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Preface

Applications of functional differential equations have been the driving force for
many researchers to study real-world problems. Given this context, the Department
of Mathematics, Ariel University, Israel, has been organizing a series of international
conferences on Functional Differential Equations and Applications.

This proceeding is the outcome of the Seventh International Conference on Func-
tional Differential Equations and Applications, held at Ariel University, Ariel, Israel,
from September 22-27, 2019. Researchers from Israel, the USA, Greece, Romania,
Russia, Czech Republic, Poland, Slovakia, Ukraine, India, Georgia and Greece partic-
ipated in the conference. The main focus on the conference was on the applications
of functional differential equations, especially stability theory, positive solutions of
differential equations, applications of boundary value problems, impulsive equa-
tions, integro-differential equations, feedback control and many other applications
of functional differential equations.

A total of 84 researchers participated in the conference. Lectures were delivered
on the oscillation and non-oscillation of solutions of ordinary and delay differential
equations, and the stability of solutions of many mathematical models in engineering
and medicines. A total of 20 articles were selected for publication in the proceedings.
These are given chapter-wise as below.

The entire volume is divided into three parts. Part I addresses the dynamics of
models in engineering. This part consists of six chapters. The chapters include topics
on the dynamical behaviour of models in nanostructures, porous media, switched
time-delay systems, ground robot path controlled by airborne autopilot with time-
delay, diffusion—kinetic model of curing epoxy cancer and nonlinear equations of
oscillations in modelling the magnetic separations. Part II addresses the dynamics
of models in biology, medicine and ecology. This part consists of five chapters. This
section includes topics on the dynamical behaviour of models of infectious disease,
radiophysical sounding signals, bladder cancer treatment by using immunotherapy
and a biological model with time-delay systems. Part III addresses the qualitative
theory of differential equations. This section consists of nine chapters. The chapters
included in this section are on the solutions of the modified Helmholtz equation,
oscillation theory of differential equations, positive solutions of the Cantilever beam
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equation, bounded solutions to differential equations, periodic solutions of impulsive
equations and many more. All the chapters are interesting and hope this will be useful
to readers in their future research work.

We owe thanks to all participants of the conference and the authors of the chap-
ters in this volume. We are thankful to the authorities of Ariel University for their
support in organizing the conference. We should also mention here that it was a great
pleasure to work with Shamim Ahmad, the Senior Editor of Springer Nature, and
the production team, especially to Banu Dhayalan who took utmost care during the
preparation of the volume.

Ariel, Israel Alexander Domoshnitsky
Ranchi, India Seshadev Padhi
Ariel, Israel Alexander Rasin
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Dynamics of Models in Engineering



Dynamical Behaviour of )
Integro-Differential Equations Arising in | @i
Nano-Structures

Angela Slavova

Abstract Computational Nanotechnology has become an indispensable tool not
only in predicting, but also in engineering the properties of multi-functional nano-
structured materials. The presence of nano-heterogeneities in these materials affects
or disturbs their elastic field at the local and the global scale and thus greatly influences
their mechanical properties. In this paper we shall study dynamical behaviour of
2D dynamic coupled problem in multifunctional nano-heterogeneous piezoelectric
composites. More in detail, we shall present first modeling of two-dimensional anti-
plane (SH) wave propagation problem in piezoelectric anisotropic solids containing
nano-holes or nano-inclusions. Nano-heterogeneities are considered in two aspects
as wave scatters provoking scattered and diffraction wave fields and also as stress
concentrators creating local stress concentrations in the considered solid.There are
only few numerical results for dynamic behavior of bounded piezoelectric domain
with heterogeneities under anti-plane load.

Keywords Integro differential equations + Nano structures - Nano heterogeneous
piezoelectric composites * Cellular nano scale networks

1 Introduction

In the present work we propose, develop and validate for different mechanical mod-
els computational tools based on the application of the theory of integro-differential
equations for solution of 2D dynamic coupled problems in multifunctional nano-
heterogeneous piezoelectric composites. We study two-dimensional in-plane (P-SV)
and anti-plane (SH) wave propagation problems in piezoelectric anisotropic solids
containing nano-inhomogeneities. The model is based on the principles of elastody-
namics, wave propagation theory and surface/interface elasticity theory. The obtained
results and conclusions may be potentially useful for characterizing the mechanical

A. Slavova (X))
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Fig.1 The geometry: PEM
inclusions in a bounded PEM

matrix
Fig. 2 Rectangular PEM G, G,
matrix with circle
inhomogeneity G
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stabilities of an array of nanowires or nano-tubes structures made by piezoelectric
material under different type of dynamic loads.

