized by its CNN cell dynamics:

ẋi j = −g(xi j , ui j , I s
i j ),
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where xi j ∈ Rm , ui j is usually a scalar. In most cases, the interactions (spatial cou-
pling) with the neighbor cell C(i + k, j + l) are specified by a CNN synaptic law:

I s
i j = Ai j,kl xi+k, j+l + Ãi j,kl ∗ fkl(xi j , xi+k, j+l) + B̃i j,kl ∗ ui+k, j+l(t).

The first term Ai j,kl xi+k, j+l is simply a linear feedback of the states of the neigh-
borhood nodes. The second term provides an arbitrary nonlinear coupling, and the
third term accounts for the contributions from the external inputs of each neighbor
cell that is located in the Nr neighborhood.

In [3] a systemof integro-differential equations (IDE) is obtained for the unknowns
u (displacement vectors) and τ (traction). The procedure is based on Gauss theorem
[10] after finding the fundamental solutions of the boundary value problem formu-
lated in the introduction.

Let us consider the following system of IDE, which is more general from the point
of view of the applications in nano-technology:

∂u(x)

∂τ
= D

∂2u

∂x2
− C1

∫

S
G(u(x))dx, (10)

where C1 is a constant depending on the ρM , cM
44 > 0, eM

15 �= 0 and εM
11 > 0, D is

diffusion coefficient, u = (u3, u4), function G(x) is a function of the displacement
vectors u3,4 and the traction τ3,4.

It is known [1, 8] that some autonomous CNN represent an excellent approxima-
tion to nonlinear partial differential equations (PDEs). The intrinsic space distributed
topology makes the CNN able to produce real-time solutions of nonlinear PDEs.
There are several ways to approximate the Laplacian operator in discrete space by a
CNN synaptic law with an appropriate A-template. In our case the CNN model of
IDE (10) is:

dui j

dt
= D A1 ∗ ui j − C1

∫

S
G(ui j ))dt, 1 ≤ i ≤ n, j = 3, 4, (11)

where A1 is 1-dimensional discretized Laplacian template [8] A1 : (1,−2, 1), ∗ is
convolution operator, n = M × M is the number of cells of the CNN architecture.

Remark 1 Realized nano-scale CNN have been considered in a fast growing num-
ber of investigations dealing with image processing problems [1]. Despite of hav-
ing a compact representation CNN can show very complex dynamics like chaotic
behaviour, self organization and pattern formation or nonlinear oscillation and wave
propagation. The future of CNN implementation is in nano-structure computer archi-
tecture. CNN not only represent a new paradigm for complexity but also establish
novel approaches to information processing by nonlinear complex systems. More-
over, CNN have very impressive and promising applications in image processing and
pattern recognition.
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We develop the following algorithm for studying the dynamical behavior of CNN
model (11) via describing function method [7]:

1. First, we apply double Fourier transform F(s, z) to IDE CNN model (11)

F(s, z) =
k=∞
∑

k=−∞
z−k

∫ ∞

−∞
fk(t)exp(−st)dt. (12)

from continuous time t and discrete space k to continuous temporal frequencyω, and
continuous spatial frequency 
, such that z = exp(I
), s = Iω, I is the imaginary
identity and therefore we obtain:

sU (s, z) = D[z−1U (s, z) − 2U (s, z) + zU (s, z)] − C1s
−1G(U (s, z)). (13)

2.We expressU (s, z) as a function of G(U (s, z)):U (s, z) = C1
s D(z−1−2+z)−s2 G(U )

and obtain the transfer function H(s, z):

H(s, z) = C1

s D(z−1 − 2 + z) − s2
. (14)

According to the describing function technique [7], the transfer function can be
expressed in terms of temporal frequency ω and spatial frequency 
:

H
(ω) = C1

IωD(2cos 
 − 2) + ω2
. (15)

3. We are looking for possible periodic solutions of our CNN model (11) in the
form:

ui j (t) = ξ(i
 + ωt), 1 ≤ i ≤ n, j = 3, 4, (16)

for some function ξ : R → R and for some spatial frequency 0 ≤ 
 ≤ 2π and tem-
poral frequency ω = 2π

T , where T > 0 is the minimal period.
4. According to the describing function technique [7] the following constraints

hold:

R(H
(ω)) = Um
Ym

,

I (H
(ω)) = 0.
(17)

5. Thus (17) give us necessary set of equations for finding the unknowns Um , 

and ω. As we mentioned before we are looking for a periodic wave solution of (11),
therefore Um will determine approximate amplitude of the wave, an T = 2π

ω
will

determine the wave speed. Now according to the describing function technique, if
for a given value of 
 we can find the unknowns (Um, ω), then we can predict the
existence of a periodic solution of our CNN IDE (11) with an amplitude Um and
period of approximately T = 2π

ω
.

Following the above algorithm the next theorem has been proved:
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Theorem 1 CNN IDE (11) of the BVP (1), (4) with circular array of n = L × L
cells has periodic solutions ui j (t) with a finite set of spatial frequencies 
 = 2πk

n ,
0 ≤ k ≤ n − 1 and a period T = 2π

ω
.

Remark 2 By applying the describing function technique we obtain a character-
ization of the periodic steady state solutions of our CNN model (11). In order to
validate the accuracy of the achieved results we need to introduce a possible initial
condition from which the network will reach, at steady state, a steady state solution
characterized by the desired value of 
. Therefore, we can take a initial condition
ui j (0) = sin(
̃i), 1 ≤ i ≤ n, j = 3, 4.

4 Travelling Wave Solutions of IDE CNN Model

We shall study traveling wave solutions of IDE CNN model (11) of the form:

ui = 
(i − ct), (18)

for some continuous function 
 : R1 → R1 and some unknow real number c. Let
us denote s = i − ct . Let us substitute (18) in the IDE CNN model (11). Therefore

(s, c) and c satisfy the equation of the form:

− c

′
(s, c) = 
(s − 1, c) − 2
(s, c) + 
(s + 1, c) − C1

∫

S
f (
(s, c)dt. (19)

We consider solution of equation (19). The following theorem about travelling
wave solution of our IDE CNN model hold:

Theorem 2 Let 
(s, c) is a solution of (19) and satisfies the following conditions:

lims→−∞
(s, c) = 0, lims→∞
(s, c) = 1.

Then

(i) If c = c∗ < 0, 
(s, c) is a stable traveling wave solution of IDE CNN model.
(ii) If c = c∗ > 2, 
(s, c) is unstable traveling wave solution.

Remark 3 Our objective in this section is to study the structure of the travelling
wave solutions of the CNN model (11). There has been studies on the travelling
wave solutions of spatially discrete or both spatially and time discrete systems, but
as far as we know there are no studies of periodic traveling wave solutions in CNN.
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5 Numerical Simulations and Validation

Let us consider the square domain of piezoelectric solid G1G2G3G4 with a side a.
For heterogeneities at nano–scale we have: the side of the square is a = 10−7 m;
material parameters inside I for hole are 0; material parameters on S = ∂ I for hole
and for an inclusion are: cS

44 = 0.1cM
44, eS

15 = 0.1eM
15, ε

S
11 = 0.1εM

11, ρ
S = ρM .

The characteristic that is of interest in nano-structures is normalized Stress Con-
centration Field (SCF) (σ/σ0) and it is calculated by the following formula:

σ = −σ13sin(ϕ) + σ23cos(ϕ), (20)

where ϕ is the polar angle of the observed point, σ j i is the stress (2) near S.
Material parameters of thematrix are for transversely isotropic piezoelectricmate-

rial PZT4 are:

• Elastic stiffness: cM
44 = 2.56 × 1010 N/m2;

• Piezoelectric constant: eM
15 = 12.7C/m2;

• Dielectric constant: εM
11 = 64.6 × 10−10 C/Vm;

• Density: ρM = 7.5 × 103 kg/m3.

The applied load is time harmonic uni-axial along vertical direction uniformmechan-
ical traction with frequency ω and amplitude σ0 = 400 × 106 N/m2and electrical

displacement with amplitude D0 = k εM
11

eM
15

σ0. This means that the boundary conditions
(4) are:

• on G1G2 : t M
3 = −σ0, t M

4 = −D0;
• on G2G3 : t M

3 = t M
4 = 0;

• on G3G4 : t M
3 =0, t M

4 = D0;
• on G4G1 : t M

3 = t M
4 = 0.

Then simulating our CNN IDE model (11) we obtain the following periodic wave
solutions (see Fig. 4):

The simulations of IDECNNmodel are obtained by simulation systemMATCNN
applying 4th- order Runge-Kutta integration. In order to minimize the computational
complexity and to maximize the significance of the mean square error only outputs
of 4 cells are taken into account.

Fig. 4 Simulation of IDE
CNN model with 4 cells
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Remark 4 The CNN solution of integro-differential equations has four basic prop-
erties it is (i) continuous in time; (ii) continuous and bounded in value; (iii) continuous
in interaction parameters; (iv) discrete in space. If we consider the output equation
of CNN to be of integro-differential type the architecture becomes quite general.
Analog CNN Chip hardware implementations have been developed and will further
advance in the future. Miniaturized CNN based devices are used already commer-
cially in real time applications e.g. in high speed image and video processing with
an equivalent computational power of super computers. CNN in the form of Quan-
tum Dot Cellular Automata appear to become a promising architecture for future
nano-structured computers.

6 Stabilizing Feedback Control for IDE CNN Model

Let us extend the IDECNNmodel (11) by adding to each cell the local linear feedback
[9]:

dui j

dt
= D(ui−1 j − 2ui j + ui+1 j ) − C1

∫

S
G(ui j ))dt − kui j , (21)

where k is the feedback controls coefficient, which is assumed to be equal for all
cells. The problem is to prove that this simple and available for the implementation
feedback can stabilize the IDE CNNmodel (11). In the following we present a proof
of this statement and give sufficient condition on the feedback coefficient values
which provide stability of the CNN nonlinear model (21). The following theorem
holds:

Theorem 3 Let the parameters of IDE CNN system and feedback coefficient k (21)
have positive values. Then its linearized model is asymptotically stable for all k > 0.

Proof Define the quadratic Lyapunov function candidate L(z) = 1
2 zT z. Then its

derivative along the linearized control IDE CNN is d L(z)
dt = 1

2 zT (J T (k) + J (k))z =
−zT Q(k)z. Therefore d L(z)

dt < 0 implies a positive definiteness of Q(k). It can be
shown that Q(k) positive definiteness implies k > 0. For verification of the above
statement the eigenvalues of J (k) were calculated related on the values of feedback
coefficient k. Stability of the linear system requires that the eigenvalues λi

j , i =
1, . . . , 4 satisfy the inequality maxi Reλi

j < 0.
Simulations of the stabilized IDE CNN are given on Fig. 5:

Remark 5 The numerical solution procedure follows the algorithm developed in
the previous section. The following steps of the numerical procedure are realized:

(a) solution of the algebraic system (17) for the unknowns Um , 
 and ω;
(b) computation of the displacement and traction at any point in the PEM plane;
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Fig. 5 Simulation of
stabilized IDE CNN model

(c) SCF computation;
(d) creation of validated software based on Matlab.

Numerical simulations show that the stress concentration field near defects is strongly
influenced by the type and the size of the defect(crack, hole or inclusion), thematerial
anisotropy, the defect location and geometry, the dynamic load characteristics and
the mutual interactions between defects and between them and the solid’s boundary.
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Nonlinear Models of the Fluid Flow
in Porous Media and Their Methods
of Study

Jiří Benedikt, Petr Girg, and Lukáš Kotrla

Abstract We survey mathematical models of the fluid flow in porous media based
on quasilinear parabolic partial differential equations. We focus on singular and/or
degenerate parabolic equations, which are suitable for modeling of turbulent filtra-
tion such as groundwater flow trough gravel and/or fractured crystalline rocks and
turbulent polytropic filtration of natural gas through rocks in standard deposits, on
one hand, and isothermic nanoporous (slow) filtration of natural gas in shale forma-
tions, on the other hand. Since in the case of singular and/or degenerate parabolic
equations, it is almost impossible to find explicit solutions, we survey some existence
and regularity theory together with maximum and comparison principles. We apply
this theory on some selected examples from practice.

Keywords Ground water · Drought · Flow in porous medium · Turbulence ·
Nonlinear Darcy law · Leibenson’s equations · Natural gas · p-Laplacian · Doubly
nonlinear equation · Comparison principles

1 Introduction

Climate change and shortage of natural freshwater resources are becoming very
serious issues nowadays. There is a need for bettermanagement of existing resources,
while looking for unconventional resources of this vital substance. Our aim is to
contribute to these important issues by surveying several nonlinear mathematical
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e-mail: pgirg@kma.zcu.cz

J. Benedikt
e-mail: benedikt@kma.zcu.cz

L. Kotrla
e-mail: kotrla@kma.zcu.cz

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
A. Domoshnitsky et al. (eds.), Functional Differential Equations and Applications,
Springer Proceedings in Mathematics & Statistics 379,
https://doi.org/10.1007/978-981-16-6297-3_2

15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-6297-3_2&domain=pdf
mailto:pgirg@kma.zcu.cz
mailto:benedikt@kma.zcu.cz
mailto:kotrla@kma.zcu.cz
https://doi.org/10.1007/978-981-16-6297-3_2


16 J. Benedikt et al.

models of the fluid flow in porous media and their methods of study. We hope that
people from practice may find them useful.

Long-lasting droughts become serious problem not only in traditionally arid
and/or semi-arid areas, but newly also in countries with moderate climate such as
countries in Central Europe. Indeed, several regions of Europe including those in
Central and Northern Europe experienced severe drought conditions during June
and July 2019, resulting from a combination of the 2018 drought, the heatwaves
of 2019 and below-average precipitations in spring 2019, according to JRC Euro-
pean Drought Observatory report [39]. Moreover, below-average precipitations in
2018–2019 lead to lowering of the groundwater level which caused drying of wells
in many places in the Czech Republic as it can be seen from the weekly observa-
tions of water table in shallow boreholes (ca. 2–15m deep) conducted by the Czech
Hydrometeorological Institute [13], where most of the observations are significantly
below long-term average values (collected data since 1950s). The drought events of
2015–2019 also contributed to bark beetle calamity, see, e.g., [31, 32, 34, 55, 69],
peaking in Central Europe in 2019. Of course, the problems of drought were not
limited to Europe in 2019, significant problems were experienced also in many more
areas worldwide, e.g., in Southeast Australia [40], Southern Africa [42, 43], and
India [41] in 2019. According to [53], two-thirds of the global population live under
conditions of severe water scarcity for at least 1month of the year and half a billion
people face severe water scarcity all year round. It was already in 2008, when Gold-
man Sachs [28] estimated that the annual consumption of freshwater approximately
doubles every 20years, claimed that water will be oil of the forthcoming century, and
recommended to private investors to invest into infrastructure related with freshwater
supply.

Most of the mathematical models of the groundwater flow used in practice are
based on the linear Darcy (constitutive) law relating groundwater flux with piezo-
metric head loss per length:

q = const.
�h

�L
, (1.1)

where h = P
ρ g + z is the piezometric head, P is hydrostatic pressure, ρ is density,

g is acceleration due to gravity and z is vertical coordinate measured from arbitrary
(but fixed) horizontal level,�h stands for the piezometric head loss (difference of h),
�L is distance, and q is flux. This law was established empirically by Henry Darcy
[15] already in 1856 and it is sufficiently accurate in the case that the flow is laminar,
that is, when the Reynolds number related to flux is not “too high” (to be clarified in
Sect. 4). If, however, the Reynolds number of the flux is “too high” (see Sect. 4), the
turbulence occurs and the linear Darcy law should be replaced by a nonlinear one
such as the Smreker–Izbash–Missbach law

�h

�L
= const. qm or, equivalently, q = const.

( �h

�L

) 1
m

, (1.2)

or the Forchheimer law
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�h

�L
= aq + bq2 , (1.3)

where the positive multiplicative constants and the exponent m ∈ (1, 2] are to be
determined empirically. Note that the turbulence often occurs for reasonable and
realistic fluxes in practice in the case of coarse porous materials such as gravel or
fractured impermeable media with sufficiently wide fractures. A thorough historical
survey of development constitutive laws and their history is presented in [8].

With increasing demand on water supply, crystalline rock (or hard rock) aquifers
are gaining attention in the last decades [29, 60]. By crystalline rock (or hard rock),
we mean impermeable rocks of igneous or metamorphic origin (of negligible per-
meability) such as, e.g., basalts, granites, or gneisses, where the groundwater flow
occurs only in a system of cracks and fractures. Since the water is stored and flows
only in cracks and fractures, wells and boreholes in the crystalline rock aquifers have
significantly smaller yield as compared to those in porous sedimentary rocks or allu-
vial aquifers. Nevertheless, crystalline rocks of the Precambrian continental shields
occupy approx. 20% of the land surface [29]. Hence, crystalline rock aquifers may
become important source of freshwater in rural areas. More importantly, crystalline
rocks are commonly found in semi-arid areas where they may represent important
source of scarce freshwater. Indeed, continental shields occupy approx. 40% of the
semi-arid areas of the sub-SaharanAfrica [50, 77]. It is estimated that 40%of ground-
water in Australia is stored in the crystalline aquifers [27]. Crystalline aquifers are
intensively exploited by farming communities as a source of freshwater mostly used
for irrigation in semi-arid southern India [57]. Thus, good understanding of the flow
in crystalline aquifers can improve quality of life in these areas. The crystalline rocks
are commonly found in continental shields and massifs also in areas which do not
have lack of precipitations such as Brazil, Canada, and Scandinavia. On one hand,
the crystalline rock aquifers are used for water supply to rural communities in these
areas. On the other hand, there are also large underground construction projects such
as tunnels, mines, nuclear-waste disposal sites, and similar, see [29]. Thus, under-
standing groundwater flow in hard rock aquifers is important not only from the point
of view of water extraction, but also from the point of view of dewatering of these
construction projects.

Hand in hand with climate change, global water cycle intensifies and hydrological
extremes including floods may occur more frequently, see, e.g., [30, 33, 71, 76].
Thus, further research and development of effective drainage systems is needed.
It appears that coarse porous media such as gravel or geosynthetic materials are
suitable for this task, but it turns out that movement of water in these materials is
again governed by the nonlinear Smreker–Izbash–Missbach or Forchheimer law [10,
23].

Recent serious drought events are closely related to ongoing climate changes,
see, e.g., [14, 74, 75] and references therein. Although it may be the case that the
CO2 emissions are not the main reason of global warming, see, e.g., pro et contra
arguments in [11, 46, 47, 61, 62, 70], preference for fossil fuels with lower CO2

emissions will most likely not make the situation worse. Natural gas is a hydro-
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carbon gas mixture consisting primarily of methane (CH4), and thus has the most
favorable ratio between carbon and hydrogen in terms of emission reduction of all
fossil fuels. For comparison, the amount of CO2 produced by burning natural gas to
get a unit of energy is a half that of black coal (117 lb CO2 per 1 million Btu ver-
sus 205–228.6 lb CO2 per 1 million Btu) according to the U.S. Energy Information
Administration (see [72]). With geographically narrowly localized conventional gas
fields, unconventional deposits (e.g., shale gas deposits) are now increasingly being
opened worldwide to meet increasing demand. In order to better exploit valuable
natural resources, one needs good mathematical models. Natural gas flow in the rock
is a very complicated process which involves heat exchange with collector rock and
may involve turbulence. One of the first to develop satisfactory mathematical models
of non-stationary flow of natural gas in a collector rock of a conventional gas field
was Leibenson [48].

It turns out that the archetypal parabolic partial differential equation

∂v

∂t
− div

(|v|l |∇v|p−2∇v
) = f (x, t) (1.4)

is a suitable model for all above situations of the fluid flow in porous medium. Note
that (1.4) becomes Leibenson’s equation of filtration of a polytropic gas in a porous
strata for 3/2 < p ≤ 2, l > 0, see Sect. 3, and equation for the water table in an
unconfined aquifer for 3/2 ≤ p ≤ 2, l = 1, see Sect. 2. Note that the case p = 2
corresponds to laminar flow in both Leibenson’s equation and the water table equa-
tion, while the case p = 3/2 corresponds to a flow with fully developed turbulence.
Most importantly, for practical considerations, the intermediate case 3/2 < p < 2
corresponds to a flow with some effects of turbulence. Moreover, (1.4) with l = 1 and
2 < p < 10 is also model of fluid flow in nanoporous media (see [54]). Note that
such type of gas filtration occurs in the shale deposits, whose importance in natural
gas extraction has recently increased significantly.

2 Basic Terminology in Hydrology

2.1 Porous Medium

The attempt to formulate an exact definition of porous medium brings many pitfalls,
see Bear [6, Sects. 1.2 and 1.3]. We adopt the conceptual model presented in [6,
Sects. 1.3 and 4.5.2]. Moreover, we restrict ourselves to the case where a portion of
space (domain from mathematical point of view) is occupied by two homogeneous
kinds of matter. Solid phase (say rock) forms a rigid container for fluid phase. The
space occupied by solid phase is called solid matrix and the space filled by fluid
phase is called pore space. Porous medium contains solid matrix and pore space in
any sufficiently large subdomain (but still much smaller than the whole domain). In
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fact, the pore space includes many relatively narrow channels or tubes of various
length, cross-section, and orientation. We call a junction the part of void space where
at least three channels meet each other. The channels and the junctions have more or
less uniform spatial distribution.

In the case of fluid flow, we can assume that any two points in pore space may be
connected by a curve that lies completely within it since there is no flow in isolated
pores (subsets of pore space). Consequently, the isolated pores are considered as the
part of solid matrix, see [6, Sect. 1.2]. The remaining pore space (interconnected by
channels) is usually called effective pore space. We will assume that the pore space
includes only effective pore space for simplicity and hence we will omit the term
“effective”.

2.2 Groundwater

Typical porous media considered in hydrogeology are soils, sands, gravels, porous
rocks such as sandstones, and fractured crystalline rocks such as basalts, granites,
and gneisses. In general, the pore space of these porous media can be filled by air,
vapor, and liquid phase of water. Part of the porous medium where all pores are
filled by the water in liquid phase is called saturated zone and the part where the
pores contain gaseous phase (air and vapor) and also liquid phase (of water) for at
least part of the time is called aeration zone. For the purposes of this paper, the term
groundwater is limited to the water present beneath Earth’s surface in the saturated
zone. Mathematical models presented in this paper are restricted to the motion of
water in saturated zone.

2.3 Aquifer

Note that the saturated zone can be either overlain by an impermeable layer (of rock
or clay) or it can have a free upper surface, which is calledwater table. Thewater table
is characterized as a surface where the pressure is equal to the atmospheric pressure.
An aquifer is such saturated zone which allows groundwater flow. The aquifer with
the free upper surface is called unconfined aquiferwhile the aquifer enclosed between
two impermeable layers is called confined aquifer. In the presented paper, we are
interested in groundwater flow through unconfined aquifer.

2.4 Velocities and Flux

The real velocity of the groundwater in the porous medium is highly and unpre-
dictably fluctuating in space and time due to irregularity of the channels and their
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Fig. 1 Flow through porous medium. (a) specific discharge (or Darcy velocity) versus (b) stream-
lines of the real velocity field of the fluid

joints (and due to turbulence for high values of the Reynolds number). Thus, the real
velocity is useless for the practical purposes. Instead, average velocity (which can be
measured in practice) is used. Let us choose Cartesian coordinate system xyz, with
z being the vertical axis. Now, let us consider cross-sectional area Ax perpendicular
to x-axis. Let Qx be the volume of water that passes through Ax per unit of time.
The sign of Qx is positive, if the water (in bulk) passes through Ax in the direction
of axis x and negative otherwise. Then

qx
def= Qx

Ax
.

In analogous way, we define qy and qz . Then, �q=(qx , qy, qz) and q=
√
q2
x + q2

y + q2
z .

The quantity �q is called specific discharge orDarcy velocity. We also define average

velocity �v = �q/n, where n is porosity. Similarly, v
def= |�v| = q/n. This approach

works for any incompressible fluid (Fig. 1).

2.5 Groundwater Energy and Piezometric Head

The total mechanical energy of a unit volume of groundwater (or any other incom-
pressible fluid) is the sum of gravitational potential energy, pressure energy, and
kinetic energy

ET = z�g + P + 1

2
�v2,

see, e.g., [59]. Here, v stands for the magnitude of average velocity of the flow, see
above. Groundwater is losing total energy while flowing due to friction with porous
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medium. Thus, its total energy decreases in the direction of the flow. The total head
hT is the height of the fictive column of groundwater with the gravitational potential
energy equal to ET , i.e.,

hT = z + P

�g
+ 1

2 g
v2 .

Since the average velocity of the groundwater flow in real situations is maximally of
the order of ameter per day (that is, of the order 0.00001m/s), the term corresponding
to kinetic energy is negligible and can be dropped. In this way, we obtain piezometric
head

h = z + P

�g
,

which is the state variable in the mathematical models of underground move-
ment. Constitutive relations between specific discharge and piezometric head were
observed by in-field observations [67] as well as experimentally established in lab-
oratory conditions [15]. In general (for isotropic medium), these relations can be
written as

q = �

( �h

�L

)
,

where � is some nondecreasing function such that �(0) = 0. Note that the constitu-
tive laws are inferred from experiments for one-dimensional flow. However, ground-
water flow in the real world is three dimensional. The properties of the isotropic
porousmediumare the same in all directions. Thus, in this case, the three-dimensional
constitutive law can be inferred from the one-dimensional one in a straightforward
manner, taking into account that the specific discharge takes the opposite direction
of the gradient of the piezometric head and no flow occurs if the gradient of the
piezometric head is zero, i.e.,

�q =

⎧⎪⎨
⎪⎩

�0 for ∇h = �0 ,

−�(|∇h|) ∇h

|∇h| for ∇h �= �0 .
(2.1)

In particular, we obtain the linear Darcy law (1.1) for

�(r) = k r , r > 0 , (2.2)

the Smreker–Izbash–Missbach power law (1.2) for

�(r) = cr
1
m , r > 0 , (2.3)

1 < m < 2, inverse Forchheimer law (inverse formula to (1.3)) for
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�(r) =
√
a2 + 4br − a

2b
= 2 r√

a2 + 4br + a
, r > 0 . (2.4)

It has been observed byKing [45] that the flow ofwater in low-permeable clays obeys
(2.3) with 0 < m < 1. The work [68, p. 239] contains an overview of values ofm for
various materials where m ranges from 0.27 to 0.89 (note that 1/m = n, exponent
n taken from [68, Table (A), Appendix I, p. 239]). Recently, it has been found that
very slow filtration (i.e., 0 < m < 1) occurs in petroleum and gas extraction from
tight shales reservoirs. For laboratory experiments with real fluids and media, see
[25, 63].

2.6 Problem of the Free Surface, the Dupuit–Forchheimer
Assumption, and Simplified Problem

In the case of unconfined aquifers, the free surface of the groundwater is the upper
boundary of the aquifer. Thus, we need to solve a partial differential equation for
both an unknown h = h(x, y, z, t) and an unknown bounded domain � ≡ �(t) in
R

3 that represents the aquifer.
In 1863, Dupuit [21] simplified the problem of unknown boundary by observing

that the maximal piezometric head loss per length �h/�L is between 0.001 and
0.01 in typical unconfined aquifers and unconfined aquifer is bounded from below
by horizontal impermeable layer. Based on these observations, he formulated the
following assumptions on the flow:

(DF1) groundwater flows horizontally (and thus piezometric head is constant in
vertical direction z) and

(DF2) the Darcy law (1.1) applies to this flow (Dupuit assumed that the ground-
water flow is slow enough at these values of piezometric head loss per length so
that the nonlinear effects can be neglected).

We will derive a simplified model of groundwater flow in unconfined aquifer using
the assumption (DF1). We also assume that the lower boundary of the aquifer
formed by impermeable layer is the xy-plane. We choose � a bounded domain
in R

2 such that orthogonal projection to �(t) to the xy-plain is contained in �

for every t ∈ [0, T ]. We remind that for a fixed x, y, t , the point (x, y, z) belongs
to the water table if and only if h(x, y, z, t) = z. In case there is no water above
(x, y) ∈ � at t , we extend the definition of the water table to contain the point
(x, y, 0). We assume that the water table is the graph of a function of x , y, and t , that
is, there exists nonnegative and sufficiently smooth function H : R

2 × [0, T ] → R

such that h(x, y, H(x, y, t), t) = H(x, y, t). Then the mass of the water column
stacked above arbitrary two-dimensional disk A ⊂ � at time t is

mA(t) =
∫
A
n �water H(x, y, t)dxdy .
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Hence, the integral form of mass conservation law for water (or any other incom-
pressible fluid) has the following form:

mA(t2) − mA(t1) +
∫ t2

t1

∫
∂A

H(x, y, t) �j(x, y, t) · �n ds =
∫ t2

t1

∫
A
f (x, y, t) dxdydt ,

(2.5)
where �j = n �water �v = �water �q is the mass flow, �n is normal vector of ∂A, and f
quantifies the sources or absorption in column over the point (x, y) at time t . Let us
recall that �j(x, y, z, t) = �j(x, y, t) by the assumption (DF1).

UsingmA(t2) − mA(t1) = ∫ t2
t1
m ′

A(t) dt = ∫
A

∫ t2
t1
n �water

∂H
∂t (x, y, t) dtdxdy , and

the divergence theorem on the second term in (2.5), we arrive at

∫
A

∫ t2

t1
n �water

∂H

∂t
(x, y, t) dtdxdy −

∫ t2

t1

∫
A
div (H(x, y, t)�water �q) dxdydt =

∫ t2

t1

∫
A
f (x, y, t) dxdydt .

Since the integral identity is valid for any test disk A ⊂ � and any interval [t1, t2] ⊂
[0, T ], we infer the local form of the mass conservation law

n
∂H

∂t
(x, y, t) − div (H(x, y, t) �q) = f (x, y, t)

�water

a.e. in � × [0, T ]. Since h(x, y, ·, t) ≡ const. by the assumption (DF1) and h(x, y,
H(x, y, t), t)=H(x, y, t) on the water table, h(x, y, z, t) ≡ h(x, y, t)=H(x, y, t)
and

n
∂h

∂t
(x, y, t) − div (h(x, y, t) �q) = f (x, y, t)

�water
. (2.6)

By (DF2), we apply the Darcy law, i.e., (2.1) with (2.2) to conclude

∂h

∂t
− k

n
div (|h| ∇h) = f (x, y, t) (2.7)

with a little bit of abuse of notation (“hiding” multiplicative constants into f ). Note
that we can assume that k/n = 1 since we can get rid of this multiplicative constant
by a linear substitution in the time variable.

Based on numerous experiments and in-field observations summarized in [26],
Ph. Forchheimer [26, see p. 1782 and “Anhang,” pp. 1787–1788 ] pointed out that the
assumption (DF2) (i.e., the Darcy law (1.1)) is not accurate enough for piezometric
head loss per length greater than 0.0005 for certain porous media (sands) and thus
(1.3) has to be used instead while the assumption (DF1) is still applicable. Following
Forchheimer, we apply Forchheimer law, i.e., (2.1) with (2.4) to conclude

∂h

∂t
− 1

n
div

(
2 |h| ∇h√

a2 + 4b|∇h| + a

)
= f (x, y, t) . (2.8)
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Or alternatively, we apply Smreker–Izbash–Missbach law, i.e., (2.1) with (2.3) to
conclude

∂h

∂t
− c

n
div

(|h| |∇h|p−2 ∇h
) = f (x, y, t) , (2.9)

where p = 1 + 1/m. It turns out that the equation (2.9) is easier to handle both
theoretically and computationally and thus it is preferred in the literature.

3 Leibenson’s Equation and Flow of the Natural Gas

Following Leibenson [49], we assume that the porous medium is nondeformable,
isotropic, and homogeneous at macroscopic scale with constant porosity n and the
gas is a homogeneous mixture. The condition on the gas ensures that its density
depends on the pressure only. We also suppose that the examined thermodynamic
process is polytropic, i.e., it obeys the following relation:

P

�γ
= βγ . (3.1)

Here, x ∈ R
3, � = �(t, x) is the density, P = P(t, x) is the pressure, γ > 1 is the

polytropic index of the process, and β > 0 is a constant. The flow of the gas (as of
any fluid) in the porous medium is governed by continuity equation in the form

n
∂�

∂t
+ div (��q) = 0 (3.2)

and an appropriate constitutive law which relates specific discharge �q = n�v and
pressure gradient ∇P . Specific discharge is volumetric flux per unit area and the
term ��q represents mass flux per unit area. We refer to [6, Sect. 6.2] for derivation of
(3.2) for homogeneous mixture.

For compressible fluid, the specific discharge �q does not provide relevant infor-
mation and mass flux must be used instead. In this way, a similar power law for
compressible gas subjected to polytropic process,

��q = −C |∇P1|s−1 ∇P1 ,
1

2
< s < 1 , (3.3)

was experimentally established, where P1 = P (γ+1)/γ (see Leibenson [49]).
Plugging (3.3) into (3.2), we obtain

n
∂

∂t

⎛
⎝ P

1
γ+1

1

β

⎞
⎠ − C div

(|∇P1|s−1∇P1
) = 0
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by (3.1). This equation is often called the equation of turbulent polytropic filtration
of gas in porous medium and it has attracted attention of many researches, see, e.g.,
[4, 17, 19, 20, 24, 36].

4 Turbulence in Porous Medium and Real-World
Observations

The turbulence in porousmediumwas probably first conjectured from the experimen-
tally established deviations from the Darcy law by Pavlovskii [56], who proposed to
use the Reynolds number for the distinction of the validity range of the linear Darcy
law from the validity range of nonlinear laws. He also observed that formula for the
Reynolds number in the porous mediummust be different than the one for a pipe. He
proposed a definition suitable for grained porous media (e.g., sand or gravel) formed
of grains of approximately the same diameter. His formula reads

Re = 6.5 q d ρ

μ (0.75 n + 0.23)
,

where d is effective diameter of the grain, ρ is density of the incompressible fluid
(water), and μ is its dynamic viscosity. For this definition of Reynolds number, it
follows from the experiments that the Darcy law (2.2) is valid if the value of Re is
approximately below 50 to 60 (the boundary between the two cases is somewhat
blurred) and, for higher values of Re, the Smreker–Izbash–Missbach law (2.3) with
1 < m < 2 or the Forchheimer law (2.4) must be used instead. According to V. I.
Aravin and S. N. Numerov [1, p. 4 and p. 33], this was the first time in [56] when such
specification of ranges of the Reynolds number appears in the literature. As pointed
out in [1, p. 33], the value of the Reynolds number when the Darcy law becomes
inaccurate does not have to be the same as the critical value of the Reynolds number
when the turbulence in the flow occurs. Nowadays, it is known that there are at least
three ranges of Reynolds number with three different laws:

• pre-Darcy law (2.3) with 0 < m < 1 for very low values of the Reynolds number;
• Darcy law (2.2) for moderate values of the Reynolds number;
• post-Darcy law (2.3) with 1 < m < 2 or (2.4) for high values of the Reynolds
number.

To get the picture complete, experimental study of flow through porous media over
the complete flow regime is presented in, e.g., [2, 3, 66, 68].

Since the constitutive law can become nonlinear even in the laminar regime (as
pointed out by [1, p. 33]), we are often asked at conferences if the turbulence in the
flow through the porous medium was indeed observed in the laboratory. The modern
laboratory techniques can indeed capture the structure of turbulent vortexes, see the
recent paper [78].



26 J. Benedikt et al.

5 Functional Framework

In this section we survey relevant existence, uniqueness and regularity results con-
cerning generalized solutions of doubly nonlinear parabolic equations. There are
several approaches to generalized solutions of (singular/degenerate) doubly nonlin-
ear parabolic equations, see, e.g., [16, 18, 22, 36, 52]. For our purposes, we chose
the least technical approach presented in the survey paper by Ivanov [36] (for the
complete proofs of results surveyed in [36], see [35, 37] for p > 1 and [38] for
p > 2).

Let� be a bounded domain inR
N , N ≥ 1, and T > 0.We assume that� hasC0,1-

boundary (i.e., Lipschitz boundary) ∂�, see [58]. Then QT
def= � × (0, T ], ST def=

∂� × [0, T ] and �T
def= ST ∪ (� × {0}). We will use standard function spaces for

parabolic problems and, for the convenience of the reader, their traditional notation,
which is often different from the notation used in [36]. By C ([0, T ] → Lq (�)),
for q ≥ 1, we denote the space of all measurable functions v on QT such that the
mapping t �→ v( · , t) acting from [0, T ] to Lq (�) is continuous, i.e.,

lim
n→+∞ |tn − t | = 0 ⇒ lim

n→+∞ ‖v( · , tn) − v( · , t)‖Lq (�) = 0

for every sequence {tn}+∞
n=1, tn ∈ [0, T ] and t ∈ [0, T ].

By L p
([0, T ] → W 1,p(�)

)
, we mean a space of all measurable functions on QT

such that v( · , t) ∈ W 1,p(�) for a.e. t ∈ [0, T ] and

‖v‖L p([0,T ]→W 1,p(�))
def=

(∫ T

0
‖v( · , t)‖p

W 1,p(�)
dt

)1/p

< +∞ .

Note that if v ∈ L p
([0, T ] → W 1,p(�)

)
then the trace of v( · , t) on ∂� is defined

for a.e. t ∈ [0, T ].
Finally, by Cλ,λ/p(QT ) we mean a space of all continuous functions v on QT

such that

‖v‖Cλ,λ/p(QT ) = max
(x,t)∈QT

|v(x, t)| + sup
(x,t),(y,s)∈QT

(x,t)�=(y,s)

|u(x, t) − u(y, s)|
|x − y|λ + |t − s|λ/p

< +∞ .

We consider the prototype initial-boundary-value problem

{ ∂v

∂t
− div �a(x, t, v,∇v) = f (x, t) in QT ;

v = ψ on �T ,
(5.1)

where f ∈ L∞(QT ), and ψ ∈ Cλ,λ/p(QT ) such that ψ̂
def= ψl/(p−1)+1 ∈ L p([0, T ] → W 1,p(�)

)
, are given functions.
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The following structural hypotheses on the Carathéodory function �a are assumed
for a.e. (x, t) ∈ QT and any s ∈ R and any �r ∈ RN :

�a(x, t, s, �r) · �r ≥ ν0 |s|l |�r |p − μ0
(
1 + |s|δ) , (5.2)

|�a(x, t, s, �r)| ≤ ν1 |s|l |�r |p−1 + μ1 |s|l/p . (5.3)

Here p > 1, l ≥ 0, ν0, ν1 > 0, and μ0,μ1 ≥ 0 are certain given constants. Moreover,
0 ≤ δ < l + p is given constant for l + p > 2 and δ = 2 for 1 < l + p ≤ 2. Note
that these structural assumptions are satisfied in the particular case of the equation
(1.4).

Note that � with Lipschitz boundary satisfies the following structural hypothesis
from [36] (so-called property of positive geometric density) on the boundary ∂�:

∃α∗ ∈ (0, 1) ∃�∗ > 0 ∀x0 ∈ ∂� ∀ρ ∈ (0, �∗] : meas
(
� ∩ B� (x0)

) ≤ (1 − α∗)meas
(
Bρ (x0)

)
.

(5.4)

From [36, Def. 1.1 and Def. 2.1], we adapt the following notion of weak solution.

Definition 1 A nonnegative function v ∈ L∞(QT ) is a weak solution (supersolu-
tion, subsolution) if

(a) v ∈ C
([0, T ] → L1(�)

)
,∂vσ+1/∂xi ∈ L p(QT ) forσ

def= l/(p − 1), i = 1, . . . ,

N , and v̂
def= vσ+1 ∈ L p

([0, T ] → W 1,p(�)
)
.

(b) for any φ ∈ C1
0(QT ) and any t1, t2 ∈ [0, T ],

∫
�

v φ dx

∣∣∣∣
t2

t1

+
∫ t2

t1

∫
�

{
−v

∂φ

∂t
+ �a(x, t, v, �vx ) · ∇φ − f φ

}
dxdt = 0 , (5.5)

(φ ≥ 0, for supersolution:≥ 0, for subsolution:≤ 0), where �vx def= (vx1 , vx2 , . . . ,

vxN ) and

vxi
def=

⎧⎨
⎩

(1 + σ)−1v−σ ∂v̂

∂xi
in {(x, t) ∈ QT : v > 0} ,

0 in {(x, t) ∈ QT : v = 0} .

(5.6)

(c) v coincide with ψ on �T , that is,

v = ψ on ST in the sense of vσ+1trace ; (5.7)

lim
t→0+ ‖v( · , t) − ψ( · , 0)‖L1(�) = 0 . (5.8)

This definition makes sense, cf. [36, p. 24], in the general case p > 1, l > 1 − p.
However, we limit ourselves to p > 1 and l ≥ 0, which are values that appear in our
models. Note that the conditions (5.7) and (5.8) do not appear in [36, Definition 2.1]
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explicitly, however, they are mentioned in previous works by the same author, see,
e.g., [38, Definition 1.2].

The following result is a basic weak comparison principle for the weak sub-
and supersolutions of the doubly nonlinear equation from the initial-boundary-value
problem (5.1).

Proposition 1 cc(see [36, Prop. 4.1]) Let the assumptions (5.2), (5.3) be fulfilled.
Assume that v1 ∈ L p

([0, T ] → W 1,p(�)
)
is a subsolution of the equation

∂v

∂t
− div �a(x, t, v,∇v) = f1(x, t) in QT , (5.9)

and v2 ∈ L p
([0, T ] → W 1,p(�)

)
is a supersolution of the equation

∂v

∂t
− div �a(x, t, v,∇v) = f2(x, t) in QT , (5.10)

where f1, f2 ∈ L∞(QT ). If

v1 ≤ v2 on �T (in the sense of traces) , and f1 ≤ f2 in QT (5.11)

then, for any τ ∈ (0, T ], we have
∫

�

(v1(x, τ ) − v2(x, τ ))+ dx ≤
∫

�

(v1(x, 0) − v2(x, 0))
+ dx . (5.12)

From this proposition, we easily obtain uniqueness of weak solutions in the class
L p

([0, T ] → W 1,p(�)
)
.

Proposition 2 (see [36, Prop. 4.2]) Let assumptions (5.2), (5.3) be fulfilled. Then
there is atmost oneweak solution of the initial-boundary-value problem (5.1) belong-
ing to L p

([0, T ] → W 1,p(�)
)
.

Note that in the case of the doubly nonlinear equation, aweak solution v is assumed
to satisfy vσ+1 ∈ L p

([0, T ] → W 1,p(�)
)
for σ = l/(p − 1), which reduces to v ∈

L p
([0, T ] → W 1,p(�)

)
provided l = 0. For l �= 0, weak solutions to (5.1) do not

need to be of class L p
([0, T ] → W 1,p(�)

)
, in general. Note that if infQT v > 0 then

vσ+1 ∈ L p
([0, T ] → W 1,p(�)

)
implies v ∈ L p

([0, T ] → W 1,p(�)
)
.

Proposition 3 (see [36, Theorems 5.3 and 6.1]) Let p > 1 and either

l ≥ 0 , p + l ≥ 2

or
1 < p + l ≤ 2 .

Moreover, assume
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� ⊂ R
N is a bounded domain satisfying (20) , (5.13)

f ∈ L∞(QT ) , f ≥ 0 a.e. in QT , (5.14)

ψ ∈ L p
(
[0, T ] → W 1,p

0 (�)
)

∩ Cβ,β/p(QT ) , ψ ≥ 0, for some β ∈ (0, 1). (5.15)

Then there exists exactly one quasi-strong solution of the Cauchy–Dirichlet prob-
lem { ∂v

∂t
− div

(|v|l |∇v|p−2∇v
) = f (x, t) in QT ;
v = ψ on �T ,

which is Hölder continuous on QT .
Moreover, ∇ (

vα+1
) ∈ L p(QT ), with α = l/p, and

sup
(x,t),(x ′,t ′)∈QT

|v(x, t) − v(x ′, t ′)|
|x − x ′|λ + |t − t ′|λ/p

≤ K

with some λ ∈ (0, 1), K > 0 depending only on N, p, l, ‖ f ‖L∞(QT ),meas�, T , α∗,
and ρ∗ (from condition (5.4)), ‖ψ‖

L p
(
[0,T ]→W 1,p

0 (�)
), ‖ψ‖Cβ,β/p(QT ), and β ∈ (0, 1).

Proposition 4 (see [36, Theorem 3.1]) Let 1 < p < 2, p + l ≥ 2 and assume that
the structural conditions (5.2) and (5.3) are satisfied. Moreover, suppose that

(a) for a.e. (x, t) ∈ QT and any s ∈ R there exist ν1 > 0 and �b = �b(x, t, s) ∈ R
N ,

|�b(x, t, s)| < +∞, such that for a.e. (x, t) ∈ QT and all s ∈ R and �r1 , �r2 ∈ R
N

[�a(x, t, s, �r1) − �a(x, t, s, �r2)] · (�r1 − �r2) ≥ ν1|s|l |�r1 − �r2|2
{
|�r1 − �b|p + |�r2 − �b|p

}1− 2
p

holds.
(b) for a.e. (x, t) ∈ QT and any �r ∈ R

N , the functions s−αai (x, t, s, �r) and
s−αai (x, t, s, s−α�r) are continuous on R with respect to s. Here α = 1/p.

(c) ψ(x, t) is nonnegative in QT ,ψ ∈ L p
(
[0, T ] → W 1,p

0 (�)
)

∩ L∞(QT ), and we

have the Hölder condition

sup
(x,t),(x ′,t ′)∈QT

|ψ(x, t) − ψ(x ′, t ′)|
(|x − x ′|p + |t − t ′|)γ0/p ≤ K0

for some K0 > 0 and γ0 ∈ (0, 1).

Then there exists a weak solution v of the Cauchy–Dirichlet problem (5.1) which is
Hölder continuous in QT .Moreover,∇(vα+1) ∈ L p(QT ),α = 1/p, and the estimate

sup
(x,t),(x ′,t ′)∈QT

|v(x, t) − v(x ′, t ′)|
(|x − x ′|p + |t − t ′|)γ/p

≤ K
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holds with constants K > 0 and γ ∈ (0, 1) dependent only on the dimension N,
the known parameters from (5.2), (5.3), a)–b), the constants α∗ and �∗, |�|, T ,
‖ψ‖W 1,p(QT ), supQT

(ψ), γ0, and K0.

The following result stated in [38] guarantees the existence of a solution of (5.1)
with time-dependent boundary conditions. Let us emphasize that the result is valid
only for p > 2. As far as we know, a similar result has not been proved for 1 < p < 2
yet. In Proposition 5, we use Einstein’s summation convention as in [38].

Proposition 5 (see [38, Theorem 1.1]) Let p > 2 and assume that the structural
conditions (5.2) and (5.3) are satisfied. Moreover, suppose that

(a) for any s ∈ R, �r1, �r2 ∈ R
N and a.e. (x, t) ∈ QT ,

(ai (x, t, s, �r1) − ai (x, t, s, �r2)) · (
r1,i − r2,i

) ≥ ν1|s|l |�r1 − �r2|p

with ν1 = const. > 0.
(b) for a.e. (x, t) ∈ QT and all �r ∈ R

N , the limit

lim
s→0+ s−αai

(
x, t, s, s−α �r )

, α = l

p
,

exists.
(c) for any �r ∈ R

N and a.e. (x, t) ∈ QT ,

ai (x, t, s, �r)ri − f (x, t)s > −c1s
2 , c1 = const. > 0 ,

for all s < 0.
(d) concerning the functionψ(x, t), (x, t) ∈ QT , defining the boundary condition in

(5.1),ψ(x, t) ≥ 0,ψ ∈ W 1,p(QT ) ∩ L∞(QT ) andwe have theHölder condition

sup
(x,t),(x ′,t ′)∈QT

|ψ(x, t) − ψ(x ′, t ′)|
(|x − x ′|p + |t − t ′|)γ0/p ≤ K0

for some K0 > 0 and γ0 ∈ (0, 1).

Then problem (5.1) has at least one nonnegative weak solution v(x, t) for which

sup
(x,t),(x ′,t ′)∈QT

|v(x, t) − v(x ′, t ′)|
(|x − x ′|p + |t − t ′|)γ/p

≤ K

holds with K > 0 and γ ∈ (0, 1).
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6 Maximum and Comparison Principles

In case of singular and/or degenerate parabolic equations, it is impossible to find
explicit solutions except for very rare cases, thus we heavily rely on qualitative
methods of their study combined with numerical computations.Maximum and com-
parison principles play a prominent role among the qualitative methods. To remind
what maximum and comparison principles are, let us start with the well-known ellip-
tic Dirichlet Laplacian problem. Let ui ∈ W 1,2(�), i = 1, 2, be the weak solutions
of

−�ui = fi (x) in �,

fi ∈ L∞(�), in a bounded domain � ⊂ R
N . The weak comparison principle states

that if f1 ≤ f2 in � and u1 ≤ u2 on ∂� (in the sense of traces) then u1 ≤ u2 in �.
The strong comparison principle states that if, moreover, f1 �≡ f2 in � or u1 �≡ u2
on ∂� then u1 < u2 in �. In particular, the strong comparison principle says that
f1 < f2 in a small part of� of positive measure (and f1 ≡ f2 elsewhere) is sufficient
to have u1 < u2 everywhere in �.

Similar principles hold for the parabolic Cauchy–Dirichlet Laplacian problem.
Let ui ∈ L2

([0, T ] → W 1,2(�)
)
, i = 1, 2, be the weak solutions of

∂ui
∂t

− �ui = fi (x, t) in QT ,

fi ∈ L∞(QT ).Notice that this equation is a special case of (5.1)with �a(x, t, s, �r) = �r
satisfying both (5.2) and (5.3) with p = 2. If f1 ≤ f2 in QT and u1 ≤ u2 on �T (in
the sense of traces) then u1 ≤ u2 in QT (weak comparison principle, cf. Proposition
1). If, moreover, at least one of the following three conditions holds:

• f1 �≡ f2 in � × (0, t0) whenever 0 < t0 ≤ T ,
• u1 �≡ u2 on � × {0} (in the sense of traces),
• u1 �≡ u2 on ∂� × (0, t0) (in the sense of traces) whenever 0 < t0 ≤ T ,

then u1 < u2 in QT (strong comparison principle).
For the linear case p = 2, it is usual to prove themaximum principles first since the

comparison principles come forth as a consequence. Let u ∈ L2
([0, T ] → W 1,2(�)

)
be the weak solution of

∂u

∂t
− �u = f (x, t) in QT ,

f ∈ L∞(�). Theweakmaximum principle states that if f ≥ 0 in QT then u ≥ M
def=

ess inf
�T

u (in the sense of traces) in QT . We note that although it would make more

sense to call this statement a minimum principle and to call a maximum principle
that f ≤ 0 implies u ≤ ess sup

�T

u, these two are equivalent (we get one from the

other replacing u by −u) and thus we use only the term maximum principle. The
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strongmaximum principle states that if, moreover, at least one of the following three
conditions holds:

• f �≡ 0 in � × (0, t0) whenever 0 < t0 ≤ T ,
• u �≡ M on � × {0} (in the sense of traces),
• u �≡ M on ∂� × (0, t0) (in the sense of traces) whenever 0 < t0 ≤ T ,

then u > M in QT .
Once themaximum principle (weak or strong) is proved, the comparison principle

(weak or strong, respectively) is easily obtained choosing u = u2 − u1 (thus M ≥ 0)
and f = f2 − f1. Notice that the linearity of the left-hand side of the equation is
used. Conversely, if we have the comparison principle in our hands, the respective
maximum principle can be derived choosing u1 ≡ M , f1 ≡ 0, u2 = u and f2 = f
(no linearity is used here).