Let G € R? is a bounded piezoelectric domain (PEM) with a set of inhomo-
geneities I = Ul € G (holes, inclusions, nano-holes, nano—inclusions) subjected
to time—harmonic load on the boundary G, see Fig. 1. Note that heterogeneities are
of macro size if their diameter is greater than 10~% m, while heterogeneities are of
nano-size if their diameter is less than 107 m.

The aim is to find the field in every point of M = G\, and to evaluate stress
concentration around the inhomogeneities.

Using the methods of continuum mechanics the problem can be formulated in
terms of boundary value problem for a system of 2-nd order differential equations,
see [3], Chap.2. Let us for simplicity first formulate the problem in the case G is
rectangular with a single circle inhomogeneity 7, see Fig. 2.

There is a certain lack of work for solution of 2D in-plane and ant-plane dynamic
problems for piezoelectric solids with nanoinclusions or nano-cavities [3—6]. The
reason is that such a goal requires multidisciplinary knowledge and skills blend-
ing continuum mechanics, piezoelectricity, computational mechanics, material sci-
ence, mathematical physics, and numerical method programming. Moreover, we
shall apply Cellular Nanoscale Networks (CNN) [1, 8] in our investigations in order
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to obtain more accurate numerical results. In Sect.2 we state the problem under
consideration. We define the boundary conditions which play important role in the
solutions. In Sect.3 we propose CNN architecture which approximates the obtained
integro-differential equation. We study the dynamics of CNN model via describing
function method [7]. Section 4 deals with traveling wave solutions of the CNN model.
In Sect. 5 we propose numerical simulations and validation for specific piezoelectric
material. Feedback stabilization of the model is provided in Sect. 6.

2 Statement of the Problem

Following [5] let us define system of equations

cﬁAu3 +ef{5Au4 + pNw?uz = 0,
eNAul — el Auf =0,

(1)

Here x = (x1,x2), A = a% + a% is Laplace operator, N = M forx € Mand N =1
1 2

forx € I; uQ’ is mechanical displacement, u iv is electric potential (the usual notation
in mechanics is ¢V, but in order to have possibility for summation in formulas
we use generalized notations u’, J = 3, 4), p" is the mass density, ¢y, > 0 is the
shear stiffness, ef’s # 0 is the piezoelectric constant and &} > 0 is the dielectric
permittivity; w is the frequency of the applied on 0G load.

Let us define generalized stress 0;;,i = 1,2; J = 3,4 as

N _ N ()u N i)uiv

Oj3 = Cyy5, T € €157y @)
O'N eN ()u3 8N duy

i4 15 E)x 11 3X; ?

Note that oy 3 1s called mechanical stress, while ol 74 1s called electrical displace-
ment(the usual notation in mechanics is DIN = al.]){ ,i=1,2).

Generalized traction at the point x on the line segment with normal vector n =
(ny, ny) is defined as
t% = (rl]]énl + U%nz,
Iy = 0141 + Oyna,

3)

Atevery point x € S = 9] we can define normal vector n and unit tangential vector
[ such that (/, n) forms right coordinate system.

On the exterior boundary G boundary conditions are prescribed traction on the
part of the boundary and prescribed displacement on the complemented part:

tM% ondG,,

uM" on 3G, = 0G\dG,. @
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Here the traction and the displacement vectors are defined as 19" = (1), 1)) and
= (M, ulM) respectively.

Boundary Conditions for Heterogeneities at Macro—Scale
(A) In the case [ is a hole, formally we can consider that the constants in [/ are
chy =0, els =0, e/, = 0 and boundary conditions on S are

t¥ =0 onS, )

Here, the traction vectors is defined as ¢/ = (¢1,t}). Then the boundary value
problem (BVP) is: the equation (1) and boundary conditions (4), (5).
(B) In the case I is an inclusion, the constants in / are ¢, > 0, els # 0, &, > 0; the
constants in M are ¢} > 0, e} # 0, & > 0 and boundary conditions on S are
M_ 1

uy =uj ons,
th+1t¥ =0 onS, ©
The BVP is now: the Eq.(1) and boundary conditions (4), (6). Note, that nll =
—nM i = 1,2, where n! and n} are the components of the outward normal for
element along S considered as a boundary of the inclusion or matrix correspondingly.
Additionally we have that 1% = (&3, 1)), N = I, M.

Boundary Conditions for Nano—Heterogeneities

Assume that the interface between the nano—inclusion 7 and its surrounding matrix M
is regarded as a thin material surface S that possesses its own mechanical properties
Ciys €55, €11 and surface tension 7°.

More specifically, T° is the residual surface tension under unstrained conditions
that will induce an additional static deformation, but in dynamic analysis this is often
ignored, i.e. 7° = 0.

(C) In the case I is a nano-hole, formally we can consider that the constants in / are
cly =0, els =0, e/, = 0 and boundary conditions on S are

S

3
M= % on S, 7

In this case BVP is: the Eq. (1) and boundary conditions (4), (7).
Boundary conditions (7) can be written in the following form for the mechanical
and electrical part correspondingly:

M _ M_801§ MZGM:‘?U[Z
al OS]

where #)7 and 7}’ are the normal component of mechanical stress and electrical
displacement (see Eq.(eq2)) in the matrix, while ﬂ and 36’4 = af/ are tangential

derivatives of tangential components of stress O’B and tangentlal electrical displace-
ment a,i = D,S along the nano-hole boundary S.
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(D) In the case I is a nano-inclusion, the constants in  are cj, > 0, ef5 # 0,&1, > 0;
the constants in M are ¢} > 0, et # 0, ¢! > 0.

On the heterogeneity boundary S where are defined constants cj,, ejs, &}, and
with the notation for generalized displacement u* along S the generalized tangential

stress on S is defined as:
3 N 3”4
Uzs = C44 ol T €5 ol (8)
s 5 Bui s Bui
O =¢Cis3 — &y

Boundary conditions on § are

M _ 1
S ©
t;+1f == ons,

Then BVP is: the Eq. (1) and boundary conditions (4), (9).
Boundary conditions (9) can be written in the following form for the mechanical
and electrical part correspondingly:

dop dop,
dn =R =2

where t3N , tiv , N = I, M are the normal component of mechanical stress and elec-

trical displacement (see Eq.(2)) in the inclusion and in the matrix, while 2 ’3 and

3 aD}
% = - are tangential derivatives of tangential components of stress ‘712 and tan-

gential electrical displacement 014 = Dz along the interface boundary S. Here, it is
take into consideration that n = —n! = —n;, i = 1, 2. Note that for the mechan-
ical displacement u} and for the potential of the electric field u} = ¢ continuity

conditions are satisfied, see first row of Eq. (9).

3 Integro-Differential CNN Model

Cellular Nonlinear/Nanoscale Networks (CNN) have been introduced in 1988 by
Chua and Yang [1] as a new class of information processing systems which shows
important potential applications (Fig.3). The concept of CNN is based on some
aspects of neurobiology and adapted to integrated circuits. CNN are defined as spatial
arrangements of locally coupled dynamical systems, referred to as cells. The CNN
dynamics are determined by a dynamic law of an isolated cell, by the coupling
laws between the cells and by boundary and initial conditions. The cell coupling is
confined to the local neighborhood of a cell within a defined sphere of influence. The
dynamic law and the coupling laws of a cell are often combined and described by
nonlinear ordinary differential- or difference equations (ODE), respectively, referred
to as the state equations of cells. Thus a CNN is given by a system of coupled ODE
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Fig. 3 a CNN architecture; b cell circuit; ¢ output function of CNN

with a very compact representation in the case of translation invariant state equations.
Despite of having a compact representation, CNN can show complex dynamics like
chaotic behavior, self-organization, and pattern formation or nonlinear oscillation and
wave propagation. Furthermore, Reaction-Diffusion Cellular Nonlinear/Nanoscale
Networks (RD-CNN) have been applied for modeling complex systems [8].

Cellular Nanoscale Networks (CNN) [1, 8] are complex nonlinear dynamical
systems, and therefore one can expect interesting phenomena like bifurcations and
chaos to occur in such nets. It was shown that as the cell self-feedback coefficients
are changed to a critical value, a CNN with opposite-sign template may change from
stable to unstable. Namely speaking, this phenomenon arises as the loss of stability
and the birth of a limit cycles.