Let us now replace the Laplacian by the p-Laplace operator

�pu
def= div

(|∇u|p−2∇u
) = div �a(x, t, u,∇u) ,

p > 1,where �a(x, t, s, �r) = |�r |p−2�r satisfies both (5.2) and (5.3). Similarly as above,
the comparison principle implies the respective maximum principle. But since the
operator is nonlinear, the maximum principle does not imply the comparison princi-
ple. In other words, the maximum principle is weaker because it is only a comparison
with the constant solution. Moreover, the uniqueness of the weak solution is a conse-
quence of the weak comparison principle (cf. Proposition 2) but not a consequence
of the maximum principle.

As for the elliptic Dirichlet p-Laplacian problem for

−�pu = f (x) in �,

both the weak maximum and the weak comparison principle can be proved in a
standard way choosing an appropriate test function. Basically, the weak comparison
principle states that the p-Laplacian is a monotone operator. The strong maximum
principle was proved by Vázquez in 1984 [73]. The strong comparison principle was
proved by Cuesta and Takáč in 1998 [12] provided 0 ≤ f1 ≤ f2, f1 �≡ f2 and u ≡ 0
on ∂� (they focus on the influence of the right-hand side rather than the boundary
data).

While the weak maximum and the weak comparison principle for the parabolic
Cauchy–Dirichlet p-Laplacian problem for

∂u

∂t
− �pu = f (x, t) in QT (6.1)

is still standard (see Proposition 1), the strongmaximum and comparison principle is
muchmore involvedwhen p �= 2. It follows fromBarenblatt [4] thatwe cannot expect
the strong maximum principle in the degenerate case p > 2 (weak diffusion) even
locally in time. Indeed, an explicit radially symmetric solution u(x, t) ≡ �(|x |, t) =
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�(r, t), r = |x |, of (6.1) with f ≡ 0, is obtained from the well-known Barenblatt
solution of [4, Eq. (1.3)]:

c
∂�

∂t
= 1

r N−1

∂

∂r

[
r N−1

(
∂

∂r
�k

) ∣∣∣∣ ∂

∂r
�k

∣∣∣∣
m−1

]
(6.2)

with m = p − 1, k = 1, and c > 0 a constant. Hence, the case p > 2 corresponds
to k > 1/m. The support of such u (see [4, Fig. 1]) at each particular time is a
compact ball with the radius starting from 0 at t = 0 (the initial condition is the Dirac
distribution located at the origin) and increasing in time at finite speed. Consequently,
if we choose� a ball inR

N and an initial time in which the support of the solution is a
smaller ball (replacing t by t + εwith an ε > 0 small enough in [4]), then u �≡ M = 0
on � × {0} and u �> 0 in QT since u = 0 in a part of � (spherical shell) for positive
times until the support of the solution hits ∂�. Another counterexample to the strong
comparison principle in one spatial dimension where u1 ≡ u2 on �T , f1 ≤ f2, f1 �≡
f2 but u1 �< u2 is presented in [9]. On the other hand, a certain stronger condition
on the separation of f1 and f2 that guarantee the strong comparison principle is
formulated in [9].

Even in the singular case 1 < p < 2 (strong diffusion) the strong maximum prin-
ciple cannot hold for arbitrarily large T . It follows from the extinction in finite time
(see DiBenedetto [19, Sect. 2 of Chap. VII.]) which implies that if u > 0 on� × {0},
u ≡ 0 on ∂� × (0, T ) and f ≡ 0 in �T then u(·, t) vanishes in� for t large enough.
Hence, the strong maximum principle u > M = 0 does not hold globally in time. A
time-local version of the strong maximum principle was proved in [7] for even more
general doubly nonlinear equation

∂

∂t
b(u(x, t)) − �pu = f (x, t) in QT , (6.3)

where b : R+ → R+ is a continuous function, b(0) = 0, and b ∈ C1(0,+∞) with
b′ > 0 in (0,+∞). Notice that if b(s) ≡ s then (6.3) reduces to (6.1).

Theorem 1 (see [7, Theorem 1.1]) Let 1 < p < 2 and

lim
s→0+

s2−p b′(s)
| log s|p−1

= 0 . (6.4)

Assume that u : � × [0, T ) → R+ is a continuous, nonnegative, weak solution of
(6.3). Then, for any fixed t0 ∈ (0, T ), the solution u(·, t0) is either positive everywhere
on � or else identically zero on �.
In particular, if u(ξ, 0) > 0 for some ξ ∈ �, then there exists τ ∈ (0, T ] such that
u(x, t) > 0 for all (x, t) ∈ � × (0, τ ), i.e., the strong maximum principle is valid
in the (N + 1)-dimensional space-time cylinder � × (0, τ ). The number τ ∈ (0, T )

can be estimated as
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τ = sup{T ′ ∈ (0, T ] : u(ξ, t) > 0 for all t ∈ [0, T ′)} > 0 .

Notice that u(x, t) ≡ �k(|x |, t) where � is the Barenblatt solution of (6.2) is
a solution of (6.3) where b(s) = s1/k , p = m + 1, and f ≡ 0. If k ≤ 1/m, i.e.,
k ≤ 1/(p − 1), then the Barenblatt solution is positive everywhere in R

N for any
positive time. In other words, the speed of propagation is infinite, and it is reasonable
to expect at least the time-local strongmaximumprinciple to hold in this case. Indeed,
for b(s) = s1/k the condition (6.4) reads as

lim
s→0+

s1−p+1/k

k| log s|p−1
= 0

which is satisfied if and only if 1 − p + 1/k ≥ 0, i.e., k ≤ 1/(p − 1). Obviously,
condition (6.4) is natural and matches the Barenblatt result perfectly.

7 Basic Models

7.1 Parallel Ditches

Our first model is related to irrigation and drainage. Irrigation is especially impor-
tant in agriculture while drainage is very important in building and construction. We
assume that aquifer is homogeneous, isotropic, and resting on a horizontal imper-
meable layer. Bottom of all ditches reaches the impermeable layer and the water
levels in all ditches are at equal elevation. In our first model, we will consider two
infinite parallel ditches and we will study transient groundwater flow between them
with the possible recharge due to rain. For the sketch of the problem, see the ver-
tical cross-section perpendicular to the ditches in Fig. 2, where we place the axis
x to be perpendicular to the ditches and x = 0 is set to be exactly in the middle
between two ditches. Such problem has been intensively studied in [5, 51, 64, 65]
(and others, see references therein). In the aforementioned works, Darcy law is used
as constitutive law. Following Forchheimer’s observations from [26], we use non-
linear Smreker–Izbash–Missbach law instead. Thus, the governing equation is (2.9),
i.e.,

∂h

∂t
− div

(|h| |∇h|p−2 ∇h
) = f (x, y, t) ≥ 0 . (7.1)

We suppose that the problem is translation invariant with respect to y-axis, i.e.,
a possible recharge is described by f (x, y, t) ≡ f (x, t) ≥ 0. Thus, h(x, y, t) ≡
h(x, t) and Equation (2.9) reduces to

∂h

∂t
− ∂

∂x

(
|h|

∣∣∣∣∂h∂x

∣∣∣∣
p−2 ∂h

∂x

)
= f (x, t) . (7.2)
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The level ofwater in the ditches is supposed to be a constant equal to H . This enforces
the Dirichlet boundary conditions h(±L/2, t) = H . As an initial condition, we can
consider any functionh0(x) such that h0(±L/2) = H and it satisfies some reasonable
additional conditions to be specified later. It will turn out that our assumptions on
the initial condition are more general than those in [5, 51, 64, 65]. We distinguish
two cases, H = 0 (dry ditches) and H > 0 (flooded ditches). Function h0(x) − H
can be thought of as a sudden recharge at t = 0.

Case H = 0. We may directly apply Proposition 3 with l = 1 and

(fully developed turbulent flow)
3

2
< p < 2 (laminar flow)

to obtain the existence and uniqueness of the solution of the Cauchy–Dirichlet prob-

lem (7.2) in QT
def= (−L/2, L/2) × (0, T ]with h(±L/2, t) = 0 and h0(x) such that

h0(±L/2) = 0 whenever there exists an extension ψ of h0 on QT such that (5.15) is
satisfied. Note that such extension exists, e.g., in the case of h0 with h0(±L/2) = 0
being Lipschitz function by the McShane–Whitney extension theorem.

If f ≡ 0 and h0 is Lipschitz continuous with support [x0 − δ, x0 + δ] ⊂ (−L/2,
L/2) and h0(x0) > 0, then we will show that there exists τ ∈ (0, T ) such that
supp h( · , t) ⊂ (−L/2, L/2) for 0 < t < τ . Hence, the solution profile possesses
the finite speed of propagation in the sense of Kalašnikov [44]. We wish to use
some comparison principle. Unfortunately, the quasi-strong solutions obtained from
Proposition 3 do not have to be from L p

([0, T ] → W 1,p(�)
)
and thus Proposition 1

is not applicable. The situation becomes somewhat intricate and different framework
of weak solutions and corresponding weak comparison principle must be used (see
Díaz [16, Theorem 9, p. 329]). The following function is used as supersolution:

x = L
2x = 0x = −L

2

y = 0

y = H

Fig. 2 Perturbed water level
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U (x, t) = 1

(t + τ )λ

[
C − k

|x − x0|p′

(t + τ )
p′

2p−1

]p′

+

with

p′ = p

p − 1
, λ = p

2p2 − 3p + 1
, k =

(
p − 1

p

)2 (
1

2p − 1

) p
p−1

,

and some τ > 0 and C > 0 such that h0(x) ≤ U (x, 0) and

[x0 − δ, x0 + δ] ⊂ suppU ( · , 0) �

(
− L

2
,
L

2

)
.

Then

supp h( · , t) ⊂
(
x0 −

(
C

k

) 1
p′

(t + τ )
1

2p−1 , x0 +
(
C

k

) 1
p′

(t + τ )
1

2p−1

)
.

This means that the water from the localized sudden recharge h0(x) does not reach
any of the shores immediately.

Case H > 0. In contrast, if both the water level in the ditches and the water
table are at constant level H > 0, then the localized sudden recharge h0 − H ≥ 0
with supp(h0 − H) = [x0 − δ, x0 + δ] ⊂ (−L/2, L/2) and h0(x0) > 0 will cause
immediate rise of the water table in the whole aquifer between the ditches. In order
to apply theory fromSects. 5 and 6,we introduce a substitution v(x, t) = h(x, t) − H
and we arrive at

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂v

∂t
− ∂

∂x

(
|v + H |

∣∣∣∣∂v

∂x

∣∣∣∣
p−2 ∂v

∂x

)
= f (x, t) for (x, t) ∈

(
− L

2
,
L

2

)
× (0, T ) ,

v

(
± L

2
, t

)
= 0 for t ∈ (0, T ) ,

v(x, 0) = h0(x) − H for x ∈
(

− L

2
,
L

2

)
.

(7.3)
For any (x, t) ∈ QT , we set

a(x, t, s, r)
def=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

H |r |p−2 r for s < 0 ,

(s + H) |r |p−2 r for s ∈ [0, M] ,

(M + H) |r |p−2 r for s > M ,

(7.4)

where M = ‖h0 − H‖L∞(�) + T ‖ f ‖L∞(QT ). Then a(x, t, s, r) given by (7.4) satis-
fies the assumptions of Proposition 4 with l = 0 and 3

2 < p < 2. Then by Proposi-
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tion 4, Cauchy–Dirichlet problem (5.1) possesses the unique quasi-strong solution
v ∈ L p([0, T ] → W 1,p(−L/2, L/2)) fora(x, t, s, r)givenby (7.4),ψ ∈ L p([0, T ] →
W 1,p

0 (−L/2, L/2)) is an extension of h0 − H . Since v is a subsolution of (5.9) with
f1 = f and v = ‖h0 − H‖L∞(�) + t‖ f ‖L∞(QT ) is a supersolution of (5.10) with
f2 = ‖ f ‖∞. Thus, by Proposition 1, (0 ≤)v ≤ v ≤ M on QT . It follows that v is
also the weak solution of (7.3). Since

∂v

∂x
= ∂(v + H)

∂x
and (v + H)

1
p−1

∂(v + H)

∂x
= p − 1

p

∂(v + H)
p

p−1

∂x

we may rewrite PDE in (7.3) as

∂v

∂t
−

(
p − 1

p

)p−1 ∂

∂x

⎛
⎝

∣∣∣∣∣
∂(v + H)

p
p−1

∂x

∣∣∣∣∣
p−2

∂(v + H)
p

p−1

∂x

⎞
⎠ = f (x, t) .

Introducing another substitution u = (v + H)p/(p−1) − H p/(p−1), we arrive at

∂

((
u + H

p
p−1

) p−1
p − H

)

∂t
−

(
p − 1

p

)p−1 ∂

∂x

(∣∣∣∣∂u∂x

∣∣∣∣
p−2 ∂u

∂x

)
= f (x, t) , (7.5)

which is in fact (6.3) with b(s) =
(
s + H

p
p−1

) p−1
p − H . Note that b(s) is a contin-

uous function, b(0) = 0, b ∈ C1(0,+∞) with b′ > 0 in (0,+∞), and it satisfies
(6.4) from Theorem 1. Since v ∈ Cγ,γ/p(QT ), u = (v + H)p/(p−1) − H p/(p−1) is a
continuous weak solution of (7.5) (and (6.3)), Theorem 1 guarantees the existence of
τ ∈ (0, T ) such that u(x, t) > 0 for all (x, t) ∈ � × (0, τ ). In particular, for f = 0
this means that localized sudden recharge h0 − H causes the immediate water table
rise in the whole aquifer between the ditches.

Conclusion. In the case of dry ditches (H = 0), the water from a localized sudden
recharge does not reach the shores of the ditches immediately and the boundaries
of the water mound expand toward the ditches with finite speed. In contrast, for the
flooded ditches (H > 0), the localized sudden recharge causes the immediate water
table rise in whole aquifer between the ditches. In the real world, all movements take
place at finite speeds. Thus, the above results should be interpreted as follows: for
H > 0, the water mound expands toward the ditches much faster than for H = 0.

7.2 Isothermic Nanoporous Filtration of Natural Gas

The shales are increasingly gaining importance in natural gas extraction due to their
abundance in the world in comparison with classical gas reservoirs. The size of pores
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and channels in shales is of order of several nanometers which leads to extremely
low permeability and the standard mathematical models fail in this situation, see
[54] for more details. Thus, in [54], the following mathematical model of isothermic
nanoporous filtration of natural gas was proposed (we slightly change their notation
in order not to interfere with ours)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂P

∂t
= ∂

∂x

(
|P(x)|

∣∣∣∣∂P∂x

∣∣∣∣
p−2 ∂P

∂x

)
for (x, t) ∈ (0,+∞) × (0, T ),

P(0, t) = P0 for t ∈ (0, T ),

lim
x→∞ P(x, t) = P for t ∈ (0, T ),

P(x, 0) = P0 for x ∈ (0,+∞),

for 2 < p < 10, P0 ≥ 0, P > 0 being given constants. This model was analyzed
using self-similarity of solutions in [54]. Using themethods of Sect. 5, we can analyze
the problem in situations which are not self-similar including time-varying boundary
conditions, but only on a bounded interval for x . Note that, e.g., if we assume (x, t) ∈
QT

def= (0, L) × (0, T ], for some L > 0, P(0, t) = P0(t) ≥ 0, P(L , t) = PL(t) ≥ 0
for t ∈ [0, T ] and P(x, 0) = Pinit(x) ≥ 0 for x ∈ [0, L] are Lipschitz functions such
that P0(0) = Pinit(0), PL(0) = Pinit(L). Then Proposition 5 guarantees existence of
at least one weak solution on QT = (0, L) × (0, T ] together with a priori bounds on
its Hölder norm.
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J., Kundzewicz, Z.W., Lang,M., Llasat,M.C.,Macdonald,N.,McIntyre,N.,Mediero, L.,Merz,
B., Merz, R., Molnar, P., Montanari, A., Neuhold, C., Parajka, J., Perdigão, R.A.P., Plavcová,
L., Rogger, M., Salinas, J.L., Sauquet, E., Schär, C., Szolgay, J., Viglione, A., Blöschl, G.:
Understanding flood regime changes in Europe: a state-of-the-art assessment. Hydrol. Earth
Syst. Sci. 18(7), 2735–2772 (2014)

http://hydro.chmi.cz/hpps/hpps_pzv_list.php?&objtyp[]=p&objtyp[]=m&objtyp[]=h#
http://hydro.chmi.cz/hpps/hpps_pzv_list.php?&objtyp[]=p&objtyp[]=m&objtyp[]=h#
http://www.ga.gov.au/scientific-topics/water/groundwater/groundwater-in-australia/fractured-rocks
http://www.ga.gov.au/scientific-topics/water/groundwater/groundwater-in-australia/fractured-rocks
http://venturecenter.co.in/water/pdf/2008-goldman-sachs-water-primer.pdf
http://venturecenter.co.in/water/pdf/2008-goldman-sachs-water-primer.pdf


40 J. Benedikt et al.

31. Hinze, J., John, R.: Effects of heat on the dispersal performance of ips typographus. J. Appl.
Entomol. 144(1–2), 144–151 (2020)

32. Huang, J., Kautz, M., Trowbridge, A., Hammerbacher, A., Raffa, K., Adams, H., Goodsman,
D., Xu, C.,Meddens, A., Kandasamy, D., Gershenzon, J., Seidl, R., Hartmann, H.: Tree defence
and bark beetles in a dryingworld: carbon partitioning, functioning andmodelling. NewPhytol.
225(1), 26–36 (2020)

33. Huntington, T.G.: Evidence for intensification of the global water cycle: review and synthesis.
J. Hydrol. 319(1), 83–95 (2006)

34. Hussain, A., Classens, G., Guevara-Rozo, S., Cale, J.A., Rajabzadeh, R., Peters, B.R., Erbilgin,
N.: Spatial variation in soil available water holding capacity alters carbon mobilization and
allocation to chemical defenses along jack pine stems. Environ. Exp. Bot. 171, 103902 (2020)

35. Ivanov, A.V.: The classes Bm,l and Hölder estimates for quasilinear parabolic equations that
admit double degeneration. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI)
197, Kraev. Zadachi Mat. Fiz. Smezh. Voprosy Teor. Funktsiı̆. 23, 42–70, 179–180 (1992)

36. Ivanov, A.V.: Regularity for doubly nonlinear parabolic equations. Zap. Nauchn. Sem. S.-
Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 209, Voprosy Kvant. Teor. Polya i Statist. Fiz. 12,
37–59, 261 (1994)

37. Ivanov, A.V.: Existence and uniqueness of a regular solution of the Cauchy-Dirichlet problem
for doubly nonlinear parabolic equations. Z. Anal. Anwendungen 14(4), 751–777 (1995)

38. Ivanov, A.V., Mkrtychyan, P.Z.: On the regularity up to the boundary of generalized solutions
of the first initial-boundary value problem for quasilinear parabolic equations that admit double
degeneration. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 196, Modul.
Funktsii Kvadrat. Formy. 2, 83–98, 173–174 (1991). Translated in J. Math. Sci. 70(6), 2112–
2122 (1994), 35K65 (35D10)

39. JRC European Drought Observatory: Drought in Europe (2019). https://edo.jrc.ec.europa.eu/
documents/news/EDODroughtNews201908_Europe.pdf. Accessed 04-February-2020

40. JRC Global Drought Observatory (GDO): Drought in New South Wales (Australia),
(2019). https://edo.jrc.ec.europa.eu/documents/news/GDODroughtNews201910_South_
East_Australia.pdf. Accessed 04-February-2020

41. JRCGlobalDroughtObservatory (GDO) andERCCAnalytical Team :Drought in India (2019).
https://edo.jrc.ec.europa.eu/documents/news/GDODroughtNews201906_India.pdf.Accessed
04-February-2020

42. JRC Global Drought Observatory (GDO) and ERCC Analytical Team : Drought in South-
ern Africa (2019). https://edo.jrc.ec.europa.eu/documents/news/GDODroughtNews201901_
SouthernAfrica.pdf. Accessed 04-February-2020

43. JRC Global Drought Observatory (GDO) and ERCC Analytical Team: Drought in South-
ern Africa (2019). https://edo.jrc.ec.europa.eu/documents/news/GDODroughtNews201912_
Southern_Africa.pdf. Accessed 04-February-2020

44. Kalašnikov, A.S.: On the concept of finite rate of propagation of perturbations. Uspekhi Mat.
Nauk 34, 2(206), 199–200 (1979)

45. King, F.: Principles and conditions of the movements of ground water. Nineteenth Ann. Kept.
U. S. Geol. Survey pt. 2, 9–12 (1898), 209–215

46. Lanci, L., Galeotti, S., Grimani, C., Huber, M.: Evidence against a long-term control on earth
climate by galactic cosmic ray flux. Global Planet. Change 185 (2020)

47. Laut, P.: Solar activity and terrestrial climate: an analysis of some purported correlations. J.
Atmos. Solar Terr. Phys. 65(7), 801–812 (2003)

48. Leibenson, L.S.: Turbulent movement of gas in a porous medium. Bull. Acad. Sci. USSR. Sér.
Géograph. Géophys. [Izvestia Akad. Nauk SSSR] 9, 3–6 (1945). In Russian. Reprinted in Ref.
[49], 499–502

49. Leibenson, L.S.: Sobranie trudov,Chast’ II: Podzemnaya gidrodinamika [CollectedWorks,Vol.
II: Underground Hydrodynamics]. Izdat’elstvo Akademii Nauk S.S.S.R., Moscow, U.S.S.R.
(1953). In Russian

50. Macdonald, A., Davies, J., Calow, R.: African hydrogeology and rural water supply. Appl.
Groundwater Stud. Afr., 127–148 (2008)

https://edo.jrc.ec.europa.eu/documents/news/EDODroughtNews201908_Europe.pdf
https://edo.jrc.ec.europa.eu/documents/news/EDODroughtNews201908_Europe.pdf
https://edo.jrc.ec.europa.eu/documents/news/GDODroughtNews201910_South_East_Australia.pdf
https://edo.jrc.ec.europa.eu/documents/news/GDODroughtNews201910_South_East_Australia.pdf
https://edo.jrc.ec.europa.eu/documents/news/GDODroughtNews201906_India.pdf
https://edo.jrc.ec.europa.eu/documents/news/GDODroughtNews201901_SouthernAfrica.pdf
https://edo.jrc.ec.europa.eu/documents/news/GDODroughtNews201901_SouthernAfrica.pdf
https://edo.jrc.ec.europa.eu/documents/news/GDODroughtNews201912_Southern_Africa.pdf
https://edo.jrc.ec.europa.eu/documents/news/GDODroughtNews201912_Southern_Africa.pdf


Nonlinear Models of the Fluid Flow in Porous Media 41

51. Marino,M.: Rise and decline of thewater table induced by vertical recharge. J. Hydrol. 23(3–4),
289–298 (1974)

52. Matas, A., Merker, J.: Existence of weak solutions to doubly degenerate diffusion equations.
Appl. Math. 57(1), 43–69 (2012)

53. Mekonnen, M.M., Hoekstra, A.Y.: Four billion people facing severe water scarcity. Sci. Adv.
2, 2 (2016)

54. Monteiroa, P., Rycroftc, C., Barenblatt, G.: A mathematical model of fluid and gas flow in
nanoporous media. Proc. Natl. Acad. Sci. U.S.A. 109(50), 20309–20313 (2012)

55. Netherer, S., Matthews, B., Katzensteiner, K., Blackwell, E., Henschke, P., Hietz, P., Pen-
nerstorfer, J., Rosner, S., Kikuta, S., Schume, H., Schopf, A.: Do water-limiting conditions
predispose norway spruce to bark beetle attack? New Phytol. 205(3), 1128–1141 (2015)

56. Pavlovskii, N.N.: The theory of movement of ground water under hydraulic structures and its
main applications. Scientific Amelioration Institute, St. Petersburg, lecture notes. Lithographic
(1922). In Russian

57. Perrin, J., Ahmed, S., Hunkeler, D.: The effects of geological heterogeneities and piezomet-
ric fluctuations on groundwater flow and chemistry in a hard-rock aquifer, southern india.
Hydrogeol. J. 19(6), 1189–1201 (2011)
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Research on Solutions Stability for
Dynamic Switched Time-Delayed
Systems

Denys Khusainov and Oleksii Bychkov

Abstract In this paper, we study the stability for switched systems using linear
differential subsystems with time delays. We have used Lyapunov functions to study
our results. The results are new in the literature.

Keywords Common Lyapunov function, Uniformly asymptotically stability ·
Delay systems · Switched systems

1 Introduction

We understand switched time-delayed systems as systems described by a set of dif-
ferential equations with constant time delay that function on the finite time intervals,
switching while maintaining continuity and again by differential equations with time
delay [1–4].

Functioning of that system is described by the set of equations

ẋ (t) = fk (x (t) , x (t − τ ) , t) , k ∈ K , tk < t < tk+1, x (tk + 0) = gk (x (tk − 0) , tk − 0) .

Let us assume that the value of delay is lower than the functioning time of the
subsystem of this kind, so the switched systems has solutions conformant to the
uniqueness and continuously dependent on initial conditions.

Definition 1.1 Zero solution of the switched system is called stable by Lyapunov
if for an arbitrary solution x (t) for any ε > 0 there exists δ (ε) > 0 such that for an
arbitrary solution x (t), the equation |x (t)| < ε, t > t0, is correct whenever |x (t0)| <
δ (ε).

Definition 1.2 Zero solution for switched system is called asymptotically stable if
it is stable by Lyapunov and lim

t→+∞ |x (t)| = 0.
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2 Stability of the Solutions for Switched Systems with
Linear Differential Subsystems with Time Delay

Let us review the usage of the Lyapunov common function method during the inves-
tigation into the stability of the switched systems described by the differential sub-
systems preserving the continuity in the switching points.

Let S (A, B) = {Si (Ai , Bi ) , i ∈ N } be the set of the dynamical subsystems
Si (Ai , Bi ), which are systems of linear differential equations [5–7]

ẋi (t) = Ai x (t) + Bi x (t − τ ) , i ∈ Ni ,

functioning over the time intervals t ∈ Ti , Ti : ti−1 ≤ t < ti . At the moment t = ti ,
the switching to i + 1 subsystem occurs

ẋ (t) = Ai+1x (t) + Bi+1 (t − τ ) , i ∈ N1.

And the functioning of this subsystem while preserving the continuity condition
occurs on the interval ti ≤ t < ti+1. Further dynamic process occurs likewise.

It is said that the solution x (t) ≡ 0 of a differential switched system S (A, B) is
stable if for an arbitrarily set systems Si (A, B), i = 0, 1, 2, ... and time intervals Ts :
ts ≤ t < ts+1, s = 0, 1, 2, ... for an arbitrary ε > 0, there exists δ (ε) > 0, such that
for any solution of the system S (A, B) with initial conditions |x (s)| < δ (ε), −τ ≤
s ≤ 0 with t > 0, the condition |x (t)| < ε is met. Furthermore, if lim

t→+∞ |x (t)| = 0,

then zero solution will be asymptotically stable.
Let us define the conditions for zero solution of a system S (A, B) be asymptoti-

cally stable. Investigation into the stability will be carried out by the method of the
Lyapunov function and the Razumikhin condition. There is the following result.

Theorem 2.1 For a zero solution of a differential switched system S (A, B) to be
uniformly asymptotically stable, it is enough for all its subsystems Si (Ai , Bi ) that
the common Lyapunov function should exist.

Let us see the switched systems described only by subtractional equations. Let
S (C) = {Si (C) , i ∈ N } be a system consisting of a set of subtractional subsystems

Si (C) : x (k + 1) = Ci x (k) ,

which function over the integer intervals Ti = [
ki−1 + 1, ki−1 + 2, ..., ki

]
. Subtrac-

tional switched system S (C) is a dynamic system which is composed of a system of
subtractional equations functioning over the intervals Ti , i = 0, 1, 2, ...N2.

We can say that the solution x (k) ≡ 0 of a subtractional switched system S (C) is
stable on switchings, if for an arbitrary preset subsystems Si (C), time intervals Ti and
arbitrary ε > 0, there exists δ (ε) > 0, such that for an arbitrary solution of a S (C)

system with starting conditions |x (0)| < δ (ε), while k = 1, 2, 3, ..., the condition
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|x (k)| < ε will be met. If, additionally, lim
k→+∞

|x (k)| = 0, then zero solution will be

asymptotically stable.

Theorem 2.2 For a zero solution x (k) ≡ 0 of a switched system S (C) to be uni-
formly asymptotically stable, it is enough that for all its subsystems Si (C), the
common Lyapunov function should exist.

Finally, let us consider the system S (A, B,C)= {
Si (A, B) , S j (C) , i ∈ N1, j ∈ N2

}
,

which consists of a set of subsystems Si (A, B), which are systems of linear differ-
ential equations with time delay [4],

ẋ (t) = A j x (t) + Bi x (t − τ ) , t ∈ N j ,

functioning over time intervals Ti : ti ≤ t < ti+1, i = 0, 1, 2, ..., and system of sub-
tractional equations

x
(
t j + 0

) = Bj x
(
t j − 0

)
, j ∈ N2.

At moments of time t = t j , the switchings occur due to subtractional subsystems
principles.

The stability conditions for a zero solution of a combined system S (A, B) ={
Si (A) , Sj (B) , i ∈ N1, j ∈ N2

}
have a more strict form.

Theorem 2.3 For a zero solution of subtractional switched system S (A, B,C) to
be asymptotically stable it is enough that for its differential and subtractional sub-
systems, a common Lyapunov functions should exist Vdi f (x), Vras (x). It is also
necessary to have monotonic decrease at the break points

Vdi f (x (tk − 0)) > Vris (x (tk − 0)) > Vris (x (tk + 0)) > Vdi f (x (tk + 0)) .

Notice 2.1 It is very difficult to verify the condition formulated in Theorem2.3.
Therefore, we should formulate another, more strict but easier to verify stability
condition.

Theorem 2.4 For a zero solution of a switched system S (A, B,C) to be asymp-
totically stable, it is enough that for its differential and subtractional subsystems, a
common Lyapunov function Vobsh(x) should exist.

Let us consider the constructive conditions of a time-delayed switched system
stability. It is known [5] that for a time-delayed linear systems

ẋ (t) = Ax (t) + Bx (t − τ ) , (1)

there are the following stability conditions.

Theorem 2.5 Let A + B is an asymptoticalle stable matrix and there exists posi-
tively defined matrix H such that the following is true
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λmin (C) − 2 |HB|
(
1 + √

ϕ (H)
)
> 0,ϕ (H) = λmax (H) /λmin (H),

where λmax (H), λmin (H)—extremal eigenvalues of a symmetrical positively defined
matrix H, which is a solution for the Lyapunov matrix equation

(A + B)T H + H (A + B) = −C, (2)

for any positively defined matrix C. Then zero solution for time-delayed system (2)
is asymptotically stable for any time delay τ > 0.

Theorem 2.6 Let A + B be asymptotically stable matrix. Then for τ < τ0,

τ0 = λmin (C)

2 |HB| (|A| + |B|)√1 + ϕ (H)

time-delayed system (2) will also be asymptotically stable.

On the grounds of the aforementioned auxiliary statements, we shall formulate
the stability conditions for switched systems, whose differential part is described by
the linear time-delayed systems in the form of (2).

Theorem 2.7 Let there be symmetrical positively definedmatrix H, for whichmatri-
cesCi = − (Ai + Bi )

T H + H (Ai + Bi ), i ∈ Ni , are also positively defined and the
following equation is true

λmin (Ci ) − 2 |HBi |
(
1 + √

ϕ (H)
)
> 0, i ∈ Ni .

Then the switched system S (A, B) will be asymptotically stable with any time delay
τ > 0.

We shall get the stability conditions dependent on time delay.

Theorem 2.8 Let there be symmetrical positively definedmatrix H, for whichmatri-
ces Ci = − (Ai + Bi )

T H + H (Ai + Bi ), i ∈ Ni , are also positively defined. Then
the switched system S (A, B) will be asymptotically stable with time delay τ < τ0,

τ0 = min

{
λmin (Ci )

2 |HBi | (|Ai | + |Bi |)
√
1 + √

ϕ (H)

}

, i ∈ Ni .
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A Method for Stabilization of Ground
Robot Path Controlled by Airborne
Autopilot with Time Delay

Alexander Domoshnitsky, Oleg Kupervasser, Hennadii Kutomanov,
and Roman Yavich

Abstract The paper addresses the problem of visual navigation of ground robots
using a camera positioned at a certain elevation above the confined area. Also, the
methods of the stability theory of delay differential equations are used in the study
of an actual engineering problem of a ground robot autonomous path. We give a
description of autopilot for the stabilization of the ground robot autonomous motion
according to desirable path. Indeed, large time delay exists in obtaining by autopilot
current information about robot position and orientation, because of big data pro-
cessing by vision-based (visual) navigation system. Despite this fact, we can prove
that autopilot can guarantee a stable desirable path. We demonstrate how to create
an appropriate controlling signal for the described information time delay and calcu-
late control parameters for case of polygonal chain path. This path consists of linear
motion along with line segments and rotations in vertices.

Keywords Time delay · Differential equations · Stability · Ground robots ·
Airborne control · Tethered platform · Autopilot · Vision-based navigation · Visual
navigation

1 Introduction

The methods developed in the stability theory for differential equations with time
delays [1–6] are used in the paper for resolution of the important engineering prob-
lem. It is a problem of a ground robot path stabilization using airborne control carried
out by autopilot with time delay. The similar application was made by us recently for
drone autonomous stable flight controlled by autopilot with time delay [7]. However,
in [7], we give only one numerical example of the solution. Here, we find a solution
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as function of equation’s parameters. Moreover, equations of motion in [7] are com-
pletely different from equations here and describe flighting robot (not ground one).
The main new results of this paper are the following:

1. An example of adaptation of themathematical theory (whichwas during long time
developed without any connection to physics or engineering) in solving actual
engineering problem.

2. The approach, proposed here for solving the stabilization problem of ground
robot autonomous path, is much better than previously used ones in approximate
engineering solution.

3. The adaptation of this mathematical theory for ground robot path stabilization
is a difficult problem, since the mathematical theory cannot be applied directly
and explicitly for the system describing the ground robot motion. Indeed, we
need to apply some nontrivial mathematical transform to the physical differential
equations to make such use possible.

4. Even after getting from themathematical theory constraints for controlled param-
eters defined by autopilot (which are necessary for stabilization ground robot
path), it is also nontrivial problem to find the solution for these parameters.

This paper applies the mathematical stability theory of differential equations with
delays [1–6] to the important engineering problem. Despite the fact that engineers
prefer to use engineering approximate solutions instead of stability theory of differ-
ential equations with time delays, this theory develops very intensively. Indeed, we
can see the publication of hundreds of papers on this theory every year.

Stability analysis is the necessary component in most of papers on robotics. The
authors of these papers do not consider the time delay even though they understand
the fact of existence of such time delay in their mathematical models. The method
of Lyapunov’s functions (initially described in papers of N. Krasovskii in 1950s) is
usually applied, however, it is not appropriate frequently for stabilization by feedback
control with time delay.

Now, the main engineering technique for describing a system with the time delay
is replacing a systemwith time delays to a systemwithout time delay and applying the
usual stability theory (the method of Lyapunov’s functions for nonlinear equations
and characteristic equations for linear equations). It can be made by using two ideas
or some their combinations [8–10]:

(1) extrapolation motion of a robot forward during time of delay.
(2) finding error estimation for a current state appearing as a result of the time

delay and to use the error propagation methods for future analysis.
Using the method (2) results in the obvious decrease in the accuracy of control

and its effectiveness.
The application of method (1) is possible in the case of an inert system where the

control does not have a strong effect during the time of delay. However, a complex
algorithm is necessary even in this case. As a result, we get the increase of the calcu-
lation time and prime cost of a control system. Also, we need additional computing
power for the extrapolation. If we try to simplify of the model, it results in a decrease
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of the control effectiveness and accuracy. Also, the large work (for updating a model)
needs again after changing or upgrade of a system.

If during the delay time some noticeable influence of the control system exists (not
inert systems), then the method becomes even more complex and expensive. In this
case, we need the complex iterative schemes, these iterations can do not converge,
the long calculation time is necessary, this time can result in an additional time delay.
We can get loss of control in the system.

Application of Azbelev’s methods [2] for the stability of functional differential
equations can help to open new page in the robot control (see the work [11])). In the
work [2], based on this theory, the stability analysis andmethods for finding solutions
of systems of differential equations with time delay were developed. The following
advantages of this method can be described:

1. We can decrease costs and time for the development of a control system.
2. If a system has been changed, we can easily to update the system control.
3. The technique is universal for many types of systems.
4. Due to fact that mathematical methods have high accuracy, a system would have

precise and efficient control.
5. For complex cases of not inert controlled system, where the control effect is

noticeable during the delay time, we do not get no additional delays or control
problems.

In this paper, we give the description of autopilot for stabilization of robot
autonomous path (polygonal chain). We use vision-based navigation for the find-
ing robot path parameters [12–21]. We used the new patented technology for ground
robot navigation using airborne vision-based control [22–27]. The software package
was developed that includes approaches for visual navigation control of a ground
robot (see Fig. 1) from top position (from a tower, a tethered drone, a balloon, an
antenna). Two physical prototypes (where camera is on a top position) controlled by
this software were also developed. The system is an example of control systems for
robots and can be used for the coordination of the ground robots (automated agri-
cultural machines, automated transport, aerodrome and municipal vehicles, garden
lawnmowers and so on).

We develop robot visual navigation using the cameras located on tethered aerial
apparatus or towers, tracking the robots on the operation area and observing their
environment including artificial and natural landmarks. Two prototypes of these
navigation systems were created in the Laboratory of Applied Mathematics of Ariel
University in teamwork with TRANSIST VIDEO LLC (Skolkovo, Moscow) [22,
23].

The main insight is that “eyes” of a robot are not positioned on the robot but can
be separate autonomous system. Hence, the “eyes” can come up and observe the
robot position from above. We describe in the paper algorithms that can be used for
the physical prototypes of the system. The system includes a camera in the upper
position connected to computer, the computer that can control the robot. Computer
software can analyze image obtained from the camera, looks for difference between
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Fig. 1 Airborne terrestrial robot control, some possible camera dispositions; 1—camera, 2—
lawnmower; 3—moving up and down long antenna; 4—open door; 5—press button; 6—ground-
based energy charged device (ECD); 7—lawn; 8—line of sight; 9—blind spot

actual ground robot position and desirable position, and send Wi-Fi command to
reduce the difference.

We present here how to create a relevant controlling signal for autopilot if the
information time delay from navigation system exists. We will use the described
autopilot for the robot control of path parameters found from the vision-based navi-
gation.

In this paper, description of motion equations and parameters of robot path con-
trolled by airborne autopilot is based on the results of the presentation [28].

The structure of the paper is the following. The first section is Introduction. We
described here the theme of the paper—state of the art with references in the field
of stability theory methods and methods of description for robot path controlled by
autopilot with time delay. The second section gives detailed preliminary results for
mathematical stability theory methods, which are used for stabilization of the ground
robot path controlled by airborne autopilot. The equation for the ground robot path
is described. In the third section, we use the mathematical stability theory for finding
parameters controlled by airborne autopilot, which are necessary for the robot path
stability and finding upper boundary for the time delay. The fourth section is the
conclusion.
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2 Preliminary Results of the Investigation for Ground
Robot’s Flight Stability

2.1 Mathematical Preliminary Results: Stability of Systems
with Time Delays

Sign L∞ denotes the space of essentially bounded measurable functions: [0,∞) →
R. In the paper, sign “e” is the Euler number. Let us investigate the non-homogenous
system of differential equations

x
′
i (t) =

n∑

j=1

pi j (t)x j (t − θi j (t)), t ∈ (0,+∞)

xi (ξ) = xi (0), ξ < 0, i = 1, . . . , n. (2.1)

Here, the components xi : [0,+∞) → R of the vector x = col{x1, . . . , xn} are
assumed to be absolutely continuous and their derivatives x

′
i ∈ L∞.

Pk(t) = pi j (t)i, j=1,...,n are n × n matrices with entries pi j (t) ∈ L∞, θi j (t) ∈ L∞
for k = 1, . . . ,m and i, j = 1, . . . , n.

A vector function x is a solution of (2.1) if it satisfies system (2.1) for almost all
t ∈ [0,+∞).

Let us define

θ∗
i = esssupt≥0{θi i (t)}

It was demonstrated in Proposition 2.3 in [1]:

Assume that the following conditions are correct:
1.1 The matrix P is Hurwitz, i.e., all its eigenvalues have negative real parts, for
t ≥ 0. The matrix P is Metzler, i.e., all its off-diagonal elements are nonnegative for
t ≥ 0: pi j (t) ≥ 0 for every i �= j , here i, j = 1, . . . , n.

1.2 For every i = 1, . . . , n the conditions is correct: |pii (t)|θ∗
i ≤ 1

e

then system (2.1) is exponentially stable.

Let us investigate the system of second-order differential equations

x
′′
i (t) = qi (t)x

′
i (t − τi (t)) +

n∑

j=1

pi j (t)x j (t − θi j (t)) = 0, t ∈ [0,+∞)

xi (ξ) = xi (0); x ′
i (ξ) = x

′
i (0), ξ < 0, i = 1, . . . , n, (2.2)
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Here, the components xi : [0,+∞) → R of the vector x = col{x1, . . . , xn} are
assumed to be absolutely continuous and their derivatives x

′
i ∈ L∞.

P(t) = {pi j (t)}i, j=1,...,n are n × nmatriceswith entries pi j (t) ∈ L∞, qi (t) ∈ L∞,
θi j (t) ∈ L∞, τi (t) ∈ L∞, i, j = 1, . . . , n.

A vector function x is a solution of (2.2) if it satisfies system (2.2) for almost all
t ∈ [0,+∞).

Let us denote

τ ∗
i = esssupt≥0{τi (t)}.

It was shown in Theorem 1.1 in [6]: (somemisprinting from this paper is corrected
here):

Assume that the following conditions are correct:

1.1 The matrix P is Hurwitz, i.e., all its eigenvalues have negative real parts, for
t ≥ 0

pii (t) << −ε < 0, qi (t) << −ε < 0, 4|pii (t)| < q2
i (t).

The matrix P is Metzler, i.e., all its off-diagonal elements are nonnegative for
t ≥ 0: pi j (t) ≥ 0 for every i �= j , where i, j = 1, …, n.

1.2 For every i = 1, . . . , n the following conditions are correct:
|qi (t)|τ ∗

i ≤ 1
e , θi i (t) ≤ τi (t) ≤ τ ∗

i < ∞

then system (2.2) is exponentially stable.

2.2 Engineering Preliminary Results: Motion Equations of
Ground Robot

2.2.1 Nonlinear Equations for Robot Motion

We can introduce the following parameters and variables, which are used in ground
robot equations of motion (see Fig. 2) [28]:

1. for variables describing motion:

x and y—coordinates of ground robot
α—angular of rotation of the robot on the plane
v—translation velocity of the robot
ω—angular velocity of the robot
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Fig. 2 Ground robot

2. Ground robot parameters:

R—wheel radius,
l—distance between wheels.

3. Controlling signals:

ωR and ωL—angle velocities of rotation of the right and left wheels
From [28] rotation and forward movement are described by the following system

of equations:
ẋ = v cosα

ẏ = v sinα

α̇ = ω

v = R(ωR+ωL )

2 (2.2)

ω = 2R(ωR−ωL )

l .

2.2.2 Stationary Desirable Trajectory

2.2.2.1 Solution of Nonlinear Equation
Path curve can be described by formulas (Fig. 3):

x = fx (s); y = fy(s)
where s is some parameter (0 ≤ s ≤ Smax ), fx , fy are some functions.
Let us define some variables describing stationary path:

−→
V (s) = ( dxds ,

dy
ds ) is s-vector velocity
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Fig. 3 Ground robot path

V (s) =
√
( dxds )

2 + (
dy
ds )

2 is s-velocity

−→τ (s) = −→
V (s)
V (s) is tangent to trajectory

sin(α(s)) = (
−→e y · −→τ (s))

cos(α(s)) = (
−→e x · −→τ (s))

where −→e x ,
−→e y are orts of axes OX and OY

−→a (s) = ( d
2x

ds2 ,
d2 y
ds2 ) is s-vector acceleration

a(s) =
√
( d

2x
ds2 )

2 + (
d2 y
ds2 )

2 is s-acceleration
−→a n(s) = −→a (s) − (

−→a (s) · −→τ (s))−→τ (s) is s-normal component of acceleration−→n (s) = −→a n(s)
|−→a n(s)| is normal to trajectory

ω(s) = |−→a n(s)|
V (s) is s-angular velocity

SW = ∫ Smax
0 V (s)ds is full length of path.

2.2.2.2 Time Dependence of Stationary Trajectory
We use variable s as time, but it is not time. So, we need to define real dependence
of motion parameters on time t.

Let us choose some mean velocity of ground robot

Vmin ≤ Vmean ≤ Vmax

where Vmin, Vmax are minimal and maximal velocity of robot.
Maximal time of the motion can be found from formula:
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Tmax = SW
Vmean

, so 0 ≤ t ≤ Tmax.

If we suppose motion with constant velocity V (t) = Vmean , as a result we can find
dependence of time t on s:

t (s) =
∫ s
0 V (s)ds
Vmean

.

However, some maximal angular velocity ωmax exists and robot can exceed this
maximal angular velocity in some points with high curvature if robot moves with
constant velocity Vmean . So, robots need to decrease its constant velocity (Vmean) to
prevent from exceeding.

Angular velocity as function of time can be found from formula:

ω(t) = ω(s)
dt (s)
ds

.

Namely, suppose that ωm = max0≤t≤Tmax ω(t) and ωm > ωmax. Then K = ωm
ωmax

and new value of maximal time is Tmaxnew = K · Tmax and Vmeannew = SW
Tmaxnew

.

If Vmeannew ≤ Vmin robot needs to stop in points with high curvature and change
only angle in these points. We recommend estimating our trajectory by polygonal
chain path. This path consists of linearmotion alongwith line segments with constant
translational velocity and zero angular velocity, and rotations in verticeswith constant
angular velocity and zero translational velocity.

2.2.3 Linear Equations for Perturbations with Respect to Stationary
Solution

2.2.3.1 Concluding Linear Equation for the Perturbations
As a result, that the system (1) is nonlinear, the analysis of stability is too hard for
these equations. So, we need to make linearization of the equations. Let us suppose
that the parameters x(t), y(t), α(t), v(t), ω(t) corresponds to steady flight and have
also some small increments δx(t), δy(t), δα(t), δv(t − τ ), δω(t − τ ). These small
increments are the results of perturbation forces changing the path.

We can define the following deviations of the stationary path:

ẋ(t) + δẋ(t) = (v(t) + δv(t − τ )) cos(α(t) + δα(t))

= (v(t) + δv(t − τ ))(cos(α(t)) cos(δα(t)) − sin(α(t)) sin(δα(t)))

ẏ(t) + δ ẏ(t) = (v(t) + δv(t − τ )) sin(α(t) + δα(t))

= (v(t) + δv(t − τ ))(cos(α(t)) sin(δα(t)) + sin(α(t)) cos(δα(t)))

α̇(t) + δα̇(t) = ω(t) + δω(t − τ ).
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The resulting nonlinear equations for the perturbations:

δẋ(t) = δv(t − τ )(cos(α(t)) cos(δα(t)) − sin(α(t)) sin(δα(t)))

+v(t)(cos(α(t))(cos(δα(t)) − 1) − sin(α(t)) sin(δα(t)))

δ ẏ(t) = δv(t − τ )(cos(α(t)) sin(δα(t)) + sin(α(t)) cos(δα(t)))

+ v(t)(cos(α(t)) sin(δα(t)) + sin(α(t))(cos(δα(t))) − 1)

δα̇(t) = δω(t − τ ).

After linearization of nonlinear equations for perturbation, we get the following
linear equations:

δẋ(t) = δv(t − τ )cos(α(t)) − v(t) sin(α(t))δα(t)

δ ẏ(t) = δv(t − τ ) sin(α(t)) + v(t) cos(α(t))δα(t)

δα̇(t) = δω(t − τ ). (2.3)

The control parameters δv(t − τ ), δω(t − τ )are defined by equations:

δv(t − τ ) = ax (t)δx(t − τ ) + ay(t)δy(t − τ ) + aα(t)δα(t − τ )

δω(t − τ ) = bx (t)δx(t − τ ) + by(t)δy(t − τ ) + bα(t)δα(t − τ ) (2.4)

where parameters ax (t), ay(t), aα(t), bx (t), by(t), bα(t) can be chosen freely by
autopilot to provide the stationary path to be stable. We will find in the next section
an algorithm finding these parameters for polygonal chain path.

2.2.3.2 Description of Controlled Parameters in Linear Equations Defined by
Autopilot
If stationaryparameters cannot guarantee themselves stability of the desirable station-
ary trajectory, it is necessary to use autopilots (Fig. 4). The autopilot makes so that the
controlling parameters δv(t − τ ), δω(t − τ ) will be some functions of the output-
controlled parameters (δx(t); δy(t); δα(t)), which are perturbations according to
the desirable stationary trajectory. The output parameters values can be obtained by
the autopilot from navigation measurements, for example, i.e., from vision-based
navigation, satellite navigation, inertial navigation and so on. Using the navigation
measurements, the autopilot creates controlling signals to reduce undesirable per-
turbation. However, time delay exists in getting output-controlled parameters by
autopilot for any navigation measurements, which has noticeable value for the visual
navigation. So, some problem exists because of the lack of the information for the
control. In the paper, we present that even when the time delay exists, we can create
control signals giving a stable path.
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Fig. 4 Automatic control

3 Analysis of Robot Path Stability

3.1 Adjusting the System of Linear Differential Equation for
Perturbations to the Form Appropriate for Using
Preliminary Mathematical Theory

We recommend estimating our trajectory by polygonal chain path. This path consists
of linearmotion alongwith line segmentswith constant translational velocity and zero
angular velocity (Rotation), and rotations in vertices with constant angular velocity
and zero translational velocity (Linear motion).

3.1.1 Rotation

Stationary solution

α(t) = ωt + φ

v(t) = 0.

Let us choose the initial time t=0 in such a way that φ = 0 So, we get following
equations for perturbations

δẋ(t) = δv(t − τ )cos(ωt)

δ ẏ(t) = δv(t − τ ) sin(ωt)

δα̇(t) = δω(t − τ )

δv(t − τ ) = ax (t)δx(t − τ ) + ay(t)δy(t − τ ) + aα(t)δα(t − τ )
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δω(t − τ ) = bx (t)δx(t − τ ) + by(t)δy(t − τ ) + bα(t)δα(t − τ ).

Let us pass to the rotating system of coordinate:

xr (t) = x(t) cos(ωt) + y(t) sin(ωt)

yr (t) = −x(t) sin(ωt) + y(t) cos(ωt).

Let us find differential equations for xr (t) and yr (t):

δẋr (t) = δẋ(t) cos(ωt) + δ ẏ(t) sin(ωt) − ωδx(t) sin(ωt) + ωδy(t) cos(ωt) =
=δv(t − τ ) + ωδyr (t)

δ ẏr (t) = −δẋ(t) sin(ωt) + δ ẏ(t) cos(ωt) − ωδx(t) cos(ωt) − ωδy(t) sin(ωt) =

=−ωδxr (t).

Finally,

δẋr (t) = δv(t − τ ) + ωδyr (t)

δ ẏr (t) = −ωδxr (t)

δα̇(t) = δω(t − τ )

We see that this system can be divided into two independent system of equations

δẋr (t) = δv(t − τ ) + ωδyr (t)

δ ẏr (t) = −ωδxr (t)

and

δα̇(t) = δω(t − τ ).