We will give general definition of a CNN which follows the original one [1]:

Definition 1 An M x M cellular neural network is defined mathematically by four
specifications:

(1) CNN cell dynamics;

(2) CNN synaptic law which represents the interactions (spatial coupling) within
the neighbor cells;

(3) Boundary conditions;

(4) Initial conditions.

In terms of the definition we can present the dynamical systems describing CNN.
For general CNN whose cells are made of time-invariant circuit elements, each cell
C(ij) is characterized by its CNN cell dynamics:

Xij = —g(xij, uij, 1),
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where x;; € R™, u;; is usually a scalar. In most cases, the interactions (spatial cou-
pling) with the neighbor cell C (i 4k, j 4 [) are specified by a CNN synaptic law:

] - -
I = Ay aXivk j1 + Aijra * fi(Xij, Xk, j+1) + Bijaa * ik j41(7).

The first term A;; x1X; 4, j+; is simply a linear feedback of the states of the neigh-
borhood nodes. The second term provides an arbitrary nonlinear coupling, and the
third term accounts for the contributions from the external inputs of each neighbor
cell that is located in the N, neighborhood.

In [3] asystem of integro-differential equations (IDE) is obtained for the unknowns
u (displacement vectors) and t (traction). The procedure is based on Gauss theorem
[10] after finding the fundamental solutions of the boundary value problem formu-
lated in the introduction.

Let us consider the following system of IDE, which is more general from the point
of view of the applications in nano-technology:

du(x) 9%u
57 = D@ — CI/SG(u(x))dx, (10)

where C is a constant depending on the p™, ¢} > 0, el #0 and ¢! > 0, D is
diffusion coefficient, u = (u3, u4), function G(x) is a function of the displacement
vectors u3 4 and the traction 73 4.

It is known [1, 8] that some autonomous CNN represent an excellent approxima-
tion to nonlinear partial differential equations (PDEs). The intrinsic space distributed
topology makes the CNN able to produce real-time solutions of nonlinear PDEs.
There are several ways to approximate the Laplacian operator in discrete space by a
CNN synaptic law with an appropriate A-template. In our case the CNN model of
IDE (10) is:

du;j

% = DA, *uij—Cl/.G(u,-j))dt,l§i§n,j =34, (11
s

where A is 1-dimensional discretized Laplacian template [8] A; : (1, =2, 1), * is

convolution operator, n = M x M is the number of cells of the CNN architecture.

Remark 1 Realized nano-scale CNN have been considered in a fast growing num-
ber of investigations dealing with image processing problems [1]. Despite of hav-
ing a compact representation CNN can show very complex dynamics like chaotic
behaviour, self organization and pattern formation or nonlinear oscillation and wave
propagation. The future of CNN implementation is in nano-structure computer archi-
tecture. CNN not only represent a new paradigm for complexity but also establish
novel approaches to information processing by nonlinear complex systems. More-
over, CNN have very impressive and promising applications in image processing and
pattern recognition.
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We develop the following algorithm for studying the dynamical behavior of CNN
model (11) via describing function method [7]:
1. First, we apply double Fourier transform F' (s, z) to IDE CNN model (11)

k

F(s,2) = / Je(®)exp(—st)dr. (12)

k_foo

from continuous time ¢ and discrete space k to continuous temporal frequency w, and
continuous spatial frequency €2, such that z = exp(I2), s = lw, I is the imaginary
identity and therefore we obtain:

sU(s,z) = D[z7'U(s,2) —=2U(s,2) + z2U(s,2)] — Cis 'G(U (s,2)).  (13)

2. We express U (s, z) as afunction of G(U (s, 2)): U(s, 2) = mG(U)
and obtain the transfer function H (s, z):
C
H(s,2) = ! (14)

sD(z7! —247) — 2

According to the describing function technique [7], the transfer function can be
expressed in terms of temporal frequency w and spatial frequency 2:

C
IwDQ2cos Q —2) + w?’

Hg(w) = (15)

3. We are looking for possible periodic solutions of our CNN model (11) in the
form:
uij(t) =R+ wt),1 <i <n,j=3,4, (16)

for some function £ : R — R and for some spatial frequency 0 < Q < 27 and tem-
poral frequency o = 27”, where T > 0 is the minimal period.

4. According to the describing function technique [7] the following constraints
hold:

Z(Hg(w)) = 3=,

7 (Ha(@)) = 0, 4

5. Thus (17) give us necessary set of equations for finding the unknowns U,,, 2
and w. As we mentioned before we are looking for a periodic wave solution of (11),
therefore U, will determine approximate amplitude of the wave, an T = %T will
determine the wave speed. Now according to the describing function technique, if
for a given value of 2 we can find the unknowns (U,,, ®), then we can predict the
existence of a periodic solution of our CNN IDE (11) with an amplitude U,, and
period of approximately 7 = %

Following the above algorithm the next theorem has been proved:
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Theorem 1 CNN IDE (11) of the BVP (1), (4) with circular array of n = L X L
cells has periodic solutions u;;(t) with a finite set of spatial frequencies 2 = 2’;—"
0<k<n-—1andaperiodT = %T

>

Remark 2 By applying the describing function technique we obtain a character-
ization of the periodic steady state solutions of our CNN model (11). In order to
validate the accuracy of the achieved results we need to introduce a possible initial
condition from which the network will reach, at steady state, a steady state solution
characterized by the desired value of 2. Therefore, we can take a initial condition
u;;(0) = sin(Qi), 1 <i <n, j=3,4.

4 Travelling Wave Solutions of IDE CNN Model

We shall study traveling wave solutions of IDE CNN model (11) of the form:
up = ®(@ — ct), (18)

for some continuous function ® : R! — R! and some unknow real number c. Let
us denote s = i — ct. Let us substitute (18) in the IDE CNN model (11). Therefore
® (s, ¢) and c satisfy the equation of the form:

—c® (s,0) =P(s — 1,¢) = 20(s,¢) + (s + 1,¢) — C, / f(@(s,c)dt. (19)
s
We consider solution of equation (19). The following theorem about travelling

wave solution of our IDE CNN model hold:

Theorem 2 Letr (s, ¢) is a solution of (19) and satisfies the following conditions:
limgs 5o ®(s,c) =0, limg_, oo ®(s,c) = 1.

Then

(i) Ifc =c* <0, ®(s, ) is a stable traveling wave solution of IDE CNN model.
(ii) If c = ¢y > 2, O (s, ¢) is unstable traveling wave solution.

Remark 3 Our objective in this section is to study the structure of the travelling
wave solutions of the CNN model (11). There has been studies on the travelling
wave solutions of spatially discrete or both spatially and time discrete systems, but
as far as we know there are no studies of periodic traveling wave solutions in CNN.
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5 Numerical Simulations and Validation

Let us consider the square domain of piezoelectric solid G| G,G3G4 with a side a.
For heterogeneities at nano—scale we have: the side of the square is @ = 107" m;
material parameters inside / for hole are 0; material parameters on S = 9/ for hole
and for an inclusion are: ¢, = 0.1c}}, efs = 0.1el%, &f, = 0.1eM, p5 = pM.

The characteristic that is of interest in nano-structures is normalized Stress Con-
centration Field (SCF) (o/0p) and it is calculated by the following formula:

o0 = —o3sin(p) + oxcos(p), (20)

where ¢ is the polar angle of the observed point, ¢ ; is the stress (2) near S.
Material parameters of the matrix are for transversely isotropic piezoelectric mate-
rial PZT4 are:

e Elastic stiffness: c}f = 2.56 x 10'°N/m?;

e Piezoelectric constant: e{‘g =12.7 C/rnz;

e Dielectric constant: ¢} = 64.6 x 1071°C/Vm;
e Density: p” = 7.5 x 10° kg/m°.

The applied load is time harmonic uni-axial along vertical direction uniform mechan-
ical traction with frequency  and amplitude oy = 400 x 10° N/m?and electrical

M

displacement with amplitude Dy = k%}oo. This means that the boundary conditions
15

(4) are:

e on GG, : = —O‘o,liw = —Dy;
e on G,G3: ¥ =M =0;

e On G3G4ZI3M =0,l‘£4=D0;

e onG4G: 13" =1t =

Then simulating our CNN IDE model (11) we obtain the following periodic wave
solutions (see Fig.4):

The simulations of IDE CNN model are obtained by simulation system MATCNN
applying 4th- order Runge-Kutta integration. In order to minimize the computational
complexity and to maximize the significance of the mean square error only outputs
of 4 cells are taken into account.