3.1.1.1 Differential equations for δxr (t) , δyr (t)
Let us suppose

ax (t) = −2arcos(ω(t − τ ))

ay(t) = −2ar sin(ω(t − τ ))

aα(t) = 0
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So

δv(t − τ ) = ax (t)δx(t − τ ) + ay(t)δy(t − τ ) =
−2arcos(ω(t − τ ))δx(t − τ ) − 2ar sin(ω(t − τ ))δy(t − τ ) = −2arδxr (t − τ ).

Finally, differential equations for xr (t) and yr (t):

δẋr (t) = −2arδxr (t − τ ) + ωδyr (t)
δ ẏr (t) = −ωδxr (t).

We can find second-order differential equation:

δẍr (t) = −2arδẋr (t − τ ) + ωδ ẏr (t) = −2arδẋr (t − τ ) − ω2δxr (t)

δyr (t) = δẋr (t) + 2arδxr (t − τ )

ω
. (3.1)

3.1.1.2 Differential Equations for δα(t)
For angle of rotation, we get

δα̇(t) = δω(t − τ )

Control parameter for coordinates velocity is following

bx (t) = 0

by(t) = 0

bα(t) = bα

δω(t − τ ) = bαδα(t − τ ).

Differential equation for δα(t)

δα̇(t) = bαδα(t − τ ). (3.2)

3.1.2 Linear Motion

Stationary solution

α(t) = α = const



62 A. Domoshnitsky et al.

v(t) = v = const .

So, we get the following equations for perturbations

δẋ(t) = δv(t − τ )cos(α) − v sin(α)δα(t)

δ ẏ(t) = δv(t − τ ) sin(α) + v cos(α)δα(t)

δα̇(t) = δω(t − τ )

δv(t − τ ) = ax (t)δx(t − τ ) + ay(t)δy(t − τ ) + aα(t)δα(t − τ )

δω(t − τ ) = bx (t)δx(t − τ ) + by(t)δy(t − τ ) + bα(t)δα(t − τ ).

Let us pass to rotated system of coordinate:

xl(t) = x(t) cos(α) + y(t) sin(α)

yl(t) = −x(t) sin(α) + y(t) cos(α).

Let us find differential equations for xl(t), yl(t) and α(t):

δẋl(t) = δv(t − τ )

δ ẏl(t) = vδα(t)

δα̇(t) = δω(t − τ ).

We see that this system can be divided to two independent system of equation

δẋl(t) = δv(t − τ )

and

δ ẏl(t) = vδα(t)

δα̇(t) = δω(t − τ ).

3.1.2.1 Differential Equations for δxl(t)
Let us suppose

aα(t) = 0

ax (t) = −alcos(α)
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ay(t) = −alsin(α).

So, control signal for coordinates velocity is following:

δv(t − τ ) = −alδxl(t − τ ).

Differential equation for δxl(t):

δẋl(t) = −alδxl(t − τ ). (3.3)

3.1.2.2 Differential Equations for δyl(t) , δα(t)
Let us suppose

bx = 0

by = −a

bα = −2b.

So, control signal for angular velocity is following:

δω(t − τ ) = −aδyl(t − τ ) + −2bδα(t − τ ).

Differential equations for δyl(t) and δα(t)
δ ẏl(t) = vδα(t)

δα̇(t) = −aδyl(t − τ ) − 2bδα(t − τ ).

We can find second-order differential equation:

δα̈(t) = −2bδα̇(t − τ ) − aδ ẏl(t − τ ) = −2bδα̇(t − τ ) − avδα(t − τ )

δyl(t − τ ) = −2bδα(t − τ ) + δα̇(t)

a
. (3.4)
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3.2 Applying the Mathematical Theory for Stabilization of
Ground Robot Real Trajectory with Respect to the
Chosen Desirable Stationary Trajectory

3.2.1 Constrains for the Differential Equation Constants

3.2.1.1 Rotation
3.2.1.1.1 Differential Equations for δxr (t) , δyr (t)
Apply the condition 1.1 of Theorem 1.1 in [6], presented in Sect. 2 of the paper, to
the system (3.1):

δẍr (t) = −2arδẋr (t − τ ) − ω2δxr (t).

Condition 1.1 of Theorem 1.1 is fulfilled if:

−2ar < 0

−ω2 < 0

(−2ar )2 >4ω2.
As a result, we get

ω �= 0

ar > |ω|. (3.5)

Because yr (t) is function of xr (t) and its derivative

δyr (t) = δẋr (t)+2ar δxr (t−τ )
ω

if xr (t) is exponentially stable then yr (t) is also exponentially stable.

3.2.1.1.2 Differential Equations for δα(t)
Apply the condition 1.1 of Proposition 2.3 in [1], presented in Sect. 2 of this paper,
to the system (3.2)

δα̇(t) = bαδα(t − τ )

Condition 1.1 of Proposition 2.3 is fulfilled if:

bα < 0 (3.6)
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3.2.1.2 Linear motion
3.2.1.2.1 Differential Equations for δxl(t)
Apply the condition 1.1 of Proposition 2.3 in [1], presented in Sect. 2 of this paper,
to the system (3.3)

δẋl(t) = −alδxl(t − τ )

Condition 1.1 of Proposition 2.3 is fulfilled if:

−al < 0.

Finally
al > 0 (3.7)

3.2.1.2.2 Differential Equations for yl(t), δα(t)
Apply the condition 1.1 of in Theorem 1.1 in [6], presented in Sect. 2 of this paper,
to the system (3.4)

δα̈(t) = −2bδα̇(t − τ ) − avδα(t − τ ).

Condition 1.1 of in Theorem 1.1 is fulfilled if:

−2b < 0

−av < 0

(−2b)2 > 4av

Finally

b > 0

b2 > av > 0. (3.8)

Because yl(t) is function of δα(t) and its derivative

δyl(t − τ ) = − 2bδα(t−τ )+δα̇(t)
a

if δα(t) is exponentially stable then yl(t) is also exponentially stable.
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3.2.2 Constrains for Time Delay

3.2.2.1 Rotation
Differential Equations for δxr (t) , δyr (t)
Apply the condition 1.2 of in Theorem 1.1 in [6], presented in Sect. 2 of this paper,
to the system

τ < ∞
τ ≤ 1

e|2ar | = 1

2e|ar | . (3.9)

Differential Equations for δα(t)
Apply the condition 1.2 of Proposition 2.3 in [1], presented in Sect. 2 of this paper,
to the system

|bα|τ ≤ 1
e .

Finally

τ ≤ 1

e|bα| . (3.10)

Final
From (3.9), (3.10)

τ ≤ 1

e|bα|and τ ≤ 1

2e|ar | . (3.11)

3.2.2.2 Linear Motion
Differential Equations for δxl(t)
Apply the condition 1.2 of Proposition 2.3 in [1], presented in Sect. 2 of this paper,
to the system

|al |τ ≤ 1
e .

Finally

τ ≤ 1

e|al | . (3.12)

Differential Equations for yl(t), δα(t)
Apply the condition 1.2 of in Theorem 1.1 in [6], presented in Sect. 2 of this paper,
to the system
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τ < ∞

2|b|τ ≤ 1
e .

Finally

τ ≤ 1

2e|b| (3.13)

Final
From (3.12), (3.13)

τ ≤ 1

2e|b| and τ ≤ 1

e|al | (3.14)

.

3.3 Final Solution

3.3.1 For Rotation

Stationary solution

α(t) = ωt + φ

v(t) = 0

φ = 0.

Control parameters: From (3.5), (3.6)

δv(t − τ ) = −2arcos(ω(t − τ ))δx(t − τ ) − 2ar sin(ω(t − τ ))δy(t − τ )

ω �= 0

ar > |ω|

δω(t − τ ) = bαδα(t − τ )

bα < 0.
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3.3.2 For Linear Motion

Stationary solution

α(t) = α

v(t) = v.

Control parameters:
From (3.7), (3.8)

δv(t − τ ) = −alcos(α)δx(t − τ ) − alsin(α)δy(t − τ )

al > 0

δω(t − τ ) = a sin(α)δx(t − τ ) − a cos(α)δy(t − τ ) − 2bδα(t − τ )

av > 0

b >
√
av.

3.3.3 Delay Time

From (3.11), (3.14)

τ ≤ 1
2e|b| , and τ ≤ 1

e|al | , and τ ≤ 1
e|bα| , and τ ≤ 1

2e|ar | .

4 Conclusion

We demonstrated the possibility to get stable ground robot path using airborne auto-
matic control when there exists the delay of time in transfer of motion parameter
information from navigation measurement system to autopilot. We can find the con-
trolled parameters for some types of path (polygonal chain) and estimated upper
boundary of time delay for such system.

It should be mentioned that all these results were obtained in linear assumption
for perturbations. If noise is large and as a result, the correspondent perturbations
are too large to use linear assumption, then our results are incorrect.
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Some Properties of the Solution of the
Nonlinear Equation of Oscillations in
Modeling the Magnetic Separation

Yaroslav Petrivskyi and Volodymyr Petrivskyi

Abstract Aqualitative analysis of the equation simulating the process of dry enrich-
ment of raw materials with weak magnetic properties on a drum magnetic separator
is carried out. The parametric nature of the role of the free term of the equation,
which is the bifurcation point for the model, is established. The study of the proper-
ties of the singular point made it possible to allow to build a function to characterize
a periodic partial solution and an algorithm for calculating the separation angle of
the particle from the surface of the drum during enrichment by the dry separation
method, which is convenient for practical use. From a physical point of view, in the
process of magnetic separation, when there is friction proportional to the square of
the angular velocity in the system, with the force acting on the particles of constant
magnetic force, the work expended on overcoming the friction forces increases with
the square of the angular velocity, while the operation of the external forces remains
unchanged.

Keywords Bifurcation point · Phase portrait · Period function

1 Main Part

A differential equation is described that describes the motion of a particle with weak
magnetic properties on the surface of a drum of a magnetic separator during dry
magnetic enrichment on a separator with an overhead feed. According to Murrariu
[1], such an equation has the following form:
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d2θ

dt2
= g

R + b
sin θ ± μd,s

g

R + b
cos θ −

(
dθ

dt

)2

+ Fm

ρρVρ(R + b)
, (1)

where θ—the angle of rotation of the drum, R—the radius of the drum, b—the
particle size, the “+” sign and the coefficient of dynamic friction μd characterize
the first phase, when the particle hits the drum, the “−” sign and the coefficient of
static friction μs characterize the third phase, namely the process of separation of
the particle from the drum, Fm—the magnetic force acting on the particle, Vρ—the
volume of the particle and g—the acceleration of gravity.

At the stage of changing the nature of particle friction from dynamic to static, the
second phase, the particle moves with a constant angular velocity equal to the speed
of rotation of the drum. The corresponding equation has the following form:

d2θ

dt2
= 0 or

dθ

dt
= ωρ. (2)

To conduct a qualitative study and create an algorithm that is convenient for
applied research and simulate the process of particle motion on a drum, we transform
the particle motion equation (1) defined relative to the angle θ into the equivalent
equations of motion of a particle relative to the angular velocity of this particle. For
this purpose, we denote

g

R + b
= a, μd,s

g

R + b
= b.

Then
a sin θ ± b cos θ = A sin (θ ± φ) ,

where A =
√
a21 + a22 , angle φ denoting like

cosφ = a1√
a21 + a22

, sin φ = a2√
a21 + a22

.

Given these transformations, Eq. (1) is simplified:

d2θ

dt2
= A sin

(
θ ± φd,s

) −
(
dθ

dt

)2

+ B, B = Fm

ρρVρ (R + b)
, A > 0, B > 0. (3)

In general, Eq. (1), when the free term is equal to zero or when the value of the
magnetic force Fm is similar to the equation simulating the damped oscillations of
a pendulum immersed in a medium, which, when the pendulum moves, creates a
force proportional to the square of its speed and directed opposite to this speed.
Quite detailed qualitative studies of this equation are known, for example, given
in [1, 2], where the case of dynamical systems, reduced under certain simplifying
assumptions to the mathematical model of the oscillation of a pendulum with “linear
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friction” under the influence of constant torque, is also studied. It also shows cases
where physical analogies can be reduced to the indicated type of model with “linear
friction”, for example, the problem of the synchronous motor, the problem of parallel
operation of generators, etc.

For the convenience of studying Eq. (1), we introduce new x = θ ± φd,s , y = dx
dt

variables. We obtain a non-conservative system of two first-order equations:

{ dx
dt = y
dx
dt = A sin x − y2 + B

. (4)

Equivalent to system (4) is the equation of integral curves on the cylinder, which,
like system (4) and initial Eq. (3), cannot be directly integrated.

dy

dx
= A sin x + y2 + B

y
. (5)

Note that isoclines dy
dx = 0 are biased quadratic sinusoids whose equations are of

the form

y2 = A sin x + B. (6)

Equivalent to system (4) is the equation of integral curves on the cylinder, which,
like system (4) and initial Eq. (3), cannot be directly integrated.

The graph of curve (7) suppresses the OX axis, respectively, the axis θ , only at
values B

A < 1. When B
A > 1, the isocline does not cross the OX axis.

The coordinates of the singular points, the equilibrium state of the system, can be
found by solving the system:

{
y = 0
A sin x − y2 + B = 0

(7)

Obviously, for B
A > 1, singular points do not exist. At B

A < 1, there are two distinct
points: (1) y1 = 0, x1 = arcsin B

A ; (2) y2 = 0, x2 = π − arcsin B
A , 0 < arcsin B

A <
π
2 . When x1,2 = pi

2 , equilibrium positions merge. Thus, the B
A parameter value is

bifurcation for Eq. (1). To clarify the nature of the equilibrium states of system (4), we
linearize the right-hand side of the second equation of system (4) in a neighborhood
of singular points, making the change x = xi + ξ, i = 1, 2. Expanding sin x in a
series of powers and limiting ourselves to linear terms, we obtain

{
dx
dy = y
dy
dt = A cos xiξ, i = 1, 2

. (8)

The corresponding characteristic equation for system (9) has the following form
[3]:



74 Y. Petrivskyi and V. Petrivskyi

λ2 − A cos xi = 0, (9)

whereas cos xi > 0 then we have two real roots of different signs, which means that
the first singular point with coordinates y1 = 0, x1 = arcsin B

A is a singular point
of the saddle type, and the characteristic lines on the phase plane are a family of
hyperbolas. For the second case cos x2 < 0, the characteristic equation has purely
conjugated roots and, accordingly, a singular point with coordinates y2 = 0, x2 =
π − arcsin B

A is a center point.
The results obtained make it possible to construct a phase portrait of the system

(4) (Fig. 1).
Denoting right parts of Eq. (4) like F(x, y) and G(x, y), we will get the corre-

sponding value of Bendixson’s criterion parameter:

F ‘
x + G‘

y = −2y.

Thus, for the trajectories on the phase cylinder in the regionwhere y > 0, dynamic
system (4) does not have closed paths on the phase cylinder that do not cover the
cylinder and can have the largest one limit cycle covering the cylinder.When it exists,
such a cycle is necessarily stable, according to the obtained characteristic indicator.

Further, the following calculation algorithm is proposed for finding the necessary
parameters of the dry magnetic separation process on a drum separator. To do this,
we carry out further transformations of Eq. (3). According to [4], we set

ν(θ) = (θ ′)2,
(

θ2 = dθ

dt

)
. (10)

Then differentiating the right and left side of (8),

ν ′θ ′ = 2θ ′θ ′′. (11)

Substituting the substitution (10) and (11) in Eq. (3), we obtain

ν ′θ + 2ν(θ) = 2A sin(θ ± φd,s) + 2B. (12)

Equation (12) is a linear, inhomogeneousfirst-order differential equationwith con-
stant coefficients, defined with respect to the function ν = ν(θ). In accordance with
notation (10), ω = √

ν(θ) is the particle angular velocity. The solution of Eq. (12)
accordingly has the following form:

ν(θ) = C exp−2θ +4

5
A sin(θ ± φd,s) − 2

5
A cos(θ ± φd,s) + B, (13)

where C—const., “+” sign and parameter φd characterize the first phase when the
particle hits the drum and the “−” sign and the parameter φs characterize the third
phase.
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Fig. 1 Phase portrait of a non-conservative system (4)

The result allows us to conduct research on the existence of a function of a periodic
solution of Eq. (1). Considering the substitution (10), for the case when the periodic
solution curve (periodic orbit) intersects the axis 
 at a point θ = θ0, there is a curve
on the phase plane

dθ

dt
=

√
Ce−2θ + 4

5
A sin(θ ± φd , s) − 2

5
A cos(θ ± φd , s) + B.

Given the symmetry of the periodic orbit, for the period function, we obtain the
expression
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T (θ0) =
∫ θ0

0

dθ√
Ce−2θ + 4

5 A sin(θ ± φd,s) − 2
5 A cos(θ ± φd,s) + B

.

Wecarry out the transformation of the radical expression for the case of a particular

solution to Eq. (1). Marking A1 = 4
5 A, A2 = 2

5 A, D =
√
A2
1 + A2

2 = 2√
5
A, cosα =

A1
D and sin α = A2

D , we get
4
5 A sin(θ ± φd,s) − 2

5 A cos(θ ± φd,s) + B = D sin(θ ± φd,s − α) + B = 2√
5

A sin(θ ± φd,s − α) +
√
5
2

B
A .

Given that special points y1 = 0, x1 = arcsin B
A and y2 = 0, x2 = π − arcsin B

A

defined for 0 < arcsin B
A < π

2 , where sin(x) = B
A and sin(θ ± φd,s − α) = cos( π

2 −
θ ± φd,s + α), denoting

√
5
2

B
A =

√
5
2 sin(x) = sin(x) = − cos( π

2 + x), we get 2√
5

A cos( π
2 − θ ± φd,s + α) + sin θ0. Labeling for convenience π

2 − θ ± φd,s + α = θ

and π
2 + x = θ0, finally, the root expression takes the form

4

5
A sin(θ ± φd,s) − 2

5
A cos(θ ± φd,s) + B = 2A√

5
(cos θ − cos θ0).

Next, applying the formula for each of the cosines cos γ = 1 − 2 sin2 γ

2 and by
changing the integration variable in the transformed integral,

T (θ0) =
4
√
5√
2A

∫ θ0

0

dθ√
cos θ − cos θ0

.

Using sin φ = sin θ
2

sin θ0
2

[5], we finally obtain the value of the period function, which

is expressed through the full elliptic integral of the first kind.

T (θ0) =
4
√
5√
2A

∫ π
2

0

dφ√
1 − k2 sin2(φ)

=
4
√
5√
2A

K (k), k = sin

(
θ0

2

)
.

The boundary value of this integral is known [6]:

lim
k→0

∫ π
2

0

dφ√
1 − k2 sin2(φ)

=
∫ π

2

0
dφ = π

2
.

The results obtained allow us to assert the validity of the following theorem.

Theorem 1 For non-negative parameter values B
A < 1 for a partial periodic solu-

tion of Eq. (1), when periodic orbits tend to a singular point of the center type, there

exists a boundary value of the period equal to
4√5π√
8A
, and with the unlimited approxi-

mation of periodic orbits to the separatrix, the period function increases unlimitedly.

Consider the practical application of the results for a specific example of the
separation process.
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Thus, taking into account the initial conditions, the process of particle motion
on the drum is modeled by the following problems with initial conditions for linear
equations of the first order. I phase.

ν ′(θ) + 2ν(θ) = 2A sin(θ + φd) + B (14)

ν|t=0 = 0.

At the initial time t = 0, when the particle hits the drum, its speed is zero. The
end of the first phase is a point in time t1 when the particle velocity becomes equal
to the speed of the drum. Then the dynamic friction coefficient μd or accordingly
parameter φd in Eq. (13) changes to the coefficient of static friction μs or parameter
φs .

II phase.

ωr = √
ν(θ), t > t1, (15)

where ωr—drum angular velocity.
III phase.

ν ′(θ) + 2ν(θ) = 2A sin(θ − φs) + 2B (16)

ν|t=t2 = ω2
r .

The condition for the separation of the particle from the drum (the end of the
third phase) is the condition that the value of the centrifugal force exceeds the value
of the magnetic force with a decrease in the radial component of gravity. Figure2
schematically shows the phases of particle motion on the drum corresponding to
problems (14)–(16).

Consider an example for the model values of the physico-mechanical param-
eters of the separation process [7]: R = 0.25m, b = 0.002m, μs = 0.75, μd =
0.15, ρ = 4700 kg

m3 , F = 3.2 ∗ 10−4H .
An illustration of the solution to problem (14) simulating the first phase of particle

motion is shown in Fig. 3. The point of intersection of the particle’s velocity curve
with the straight line, the speed of rotation of the drum, characterizes the value of
the angle of rotation at which the first phase of the process ends, namely, the angular
velocity of the particle is equal to the angular velocity of the drum. Based on the
general solution (13), the initial condition of problem (16), we find the solution to
the problem for this case.

ν(θ) = 53.6 exp−2θ +4

5
A sin(θ + φd) − 2

5
A cos(θ + φd) + B. (17)
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Fig. 2 The phase state of the particle on the drum magnetic separator: 1—the angular velocity of
the drum is greater than the angular velocity ωr of the particle ω; 2—the angular velocity of the
particle is equal to the angular velocity of the drum; 3—the angular velocity of the particle is greater
than the angular velocity of the drum (separation of particles from the drum)

From the condition 2π70
60 =

√
53.6 exp−2θ + 4

5 A sin(θ + φd) − 2
5 A cos(θ + φd) + B,

we can find value θ1 = 0.53 rad.
After the transitional second phase, solving problem (14), under the initial con-

dition determined by the angular velocity of the drum, we obtain the solution to the
problem in the following form:

ν(θ) = 37.3 exp−2θ +4

5
A sin(θ + φs) − 2

5
A cos(θ + φs) + B. (18)

In Fig. 4, the curve characterizing the motion of the particle during phase III is
located above the straight line—the angular velocity of the drum.

When the value of the centrifugal force acting on the particle exceeds the value
of the magnetic force, the value of the radial component of the gravity decreases, the
particle detaches from the drum, namely
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Fig. 3 Particle and drum velocity plots

Fc = mω2(R + b) > Fm + Fgr . (19)

Based on formula (13) and condition (16) for our case, we find the angle θ3 when
there is a separation of particles from the drum, namely θ3 = 1.29 rad.

In Fig. 5, graphs are constructed that illustrate the increase in the value of the
centrifugal force acting on the particle and the decrease in the value of the radial
component of gravity with a constant magnetic force. The point of intersection of
the graphs is the value of the separation angle of the particle from the drum.

2 Conclusion

It is complemented by the existing universality of the process of mathematical mod-
eling, which consists in the fact that the ordinary equation of oscillation covers a
wide range of processes—from the operation of a system of synchronous motors to
the enrichment of minerals. An expression is found for the period function for a par-
ticular solution of oscillation equation (1). The practical significance of the results of
the research is as follows. From a physical point of view, in the process of magnetic
separation, when there is friction proportional to the square of the angular veloc-



80 Y. Petrivskyi and V. Petrivskyi

Fig. 4 Particle and drum velocity plots

Fig. 5 Values of the centrifugal force acting on the particle and the radial component of gravity
with a constant magnetic force
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ity in the system, with the force acting on the particles of constant magnetic force,
the work expended on overcoming the friction forces increases with the square of
the angular velocity, while the operation of the external forces remains unchanged.
Therefore, if the value of the parameter in Eq. (3) B

A > 1, the permanent component
of the magnetic force is so large that it exceeds the maximum value of the centrifugal
force acting on the magnetic particle, the separation of the magnetic particle will not
occur—the separation process is absent under any initial conditions. This condition
will be observed until a balance is established between the friction scattering forces
and the magnetic force. The value of the parameter B

A = 1 is bifurcation point. When
the value of the parameter is B

A < 1, themoment characterizing the value of the radial
component of gravity exceeds the corresponding moment of magnetic force.
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Diffusion-Kinetic Model for Curing of
Epoxy Polymer

S. V. Rusakov, V. G. Gilev, and A. Yu. Rakhmanov

Abstract A diffusion-kinetic model is presented in the form of a system of partial
differential equations of the parabolic type, which allows one to estimate the ablation
of the components of the epoxy polymer in the liquid phase under conditions of
imbalance in the stoichiometric equilibrium simulating the effect of vacuum. An
analysis of the proposed model showed that the boundaries of the mass fraction of
the hardener, at which a transition to the gel fraction is possible, are between 10 and
60%, which corresponds to the results of a full-scale experiment. Additionally, using
the constructed mathematical model, the effective values of the kinetic parameters
were determined at which the estimated time of yield loss is in good agreement with
the experimental one.

Keywords Reokinetic · Viscosity · Epoxy resin · Hardening · Numerical
modeling

1 Introduction

Epoxy-based composites are widely used due to their high durability properties,
good adhesion to different materials, resistance to external factors, and low shrinkage
rate. They are also of low weight, which makes them promising for creating large
deployable structures in Earth orbit and in outer space. In outer space, such objects
are exposed to high vacuum, the flow of charged particles and atomic oxygen, rapid
temperature changes. All these factors can significantly affect the polymerization
result of the target structure [1, 2]. The cost of conducting full-scale experiments
directly in outer space is too expensive, and sometimes an experiment is not possible
at all. In this case, the mathematical modeling is almost the only way to research the
process.
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To estimate the kinetics of curing of epoxy oligomers, various models are used,
a review of which is given in [3]. Reference [4] presents the mathematical model of
curing kinetics and viscosity changes during curing of a binder, based on the dimen-
sions theory. As another example, [5–7] describes molecular dynamics methods for
exploring the curing process of thermosetting polymers which allow predicting the
evolution of the degree of crosslinking depending on the curing time, and the gelation
time depending on the molecular structure of the copolymer and curing conditions.
Reference [8] a describes mathematical model of the curing process, based on sta-
tistical methods of analysis. The model allows predicting the evolution of the degree
of crosslinking depending on the curing time and the gelation time depending on the
molecular structure of the copolymer.

However, all these models are not applicable for considering the polymerization
processes occurring in open space. Reference [9]. In particular, high vacuum leads
to the entrainment of part of the components of the mixture, i.e., violation of the
stoichiometric balance of the components of the mixture. In this regard, the problem
of the contribution of each of the components of the binder in the polymerization
process, as well as the research of the dependence of the gelation time and other
physical properties of the material on the ratio of the proportions of epoxy resin and
hardener is still relevant. The problem of entrainment of the substance during the
curing of epoxy in open space was posted in [10]. The mathematical model based
on a special choice of initial and boundary conditions for describing the process of
ablation of hardener molecules was described in [11]. Reference [12] has presented
the investigation of the effect of hardener concentration on the viscosity of the epoxy
binder in the initial portion of the polymerization process. It has also shown that the
calculation results are in good agreement with experimental data.

This paper focuses on the newmodel in the form of a system of partial differential
equations of the parabolic type, which allows one to estimate the ablation of the
components of the epoxy polymer in the liquid phase under conditions of imbal-
ance in the stoichiometric equilibrium simulating the effect of vacuum. Estimates of
the model parameters obtained as a result of processing full-scale experiments are
presented.

2 Problem Formulation

In this paper, we’ll consider an endless layer of epoxy polymer in the liquid phase. In
this case, we can restrict ourselves to a one-dimensional formulation of the problem
with a spatial coordinate that is directed across the layer (Fig. 1).

As a mathematical model, we consider an initial-boundary value problem of the
form

• system of equations

∂Cep(t, x)

∂t
= ∂

∂x

(
D

(
Cep,Cam) ∂Cep(t, x)

∂x

)
− Kep (

Cep,Cam)
Cep(t, x)Cam(t, x),
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Fig. 1 Geometric view

∂Cam(t, x)

∂t
= ∂

∂x

(
D

(
Cep,Cam) ∂Cam(t, x)

∂x

)
− Kam (

Cep,Cam)
Cep(t, x)Cam(t, x), (1)

t > 0, x ∈ (0, L(t))

• nitial conditions

Cep(0, x) = Cep
0 = const, Cam(0, x) = Cam

0 = const,
(2)

Cep
0 + Cam

0 = 1, x ∈ [0, L(0)],

• boundary conditions

D
(
Cep,Cam

)∂Cep(t, 0)

∂x
= D

(
Cep,Cam

)∂Cam(t, 0)

∂x
= 0,

D
(
Cep,Cam

)∂Cep(t, L(t))

∂x
= −α0(t)αep

(
Cep,Cam

)
Cep(t, L(t)),

D
(
Cep,Cam

)∂Cam(t, L(t))

∂x
= −α0(t)αam

(
Cep,Cam

)
Cam(t, L(t)) (3)

Introduce the following notations:
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Cep(t, x), Cam(t, x)—mass fraction of unreacted (in the liquid phase) epoxy
resin and hardener molecules;

Kep (Cep,Cam) , Kam (Cep,Cam)—kinetic parameters that determine the speed
of the polymerization reaction;

D (Cep,Cam)—diffusion coefficient;
L(t)—epoxy polymer layer thickness;

αep

(
Cep,Cam

)
, αam

(
Cep,Cam

)
—ablation factor coefficient;

α0(t) = 1 − exp

(
−

(
t

τ

)2
)
—(empirical) coefficient determining the “start” of

the ablation mechanism, τ—parameter of adjustment.

To determine the diffusion coefficient, we will use the well-known Einstein for-
mula:

D
(
Cep,Cam

) = D0T

η (Cep,Cam)
, D0 = CB

6πr
(4)

where CB = 1.38 · 10−23 J/K—Boltzmann const, r—effective molecular radius,
η (Cep,Cam)—dynamic viscosity of epoxy polymer.

We’ll determine the ablation coefficients, including work to overcome the energy
barrier [11]

αep

(
Cep,Cam

)
= 1

2
· er f c

(√
Aepη(Cep,Cam)

T

)
, Aep = mepγep

CB
,

(5)

αam

(
Cep,Cam

)
= 1

2
· er f c

(√
Aamη(Cep,Cam)

T

)
, Aam = mamγam

CB
,

where mep, mam—mass of molecules, γep, γam—empirical constants.
An epoxide composite is a highmolecular compound. Accordingly, values r ,mep,

and mam in expressions (4)–(5) could only be considered as some effective values.
In this case, full-scale experiments are required to estimate the parameters D0, Aep

and Aam . In this model, there are three time-based characteristics that determine the
nature of the curing process and[

D/L2
]−1

,
[
αep/L , αam/L

]−1
,

[
Kep, Kam

]−1
. Since all these functions are

solution dependent, the ratios of the rates of the processes (diffusion, ablation, and
kinetic) can change at different points in time of the polymerization process.

The curing process of the epoxy polymer is characterized by amonotonic increase
in viscosity until there is a loss of fluidity: as t → t∗ viscosity η(t) → ∞ (t∗ is
the solidification time). From formula (4.1), it follows that the diffusion coefficient
tends to zero as t → t∗, and the system of equations (1) degenerates into a system
of distributed dynamic equations.
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Fig. 2 Dependence of
function f (z) on parameter

Viscosity is included in both the diffusion coefficient and the entrainment coef-
ficient. Therefore, we propose to consider the asymptotic behavior of the func-
tion f (z) = z · er f c (√

z
) ∼ α/D, , where z ∼ η. It’s easy to show that as z →

∞ f (z) → 0 in the corresponding boundary conditions (3), the singularity does
not occur. The graphical representation of this function is in Fig. 2. It shows that
the ratio of diffusion time to ablation time is not monotonous and depends on the
viscosity.

3 Kinetic Model

Let’s consider the kinetic component of the system of equations in more detail (1).
It is a result of the use of the simplest two component dynamic model of the form

dϕep(t)

dt
= −Kepϕep(t)ϕam(t), ϕep(0) = 1,

(6)

dϕam(t)

dt
= −Kamϕep(t)ϕam(t), ϕam(0) = 1,

where ϕep(t), ϕam(t)—the proportion of unreacted molecules (oligomers) of epoxy
resin and hardener, which are associated with the desired functions of equations (1)
by simple relations Cep(t) = Cep

0 ϕep(t), Cam(t) = Cam
0 ϕam(t).

In the zero approximation, we can assume that Kep, Kam = const, then the
problem (2.1) has an analytical solution. So, if Kam > Kep then

ϕam(t) = C

(1 + C) exp(KepCt) − 1
, C = Kam

K ep
− 1,
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ϕep(t) = Kep

K am
ϕam(t) +

(
1 − Kep

K am

)
; (7)

if Kep > Kam then

ϕep(t) = C

(1 + C) exp(KamCt) − 1
, C = Kep

K am
− 1,

(8)

ϕam(t) = Kam

K ep
ϕep(t) +

(
1 − Kam

K ep

)
.

In the case of stoichiometric balance Kep = Kam = K weobtain:ϕep(t) = ϕam(t) =
ϕ(t), then we get the Cauchy problem for one equation, the solution of which is

ϕ(t) = (1 + Kt)−1. (9)

4 The Research Subject

The experiments used an epoxy composition of “cold” curing: oligomer-epoxy resin
L, hardener—EPH 161 certified for use in structural composite materials for avia-
tion purposes. The mixture that used in experiments was prepared in the weight ratio
of epoxy resin to hardener 4:1, recommended by the manufacturer. Measurements of
the mass of solutions and their components required to calculate the concentration
of the mixture were performed using analytical scales LV-210 having 2nd accuracy
class, the absolute measurement error of which is ±0.4 mg. After preparation, the
mixture was mixed for 1–2min with an Electromechanical mixer and an additional
1–2min in an ultrasonic bath Digital Ultrasonic Cleaner CD 4820 at a frequency of
40 kHz. The last operation also contributes to the degassing of the mixture.

5 Experimental Settings and Procedure

The control of the polymerization process of the binder was carried out by rhe-
ological method on a rotary rheometer Physica MCR 501. Used geometry is
� cone − plate 	. The cone has a diameter of 25mm and angle of 10. Such geom-
etry ensures uniformity of the shear rate gradient in the measuring gap. A special
temperature device H − PT D200 based on the Peltier effect was used to maintain
and change the temperature regime. During the experiment, 0.07ml of solution was
placed on the working surface of the rheometer plate. The thickness of the solu-
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tion layer along its outer radius was 0.04mm for rapid establishment of the working
temperature in the sample even under the conditions of heat generation due to the
polymerization reaction. All experiments were carried out under the conditions of
shear deformation of the mixture according to the harmonic law with a frequency of
1Hz in the deformation control mode, which allows to evaluate not only viscous, but
also viscoelastic characteristics of the samples. In order to minimize heat generation
in the sample due to shear flow, all measurements were carried out in a discrete mode
of temperature change. The measurement time of each experimental point was no
more than 15s. The interval between measurements (standby mode) was in the range
from 5 to 30min. The process continued until the reaction mixture began to enforce
a strong resistance to shear deformation.

6 Result and Discussion

The results of changes in the complex viscosity of the polymerized adhesive composi-
tion at a temperature of 40 ◦C in the case of stoichiometric balance of the components
is in Fig. 3. It can be seen that over a period of time the viscosity changes slightly.
Then it grows intensive by several orders of magnitude.

In [13], in order to approximate the dependence of the viscosity of the polymer-
izing composition, it was proposed to use the empirical Chong formula [14]

η(t) = η0

(
1 + aψ(t)

1 − ψ(t)/ψm

)2

, (10)

whereψ(t)—themass fraction of epoxy resin and hardenermolecules reactingwhich
in the absence of vacuumablation creating spatial concentration inhomogeneity.ψ(t)
is determined by a simple relation

ψ(t) = 1 − Cep
0 ϕep(t) − Cam

0 ϕep(t), (11)

Fig. 3 Changes in the
viscosity of the adhesive
composition in the
polymerization process
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Fig. 4 Changes in the
viscosity of the binder during
polymerization depending on
the mass concentration of the
hardener. T = 45 ◦C

where η0—viscosity value at the initial time,ψm—the part of oligomers (epoxy resin
and hardener molecules) that have entered into a polymerization reaction, in which
the transition from the liquid phase to the gel-fraction phase. The parameter a is
empirical and is used to approximate the experimental data. In Fig. 3, the solid curve
shows the dependence (10), where a = 16 and ψm = 0.51. The analytical solution
of Eq. (9) with K = 0.0059 was used to determine the function ψ(t) according to
(11).

During vacuum ablation near the surface of the polymer layer, the stoichiometric
balance may be disturbed, which will affect the value of the kinetic parameters Kep

and Kam .

To evaluate these changes, a series of experiments were performed with various
mass fraction of hardener. Reference [4] shows an example of changing the viscosity
of the polymerized adhesive composition depending on the concentration of the
hardener. Stoichiometric equilibrium corresponds to a hardener concentration of
20%. Experiments have shown that at hardener (Cam) concentrations of less than
10% and more than 60%, the mixture does not solidify (Fig. 4).

The change in viscosity in the curing process of epoxy resins is complex, but in
most cases, the purely practical interest is not the entire range of viscosity changes,
but only the critical point of loss of fluidity: solidification time t∗. The used geometry
of the rheometer does not allow to register the change of rheological properties from
the beginning of the reaction to its almost complete end. A well-known method for
determining the hardening time is to determine the maximum achievable value of
the viscosity of the material and to construct the inverse viscosity dependence 1/η
at the final stages of curing [15], which, as a rule, is well approximated by a straight
line (see, for example, Fig. 5). The intersection of this line with the abscissa axis
determines the moment of reaching infinite viscosity. The results of this process are
presented in Fig. 6.

Based on the chemical composition of the epoxy composition it is possible to
show the validity of the ratio
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Fig. 5 Determination of solidification time of samples. T = 45 ◦C. The hardener concentration is
20%

Fig. 6 Change of curing time t∗ depending on mass concentration of hardener and temperature

Kep

K am
= 4Cam

0

Cep
0

(12)

Analysis of the proposed model (6), given the fact that stoichiometric balance is
determined by the ratio of 4:1 showed that the boundaries of the mass fraction of
curing agent in which the transition in gel fraction is possible are in range of 10% and
60%,which corresponds to the results of the experiment (see Fig. 6). In addition, with
using the constructed mathematical model, it is possible to determine the effective
value of the kinetic parameters, at which the estimated time of flow loss is in good
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Fig. 7 Values of kinetic
parameters of the model (6)
depending on the mass
concentration of the hardener
at temperature T = 40 ◦C

agreement with the experimental one. In this case, the reasoning was based on the
following:

• analytical solutions (7)–(9)
• the fact that at time t the value of the function defined by the relation (11) is equal
to ψ(t) ≈ 0.5

The results of these calculations are shown in Fig. 7. It can be seen that the depen-
dence Kam(Cam) is a piecewise linear function and the values Kep(Cam) can be
determined from the relation (12).

7 Conclusion

The diffusion-kinetic model presented in the paper and the parameters included in it
can be identified accurately enough using laboratory experiments, which allows to
hope for the possibility of its use in the problem of assessing the vacuum ablation of
an epoxy polymer during the polymerization process.
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Modeling of Control of the Immune
Response in the Acute Form
of an Infectious Disease Under
Conditions of Uncertainty

M. V. Chirkov and S. V. Rusakov

Abstract Thepaper considers a numerical solutionof the problemof discrete control
of the immune response in an infectious disease under conditions of uncertainty. The
immune processes are described by ordinary differential equations with a retarded
argument. Conditions of uncertainty imply that values of the parameters of the model
are unknown and their estimates are adjusted by new clinical and laboratory data.We
use an algorithm that allows one, within the framework of the mathematical model of
infectious disease, to construct the control function and at the same time to identify
parameters. We deal with the control of the immune response in the acute form of
an infectious disease. Immunotherapy consisting in the injection of donor antibodies
is chosen as a controlling factor. In doing so, it is shown that immunotherapy is an
effective treatment for the acute form of an infectious disease. The presented results
are based on simulation of experimental data.

Keywords Mathematical model of immune response · Discrete control ·
Immunotherapy

1 Introduction

Mathematical models of the immune response in infectious diseases are applied to
study the dynamics of the immune defense of the organism against viral and bacterial
infections. As a rule, these models are represented by nonlinear systems of ordinary
differential equations [1, 5, 7–10, 16] that contain a large number of parameters. The
values of the parameters of models characterize the properties of the immune system
and antigens.Using estimates of parameters calculated on the basis of laboratory data,

M. V. Chirkov · S. V. Rusakov (B)
Perm State National Research University, 15 Bukirev st., 614990 Perm, Russia
e-mail: rusakov@psu.ru

M. V. Chirkov
e-mail: chirkov@psu.ru

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
A. Domoshnitsky et al. (eds.), Functional Differential Equations and Applications,
Springer Proceedings in Mathematics & Statistics 379,
https://doi.org/10.1007/978-981-16-6297-3_7

97

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-6297-3_7&domain=pdf
mailto:rusakov@psu.ru
mailto:chirkov@psu.ru
https://doi.org/10.1007/978-981-16-6297-3_7


98 M. V. Chirkov and S. V. Rusakov

one can analyze the immune response in a patient and develop the most appropriate
treatment regimen.

The solving of these problems is complicated by the fact that the conventional
approach allows one to obtain estimates of parameters only at the end of the disease
when the prognosis and recommendations on the choice of treatment lose their rel-
evance. Therefore, it is of interest to develop methods that enable one to construct a
control under conditions of uncertainty where values of parameters are unknown but
the range they belong to is known and their estimates are adjusted by new clinical
and laboratory data.

2 Basic Mathematical Model of Infectious Disease

The main defense mechanism that eliminates antigens from the organism is an
immune reaction targeted only against a specific antigen causing a given disease.
After penetrating into an organism, antigens begin to proliferate in the cells of a
target organ, which leads to the damage of an organ. An immune response involves
the formation of antibodies that can neutralize antigens. The generation of antibodies
is preceded by stimulation of the immune system, which consists of the formation of
plasma cells that produce antibodies. An antibody binds an antigen and the outcome
of the disease depends on the struggle between them.

The immune response described above is reflected in the basic mathematical
model of an infectious disease proposed by Marchuk [7]. Using the model, one can
predict the course of the disease and its outcome and the introduction of control
functions allows one to give recommendations on the choice of treatment.

The model describes the dynamics of the following variables: ν(t), s(t), and f (t)
are the relative concentrations of antigens, plasma cells, and antibodies, respectively,
and m(t) is the proportion of target organ cells destroyed by antigens.

Including the control [3, 4], the basic model of an infectious disease in the nondi-
mensional form can be represented by a system of ordinary differential equations

dν

dt
= a1ν − a2 f ν,

ds

dt
= ξ(m)a3 f (t − τ )ν(t − τ ) − a5(s − 1),

d f

dt
= a4(s − f ) − a8 f ν + u,

dm

dt
= a6ν − a7m (1)

with initial conditions for t ∈ [−τ , 0]

ν(t) = ν0θ(t), s(t) = 1, f (t) = 1, m(t) = 0, (2)
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where θ(t) is the Heaviside function defined by the formula

θ(t) =
{
1 f or t ≥ 0,

0 f or t < 0.
(3)

The control function u = u(t) ∈ U describes the injection of donor antibodies
from the external environment (immunotherapy) and ξ(m) characterizes the mal-
function of the immune system due to considerable damage of an organ

ξ(m) =
⎧⎨
⎩

1, 0 ≤ m < m∗,
m − 1

m∗ − 1
, m∗ ≤ m ≤ 1,

(4)

wherem∗ is the maximum proportion of cells destroyed by antigens when the normal
functioning of the immune system is still possible.

Values of the parameters of the model are unknown but there is a range of admis-
sible values

ai ∈ [a−
i , a+

i ], i = 1, L, (5)

where L is the number of parameters (L = 8 in the basic model of an infectious
disease).

Model (1) describes general regularities common to all infectious diseases. The
infectious disease is assumed to be a conflict between pathogenic multiplying anti-
gens and the immune system of an organism. The study of the basic model of infec-
tious disease resulted in obtaining qualitatively different types of solution, which
were interpreted as forms of the disease: subclinical, acute, chronic, and lethal.

The formof the solution is uniquely determinedby initial conditions andparameter
values, which are referred to as immunological status of an organism. In this regard,
it is necessary to solve the problem of control under conditions of uncertainty where
estimates of parameters are adjusted during the construction of a control.

3 Algorithm of Control Under Conditions of Uncertainty

We assume that the laboratory data can be obtained at certain time moments corre-
sponding to the grid nodes

∏
= {ti : ti = i�t, i = 1, N , �t = T/N }. (6)

Thus, the input data are discrete. The control function u = u(t) that characterizes
the rate of injection of donor antibodies is chosen from the set
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U = {u(t) : u(t) = ui−1 ∈ [0, b], t ∈ [ti−1, ti ), i = 1, N , u(T ) = uN−1}, (7)

where the parameter b > 0 denotes the physiologically admissible doses of medica-
ments.

To construct a control function with uncertainty, we use the algorithm proposed in
[13–15]. The algorithm for the construction of a program of treatment is as follows:

On the set of admissible values of parameters, the K sets of parameters are ran-
domly generated

α(k) ∈ � =
{

α : ai j = a−
i + jhi , j = 0, Mi , hi = a+

i − a−
i

Mi
, i = 1, L

}
, k = 1, K . (8)

For t ∈ ∏
, we define the admissible parameter sets that satisfy the following

condition:

∣∣ν(ti ,α
(k)) − νexp(ti )

∣∣ < ε, i = 0, N , k = 1, Ki , (9)

where νexp(ti ) is the laboratory data obtained on the basis of medical analyses; ε is
the value of acceptable deviation of the calculated values of the antigen concentration
from laboratory data, Ki is the number of parameter sets at time ti . The estimate of
parameters is defined by the formula

a(i)
j =

Ji∑
k=1

a(k)
j

Ji
, j = 1, L, i = 0, N , (10)

where Ji represents the number of admissible parameter sets at time ti ; and Ji ≤ Ki ,
i = 0, N , Ki = Ji−1, i = 1, N , K0 = K , where K is the initial number of parameter
sets; Ji = Ki − Hi , i = 0, N , where Hi is the number of inadmissible parameter sets
at time ti .

To construct a control function, we apply the algorithm proposed in [11, 12].
The idea of the algorithm is as follows: the dynamics of antigens must be put into a
necessary level corresponding to a certain solution of the basic mathematical model
of an infectious disease. This solution is considered to be the support solution. The
antigen concentration values obtained from the support solution are given on the grid
(6)

ν∗(ti ), i = 1, N . (11)

If the predicted level of the antigen concentration does not coincide with the
support value, then as a control ui , we choose the value that leads the solution curve
of the antigen concentration to a necessary level.
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4 Results of Computational Experiments

The support solution is determined by solving the system

dν

dt
= a1ν − a2 f ν,

ds

dt
= ξ(m)a3 f (t − τ )ν(t − τ ) − a5(s − 1),

d f

dt
= a4(s − f ) − a8 f ν − cu,

dm

dt
= a6ν − a7m,

du

dt
= f − 1 − ku (12)

with initial conditions for t ∈ [−τ , 0]

ν(t) = ν0�(t), s(t) = 1, f (t) = 1, m(t) = 0, u(t) = 0 (13)

with c = 1, k = 4. This variation of the basic model is proposed in [2, 6]. If a1 <

a2, c > 0, k > 0 then system (12) is exponentially stable. In this case, the control
provides stability of the state of a healthy organism. The status of a healthy body is
determined by the following stationary solution of the basic model:

ν = 0, s = 1, f = 1, m = 0.

To construct a control function under conditions of uncertainty, we utilize an
imitation of clinical and laboratory indicators. The experimental values in criterion
(9) are determined by the solving of model (12)–(13) for a specific set of parameter
values. Further, considering that the parameter values are unknown, we construct
a control and simultaneously correct values of the parameters for problem (1)–(5)
using algorithm (6)–(11). Calculations are carried out with parameters corresponding
to the acute form of a disease.

The various solution curves correspond to different values of parameters of the
model. The model parameters are identified in terms of values of concentration of
antigens. It follows that the solution curves of the chosen characteristic must lie
in a certain neighborhood of experimental values. Thus, we obtain a range where
the solution curves of concentration of antigens must be. In Fig. 1, the bounds of
this range are depicted by the dashed curves. If the solution curve for some set of
parameters goes beyond the range at a point of an interval of integration, further
computations with this set of parameters are not carried out. Figure1 shows the
possible solution curves going beyond the allowable ranges.

Figure2a–d illustrate the dynamics of the immune response during the natural
course of the disease (solid curves) and in the case of the obtained program of
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Fig. 1 Solution curves of antigen concentration

treatment (dashed curves). The following values were used:m∗ = 0, 1; b = 5; τ =
0, 5; ν0 = 10−6; ε = 2, 5 · 10−4. The acute form of the disease is characterized by
a rapid increase of antigen concentration in an organism, by a strong and effective
immune response, and by a rapid decrease of antigen quantity down to the values
tending to zero. This situation is understood as recovery. The control function is
shown in Fig. 2e. The treatment program consists of the increasing injection of donor
antibodies.

The obtained estimates of parameters and the exact values are presented in Table1.
The bounds of the range of admissible values and the step of grid � are determined
for each parameter. The average error of the estimates of parameters is 1.93%.

Thus, the algorithm proposedmakes it possible to construct the treatment program
and to estimate the immunological status of the organism, i.e., values of the model
parameters.

5 Conclusion

Results of numerical experiments show that immunotherapy is an effective treatment
in the acute form of a disease. Using the considered algorithm, one can construct
the control of the immune response under conditions of uncertainty correcting the
estimates of parameters by using the new clinical and laboratory data.
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(a)

(b)

(c)

Fig. 2 Dynamics of the immune response: a antigen, b plasma cells, c antibodies, d proportion of
destroyed cells, e control function
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(c)

(d)

Fig. 2 (continued)

Table 1 Parameters of the model

Parameter ai− ai+ hi Estimate Exact value Error,%

a1
1,75 2,25 0,1 2,024 2,000 1,20

a2
0,55 1,05 0,1 0,799 0,800 0,13

a3
9550 10550 100 10033 10000 0,33

a4
0,145 0,195 0,01 0,168 0,170 0,20

a5
0,25 0,75 0,1 0,513 0,500 2,60

a6
7,5 12,5 1 10,214 10,000 2,14

a7
0,095 0,145 0,01 0,124 0,120 3,33

a8
5,5 10,5 1 8,443 8,000 5,54
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Some Problems of Mathematical
Modeling of Radiophysical Sounding
Signals

Alexey Kolchev and Ivan Egoshin

Abstract The greatest attention in radiophysical sounding is paid to determining
parameters of known phenomena. Therefore, the main task in sounding signal pro-
cessing is to detect known signals and evaluate their parameters. However, an impor-
tant scientific problem is the problem of the discovery of still unknown phenomena.
In this paper, we propose a mathematical model of the received signal in the form
of a mixture of two probability distributions to detect unknown signals. The random
process that describes the signal is assumed to be substantially unsteady (different
sections of the process have different probability distributions). Parameters in the
system of Kolmogorov differential equations (process intensity) randomly depend
on time under these conditions. It is shown that the intensity in the proposed model
of the mixture does not depend on the fraction of samples of the selected compo-
nent.Machine learningmethods to detect sounding signals andmethods for detecting
outliers of random processes to select signal samples are proposed. The developed
methods are used in an ionosphere sounding equipment with a chirp signal. The
equipment kits were provided to various scientific institutions of Russia and also
placed at geophysical stations along the Northern Sea Route, Russia. These methods
can be used to extract arbitrary signals with their similar statistical characteristics.

Keywords Modeling · Signal processing · Hazard function

1 Introduction

A standard task in radiophysical research is a task of evaluating signal parameters
when sounding known processes or phenomena. In this case, the shape of received
signals is known, and their parameters are unknown. The research task of radio-
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physical sounding consists in detecting signals of an unknown form from unknown
processes (since the phenomenon has not yet been discovered, no one has already
observed similar signals) or from complex and non-stationary processes (for exam-
ple, round-the-world HF signals of ionospheric propagation, signals of angular iono-
spheric scattering [1, 2]).