Fig. 4 Simulation of IDE ?
CNN model with 4 cells 15

ul, u2, u3, ud
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Remark 4 The CNN solution of integro-differential equations has four basic prop-
erties it is (i) continuous in time; (ii) continuous and bounded in value; (iii) continuous
in interaction parameters; (iv) discrete in space. If we consider the output equation
of CNN to be of integro-differential type the architecture becomes quite general.
Analog CNN Chip hardware implementations have been developed and will further
advance in the future. Miniaturized CNN based devices are used already commer-
cially in real time applications e.g. in high speed image and video processing with
an equivalent computational power of super computers. CNN in the form of Quan-
tum Dot Cellular Automata appear to become a promising architecture for future
nano-structured computers.

6 Stabilizing Feedback Control for IDE CNN Model

Letus extend the IDE CNN model (11) by adding to each cell the local linear feedback
[9]:

du ij

el D(ui—1j —2uij +uiy1;) — Cr | G(u;j))dt — kuy;, (21)

s

where k is the feedback controls coefficient, which is assumed to be equal for all
cells. The problem is to prove that this simple and available for the implementation
feedback can stabilize the IDE CNN model (11). In the following we present a proof
of this statement and give sufficient condition on the feedback coefficient values

which provide stability of the CNN nonlinear model (21). The following theorem
holds:

Theorem 3 Let the parameters of IDE CNN system and feedback coefficient k (21)
have positive values. Then its linearized model is asymptotically stable for all k > 0.

Proof Define the quadratic Lyapunov function candidate L(z) = %sz. Then its
derivative along the linearized control IDE CNN is % =277k + J(k)z =
—zT Q(k)z. Therefore % < 0 implies a positive definiteness of Q (k). It can be
shown that Q (k) positive definiteness implies k > 0. For verification of the above
statement the eigenvalues of J (k) were calculated related on the values of feedback
coefficient k. Stability of the linear system requires that the eigenvalues A%, i =
1, ..., 4 satisfy the inequality maxiRe)»; < 0.
Simulations of the stabilized IDE CNN are given on Fig. 5:

Remark 5 The numerical solution procedure follows the algorithm developed in
the previous section. The following steps of the numerical procedure are realized:

(a) solution of the algebraic system (17) for the unknowns U,,, 2 and w;
(b) computation of the displacement and traction at any point in the PEM plane;
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Fig. 5 Simulation of
stabilized IDE CNN model

A. Slavova

(c) SCF computation;
(d) creation of validated software based on Matlab.

Numerical simulations show that the stress concentration field near defects is strongly
influenced by the type and the size of the defect(crack, hole or inclusion), the material
anisotropy, the defect location and geometry, the dynamic load characteristics and
the mutual interactions between defects and between them and the solid’s boundary.
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Nonlinear Models of the Fluid Flow )
in Porous Media and Their Methods L
of Study

Jifi Benedikt, Petr Girg, and Lukas Kotrla

Abstract We survey mathematical models of the fluid flow in porous media based
on quasilinear parabolic partial differential equations. We focus on singular and/or
degenerate parabolic equations, which are suitable for modeling of turbulent filtra-
tion such as groundwater flow trough gravel and/or fractured crystalline rocks and
turbulent polytropic filtration of natural gas through rocks in standard deposits, on
one hand, and isothermic nanoporous (slow) filtration of natural gas in shale forma-
tions, on the other hand. Since in the case of singular and/or degenerate parabolic
equations, it is almost impossible to find explicit solutions, we survey some existence
and regularity theory together with maximum and comparison principles. We apply
this theory on some selected examples from practice.

Keywords Ground water + Drought - Flow in porous medium + Turbulence -
Nonlinear Darcy law + Leibenson’s equations - Natural gas + p-Laplacian + Doubly
nonlinear equation - Comparison principles

1 Introduction

Climate change and shortage of natural freshwater resources are becoming very
serious issues nowadays. There is a need for better management of existing resources,
while looking for unconventional resources of this vital substance. Our aim is to
contribute to these important issues by surveying several nonlinear mathematical
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models of the fluid flow in porous media and their methods of study. We hope that
people from practice may find them useful.