The purpose of this work is to develop methods for detecting and extracting
unknown signals during radiophysical sounding.

2 Chirp Sounding of the Ionosphere

In the paper, signals of the oblique sounding of the ionosphere are considered as
radiophysical signals. Figure1 shows a diagram of such sounding. A transmitter
continuously emits a chirp sounding signal. Typically, the frequency tuning speed is
100–500 kHz/s, and the sounding range is from 3 to 30MHz [3, 4]. The transmitted
signal is reflected from the ionosphere and enters the receiving antenna. At the same
time, signals of all radio equipments operating in the range of 3–30MHz also get to
the receiving antenna.

Figure2 shows a spectrogram of a signal at the input of the receiver. The time is
plotted on the vertical axis and the sounding frequency on the horizontal axis. The
chirp sounding signal has the form of an oblique line, and the signals of extraneous
radio equipment have the form of vertical lines.

Figure2 shows that the sounding signal crosses signals from other radio equip-
ment. These can be signals of various types: speech, music and discrete signals. The
signals are completely different and unknown to the receiving side.

The signal is processed by compression in the frequency domain in the receiver.
This method consists in the fact that the received signal is multiplied by a local oscil-
lator signal, and then an element-wise spectral analysis of the difference frequency
signal is performed [5].

Fig. 1 Diagram of
ionosphere chirp sounding



Some Problems of Mathematical Modeling of Radiophysical Sounding Signals 109

Fig. 2 Signal at the input of the receiver

Fig. 3 The ionogram
obtained on Gorkovskaya
(60.27◦N,
29.38◦E)—Yoshkar-Ola
(56.62◦N, 47.87◦E) path,
September 13, 2013,
08:48:00 UTC. The main
elements of the ionogram
image: 1—tracks of signal
propagation modes;
2—background noise;
3—spectrally lumped
(station) interference

The result of the ionosphere sounding is an ionogram (see Fig. 3), which char-
acterizes the dependence of the amplitude of the radio signal A from the sounding
frequency f and the group delay time τ . The amplitude of the signal corresponds to
a gradation of brightness in the image.

Spectrally lumped noise is located in separate columns of the ionogram. The
power of fluctuation noise varies with frequency.

Figure4a shows an example of a 4-second signal fragment at the output of the
ionosonde receiver with a chirp signal, which is divided into four parts correspond-
ing to the individual signal processing elements. Figure4b shows corresponding



110 A. Kolchev and I. Egoshin

Fig. 4 Elements of the signal (a) at the output of the chirp receiver of the ionosonde and their
corresponding histograms (b)

histograms of the samples distribution of this signal. Figure4 shows that not only
do the distribution parameters of the signal samples vary from element to element,
but the distribution laws themselves change. Thus, the signal is processed under
conditions of a priori nonparametric uncertainty [6].

During the build of the ionogram, the processing of the received signal is done
element-wise and each signal element has its own central frequency f c and occupies
its own frequency band, different from other elements (the results of processing the
signal element correspond to a separate column on the ionogram). Therefore, the
spectrally lumped noise (label 3 in Fig. 3), the characteristics of the received signals
(label 1 in Fig. 3), and the fluctuation noise power (label 2 in Fig. 3) will change from
one element to another in the frequency band of the processed signal. This causes a
change in the statistical characteristics of the signal at the output of the ionosonde
receiver.

3 Statistical Signal Model

Processing in the receiver by some transformations (filtering, decomposition over
a certain basis, etc.) leads to the fact that the detected signals have significantly
different values of a certain physical parameter.

Since, in modern devices, signals at the final stage of processing are always
presented in digital form, the problem of signal detection at the output of a device
can be formulated as follows.

Consider a set of n numbers x1, x2, ..., xn that are results of some observations
(we assume that digital samples are uncorrelated and independent). If the signal of
propagation modes is absent, then all samples x1, x2, ..., xn are considered as a real-
ization of independent and identically distributed random variables X1, X2, ..., Xn

with cumulative distribution function F(x) (or as n realizations of a random variable
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X ). If there are samples in the set that are associated with the signal, then we will
suppose that the random variables X1, X2, ..., Xn are also independent, the samples
X1, X2, ..., Xm (m < n) have the distribution F1(x), while the samples Xm+1, ..., Xn

have a distribution F2(x) “shifted to the right” relative to F1(x) (or there are (n − m)
realizations of a random variable Y ).

In this formulation, the problem of detecting the presence of samples of the signal
in the set becomes the problem of determining whether the set is obtained from
samples of the random variable X or from samples of the random variable Z which
is a two-component mixture of the random variables X and Y .

Moreover, if f1(x) is a probability density function of the random variable
X , and f2(x) is a probability density function of the random variable Y , then a
probability density function of the random variable Z can be written as fZ (x) =
(1 − h) · f1(x) + h · f2(x), where h = (n − m)/n is a fraction of samples of the
random variable Y in the mixture.

The subsequent simplification of the model is linked to the characteristic of the
data structure: we assume that the samples are non-negative and the values of the
selected samples are not less than those of the rest of the samples.

Under these assumptions, the distribution density function fz(x) and the distri-
bution function Fz(x) of the resulting random variable Z can be written as follows:

fZ (x) =
⎧
⎨

⎩

(1 − h) f1(x), 0 ≤ x < xa,
h · f2(x), xb ≤ x ≤ xc,
0, x /∈ [0, xa) ∪ [xb, xc],

(1)

FZ (x) =

⎧
⎪⎪⎨

⎪⎪⎩

0, x < 0,
(1 − h)F1(x), 0 ≤ x < xa,

1 − h · (1 − F2(x)), xb ≤ x ≤ xc,
1, x > xc,

(2)

where [0, xa) is an interval of possible values of the random variable X , and [xb, xc]
is an interval of possible values of the random variable Y (xb ≤ xc). F1(x) is a dis-
tribution function of the random variable X , and F2(x) is a distribution function of
the random variable Y .

Fig. 5 The distribution
density function of the
component Z
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It follows from (1) and (2) that if h � 1, then the effect of the second component
on fZ (x) and FZ (x) is small (see Fig. 5).

4 Signal Detection Method

Thus, the task is reduced to finding a functional characterization of the mixture
components for which the contribution of the component Y to the functional char-
acterization of the whole mixture would not depend on h. That is, for x ≥ xb, the
dependence was only on the properties of the random variable Y and it should be
given relative to the fraction of samples. Therefore, it should be a local characteristic
in the vicinity of some x = x0, depending on the proportion of samples exceeding
x0. The main local characteristic of a continuous random variable Z at a point x0 is
its distribution density function fz(x0). Find the probability that Z > x0:

P(Z > x0) =
+∞∫

x0

fZ (x)dx = 1 − P(Z ≤ x0) = 1 − FZ (x0).

Next, build their ratio: fZ (x0)
1−FZ (x0)

.
A similar construction is found in reliability theory, where the uptime T is a

random variable [7].
There is a correspondence with the failure rate; λ(t) is the ratio of the number of

failed objects per unit timeΔn(Δt)/Δt to the average number of objects that continue
to work properly in a given time interval NΔt (t): λ(t) = Δn(Δt)

NΔt (t)Δt , where Δn(Δt)
is a number of object failures over a period of time from t − Δt/2 to t + Δt/2;

NΔt (t) = N (t− Δt
2 )+N (t+ Δt

2 )

2 and N (t) is a number of objects that work properly on the
interval [0; t] from the original N0 objects.

WhenΔt → 0, the value Δn(Δt)
N0Δt tends to the density of the distribution of failures:

lim
Δt→0

Δn(Δt)
N0Δt = fn(t), and lim

Δt→0

NΔt (t)
N0

= P(t) determines the probability of uptime

over time T < t . The probability of failure during this time: Q(t) = 1 − P(t).
When Δt → 0, λ(t) = fn(t)

P(t) = fn(t)
1−Q(t) = fn(t)

1−
t∫

−∞
fn(t)dt

= fn(t)
1−Fn(t)

, Fn(t) is a distri-

bution function of failures. The failure rate λ(t) is often called a hazard function.
For a random variable Z , the hazard function is written as follows:

λZ (x) = fZ (x)

1 − FZ (x)
=

⎧
⎪⎪⎨

⎪⎪⎩

0, x < 0,
(1−h)· f1(x)

1−(1−h)·F1(x) , 0 ≤ x < xa,
λ2(x), xb ≤ x ≤ xc,

0, x > xc,

(3)

where λ2(x) = f2(x)
1−F2(x)

is the hazard function of the random variable Y .
Equation (3) shows that the hazard function of the random variables mixture

expressed by (1) for xb ≤ x ≤ xc does not depend on the fraction of the component
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Y in the mixture. The hazard function λ(x) can, therefore, be used to detect samples
of the second component in the mixture for small values of h [8].

The practical application of the hazard function in detecting ionosphere sounding
signals can be made on the basis of training sets. Let there be a set of experimental
data samples containing only a component X (there is a set of realizations of a random

Fig. 6 Result of the signal
detection method
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process). Construct an averaged normalized sample hazard function λmean(x) using
this set. Normalization is carried out so that 0 ≤ λmean(x) ≤ 1. A normalized hazard
function λN (x), 0 ≤ λN (x) ≤ 1, is determined for a set of N samples of a signal that
does not belong to the set of the training set.

The difference λN (x) from λmean(x) can be estimated by a distance d between

these functions by defining it, for example: d =
1∫

0
|λN (x) − λmean(x)|dx .

If the value d does not exceed a certain threshold value ε(d ≤ ε), then it is consid-
ered that the set contains only one component X. If d > ε, then it is considered that
the set contains two components X and Y . The threshold value ε can be determined
by the training set. An example of the operation of this method is presented in Fig. 6.

Figure6b shows a source ionogram. An operator marked the extreme observed
frequencies (LOF and MOF) on it. Figure6a shows a plot of the d versus frequency
and threshold level. Figure6c shows the result of the algorithm.

5 Signal Extraction Method

In the framework of the proposed statistical model in the form of a mixture of
distributions, the sign of a sample corresponding to the sample of the extracted signal
is that it exceeds the interval of possible values of a random variable X . From the
point of view of a random process, such a sample can be considered an outlier of the
random process or interpreted as an anomalous sample. In this work, the threshold
was chosen according to the method of [9], which was constructed for a wide class
of distribution laws and takes into account the excess of distribution:

if for the sample x , an estimate

x − x > σ · (1.55 + 0.8
√

ε − 1 · lg(n/10)) (4)

is performed, then this sample is considered abnormal (i.e., the sample is considered
to be the sounding signal) where n is a number of samples; x is a sample mean; σ is
a standard deviation and ε is an excess.

So that the calculation of the excess, the samplemean and the standard deviation is
not affected by abnormal samples, the calculation is first performed on the initial part
of the variation series of the size in the M samples (M > 50% of the total number of
samples N ). Removing from the original set abnormal samples gives an estimate h̃1
for the exact value of the quantity h. The procedure for extracting abnormal samples
can be repeated with a new value M = 1 − h̃1 and a new estimate h̃2 of the exact
value of the value h can be obtained. That is, the method can be considered iterative.
Since each subsequent iteration reduces the error of false selection, but increases
the error of skipping the “useful” signal, the number of iterations is established
experimentally.
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6 The Experimental Results

After applying the method for extracting abnormal samples, the image remains “pep-
per” noise—single noise emissions (random process) with an intensity comparable
to the useful signal. To remove such noise, often use spatial filters with different
shapes and sizes of apertures. These filters are also considered by the authors, but
the conducted experiments have shown that their use entails a loss (deletion) of
“weak” signal. It will if the time dispersion range of weak signal corresponds to 1–2
elements (pixels). The use of different morphological transformations or smooth-
ing filters (such as averaging, Gaussian filter) distorts tracks of propagation signal
modes.

This reason has been considered an alternative method of digital image
processing—The Progressive Probabilistic Hough Transform.

The Progressive Probabilistic HoughTransform [10] allows to find any set straight
lines and curves on the image. The classical Hough transform is based on the repre-
sentation of a required object in the form of the parametrical equation:

x · cosΘ + y · sinΘ = R, (5)

where x , y are the point coordinates on the image, R is the normal distance to the
line from the origin and Θ is the angle between the normal and the x-axis.

The straight line may be interpreted as a parametric transformation between an
image space (x , y) and a parameter space or a Hough space (R, Θ). Any point
in the image space can be transformed to a sinusoidal curve in the Hough space
given by this equation. Conversely, a point (R, Θ) in the Hough space uniquely
describes a straight line in the image plane. Thus, collinear points in the image will
be transformed to sinusoidal curves in the Hough space which intersect at a common
point. The parameters of a line in the image can be found by finding this intersection.

The result of the classical Hough transform is endless straight lines, which makes
it impossible to extract signal propagation mode on the ionogram. Thus, additional
analysis must be carried out consisting in comparison of found endless lines with the
original image and approval of their lengthswith existing points of the original image.
However, such analysis requires additional computational costs. In this connection,
an essential step to optimize the algorithm is that will not take all the ionogram image
points for the Hough transform, and only a part p, where 0% ≤ p ≤ 100% [10]. That
is, at first “control” points from the image are extracted, and the Hough transform is
carried out for it.

Figure7 shows the operation of the stages of the algorithm. Figure7a shows the
source ionogram, Fig. 7b is a stage of signal detection (use of the hazard function),
Fig. 7c is a stage of signal extraction (using the method of extraction of abnormal
samples), and Fig. 7d is the result of using the Hough transform to extract signals.
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Fig. 7 The effectiveness of the method for signal extracting on ionograms. The bottom figures
show that the signal is extracted quite efficiently

7 Conclusions

The hazard function can be used to detect signals within the framework of the model
of a mixture of probability distributions. The algorithm for detecting sounding sig-
nals using the hazard function is proposed to be implemented on the basis of training
sets. Using the same model, the method for extracting the tracks of signal propaga-
tion modes on the ionogram without losing (deleting) the “weak” signal has been
developed. The frequency range or the time scattering range of the weak signal cor-
responds to 1–2 spectral elements of the ionogram. The method can also be used for
other image signals with similar statistical properties, for example, in the reliability
theory, in the analysis of economic processes.
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PDE Modeling of Bladder Cancer
Treatment Using BCG Immunotherapy

T. Lazebnik, S. Yanetz, and S. Bunimovich-Mendrazitsky

Abstract Immunotherapy with Bacillus Calmette-Guérin (BCG)—an attenuated
strain ofMycobacterium bovis (M. bovis) used for anti-tuberculosis immunization—
is a clinically established procedure for the treatment of superficial bladder cancer.
Bunimovich-Mendrazitsky et al. [16] studied the role of BCG immunotherapy in
bladder cancer dynamics in a system of nonlinear ODEs. The purpose of this paper
is to develop a first mathematical model that uses PDEs to describe tumor-immune
interactions in the bladder as a result of BCG therapy considering the geometrical
configuration of the human bladder. A mathematical analysis of the BCG as a PDE
model identifies multiple equilibrium points, and their stability properties are iden-
tified so that treatment that has the potential to result in a tumor-free equilibrium
can be determined. Estimating parameters and validating the model using published
data are taken from in vitro, mouse, and human studies. The model makes clear that
the intensity of immunotherapy must be kept within limited bounds. We use numer-
ical analysis methods to find the solution of the PDE describing the tumor-immune
interaction; in particular, analysis of the solution’s stability for given parameters is
presented using Computer Vision methodologies.
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1 Introduction and Related Work

Bladder Cancer (BC) is the seventh most common cancer worldwide. It is esti-
mated that around 400,000 new cases are diagnosed annually and 150,000 people
die directly from BC every year [1]. Bacillus Calmette–Guérin (BCG) has been used
to treat non-invasive BC for more than 40years [2]. It is one of the most successful
biotherapies for cancer in use. Despite long clinical experience with BCG, the mech-
anism of its therapeutic effect is still under investigation. BCG immunotherapy has
proven to reduce both recurrence and progression of BC and, therefore, represents an
important tool in the treatment of BC. BCG treatment protocols differ mainly by the
amount of the injected dosage, the injection rate, and the schedule of the treatment
[3].

Mathematical modeling of biological processes in general and medical processes,
in particular, is an active field of study. The benefit gained from describing a system
using mathematical modeling is the ability to analyze and understand it better by
using only theoretical analysis, which decreases the need for clinical experiments
to further understand the system in question [4]. Several mathematical models that
describe the interactions of the immune systemwith tumor cells based onODEare [5–
11]. Study of the bladder cancer using mathematical modeling has been researched
in the past from different angles [12–15].

One of the models was invented by Bunimovich-Mendrazitsky et al. [16]. Their
model assumed continuous BCG instillation and allowed both exponential and logis-
tic growth for tumor cells inside the bladder. They studied the equilibria when the
stability and analysis of the system’s bifurcation was the main focus. It was found
that bistability excises so that a treatment may result in the tumor-free equilibrium
or high-tumor state, depending on the initial tumor size reflected by the cancer cell
count. The equations describe a balance between a high dosage which caused the
patient to suffer from side effects and too little dosage caused inefficient treatment.

The mathematical model proposed by Bunimovich-Mendrazitsky et al. [16] is as
follows:

dB(t)

dt
= −p1E(t)B(t) − p2B(t)Tu(t) − μ1B(t) + b (1)

dE(t)

dt
= −μ2E(t) + αTi (t) + p4E(t)B(t) − p5E(t)Ti (t) (2)

dTi (t)

dt
= p2B(t)Tu(t) − p3Ti (t)E(t) (3)

dTu(t)

dt
= λ(t)Tu(t) − p2B(t)Tu(t). (4)

The state variables B(t), E(t), Ti (t), and Tu(t) represent the concentration of BCG
in the bladder, effector cell population, tumor cell population that has been infected
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with BCG, and tumor cell population that is uninfected with BCG, respectively. The
parameter p1 is the rate of BCG killed by effector cells; p2 is the infection rate of
uninfected tumor cells by BCG; p3 is the rate of destruction of tumor cell infected
by BCG by effector cells; p4 is the immune response activation rate; p5 is the rate of
effector cells deactivation after binding with infected tumor cells. α is the growth rate
of effector cell population; λ is the tumor population growing rate; b is the strength
of BCG instillation.

Several attempts ofmodeling the problem have taken under consideration only the
population’s size of different cells in the system over time, based on the biological
dynamic of the system using Ordinary Differential Equations (ODEs) [6, 7]. One
approach to improve the model is taking under consideration an approximation of
the geometry configuration of the bladder in the mathematical modeling yielding in
Partial Differential Equations (PDEs). The PDEsModel’s parameters sensitivity and
solution’s stability for given parameters is the main focus of this paper. We combine
numerical calculations with computer vision algorithms to find the PDE’s model
solution’s stability for a non-Lyapunov PDE system.

2 Mathematical Modeling and Numerical Analysis

Themathematicalmodel differs from theBunimovich-Mendrazitsky et al. [16]model
by taking under consideration the geometrical configuration of the human bladder.
The new model can be described by the following system of PDEs:

∂B(r, t)

∂t
= −p1E(r, t)B(r, t) − p2B(t)Tu(r, t)

−μ1B(r, t) + b + D1
1

r2
∂

∂r
(r2

∂B(r, t)

∂r
)

(5)

∂E(r, t)

∂t
= −μ2E(r, t) + αTi (r, t) + p4E(r, t)B(r, t)

−p5E(r, t)Ti (r, t) + D2
1

r2
∂

∂r
(r2

∂E(r, t)

∂r
)

(6)

∂Ti (r, t)

∂t
= p2B(r, t)Tu(r, t) − p3Ti (r, t)E(r, t) + D3

1

r2
∂

∂r
(r2

∂Ti (r, t)

∂r
) (7)

∂Tu(r, t)

∂t
= λTu(r, t) − p2B(r, t)Tu(r, t) + D4

1

r2
∂

∂r
(r2

∂Tu(r, t)

∂r
). (8)

All the variables with the same notation and meaning as described in Eqs. (1)–(4).
D1, D2, D3, D4 are the diffusion rate in the system for B(r, t), E(r, t), Ti (r, t), and
Tu(r, t) respectively. The variable t stands for the time of the system and r stands for
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the euclidean distance in R3 from the point (0, 0, 0) in polar coordinates. The center
of the system’s geometry is defined to be (0, 0, 0).

In the scope of this paper, it will be assumed that the bladder has a form of a
perfect sphere ring satisfying the following condition:

r20 ≤ x2 + y2 + z2 ≤ R2. (9)

The variables x , y, z are theCartesian coordinates system, r0 and R are the radius
of the internal and external spheres of the geometrical configuration, respectively.
We ignore the three tunnels connected to the approximately ellipsoidal shape of the
bladder’s epithelium and approximate the ellipsoidal shape with a sphere shape.

The PDE systemdiffers from theODE system in twoways: 1) the PDEmodel adds
another dimension (r ); 2) the PDE model takes under consideration the geometry of
the problem, and the diffusion factor added to each population, respectively.

The inner sphere boundary condition is given to be:

∂B(r, t)

∂r
= b,

∂E(r, t)

∂r
= 0,

∂Ti (r, t)

∂r
= 0,

∂Tu(r, t)

∂r
= 0. (10)

The initial condition is assumed to be

B(r, t0) = 0, E(r, t0) = 0, Tu(r, t0) = cr

R − r0
, Ti (r, t0) = 0, (11)

where c > 0 is the tumor cells distribution factor.

2.1 Biological Border and Start Conditions

Theboundary condition of the external sphere is unknown. It is assumed that naturally
the cell population spread over time satisfies diffusion equations. Therefore, one can
find the boundary condition of the external sphere by reverse engineering the values
that best satisfy the known start conditions and internal boundary sphere conditions.
Algorithm 1 addresses this problem (Fig. 1).

2.2 Numerical Analysis

The set of equations can be classified as a set of nonlinear, second order, partial
differential equations fromR

2 toR4, whereR2 is the space of time (marked by t) and
radial distance from the center of the bladder’s geometry configuration (marked by
r ) andR4 is the populations’ counts of all four populations (marked by E, B, Ti , Tu).
In such case, it is possible to use Galerkin-Petrov’s method [17] taking the form
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Algorithm 1 Find external sphere boundary conditions
1: procedure ExternalBoundary(startConditions, internal BoundaryCondition) � The

external sphere boundary conditions
2: sample uniformly points from the inner and outer sphere and mark as P
3: i ← 1
4: while start condition not satisfied do
5: tstart ← t0 − i
6: run diffusion equations with system’s start conditions and internal boundary condition at

tstart and the points P
7: i ← i + 1
8: return P � The external boundary conditions

C(r, t, u,
∂u

∂r
)
∂u

∂t
= r−2 ∂

∂r
(r2 f (r, t, u,

∂u

∂r
)) + s(r, t, u,

∂u

∂r
). (12)

This method is a numerical process allowing to retrieve the populations’ size of all
four cell populations given the start condition, boundary condition, and Eqs. (5)–(8).

The calculation has been performed on a software by Matlab (version 2012b)
using the pdepe method [17] while replacing the build in matrix exponent function
with Lazebnik and Yantz’s function [18]. Few tests have been conducted to examine
the results and differences between the ODE model and the PDE model.

InFigure (1), the x-axis represents the time that has beenpassed from thebeginning
of the treatment in weeks and the y-axis is the size of the cell population. This graph

Time, in weeks

 noitalupop hcae f o  ssa
m f o r et nec ehT

fro
m

 th
e 

ce
nt

er
 o

f t
he

 g
eo

m
et

ry

1 2 3 4 5 6 70
0

5

10 B

1 2 3 4 5 6 70
0

100

200 E

x 105

1 2 3 4 5 6 70
0

0.5

1 T

Fig. 1 Cell population over time



124 T. Lazebnik et al.

Time, in days

ezis noiatl upop sll e
C

40 600
-2

0

2

B
x 108

20

4

6

40 600

0

10

Ex 107

20

20

40 600
-5

10

Tix 107

20

15

0

5

40 600

2

Tux 108

20

0

1

40 600

2
T = Ti + Tu

x 108

20

0

1

10 30 50 70
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averages a thousand iteration results in order to reduce the error which inherently
takes place in numerical calculation. One can notice a reduction in the cancer cell
population decrements over time reflecting the effect of the treatment. Furthermore,
the decrements of the BCG-infected cell in the first graph can be explained by the fact
that the BCG is injected into the system in the same place, but the immune system
increases its effort to fight the disease as described in the second graph (E), which in
turn leads to a decrease in the BCG-infected cell population.

The PDE model provides further understanding of the system as its predicts the
population size to be two orders of magnitude bigger than the original ODE model
prediction. A Pearson correlation between each individual population size between
the ODE and the PDE models provides poor results showing that there is no linear
correlation between the models and they provide different predictions for the system.
On the other hand, the difference between the models converges to a constant for
all the cell population after the fifth week, basically indicating a correlation which
converges to one between the ODE and PDE models in long enough treatments.

Figure (2) shows the deltas in the different populations between the two models
when the x-axis is the time passed from the beginning of the treatment in days and
the y-axis is the difference between the sizes of the cells populations (Fig. 2).
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3 PDE Model Parameters Sensitivity Analysis

The numerical calculation of the PDE allows to analyze the system’s sensitivity to
different parameters. The first parameter is the influence of the insert rate of BCG
into the bladder (b). From clinical experiments [16], it is known that b ∈ [105, 107].
The least squares [20] analysis method has been used to calculate the effect on
the system’s output. Note that [ti ]700 ∈ [0, 70] such that ∀i : �(ti+1 − ti ) = c. The
function family used to approximate the real function is

α, β, γ, δ ∈ R : f (α, β, γ, δ) = αeβb + γ eδb (13)

The algorithm to calculate function f which minimizes the sum of the square of
the errors between the function value and model’s value is

Algorithm 2 Find best fitting function to parameter’s behavior
1: procedure PdeLeastSquares(PDE model, boundaries, f , h)
2: � f is the approximation function and h is the sample step size
3: T ← empty list
4: i ← 0
5: b ← boundaries[0]
6: while b < boundaries[1] do
7: tstart ← t + 0 − i
8: T [i] ←solve(PDEmodel)
9: R2[i], T [i] ←LeastSquaresFit(t, T [i], normal distribution))
10: b ← b + h
11: i ← i + 1
12: R2, bestModel ← LeastSquaresFit([boundaries[0], boundaries[1], h], T, f)
13: return bestModel

Running the algorithm given a sampling step in the size of 107−105

104 = 990 provides
the following results:

R2 = 0.993, T (t, b) = (23.104e1.6985∗10
−9b − 357.4288 ∗ 103e−373.2229∗10−9b)∗

e
−( (t−(2.919e−565.818∗10−9b+4.152e−33.018∗10−1

)b

(26.537e−1.374∗10−9b+13.15e−74.532∗10−1
)b

)2

,

(14)

R2 = 0.976, Tu(t, b) = (27.107e926.29∗10
12b − 3.09 ∗ 106e−1.295∗10−6b)∗

et∗(269.118∗10−3e53.978∗10−9b−245.631∗10−3e−341.431∗10−9b),
(15)
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R2 = 0.983, Ti (t, b) = (1.783 ∗ 107e1.434∗10
−8b − 9.264 ∗ 106e−7.944∗10−7b)∗

e
−( (t−(15.502e−1.06∗10−6b+10.623e−6.538∗10−9

)b

(12.788e−1.183∗10−6b+7.616e−6.754∗10−8
)b

)2

.

(16)

A smaller b produces a smaller BCG-infected population (B) and also a smaller
effector cell population (E). The decrease in the tumor cell population (T ) over
time has a lower rate for smaller b. Not enough injected BCG can even produce the
unwanted result that tumor cell population decrements will not reset at the end of
the treatment. On the other hand, bigger b produces a higher peak around the end of
the first week of the treatment risking the penitent immune system.

To approximate the influence function of parameter b, the least square analysis
method can be used again with function (13). From clinical experiments [16], it is
known that this treatment is reasonable when Tu(t0) ∈ [2 ∗ 105, 3 ∗ 109]. Running
algorithm (2) provides the following results:

R2 = 0.995, Tu(r, t0) = (1.93 ∗ 1011e8.85∗10
−6Tu(r,t0) − 1.64 ∗ 1011e2.11∗10

−4Tu(r,to))∗

e
−(

(t−(2.73e3.02∗10−6Tu (r,t0)+3.45e−2.18∗10−4
)Tu (r,t0)

(10.72e8.22∗10−6Tu (r,t0)−8.77e1.88∗10−4
)Tu (r,t0)

)2

.

(17)

4 PDE Model Solution’s Stability Analysis

The PDE does not satisfy the conditions needed to use Lyapunov’s stability anal-
ysis method. On the other hand, the numerical calculation of the system does not
diverge to infinity. One can analyze the image of the dynamics of the system by
solving the PDE for given parameters. Such analysis will allow to find a function
g(Tu, BCG, t ime) → {0, 1} when the source space contained in R

3 and the image
space is exactly {0, 1}. This allows to set the start condition of the problem and to
find whether the treatment will succeed or not without the need to solve the PDE
from scratch each time.

Calculating an approximation to the function g first requires to sample the param-
eter’s space. There are six parameters affecting the system: t , BCG, Tu , C1, C2, C3

when C1,C2,C3 ∈ R
+ are thresholds of the three population sizes T, B, E , respec-

tively, depending if the treatment succeeded or not. Assume there are lower and
upper boundaries from biological experiments for the parameters yielding a com-
pact parameter’s set. This is because the set is complete as a sub-set of R6 and
bounded. Assuming the solution is continuous and can be restored from discrete
sampling, define h ∈, 1 	 h such that h is the size of the sampling step.

Using the output of the algorithm (3), one can extract the border pixels. In this
case, a border pixel is a pixel with neighbor pixels from in the case the treatment
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Algorithm 3 Sample the PDE’s image space of function g

procedure PdeImageSampling(PDEmodel, B,C, h) � B is an array of boundries, C is an
array of thresholds and h is the sample step size

output ← zeros(B[0][0], B[0][1], B[1][0], B[1][1], B[2][0], B[2][1])
while i ∈ [B[0][0], B[0][1] do

while j ∈ [B[1][0], B[1][1]] do
while k ∈ [B[2][0], B[2][1]] do

s ←solve(PDEmodel(i, j, k))
if s[0] < c1 and s[1] < c2 and s[2] < c3 then
output[i][ j][k] ← 1
EndIf

return output

succeeded and in the case is did not succeeded. Boundary following algorithm [19]
for the three-dimensional case performs such a task.

One can take advantage again of the least squares analysis method to find an
approximation to the function describing the border between the two cases. We
assume that the model is as follows:

F(x, y) = a1sin(x) + a2cos(x) + a3sin(y) + a4cos(y) + a5sin(x)cos(y) + a6sin(y)cos(x)

+a7sin(x)sin(y) + a8cos(x)cos(y).
(18)

This produces the following models for both the PDE and the ODE models,
respectively

Fpde(x, y) = 2.644sin(x) + 3.904cos(x) + 9.636sin(y) + 8.931cos(y) − 8.544sin(x)cos(y)

−2.607sin(y)cos(x) − 1.266sin(x)sin(y) − 9.393cos(x)cos(y)
(19)

UsingEq. (19), it is possible to predict the needed time (if it exists) so that the tumor
cell population size is small enough T (t, r) < C1 on one hand and the effector, BCG-
infected, cell populations sizes are not growing to large B(t, r) < C2, E(t, r) < C3

on the other hand, yielding a successful treatment, given only the tumor’s initial cell
population size and the BCG injection rate.

5 Conclusions and Future Work

It is safe to claim that mathematical modeling is a useful tool for studying the mech-
anism of tumor growth and response to therapy. The use of numerical simulation of
complex mathematical models that is not yet analytically solvable can help predict
the outcome of treatment and determine better therapeutic protocols. As population
analysis is a common way of describing such systems [8–10], it is important to add
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the geometrical configuration of the problem into the dynamics since the system
parameter values vary across different geometries.

Bifurcation analysis of the mathematical model considered in this paper was not
previously available because the numerical methods developed for bifurcation anal-
ysis require continuous vector fields. We found that PDE representation in bladder
cancer treatment with BCG provides more accurate predictions to observations done
in vitro in mice and humans than the ODE representation. As can be observed from
Figure (2), the delta between the ODE and PDEmodel in all cell population sizes are
in a factor of 100,where the PDEmodel’s predictions better fits previous observations
with respect to the ODE model’s predictions [16].

On the other hand, after five weeks of treatment, the delta between the models
converges to a constant for each population function (E, B, Ti , Tu) and basically
indicates a complete linear correlation between the ODE and PDEmodels (R2 → 1).

The difference between the models is initially associated with the introduction
of the geometry reflected in the diffusion coefficients introduced into the dynamics
of the system. In fact, from the very beginning, there is a disagreement between the
models: for PDE there is diffusion dynamics, and for ODE there is an instant reaction
to the introduction of BCG. After diffusion spreads throughout the space, it behaves
like an instantaneous response, and therefore, the ODE and PDE models ultimately
work identically, as can be seen from the calculation of the delta between the models.

This study develops a numerical method for the stability analysis of PDE’s solu-
tions of a mathematical model with pulsed BCG immunotherapy based on well-
known algorithms from the field of computer vision. We can make a few clinical
conclusions based on analysis of function (19): (1) BCG injected with a rate smaller
than sixty thousand cells almost does not have an effect. (2) In the case of bladder
cancer, when there are 10% or less cancer cells from the overall population and BCG
is injected at a rate of eighty thousand cells, then the cancer can be cured in ninety
percent of the cases for the treatment that is given between eight and ten weeks. (3)
There is a strong linear correlation between the amount of BCG injected and the time
of the treatment in the successful cases when the cancer cell population is around
five percent of the overall cell population at the beginning of the treatment.
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Marchuk’s Models of Infection Diseases:
New Developments

Irina Volinsky, Alexander Domoshnitsky, Marina Bershadsky,
and Roman Shklyar

Abstract We consider mathematical models of infectious diseases built by G. I.
Marchuk in his well-known book on immunology. These models are in the form
of systems of ordinary delay differential equations. We add a distributed control in
one of the equations describing the dynamics of the antibody concentration rate.
Distributed control looks here naturally since the change of this concentration rather
depends on the corresponding average value of the difference of the current and
normal antibody concentrations on the time interval than on their difference at the
point t only. Choosing this control in a corresponding form, we propose some ideas
of the stabilization in the cases, where other methods do not work. The main idea
is to reduce the stability analysis of a given integro-differential system of the order
n, to one of the auxiliary systems of the order n + m, where m is a natural number,
which is “easy” for this analysis in a corresponding sense. Results for these auxiliary
systems allow us to make conclusions for the given integro-differential system of the
order n. We concentrate our attempts in the analysis of the distributed control in an
integral form. An idea of reducing integro-differential systems to systems of ordinary
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presentation of solution with the help of the Cauchy matrix. Various properties of
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1 Introduction

Mathematical models in the form of systems of nonlinear ordinary differential equa-
tions are used in many fields of science and technology to describe various phenom-
ena. Inmedicine, the purpose ofmathematicalmodeling is the analysis and prediction
of the development of diseases and their possible treatment. A comprehensive work
on mathematical models in the field of immunology was summarized by Marchuk
in his book [18]. The models constructed there reflect the most significant patterns
of the immune system acting during these diseases. This model was studied in many
works. Note, for example, the recent papers [19, 20] and the bibliography therein.
The adding control was proposed, for example, in [6, 7, 9–11, 16, 17, 22, 23]. In
the works [8, 21], the basic mathematical model that takes into account the discrete
control of the immune response is proposed. See also the recent papers [7, 10, 17],
where distributed control was considered. It can be noted that the use of information
about the behavior of a disease and the immune system for a long time (defined by
distributed control, for example, in the form of an integral term) looks very natural
in choosing the strategy of a possible treatment. Optimal control in the basic model
of the infectious disease was considered in the work [8], where the control function
characterizing realization of an immunotherapy which includes in administration of
immunoglobulin or donor antibodies is proposed. In the work [2], the model of influ-
ence of an immunotherapy on dynamics of an immune response which represents
generalization of basic model was considered. On the basis of the proposed model,
the problem of determination of coefficients on the basis of laboratory dates was
considered and a suitable management was proposed in [5, 8]. Such task was called
control in uncertain conditions [22]. A control algorithm in uncertain conditions was
proposed in the work ([8], see pp. 71–73).

In the recent papers [7, 10, 17], we present new approach for the study of the
model of infectious diseases. In this paper, we summarize their results and formulate
mathematical problems which look very natural from the medical point of view.

Our contribution in the modeling is a distributed feedback control which is added
to the equation describing the concentration of antibodies. This step transforms these
systems into functional differential ones. As a result, we have to study the properties
of solutions of these systems such as asymptotic behavior in the neighborhood of
stationary points and stability of the stationary points. the importance of stationary
points should be stressed. These points describe the conditions of the healthy body
or the chronic disease. The aim of the treatment is to lead the process to one of
the stationary points. Further, we try to obtain estimates of solutions of linear and
nonlinear systems of functional differential equations. One of the ways to these
estimates is the construction of the Cauchy matrix. First steps in this direction were
proposed in the recent paper [10].
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2 Description of Model

In this paper, we deal with the system of functional differential equations

x ′(t) + (Ax)(t) = (�T x)(t), t ∈ [0,∞), x = {x1, , xn} (2.1)

where the operators T and A are linear continuous. T, A : Cn
[0,∞) → Ln

∞[0,∞)

(Cn
[0,∞), L

n
∞[0,∞), are the spaces of continuous, and essentially bounded vector func-

tions x : [0,∞) → Rn respectively), F : Ln
∞[0,∞) → Ln

∞[0,∞) can be a linear or non-
linear bounded operator. We could analyze various boundary value problems for
Eq. (2.1). One of them is the initial value problem. One of the main questions is the
stability of this system [3]. We consider the stationary points for corresponding oper-
ators in the spaces of continuous functions Cn

[0,∞) or essentially bounded functions
Ln

∞[0,∞). We use our theoretical results in application to Marchuk’s model of infec-
tious diseases. Thismodel reflects themost significant patterns of the immune system
functioning during infectious diseases and focuses on the interactions between anti-
gens and antibodies at different levels. We try to investigate the stability of stationary
points of the immune system and its response to the treatment.We propose the control
in the distributed form and obtain stabilization in the neighborhood of the stationary
point in the model of infectious diseases. From the applications’ point of view, the
goal of the control in the system can be interpreted as a possibility to provide a corre-
sponding immune response. It is noted in [22] that the immune response mechanisms
provide a key to understanding disease processes and methods of effective medical
treatment [18]. We try to combine our theoretical results with possible applications.
Let us start with a description of one of these applications. Consider, for example,
the Marchuk model of infectious diseases

⎧
⎪⎪⎨

⎪⎪⎩

dV
dt = βV (t) − γ F (t) V (t)

dC
dt = ζ (m) αF (t) V (t) − μc (C (t) − C∗)
dF
dt = ρC (t) − ηγ F (t) V (t) − μ f F (t)

dm
dt = σV (t) − μmm (t)

(2.2)

where V (t)—the antigen concentration rate, C(t)—the plasma cell concentration
rate, F(t)—the antibody concentration rate, m(t)—the relative features of the body.
It is clear that system (2.2) can be presented in the form of general system (2.1). Let
us describe the coefficients: β—coefficient describing the antigen activity, γ—the
antigen neutralizing factor, μ f—coefficient inversely proportional to the decay time
of the antibodies, μm—coefficient inversely proportional to the organ recovery time,
μc—coefficient of reduction of plasma cells due to aging (inversely proportional to
the lifetime), σ—constant related with a particular disease, ρ—rate of production of
antibodies by one plasma cell. DenoteC∗ and F∗—the plasma rate concentration and
antibody concentration of the healthy body, respectively. It is assumed that during a
certain periodof time τ , the plasma is restored as a result of the interactionbetween the
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antigen and the antibody cells. The product ζ (m) αF (t) V (t) includes the following
coefficients: α is the stimulation factor of the immune system. The function

ζ (m) =
{

1, 0 ≤ m < m∗
1−m
1−m∗ , m∗ ≤ m ≤ 1

,

is a continuous function, characterizing the health of the organ, which depends on the
relative characteristics m of the body, where m∗ is the maximum proportion of cells
destroyed by antigens in the case that the normal functioning of the immune system is
still possible. This function is non-negative and does not increase. The functionm(t)
can be described as 1 − 1−M(t)

1−M∗(t) , where M(t) is the characteristic of a healthy organ
(mass or area) and M∗(t) is the corresponding characteristic of a healthy part of the
affected organ. Let us discuss nowevery equation in themodel (2.2) in amore detailed
form. The first equation dV

dt = βV (t) − γ F (t) V (t) presents the block of the virus
dynamics. It describes the changes in the antigen concentration rate and includes
the amount of the antigen in the blood. The antigen concentration decreases as a
result of the interaction with the antibodies. The immune process characterizes the
antibodies, whose concentration changes with time (destruction rate), is described by
the equation dF

dt = ρC (t) − ηγ F (t) V (t) − μ f F (t). The amount of the antibody
cells also decreases as a result of the natural destruction.However, the plasma restores
the antibodies, and therefore, the plasma state plays an important role in the immune
process. Thus, the change in concentration rate of the plasma cell is included in
several differential equations describing this system. Taking into account the healthy
body level of plasma cells and their natural aging, the termμc(C(t) − C∗) is included
in the second equation of the system (2.2). The second and third equations present the
humoral immune response dynamics. Concerning the last equation of system (2.2)
dm
dt = σV (t) − μmm (t). The following can be noted: (1) the value of m increases
with the antigen’s concentration rate V (t); (2) the maximum value of m is unity, in
the case of 100% organ damage or zero for a fully healthy organ. The coefficient μm

describes the rate of generation of the target organ. This model was considered in
the recent work of Skvortsova [23]. Adding the control in the model introduced in
Marchuk’s book [18] is proposed, for example, in the works by Rusakov and Chirkov
[21, 22], where the importance of this development is explained.

3 Stabilization Through a Support of the Immune System

Our first goal is the stabilization of the process in the neighborhood of a suitable
stationary solution.Wemake a corresponding linearization and then use the concepts
of the stability theory proposed by N. V. Azbelev and his followers in the well-known
books [1, 3, 4] for linear functional differential systems. The main idea is to choose
“close” in a corresponding sense auxiliary linear system, to solve it and to construct
its Cauchymatrix (see, for example, [7, 10, 15]). Then the scheme of the AzbelevW -
transform is used.We propose new ideas in choosing “close” systems. For a system of
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the order n, a corresponding “close” system can be of the order n + m. Our main idea
here is to reduce the analysis of a given system of the order n to one of the auxiliary
systems of the order n + m, which is “easy” in a corresponding sense. Results for
the auxiliary system allows us to make conclusions for the given system of the order
n. We essentially concentrate our attempts in the analysis of the distributed control
in an integral form. The integral terms reflect an orientation on average values in
the construction of the control. Another reason for the appearance of the integral
terms is in the use of the “history of the process” to choose a strategy of a possible
treatment. In our model, we demonstrate among other ideas that observation on the
process of diseases can be very important in treatment. It should be also noted that
the proposed control can be realized practically. To sum up all these consequences,
we can conclude that the control in the integral form is reasonable from the medical
point of view. Stability properties of integro-differential systems are studied.

Modifying model (2.2), we propose the control in the following form

u (t) = −b
∫ t

0
(F(s) − F∗ − ε)e−k(t−s)ds. (3.1)

Adding this control in the third equation of (2.2), we obtain the following system

⎧
⎪⎪⎨

⎪⎪⎩

dV
dt = βV (t) − γ F (t) V (t)

dC
dt = ζ (m) αF (t) V (t) − μc (C (t) − C∗)

dF
dt = ρC (t) − ηγ F (t) V (t) − μ f F (t) + u(t)

dm
dt = σV (t) − μmm (t)

, (3.2)

where u(t) is defined by (3.1). Let F∗ be the value of the antibody concentration
rate for a healthy body. While the case of F∗ >

β

γ
is considered by G. I. Marchuk

in the book [18]. We try to consider the “bad” case where F∗ <
β

γ
. It is clear that

system (2.2) could not be stable in this case in the neighborhood of the stationary
point (0,C∗, F∗, 0). Consider the following system of five equations

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dV
dt = βV (t) − γ F (t) V (t)

dC
dt = ζ (m) αF (t) V (t) − μc (C (t) − C∗)

dF
dt = ρC (t) − ηγ F (t) V (t) − μ f F (t) + u(t)

dm
dt = σV (t) − μmm (t)

du
dt = −b(F(t) − F∗ − ε) − ku(t)

(3.3)

The following assertion allows us to reduce analysis of system (3.2) to one of system
(3.3).

Lemma 3.1 The components of the solution-vector y(t)=col
(v (t) , s (t) , f (t) ,m (t)) of system (3.2) and four first components of the solution-
vector x(t) = col(v (t) , s (t) , f (t) ,m (t) , ũ (t)) of system (3.3) satisfying the ini-
tial condition u (0) = 0 coincide.
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Theorem 3.1 Let the inequality εγ > β − γ F∗, k > 0, b > 0 be fulfilled, then the
stationary solution (0,C∗, F∗ + ε, 0, 0) of system (3.3) is exponentially stable.

To prove Theorem 3.1, we reduce the analysis of system (3.2) to one of system
(3.3) by Lemma 3.1, linearize in the neighborhood of the stationary point (0,C, F +
ε, 0, 0) and then the negativity of roots to the characteristic polynomial of system
(3.3) is demonstrated (see, for example, [17]).

Thus, we can stabilize the process at the point (0,C∗, F∗ + ε, 0, 0). It means that
we have to support the immune system for a long time and to hold it on the level
F∗ + ε, where ε >

β−γ F∗
γ

.

4 Distributed Control and the Lyapunov Characteristic
Exponents

To use the control in order to make convergence to set stationary state faster is the
second goal. Note that the stationary points present the condition of the healthy
body or at least chronical process of disease which we try to reach. This problem is
directly related to the duration of a possible treatment. In many cases, this may have
an important influence on the choice of treatment method and on the decision on the
acceptability of such treatment in principle.

The goal of this part is to obtain faster tending to set stationary state.
Consider the system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dv
dt = βv (t) − γ F∗ f (t) v (t)

ds
dt = αVm

F∗
C∗ ζ (m) f (t) v (t) − μc (s (t) − 1)

d f
dt = ρC∗

F∗ s (t) − ηγ Vm f (t) v (t) − μ f f (t) − bũ (t)
dm
dt = σVmv (t) − μmm (t)
dũ
dt = f (t) − 1 − kũ (t)

, (4.1)

where ũ = ∫ t
0 ( f (s) − 1)e−k(t−s). Denoting in (4.1)

α1 = β, α2 = γ F∗, α3 = αVm
F∗
C∗ , α4 = μ f = ρC∗

F∗ , α5 = μc, α6 = σVm , α7 = μm , α8 = ηγ Vm ,

(4.2)
and linearizing system (4.1) in the neighborhood of stationary point v = m = ũ = 0,
s = f = 1, we can write system (4.1) in the form

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dx1
dt = (α1 − α2)x1
dx2
dt = α3x1 − α5x2

dx3
dt = −α8x1 + α4x2 − α4x3 − bx5

dx4
dt = α6x1 − α7x4
dx5
dt = x3 − kx5

, (4.3)
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and to linearize system (2.2) and write it in the form

⎧
⎪⎪⎨

⎪⎪⎩

dx1
dt = (α1 − α2)x1
dx2
dt = α3x1 − α5x2

dx3
dt = −α8x1 + α4x2 − α4x3

dx4
dt = α6x1 − α7x4

, (4.4)

Denote λi , i = 1, 4 the roots of the characteristic polynomial of systems (4.4),
and λ̃ = max1≤i≤4 λi , λ̃∗ = max1≤ j≤5 Re(λ∗

j ) of (4.3).

Theorem 4.1 If β < γ F∗, b > 0 and k > 0, then integro-differential system (4.3) is
exponentially stable and if in addition, the inequality k > α4 is fulfilled, then λ̃ ≥ λ̃∗.

To prove Theorem 4.1, after reducing analysis of system (3.2) to one of system
(3.3) by Lemma 3.1 and linearizing in the neighborhoods of the stationary points
(0,C−, F−, 0) and (0,C−, F−, 0, 0) of system (2.2) and (3.3), respectively, we
compare the roots of characteristic polynomials of system (4.3) and (4.4) (see, for
example, [7]).

In Figs. 1, 2, 3, and 4, the solution of model of pneumonia with the natural flow
of data without the control of disease are presented by curves of red color, disease
in the case of considered distributed control-by curves of green color.

Figure1 demonstrates the dynamics in antigen concentration during the course
of the disease. The insert detailing the process in the first two days was performed
on a different scale and demonstrates the fact that the management transfers the
disease from the “acute” form to the “subclinical” one (the antigen concentration
only decreases after injection). Figure2 demonstrates the dynamics in plasma cell
concentration during the disease process. It can be seen from the figure that control
leads to a faster increase in the concentration of plasma cells, which in this case
ensures a transition to the “subclinical” formof the disease. In addition, it is necessary
to note a fourfold increase in the maximum concentration of plasma cells in the case

Fig. 1 Dynamics of the immune response: antigen
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of control, compared with the option without control. Figure3 demonstrates the
dynamics in antibody concentration during the disease process. The graph shows
that the concentration of antibodies in the solution with control practically does not
change, because in this case, they are replaced by donor antibodies, which is what
the control actually consists of. The dynamics in the proportion of target organ cells
destroyed by antigen during the disease process is presented in Fig. 4. The values for
the variant with control are given with an increase of 104 times. Thus, control allows

Fig. 2 Dynamics of the immune response: plasma

Fig. 3 Dynamics of the immune response: antibodies

Fig. 4 Dynamics of the immune response: rate of the destroyed cells
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to reduce the maximum proportion of affected cells of the target organ by more than
2.5 × 104 times.

5 Cauchy Matrix

To estimate the size of the neighborhood of the stationary solutions which usually
describe the states of the healthy body is the third goal of our research. In practical
problems, it is necessary since we have to hold the process in a corresponding zone.
The process going beyond a certain admissible neighborhood of a stationary solution
may be dangerous for patients.

In constructing every model, the influences of various additional factors that have
seemed to be nonessential were neglected. The influence effect of choosing nonlin-
ear terms by their linearization in the neighborhood of stationary solution is also
neglected. Even in the frame of linearized model, only approximate values of coef-
ficients instead of exact ones are used. Changes of these coefficients with respect to
time are not usually taken into account. It looks important to estimate the influence
of all these factors.

In order to make this, we have to obtain estimates of the elements of the Cauchy
matrix of corresponding linearized (in a neighborhood of a stationary point) system.
Consider the system

x ′(t) = P(t)x(t) + G(t),

where P(t) is a (n × n)-matrix, G(t) is n-vector. Its general solution x(t) =
col{x1(t), . . . xn(t)} can be represented in the form (see, for example [1])

x(t) =
∫ t

0
C(t, s)G(s)ds + C(t, 0)x(0),

where n × n-matrix C(t, s) is called the Cauchy matrix. Its j th column ( j =
1, . . . , n) for every fixed s as a function of t , is a solution of the corresponding
homogeneous system

x ′(t) = P(t)x(t),

satisfying the initial conditions xi (s) = δi j , where

δi j =
{
1, i = j,
0, i 	= j,

i = 1, . . . , n,

This Cauchy matrix C(t, s) satisfies the following symmetric properties C(t, s) =
X (s)X−1(s), where X (t) is a fundamental matrix, C(t, 0) = C(t, s)C(s, 0), and in
the case of constant matrix P(t) = P, we have X (t − s) = C(t, s) is a fundamental
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matrix for every s ≥ 0. These definitions and properties allow us to construct and
estimateC(t, s). The construction of the Cauchymatrix of system (4.3) can be found,
for example, in [10].

6 Stabilization with the Use of Uncertain Coefficient
in the Control

Consider the following system of equations with uncertain coefficient in the control

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dV
dt = βV (t) − γ F (t) V (t)

dC
dt = ζ (m(t)) αF (t) V (t) − μc (C (t) − C∗)

dF
dt = ρC − ηγ F (t) V (t) − μ f F (t) − (b + 
b(t)) u (t)

dm
dt = σV (t) − μmm (t)

du
dt = F (t) − F∗ − ku (t)

, (6.1)

where u(t) =
t∫

0
(F (s) − F∗) e−k(t−s)ds

This system can be rewritten in the form

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x ′
1 = (a1 − a2) x1 + g1 (x1(t), x3(t))
x ′
2 = a3x1 − a5x2 + g2 (x1(t), x3(t))

x ′
3 = −a8 x1 + a4x2 − a4x3 − (b + 
b(t)) x5 + g3 (x1(t), x3(t))

x ′
4 = a6x1 − a7x4
x ′
5 = x3 − kx5

, (6.2)

where gi (x1(t), x3(t)) (t) , 1 ≤ i ≤ 3 results of “mistakes” we made in the process
of the linearization.

Consider the system

X ′ = AX + �B (t) X + F (t) , (6.3)

where

X (t) =

⎛

⎜
⎜
⎜
⎜
⎝

x1(t)
x2(t)
x3(t)
x4(t)
x5(t)

⎞

⎟
⎟
⎟
⎟
⎠

, �B (t) =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 − 
 b(t)
0 0 0 0 0
0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

.
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On the basis of the estimates of the elements of the Cauchy matrix, we obtain the
following assertions on the stability of system (6.2). Denoting Q j = ess

supt≥0

t∫

0

5∑

i=1

∣
∣(�B (t)C(t, s))i j

∣
∣ ds and 
b∗ = ess supt≥0 |
b(t)|, we obtain the

estimates:

Q1 ≤ 
b∗

⎡

⎣

∣
∣
∣
α24(α32−α35)−α25(α32−α34)

α15α24(α31−α32)

∣
∣
∣ 1

|λ1|+∣
∣
∣
α24(α31−α35)−α25(α31−α34)

α15α24(α31−α32)

∣
∣
∣ 1

|λ2| +
∣
∣
∣

α25
a5α15α24

∣
∣
∣

⎤

⎦ ,

Q2 ≤ 
b∗
[∣
∣
∣

α32−α34
α24(α31−α32)

∣
∣
∣ 1

|λ1| +
∣
∣
∣

α31−α34
α24(α31−α32)

∣
∣
∣ 1

|λ2| + 1
|a5α24|

]
,

Q3 ≤ 
b∗
[

1
|α31−α32|

1
|λ1| + 1

|α31−α32|
1

|λ2|
]
,

Q4 = 0,

Q5 ≤ 
b∗
[∣
∣
∣

α32
α31−α32

∣
∣
∣ 1

|λ1| +
∣
∣
∣

α31
α31−α32

∣
∣
∣ 1

|λ2|
]
.

(6.4)

Theorem 6.1 ([10]) Let k > 0, b > 0 and ai , 1 ≤ i ≤ 8, are real positive and differ-
ent, a1 < a2, (a4 − k)2 > 4b and the inequalitymax1≤ j≤5

{∣
∣Q j

∣
∣
}

< 1 be true. Then
system (6.2) is exponential stable.

Denoting Pj = ess supt≥0

t∫

0

5∑

i=1

∣
∣(�B (t)C(t, s))i j

∣
∣ ds, we obtain the estimates

P1 ≤ 
b∗

⎡

⎣

∣
∣
∣
β24β35−β25β34

β31β15β24

∣
∣
∣ 4

(a4+k)2
+

∣
∣
∣
β24(β31−β35)−β25(β31−β34)

β31β52β24β15

∣
∣
∣ 4|a24−k2|

+
∣
∣
∣

β25

β15β24

∣
∣
∣ 1

|a5| + 1
|β15|

1
|a1−a2|

⎤

⎦ ,

P2 ≤ 
b∗
[∣
∣
∣

β34

β24β31

∣
∣
∣ 4

(a4+k)2
+

∣
∣
∣

β31−β34

β31β24β52

∣
∣
∣ 4|a24−k2| + 1

|β24|
1

|a5|
]
,

P3 ≤ 
b∗
[

1
|β31|

4
(a4+k)2

+ 1
|β31β52|

4|a24−k2|
]
,

P4 = 0,

P5 ≤ 
b∗ 1
|β52|

4|a24−k2| .

(6.5)

Theorem 6.2 ([10]) Let k > 0, b > 0 and ai , 1 ≤ i ≤ 8, are real positive and differ-
ent, a1 < a2, (a4 − k)2 = 4b and the inequality max1≤ j≤5

{∣
∣Pj

∣
∣
}

< 1 be true. Then
system (6.2) is exponential stable.
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Denoting R j = ess supt≥0

t∫

0

5∑

i=1

∣
∣(�B (t)C(t, s))i j

∣
∣ ds we obtain estimates

R1 ≤ 
b∗

⎡

⎣

∣
∣
∣
γ24−γ25
γ15γ24

∣
∣
∣ 2

|a4+k| +
∣
∣
∣
γ24(2γ35−a4+k)+γ25(a4−2a5+3k)

γ32γ15γ24

∣
∣
∣ 1

|a4+k|

+
∣
∣
∣

γ25
γ15γ24

∣
∣
∣ 1

|a5| +
∣
∣
∣ 1
γ15

∣
∣
∣ 1

|a1−a2|

⎤

⎦ ,

R2 ≤ 
b∗
[

1
|γ24|

2
|a4+k| +

∣
∣
∣
a4−3k+2a5

γ24γ32

∣
∣
∣ 1

|a4+k| + 1
|γ24|

1
|a5|

]
,

R3 ≤ 
b∗ 1
|γ32|

2
|a4+k| ,

R4 = 0,

R5 ≤ 
b∗
[

2
|a4+k| +

∣
∣
∣
a4−k
γ32

∣
∣
∣ 1

|a4+k|
]
.

(6.6)

Theorem 6.3 ([10]) Let k > 0, b > 0 and ai , 1 ≤ i ≤ 8, are real positive and differ-
ent, a1 < a2, (a4 − k)2 < 4b and the inequality max1≤ j≤5

{∣
∣R j

∣
∣
}

< 1 be true. Then
system (6.2) is exponential stable.

Remark 6.1 Note that the approach presented here can be used in the model of
testosterone regulation (see, for example [11–14]).
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The Second Lyapunov Method
for Time-Delay Systems

G. V. Demidenko and I. I. Matveeva

Abstract Some classes of systems of delay differential equations are considered.
We give a review of methods for the study of the stability of solutions in the case
of constant and periodic coefficients in linear terms. Special attention is paid to the
development of the second Lyapunov method. A number of authors’ results for lin-
ear and nonlinear delay differential equations obtained by using various Lyapunov–
Krasovskii functionals are presented. The application of discrete analogs of the con-
structed functionals to the study of the stability of solutions to delay difference
equations is discussed.

Keywords Time-delay systems · Periodic coefficients · Exponential stability ·
Lyapunov-Krasovskii functionals · Estimates for solutions

1 Introduction

The theory of stability of solutions to delay equations started to develop in the middle
of the previous century. The foundations of the theory were laid in the works of
Andronov and Mayer [3], Bellman [8], Zverkin [122], Krasovskii [70], Myshkis
[90], Pontryagin [95], Razumikhin [96], Chebotarev and Meyman [13], El’sgol’ts
[40], and others. The great interest of mathematicians to delay equations in those
years was associated with the necessity to solve important applied problems in which
time-delay effect played a significant role. Delay equations appear in a large amount
of automatic regulation and control theory problems, in problems of automation and
mechanics, radiophysics, when modeling immunology processes, when studying
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gene networks, economics, etc. (e.g. [6, 10, 11, 15, 20, 43, 49–51, 72, 74, 76, 86,
89, 92, 93, 101, 110, 112, 114, 116, 118, 121]).

Nowadays, there are a huge number of works devoted to various problems for
delay equations, in particular, stability problems. A number of monographs are ded-
icated to this subject (e.g. Myshkis [90] (1951), [91] (1972), El’sgol’ts [40] (1955),
[41] (1964), Krasovskii [71] (1959), Pinney [94] (1958), Bellman and Cooke [9]
(1963), Rubanik [102] (1969), Halanay and Wexler [57] (1971), El’sgol’ts and
Norkin [42] (1971), Mitropol’skii and Martynuk [87] (1979), Kolmanovskii and
Nosov [65] (1981), Shimanov [104] (1983), Razumikhin [97] (1977), Hale [55]
(1984), Korenevskii [68] (1989), [69] (2008), Azbelev, Maksimov and Rakhmatul-
lina [4] (1991), Györi and Ladas [52] (1991), Dolgii [39] (1996), Kolmanovskii and
Myshkis [66] (1999), Azbelev and Simonov [5] (2001), Vlasov andMedvedev [115]
(2008), Agarwal, Berezansky, Braverman and Domoshnitsky [1] (2012), Kharitonov
[60] (2013), Gil’ [46] (2014), Michiels and Niculescu [85] (2014), Romanovskii,
Belgart, Dobrovolskii, Rogozin and Trotsenko [100] (2015) and others). However,
despite the rapid development of the stability theory, there are many unsolved ques-
tions. For example, how to describe the maximal attraction domain for nonlinear
equations, how to specify the maximal stabilization rate of solutions at infinity,
what algorithm should be used in numerical studies of stability of solutions with the
guaranteed accuracy, etc.? These questions are especially actual for nonautonomous
equations.

In this work, we consider some classes of time-delay systems of the form

d

dt
y(t) = F

(
t, y(t), y(t − τ),

d

dt
y(t − τ)

)
, t > 0. (1)

Here we give a brief overview of our results on the asymptotic stability of the zero
solution to these classes obtained in recent years. We also present some of our results
for delay differential equations.

Bynow, themost investigated problems are the problems on the stability of station-
ary solutions to autonomous delay equations, herewith spectral methods are widely
used. They are based on the spectral criteria of the asymptotic stability. According to
such criterion, the asymptotic stability of the zero solution to the linear time-delay
system

d

dt
y(t) = Ay(t) + By(t − τ), t > 0, (2)

is equivalent to the location of the roots of the quasipolynomial

det (A + e−λτ B − λI ) = 0 (3)

in the left half-plane C− = {λ ∈ C : Re λ < 0} (for example, see [41, 55]). In this
case, the asymptotic stability of solutions implies the exponential stability. For linear
time-delay systems of the form
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d

dt
(y(t) + Dy(t − τ)) = Ay(t) + By(t − τ), t > 0, (4)

the necessary condition for the asymptotic stability of the zero solution is the require-
ment that the roots of the quasipolynomial

det (A + e−λτ B − λI − λe−λτ D) = 0 (5)

belong to the left half-planeC−. A sufficient condition for the exponential stability of
the zero solution to (4) is the requirement that the roots of (5) belong to the left half-
planeC−,γ = {λ ∈ C : Re λ ≤ γ < 0} (for instance, see [41, 55]). If D �= 0 systems
of the form (4) are called systems of neutral type. Such equations were introduced
in the book [40].

According to the theorems on stability in the first approximation, a sufficient con-
dition for the asymptotic stability of the zero solution for a wide class of nonlinear
systems of the form (1) is also the requirement that the roots of the corresponding
quasipolynomials belong to the left half-plane (for example, see [9, 41, 55]). How-
ever, investigating the stability of the zero solution to systems of the form (1), the
verification of this condition can be a rather complicated task. On the one hand, the
quasipolynomials can have a countable number of roots, on the other hand, the prob-
lem of finding roots of the quasipolynomials is, generally speaking, ill-conditioned.
This can be a serious obstacle in studying the stability of solutions by using computer
software. Therefore, as in the case of systems of ordinary differential equations, when
studying the asymptotic stability of solutions to time-delay systems, various criteria
on the location of quasipolynomial roots in the left half-plane become important. For
this purpose, researchers often use the method of D-decompositions (for instance,
see [113]), amplitude-phase method (for example, see [41]), Chebotarev–Meyman
method [13], and also methods based on analogs of Lyapunov’s theorems [70, 96].

2 Lyapunov–Krasovskii Functionals

One of the most common is the method based on the use of Lyapunov–Krasovskii
functionals [71], which is a development of the secondLyapunovmethod. The advan-
tage of this method is the simplicity of formulated statements and the reduction of
studying asymptotic stability to solving well-conditioned problems. Below we for-
mulate the well-known result obtained by this method for the linear system (2).

Theorem 1 (N. N. Krasovskii) Suppose that there exist matrices H = H∗ > 0 and
K = K ∗ > 0 such that the matrix

(
H A + A∗ H + K H B

B∗ H −K

)

is negative definite. Then the zero solution to (2) is asymptotically stable.
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In the proof of this assertion, the following Lyapunov–Krasovskii functional was
used

〈H y(t), y(t)〉 +
t∫

t−τ

〈K y(s), y(s)〉ds. (6)

The functional (6) is an analog of the Lyapunov function 〈H y, y〉 for the system
of ordinary differential equations

dy

dt
= Ay + F(y), t > 0, (7)

which is constructed by using the solution to the Lyapunov equation

H A + A∗H = −C, C = C∗ > 0. (8)

It iswell known that this equation plays a significant role in the studyof the asymptotic
stability of solutions to systemsof the forms (7). In particular, using the solution to (8),
we can obtain an estimate for solutions to the linear system

dy

dt
= Ay, t > 0,

which characterizes the decay rate at infinity. For example, in the case of C = I the
following Krein’s estimate is valid [14]:

‖y(t)‖ ≤ √2‖A‖‖H‖ exp
(

− t

2‖H‖
)

‖y(0)‖, t > 0. (9)

Using the solution to the Lyapunov equation (8), we can also estimate the attraction
domain of the zero solution to the nonlinear system (7) and establish estimates of
the exponential decay of its solutions without finding the spectrum of the matrix A.

We emphasize that, in contrast to the problem of finding the matrix spectrum, the
construction of the solution to (8) is a well-conditioned problem (see [47]). That is
why the approach based on the use of the Lyapunov equation became a basis for the
development of numerical methods for studying asymptotic stability of solutions to
ordinary differential equations with guaranteed accuracy [48].

It should be noted that the Lyapunov–Krasovskii functional (6) can also be used
in the study of the asymptotic stability of solutions to nonlinear time-delay systems.
However, in contrast to the Lyapunov function used for proving Krein’s estimate (9),
the use of the functional (6) does not allow us to obtain analogs of Krein’s estimate
for time-delay systems. A review of some results obtained by means of Lyapunov–
Krasovskii functionals until 2003 is given in [98].

The problem of obtaining analogs of Krein’s estimate for solutions to the linear
time-delay systems (2) by using someLyapunov–Krasovskii type functionalswithout
finding the roots of the quasipolynomials has been solved relatively recently [21,
58, 62, 88]. (It is interesting to note that all these articles were published almost
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simultaneously!). The methods proposed in these works are based on the use of
various Lyapunov–Krasovskii functionals.

In particular, in [21] the following Lyapunov–Krasovskii functional was proposed

V (t, y) = 〈H y(t), y(t)〉 +
t∫

t−τ

〈K (t − s)y(s), y(s)〉ds, (10)

where H = H∗ > 0 and K (s) = K ∗(s) > 0. Note that, in contrast to the func-
tional (6), here the matrix K is variable. Below we present the result of [21] for
the linear system (2).

Consider the initial value problem for (2)

⎧⎪⎨
⎪⎩

d

dt
y(t) = Ay(t) + By(t − τ), t > 0,

y(t) = ϕ(t), t ∈ [−τ, 0], y(+0) = ϕ(0),

(11)

where ϕ(t) ∈ C([−τ, 0]) is a given vector-function. The following theorem is valid.

Theorem 2 ([21]) Suppose that there exist matrices H = H∗ > 0 and K (s) ∈
C1([0, τ ]) such that

K (s) = K ∗(s) > 0,
d

ds
K (s) < 0, s ∈ [0, τ ],

and the matrix

C = −
(

H A + A∗ H + K (0) H B
B∗ H −K (τ )

)

is positive definite. Then, for the solution y(t) to the initial value problem (11), the
following estimate holds

‖y(t)‖ ≤
√

‖H−1‖V (0, ϕ) e−εt/2, (12)

where

ε = min

{
cmin

‖H‖ , k

}
,

cmin are the minimal eigenvalues of the matrix C, k > 0 is the maximal number such
that

d

ds
K (s) + kK (s) ≤ 0, s ∈ [0, τ ].

The estimate (12) is an analog of Krein’s estimate (9) for solutions to ordinary
differential equations. We emphasize that this estimate was received without using
the information about the location of the roots of (3).



150 G. V. Demidenko and I. I. Matveeva

In [21], it is also shown that the use of the Lyapunov–Krasovskii functional (10)
allows us to obtain analogs of Krein’s estimate for solutions to nonlinear time-delay
systems and to determine attraction regions of the zero solution, thereby establishing
the exponential stability of the zero solution. In this context, we present a brief extract
from [84]: “To the best of the authors’ knowledge, there is no similar constructive
method for delay systems of the form ẋ(t) = Ax(t) + Bx(t − h) + f (x(t), x(t −
h)). This is to provide estimates of the attraction region by using explicitly a quadratic
Lyapunov–Krasovskii functional associated to the exponentially stable linear system
ẋ(t) = Ax(t) + Bx(t − h).” We should add to this that our work [21] was published
in 2005, in Russian, while [84] was published in 2007, in English …In addition to
the mentioned results for autonomous time-delay systems, in [21, 22], similar results
were established for the first time for time-delay systems with periodic coefficients.

For linear time-delay systems of neutral type (4), in [16], it was proposed to use
the following Lyapunov–Krasovskii functional

V (t, y) = 〈H(y(t) + Dy(t − τ)), (y(t) + Dy(t − τ))〉 +
t∫

t−τ

〈K (t − s)y(s), y(s)〉ds, (13)

where H = H∗ > 0 and K (s) = K ∗(s) > 0. Using this functional, in [16] estimates
characterizing the exponential decay of solutions to (4) at infinity were obtained.
Below we present one of the results from [16].

Consider the initial value problem

⎧⎪⎨
⎪⎩

d

dt
(y(t) + Dy(t − τ)) = Ay(t) + By(t − τ), t > 0,

y(t) = ϕ(t), t ∈ [−τ, 0], y(+0) = ϕ(0),

(14)

where ϕ(t) ∈ C1([−τ, 0]) is a given vector-function. The following theorem is valid.

Theorem 3 ([16]) Let ‖D‖ < 1. Suppose that there exist matrices

H = H∗ > 0, K (s) ∈ C1([0, τ ])

such that

K (s) = K ∗(s) > 0,
d

ds
K (s) < 0, s ∈ [0, τ ],

and

C = −
(

H A + A∗ H + K (0) H B + A∗ H D
B∗ H + D∗ H A D∗ H B + B∗ H D − K (τ )

)
> 0.

Then the zero solution to (4) is exponentially stable.

In [16], there were also established estimates for solutions to (14), similar to
Krein’s estimate (9). From these estimates, it follows that all solutions decrease
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with an exponential rate and the rate significantly depends on the matrix D. We
emphasize that the estimates are obtained without any information about the roots
of the quasipolynomial (5). In [24], the results from [16] were generalized to the
case when the spectrum of the matrix D belongs to the unit disk {λ ∈ C : |λ| < 1}.
In [23, 26, 28, 32] similar results were obtained for nonlinear time-delay systems of
the form

d

dt
(y(t) + Dy(t − τ)) = Ay(t) + By(t − τ) + F(t, y(t), y(t − τ)), t > 0.

Somewhat different types of estimates for solutions to time-delay systems of neutral
type (4) were obtained in [7, 59, 62].

In contrast to autonomous delay equations, the problem of stability of solutions to
nonautonomous delay equations is essentially less studied. Basic studies for nonau-
tonomous equations were carried out for linear delay equations with periodic coef-
ficients

d

dt
y(t) = A(t)y(t) + B(t)y(t − τ), t > 0, (15)

A(t + T ) ≡ A(t), B(t + T ) ≡ B(t).

The foundations of stability theory for equations of the form (15) were laid in the
works of Zverkin [123], Stokes [111], Halanay [56], Hahn [53], Hale [55], Shimanov
[104]. The main approach in these studies is the development of Floquet theory and
the use of monodromy operator. This approach was also used to study the stability
of solutions to linear time-delay systems of neutral type with periodic coefficients of
the form

d

dt
(y(t) + D(t)y(t − τ)) = A(t)y(t) + B(t)y(t − τ), t > 0, (16)

D(t + T ) ≡ D(t), A(t + T ) ≡ A(t), B(t + T ) ≡ B(t).

Further development of the Floquet theory for delay equations is described, for
example, in the papers [39, 44, 45, 67, 73], and others.

In addition to this approach to the stability problem of solutions to systems of
the form (15), (16), the following methods have been developed in the literature: the
method of generating functions (e.g. [75, 103]), the method of monotone operators
(e.g. [4, 12]), the method of Lyapunov–Krasovskii functionals (e.g. [38, 63–65]).
There are also some generalizations to the case of delay equations with almost peri-
odic coefficients (for example, see [2, 99]).

It should be noted that it is often difficult to verify conditions for the asymptotic
stability of solutions to nonautonomous delay equations. Difficulties also arise when
describing attraction domains in the case of nonlinear delay equations and when
obtaining asymptotic estimates of solutions as t → ∞.
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For the first time, analogs of Krein’s estimate for solutions to time-delay systems
of the form

d

dt
y(t) = A(t)y(t) + B(t)y(t − τ) + F(t, y(t), y(t − τ)), t > 0, (17)

A(t + T ) ≡ A(t), B(t + T ) ≡ B(t).

were obtained in [21, 22]. A Lyapunov–Krasovskii functional was proposed in order
to obtain these estimates. To describe this functional, we first give the criterion for the
asymptotic stability of solutions to linear systems of ordinary differential equations
with periodic coefficients of the form

d

dt
y(t) = A(t)y(t), A(t + T ) ≡ A(t), t ≥ 0, (18)

established in [17].
Consider the boundary value problem for the Lyapunov differential equation

⎧⎪⎨
⎪⎩

d

dt
H + H A(t) + A∗(t)H = −Q(t), t ∈ [0, T ],

H(0) = H(T ),

(19)

where Q(t) = Q∗(t) > 0 is amatrixwith continuous entries on [0, T ]. The following
criterion for the asymptotic stability of the zero solution to (18) is valid:

Theorem 4 ([17])
I. If the zero solution to (18) is asymptotically stable, then there exists a unique

solution H(t) = H∗(t) > 0 to the boundary value problem (19).
II. If the boundary value problem (19) has a solution H(t) = H∗(t) such that

H(0) > 0, then the zero solution to (18) is asymptotically stable.

Using this criterion, an estimate for solutions to the linear system (18)was obtained
in [17]. Let Q(t) ≡ I , then, for the solutions to (18), we have

‖y(t)‖ ≤ √ max
ξ∈[0,T ] ‖H(ξ)‖‖H(0)‖ exp

(
−

t∫
0

1

2‖H(ξ)‖dξ

)
‖y(0)‖, t > 0.

(20)
Here the symbol H(t) denotes T -periodic continuation of the solution to (19) on the
whole semi-axis {t ≥ 0}. The estimate (20) is an analog of Krein’s estimate.

Note that, by the use of the solution H(t) to the boundary value problem (19),
in [18, 19] the asymptotic stability of stationary solutions of nonlinear systems of
ordinary differential equations was studied. In particular, an independent proof of
Bogolyubov’s theorem on the stability of an inverted pendulumwith a vibrating point
of suspension was obtained.
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The advantage of using the solution H(t) to (19) in comparison, for example,
with the calculation of multipliers, is the fact that the problem of constructing the
solution to (19) is well-conditioned.

On the base of thementioned criterion, the authors of [21] introduced the following
Lyapunov–Krasovskii functional

V (t, y) = 〈H(t)y(t), y(t)〉 +
t∫

t−τ

〈K (t − s)y(s), y(s)〉ds (21)

and proposed to use it for the study of the asymptotic stability of solutions to the
time-delay systems (17).

Belowwe give one of the results for the linear time-delay systems (17) (F(t, u, v)

≡ 0). Consider the initial value problem

⎧⎪⎨
⎪⎩

d

dt
y(t) = A(t)y(t) + B(t)y(t − τ), t > 0,

y(t) = ϕ(t), t ∈ [−τ, 0], y(+0) = ϕ(0),

(22)

where ϕ(t) ∈ C([−τ, 0]) is a given vector-function. The following theorem is valid.

Theorem 5 ([21]) Suppose that there exist matrices

H(t) = H∗(t) ∈ C1([0, T ]) and K (s) = K ∗(s) ∈ C1([0, τ ])

such that

H(0) = H(T ) > 0, K (s) > 0,
d

ds
K (s) < 0, s ∈ [0, τ ],

and the composite matrix

C(t) = −
(

d
dt H(t) + H(t)A(t) + A∗(t)H(t) + K (0) H(t)B(t)

B∗(t)H(t) −K (τ )

)

is positive definite for t ∈ [0, T ]. Then for the solution y(t) to the initial value prob-
lem (22) the following estimate holds

‖y(t)‖ ≤
√

h−1
min(t)V (0, ϕ) exp

(
−

t∫
0

ε(ξ)

2
dξ

)
, (23)

where

ε(t) = min

{
cmin(t)

‖H(t)‖ , k

}
,
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hmin(t) > 0 and cmin(t) > 0 are the minimal eigenvalues of T -periodic continuations
of the matrices H(t) and C(t), respectively, k > 0 is the maximal number such that

d

ds
K (s) + kK (s) ≤ 0, s ∈ [0, τ ].

The inequality (23) is an analog of Krein’s estimate (9) for ordinary differential
equations, it implies the exponential stability of the zero solution to (17). Studies of
the asymptotic stability of the zero solution to the nonlinear time-delay system (17)
were carried out in [22, 30, 77].

The use of the Lyapunov–Krasovskii functionals (13) and (21) when obtaining
analogs of Krein’s estimate led us to the idea to introduce the functional

V (t, y) = 〈H(t)(y(t) + Dy(t − τ)), (y(t) + Dy(t − τ))〉

+
t∫

t−τ

〈K (t − s)y(s), y(s)〉ds (24)

in order to study the exponential stability of the zero solution to the systems of neutral
type with periodic coefficients in linear terms

d

dt
(y(t) + Dy(t − τ)) = A(t)y(t) + B(t)y(t − τ) + F(t, y(t), y(t − τ)). (25)

Below we formulate one of the results of [25].

Theorem 6 ([25]) Suppose that there exist matrices

H(t) = H∗(t) ∈ C1([0, T ]), K (s) = K ∗(s) ∈ C1([0, τ ])

H(0) = H(T ) > 0, K (s) > 0,
d

ds
K (s) < 0, s ∈ [0, τ ],

such that the matrix

C(t) =
(

C11(t) C12(t)
C∗
12(t) C22(t)

)
(26)

is positive definite for t ∈ [0, T ], where

C11(t) = − d

dt
H(t) − H(t)A(t) − A∗(t)H(t) − K (0),

C12(t) = − d

dt
H(t)D − H(t)B(t) − A∗(t)H(t)D,
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C22(t) = −D∗ d

dt
H(t)D − D∗ H(t)B(t) − B∗(t)H(t)D + K (τ ).

Then the zero solution to the linear time-delay system (25) (F(t, u, v) ≡ 0) is expo-
nentially stable.

Some estimates for solutions to (25), which are analogs to Krein’s inequality (9),
were also obtained in [25]. Following the reasoning scheme from [21, 22] and using
the functional (24), similar results on the stability of the zero solution to nonlinear
time-delay systems of the form (25) were also obtained (for instance, see [31, 35]).
Below we formulate some results of [35].

Weassume that the conditions ofTheorem6are fulfilled, F(t, u, v) is a real-valued
continuous vector-function satisfying locally Lipschitz condition with respect to u
and the estimate

‖F(t, u, v)‖ ≤ q1‖u‖1+ω1 + q2‖v‖1+ω2 , qi , ωi ≥ 0, i = 1, 2.

Here and furtherwe consider T -periodic continuation of thematrix H(t)on thewhole
semi-axis {t ≥ 0}, keeping the same notation. Introduce the following matrices

S11(t) = − d

dt
H(t) − H(t)A(t) − A∗(t)H(t) − K (0),

S12(t) = H(t)A(t)D − H(t)B(t) + K (0)D, S22 = K (τ ) − D∗K (0)D,

P(t) = S11(t) − S12(t)S−1
22 S∗

12(t).

It should be noted that the matrix C(t) in (26) is positive definite if and only if
the matrices P(t) and S22 are positive definite. Denote by hmin(t), pmin(t), and smin

the minimal eigenvalues of H(t), P(t), and S22, respectively. Obviously, hmin(t) ≥
hmin > 0, pmin(t) ≥ pmin > 0, smin > 0. Introduce the following notations

smax = max
t∈[0,T ] ‖S−1

22 S∗
12(t)‖,

δ(s) = q1
(
1 + (ε1)

−1
)ω1 ‖D‖1+ω1sω1 + q2sω2 , ε1 > 0, s ≥ 0,

p = min
t∈[0,T ]

pmin(t)

‖H(t)‖ , h = min
t∈[0,T ]

1

‖H(t)‖ ,

ε2 = smin

2pmin

(
smax +

√
s2max + pmin

smin

)
,

κ > 0 is the maximal real such that

d

ds
K (s) + κK (s) ≤ 0, s ∈ [0, τ ],
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ρ > 0 is such that

δ(ρ) <
sminh

2ε2
,

Q = max
t∈[0,T ]

(‖H(t)‖‖H−1(t)‖1+ω1/2q1(1 + ε1)
ω1
)
.

Put
γ (t) = min

{(
pmin(t)

‖H(t)‖ − 2(smax + (4ε2)
−1)δ(ρ)

)
, κ

}
,

r−ω1/2 = Qω1

⎛
⎝

T∫
0

exp

⎛
⎝−ω1

2

η∫
0

γ (ξ)dξ

⎞
⎠ dη

⎞
⎠
⎛
⎝1 − exp

⎛
⎝−ω1

2

T∫
0

γ (ξ)dξ

⎞
⎠
⎞
⎠

−1

,

β(t) = γ (t)

2
, β+ = max

t∈[0,T ] β(t), β− = min
t∈[0,T ] β(t),

Φ1 = max
s∈[−τ,0] ‖ϕ(s)‖, Φ2 =

√
h−1
minV (0, ϕ)(

1 − (r−1V (0, ϕ)
)ω1/2

)1/ω1
.

By the definitions of ε2 > 0 and ρ > 0, it is easy to verify that γ (t) ≥ γmin > 0.
If the conditions of Theorem 6 hold, it is not difficult to show that the spectrum of

D belongs to the unit disk {λ ∈ C : |λ| < 1} and so ‖D j‖ → 0 as j → ∞. Let l be
the minimal positive integer such that ‖Dl‖ < 1. Consider the initial value problem
for (25)

⎧⎪⎨
⎪⎩

d

dt
(y(t) + Dy(t − τ)) = A(t)y(t) + B(t)y(t − τ) + F(t, y(t), y(t − τ)),

y(t) = ϕ(t), t ∈ [−τ, 0], y(+0) = ϕ(0),
(27)

where ϕ(t) ∈ C1([−τ, 0]) is a given vector-function. Below we establish estimates
for solutions to (27) in the cases

‖Dl‖ < e−lβ+τ , e−lβ+τ ≤ ‖Dl‖ ≤ e−lβ−τ , e−lβ−τ < ‖Dl‖ < 1.

Theorem 7 ([35]) Let the conditions of Theorem 6 hold and let

‖Dl‖ < e−lβ+τ .

Assume that the initial function ϕ(t) in (27) belongs to E1, where

E1 =
{
ϕ(s) ∈ C1[−τ, 0] : Φ1 < ρ, V (0, ϕ) < r,
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Φ2(1 − ‖Dl‖elβ+τ )−1
l−1∑
j=0

‖D j‖e jβ+τ + max{‖D‖, . . . , ‖Dl‖}Φ1 < ρ

}
.

Then a solution to (27) is defined on the whole semi-axis {t ≥ 0} and satisfies the
estimate

‖y(t)‖ ≤
(

Φ2
(
1 − ‖Dl‖elβ+τ

)−1
l−1∑
j=0

‖D j‖e jβ+τ

+max
{
‖D‖eβ+τ , . . . , ‖Dl‖elβ+τ

}
Φ1

)
exp

⎛
⎝−

t∫
0

β(ξ)dξ

⎞
⎠ , t > 0.

Theorem 8 ([35]) Let the conditions of Theorem 6 hold and let

e−lβ+τ ≤ ‖Dl‖ ≤ e−lβ−τ .

Assume that the initial function ϕ(t) in (27) belongs to E2, where

E2 =
{
ϕ(s) ∈ C1[−τ, 0] : Φ1 < ρ, V (0, ϕ) < r,

Φ2Bl

l−1∑
j=0

‖D j‖e jβ+τ + max{‖D‖, . . . , ‖Dl‖}Φ1 < ρ

}
,

Bl = max
t≥0

(
1 + t

lτ

)
exp

⎛
⎝−

t∫
0

β̂(ξ)dξ

⎞
⎠ ,

β̂(t) = min

{
β(t),− 1

lτ
ln ‖Dl‖

}
.

Then a solution to (27) is defined on the whole semi-axis {t ≥ 0} and satisfies the
estimate

‖y(t)‖ ≤
(

Φ2

(
1 + t

lτ

) l−1∑
j=0

‖D j‖e jβ+τ

+max
{
1, ‖D‖eβ+τ , . . . , ‖D(l−1)‖e(l−1)β+τ

}
Φ1

)
exp

⎛
⎝−

t∫
0

β̂(ξ)dξ

⎞
⎠ , t > 0.

Theorem 9 ([35]) Let the conditions of Theorem 6 hold and let
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e−lβ−τ < ‖Dl‖ < 1.

Assume that the initial function ϕ(t) in (27) belongs to E3, where

E3 =
{
ϕ(s) ∈ C1[−τ, 0] : Φ1 < ρ, V (0, ϕ) < r,

Φ2
(
1 − (‖Dl‖elβ−τ

)−1)−1
l−1∑
j=0

‖D j‖e jβ−τ + max{‖D‖, . . . , ‖Dl‖}Φ1 < ρ

}
.

Then a solution to (27) is defined on the whole semi-axis {t ≥ 0} and satisfies the
estimate

‖y(t)‖ ≤
(

Φ2
(
1 − (‖Dl‖elβ−τ

)−1)−1
l−1∑
j=0

‖D j‖e jβ−τ

+‖Dl‖−1‖D‖max
{
1, ‖D‖, . . . , ‖Dl−1‖}Φ1

)
exp

(
t

lτ
ln ‖Dl‖)

)
, t ≥ lτ.

Theorems 7–9 give us estimates for attraction domains of the zero solution to (25)
and estimates characterizing the decay rate of the solutions to (27) at infinity.

We now consider a more general class of time-delay systems of neutral type

d

dt
y(t) + D(t)

d

dt
y(t − τ) = A(t)y(t) + B(t)y(t − τ)

+ F

(
t, y(t), y(t − τ),

d

dt
y(t − τ)

)
, (28)

where all thematrices have T -periodic continuous entries, including thematrix D(t),

and nonlinear terms can contain
d

dt
y(t − τ). We suppose that F(t, u, v, w) is a real-

valued continuous vector-function satisfying locally Lipschitz condition with respect
to u and the estimate

‖F(t, u, v, w)‖ ≤ q1‖u‖1+ω1 + q2‖v‖1+ω2 + q3‖v‖1+ω3 , qi , ωi ≥ 0, i = 1, 2, 3.

Using the Lyapunov–Krasovksii functional

V (t, y) = 〈H(t)y(t), y(t)〉 +
t∫

t−τ

〈K (t − s)y(s), y(s)〉ds
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+
t∫

t−τ

〈
L(t − s)

d

ds
y(s),

d

ds
y(s)

〉
ds, (29)

conditions for the exponential stability of the zero solution to (28) were obtained and
estimates of exponential decay of solutions to (28) were established (for example,
see [78–80]). We now formulate one of the results.

Let the matrices H(t) ∈ C1[0, T ], K (s), and L(s) ∈ C1[0, τ ] be such that

H(t) = H∗(t), t ∈ [0, T ], H(0) = H(T ) > 0, (30)

K (s) = K ∗(s) ≥ 0,
d

ds
K (s) ≤ 0, s ∈ [0, τ ], (31)

L(s) = L∗(s) ≥ 0,
d

ds
L(s) ≤ 0, s ∈ [0, τ ]. (32)

Define the matrix

C(t) =
⎛
⎝C11(t) C12(t) C13(t)

C∗
12(t) C22(t) C23(t)

C∗
13(t) C∗

23(t) C33(t)

⎞
⎠

with the entries

C11(t) = − d

dt
H(t) − H(t)A(t) − A∗(t)H(t) − K (0) − A∗(t)L(0)A(t),

C12(t) = −H(t)B(t) − A∗(t)L(0)B(t),

C13(t) = H(t)D(t) + A∗(t)L(0)D(t),

C22(t) = K (τ ) − B∗(t)L(0)B(t),

C23(t) = B∗(t)L(0)D(t),

C33(t) = L(τ ) − D∗(t)L(0)D(t).

Theorem 10 ([78]) Assume that there exist matrices H(t), K (s), and L(s), satisfy-
ing the conditions (30)–(32), such that the inequality holds

〈
C(t)

(
u
v
w

)
,

(
u
v
w

)〉
≥ 〈P(t)u, u〉, u, v, w ∈ Cn, t ∈ [0, T ],

where P(t) > 0 is a positive definite Hermitian matrix with continuous entries. If

d

ds
K (s) + kK (s) ≤ 0,

d

ds
L(s) + l L(s) ≤ 0, s ∈ [0, τ ],
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for some k, l > 0 then the zero solution to the linear time-delay system (28)
(F(t, u, v, w) ≡ 0) is exponentially stable.

As we see, the choice of a suitable Lyapunov–Krasovskii functional makes it
possible to establish the exponential stability and obtain sharper estimates of the
decay rate of solutions at infinity for a wider class of systems. In [81], we introduced
the following class of Lyapunov–Krasovskii functionals

V (t, y) =
〈
H (t)

(
y(t)
y(t − τ)

)
,

(
y(t)
y(t − τ)

)〉

+
t∫

t−τ

〈
K (t, t − s)

⎛
⎝ y(s)

d

ds
y(s)

⎞
⎠ ,

⎛
⎝ y(s)

d

ds
y(s)

⎞
⎠
〉

ds. (33)

In particular, this class contains the functionals mentioned above; so, we have the
functionals (10), (21) for

H (t) =
(

H(t) 0
0 0

)
, K (t, s) =

(
K (s) 0
0 0

)
,

the functionals (13), (24) for

H (t) =
(

H(t) H(t)D
D∗ H(t) D∗ H(t)D

)
, K (t, s) =

(
K (s) 0
0 0

)
,

the functional (29) for

H (t) =
(

H(t) 0
0 0

)
, K (t, s) =

(
K (s) 0
0 L(s)

)
.

Using this class of functionals, more exact estimates for solutions to (28) were
obtained in [81, 83]. These estimates are analogs of Krein’s estimate and characterize
the decay rate at infinity.

It is also possible to define functionals of Lyapunov–Krasovskii type to study
the exponential stability of solutions to nonlinear time-delay systems with several
constant and variable delays (including distributed delays). Moreover, one can obtain
estimates characterizing the exponential decay of the solutions at infinity and apply
these results to some models of population dynamics (for example, see [27, 29, 33,
79, 82, 105–109, 119, 120]).

It should be noted that the proposed approach can be extended on delay difference
equations and functional difference equationswith periodic coefficients (for instance,
see [34, 36, 37]). Below we formulate some results of [36].

Consider systems of delay difference equations with periodic coefficients of the
following form
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xn+1 = A(n)xn + B(n)xn−τ(n), n = 0, 1, 2, . . . , (34)

where {A(n)}, {B(n)} are sequences of N -periodic (m × m)-matrices, τ(n) ∈ N is
a delay parameter. Using the discrete analog of the functional (21)

v(n, x) = 〈H(n)xn, xn〉 +
n−1∑

j=n−τ

〈Kn− j−1x j , x j 〉,

one can establish conditions for the asymptotic stability of the zero solution to (34)
and obtain estimates for solutions to (34), characterizing the decay rate as n → ∞.

Assume that the delay parameter is bounded

1 ≤ τ(n) ≤ τ < ∞.

Then (34) can be rewritten as the following system of linear difference equations
with variable coefficients

xn+1 = A(n)xn +
τ∑

j=1

B j (n)xn− j , n = 0, 1, . . . ,

where

B j (n) =
{

B(n) for τ(n) = j,
0 for τ(n) �= j.

Theorem 11 ([36]) Assume that there exist Hermitian positive definite matrices

H(n), K j , j = 0, 1, . . . , τ,

such that
H(0) = H(N ), � j = K j−1 − K j > 0, j = 1, . . . , τ,

and the matrices

C(n) = −

⎛
⎜⎜⎜⎝

C00(n) A∗(n)H(n + 1)B1(n) . . . A∗(n)H(n + 1)Bτ (n)

B∗
1 (n)H(n + 1)A(n) C11(n) . . . B∗

1 (n)H(n + 1)Bτ (n)

.

.

.
.
.
.

. . .
.
.
.

B∗
τ (n)H(n + 1)A(n) B∗

τ (n)H(n + 1)B1(n) . . . Cττ (n)

⎞
⎟⎟⎟⎠

with
C00(n) = A∗(n)H(n + 1)A(n) − H(n) + K0,

C j j (n) = B∗
j (n)H(n + 1)B j (n) − 1

2
� j , j = 1, . . . , τ − 1,
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Cττ (n) = B∗
τ (n)H(n + 1)Bτ (n) − Kτ

are also positive definite for n = 0, . . . , N − 1. Then the zero solution to (34) is
asymptotically stable.

Obviously, there exists a constant c1 > 0 such that

〈
C(n)

⎛
⎜⎝

xn
...

xn−τ

⎞
⎟⎠ ,

⎛
⎜⎝

xn
...

xn−τ

⎞
⎟⎠
〉

≥ c1

τ∑
i=0

‖xn−i‖2.

The following result holds.

Theorem 12 ([36]) Assume that the conditions of Theorem 11 hold. Let æ j ∈ (0, 1),
j = 1, 2, . . . , τ , be such that

−1

2
�i + æi Ki−1 ≤ 0, i = 1, . . . , τ − 1, −�τ + æτ Kτ−1 ≤ 0.

Then for a solution to (34) with the initial data x0, x−1, . . . , x−τ the inequality holds

‖xn‖2 ≤ (h1(n))−1
n−1∏
j=0

(1 − ε j )

(
〈H(0)x0, x0〉 +

−1∑
l=−τ

〈K−l−1xl , xl〉
)

,

where h1(n) > 0 is the minimal eigenvalue of the matrix H(n)

ε j = min

{
æ1, . . . , æτ ,

c1
‖H( j)‖

}
.

Using discrete analogs of the functionals (10), (13), (21), (24), (29), (33), one can
study the exponential stability of solutions to more wide classes of delay difference
equations.
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Some Extremal Problems for Solutions
of the Modified Helmholtz Equation
in the Half-Space

Gershon Kresin and Tehiya Ben Yaakov

Abstract Representations for the sharp coefficients in pointwise estimates involving
the gradient of the solution to the modified Helmholtz equation (Δ − c2)u = 0 in
the half-spaceRn+ are described. It is assumed that the boundary data of the Dirichlet
and Neumann problems in Rn+ belong to the space L p. Each of these representations
includes an extremal problem with respect to a vector parameter inside of an integral
over the unit sphere in R

n . Explicit formulas for solutions to the extremal problems
are indicated for p ∈ [2,∞] and p ∈ [2, (n + 2)/2] in the cases of Dirichlet and
Neumann boundary data, respectively.

Keywords Extremal problems · Modified Helmholtz equation · Half-space

1 Background

In the present paper, we describe representations for the sharp coefficients in point-
wise estimates for solutions to the modified Helmholtz equation (Δ − c2)u = 0,
c > 0, in the half-space Rn+ = {x = (x ′, xn) : x ′ ∈ R

n−1, xn > 0}. It is assumed that
the boundary data of the Dirichlet and Neumann problems in R

n+ for the modified
Helmholtz equation belong to the space L p(Rn−1). These representations include
some extremal problems on the unit sphere Sn−1 in R

n , finding solutions of which
we arrive at explicit formulas for the sharp coefficients in estimates to solutions to
the boundary value problems.

Weuse the term sharp estimate if the coefficient in front of a function characteristic
in the majorant part of an inequality can’t be diminished. This best coefficient we
call also sharp.

Previous results of similar nature were obtained in [1–3], where solutions of the
Laplace equation in R

n+ were considered.
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In particular, in [3] the explicit formula for the sharp coefficient An,p(x) in the
inequality

∣
∣
∣
∣
∇

{
u(x)

xn

}∣
∣
∣
∣
≤ An,p(x)

∣
∣
∣
∣u(·, 0)∣∣∣∣p (1)

was derived, where x is an arbitrary point Rn+, u is a harmonic function in R
n+,

represented by the Poisson integral with boundary values in L p(Rn−1), and || · ||p is
the norm in L p(Rn−1), 1 ≤ p ≤ ∞. It was shown that

An,p(x) = An,p

x2+(n−1)/p
n

,

where

An,p = 2n

ωn

⎧

⎨

⎩

π
n−1
2 Γ

(
3p+n−1
2(p−1)

)

Γ
(

(n+2)p
2(p−1)

)

⎫

⎬

⎭

1− 1
p

for 1 < p < ∞, and An,1 = 2n/ωn , An,∞ = 1. Here and henceforth, we denote by
ωn = 2πn/2/Γ (n/2) the area of the unit sphere in Rn .

Another sharp estimate for the modulus of the gradient of harmonic function u in
R

n+ was obtained in [2]:

|∇u(x)| ≤ Nn,p(x)

∣
∣
∣
∣

∣
∣
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∂ν
(·, 0)

∣
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∣

∣
∣
∣
∣
p

, (2)

where ν is the unit normal vector to ∂Rn+, p ∈ [1, n], x ∈ R
n+. The sharp coefficient

Nn,p(x) in (2) is given by

Nn,p(x) = Nn,p

x (n−1)/p
n

,

where

Nn,p = 21/p

ωn

⎧

⎨

⎩

2π(n−1)/2Γ
(
n+p−1
2p−2

)

Γ
(

np
2p−2

)

⎫

⎬

⎭

1− 1
p

for 1 < p ≤ n, and Nn,1 = 2/ωn .
In what follows, wewill give analogues of the sharp estimates (1), (2) for solutions

of themodifiedHelmholtz equation in the half-spaceRn+. The proofs of the statements
below are contained in [4].
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2 An Extremal Problem for Integral over Sn−1 with Vector
Parameter

Let eσ stand for the n-dimensional unit vector joining the origin to a point σ on the
sphere S

n−1. In what follows by ei , we mean the unit vector of the i th coordinate
axis. We denote by e and z the n-dimensional unit vectors and assume that e is a
fixed vector.

The following assertion plays an important role in the solution to extremal prob-
lems which arise in the next two sections.

Proposition 1 Let

Gα(z) =
∫

Sn−1
ω
(

(eσ, e)
)∣
∣(eσ, e)|α∣

∣(eσ, z)
∣
∣
2−α

dσ,

where ω is a continuous non-negative even function on [−1, 1] with continuous
positive derivative on (0, 1). Then for any α ∈ [0, 2), the equality

max|z|=1
Gα(z) = Gα(e) =

∫

Sn−1
ω
(

(eσ, e)
)

(eσ, e)2dσ

holds.

3 Sharp Weighted Estimate for the Gradient of Solution
to the Dirichlet Problem

We denote by || · ||p the norm in the space L p(Rn−1), that is,

|| f ||p =
{∫

Rn−1
| f (x ′)|p dx ′

}1/p

,

if 1 ≤ p < ∞, and || f ||∞ = ess sup{| f (x ′)| : x ′ ∈ R
n−1}.

Solution to the Dirichlet problem in Rn+ for the modified Helmholtz equation,

(Δ − c2)u = 0 in R
n
+, u

∣
∣
xn=0 = f (x ′) (3)

with continuous and bounded function f on Rn−1, is given by (e.g. [6])

u(x) = cnxn
2(n−2)/2πn/2

∫

Rn−1

Kn/2
(

c|y − x |)
(

c|y − x |)n/2 f (y′)dy′ , (4)
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where y = (y′, 0), y′ ∈ R
n−1 and Kν denotes the modified Bessel function of the

third kind (Macdonald function).
We consider the solution to problem (3) with f ∈ L p(Rn−1) represented by (4),

where p ∈ [1,∞]. A related theory of harmonic functions in R
n+ with boundary

values from L p(Rn−1) is described, for instance, in [7] (Chap.2, Sect. 2).

Theorem 1 Let x be an arbitrary point in R
n+. The sharp coefficient Cp(x) in the

inequality ∣
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is given by
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for p ∈ (1,∞], where
ρm(t) =

∫ ∞

0
ξm/2e

−ξ− c2x2n
4ξt2 dξ.

In particular, the solution to the extremal problem with respect to z ∈ S
n−1 for

p ∈ [2,∞] is given by
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p
n

πn/22(n−2)/2

{∫ π/2

0
K p/(p−1)

(n+2)/2

( cxn
cosϑ

)

cos
2p−n(p−2)
2(p−1) ϑ sinn−2 ϑdϑ

}p−1
p

.

As a special case, one has

C∞(x) = c(n+2)/2x (n−2)/2
n

2
n−4
2

√
π Γ

(
n−1
2

)

∫ π/2

0
K(n+2)/2

( cxn
cosϑ

) sinn−2 ϑ

cos(n−2)/2 ϑ
dϑ .
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4 Sharp Estimate for the Gradient of Solution
to the Neumann Problem

Solution to the Neumann problem in Rn+ for the modified Helmholtz equation,

(Δ − c2)u = 0 in R
n
+,

∂u

∂xn

∣
∣
∣
∣
xn=0

= g(x ′) (5)

with continuous and bounded function g on R
n−1, is given by

u(x) = −2c(n−2)/2

(2π)n/2

∫

Rn−1

K(n−2)/2
(

c|y − x |)
(

c|y − x |)(n−2)/2
g(y′)dy′. (6)

Here, as before, y = (y′, 0), y′ ∈ R
n−1 and Kν means the Macdonald function. For-

mula (6) with any integer n ≥ 2 can be obtained by the Fourier transform. This
formula is well known for the cases n = 2 and n = 3 (e.g. [5], Sects. 7.3 and 8.3).

We consider the solution to problem (5) with g ∈ L p(Rn−1) represented by (6),
where p ∈ [1,∞].
Theorem 2 Let x be an arbitrary point in R

n+. The sharp coefficient Kp(x) in the
inequality

|∇u(x)| ≤ Kp(x)||g||p
is given by

K1(x) = c

2(n−2)/2πn/2

Kn/2(cxn)

x (n−2)/2
n

for p = 1 and

Kp(x)= 2(1−p)/p

π
n
2 c

n−2
2 x

n−1
p−1
n

max|z|=1

{∫

Sn−1
ρ

p
p−1

n−2

(

(eσ, en)
)|(eσ, en)|

n−p
p−1 |(eσ, z)| p

p−1 dσ

}p−1
p

for p ∈ (1,∞], where the function ρm(t) is defined as before.
In particular, the solution to the extremal problem with respect to z ∈ S

n−1 for
p ∈ [2, (n + 2)/2] is given by

Kp(x) = 2(1−p)/p

πn/2c(n−2)/2x
n−1
p−1
n

{∫

Sn−1
ρ

p
p−1

n−2

(

(eσ, en)
)|(eσ, en)| n

p−1 dσ

} p−1
p

,

= c ω
(p−1)/p
n−1 x

n
2 − n−1

p−1
n

πn/22(n−2)/2

{∫ π/2

0
K p/(p−1)

n/2

( cxn
cosϑ

)

cos
(2−p)n
2(p−1) ϑ sinn−2 ϑdϑ

} p−1
p

.

As a special case, one has
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K2(x) = cx1/2n

π(n+1)/42(n−3)/2
√

Γ
(
n−1
2

)

{∫ π/2

0
K 2

n/2

( cxn
cosϑ

)

sinn−2 ϑ dϑ

}1/2

.
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Delay Optimization Problem for One
Class of Functional Differential Equation

Medea Iordanishvili, Tea Shavadze, and Tamaz Tadumadze

Abstract For the nonlinear optimization problem with delays necessary optimality
conditions are proved: for delays in the phase coordinates and controls in the form of
equality; for control functions in the form of linearized integral maximum principle.

Keywords Controlled functional differential equation · Necessary conditions of
optimality

1 Introduction

As is known, the real controlled dynamical systems contain effects with delayed
action and are described by differential equations with delay in controls [1]. To
illustrate this, here we consider a model of marketing relation below.

Let t1 > t0, θ2 > θ1 > 0, p2 > p1 ≥ 0 and q2 > q1 ≥ 0 be given numbers. Let
market relation demand and supply are described by the functions D(t, p, q) and
S(t, ς, v),which are continuous and continuously differentiablewith respect to (p, q)

and (ς, v).
Let the function p(t) ∈ P = [p1, p2], t ∈ I1 = [t0 − θ2, t1] is price of a good i1

changing over time and q(t) ∈ Q = [q1, q2], t ∈ I1 is price of a good i2.Suppose that
at time t ∈ I2 = [t0, t1] will be satisfied demand of consumer on the good i1 which
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has been ordered at time t − h, where h ∈ I3 = [θ1, θ2] is a fixed delay parameter
and will be satisfied demand of consumer on the good i2, which has been ordered at
time t − θ, where θ ∈ [θ1, θ2], in general, is non fixed delay.

The function

E(t) = D(t, p(t), q(t)) − S(t, p(t − h), q(t − θ)), t ∈ I2,

we call the disbalance index.
If E(t) = 0, then at the moment t , we do not have a disbalance between supply

and demand, and the customer will buy exactly the quantity of goods he needs.
It is clear that at various time moment t , the disbalance index E(t) is possible to be

not positive as well as positive. At time t , if E(t) > 0, then the demand exaggerates
the supply, If E(t) < 0, then the supply exaggerates the demand. To describe the
development of marketing relation process in time, i.e., create dynamical model, we
consider the integral index of disbalance

y(t) = E(t0) +
∫ t

t0

E(s)ds. (1)

The function y(t) gives complete information about the disbalance from the initial
time t0 to any time t . From (1), we get the differential equation

ẏ(t) = D(t, p(t), q(t)) − S(t, p(t − h), q(t − θ)), t ∈ I2 (2)

with the initial condition
y(t0) = y0 = E(t0).

In the paper, for the nonlinear functional differential equation

ẋ(t) = f (t, x(t), x(t − τ ), u(t), u(t − h), v(t), v(t − θ)), x(t) ∈ R
n, t ∈ I2,

where τ > 0, a delay optimization problem is considered. The necessary optimality
conditions are proved: for delays τ and θ in the form of equality; for control functions
u(t) and v(t) in the form of linearized integral maximum principle.

2 Statement of the Problem. Necessary Optimality
Conditions

LetU ⊂ R
r1 and V ⊂ R

r2 be convex and compact sets. Let the n-dimensional func-
tion f (t, x, x1, u, u1, v, v1) be continuous on I2 × R

n × R
n ×U 2 × V 2 and con-

tinuously differentiable with respect to (x, x1, u, u1, v, v1); there exists a number
M > 0 such that for all (t, x, x1, u, u1, v, v1) ∈ I2 × R

n × R
n ×U 2 × V 2 we have
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| f (t, x, x1, u, u1, v, v1)| + | fx (·)| + | fx1(·)| + | fu(·)| + | fu1(·)|

+| fv(·)| + | fv1(·)| ≤ M.

Furthermore, let x0 ∈ R
n be fixed points and τ2 > τ1 > 0 be given numbers. Let

�0(I1,U ) be a set of piecewise-continuous control functions u(t) ∈ U, t ∈ I1, with
‖ u ‖= sup{|u(t)| : t ∈ I1 and �1(I1, V ) be a set of absolutely continuous control
functions v(t) ∈ V, t ∈ I1, with ‖ v ‖= sup{|v(t)| : t ∈ I1.

To each element

w = (τ , θ, u(·), v(·)) ∈ W := [τ1, τ2] × I3 × �0(I1,U ) × �1(I1, V )

we assign the functional differential equation

ẋ(t) = f (t, x(t), x(t − τ ), u(t), u(t − h), v(t), v(t − θ)), t ∈ I2 (3)

with the initial condition

x(t) = ϕ(t), t ∈ [t0 − τ2, t0), x(t0) = x0, (4)

where ϕ(t) ∈ R
n, t ∈ [t0 − τ2, t0] is a given absolutely continuous initial function.

Definition 1 Let w = (τ , θ, u(·), v(·)) ∈ W. A function x(t) = x(t;w) ∈ R
n, t ∈

I2, is called a solution of Eq. (3) with the initial condition (4) or a solution corre-
sponding to the element w and defined on the interval I2 if it satisfies condition
(4) and is absolutely continuous and satisfies Eq. (3) almost everywhere on I2. end
definition. By the step method and Gronwall inequality can be proved that for every
element w ∈ W there exists unique solution x(t;w) defined on the interval [τ̂ , t1]
and continuous with respect to w.

Let the scalar-valued functions ϑi (τ , θ, x), i = 0, l, be continuously differen-
tiable on [τ1, τ2] × I3 × R

n.

Definition 2 An element w ∈ W is said to be admissible if the corresponding solu-
tion x(t) = x(t;w) satisfies the conditions

ϑi (τ , θ, x(t1)) = 0, i = 1, l. (5)

Denote by W0 the set of admissible elements.

Definition 3 An elementw0 = (τ0, θ0, u0(·), v0(·)) ∈ W0 is said to be optimal if for
an arbitrary element w ∈ �0 we have

ϑ0(τ0, θ0, x0(t1)) ≤ ϑ0(τ , θ, x(t1)), (6)

where x0(t) = x(t;w0).
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Equations (3)–(6) is called the delay optimization problem.

Theorem 1 Let w0 be an optimal element with τ0 ∈ (τ1, τ2), θ0 ∈ (θ1, θ2) and t0 +
τ0 < t1. Moreover, the functions u0(t) and u0(t − h) is continuous at the point t0 +
τ0.Then there exist a vectorπ = (π0, . . . ,πl) �= 0 and a solutionψ(t) of the equation

ψ̇(t) = −ψ(t) fx [t] − ψ(t + τ0) fx1 [t + τ0], t ∈ I2 (7)

with the initial condition

ψ(t0) = π�0x , ψ(t) = 0, t > t1, (8)

where

fx [t] = fx (t, x0(t), x0(t − τ0), u0(t), u0(t − h), v0(t), v0(t − θ0)),

such that the following conditions hold;
(1) the condition for the delay τ0

π�0τ = ψ(t0 + τ0) f̂ +
∫ t0+τ0

t0

ψ(t) fx1[t]ϕ̇(t − τ0)dt

+
∫ t1

t0+τ0

ψ(t) fx1 [t]ẋ0(t − τ0)dt,

where � = (ϑ0, . . . ,ϑl)T , �0τ = �τ (τ0, θ0, x0(t1)) and

f̂ = f (t0 + τ0, x0(t + τ0), x0, u0(t0 + τ0), u0(t0 + τ0 − h), v0(t0 + τ0), v0(t0 + τ0 − θ0))

− f (t0 + τ0, x0(t0 + τ0),ϕ(t0), u0(t0 + τ0), u0(t0 + τ0 − h), v0(t0 + τ0), v0(t0 + τ0 − θ0));

(2) the condition for the delay θ0

π�0θ =
∫ t1

t0

ψ(t) fv1[t]v̇0(t − θ0)dt;

(3) the integral maximum principle for the optimal control u0(t)

∫ t1

t0

ψ(t)
[
fu[t]u0(t) + fu1[t]u0(t − h)

]
dt

= max
u(·)∈�0(I1,U )

∫ t1

t0

ψ(t)
[
fu[t]u(t) + fu1[t]u(t − h)

]
dt.
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(4) the integral maximum principle for the optimal control v0(t)

∫ t1

t0

ψ(t)
[
fv[t]v0(t) + fv1 [t]v0(t − θ0)

]
dt

= max
v(·)∈�1(I1,V )

∫ t1

t0

ψ(t)
[
fv[t]v(t) + fv1 [t]v(t − θ0)

]
dt.

3 Optimization Problem for the Eq. (2). Necessary
Optimality Conditions

To each element

	 = (θ, p(·), q(·)) ∈ � := I3 × �0(I1, P) × �1(I1, Q)

we assign the differential equation

ẏ = D(t, p(t), q(t)) − S(t, p(t − h), q(t − θ)), t ∈ I2

with the initial condition
y(t0) = y0.

Definition 4 Let y1 be a fixed number. An element 	 ∈ � is said to be admissible
if the corresponding solution y(t) = y(t; 	) satisfies the condition

y(t1) = y1.

Denote by �0 the set of admissible elements.

Definition 5 An element 	0 = (θ0, p0(·), q0(·)) ∈ �0 is said to be optimal if for an
arbitrary element 	 ∈ �0 we have

∫ t1

t0

g(t, p0(t), q0(t))dt ≤
∫ t1

t0

g(t, p(t), q(t))dt,

where the function g(t, p, q) is continuous and continuously differentiable with
respect to (p, q).

It is clear that the above formulated problem is equivalent to the following
problem
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{
ẏ0(t) = g(t, p(t), q(t)),

ẏ(t) = D(t, p(t), q(t)) − S(t, p(t − h), q(t − θ))

y0(t0) = 0, y(t0) = y0, y(t1) = y1,

y0(t1) → min,

which is particular case of the problem (3)–(6) considered in the previous section.
Therefore, from Theorem 1 it follows

Theorem 2 Let ϑ0 be an optimal element. Then there exists a vector
(ψ0,ψ) �= , ψ0 ≤ 0 such that the following conditions hold:
(1) the integral condition for the optimal delay parameter θ0

ψ

∫ t1

t0

Sv(t, p0(t − h), q0(t − θ0))q̇0(t − θ0)dt = 0;

(2) the integral maximum principle for the optimal control p0(t)

∫ t1

t0

[(
ψ0gp(t, p0(t)) + ψDp(t, p0(t), q0(t)

)
p0(t)

−ψSς(t, p0(t − h), q0(t − θ0))p0(t − h)
]
dt

= max
p(·)∈�0(I1,P)

∫ t1

t0

[(
ψ0gp(t, p0(t)) + ψDp(t, p0(t), q0(t)

)
p(t)

−ψSς(t, p0(t − h), q0(t − θ0))p(t − h)
]
dt.

(3) the integral maximum principle for the optimal control q0(t)

∫ t1

t0

[(
ψ0gq(t, p0(t), q0(t)) + ψDq(t, p0(t), q0(t)

)
q0(t)

−ψSv(t, p0(t − h), q0(t − θ0))q0(t − θ0)
]
dt

= max
q(·)∈�1(I1,Q)

∫ t1

t0

[(
ψ0gq(t, p0(t), q0(t)) + ψDq(t, p0(t), q0(t)

)
q(t)

−ψSv(t, p0(t − h), q0(t − θ0))q(t − θ0)
]
dt.

Analogous problem for the marketing relation model with the fixed θ is investigated
in [2].
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4 Proof of Theorem 1

Theorem 1 proved by the scheme given in [3, 4].

Proof On the convex set Z = R+ × W, where R+ = [0,∞), let us define the map-
ping

� : Z → R
1+l (9)

by the formula

�(z) = (�0(z), . . . , �l(z))T = �(τ , θ, x(t1;w)) + (ξ, 0 . . . , 0)T , z = (ξ, w) ∈ Z .

It is clear that

�0(z0) ≤ �0(z),�i (z) = 0, i = 1, l,∀z ∈ R+ × W0 ⊂ Z ,

where z0 = (0, w0).

Thus, the point z0 = (0, w0) ∈ Z is a critical (see [3, 4]), since Q(z0) ∈ ∂Q(Z).
Moreover, the mapping (9) is continuous.

There exists a small ε0 > 0 such that for an arbitrary ε ∈ (0, ε0) and
δz = (δξ, δw) ∈ Bz0 := [0,α) × Bw0 ⊂ Z − z0, where δw = (δτ , δθ, δu, δv) and
Bw0 = [(τ0 − α, τ0 + α) − τ0] × [(θ0 − α, θ0 + α) − θ0] × [�0(I1,U ) − u0(·)] ×
[�1(I1, V ) − v0(·)] we get z0 + εδz ∈ Z .

On the basis of the variation formula of solution [5, 6], we have

�x(t1; εδw) := x(t1;w0 + εδw) − x0(t1) = εδx(t1; δw) + o(εδw),

(ε, δw) ∈ (0, ε1) × Bw0

where

δx(t1; δw) = −
[
Y (t0 + τ0; t1) f̂ +

∫ t0+τ0

t0

Y (t; t1) fx1 [t]ϕ̇(t − τ0)dt (10)

+
∫ t1

t0+τ0

Y (t; t1) fx1 [t]ẋ0(t − τ0)dt
]
δτ −

[ ∫ t1

t0

Y (t; t1) fv1 [t]v̇0(t − θ0)dt
]
δθ

+
∫ t1

t0

Y (t; t1)
[
fu[t]δu(t) + fu1 [t]δu(t − h) + fv[t]δv(t) + fv1 [t]δv(t − θ0)

]
dt

and

lim
ε→0

o(εδw)

ε
= 0 uniformly for δw ∈ Bw0;
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Y (t; t1) is the n × n−matrix function satisfying the linear differential equation with
advanced argument

d

dt
Y (t; t1) = −Y (t; t1) fx [t] − Y (t + τ0; t1) fx1 [t + τ0], t ∈ [t00, t1]

and the conditions

Y (t; t1) =
{
E f or t = t1,

0̂ f or t > t1,

E is the identity matrix and 0̂ is the zero matrix.
Now we calculate a differential of the mapping (9) at the point z0. We have

�(z0 + εδz) − �(z0) = �(τ0 + εδτ , θ0 + εδθ, x(t1;w0 + εδw)) − �(τ0, θ0, x0(t1))

+ε(δξ, 0 . . . , 0)T , ε ∈ (0, ε1), δw ∈ Bz0 .

We introduce the notation

�[ε; s] = �(τ0 + εsδτ , θ0 + εsδθ, x0(t1) + s�x(t1; εδw))

Let us transform the difference

�(τ0 + εδτ , θ0 + εδθ, x(t1; w0 + εδw)) − �(τ0, θ0, x0(t1))

=
∫ 1

0

d

ds
�[ε; s]ds =

∫ 1

0

[
ε
(
�τ [ε; s]δτ + �θ[ε; s]δθ

)
+ �x [ε; s]�x(t1; εδw)

]
ds

=
∫ 1

0

[
ε
(
�τ [ε; s]δτ + �θ[ε; s]δθ + �x [ε; s]δx(t1; εδw)

)
+ �x [ε; s]o(εδw)

]
ds

= ε
[
�0τ δτ + �0θδθ + �0xδx(t1; δw)

]
+ γ(εδw),

where

γ(εδw) = ε

∫ 1

0

{
[�τ [ε; s] − �0τ ]δτ + [�θ[ε; s] − �0θ]δθ

+[�x [ε; s] − �0x ]δx(t1; δw) + �0x
o(εδw)

ε

}
ds.

It is easy to see that

lim
ε→0

[�τ [ε; s] − �0τ ] = 0, [�θ[ε; s] − �0θ] = 0, [�x [ε; s] − �0x ] = 0.
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Therefore, γ(εδw) = o(εδw). Thus,

�(z0 + εδz) − �(z0) = εd�z0(δz) + o(εδz),

where o(εδz) := o(εδw) and differential d�z0(δz) of the mapping (9) has the form

d�z0(δz) = �0τ δτ + �0θδθ + �0xδx(t1; δw) + (δξ, 0, . . . , 0)T .

Due to the relation (10), we get

d�z0(δz) =
[
�0τ − �0xY (t0 + τ0; t1) f̂ (11)

−
∫ t0+τ0

t0

�0xY (t; t1) fx1 [t]ϕ̇(t − τ0)dt −
∫ t1

t0+τ0

�0xY (t; t1) fx1 [t]ẋ0(t − τ0)dt
]
δτ

+
[
�0θ −

∫ t1

t0

�0xY (t; t1) fv1 [t]v̇0(t − θ0)dt
]
δθ +

∫ t1

t0

�0xY (t; t1)
{
fu[t]δu(t)

+ fu1[t]δu(t − h) + fv[t]δv(t) + fv1 [t]δv(t − θ0)
}
dt + (δξ, 0, . . . , 0)T .

From the necessary condition of criticality [3, 4], it follows that there exists a vector
π = (π0, . . . ,πl) �= 0 such that

πd�z0(δz) ≤ 0,∀ δz ∈ R+ × R × R × [�0(I1,U ) − u0(·)] (12)

×[�1(I1, V ) − v0(·)].

Introduce the function
ψ(t) = π�0xY (t; t1) (13)

as is easily seen, it satisfies the Eq. (7) and the condition (8).
Taking into account (11) and (13) from inequality (12), we obtain

[
π�0τ − ψ(t0 + τ0) f̂ −

∫ t0+τ0

t0

ψ(t) fx1[t]ϕ̇(t − τ0)dt (14)

−
∫ t1

t0+τ0

ψ(t) fx1[t]ẋ0(t − τ0)dt
]
δτ +

[
π�0θ −

∫ t1

t0

ψ(t) fv1 [t]v̇0(t − θ0)dt
]
δθ

+
∫ t1

t0

ψ(t)
{
fu[t]δu(t) + fu1[t]δu(t − h) + fv[t]δv(t) + fv1 [t]δv(t − θ0)

}
dt

+π0δξ ≤ 0.
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Let δτ = δθ = 0, δu = 0, δv = 0 in (14), then we obtain

π0δξ ≤ 0,∀δξ ∈ R+.

This implies π0 ≤ 0.
Let δξ = δθ = 0, δu = 0, δv = 0 then, taking into account that δτ ∈ R from (14),

we obtain the condition (2.1).
Let δξ = δτ = 0, δu = 0, δv = 0 then, taking into account that δτ ∈ R from (14),

we obtain the condition (2.2).
Let δξ = δτ = δθ = 0, δv = 0 then, taking into account that δu ∈ �0(I0),U ) −

u0(·) from (14), we obtain the condition (2.3).
Let δξ = δτ = δθ = 0, δu = 0 then, taking into account that δv ∈ �1(I0), V ) −

v0(·) from (14), we obtain the condition (2.4).
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On Qualitative Research of Lattice
Dynamical System of Two-
and Three-Dimensional Biopixels Array

Vasyl Martsenyuk, Mikolaj Karpinski, Aleksandra Klos-Witkowska,
and Andriy Sverstiuk

Abstract Weconsider themodel of two- or three-dimensional biopixels array,which
can be used for the design of biosensors. The model is based on the system of lattice
differential equations with time delay, describing interactions of biological species of
neighboring pixels. The qualitative analysis includes permanence and extinction of
solutions, stability investigation, bifurcations, and transition to chaos. The stability
conditions are obtained with help of the method of Lyapunov functionals. They are
formulated in terms of the value of time necessary for immune response. Numerical
research is presented with the help of phase portraits, square and hexagonal lattice
plots, and bifurcation diagrams.

Keywords Lattice differnetial equations · Delay · Stability · Biopixel ·
Extinction · Phase plot

1 Introduction

Nowadays, reaction-diffusion models are used in designing and studies of a lot of
detecting, measuring, and sensing devices. One of the examples is the immunosensor
which is studied here. Such spatial-temporal models are described by the systems of
partial or lattice differential equations.
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The biosensor models are traditionally studied from the viewpoint of their qualita-
tive analysis. Even in case of a small number of spatial elements, they show complex
behavior. In [1], it was shown that the model describes the chemical reaction of two
morphogens (reactants), one of them diffusing within two compartments, results in
“bi-chaotic” behavior. The origin of such chaotic phenomena1 were also explained
with the help of statistics of topological defects [2].

When considering continuously distributed reaction-diffusion models described
by nonlinear partial differential equations, FeigenbaumSharkovskiiMagnitskii bifur-
cation theory can be applied, which results in a subharmonic cascade of bifurcations
of stable limit cycles [3].

The lattice differential equations describe the systems with the discrete spatial
structure, which is more consistent with pixel devices. These equations were also
called earlier by a series of authors as spatially discrete differential equations [4].

Due to [5], a typical lattice differential equation takes the form

u̇ξ = gξ ({uζ }ζ∈Λ), ξ ∈ Λ, (1)

where we consider a lattice Λ ⊂ R
n , which can be presented as a discrete subset

of Rn , consisting of either finite or infinite number of points, which are located in
accordance with some regular spatial structure. The vectors uξ , ξ ∈ Λ are the values
of the state u = {

uξ

}
ξ∈Λ

, calculated at the points of the lattice, and gξ are the right
sides of the equations with the properties enabling us the solution existence.

As a rule, without loss of generality, they consider Λ = Z
n , which is the integer

lattice in R
n . The methods developed can be easily applied to different types of

lattices, namely, the planar rectangular and hexagonal lattice, the crystallographic
lattices in R3.

They pay attention to the notion of delay in lattice differential equations, so-called
delayed lattice differential equations. One of the applications dealing with them is
the investigation of traveling wavefronts and their stability [5]. The main results are
applied to the delayed and discretely diffusive models for the population (see, e.g.,
[6, 7]).

Lattice differential equations are used as models in a lot of applications, for
example, cellular neural networks, image processing, chemical kinetics, material
science, in particular, metallurgy and biology [5, 8]. Lattice models are extremely
attractive from the viewpoint of population dynamics, especially in case of spatially
separated populations [5, 6, 8–11].

There are few reasons requiring consideration of the hexagonal grid instead of
rectangular ones (primarily in image and vision computing). Namely, the equal dis-
tances between neighboring pixels for hexagonal coordinate systems [12]; hexagonal
points are packedmore densely [13]; since the “hexagons are ‘rounder’ than squares”,
the presentation of curves are more consistent with help of hexagonal systems [13];
hence mathematical operations of edge detection and shape extraction are more suc-
cessful when applying hexagonal lattices [14].

1 They call it as “spiral turbulence” [2].
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With the purpose of indexing hexagonal pixels, as a rule, they use two-2 or three-
element3 coordinate systems [15]. Our reasoning will be based on the last one. In
contrary to skewed axes, the use of the cubic coordinates enables us symmetries with
respect to all three axes.

2 Lattice Model of Antibody–Antigen Interaction
for Two-Dimensional Biopixels Array

Let Vi, j (t) be the concentration of antigens, Fi, j (t) be the concentration of antibodies
in biopixel (i, j), i, j = 1, N .
The model is based on the following biological assumptions for arbitrary biopixel
(i, j).

1. We have some constant birthrate β > 0 for antigen population.
2. Antigens are detected, binded, and finally neutralized by antibodies with some

probability rate γ > 0.
3. We have some constant death rate of antibodies μ f > 0.
4. We assume that when the antibody colonies are absent, the antigen colonies are

governed by the well-known delay logistic equation

dVi, j (t)

dt
= (β − δvVi, j (t − τ))Vi, j (t), (2)

where β and δv are positive numbers and τ ≥ 0 denotes delay in the negative
feedback of the antigen colonies.

5. The antibody decreases the average growth rate of antigen linearly with a certain
time delay τ ; this assumption corresponds to the fact that antibodies cannot detect
and bind antigen instantly; antibodies have to spend τ units of time before they
are capable of decreasing the average growth rate of the antigen colonies; these
aspects are incorporated in the antigen dynamics by the inclusion of the term
−γ Fi, j (t − τ), where γ is a positive constant which can vary depending on the
specific colonies of antibodies and antigens.

6. In the absence of antigen colonies, the average growth rate of the antibody
colonies decreases exponentially due to the presence of −μ f in the antibody
dynamics and so as to incorporate the negative effects of antibody crowding, we
have included the term −δ f Fi, j (t) in the antibody dynamics.

7. The positive feedback ηγ Vi, j (t − τ) in the average growth rate of the antibody
has a delay since mature adult antibodies can only contribute to the production
of antibody biomass; one can consider the delay τ in ηγ Vi, j (t − τ) as a delay
in antibody maturation.

2 So called “skewed-axis” coordinate system.
3 It is also known as “cube hex coordinate system”.
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8. While the last delay need not be the same as the delay in the hunting term and
in the term governing antigen colonies, we have retained this for simplicity. We
remark that the delays in the antibody term, antibody replacement term, and
antigen negative feedback term can be made different and a similar analysis can
be followed.

9. We have some diffusion of antigens from four neighboring pixels (i − 1, j),
(i + 1, j), (i, j − 1), (i, j + 1) (see Fig. 1) with diffusion D > 0. Here we con-
sider only diffusion of antigens because the model describes the so-called “com-
petitive” configuration of immunosensor [16]. When considering competitive
configuration of immunosensor, the factors immobilized on the biosensor matrix
are antigens, while the antibodies play the role of analytes or particles to be
detected.

10. We consider surface lateral diffusion (movement of molecules on the surface on
solid phase toward immobilizated molecules) [17]. Moreover, there are works
[18, 19] which assume and consider surface diffusion as an entirely independent
stage.

11. We extend the definition of the usual diffusion operator in case of surface dif-
fusion in the following way. Let n ∈ (0, 1] be a factor of diffusion disbalance.
It means that only nth portion of antigens of the pixel (i, j) may be included in
the diffusion process to any neighboring pixel as a result of surface diffusion.

For the reasoning given,we consider a very simple delayed antibody–antigen com-
petition model for biopixels two-dimensional array, which is based on well-known
Marchuk model [20–23] and using spatial operator Ŝ offered in [24] (Supplementary
information, p. 10)

Fig. 1 Linear lattice
interconnected four
neighboring pixels model,
n > 0 is disbalance constant

Pixel
(i− 1, j)

Pixel (i, j)
Pixel

(i, j− 1)
Pixel

(i, j+ 1)

Pixel
(i+ 1, j)

Dvi−1, j(t)Dnvi, j(t)

Dvi, j+1(t)

Dnvi, j(t)Dvi, j−1(t)

Dnvi, j(t)

Dnvi, j(t)Dvi+1, j(t)
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dVi, j (t)
dt = (β − γ Fi, j (t − τ) − δvVi, j (t − τ))Vi, j (t) + Ŝ{Vi, j },

dFi, j (t)
dt = (−μ f + ηγ Vi, j (t − τ) − δ f Fi j (t)

)
Fi, j (t)

(3)

with given initial functions

Vi, j (t) = V 0
i, j (t) ≥ 0, Fi, j (t) = F0

i, j (t) ≥ 0, t ∈ [−τ, 0),

Vi, j (0), Fi, j (0) > 0.
(4)

For a square N × N array of traps, we use the following discrete diffusion form
of the spatial operator [24]

Ŝ{Vi, j } =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D
[
V1,2 + V2,1 − 2nV1,1

]
i, j = 1

D
[
V2, j + V1, j−1 + V1, j+1 − 3nVi, j

]
i = 1, j ∈ 2, N − 1

D
[
V1,N−1 + V2,N − 2nV1,N

]
i = 1, j = N

D
[
Vi−1,N + Vi+1,N + Vi,N−1 − 3nVi,N

]
i =∈ 2, N − 1, j = N

D
[
VN−1,N + VN ,N−1 − 2nVN ,N

]
i = N , j = N

D
[
VN−1, j + VN , j−1 + VN , j+1 − 3nVN , j

]
i = N , j ∈ 2, N − 1

D
[
VN−1,1 + VN ,2 − 2nVN ,1

]
i = N , j = 1

D
[
Vi−1,1 + Vi+1,1 + Vi,2 − 3nVi,1

]
i ∈ 2, N − 1, j = 1

D
[
Vi−1, j + Vi+1, j + Vi, j−1 + Vi, j+1 − 4nVi, j

]
i, j ∈ 2, N − 1

(5)
Each colony is affected by the antigen produced in four neighboring colonies, two in
each dimension of the array, separated by the equal distanceΔ. We use the boundary
condition Vi, j = 0 for the edges of the array i, j = 0, N + 1. Further, we will use
the following notation of the constant

k(i, j) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2 i, j = 1; i = 1, j = N ; i = N , j = N ; i = N , j = 1,

3 i = 1, j ∈ 2, N − 1; i ∈ 2, N − 1, j = N ; i = N , j ∈ 2, N − 1;
i ∈ 2, N − 1, j = 1

4 i, j ∈ 2, N − 1

(6)

which will be used in manipulations with the spatial operator (20).
Results of modeling (3) are presented further. It can be seen that the qualitative

behavior of the system is determined mostly by the time of immune response τ (or
time delay), diffusion D, and constant n.
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2.1 Stability Investigation

2.1.1 Steady States

The steady states of themodel (3) are the intersection of the null-clines dVi, j (t)/dt =
0 and dFi, j (t)/dt = 0, i, j = 1, N .

Antigen-free steady state. If Vi, j (t) ≡ 0, the free antigen equilibrium is at E 0
i, j ≡(

0, 0
)
, i, j = 1, N or E 0

i, j ≡
(
0,−μ f

δ f

)
, i, j = 1, N . The last solution does not have

biological sense and cannot be reached for nonnegative initial conditions (19).

When considering endemic steady state E ∗
i, j ≡

(
V ∗
i, j , F

∗
i, j

)
, i, j = 1, N for (3)

we get algebraic system:

(
β − γ F∗

i, j − δvV
∗
i, j

)
V ∗
i, j + Ŝ

{
V ∗
i, j

} = 0,
(

− μ f + ηγ V ∗
i, j − δ f F

∗
i, j

)
F∗
i, j = 0, i, j = 1, N .

(7)

The solutions
(
V ∗
i, j , F

∗
i, j

)
of (7) can be found as a result of solving lattice equation

with respect to V ∗
i, j , and using relation F∗

i, j = −μ f +ηγ V ∗
i, j

δ f

Thus we have to differ two cases.
Identical endemic state for all pixels. Let’s assume there is the solution of

(7) V ∗
i, j ≡ V ∗, F∗

i, j ≡ F∗, i, j = 1, N , i.e., Ŝ
{
V ∗
i, j

}
≡ 0. Then E ∗

i, j =
(
V ∗, F∗

)
,

i, j = 1, N can be calculated as

V ∗ = −βδ f − γμ f

δvδ f − ηγ 2
, F∗ = δvμ f − ηγβ

δvδ f − ηγ 2
. (8)

provided that δvδ f − ηγ 2 < 0.
Nonidentical endemic state for pixels. In the general case, we have an endemic

steady state which is different from (8). It is shown numerically in Appendix B that
it appears as a result of diffusion between pixels D.

At the absence of diffusion, i.e., D = 0, we have only an identical endemic state
for pixels of external layer. At the presence of diffusion,i.e., D > 0, nonidentical
endemic states tends to be identical ones (8) at internal pixels, which can be observed
at numerical simulation. This phenomenon clearly appears at bigger amount of pixels.

Basic reproduction numbers. Here we define the basic reproduction number
for antigen colony which is localized in pixel (i, j). When considering epidemic
models, the basic reproduction number, R0, is defined as the expected number of
secondary cases produced by a single (typical) infection in a completely susceptible
population. It is important to note that R0 is a dimensionless number [25]. When
applying this definition to the pixel (i, j), which is described by the Eq. (3), we get
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R0,i, j = Ti, j ci, j , di, j

whereTi, j is the transmissibility (i.e., probability of binding given constant between
an antigen and antibody), ci, j is the average rate of contact between antigens and
antibodies, and di, j is the duration of binding of antigen by antibody till deactivation.

Unfortunately, the lattice system (3) doesn’t include all parameters, which allows
to calculate the basic reproduction numbers in a clear form. Firstly, let’s consider
pixel (i�, j�) without diffusion, i.e., Ŝ

{
Vi�, j�

} ≡ 0. In this case, the non-negative
equilibria of (3) are

E 0
i�, j� = (

V 0, 0
) := ( β

δv

, 0
)
, E �

i�, j� = (
V �, F�

)
.

Due to the approach which was offered in [26] (in pages 4 for ordinary differential
equations, 5 for delay model), we introduce the basic reproduction number for pixel
(i�, j�) without diffusion, which is given by expression

R0,i�, j� := V 0

V �
= β

δvV �
= β(ηγ 2 − δvδ f )

δv(βδ f + γμ f )
.

Its biological meaning is given as being the average number of offsprings produced
by a mature antibody in its lifetime when introduced in an antigen-only environment
with antigen at carrying capacity.

According to the common theory, it can be shown that antibody-free equilibrium
E 0
i�, j� is locally asymptotically stable ifR0,i�, j� < 1 and it is unstable ifR0,i�, j� > 1.

It can be done with help of analysis of the roots of characteristic equation (similarly
to [26], p. 5). Thus, R0,i�, j� > 1 is sufficient condition for existence of the endemic
equilibrium E �

i�, j� .
We can consider the expressionmentioned above for the general case of the lattice

system (3), i.e., when considering diffusion. In this case, we have the “lattice” of the
basic reproduction numbersR0,i, j , i, j = 1, N satisfying to

R0,i, j := V 0
i, j

V �
i, j

, i, j = 1, N , (9)

where E 0
i, j , i, j = 1, N are nonidentical steady states, which are found as a result of

solution of the algebraic system

(
β − δvV

0
i, j

)
V 0
i, j + Ŝ

{
V 0
i, j

} = 0, i, j = 1, N , (10)

endemic states E �
i, j =

(
V �
i, j , F

�
i, j

)
, i, j = 1, N are found using (7).

It is worth to say that due to the common theory the conditions
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R0,i, j > 1, i, j = 1, N (11)

are sufficient for the existence of endemic state E �
i, j . We will check it only with help

of numerical simulations.

2.2 Persistence of the Solutions

We will use the following definition which generalizes [27] for lattice differential
equations.

Definition 1 System (3) is said to be uniformly persistent if for all i, j = 1, N
there exist compact regions Di, j ⊂ int R2 such that every solution (Vi, j (t), Fi, j (t)),
i, j = 1, N of (3) with the initial conditions (19) eventually enters and remains in
the region Di, j .

Theorem 1 Let (Vi, j (t), Fi, j (t)), i, j = 1, N be the solutions of (3) with initials
conditions (19). If

βηγ − μ f δv > 0, (12)

then
0 < Vi, j (t) ≤ Mv, 0 < Fi, j (t) ≤ M f (13)

for some large values of t . Here

Mv = β

δv

eβτ , M f = 1

δ f

(
ηγ Mv − μ f

)
. (14)

Proof Firstly, we can prove that there exists some large instant of time T1 that
Ŝ{Vi, j (t)} ≤ 0, i, j = 1, N , t > T1.

Let’s assume the contrary, i.e., there is i�, j� ∈ 1, N , that Ŝ{Vi, j (t)} > 0 at t > T1,
which is a contradiction with a balance principle.

Since the solutions of the system (3), (19) are positive, then

dVi, j (t)

dt
≤

(
β − δvVi, j (t − τ)

)
Vi, j (t). (15)

Further, we can apply the basic steps of proof of Lemma 3.1 [28] which is proved in
nonlattice case (i.e., without spatial operator).

Remark 1 Conditions of uniform persistence of system (3) in nonlattice case were
obtained in [29]. They resulted in inequality (12) provided that

βδ f + μ f γ > 0 (16)

holds.
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2.3 Extinction Research

The next result introduces a sufficient condition for the underlying grid size ensuring
that the solution of (3) is non-vanishing.

Theorem 2 Let for the system (3) the positive orthant Ω be positive invariant.
Besides that, let N be such that fextnc(N ) < 1 holds, where

fextnc(N ) = max
k,l=1,N

∣∣∣∣β − 4D

Δ2

(
1 + cos

π(k + l)

2(N + 1)
cos

π(k − l)

2(N + 1)

)∣∣∣∣. (17)

Then limt→∞ Vi, j (t) = 0, i, j = 1, N.

Proof It requires a comparison principle for differential equations.
The following inequalities hold for Vi, j (t)

Vi, j (t)

dt
< βVi, j (t) + Ŝ

{
Vi, j (t)

}
.

Consider N 2-vector of the form

V (n) =
(
V1,1(t), V1,2(t), . . . , V1,N (t), V2,1(t), . . . , V2,N (t), . . . ,

VN ,1(t), . . . , VN ,N (t)
)


.

We compare V (t)
dt ≤ CV (t), where C = IN ⊗ A + B ⊗ IN ,

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

β − 4D
Δ2

D
Δ2

D
Δ2 β − 4D

Δ2
D
Δ2

D
Δ2

. . .

. . .

β − 4D
Δ2

D
Δ2

D
Δ2 β − 4D

Δ2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

∈ R
N×N ,

B =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎣

0 D
Δ2

D
Δ2 0 D

Δ2

D
Δ2

. . .

. . .

0 D
Δ2

D
Δ2 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎦

∈ R
N×N ,
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IN is N × N identity matrix. The N 2 eigenvalues of C are of the form (see [30],
Theorem 8.3.1) λk,l(C) = λk(A) + λl(B), k, l = 1, N , where the eigenvalues of A

λk(A) = β − 4D

Δ2
− 2D

Δ2
cos (πk/(N + 1)), k = 1, N ,

the eigenvalues of B

λl(B) = −2D

Δ2
cos (πl/(N + 1)), l = 1, N .

The comparison system Z(t)
dt = CZ(t) tends asymptotically to zero if

∣∣λk,l

∣∣ < 1.
That is

max
k,l=1,N

∣∣∣∣β − 4D

Δ2
− 2D

Δ2

(
cos

πk

N + 1
+ cos

πl

N + 1

)∣∣∣∣ < 1.

2.4 Numerical Simulation of Square 4 × 4 Pixels Array

First of all, we calculate the basic reproductive numbers R0,i, j , i, j = 1, 4 due to
(9) (See Table1). We see that the conditions (11) hold. Thus, equilibrium without
antibodies E 0

i, j , i, j = 1, 4 is unstable and there exists endemic equilibrium E �
i, j ,

i, j = 1, 4.
The numerical simulations were implemented at different values of n ∈ (0, 1].

Here we can see that when changing the value of τ we have changes in the qualitative
behavior of pixels and the entire immunosensor. We considered the parameter value
set given above and computed the long-time behavior of the system (3) for τ =
0.05, 0.22, 0.23, 0.2865, and 0.28725. The phase diagrams of the antibody versus
antigen populations for the pixel (1, 1) are shown in Table2.

For example, at τ ∈ [0, 0.22], we can see trajectories corresponding to the stable
node for all pixels.

For τ = 0.23, the phase diagrams show that the solution is a limit cycle with
two local extrema (one local maximum and one local minimum) per cycle. Then
for τ = 0.2825, the solution is a limit cycle with four local extrema per cycle, and,

Table 1 The values of R0,i, j , i, j = 1, 4

R�
0,i, j 1 2 3 4

1 3.218727 3.425273 3.474323 3.224824

2 3.171270 3.235043 3.236289 3.126438

3 3.092287 3.107824 3.096617 3.040443

4 2.997269 3.020902 3.012915 2.971442
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Table 2 The phase plane plots of the system (3) for antibody populations Fi, j versus antigen
populations Vi, j , i, j = 1, 4. Numerical simulation of the system (3) at n = 0.9, τ = 0.28725. Here
• indicates identical steady state, • indicates nonidentical steady state. Trajectories are constructed
for t ∈ [550, 800]. The solution behavior looks chaotic

for τ = 0.2868, 0.2869, 0.28695 the solutions are limit cycles with 8, 16, and 32
local extrema per cycle, respectively. Finally, for τ = 0.28725, the behavior shown
in Table2 is obtained which looks like chaotic behavior. In this paper, we have
regarded behavior as chaotic if no periodic behavior could be found in the long-time
behavior of the solutions.

As a check that the solution is chaotic for τ = 0.28725, we perturbed the initial
conditions to test the sensitivity of the system. Figure2 shows a comparison of
the solutions for the antigen population V1,3 with initial conditions V1,3(t) = 1 and
V1,3(t) = 1.001, t ∈ [−τ, 0], and identical all the rest ones. Near the initial time,
the two solutions appear to be the same, but as time increases, there is a marked
difference between the solutions supporting the conclusion that the system behavior
is chaotic at τ = 0.28725.

We have also checked numerically that the solutions for the limit cycles are peri-
odic and computed the periods for each of the local maxima andminima in the cycles.
In the chaotic solution region, the numerical calculations (not shown in this paper)
confirmed that no periodic behavior could be found.
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Fig. 2 The time series of the solutions to the system (3) for the antigen population V1,3 from
t = 0 to 700 with τ = 0.28725 for initial conditions V1,3(t) = 1 and V1,3(t) = 1.001 (deviated),
t ∈ [−τ, 0], and identical all the rest ones. At the beginning, the two solutions appear to be the same,
but as time increases there is a marked difference between the solutions supporting the conclusion
that the system behavior is chaotic

A bifurcation diagram showing the maximum and minimum points for the limit
cycles for the antigen population V1,3 as a function of time delay is given in Fig. 3.
The Hopf bifurcation from the stable equilibrium point to a simple limit cycle and
the sharp transitions at critical values of the time delay between limit cycles with
increasing numbers of maximum and minimum points per cycle can be clearly seen.

3 Three-Dimensional Biopixels Array

When modeling three-dimensional pixels array, it is natural way to apply the
model based on the hexagonal lattice. Such model may use the following assump-
tion. Namely, antigens are assumed to diffuse from six neighboring pixels, (i +
1, j, k − 1), (i + 1, j − 1, k), (i, j − 1, k + 1), (i − 1, j, k + 1), (i − 1, j + 1, k),
(i, j + 1, k − 1) (see Fig. 1), with diffusion rate DΔ−2, where D > 0 and Δ > 0 is
distance between pixels.
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Fig. 3 Abifurcation diagram showing the “bifurcation path to chaos” as the time delay is increased.
The points show the local extreme points per cycle for the V1,3 population. Chaotic-type solutions
occur at τ ≈ 0.28725 and are indicated in red in the figure with value 0 for the number of extreme
points
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Taking into account prerequisites mentioned above, we get a simplified antibody–
antigen competition model with delay for a hexagonal array of biopixels, which uses
Marchuk model of the immune response [20–23] and using spatial operator Ŝ which
is constructed similarly to [24] (Supplementary information, p. 10)

dVi, j,k(t)

dt
= (β − γ Fi, j,k(t − τ) − δvVi, j,k(t − τ))Vi, j,k(t) + Ŝ{Vi, j,k},

dFi, j,k(t)

dt
= (−μ f + ηγ Vi, j,k(t − τ) − δ f Fi, j,k(t)

)
Fi, j,k(t)

(18)

with given initial functions

Vi, j,k(t) = V 0
i, j,k(t) ≥ 0, Fi, j,k(t) = F0

i, j,k(t) ≥ 0, t ∈ [−τ, 0),

Vi, j,k(0), Fi, j,k(0) > 0.
(19)

We use the following spatial operator of discrete diffusion for a hexagonal array
of pixels4

Ŝ{Vi, j,k} = DΔ−2
[
Vi+1, j,k−1 + Vi+1, j−1,k + Vi, j−1,k+1 + Vi−1, j,k+1 + Vi−1, j+1,k

+ Vi, j+1,k−1 − 6nVi, j,k

]

i, j, k ∈ −N + 1, N − 1, i + j + k = 0.
(20)

Each pixel is affected by the antigens flowing out six neighboring pixels, two in
each of three directions of the hexagonal array. The adjoint pixels are separated by
the distance Δ (Fig. 4).

Boundary conditions Vi, j,k = 0 for the edges of the hexagonal array, i.e., if i ∨
j ∨ k ∈ {−N − 1, N + 1}, are used.

We can present analytical results with respect to the model (18) in the form of
restrictions for the parameters, enabling us persistence and global asymptotic stabil-
ity. Moreover, we executed numerical research of the system qualitative behavior in
dependence of changes of the time of immune response τ (delay of time), diffusion
rate DΔ−2 and factor n.

3.1 Persistence and Extinction of Solutions

Concerning persistence, for the hexagonal lattice the similar result can be obtained
as for square one (Theorem 1), just adding the third index.

4 Without loss of generality we consider spatial operator for internal pixels only.
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Fig. 4 Diffusion of antigens for the hexagonal lattice model. Antigens from six neighboring
pixels interact, n > 0 is the constant of disbalance. Here ‘1’, ‘3’, ‘5’, ‘8’, ‘9’, ‘11’ have to
be replaced with DΔ−2Vi, j,k(t), ‘2’ with DΔ−2Vi+1, j,k−1(t), ‘4’ with DΔ−2Vi+1, j−1,k(t), ‘6’
with DΔ−2Vi, j−1,k+1(t), ‘7’ with DΔ−2Vi−1, j,k+1(t), ‘10’ with DΔ−2Vi−1, j+1,k(t), ‘12’ with
DΔ−2Vi, j+1,k−1(t)

Unfortunately, we didn’t manage to present such a clear condition of extinction
as in Theorem 2. We can check it only numerically in an experimental way.

3.2 Numerical Study

For numerical simulation, we consider model (18) of hexagonal pixels array at
N = 4, β = 2 min−1, γ = 2 mL

min·μg , μ f = 1 min−1, η = 0.8/γ , δv = 0.5 mL
min·μg ,

δ f = 0.5 mL
min·μg , D = 0.2 nm2

min , Δ = 0.3nm. Numerical modeling was implemented
at different values of n ∈ (0, 1]. For this purpose, we used RStudio environment.

Using local bifurcation plot, dynamics of the system (18) was analyzed for differ-
ent values of n ∈ (0, 1].We have concluded that oscillatory and then chaotic behavior
starts for smaller values of τ at smaller values of n. Further, increasing the values of
n, we can observe asymptotically stable steady solutions for a wider range of τ .
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Fig. 5 Phase plots of the system (18) at τ = 0.287. Here • indicates initial state, • indicates
pixel-independent endemic state, • indicates pixel-dependent endemic state. The solution tends to
a stable limit cycle with six local extrema per cycle

Numerical integration of the system has shown the influence of time delay τ .
Namely, as it is agreed with the analytical results, we observe the stable focuses at
pixel-dependent endemic states for small delays τ ∈ [0, 0.18). At τ ≈ 0.18 min the
stable focus is transformed into a stable limit cycle of tiny radius, which corresponds
to Hopf bifurcation. A deeper study of this phenomenon requires obtaining the con-
dition of the appearance of the pair of purely imaginary roots of the characteristic
quasipolynomial of the linearized system. The limit cycles of ellipsoidal form are
observed till τ ≈ 0.285 min. Pay attention that when increasing τ , near τ = 0.285,
we get period doubling (see Fig. 5).5

The qualitative behavior of immunosensor model can be analyzed with help
of hexagonal tiling plots also. For this purpose, we can use both plots for anti-
gens (Fig. 6), antibodies (Fig. 7), and probabilities of binding antigens by antibodies
(Fig. 8).

5 It can be approximately seen from local bifurcation plot also.
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Fig. 6 Example of
hexagonal tiling plot for V

Fig. 7 Example of
hexagonal tiling plot for F

Fig. 8 Example of
hexagonal tiling plot for
probabilities of binding
antigens by antibodies, i.e.,
V × F . In case of optical
immunosensor, it is
fluorescence intensity
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4 Conclusions

In this work, reaction-diffusionmodels of two- and three-dimensional immunopixels
arraywere considered.Mathematically, it is described by the systemof lattice delayed
differential equations on rectangular or hexagonal grids. The systems include the
spatial operator describing the diffusion of antigens between pixels.

The main results are dealing with the qualitative investigation of the model. The
conditions of persistence were obtained. Also, we have managed to get the result
dealing with the extinction of the solutions. Namely, it can be seen that the amount
of pixels determines their non-vanishing. In a two-dimensional case, this dependence
can be presented in a clear form.

The conditions of local or global asymptotic stability can be obtained using the
construction of the Lyapunov functional. Because of the cumbersome evidence, we
didn’t include it here. They result in inequality including the system parameters and
delay. So, estimation of the delay enabling us local or global asymptotic stability can
be obtained.

Numerical analysis of themodel qualitative behavior is performedwith the help of
the bifurcation diagram, phase trajectories, and rectangular or hexagonal tile portraits.
It has shown the changes in qualitative behavior with respect to the growth of time
delay. Namely, starting from the stable focus at small delay values, then through
Hopf bifurcation to limit cycles, and finally through period doublings to deterministic
chaos. It is agreedwith the results on space-time chaos for reaction-diffusion systems,
which were previously obtained in [1–3].

As compared with the rectangular lattice model, for the hexagonal model, we
observe Hopf bifurcation at smaller values of τ . That is hexagonal lattice accelerates
changes in qualitative behavior.

Note, that model can be applied for an arbitrary amount of pixels determined by
natural N ≥ 1. However, it can be numerically seen that qualitative behavior of the
entire immunosensor is determined by 5 or 7 pixels array for square and hexagonal
lattices, respectively.

Acknowledgements We are very thankful to the reviewers for valuable remarks and comments
which allowed us to improve the work.
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Oscillation Criteria for Higher Order
Linear Differential Equations

Roman Koplatadze

Abstract Oscillation criteria generalizing a series of earlier results are established
for nth order linear differential equations.

Keywords Oscillation · Property A · Property B

1 Introduction

Consider the differential equation

u(n) + p(t) u = 0, (1.1)

where p ∈ L loc(R+;R), n ≥ 2.
For Eq. (1.1), A. Kneser posed the problem:What conditions must be satisfied for

the function p, so that Eq. (1.1) has similar solutions such equations

u(n) + u = 0, or u(n) − u = 0.

Definition 1.1 We say that Eq. (1.1) has PropertyA if any of its non-trivial solutions
is oscillatory, when n is even and either is oscillatory or satisfies

∣
∣u(i)(t)

∣
∣ ↓ 0 as t ↑ +∞ (k = 0, . . . , n − 1), (1.2)

when n is odd.

Definition 1.2 We say that Eq. (1.1) has PropertyB if any of its non-trivial solutions
either is oscillatory or satisfies either (1.2) or

R. Koplatadze (B)
Department of Mathematics and I.Vekua Institute of Applied Mathematics, I. Javakhishvili Tbilisi
State University, 2 University Str., 0186 Tbilisi, Georgia
e-mail: roman.koplatadze@tsu.ge

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
A. Domoshnitsky et al. (eds.), Functional Differential Equations and Applications,
Springer Proceedings in Mathematics & Statistics 379,
https://doi.org/10.1007/978-981-16-6297-3_15

207

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-6297-3_15&domain=pdf
mailto:roman.koplatadze@tsu.ge
https://doi.org/10.1007/978-981-16-6297-3_15


208 R. Koplatadze

∣
∣u(t)

∣
∣ ↑ +∞ as t ↑ +∞ (i = 0, . . . , n − 1), (1.3)

when n is even, and either is oscillatory or satisfies (1.3) when n is odd.

There is a lot of work dedicated to this problem. We will give some essential
results on this problem and some new results about it.

2 Results of First Type

Theorem 2.1 (Kneser [1]) If satisfying the condition

lim inf
t→+∞ tn/2 p(t) > 0,

then Eq. (1.1) has Property A.

This theorem was essentially generalized by Kondrat’ev.
His method was based on a comparison theorem which enables one to obtain

optimal results for establishing oscillatory properties as solutions of Eq. (1.1).

Theorem 2.2 (Kondrat’ev [2]) Let p(t) ≥ 0
(

p(t) ≤ 0
)

for t ∈ R+ and

lim inf
t→+∞ tn

∣
∣p(t)

∣
∣ > M∗

n

(

M∗n
)

. (2.1)

Then Eq. (1.1) has Property A ( Property B), where

M∗
n = max

{ − λ(λ − 1) · · · (λ − n + 1) : λ ∈ [0, n − 1]},
M∗n = max

{

λ(λ − 1) · · · (λ − n + 1) : λ ∈ [0, n − 1]}. (2.2)

Later, Chanturia proved integral comparison theorems which are integral gen-
eralized of the above-mentioned comparison theorems. Using these theorems, he
succeeded in improving condition (2.1).

Theorem 2.3 (Chanturia [3]) Let p(t) ≥ 0 (p(t) ≤ 0) and the inequality

lim inf
t→+∞ t

∫ +∞

t
sn−2

∣
∣p(s)

∣
∣ds > M∗

n

(

M∗n
)

be fulfilled. Then Eq. (1.1) has Property A (B), where M∗
n

(

M∗n
)

is given by (2.2).

This results for an almost linear differential equation

u(n)(t) +
m

∑

i=1

pi (t)
∣
∣u(σi (t))

∣
∣
μi (t)signu(σi (t)) = 0, (2.3)
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where
lim

t→+∞ σi (t) = +∞, lim
t→+∞ μi (t) = 1, pi ∈ L loc(R+;R)

was generalized by Koplatadze.
For Eq. (2.3), give only a simple example:

u(n)(t) + p(t)
∣
∣u(t)

∣
∣
1+ d

ln t signu(t) = 0, (2.4)

where p ∈ L loc(R+;R), d ∈ R.

Theorem 2.4 (Koplatadze [4, 5]) Let p(t) ≥ 0
(

p(t) ≤ 0
)

and

lim inf
t→+∞ t

∫ +∞

t
sn−2

∣
∣p(s)

∣
∣ds > M∗

n (d)
(

M∗n(d)
)

. (2.5)

Then Eq. (2.4) has Property A (B), where

M∗
n (d) = max

{ − λ(λ − 1) · · · (λ − n + 1)e−λd : λ ∈ [0, n − 1]},
(

M∗n(d) = max
{

λ(λ − 1) · · · (λ − n + 1)e−λd : λ ∈ [0, n − 1]}
)

.
(2.6)

Theorem 2.5 (Koplatadze [6]) Let p(t) ≥ 0
(

p(t) ≤ 0
)

and

lim inf
t→+∞

1

t

∫ t

0
sn

∣
∣p(s)

∣
∣ds > M∗

n (d)
(

M∗n(d)
)

. (2.7)

Then Eq. (2.4) has Property A (B), where M∗
n (d)

(

M∗n(d)
)

are given by (2.6).

Remark 2.1 For any d ∈ R, inequalities (2.5) and (2.7) cannot replace nonstrict
ones. For d = 0, Theorem 2.5 gives a theorem of Chanturia, which is an integral
generalization of Kondrat’ev’s theorem.

3 Results of Second Type

Theorem 3.1 (Kiguradze [7]) Let p(t) ≥ 0 (p(t) ≤ 0) and there exists non-
decreasing function ω : R+ → (0,+∞) such that

∫ +∞

1

dt

t ω(t)
< +∞,

∫ +∞

0

tn−1

ω(t)

∣
∣p(t)

∣
∣dt = +∞.

Then Eq. (1.1) has Property A (B).
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Theorem 3.2 (Chanturia [8]) Let p(t) ≥ 0 and one of two conditions

lim sup
t→+∞

1

ln t

∫ t

1
sn−1 p(s)ds > (n − 1)!

or

lim sup
t→+∞

t
∫ +∞

t
sn−2 p(s)ds > (n − 1)!

holds. Then Eq. (1.1) has Property A.

Theorem 3.3 (Chanturia [8]) Let p(t) ≤ 0 and for odd n, one of two conditions

lim sup
t→+∞

1

ln t

∫ t

0
sn−1

∣
∣p(s)

∣
∣ds > (n − 1)!

or

lim sup
t→+∞

t
∫ +∞

t
sn−2

∣
∣p(s)

∣
∣ds > (n − 1)!

be fulfilled and for even n one of two conditions

lim sup
t→+∞

1

ln t

∫ t

0
sn−1

∣
∣p(s)

∣
∣ds > 2(n − 2)!

or

lim sup
t→+∞

t
∫ +∞

t
sn−2

∣
∣p(s)

∣
∣ds > 2(n − 2)!

be fulfilled. Then Eq. (1.1) has Property B.

Remark 3.1 It is interesting that if the conditions of the Kiguradze theorem are
satisfied, then

lim sup
t→+∞

t
∫ +∞

t
sn−2

∣
∣p(s)

∣
∣ds = +∞.

That is, conditions of Chanturia theorems are fulfilled.

4 New Results

Theorem 4.1 Let p(t) ≥ 0 and

lim sup
t→+∞

1

ln t

∫ t

0
sn−1 p(s)ds >

(n − 1)!
4

.
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Then Eq. (1.1) has Property A.

Theorem 4.2 Let p(t) ≤ 0 and for odd n

lim sup
t→+∞

1

ln t

∫ t

0
sn−1

∣
∣p(s)

∣
∣ds >

(n − 1)!
4

and for even n

lim sup
t→+∞

1

ln t

∫ t

0
sn−1

∣
∣p(s)

∣
∣ds >

2
√
3

9
(n − 2)!

then Eq. (1.1) has Property B.

Denote

ρ(t,λ) = t−λ

∫ t

1

∫ +∞

s
ξn−2+λ

∣
∣p(ξ)

∣
∣dξ ds

and
ρ∗(λ) = lim sup

t→+∞
ρ(t,λ).

Theorem 4.3 Let p(t) ≥ 0 for t ∈ R+ and

lim
λ→1−

(1 − λ) ρ∗(λ) >
(n − 1)!

4
. (4.1)

Then Eq. (1.1) has Property A.

Theorem 4.4 Let p(t) ≤ 0, for odd n (4.1) be fulfilled and for even n

lim
t→1− (1 − λ) ρ∗(λ) >

2
√
3

9
(n − 2)!

Then Eq. (1.1) has Property B.

Remark 4.1 Here, we assume that

∫ +∞

0
sn−2+λ

∣
∣p(s)

∣
∣ds < +∞ for λ ∈ [0, 1).

Otherwise Eq. (1.1) has Property A (B).

Remark 4.2 These results are also valid for the equation

u(n)(t) +
m

∑

i=1

pi (t) u
(

τi (t)
) = 0,

where pi ∈ L loc(R+;R), τi (t) ≤ t for t ∈ R+, lim
t→+∞ τi (t) = +∞ (i = 1, . . . ,m).
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Abstract We consider a control problem associated with a mathematical model
of temperature control in industrial greenhouses. It is based on a one-dimensional
non-self-adjoint parabolic equation with variable coefficients. Defining the optimal
control as the minimizer quadratic functional with point observation, we prove the
existence of the minimizer and obtain necessary conditions.
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ut = (a(x, t)ux )x + b(x, t)ux , (x, t) ∈ QT = (0, 1) × (0, T ), T > 0, (1.1)

u(0, t) = ϕ(t), ux (1, t) = ψ(t), t > 0, (1.2)

u(x, 0) = ξ(x), 0 < x < 1. (1.3)

The functions a and b are smooth functions in QT satisfying inequalities 0 < a0 ≤
a(x, t) ≤ a1 < ∞, | b(x, t) |≤ b1 < ∞ for some a0, a1, b1, and ϕ,ψ ∈ W 1

2 (0, T ),

ξ ∈ L2(0, 1).
We considered this problem (1.1)–(1.3) for the first time in connection with the

temperature control problem in an industrial hothouse with flow heating and ceiling
ventilation (see [3–5])). We suppose that the functions ξ and ψ are fixed, and the
function ϕ is a control function to be found. Our task is to find a control function
ϕ = ϕ0 making the temperature u(x, t) at somefixed point x = c ∈ (0, 1)maximally
close to a given one, z(t), during the whole time interval (0, T ). We estimate the
control quality by the quadratic cost functional. It is so-called point-wise observation
(see [17]):

J [z,ϕ] :=
∫ T

0
(uϕ(c, t) − z(t))2dt. (1.4)

The function uϕ is a solution (as x = c) to problem (1.1)–(1.3) with a control function
ϕ.

Authors’ previous results are obtained in [3–8].
Now, we consider a more general problem (equation with variable coefficient a =

a(x, t), convective term b(x, t)ux ), and prove new results on necessary conditions
to minimizer. We prove these results by methods of qualitative theory of differential
equations and, in particular, by some methods described in [1, 2].

Various extremum problems for partial differential equations with integral func-
tionals were studied earlier in [9, 11, 12, 17]. In particular, the problem of mini-
mization of a functional with final observation and the problem of the optimal time
control were studied in [9–12, 24]. A review of results can be found in [3, 10, 13,
20, 24]. A more detailed review of known results is given at the end of this paper.

2 Basic Notations, Definitions and Results

Some of the following notations were introduced in [7, 8].

Definition 2.1 By V 1,0
2 (QT ), we denote the Banach space of all functions u ∈

W 1,0
2 (QT ) with the finite norm

‖u‖V 1,0
2 (QT ) := sup

0≤t≤T
‖u(x, t)‖L2(0,1) + ‖ux‖L2(QT ) (2.1)

such that t �→ u(·, t) is a continuous mapping [0, T ] → L2(0, 1).

Properties of V 1,0
2 (QT ) can be found in [15, 16], where this space is introduced.
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Definition 2.2 By W̃ 1
2 (QT ), we denote the space of all functions η ∈ W 1

2 (QT ) such
that η(x, T ) = 0 for all x ∈ (0, 1) and η(0, t) = 0 for all t ∈ (0, T ).

Definition 2.3 We say that a function u ∈ V 1,0
2 (QT ) is a weak solution to prob-

lem (1.1)–(1.3) if it satisfies the boundary condition u(0, t) = ϕ(t) and the integral
identity

∫
QT

(a(x, t)uxηx − b(x, t)uxη − uηt ) dx dt

=
∫ 1

0
ξ(x)η(x, 0) dx +

∫ T

0
a(1, t)ψ(t) η(1, t) dt (2.2)

for any function η ∈ W̃ 1
2 (QT ).

Theorem 2.4 ([5]) Problem (1.1)–(1.3) has a unique weak solution. This solution
satisfies the estimate

‖u‖V 1,0
2 (QT ) ≤ C1

(‖ϕ‖W 1
2 (0,T ) + ‖ψ‖W 1

2 (0,T ) + ‖ξ‖L2(0,1)
)
, (2.3)

where the constant C1 is independent of ϕ, ψ, and ξ.

Let us further denote by uϕ the solution of problem (1.1)–(1.3) with ϕ,ψ ∈
W 1

2 (0, T ), ξ ∈ L2(0, 1).
Suppose z ∈ L2(0, T ). Let � ⊂ W 1

2 (0, T ) be a bounded closed convex set of
control functions. For some c ∈ (0, 1) consider the functional J [z,ϕ] defined by
(1.4) and put

m[z,�] := inf
ϕ∈�

J [z,ϕ]. (2.4)

Definition 2.5 We say that minimization problem (1.1)–(1.3), (2.4), z ∈ L2(0, T ),
ϕ ∈ �, has a solution if there exists a function ϕ0 ∈ � such that

m[z,�] = J [z,ϕ0]. (2.5)

The function ϕ0 ∈ � we call a minimizer for the problem (1.1)–(1.3), (2.4).

For a necessary condition of optimality, we also consider the adjoint to (1.1)–(1.3),
(2.4) mixed problem for the inverse parabolic equation

pt + (a(x, t)px )x − (b(x, t)p)x = δ(x − c) ⊗ (
uϕ(c, t) − z(t)

)
, (2.6)

(x, t) ∈ QT ,

p(0, t) = 0, a(1, t)px (1, t) − b(1, t)p(1, t) = 0, 0 < t < T, (2.7)

p(x, T ) = 0, 0 < x < 1, (2.8)

where uϕ is a solution of problem (1.1)–(1.3).
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Definition 2.6 We say that a function p ∈ V 1,0
2 (QT ) is a weak solution to problem

(2.6)–(2.8) if it satisfies the boundary condition p(0, t) = 0, and the integral identity

∫
QT

((a(x, t)px − b(x, t)p)ηx + pηt ) dx dt

= −
∫ T

0

(
uϕ(c, t) − z(t)

)
η(c, t) dt (2.9)

holds for any function η ∈ W 1
2 (QT ) such that η(0, t) = 0, and η(x, 0) = 0.

Theorem 2.7 For any z ∈ L2(0, T ) and any bounded closed convex set � ⊂
W 1

2 (0, T ) problem (1.1)–(1.3), (2.4) has unique solution ϕ0 ∈ �.

Theorem 2.8 Let ϕ0 ∈ � be a minimizer. Then for any ϕ ∈ � the following inequal-
ity holds: ∫ T

0

(
uϕ0(c, t) − z(t)

) (
uϕ(c, t) − uϕ0(c, t)

)
dt ≥ 0.

Theorem 2.9 There exists a unique weak solution p ∈ V 1,0
2 (QT ) to problem (2.6)–

(2.8), and this solution satisfies the following inequality

‖p‖V 1,0
2 (QT ) ≤ C2

(‖ϕ‖W 1
2 (0,T ) + ‖ψ‖W 1

2 (0,T ) + ‖ξ‖L2(0,1) + ‖z‖L2(0,T )

)
, (2.10)

where the constant C2 is independent of ϕ, ψ, ξ and z.

Theorem 2.10 Let ϕ0 ∈ � be a minimizer. Then for any ϕ ∈ � the following
inequality holds:

∫ T

0
a(0, t)px (0, t) (ϕ(t) − ϕ0(t)) dt ≤ 0, (2.11)

where p is a weak solution of the problem (2.6)–(2.8) with ϕ = ϕ0.

Theorems 2.8 and 2.10 give necessary conditions to minimizer.

3 Proofs

At first we prove Theorem 2.7.

Proof Let us define the set

B =: {
y = uϕ(c, ·) : ϕ ∈ �

} ⊂ L2(0, T ).
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Since � is a convex set, B is a convex set, too. Therefore, by (2.3), we have the
inequality

‖uϕ‖V 1,0
2 (QT ) ≤ C1

(‖ξ‖L2(0,1) + ‖ϕ‖W 1
2 (0,T ) + ‖ψ‖W 1

2 (0,T )

)
. (3.1)

Note that the constant C1 does not depend on ξ, ϕ and ψ.
The set � is bounded and closed in W 1

2 (0, T ) and, by estimate (3.1), we obtain
that B is a bounded set in L2(0, T ).

Now we prove that B is a closed subset of L2(0, T ). Consider a fundamen-
tal sequence {yk}∞k=1 ⊂ B in L2(0, T ) and its limit y ∈ L2(0, T ). Therefore, ‖y −
yk‖L2(0,T ) → 0, k → ∞. The corresponding sequence {ϕk} ⊂ �, by the bounded-
ness of �, is a weakly pre-compact set in W 1

2 (0, T ). Denote by ϕ ∈ � the weak
limit of any its subsequence. So, by theorem [22], ch. 2, par. 38, (see also [21]), there
exists a new subsequence {ϕk j } such that

‖ϕ̃l − ϕ‖W 1
2 (0,T ) → 0, l → ∞, ϕ̃l = 1

l

l∑
j=1

ϕk j . (3.2)

Consequently, for the solutions

uϕ̃l = 1

l

l∑
j=1

uϕk j

we get

‖uϕ̃l − uϕ̃m ‖V 1,0
2 (QT ) ≤ C1‖ϕ̃l − ϕ̃m‖W 1

2 (0,T ) → 0, l, m → ∞. (3.3)

This means that uϕ̃l (0, t) = ϕ̃l(t), and the equality

∫
QT

(a(x, t)(uϕ̃l )xηx − b(x, t)ηx − uϕ̃l ηt ) dx dt

=
∫ 1

0
ξ(x)η(x, 0) dx +

∫ T

0
a(1, t)ψ(t) η(1, t) dt (3.4)

fulfils for any η ∈ W̃ 1
2 (QT ).

The limit function u ∈ V 1,0
2 (QT ) exists in accordance with (3.2), (3.3) and (3.4).

So, u is a weak solution of (1.1)–(1.3) with the boundary function ϕ satisfying the
inequality

‖u − uϕ̃l ‖V 1,0
2 (QT ) ≤ C1‖ϕ − ϕ̃l‖W 1

2 (0,T ).

So, by ((6.15), [16], ch. 1) we get
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‖u(c, ·) − uϕ̃l (c, ·)‖L2(0,T ) ≤ C3‖u − uϕ̃l ‖V 1,0
2 (QT )

≤ C1C3‖ϕ − ϕ̃l‖W 1
2 (0,T ),

whence y = u(c, ·) ∈ B, and B is a closed subset in L2(0, T ).

To continue the proof, we formulate the following lemma (see, for example, [3]):

Lemma 3.1 Let A be a closed convex set in a Hilbert space H. Then for any x ∈ H
there exists a unique element y ∈ A such that

‖x − y‖ = inf
z∈A

‖x − z‖. (3.5)

Consequently, by Lemma 3.1, there exists a unique function y = u(c, ·), where
u ∈ V 1,0

2 (QT ) is a solution to problem (1.1)–(1.3) with some ϕ0 ∈ �, such that

m[z,�] = J [z,ϕ0].

Now, we prove the uniqueness of such function ϕ0 ∈ �. If it is not true, consider
a pair of such functions ϕ1, ϕ2. The function ũ = uϕ1 − uϕ2 is a solution to the
problem

ũt = (a(x, t)ũx )x + b(x, t)ũx , 0 < t < T, 0 < x < 1, (3.6)

ũ(0, t) = ϕ̃(t), 0 < t < T, ϕ̃(t) = ϕ1(t) − ϕ2(t), (3.7)

ũ(c, t) = 0, ũx (1, t) = 0, 0 < t < T, (3.8)

ũ(x, 0) = 0, 0 < x < 1. (3.9)

Using integral identity (2.2) with the function η equal to 0 on [0, c] × [0, T ],
we obtain that the function ũ on the rectangle Q(c)

T = (c, 1) × (0, T ) is equal to the
solution of the problem

ût = (a(x, t)ûx )x + b(x, t)ûx , 0 < t < T, c < x < 1, (3.10)

û(c, t) = 0, ûx (1, t) = 0, 0 < t < T, (3.11)

û(x, 0) = 0, c < x < 1. (3.12)

But the solution of problem (3.10)–(3.12) vanishes on [c, 1] × [0, T ], so we have

ũ(x, t) = 0, c < x < 1, 0 < t < T . (3.13)

Let us prove that
ũ(x, t) = 0, 0 < x < 1, 0 < t < T . (3.14)
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We apply the unique continuation theorem for parabolic equations (th. 1.1, [23]) to
the solution ũ of problem (3.6)–(3.9) and obtain that (3.14) follows from (3.13). So,
ũ(x, t) = 0 for all x ∈ (0, 1) and t ∈ (0, T ). Therefore, ϕ̃(t) = ũ(0, t) = 0. �

Now we prove Theorem 2.8.

Proof Denote by ϕ0 ∈ � a minimizer for the problem (1.1)–(1.3), (2.4) (minimizer
exists by virtue of theorem 2.7). Now, for an arbitrary ϕ ∈ �, by the convexity of �

we obtain that ϕ0 + γ(ϕ − ϕ0) ∈ � for γ ∈ [0, 1]. Then

0 ≤ d

dγ
J [z,ϕ0 + γ(ϕ − ϕ0)]|γ=0

= d

dγ

∫ T

0
(uϕ0+γ(ϕ−ϕ0)(c, t) − z(t))2dt |γ=0

= 2
∫ T

0
(uϕ0+γ(ϕ−ϕ0)(c, t) − z(t))(uϕ(c, t) − uϕ0(c, t))dt |γ=0

= 2
∫ T

0
(uϕ0(c, t) − z(t))(uϕ(c, t) − uϕ0(c, t))dt, (3.15)

and Theorem 2.8 is proved. �

Let us prove the existence and uniqueness of the solution to (2.6)–(2.8) and also
the estimate (2.10).

Proof We can prove the uniqueness of solution by traditional methods (see [16], ch.
3). To prove the existence of solutions, we can use Galerkin’s method. The scheme
of such type of proof is presented in ([16], ch. 3, par. 3). The main problem is to
obtain estimate (2.10) from the energy balance equation, which has the following
form:

‖p(x, t1)‖2L2(0,1) + 2
∫

Qt1 ,T

a(x, t)p2
x dxdt (3.16)

= ‖p(x, T )‖2L2(0,1) + 2
∫

Qt1 ,T

b(x, t)ppx dxdt

−
∫ T

t1

p(c, t)(uϕ(c, t) − z(t))dt,

Qt1,T = (t1, T ) × (0, 1), 0 < t1 < T .

Now we apply the inequality

∫ T

t1

p2(c, t)dt ≤
∫ 1

0

∫ T

t1

p2
x (x, t)dxdt, (3.17)

which is valid for functions p ∈ V 1,0
2 (QT ), satisfying the condition p(0, t) = 0.

From (3.16) and (3.17), we obtain



220 I. Astashova et al.

‖p(x, t1)‖2L2(0,1) + 2a0‖px‖2L2(Qt1 ,T ) (3.18)

≤ ‖p(x, T )‖2L2(0,1) +
(
ν1 + ν2

2

)
‖px‖2L2(Qt1 ,T )

+ b2
1

ν1
(T − t1) sup

t1≤t≤T
‖p(x, t)‖2L2(0,1) + 1

2ν2
‖uϕ(c, t) − z(t)‖2L2(t1,T ),

ν1, ν2 > 0.

Denote y(t) = sup
t≤τ≤T

‖p(x, τ )‖L2(0,1). Therefore,

y2(t1) + 2a0‖px‖2L2(Qt1 ,T ) (3.19)

≤ y2(T ) +
(
ν1 + ν2

2

)
‖px‖2L2(Qt1 ,T )

+ b2
1

ν1
(T − t1)y2(t1) + 1

2ν2
‖uϕ(c, t) − z(t)‖2L2(t1,T ).

Then, by choosing ν1 + ν2
2 < a0 and t1 > T − ν1

2b2
1
, we obtain

y2(t1) + ‖px‖2L2(Qt1 ,T ) ≤ C4
(
y2(T ) + ‖uϕ(c, t) − z(t)‖2L2(t1,T )

)
. (3.20)

By (3.20) we have the following estimate:

‖p‖V 1,0
2 (Qt1 ,T ) ≤ C5

(‖p(x, T )‖L2(0,1) + ‖uϕ(c, t) − z(t)‖L2(t1,T )

)
. (3.21)

We divide the segment [0, T ] from right to left to the segments [T, t1], [t1, t2], …,
[tn, 0], with a length less than ν1

2b2
1
. For each of them estimate (3.21) holds. We derive

from these estimates, then, taking into account (2.3) and the equality p(x, T ) = 0,
the required inequality

‖p‖V 1,0
2 (QT ) ≤ C6

(‖uϕ(c, t) − z(t)‖L2(t1,T )

)
≤ C2

(‖ϕ‖W 1
2 (0,T ) + ‖ψ‖W 1

2 (0,T ) + ‖ξ‖L2(0,1) + ‖z‖L2(0,T )

)

fulfill. Further, the proof is completed according to the scheme presented in ([16],
ch. 3, par. 3). �

Now we prove the necessary condition for the extremum in terms of the adjoint
problem (Theorem 2.10).

Proof Let ϕ0 ∈ � be a minimizer, and ϕ ∈ � be an arbitrary control function. Put
w = uϕ − uϕ0 ∈ V 1,0

2 (QT ). It follows from (2.2) thatw satisfies the integral identity

∫
QT

(a(x, t)wxηx − b(x, t)wxη − wηt ) dx dt = 0. (3.22)
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Consider a sequence of weak solutions (from V 1,0
2 (QT )) to problems

(pk)t + (a(x, t)(pk)x )x − (b(x, t)pk)x = θk(t)ζk(x), (x, t) ∈ QT , (3.23)

pk(0, t) = 0, a(1, t)(pk)x (1, t) − b(1, t)pk(1, t) = 0, 0 < t < T, (3.24)

pk(x, T ) = 0, 0 < x < 1, k = 1, 2, . . . , (3.25)

where

θk(t) ∈ D(0, T ), ‖θk(t) − uϕ0(c, t) + z(t)‖L2(0,T ) → 0, k → ∞, (3.26)

ζk(x) ∈ D(0, 1), ζk(x) → δ(x − c) in H−1(0, 1), k → ∞. (3.27)

Note, that pk are smooth functions in QT . By definition (2.9) we have

‖pk − p‖V 1,0
2 (QT ) → 0, k → ∞. (3.28)

Now we can put η = pk in (3.22). Then, we obtain the equality

∫
QT

(a(x, t)wx (pk)x − b(x, t)wx pk − w(pk)t ) dx dt = 0. (3.29)

From (3.23) – (3.25), (3.29) and the theoremon the regularity of solutions to parabolic
boundary value problems (see [15], ch. 3, par. 12) for k → ∞ we get the equalities

0 =
∫

QT

((a(x, t)px )x − (b(x, t)p)x + pt ) w dx dt

+
∫ T

0
a(0, t)px (0, t)(ϕ(t) − ϕ0(t))dt

=
∫ T

0

(
uϕ0(c, t) − z(t)

) (
uϕ(c, t) − uϕ0(c, t)

)
dt

+
∫ T

0
a(0, t)px (0, t)(ϕ(t) − ϕ0(t))dt. (3.30)

Applying (3.15) and (3.30), we obtain the required inequality (2.11).
Theorem 2.10 is proved. �

4 Conclusions. Notes and Comments

Let us note the main difference of considered problem from the previous ones. It
consists in the type of observation. In previous articles of different authors, control
problems with final and distributed observation are studied (see, for example, [11,
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14, 17]), whereas, in our articles, we consider the point-wise observation for different
parabolic control problems.

One of the first studies is described in [12], where the heat equation with the third-
type boundary condition containing the control function is considered. In [12], for the
extremum problem with the final observation functional, the existence of minimizer
is proved in some class of measurable control functions. The author also proves the
existence and uniqueness of minimizer in the case of a functional with an additional
quadratic term. Some of the later results deal with a non-homogeneous equation
having a distribution in QT control function at the right-hand side and with the
distributed or boundary observation (see [17–19]). Other problems of minimization
with final observation and the problem of the optimal time control are considered
in [9–11, 24]. Note that our formulation of the extremum problem with pointwise
observation is different from those formulated in the papers listed. Besides, the case
of the equation with a free convection term was not previously considered. Closely
related to our formulation of problem is the problem with distributed control and
point-wise observation but for different cost functional. For such a problem related to
the parabolic equation with symmetric elliptic operator, the existence and uniqueness
of minimizer are proved in [17].

In our articles [3–8] we prove the existence and uniqueness of the control function
ϕ0(t) from a convex set (the minimizer) giving the minimum to this functional [4]
and study the structure of the set of accessible temperature functions [4, 8]. We also
prove the “dense controllability” of the problem for some set of control functions [6]
and obtain qualitative properties of minimizers [7]. In comparison with our previous
results, in the present paper we consider the parabolic equation with non-self-adjoint
elliptic operator and an arbitrary convex closed bounded set of control functions.
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Homogenization of a Parabolic Equation
for p-Laplace Operator in a Domain
Perforated Along (n− 1)-Dimensional
Manifold with Dynamical Boundary
Condition Specified on Perforations
Boundary: Critical Case

A. V. Podolskiy and T. A. Shaposhnikova

Abstract The present paper focuses on the study of a homogenized limit of a
parabolic equation for the p-Laplace operator with a nonlinear dynamical boundary
condition set in a perforated domain that is obtained by removing “tiny” balls from
a fixed domain. We investigate a “critical” case that is characterized by a relation
between the size of holes, period of the structure, and coefficient in the boundary con-
dition. The main result of the paper is a theorem that states weak convergence of an
original problem solution to a solution of the limit problem containing transmission
condition with a nonlocal “strange” term.

Keywords 35B27 · 35J95 · Homogenization · Perforated media · p-Laplacian ·
Nonlinear parabolic equation · Dynamical boundary conditions · Strange term ·
Nonlocal term

1 Introduction

The present paper investigates asymptotic behavior as ε → 0 of a solution uε to
an initial boundary value problem for the equation ∂t uε − Δpuε = f (x, t), where
Δpuε ≡ div(|∇uε|p−2∇uε), 2 ≤ p < n in a perforated domain Ωε that is obtained
by removing balls Gε with a diameter of order O(εα), α > 1, from a fixed domain
Ω ⊂ R

n . It is supposed that balls are ε-periodically distributed along (n − 1)-
dimensional manifold γ . On the perforations boundary, nonlinear dynamical condi-
tion ε−k∂t uε + |∇uε|p−2∂νuε + ε−kσ(uε) = ε−kg(x, t), k ∈ R, is specified.Dynam-
ical boundary conditions arise while modeling different physical processes; we refer
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to the following works [1, 2] which give an overview of this type of problems.
The combination of a dynamical boundary condition and a parabolic equation was
considered, for example, in [3, 4].

Papers [5–7] are devoted to homogenization of initial boundary value problems
with dynamical boundary condition in the case α = 1. In the present paper, we
consider the case α > 1, so-called “tiny” cavities. Such a structure of the perforated
domain is noteworthy because the limit problem may contain “strange” term. That
behavior for different problemswas studied, for example, in works [8–15]. Papers [8,
9] investigate asymptotic behavior of the solution to the diffusion equation with the
Laplace operator with a linear dynamical boundary condition in the critical case.
They show that homogenization leads to a rise of a nonlocal memory “strange” term
that is a solution to an ODE.

The purpose of this paper is to construct a homogenized model and prove weak
convergence as ε → 0 of the original problem solution to a solution of the homog-
enized problem in the critical case: α = (n − 1)/(n − p), k = α(p − 1). We prove
that the limit problem contains a transmission condition with a new nonlinear non-
local term that could be obtained by solving an ODE. Therefore, this paper extends
results of [8] to the case of the nonlinear parabolic equation for the p-Laplace operator
and a nonlinear dynamical boundary condition.

2 Statement of Results

2.1 Problem Statement

Let Ω be a bounded domain in R
n , n ≥ 3, with a smooth boundary ∂Ω; γ =

Ω
⋂{x1 = 0} 	= ∅ is a domain on the plane x1 = 0, Y = (−1/2, 1/2)n , G0 = {x :

|x | < 1}. Define δB = {x : δ−1x ∈ B}, δ > 0. Consider G̃ε = ⋃

j∈Z′
(aεG0 + εz) =

⋃

j∈Z′
G j

ε , where Z
′ is a set of vectors (0, z2, . . . , zn), with whole coefficients zi ,

i = 2, . . . , n, ε > 0, aε = C0ε
α , α = n−1

n−p , C0 = const > 0.

We define a set Gε = ⋃

j∈ϒε

G j
ε , where ϒε = { j ∈ Z

′ : ρ(∂Ω,G j
ε ) ≥ 2ε)}, and

S j
ε = ∂G j

ε . Note that |ϒε| = dεn−1, d = const > 0. By T j
r , we denote a ball of

radius r with the center in P j
ε , where P j

ε is the center of a cube Y j
ε = εY + jε,

j ∈ ϒε.
Let us introduce sets: Ωε = Ω \ Gε, Sε = ∂Gε, ∂Ωε = Sε

⋃
∂Ω.

In QT
ε = Ωε × (0, T ), where 0 < T < ∞, we consider the following initial

boundary value problem:
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⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂t uε − Δpuε = f (x, t), (x, t) ∈ QT
ε ,

ε−k∂t uε + ∂νp uε + ε−kσ(uε) = ε−kg(x, t), (x, t) ∈ STε = Sε × (0, T ),

uε = 0, (x, t) ∈ 
T = ∂Ω × (0, T ),

uε(x, 0) = 0, x ∈ Ωε,

uε(x, 0) = 0, x ∈ Sε,

(1)

where Δpu ≡ div(|∇u|p−2∇u), 2 ≤ p < n, f ∈ L2(QT ), QT = Ω × (0, T ),
∂νp u ≡ |∇u|p−2(∇u, ν),ν is the unit outwardnormal vector to STε , and k = (n−1)(p−1)

n−p ,

n ≥ 3. Also it is considered that g(x, t) ∈ C1(QT ), σ(u) ∈ C1(R), σ(0) = 0 and
there exist such positive constants k1, k2 that

(σ (u) − σ(v))(u − v) ≥ k1|u − v|p,
|σ(u)| ≤ k2|u|p−1.

(2)

ByW 1,p(Ωε, ∂Ω), we denote a space that is obtained as a closure inW 1,p(Ωε) of
the set of infinitely differentiable in Ωε functions that vanish near the boundary ∂Ω .
DefineW−1,q(Ωε, ∂Ω), q = p

p−1 , as an adjoint toW
1,p(Ωε, ∂Ω), and by< ., . >Ωε

we denote duality relation.
The trace theorem applied to functions from the spaceW 1,p(Ωε, ∂Ω) implies that

their traces belong to W 1−1/p,p(Sε). By W−1/q,q(Sε), we denote a space adjoint to
W 1−1/p,p(Sε), and by 〈., .〉Sε

we express duality relation.
Next, we define several spaces that naturally arise in considering the prob-

lem (1). First, we introduce a space L
s
ε = Ls(Ωε) × Ls(Sε) = {U = (u, z) : u ∈

Ls(Ωε), z ∈ Ls(Sε)}, s ∈ (1,∞) with a norm

‖U‖Ls
ε
=

⎛

⎝
∫

Ωε

|u|sdx + ε−k
∫

Sε

|z|sds
⎞

⎠

1
s

.

The space Hε = L
2
ε is a Hilbert space with an inner product

(U, V )Hε
= (u, v)L2(Ωε) + ε−k(ũ, ṽ)L2(Sε),

where U = (u, ũ), V = (v, ṽ) ∈ Hε. Then, for p > 1 we consider V
p
ε = {U =

(u, u|Sε
) : u ∈ W 1,p(Ωε, ∂Ω)} (by u|Sε

, we denote the trace of function u on Sε),
and equip it with the following norm:

‖(u, u|Sε
)‖p

V
p
ε

= ‖u‖p
W 1,p(Ωε,∂Ω)

+ ε−k‖u|Sε
‖p
W 1−1/p,p(Sε)

.

Note that Vp
ε can be identified with the closed subspace in the W 1,p(Ωε, ∂Ω) ×

W 1−1/p,p(Sε) regarding this norm. According to the embedding W 1,p(Ωε, ∂Ω)

↪→ W 1−1/p,p(Sε), we conclude that norms in spaces V
p
ε and W 1,p(Ωε, ∂Ω) are

equivalent. For the sake of convenience, we would identify, when useful, (u, u|Sε
)
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with u. Also note thatVp
ε is compactly embedded intoHε for p > 2n

n+2 . It is clear that
(V

p
ε )∗ can be identified with a closed subspace in W−1,q(Ωε, ∂Ω) × W−1/q,q(Sε),

also we have Vp
ε ↪→ L

2
ε = (L2

ε)
∗ ↪→ (V

p
ε )∗.

We say that a pair of functions Uε = (uε, ũε) is a weak solution of (1) if

uε ∈ L p(0, T ;W 1,p(Ωε, ∂Ω)), ∂t uε ∈ Lq(0, T ;W−1,q(Ωε, ∂Ω)),

ũε ∈ L p(0, T ;W 1−1/p,p(Sε, ∂Ω)), ∂t ũε ∈ Lq(0, T ;W−1/q,q(Sε, ∂Ω)),

ũε(t) = uε|Sε
(t) for a.e. t ∈ (0, T ), and if it satisfies integral identity

T∫

0

〈∂t uε, v〉Ωε
dt + ε−k

T∫

0

〈∂t ũε, v〉Sε
dt+

+
∫

QT
ε

|∇uε|p−2∇uε∇vdxdt + ε−k
∫

STε

σ (ũε)vdsdt =

= ε−k
∫

STε

gvdsdt +
∫

QT
ε

f vdxdt,

(3)

for an arbitrary pair Θ = (v, v|Sε
), where v is from L p(0, T ;W 1,p(Ωε, ∂Ω)), i.e.

Θ ∈ L p(0, T ;Vp
ε )). Moreover, Uε|t=0 = (0, 0) in Hε.

2.2 Existence, Uniqueness, and Extension

Using Galerkin’s method, the existence and uniqueness theorem for problem (1) is
proved.

Theorem 1 There exists a unique weak solution uε of the problem (1) and the fol-
lowing estimations are valid:

‖Uε‖L∞(0,T ;Vp
ε ) + ‖Uε‖L p(0,T ;Vp

ε ) + ‖∂tUε‖L2(0,T ;Hε) ≤ K ; (4)

here and below, constant K is independent of ε.

By using extension results from [18], we have the following:

Theorem 2 LetΩε be a perforated domain defined above. Then there exist extension
operator Rε : L p(0, T ;W 1,p(Ωε, ∂Ω)) → L p(0, T ;W 1,p

0 (Ω)) and Rε : L p(QT
ε )

→ L p(QT ), such that ∀u ∈ L p(0, T ;W 1,p(Ωε)) we have

Rεu = u, in QT
ε ,

‖Rεu‖L p(QT ) ≤ K‖u‖L p(QT
ε ), ‖∇Rεu‖L p(QT ) ≤ K‖∇u‖L p(QT

ε ).
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Then, we use the well-known result that there exists linear extension operator
Pε : H 1(QT

ε ) → H 1(QT ) such that

‖∂t (Pεuε)‖2L2(QT ) + ‖∇x (Pεuε)‖2L2(QT ) ≤ K (‖∂t uε‖2L2(QT
ε ) + ‖∇xuε‖2L2(QT

ε )).

Hence, estimations (4) imply that a subsequence exists (we preserve the notation of
the original one) such that as ε → 0, we have

Rεuε ⇀ u0 weakly in L p(0, T ;W 1,p
0 (Ω)),

Rεuε → u0 strongly in L p(QT ),

∂t (Pεuε) ⇀ ∂t u0 weakly in L2(QT ),

(5)

where uε is a solution to (1).

2.3 Homogenization Theorem

The next theorem gives a description of the limit function u0 from (5).

Theorem 3 Let n ≥ 3, α = n−1
n−p , k = n−1

n−p (p − 1), uε be a weak solution of (1).
Then the function u0, defined in (5), is a weak solution of the following problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t u0 − Δpu0 = f (x, t), (x, t) ∈ QT ,
[
u0

]∣∣
∣
γ

= 0, t ∈ (0, T ),

[
∂νp u0

]∣∣
∣
γ

= An,p|u0 − Hu0 |p−2(u0 − Hu0), t ∈ (0, T ),

∂t Hu0 + σ(Hu0) =
Bn,p|u0 − Hu0 |p−2(u0 − Hu0) + g(x, t), (x, t) ∈ γ T

u0 = 0, (x, t) ∈ 
T ,

u0(x, 0) = 0, x ∈ Ω,

Hu0(x, 0) = 0, x ∈ γ,

(6)

where ∂νp u0 = |∇u0|p−2∂x1u0, γ
T = γ × (0, T ), An,p =

(
n−p
p−1

)p−1
Cn−p
0 ωn, Bn,p

=
(
n−p
p−1

)p−1
C1−p
0 , and by

[
ζ
]∣∣
∣
γ
we denote a jump of a function ζ in points x ∈ γ .

Remark 1 Denote by Hϕ , a solution to the following Cauchy problem:

{
∂t Hϕ + σ(Hϕ) = Bn,p|ϕ − Hϕ|p−2(ϕ − Hϕ) + g(x, t),
Hϕ(x, 0) = 0,

(7)

where ϕ ∈ L p(γ T ). It’s well known that there exists a solution to this problem. Using
Hϕ as a test function in the corresponding integral identity and monotonicity of the
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function σ , we get

‖Hϕ(x, t)‖2L2(γ ) + k1

t∫

0

‖Hϕ‖p
L p(γ )dτ + C1

t∫

0

‖ϕ − Hϕ‖p
L p(γ )dτ ≤

≤ Bn,p

t∫

0

∫

γ

|ϕ − Hϕ|p−1|ϕ|dx ′dτ +
t∫

0

∫

γ

|g||Hϕ|dx ′dτ.

Then we use Young’s inequality and obtain

‖Hϕ(x, t)‖2L2(γ ) + C2

t∫

0

‖Hϕ‖p
L p(γ )dτ + C3

t∫

0

‖ϕ − Hϕ‖p
L p(γ )dτ ≤

≤ K

⎛

⎝

t∫

0

‖ϕ‖p
L p(γ )dτ +

t∫

0

‖Hϕ‖2L2(γ )dτ + max
γ T

|g|2
⎞

⎠ .

Using Gronwall’s lemma, we finally prove an estimation

‖Hϕ‖2L∞(0,T ;L2(γ )) + ‖Hϕ‖p
L p(γ T )

≤ K

(

‖ϕ‖p
L p(γ T )

+ max
γ T

|g|2
)

.

Next, for two solutions of the Cauchy problem related to functions ϕ and ζ , we
take Hϕ − Hζ as a test function in integral identities and subtract one from another.
As a result, we get

‖(Hϕ − Hζ )(x, t)‖2L2(γ )
+ K1

t∫

0
‖Hϕ − Hζ‖p

L p(γ )dτ+

K2

t∫

0
‖ϕ − Hϕ − ζ + Hζ‖p

L p(γ )dτ ≤

Bn,p

t∫

0

∫

γ

|(|ϕ − Hϕ|p−2(ϕ − Hϕ) − |ζ − Hζ |p−2(ζ − Hζ ))||ϕ − ζ |dx ′dτ ≤

K3

t∫

0

∫

γ

(|ϕ − Hϕ| + |ζ − Hζ |)p−2|ϕ − ζ ||ϕ − Hϕ − ζ + Hζ |dx ′dτ ≤

K3

t∫

0

∫

γ

(|ϕ − Hϕ| + |ζ − Hζ |)p−2(|ϕ − ζ |2 + |ϕ − ζ ||Hϕ − Hζ |)dx ′dτ.

Using Holder’s inequality, we derive



Homogenization of a Parabolic Equation for p-Laplace Operator in a Domain … 231

t∫

0

∫

γ

(|ϕ − Hϕ| + |ζ − Hζ |)p−2|ϕ − ζ |2dx ′dτ ≤

(‖ϕ − Hϕ‖p
L p(γ T )

+ ‖ζ − Hζ ‖p
L p(γ T )

)
p−2
p ‖ϕ − ζ‖2L p(γ T ) ≤

K (‖ϕ‖p−2
L p(γ T )

+ ‖ζ‖p−2
L p(γ T )

+ max
γ T

|g| 2(p−2)
p )‖ϕ − ζ‖2L p(γ T )

and

t∫

0

∫

γ

(|ϕ − Hϕ| + |ζ − Hζ |)p−2|ϕ − ζ ||Hϕ − Hζ |dx ′dτ ≤

(‖ϕ − Hϕ‖p
L p(γ T )

+ ‖ζ − Hζ‖p
L p(γ T )

)
p−2
p ‖Hϕ − Hζ‖L p(γ T )‖ϕ − ζ‖L p(γ T ) ≤

K (‖ϕ‖p−2
L p(γ T )

+ ‖ζ‖p−2
L p(γ T )

+ max
γ T

|g| 2(p−2)
p )2‖ϕ − ζ‖L p(γ T ).

Using these estimations, we obtain

‖Hϕ − Hζ ‖p
L p(γ T )

≤ K (1 + (‖ϕ‖p−2
L p(γ T )

+ ‖ζ‖p−2
L p(γ T )

+ max
γ T

|g| 2(p−2)
p )2)×

(1 + ‖ϕ‖L p(γ T ) + ‖ζ‖L p(γ T ))‖ϕ − ζ‖L p(γ T ).

(8)

3 Proof of the Homogenization Theorem

3.1 Integral Inequality Construction

Using monotonicity of the p-Laplace operator and functions |λ|p−2λ, σ(λ)we derive
that uε satisfies the following integral inequality:

T∫

0

〈∂tζ, ζ − uε〉Ωε
dt + ε−k

T∫

0

〈∂tζ, ζ − uε〉Sε
dt+

∫

QT
ε

|∇ζ |p−2∇ζ∇(ζ − uε)dxdt + ε−k
∫

STε

σ (ζ )(ζ − uε)dsdt ≥

ε−k
∫

STε

g(ζ − uε)dsdt +
∫

QT
ε

f (ζ − uε)dxdt−

1

2
‖ζ(x, 0)‖2L2(Ωε)

− 1

2
ε−k‖ζ(x, 0)‖2L2(Sε)

,

(9)
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where ζ is an arbitrary function from the space L p(0, T ;Vp
ε ) such that ∂tζ ∈

Lq(0, T ; (V
p
ε )∗).

3.2 Test Function Selection

3.2.1 Time Component

Weconsiderϕ = η(t)ψ(x), η(t) ∈ C1([0, T ]),ψ(x) ∈ C∞
0 (Ω) and define functions

H ε, j
ϕ as a solution to ODEs:

⎧
⎪⎨

⎪⎩

∂t H
ε, j
ϕ + σ(H ε, j

ϕ ) =
Bn,p|ϕ(P j

ε , t) − H ε, j
ϕ |p−2(ϕ(P j

ε , t) − H ε, j
ϕ ) + g(P j

ε , t),
H ε, j

ϕ = 0.

(10)

Note that H ε, j
ϕ (t) = Hϕ(P j

ε , t) where Hϕ is a solution to the problem (7).

3.2.2 Spatial Component

Then we consider auxiliary functions w j
ε , j ∈ ϒε, as a solution to boundary value

problems: ⎧
⎪⎨

⎪⎩

Δpw
j
ε = 0, x ∈ T j

ε/4 \ G j
ε ,

w j
ε = 1, x ∈ ∂G j

ε ,

w j
ε = 0, x ∈ ∂T j

ε/4.

(11)

We can find explicit form of a solution to (11):

w j
ε = |x − P j

ε | p−n
p−1 − (ε/4)

p−n
p−1

a
p−n
p−1

ε − (ε/4)
p−n
p−1

. (12)

3.2.3 Test Function

Introduce an auxiliary function

Wϕ,ε =
⎧
⎨

⎩

w j
ε (x)(ϕ(P j

ε , t) − H ε, j
ϕ (t)), x ∈ T j

ε/4 \ G j
ε , j ∈ ϒε t ∈ (0, T ),

0, x ∈ Ω \ ⋃

j∈ϒε

T j
ε/4, t ∈ (0, T ).

(13)

Note that Wϕ,ε ∈ H 1(QT
ε )

⋂
L p(0, T ;W 1,p(Ωε, ∂Ω)). Theorem 2 implies that
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RεWϕ,ε ⇀ 0 in L p(0, T ;W 1,p
0 (Ω)), RεWϕ,ε → 0 in L2(0, T ; L p(Ω)),

∂t (PεWϕ,ε) ⇀ 0 weakly in L2(QT ).
(14)

3.3 Integral Inequality Transformation

Taking ζ = ϕ − Wϕ,ε as a test function in the integral inequality (9), we get

∫

QT
ε

(∂tϕ − ∂tWϕ,ε)(ϕ − Wϕ,ε − uε)dxdt+

ε−k
∑

j∈ϒε

T∫

0

∫

S j
ε

(∂t (ϕ(x, t) − ϕ(P j
ε , t)) + ∂t H

ε, j
ϕ )×

(ϕ(x, t) − ϕ(P j
ε , t) + H ε, j

ϕ − uε)dsdt+

ε−k
∑

j∈ϒε

T∫

0

∫

S j
ε

σ (ϕ(x, t) − ϕ(P j
ε , t) + H ε, j

ϕ )×

(ϕ(x, t) − ϕ(P j
ε , t) + H ε, j

ϕ − uε)dsdt+
∫

QT
ε

|∇(ϕ − Wϕ,ε)|p−2∇(ϕ − Wϕ,ε)∇(ϕ − Wϕ,ε − uε)dxdt ≥
∫

QT
ε

f (ϕ − Wϕ,ε − uε)dxdt + ε−k
∫

STε

g(ϕ − Wϕ,ε − uε)dsdt−

1

2
‖ϕ(x, 0) − Wϕ,ε|t=0‖2L2(Ωε)

− 1

2
ε−k‖ϕ(x, 0) − Wϕ,ε|t=0‖2L2(Sε)

.

(15)

Due to the convergences (5) and (14) as ε → 0, we conclude

∫

QT
ε

(∂tϕ − ∂tWϕ,ε)(ϕ − Wϕ,ε − uε)dxdt →
∫

QT

∂tϕ(ϕ − u0)dxdt,

∫

QT
ε

f (x, t)(ϕ − Wϕ,ε − uε)dxdt →
∫

QT

f (x, t)(ϕ − u0)dxdt

1

2
‖ϕ(x, 0) − Wϕ,ε|t=0‖2L2(Ωε)

→ 1

2
‖ϕ(x, 0)‖2L2(Ω).

(16)

It is easy to see that
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lim
ε→0

ε−k
∑

j∈ϒε

T∫

0

∫

S j
ε

∂t (ϕ(x, t) − ϕ(P j
ε , t))×

(ϕ(x, t) − ϕ(P j
ε , t) + H ε, j

ϕ − uε)dsdt = 0,

lim
ε→0

ε−k
∑

j∈ϒε

T∫

0

∫

S j
ε

(σ (ϕ(x, t) − ϕ(P j
ε , t) + H ε, j

ϕ ) − σ(H ε, j
ϕ ))×

(ϕ(x, t) − ϕ(P j
ε , t) + H ε, j

ϕ − uε)dsdt = 0.

(17)

The following lemma has been proven in work [13].

Lemma 1 Let v ∈ W 1,∞(Ω), ϕ ∈ W 1,p
0 (Ω) and a sequence of functions ηε ∈

W 1,p
0 (Ω) be such that ‖ηε‖Lm (Ω) → 0 as ε → 0 and m ∈ [1, p). Then

lim
ε→0

∫

Ωε

(|∇(v + ηε)|p−2∇(v + ηε) − |∇v|p−2∇v
) ∇ϕdx =

= lim
ε→0

∫

Ωε

|∇ηε|p−2∇ηε∇ϕdx .
(18)

The relation (18) is also valid when ϕ depends on ε, but ‖ϕ‖L p(Ω) ≤ K, where K is
independent of ε.

Equipped with this lemma we conclude

∫

QT
ε

|∇(ϕ − Wϕ,ε)|p−2∇(ϕ − Wϕ,ε)∇(ϕ − Wϕ,ε − uε)dxdt =
∫

QT
ε

|∇ϕ|p−2∇ϕ∇(ϕ − Wϕ,ε − uε)dxdt−
∫

QT
ε

|∇Wϕ,ε|p−2∇Wϕ,ε∇(ϕ − Wϕ,ε − uε)dxdt + Rε,

(19)

whereRε → 0 as ε → 0. Using (5) and (14), we get for the first term in (19) that as
ε → 0

∫

QT
ε

|∇ϕ|p−2∇ϕ∇(ϕ − Wϕ,ε − uε)dxdt →
∫

QT

|∇ϕ|p−2∇ϕ∇(ϕ − u0)dxdt. (20)

The second term in (19) is transformedwithGreen’s formula in the followingmanner:
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∫

QT
ε

|∇Wϕ,ε|p−2∇Wϕ,ε∇(ϕ − Wϕ,ε − uε)dxdt =

∑

j∈ϒε

T∫

0

∫

∂T j
ε/4

∂νpw
j
ε |ϕ(P j

ε , t) − H ε, j
ϕ |p−2(ϕ(P j

ε , t) − H ε, j
ϕ )(ϕ − uε)dsdt+

∑

j∈ϒε

T∫

0

∫

S j
ε

∂νpw
j
ε |ϕ(P j

ε , t) − H ε, j
ϕ |p−2(ϕ(P j

ε , t) − H ε, j
ϕ )×

×(ϕ(x, t) − ϕ(P j
ε , t) + H ε, j

ϕ − uε)dsdt + κε = I1,ε + I2,ε + κε,

(21)

where κε → 0 as ε → 0. Using formula (13) for functions w j
ε , we obtain

∂νw
j
ε |∂T j

ε/4
= −

(
n − p

p − 1

)
C

n−p
p−1

0 2
2n−2
p−1

1 − a
n−p
p−1

ε ε
p−n
p−1 2

2n−2p
p−1

∂νw
j
ε |S j

ε
=

(
n − p

p − 1

)
ε

− n−1
n−p

C0(1 − a
n−p
p−1

ε ε
p−n
p−1 2

2n−2p
p−1 )

.

(22)

We substitute formulas (22) into expressions (21) and get,

I1,ε = −
(
n − p

p − 1

)p−1 Cn−p
0 22n−2

(1 − a
n−p
p−1

ε ε
p−n
p−1 2

2n−2p
p−1 )p−1

×

∑

j∈ϒ

T∫

0

∫

∂T j
ε/4

|ϕ(P j
ε , t) − H ε, j

ϕ |p−2(ϕ(P j
ε , t) − H ε, j

ϕ )(ϕ − uε)dsdt,

I2,ε =
(
n − p

p − 1

)p−1
ε

− n−1
n−p (p−1)C1−p

0

(1 − a
n−p
p−1

ε ε
p−n
p−1 2

2n−2p
p−1 )p−1

×

∑

j∈ϒε

T∫

0

∫

S j
ε

|ϕ(P j
ε , t) − H ε, j

ϕ |p−2(ϕ(P j
ε , t) − H ε, j

ϕ )×

(ϕ(x, t) − ϕ(P j
ε , t) + H ε, j

ϕ − uε)dsdt.

(23)

3.4 Deduction of the Effective Term

To find the lim
ε→0

I1,ε, we use lemma introduced in [8].
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Lemma 2 Let h ∈ H 1
0 (Ω), then

∣
∣
∣
∑

j∈ϒε

∫

∂T j
ε/4

hds − 22−2nωn

∫

γ

hdx ′
∣
∣
∣ ≤ K

√
ε‖h‖H 1(Ω,∂Ω),

where ωn is an area of a unit sphere in Rn.

Hence, we get

lim
ε→0

I1,ε =

−
(
n−p
p−1

)p−1
Cn−p
0 ωn

T∫

0

∫

γ

|ϕ − Hϕ|p−2(ϕ − Hϕ)(ϕ − u0)dx ′dt,
(24)

where x ′ = (0, x2, . . . , xn).

3.5 Integrals Over The Boundary of Inclusions

Then we have

I2,ε = Qε +
(
n − p

p − 1

)p−1

C1−p
0 ε−k×

∑

j∈ϒε

T∫

0

∫

S j
ε

|ϕ(P j
ε , t) − H ε, j

ϕ |p−2(ϕ(P j
ε , t) − H ε, j

ϕ )×

(ϕ(x, t) − ϕ(P j
ε , t) + H ε, j

ϕ − uε)dsdt,

(25)

where

Qε =
(
n − p

p − 1

)p−1
(1 − (1 − a

n−p
p−1

ε ε
p−n
p−1 2

2n−2p
p−1 )p−1)C1−p

0 ε−k

(1 − a
n−p
p−1

ε ε
p−n
p−1 2

2n−2p
p−1 )p−1

×

×
∑

j∈ϒε

T∫

0

∫

S j
ε

|ϕ(P j
ε , t) − H ε, j

ϕ |p−2(ϕ(P j
ε , t) − H ε, j

ϕ )×

(ϕ(x, t) − ϕ(P j
ε , t) + H ε, j

ϕ − uε)dsdt.

(26)

It is easy to see that lim
ε→0

Qε = 0.

Since functions H ε, j
ϕ satisfy the Cauchy problem (10), then expression
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ε−k
∑

j∈ϒε

T∫

0

∫

S j
ε

(∂t H
ε, j
ϕ + σ(H ε, j

ϕ )−

Bn,p|ϕ(P j
ε , t) − H ε, j

ϕ |p−2(ϕ(P j
ε , t) − H ε, j

ϕ ) − g)×
(ϕ(x, t) − ϕ(P j

ε , t) + H ε, j
ϕ (t) − uε)dsdt

(27)

tends to zero as ε → 0.

3.6 Homogenized Equation for u0

Using (16)–(27), we conclude that u0 satisfies the following integral inequality:

∫

QT

∂tϕ(ϕ − u0)dxdt +
∫

QT

|∇ϕ|p−2∇ϕ∇(ϕ − u0)dxdt+

+An,p

∫

γ T

|ϕ − Hϕ|p−2(ϕ − Hϕ)(ϕ − u0)dx
′dt ≥

≥
∫

QT

f (x, t)(ϕ − u0)dxdt − 1

2
‖ψ(x)η(0)‖2L2(Ω).

(28)

Taking into account that the linear span of functions

{ψ(x)η(t) : ψ ∈ C∞
0 (Ω), η ∈ C1([0, T ])}

is dense in a space W = {u ∈ L p(0, T ;W 1,p
0 (Ω)) : ∂t u ∈ Lq(0, T ;W−1,q(Ω))},

we derive that the inequality (28) is valid for an arbitrary function ϕ ∈ W . Then
we take ϕ = u0 ± λw, where λ ≥ 0, w ∈ W as a test function in the inequality the
(28) and pass to the limit as λ → 0. Hence, we conclude that u0 satisfies an integral
identity

T∫

0

〈∂t u0,w〉Ωdt +
∫

QT

|∇u0|p−2∇u0∇wdxdt+

+An,p

∫

γ T

|u0 − Hu0 |p−2(u0 − Hu0)wdx
′dt =

∫

QT

f (x, t)wdxdt.

(29)

Therefore, u0 is a weak solution to (6).
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4 Existence and Uniqueness of a Solution to Homogenized
Problem

4.1 Uniqueness

Let there be two different solutions (u1, Hu1) and (u2, Hu2) to problem (6). Taking
u1 − u2 as a test function for the first equation and subtracting the one from the other,
we get by integration on (0, t)

‖(u1 − u2)(x, t)‖2L2(Ω) +
t∫

0

‖∇(u1 − u2)‖p
L p(Ω)dτ+

+An,p

∫

γ t

(|u1 − Hu1 |p−2(u1 − Hu1)−

|u2 − Hu2 |p−2(u2 − Hu2))(u1 − u2)dx
′dτ ≤ 0.

(30)

Then we take Hu1 − Hu2 as a test function for the second equation and obtain

‖(Hu1 − Hu2)(x, t)‖2L2(γ ) +
t∫

0

‖Hu1 − Hu2‖p
L p(γ )dτ−

−Bn,p

∫

γ t

(|u1 − Hu1 |p−2(u1 − Hu1)−

|u2 − Hu2 |p−2(u2 − Hu2))(Hu1 − Hu2)dx
′dτ ≤ 0.

(31)

Summing the inequality (30) with the inequality (31) multiplied by Cn,p = A n,p

B n,p
, we

derive that

‖(u1 − u2)(x, t)‖2L2(Ω) +
t∫

0

‖∇(u1 − u2)‖p
L p(Ω)dτ+

+Cn,p‖(Hu1 − Hu2)(x, t)‖2L2(γ ) + Cn,pk1

t∫

0

‖Hu1 − Hu2‖p
L p(γ )dτ ≤ 0.

(32)

Hence, we conclude that u1 = u2 and Hu1 = Hu2 .
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4.2 Existence

We use the Galerkin method by searching for a solution um in a linear span of “basis”
in W 1,p

0 (Ω) functions {ψi }mi=1 that is orthonormal in the space L2(Ω), i.e. we define

um(t) =
m∑

i=1
ci,m(t)ψi . Let Hm be a solution to (7)withϕ = um . Then, um must satisfy

the following equation:

(∂t um, ψ j )L2(Ω) + (|∇um |p−2∇um,∇ψ j )L2(Ω)+
+An,p(|um − Hm |p−2(um − Hm), ψ j )L2(γ ) = ( f, ψ j )L2(Ω),

with zero initial conditions for j = 1, . . . ,m. The acquired system is a Cauchy
problem on ci,m(t). It’s well known that such a system has a unique absolutely con-
tinuous solution defined on [0, Tm] for some Tm > 0. Let us get the priory estimates.
Multiplying the above equations by c j,m and summing over all j = 1, . . . ,m and
integrating over (0, t), we get

1
2‖um(x, t)‖2L2(Ω)

+
t∫

0
‖∇um‖p

L p(Ω)dτ+

+An,p

t∫

0

∫

γ

|um − Hm |p−2(um − Hm)umdx ′dτ ≤ K1(‖ f ‖2L2(QT )
+

t∫

0
‖um‖2L2(Ω)

dτ).

Next, we multiple the equation of system (7), with ϕ = um , by Hm and integrate over
γ and (0, t). As a result, we obtain

1
2‖Hm(x, t)‖2L2(γ )

+ k1
t∫

0
‖Hm‖p

L p(γ ) ≤
1
2‖Hm(x, t)‖2L2(γ )

+
t∫

0

∫

γ

σ (Hm)Hmdx ′dτ ≤ K2( max
(x,t)∈QT

|g|2 +
t∫

0
‖Hm‖2L2(γ )

dτ)+

+Bn,p

t∫

0

∫

γ

|um − Hm |p−2(um − Hm)Hmdx ′dτ.

Multiplying this estimation byCn,p and summing it with the previous estimation, we
get

‖um(x, t)‖2L2(Ω)
+ Cn,p‖Hm(x, t)‖2L2(γ )

+
+2

t∫

0
‖∇um‖p

L pdτ + 2An,p

t∫

0
‖um − Hm‖p

L p(γ )dτ + K3

t∫

0
‖Hm‖p

L p(γ ) ≤

≤ K4(‖ f ‖2L2(QT )
+ max

(x,t)∈QT
|g|2) + K5(

t∫

0
‖um‖2L2(Ω)

dτ + Cn,p

t∫

0
‖Hm‖2L2(γ )

dτ).

Using Gronwall’s inequality, we conclude
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‖um(x, t)‖2L2(Ω) ≤ C, ‖Hm(x, t)‖2L2(γ ) ≤ C,

for all t ∈ (0, T ). Hence, solution (um, Hm) is defined on [0, T ] and the following
estimations are valid:

‖∇um‖p
L p(0,T ;L p(Ω)) + ‖Hm‖p

L p(0,T ;L p(γ )) + ‖um − Hm‖p
L p(0,T ;L p(γ )) ≤ C.

Analogously, multiplying equations by c′
i,m and summing over all j = 1, . . . ,m and

integrating over (0, t), we obtain

1

2

t∫

0

‖∂t um‖2L2(Ω)dτ + 1

p
‖∇um(x, t)‖p

L p(Ω)+

An,p

t∫

0

∫

γ

|um − Hm |p−2(um − Hm)∂t umdx
′dτ ≤

K6‖ f ‖2L2(QT ) + 1

4

t∫

0

‖∂t um‖2L2(Ω)dτ.

Multiplying the equation for function Hm by ∂t Hm and integrating over γ and (0, t),
we get

1

2

t∫

0

‖∂t Hm‖2L2(γ )dτ + K7‖Hm(x, t)‖p
L p(γ ) ≤

Bn,p

t∫

0

∫

γ

|um − Hm |p−2(um − Hm)∂t Hmdx
′dτ+

+K8 max
(x,t)∈QT

|g|2 + 1

4

t∫

0

‖∂t Hm‖2L2(γ )dτ.

In a similar way as for proving previous estimations, we multiply the last estimation
by Cn,p and sum it with the former estimation. Thus, we obtain

t∫

0
‖∂t um‖2L2(Ω)

dτ + 2
p‖∇um(x, t)‖p

L p(Ω)+

Cn,p

t∫

0
‖∂t Hm‖2L2(γ )

dτ + K8‖Hm(x, t)‖p
L p(γ ) + K9‖(um − Hm)(x, t)‖p

L p(γ ) ≤

K10(‖ f ‖2L2(QT )
+ max

(x,t)∈QT
|g|2) + 1

2

t∫

0
‖∂t um‖2L2(Ω)

dτ + 1
2

t∫

0
‖∂t Hm‖2L2(γ )

dτ.
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Therefore, we obtain

‖∂t um‖2L2(QT ) + ‖∂t Hm‖2L2(γ T ) + max
t∈[0,T ] ‖∇um(x, t)‖p

L p(Ω)+
+ max

t∈[0,T ] ‖Hm(x, t)‖p
L p(γ ) + max

t∈[0,T ] ‖(um − Hm)‖p
L p(γ ) ≤ C.

Hence, there exists a subsequence (uμ, Hμ) such that

uμ ⇀∗ u weakly star in L∞(0, T ;W 1,p(Ω)),

uμ ⇀ u weakly in L p(0, T ;W 1,p(Ω)),

uμ → u, Hμ → Hu strongly in L p(γ T ),

∂t uμ → ∂t u strongly in L2(QT ), ∂t Hμ → ∂t Hu strongly in L2(γ T ).

Also, due to the monotonicity method (see, for example, [16]), we have

|∇uμ|p−2∇uμ ⇀∗ |∇u|p−2∇u weakly-* in Lq(0, T ;W−1,q(Ω)).

Then we have estimation

‖|uμ − Hμ|p−2(uμ − Hμ)‖L∞(0,T ;Lq (γ )) ≤ C

which implies that |uμ − Hμ|p−2(uμ − Hμ) ⇀∗ ω weakly star in L∞(0, T ; Lq(γ )).
Using Lemma 1.3 from [16], we conclude w = |u − Hu |p−2(u − Hu). Analogously,
one can show that σ(Hμ) → σ(Hu) weakly in Lq(γ T ). Therefore, the pair of func-
tions (u, Hu) is a solution to system (6).
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Poisson Problem for a
Functional–Differential Equation.
Positivity of a Quadratic Functional.
Jacobi Condition

Sergey Labovskiy and Manuel Alves

Abstract For the Poisson problem

Lu := −Δu + p(x)u −
∫

Ω

u(s) r(x, ds) = ρ f, u
∣∣
Γ (Ω)

= 0

equivalence of positivity of the quadratic functional

∫

Ω

u′
xu

′
x dx +

∫

Ω

p(x)u(x)2 dx −
∫

Ω×Ω

u(x)u(s) ξ(dx × ds),

(dx := dx1 · · · dxn), the corresponding Jacobi condition, and positivity of the Green
function are showed.

Keywords Positive solutions · Quadratic functional · Jacobi condition

1 The Poisson Problem

In book [3], the theory of functional differential equations is developed, oriented to
the generality of problems from the point of view of functional analysis. This book is
devoted to generalizations of ordinary differential equations. Boundary value prob-
lems for functional differential equations generalizing partial differential equations
have been poorly studied.
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Let Ω be a bounded connected open set in R
n , Γ (Ω) be the boundary of the Ω ,

and X = Ω be the closure of Ω . For a function u = u(x), x ∈ Ω , Δu := u′′
x1x1 +

· · · + u′′
xn xn ,

1 where x := (x1, . . . , xn). In the Poisson problem

−Δu + p(x)u −
∫

Ω

u(s) r(x, ds) = ρ(x) f (x), (1)

u
∣∣
Γ (Ω)

= 0 (2)

for almost all x ∈ Ω , the function r(x, ·) is assumed to be a measure. The function
ρ is a positive weight.

In [6, 7], the Fredholm property of the boundary value problem (1), (2) is showed
under assumptions below. In the case of unique solvability, its solution can be rep-
resented by means of Green’s function

u(x) =
∫

Ω

G(x, s) f (s)ρ(x) ds.

Green’s function is symmetric: G(x, s) = G(s, x), x, s ∈ Ω .
This article establishes an analogue of the Jacobi condition for the positive def-

initeness of the quadratic functional corresponding to Problem (1), (2). In [5], an
analogue of the Jacobi condition for a second-order functional differential equation
is considered. Note that this condition is an analogue of non-oscillation for an ordi-
nary differential equation of the second order. In this regard, it is worth noting the
book [2] devoted to non-oscillation.

2 Assumptions and Notation

For a real function u = u(x) defined on Ω and having derivative of the first order,
u′
x := (

u′
x1 , . . . , u

′
xn

)
, where x = (x1, . . . , xn). For two such functions u(x) and

v(x), u′
xv

′
x := u′

x1v
′
x1 + · · · + u′

xnv
′
xn .

Let M be the set of all Lebesgue measurable subsets in the closure X = Ω .
Assume that the function r0 : X × M → R satisfy two conditions: for almost all
x ∈ X , the function r0(x, ·) is a measure on M, and for any e ∈ M, r0(·, e) is
measurable on X . Assume that p(x) = r0(x,Ω). For any set E ⊂ X × X , Ex :=
{y : (x, y) ∈ E}. The set functiom ξ0 defined by

ξ0(E) =
∫
X
r0(x, Ex ) dx (3)

1 the sign := means ’is equal by definition’.
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is a measure. Assume that ξ0 is symmetric, that is,

ξ0(e1 × e2) = ξ0(e2 × e1), ∀e1, e2 ∈ M.

The measure η has the same properties and is defined by

η(E) =
∫
X
q(x, Ex ) dx, (4)

where q has properties analogous to r0. The measures ξ and r(x, ·) are defined by

ξ := ξ0 + η, r := r0 + q. (5)

Assume that

• ρ(x), x ∈ X is a positive measurable function and μ(E) := ∫
E ρ(x) dx , and∫

Ω
ρ(x) dx < ∞.

• [u, v], 〈u, v〉, ( f, g), and Q(u, v) are bilinear forms defined by

[u, v] :=
∫

Ω

u′
xv

′
x dx +

∫

Ω

p(x)uv dx −
∫

Ω×Ω

v(x)u(s) ξ0(dx × ds),

〈u, v〉 := [u, v] − Q(u, v),

( f, g) :=
∫

Ω

f (x)g(x)ρ(x) dx,

Q(u, v) :=
∫

Ω×Ω

v(x)u(s)η(dx × ds).

• L2(Ω,μ) be the space of all μ-measurable functions on Ω with finite integral∫
Ω

f (x)2ρ(x) dx and scalar product ( f, g).

• Let q(x) := q(x,Ω). Assume that

q

ρ
∈ L2(Ω,μ). (6)

• We use the Sobolev spaces W 1,2
0 (Ω) and W 2,2

0 (Ω) [1].
• Let W be the vector subspace of all elements from W 1,2

0 (Ω) with finite value
[u, u] < ∞. The bilinear form [u, v] serves as inner product in the Hilbert space
W .

• Define the operator T : W → L2(Ω,μ) by the equality Tu(x) = u(x), x ∈ Ω .
The operator T is continuous.

• T ∗ is the adjoint to T operator.
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As we will see below, the following expressions representing two linear operators
correspond to the forms [u, v] and 〈u, v〉:

L0u(x) := 1

ρ

(
−Δu + p(x)u −

∫
Ω

u(s)r0(x, ds)

)
, (7)

Lu(x) := 1

ρ

(
−Δu + p(x)u −

∫
Ω

u(s)r(x, ds)

)
. (8)

3 Variational Method

We give a brief outline of the form of variational method from [5, 7].

3.1 The Scheme

The equation with relation to u in variational form

∫

Ω

u′
xv

′
x dx +

∫

Ω

p(x)u(x)v(x) dx −
∫

Ω×Ω

v(x)u(s) ξ0(dx × ds)

=
∫

Ω

f (x)v(x)ρ(x) dx, ∀v ∈ W,

can be written in the short form

[u, v] = ( f, T v), (∀v ∈ W ). (9)

Equation (9) has the unique solution u = T ∗ f for any f ∈ L2(Ω,μ). The image
T (W ) of the operator T is dense in L2(Ω,μ) and dim ker T = 0. Thus, (9) is equiv-
alent to L0u = f where L0 = (T ∗)−1.

Theorem 1 If the operator T is compact, then the spectrum of L0 is discrete and
positive: 0 < λ0 ≤ λ1 ≤ . . ., λn → ∞.

Remark 1 The spectrum of L0 is the spectrum of the problem L0u = λTu.
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3.2 Euler Equation

Lemma 1 W 2,2
0 (Ω) ⊂ D(L0), operator L0 has representation (7) in W 2,2

0 (Ω).

The equation ∫
Ω

u′
xv

′
x dx = −

∫
Ω

Δu · v dx

can be used as definition of operator Δ on the space D(L0) in a weak sense. Using
this definition of operator Δ, operator L0 can be represented as (7).

3.3 Eigenvalue Problem and Spectrum

Theorem 2 LetΩ satisfy the cone condition [1, Paragraph 4.6]. The spectral prob-
lem

− Δu + pu −
∫

Ω

u(s) r0(x, ds) = λρu, u
∣∣
Γ (Ω)

= 0 (10)

has in W a system of nontrivial solutions un(x) corresponding to positive eigenvalues
λn (λ0 ≤ λ1 ≤ . . .). This system forms an orthogonal basis in the space W 1,2

0 (Ω).

Note that the minimal eigenvalue λ0 of the problem (10) can be estimated by the
relation

λ0 = inf[u,u]≤1

[u, u]
(Tu, Tu)

.

3.4 Positivity of Solutions

Theorem 3 Suppose f ≥
≡ 0 and u(x) is the solution of the problem

−Δu + pu −
∫

Ω

u(s) r0(x, ds) = ρ f, (11)

u
∣∣
Γ (Ω)

= 0, (12)

then u(x) > 0 in Ω .

Corollary 1 The minimal eigenvalue λ0 of the problem (10) is positive. It is associ-
ated with a positive in Ω eigenfunction.

This follows from Theorem 3 and the following theorem.
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Theorem 4 (M. Krein, M. Rutman [4]) If spectrum of A contains points different
from zero, then its spectral radius r is eigenvalue of both the A and its adjoint A∗,
this eigenvalue is associated with an eigenvector v0 ∈ K: Av0 = rv0.

4 General Case

Here, we consider the form 〈u, v〉 and the operator (8). The equation in variational
form

〈u, v〉 = ( f, T v), ∀v ∈ W, (13)

is equivalent to the boundary value problem

Lu := L0u − Qu = f, u
∣∣
Γ (Ω)

= 0, (14)

where the operator Q : W → L2(Ω,μ) has the representation

Qu(x) = (1/ρ)

∫
Ω

u(s)q(x, ds). (15)

Under condition (6), this operator acts from W to L2(Ω,μ) and is continuous.

Theorem 5 Let Ω satisfy the cone condition [1, Paragraph 4.6]. The eigenvalue
problem

− Δu + pu −
∫

Ω

u(s) r(x, ds) = λρu, u
∣∣
Γ (Ω)

= 0 (16)

has in W (see below) a system of nontrivial solutions un(x) corresponding to eigen-
values λ0 ≤ λ1 ≤ . . . This system forms an orthogonal basis in the space L2(Ω,μ)

(μ is defined below).

Theorem 6 The following affirmations are equivalent:

1. the quadratic functional 〈u, u〉 defined by 〈u, v〉 is positive definite,
2. the problem (14) is uniquely resolvable, and its Green function is positive in

Ω × Ω ,

3. the inequality −Δv + pv −
∫

Ω

v(s) r(x, ds) ≥
≡ 0 has positive in Ω solution,

4. the minimal eigenvalue of the problem (16) is positive, and
5. spectral radius r of the operator QT ∗ is less than unit.

The minimum eigenvalue λ0 satisfies the relation

λ0 = inf[u,u]≤1

〈u, u〉
(Tu, Tu)

. (17)
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5 An Analogue of the Jacobi Condition for the Positivity
of the Quadratic Functional

In the one-dimensional case, the Jacobi condition is a criterion for the positive def-
initeness of a quadratic functional. Jacobi’s condition is the absence of two zeros
of the corresponding homogeneous Euler equation. In the case of Rn , such a condi-
tion is the absence of a nonzero solution of the homogeneous Poisson problem that
vanishes at the boundary of some subdomain.

Let Ω ′ be an open connected subset of Ω . For the functional differential equation
(8), to formulate the corresponding condition, it is necessary to consider the so-called
truncated problem

−Δu + p(x)u −
∫

Ω ′

u(s) r(x, ds) = 0, x ∈ Ω ′, (18)

u
∣∣
Γ (Ω ′) = 0. (19)

All the constructions made above are also valid for the set Ω ′. For this set, Theorem
6 holds. Let W ′ be the corresponding working space (instead of W ), and λ′

0 be the
corresponding minimal eigenvalue of the problem

−Δu + p(x)u −
∫

Ω ′

u(s) r(x, ds) = λu, x ∈ Ω ′, (20)

u
∣∣
Γ (Ω ′) = 0. (21)

In this case, we have the following analogue of the Jacobi criterion.

Theorem 7 The quadratic functional 〈u, u〉 is positive definite iff for any subdomain
Ω ′, the problem (18) has no nonzero solutions.

Proof According to Theorem 6, the positivity of a quadratic functional is equivalent
to the positivity of the first eigenvalue λ0. The space W ′ corresponding to the set Ω ′
can be considered as a subspace of W . Elements of W ′ are elements of W that are
equal to zero outside of Ω ′.

Therefore, by virtue of (17), λ′
0 ≥ λ0. Thus, the condition λ′

0 > 0 is necessary for
positiveness of the quadratic functional 〈u, u〉.

Sufficiency. Suppose λ0 ≤ 0. For an region of small dimension, λ′
0 > 0. Using the

continuous dependence (Lemma 2) of the λ′
0 on the regionΩ ′, we can find the region

Ω ′ for which λ′
0 = 0, which contradicts the unique solvability of the homogeneous

problem.

Lemma 2 The minimum eigenvalue λ′
0 of the problem (20) continuously depends

on region Ω ′.
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Continuity is understood as follows. If Ω ′ ⊂ Ω ′′, then the distance from Ω ′ to Ω ′′
is the supremum of the distances of points of Ω ′′ to the set Ω ′.

The proof of the lemma does not contain significant difficulties, but is cumber-
some. Therefore, we omit it.
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On Asymptotic Behavior of the First
Derivatives of Bounded Solutions to
Second-Order Differential Equations
with General Power-Law Nonlinearity

Tatiana Korchemkina

Abstract We consider second-order differential equations with general power-law
nonlinearity. All nontrivial solutions to these equations are monotonous and can
be bounded or unbounded depending on the nonlinearity exponents. We study the
asymptotic behavior of the first derivatives of bounded solutions.

Keywords Power-law nonlinearity · Asymptotic behavior · Second order ·
Asymptotic of first derivatives · Bounded solutions

1 Introduction

Consider the second-order nonlinear differential equation with general power-law
nonlinearity

y′′ = p
(
x, y, y′) |y|k0 |y′|k1 sgn(yy′), (1)

with k0, k1 > 0 and continuous in x and Lipschitz continuous in u, v function
p(x, u, v) satisfying the inequalities 0 < m ≤ p(x, u, v) ≤ M < ∞.

For p = p(x), Evtukhov [1] obtained sufficient conditions for the existence of
solutions with prescribed asymptotic behavior. The results on the qualitative proper-
ties of solutions to Eq. (1) depending on the values of k0, k1 can be found in [8]. Using
the methods represented by Astashova in [2–4], asymptotic behavior of unbounded
solutions and their first derivatives was obtained in the case p = p

(
x, y, y′) in [9].

For bounded solutions, however, asymptotic behavior of first derivatives was an open
question. In this paper, we give the answer to this question.
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2 Preliminary Results

Because of the fact that for k1 < 1 any constant positive (negative) solution can be
extended to the right (to the left) not in a unique way, µ-solutions to the equation are
considered as in [3, 5].

Definition 1 [5] A solution y : (a, b) → R, −∞ ≤ a < b ≤ +∞, to an ordinary
differential equation is called a µ-solution if

(1) the equation has no other solutions equal to y on some subinterval (a, b) and
not equal to y at some point in (a, b);

(2) the equation either has no solution equal to y on (a, b) and is defined on
another interval containing (a, b) or has at least two such solutions which differ
from each other at points arbitrary close to the boundary of the interval (a, b).

Theorem 1 [8] All nontrivial µ-solutions to Eq. (1) are strictly monotonous.

In [8], it is proved that in the case k1 > 2, all bounded µ-solutions to Eq. (1)
are increasing, and in the case 0 < k1 < 2, all bounded µ-solutions to Eq. (1) are
decreasing. In particular, for k1 > 2, increasing solutions are black hole solutions.

Definition 2 [6] A solution satisfying at some finite point x∗ the conditions lim
x→x∗

|y′(x)| = ∞ and lim
x→x∗ |y(x)| < ∞ is called a black hole solution.

It is shown in [8] that for 0 < k1 < 1, all decreasing µ-solutions are so-called
white hole solutions near domain’s left and right boundaries.

Definition 3 [7] Aµ-solution satisfying at a finite point (its domain’s boundary) x+
the conditions lim

x→x+
y′(x) = 0 and lim

x→x+
y(x) �= 0 is called a white hole solution.

Finally, it is proved in [8] that in the case 1 ≤ k1 < 2, every decreasing solution is
defined on the whole axis and has horizontal asymptotes y = y− > 0 as x → −∞,
and y = y+ < 0 as x → +∞.

3 Asymptotic Behavior of Bounded Solutions

Consider now the asymptotic behavior of bounded µ-solutions to (1) and of their
first derivatives.

Since the substitution y(x) �→ − y(−x) does not change the type of Eq. (1),
it is sufficient to study the behavior of these solutions only near the domain’s right
boundaries. The behavior of a solution near its domain’s left boundary is similar, but
with the opposite sign.

Denote
C0(s, t) = (s |1 − k1|)

1
1−k1 |t | k0

1−k1 .
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First, let us consider increasing bounded solutions. As it is stated in [8], those are
black hole solutions appearing in the case k1 > 2.

Theorem 2 Suppose k1 > 2. Let y(x) be an increasing solution to Eq. (1), let x∗ <

+∞ be its domain’s right boundary. Denote y∗ = lim
x→x∗−0

y(x) and let p(x, u, v) →
p∗ as x → x∗, u → y∗, v → +∞. Then

y′(x) = C0(p
∗, y∗)

(
x∗ − x

)− 1
k1−1 (1 + o(1)), x → x∗ − 0.

Proof Since y′ → +∞ as x → x∗ − 0, we derive from Eq. (1) that

y′′(x) = p∗(y∗)k0(y′(x))k1 (1 + o(1)), x → x∗ − 0,

y′′(x)(y′(x))−k1 = p∗(y∗)k0 (1 + o(1)), x → x∗ − 0,

(y′(x))1−k1

1 − k1

∣∣∣
∣

x∗

x

= p∗(y∗)k0(x∗ − x) (1 + o(1)), x → x∗ − 0.

Due to the fact that k1 > 2 and 1 − k1 < 0, we obtain

(y′(x))1−k1 = p∗(k1 − 1)(y∗)k0(x∗ − x) (1 + o(1)), x → x∗ − 0,

whence

y′(x) = C0(p
∗, y∗)

(
x∗ − x

)− 1
k1−1 (1 + o(1)), x → x∗ − 0,

and the theorem is proved. �

Now consider decreasing µ-solutions.
It is shown in [8] that in this case every decreasing µ-solution has a finite

right boundary of domain, which is further denoted by x+, and a finite limit
y+ = lim

x→x+
y(x), −∞ < y+ < 0.

Let us start with the case 0 < k1 < 1.

Theorem 3 Suppose 0 < k1 < 1 and p(x, u, v) → p+ as x → x+ − 0, u → y+,
v → 0. Let y(x) be a decreasing µ-solution to Eq. (1), y(x0) ≤ 0, x0 ∈ R. Then

y′(x) = −C0(p+, y+) (x+ − x)
1

1−k1 (1 + o(1)), x → x+ − 0.

Proof For a decreasing solution, we derive from Eq. (1) that

y′′ = p+|y+|k0 |y′|k1 (1 + o(1)), x → x+ − 0,

y′′(−y′(x))−k1 = p+|y+|k0 (1 + o(1)), x → x+ − 0,
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and, since y′ → −0 as x → x+ − 0,

(−y′(x))1−k1

1 − k1

∣∣∣∣

x+

x

= −p+|y+|k0(x+ − x) (1 + o(1)), x → x+ − 0.

Due to the fact that 0 < k1 < 1, 1 − k1 > 0, we obtain

(−y′(x))1−k1 = p+(1 − k1)|y+|k0(x+ − x) (1 + o(1)), x → x+ − 0,

whence

y′(x) = −C0(p+, y+) (x+ − x)
1

1−k1 (1 + o(1)), x → x+ − 0,

and Theorem 3 is proved. �

It is shown in [8] that in the case 1 ≤ k1 < 2, every decreasing µ-solution is
defined on the whole real axis and has a finite limit ỹ = lim

x→+∞ y(x), −∞ < ỹ < 0.

Theorem 4 Suppose k1 = 1 and p(x, u, v) → p+ as x → +∞, u → ỹ, v → 0.
Let y(x) be a decreasing µ-solution to Eq. (1), y(x0) ≤ 0, x0 ∈ R. Then

y′(x) = −|y′(x0)| e−p+|ỹ|k0 (x−x0)(1 + o(1)), x → +∞.

Proof Analogously to the proof of the previous theorem, we obtain that

(−y′(x))−1y′′ = p+|ỹ|k0 (1 + o(1)), x → +∞,

ln(−y′)
∣∣∣∣

x

x0

= −p+|ỹ|k0(x − x0) (1 + o(1)), x → +∞,

and

ln(−y′(x)) − ln(−y′(x0)) = −p+|ỹ|k0(x − x0) (1 + o(1)), x → +∞,

whence
y′(x) = y′(x0) e−p+|ỹ|k0 (x−x0) (1+o(1)), x → +∞,

y′(x) = −|y′(x0)| e−p+|ỹ|k0 (x−x0) (1 + o(1)), x → +∞,

and Theorem 4 is proved. �

Theorem 5 Suppose 1 < k1 < 2 and p(x, u, v) → p+ as x → +∞, u → ỹ, v →
0. Let y(x) be a decreasing µ-solution to Eq. (1), y(x0) ≤ 0, x0 ∈ R. Then

y′(x) = −C0(p+, ỹ) (x − x0)
1

1−k1 (1 + o(1)), x → +∞.
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Proof Again, from Eq. (1), we derive that

(−y′(x))−k1 y′′ = p+|ỹ|k0 (1 + o(1)), x → +∞,

and due to the fact that y′ → −0 as x → x+ − 0,

(−y′)1−k1

1 − k1

∣∣
∣∣

x

x0

= −p+|ỹ|k0(x − x0) (1 + o(1)), x → +∞.

Since 1 < k1 < 2, 1 − k1 < 0, then

(−y′(x))1−k1 − (−y′(x0))1−k1 = p+(k1 − 1)|ỹ|k0(x − x0) (1 + o(1)), x → +∞,

whence

(−y′(x))1−k1 = p+(k1 − 1)|ỹ|k0(x − x0) (1 + o(1)), x → +∞,

and
y′(x) = −C0(p+, ỹ) (x − x0)

1
1−k1 (1 + o(1)), x → +∞,

and Theorem 5 is proved. �
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Periodic Solutions for a Class of
Impulsive Delay Differential Equations

Dan Gamliel

Abstract We study two coupled linear delay differential equations (DDEs) with
additive impulses at regular time intervals. The equations are transformed to a DDE
coupled to an ODE. Conditions are found for positive periodic solutions, and some
examples are given for periodic solutions and for non-periodic solutions.

Keywords Delay differential equations · Impulses · Periodic solutions

1 Introduction

Periodic solutions to delay differential equations (DDE) have been studied by analogy
to Floquet theory ofODE [1], by lower and upper solutions [2], byLyapunov’s second
method and the contraction mapping principle [3], or by fixed point arguments [4–
6]. In this work, we use the results of [4] to investigate the conditions for periodic
solutions for the following linear DDE with impulses:

d

dt
x(t) + A(t) · x(t) + B(t) · x(t − r) = 0 (t ≥ tin) (1)

x
(
tk

+) − x (tk) = I(k) tk = t0 + k · T (k ∈ N ) (2)

where the constant time delay satisfies: r > 0, and t0 is related to the initial time
value tin by t0 − r ≥ tin . The impulses are assumed to be additive, as in [6]. The
arrays in (1) are defined as follows:
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x(t) =
(
x1(t)
x2(t)

)
(3)

A(t) =
(

a1(t) −a1(t)
−a2(t) a2(t)

)
(4)

B(t) = b1 · h(t) ·
(
1 1
1 1

)
(5)

Here, b1 is a constant, and the time interval T is the commonperiod of the functions
h(t), a1(t), a2(t).

This is given together with the initial condition

x1(t) = φ1(t)
x2(t) = φ2(t)

(6)

for t0 − r < t < t0 , with x1(t0) = m1 x2(t0) = m2.

2 Solutions for the DDE

In order to simplify the treatment of the coupled equations presented above, we define
the transformation

y(t) =
(
y1(t)
y2(t)

)
= 1

2

(
1 1
1 −1

)(
x1(t)
x2(t)

)
(7)

Then Eq. (1) leads to

d

dt
y1(t) + (a1(t) − a2(t)) · y2(t) + 2 · b1 · h(t) · y1(t − r) = 0 (8)

d

dt
y2(t) + (a1(t) + a2(t)) · y2(t) = 0 (9)

There are still two coupled functions, but now only one function, y1(t), satisfies a
DDE, whereas y2(t) satisfies an ODE. Impulses can be considered for each of these
functions. The initial conditions for the two functions are

y1(t) = 1
2 (φ1(t) + φ2(t))

y2(t) = 1
2 (φ1(t) − φ2(t))

(10)

for t0 − r < t < t0 , with y1(t0) = 1
2 (m1 + m2) y2(t0) = 1

2 (m1 − m2)

Using the notation
a(t) = (a1(t) + a2(t))

the function y2(t) is calculated (for t0 < t) as
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y2 (t) = exp

{
−

∫ t

t0

a(s) · ds
}

· y2 (t0) (11)

Note that if the initial conditions includem1 = m2, then y2(t0) = 0 so the function
remains zero for all times. We shall assume here that m1 �= m2 so that y2(t) is not
trivial.

Proposition 1 For the solution of Eq. (9), if

∫ t+T

t+
a(s) · ds = 0

then the solution is periodic. Otherwise, if the solution is modified by adding for each
tk ( k = 1, 2, …) the impulse

I2(k) = {1 − exp{−
∫ tk+T

t+k
a(s) · ds} · y2

(
t+k

)},

the resulting modified solution is periodic. If the function a(t) is continuous in the
interval [tk, tk + T ], then the solution y(t) is bounded.

The periodicity is checked by the evolution of the solution between tk and tk+1 =
tk + T :

y2 (tk + T ) = exp{−
∫ tk+T

t+k
a(s) · ds} · y2

(
t+k

)
(12)

In the trivial case where ∫ t+T

t+
a(s) · ds = 0,

the solution for y2(t) is already periodic, without any need for impulses. If

∫ t+T

t+
a(s) · ds > 0

and no impulses are applied, then the solution tends to zero for t → ∞, so that the
zero solution is stable, but there is no periodicity. If

∫ t+T

t+
a(s) · ds < 0

and no impulses are applied, the solution diverges as t → ∞. In the last two cases,
if the additive impulse

I2(k) = {1 − exp{−
∫ tk+T

t+k
a(s) · ds} · y2

(
t+k

)} (13)
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is applied at the times tk = k · T , i.e.,

y2
(
tk

+) − y2 (tk) = y2 (tk) + I2(k), (14)

then y2(t) is periodic. If the function a(t) is continuous in each interval [tk, tk + T ],
then y2(t) is bounded.

Equation (8) for y1(t) will be re-written as

d

dt
y1(t) + b(t) · y1(t − r) = − (a1(t) − a2(t)) · y2(t) (15)

where b(t) ≡ 2 · b1 · h(t). In [4], Schauder’s fixed point theorem is used in order to
prove that if there exists a continuous function w(t) such that

∫ t+T

t
b(s) · w(s) · ds = 0 ( f or t − r ≥ t0) (16)

and also ∫ t

t−r
b(s) · w(s) · ds = ln (w(t)) , (17)

then there is a positive periodic solution to the homogeneous part of Eq. (15). A way
to construct the solution is given in [4]. If this periodic solution is denoted by y0(t),
then the solution to full Eq. (15) is

y1(t) = y0(t) +
∫ t

t0

X (t, s) · {− (a1(s) − a2(s))} · y2(s) · ds (18)

where X (t, s) is the fundamental solution to Eq. (15) [7]. This solution evolves over
one period of y0(t) as

y1(t + T ) − y0(t + T ) = (19)

y1(t) − y0(t) +
∫ t+T

t+
X (t, s) · {− (a1(s) − a2(s))} · y2(s) · ds

Proposition 2 For the equation as Eq. (15) above, if

∫ t+T

t+
X (t, s) · {− (a1(s) − a2(s))} · y2(s) · ds = 0,

then the solution to the equation is positive and periodic. If the functions b(t) and
a(t) are continuous in each interval [tk, tk + T ] (with at most a finite number of finite
discontinuities), then the solution is bounded.

Note: If the integral in Eq. (19) is not zero, stability for Eq. (15) can hold if: (a) the
integral tends to zero as t → ∞ and (b) the equation for y0(t) is stable. The stability
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of y0(t) can be checked as in [8]. However, if the integral in Eq. (18) diverges for
t → ∞, then the equation for y1(t) is not stable, even if the equation for y0(t) is
stable.

The original Equation (1) is solved (for tk < t ≤ tk + T ) by

x1(t) = exp{−
∫ t

tk

a(s) · ds} · y2 (tk) + (20)

y0(t) +
∫ t

tk

X (t, s) · {− (a1(s) − a2(s))} · y2(s) · ds

x2(t) = −exp{−
∫ t

tk

a(s) · ds} · y2 (tk) +

y0(t) +
∫ t

tk

X (t, s) · {− (a1(s) − a2(s))} · y2(s) · ds (21)

where the properties of the individual terms ( y2 and y1 ) determine the properties of
the original variables x1(t), x2(t).

3 Examples

3.1 Example 1

Consider a delay of r = 6π and the following functions:
h(t) = cos(t)
a1(t) = c0 + c1 · cos(t), a2(t) = c2 · cos(t) where c0, c1, c2 are constants.

For initial conditions, let us choose m1 �= m2, so that y2(t0) �= 0 and take t0 = 0.
Then for 0 < t ,

y2 (t) = exp{−c0 · (t − t0) − (c1 + c2) · (sin(t) − sin(t0))} · y2
(
0+)

(22)

As for y1(t), the solution for the homogenous equation of Eq. (15) can be obtained
by choosing w(t) = 1, and then Eqs. (16) and (17) become

∫ t+2·π

t
2b1 · cos(s) · ds = 0

∫ t

t−6·π
2b1 · cos(s) · ds = 0

The solution for the homogeneous equation of y1(t) is

y0(t) = exp{2 · b1 · (sin(t0) − sin(t))}
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so that the fundamental solution is

X (t, s) = exp{2 · b1 · (sin(s) − sin(t))}

The integral in Eq. (18) is

∫ 2π

0+
X (t, s) · {−c0 − (c1 − c2) · cos(s)} · y2(s) · ds

3.1.1 Case 1.A

If c1 = c2, the only contribution to this integral in the a1 − a2 term is from c0.
Substituting in Eq. (18), one gets

y1(t) = y0(t) +
∫ t

t0

X (t, s) · {−c0} · exp{−c0 · (s − t0) − 2 · c1 · sin(s)} · ds · y2(0)
(23)

The integral term J ≡ y1(t) − y0(t) is equal (for t0 = 0) to

J = −c0 · exp{−2 · b1 · sin(t)} ·
∫ t

t0
exp{−c0 · s + sin(s) · (2b1 − 2c1)} · ds · y2(t0)

(24)
The result of the integral is a non-periodic function, so calculating the integral
between the limits: tk and tk + T will not give zero. In the special case

b1 = c1, the integral term is much simpler, but still the result is not periodic.Thus,
the function y1(t) is not periodic, unlike y0(t). Then the original variables x1(t) and
x2(t) are a combination of a periodic part (that of y2(t) and y0(t)) and a non-periodic
part (J). If one adds an impulse to y1(t):

I1(k) = {y1(tk) − y0(tk)} − {y1(tk + T ) − y0(tk + T )},

this will correct the value of the function only for a single time point. Due to the
dependence on the time delay, the behavior of the function for the next time interval
will in general be different from that in the previous interval, so y1(t) will remain
non-periodic. Therefore, in both cases, b1 �= c1 and b1 = c1, the solution diverges
for t → ∞.

3.1.2 Case 1.B

Now assume c1 �= c2 and c0 = 0. Now the integral term is equal to
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J =
∫ t

t0

X (t, s) · {− (c1 − c2) · cos(s)} · exp{− (c1 + c2) · sin(s)} · ds · y2(0)
= − (c1 − c2) · exp{−2 · b1 · sin(t)} ·

∫ t

t0

cos(s)exp{sin(s) · (2b1 − (c1 + c2))} · ds · y2(t0) (25)

If 2b1 �= c1 + c2, then the expression above is equal to

J = − (c1 − c2) · exp{−2 · b1 · sin(t)} ·
1

(2b1 − (c1 + c2)))
·

{exp{(2 · b1 − (c1 + c2)) · sin(t)} − exp{(2 · b1 − (c1 + c2)) · sin(t0)}} · y2(t0)

and this is a periodic function, so that also y1(t) is periodic. If 2b1 = c1 + c2,
then the expression is

J = − (c1 − c2) · exp{−2 · b1 · sin(t)} ·
∫ t

t0

cos(s) · ds · y2(t0)
= − (c1 − c2) · exp{−2 · b1 · sin(t)} · (sin(t) − sin(t0))

which is also periodic. Thus, regardless of the value of b1, the solution is periodic,
both for x1(t) and for x2(t).

3.2 Example 2

With the time delay: r = π
2 , consider the following functions:

h(t) = −sin(t) · exp{2b1 · (sin(t) − cos(t))}

and a1(t), a2(t) as in the previous example. Then y2(t) is the same as above, and for
y1(t), we define the function w(t) = exp{2b1 · (cos(t) − sin(t))}.

Then Eqs. (16) and (17) become

−
∫ t+2·π

t
2b1 · sin(s) · ds = 0

−
∫ t

t− π
2

2b1 · sin(s) · ds = 2b1 · (cos(t) − sin(t))

Now the solution for the homogenous equation of Eq. (15) is
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y0(t) = exp{2 · b1 · (cos(t0) − cos(t))}

so that the fundamental solution is

X (t, s) = exp{2 · b1 · (cos(s) − cos(t))}

3.2.1 Case 2.A

If c1 = c2, the only contribution to this integral is from c0.
Substituting in Eq. (17), one gets

y1(t) = y0(t) +
∫ t

t0

X (t, s) · {−c0} · exp{−c0 · (t − t0) − 2 · c1 · sin(s)} · ds · y2(0)
(26)

The integral term J ≡ y1(t) − y0(t) is equal to

J = − c0 · exp{−c0 · (t − t0) − 2 · b1 · cos(t)}· (27)
∫ t

t0

exp{(2b1 · cos(s) − 2c1 · sin(s))} · ds · y2(t0)

The result of the integral is a non-periodic function, so calculating the integral
between the limits: tk and tk + T will not give zero. In fact, for this case,

∫ 2π

0
exp{(2b1 · cos(s) − 2c1 · sin(s))} · ds = 2π I0(

√
4 · (b1)2 + 4 · (c1)2)

where I0(x) is the modified Bessel function of order zero.
Thus, the function y1(t) is not periodic, unlike y0(t). Then the original variables

x1(t) and x2(t) are a combination of a periodic part (that of y2(t) and y0(t)) and a
non-periodic part (J).

3.2.2 Case 2.B

Now assume c1 �= c2 and c0 = 0. Now the integral term is equal to

J =
∫ t

t0

X (t, s) · {− (c1 − c2) · cos(s)} · exp{− (c1 + c2) · sin(s)} · ds · y2(0)
= − (c1 − c2) · exp{−2 · b1 · cos(t)} ·

∫ t

t0

cos(s)exp{(2b1 · cos(s) − (c1 + c2) · sin(s))} · ds · y2(t0) (28)
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The result of the integration is not a periodic function. Also, for the special case
(c1 + c2) = 0, the result is not periodic, and in that case,

∫ 2π

0
cos(s) · exp{2b1 · cos(s)} · ds = 2π I1(2b1)

where I1(x) is the modified Bessel function of order one. Thus, regardless of the
value of b1, the solution is not periodic, both for x1(t) and for x2(t) . The solutions
diverge for t → ∞.

3.3 Example 3

With the time delay: r = π
2 consider the following functions:

h(t) = −sin(t) · exp{2b1 · (sin(t) − cos(t))}

and
a1(t) = c0 + c1 · sin(t), a2(t) = c2 · sin(t) where c0, c1, c2 are constants.

Then for 0 < t ,

y2 (t) = exp{−c0 · (t − t0) + (c1 + c2) · cos(t)} · y2
(
0+)

(29)

and for y1(t), we define the function w(t) = exp{2b1 · (cos(t) − sin(t))}.
Then Eqs. (16) and (17) are the same as in Example 2 above,
and also the solution for the homogenous equation of Eq. (15) and consequently

the fundamental solution are the same as in Example 2 above.

3.3.1 Case 3.A

If c1 = c2, the only contribution to this integral is from c0.
Substituting in Eq. (17), one gets

y1(t) = y0(t) +
∫ t

t0
X (t, s) · {−c0} · exp{−c0 · (s − t0) + 2 · c1 · cos(s)} · ds · y2(0)

(30)
The integral term J ≡ y1(t) − y0(t) is equal to

J = − c0 · exp{c0 · (t0) − 2 · b1 · cos(t)}· (31)
∫ t

t0

exp{c0 · s + (2b1 · cos(s) + 2c1 · cos(s))} · ds · y2(t0)
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Thus, the function y1(t) is not periodic, unlike y0(t).

3.3.2 Case 3.B

Now assume c1 �= c2 and c0 = 0. Now the integral term is equal to

J =
∫ t

t0

X (t, s) · {− (c1 − c2) · sin(s)} · exp{− (c1 + c2) · cos(s)} · ds · y2(0)
= − (c1 − c2) · exp{−2 · b1 · cos(t)} ·

∫ t

t0

sin(s)exp{(2b1 · cos(s) + (c1 + c2) · cos(s))} · ds · y2(t0) (32)

If 2b1 + c1 + c2 �= 0, then the expression above is equal to

J = + (c1 − c2) · exp{−2 · b1 · sin(t)} ·
1

(2b1 + (c1 + c2)))
·

{exp{(2 · b1 + (c1 + c2)) · cos(t)} − exp{(2 · b1 + (c1 + c2)) · cos(t0)}} · y2(t0)

and this is a periodic function, so that also y1(t) is periodic. If 2b1 = c1 + c2,
then the expression is

J = − (c1 − c2) · exp{−2 · b1 · cos(t)} ·
∫ t

t0

sin(s) · ds · y2(t0)
= + (c1 − c2) · exp{−2 · b1 · cos(t)} · (cos(t) − cos(t0))

which is also periodic. Thus, regardless of the value of b1, the solution is periodic,
both for x1(t) and for x2(t).
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