Long-lasting droughts become serious problem not only in traditionally arid
and/or semi-arid areas, but newly also in countries with moderate climate such as
countries in Central Europe. Indeed, several regions of Europe including those in
Central and Northern Europe experienced severe drought conditions during June
and July 2019, resulting from a combination of the 2018 drought, the heatwaves
of 2019 and below-average precipitations in spring 2019, according to JRC Euro-
pean Drought Observatory report [39]. Moreover, below-average precipitations in
2018-2019 lead to lowering of the groundwater level which caused drying of wells
in many places in the Czech Republic as it can be seen from the weekly observa-
tions of water table in shallow boreholes (ca. 2—15m deep) conducted by the Czech
Hydrometeorological Institute [13], where most of the observations are significantly
below long-term average values (collected data since 1950s). The drought events of
2015-2019 also contributed to bark beetle calamity, see, e.g., [31, 32, 34, 55, 69],
peaking in Central Europe in 2019. Of course, the problems of drought were not
limited to Europe in 2019, significant problems were experienced also in many more
areas worldwide, e.g., in Southeast Australia [40], Southern Africa [42, 43], and
India [41] in 2019. According to [53], two-thirds of the global population live under
conditions of severe water scarcity for at least 1 month of the year and half a billion
people face severe water scarcity all year round. It was already in 2008, when Gold-
man Sachs [28] estimated that the annual consumption of freshwater approximately
doubles every 20 years, claimed that water will be oil of the forthcoming century, and
recommended to private investors to invest into infrastructure related with freshwater
supply.

Most of the mathematical models of the groundwater flow used in practice are
based on the linear Darcy (constitutive) law relating groundwater flux with piezo-

metric head loss per length:

Ah
q =const.E, (1.1)

where h = £ 4+ 7 is the piezometric head, P is hydrostatic pressure, p is density,
g is acceleration due to gravity and z is vertical coordinate measured from arbitrary
(but fixed) horizontal level, Ah stands for the piezometric head loss (difference of /),
AL is distance, and ¢ is flux. This law was established empirically by Henry Darcy
[15] already in 1856 and it is sufficiently accurate in the case that the flow is laminar,
that is, when the Reynolds number related to flux is not “too high” (to be clarified in
Sect. 4). If, however, the Reynolds number of the flux is “too high” (see Sect. 4), the
turbulence occurs and the linear Darcy law should be replaced by a nonlinear one
such as the Smreker—Izbash—Missbach law

Bh _ const.g” ivalentl — const. (21" (1.2)
AL = const. g or, equlva en y, q = const. AL . .

or the Forchheimer law
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Ah
- = bq?, 1.3
AL aq + bq (1.3)

where the positive multiplicative constants and the exponent m € (1, 2] are to be
determined empirically. Note that the turbulence often occurs for reasonable and
realistic fluxes in practice in the case of coarse porous materials such as gravel or
fractured impermeable media with sufficiently wide fractures. A thorough historical
survey of development constitutive laws and their history is presented in [8].

With increasing demand on water supply, crystalline rock (or hard rock) aquifers
are gaining attention in the last decades [29, 60]. By crystalline rock (or hard rock),
we mean impermeable rocks of igneous or metamorphic origin (of negligible per-
meability) such as, e.g., basalts, granites, or gneisses, where the groundwater flow
occurs only in a system of cracks and fractures. Since the water is stored and flows
only in cracks and fractures, wells and boreholes in the crystalline rock aquifers have
significantly smaller yield as compared to those in porous sedimentary rocks or allu-
vial aquifers. Nevertheless, crystalline rocks of the Precambrian continental shields
occupy approx. 20% of the land surface [29]. Hence, crystalline rock aquifers may
become important source of freshwater in rural areas. More importantly, crystalline
rocks are commonly found in semi-arid areas where they may represent important
source of scarce freshwater. Indeed, continental shields occupy approx. 40% of the
semi-arid areas of the sub-Saharan Africa [50, 77]. Itis estimated that 40% of ground-
water in Australia is stored in the crystalline aquifers [27]. Crystalline aquifers are
intensively exploited by farming communities as a source of freshwater mostly used
for irrigation in semi-arid southern India [57]. Thus, good understanding of the flow
in crystalline aquifers can improve quality of life in these areas. The crystalline rocks
are commonly found in continental shields and massifs also in areas which do not
have lack of precipitations such as Brazil, Canada, and Scandinavia. On one hand,
the crystalline rock aquifers are used for water supply to rural communities in these
areas. On the other hand, there are also large underground construction projects such
as tunnels, mines, nuclear-waste disposal sites, and similar, see [29]. Thus, under-
standing groundwater flow in hard rock aquifers is important not only from the point
of view of water extraction, but also from the point of view of dewatering of these
construction projects.

Hand in hand with climate change, global water cycle intensifies and hydrological
extremes including floods may occur more frequently, see, e.g., [30, 33, 71, 76].
Thus, further research and development of effective drainage systems is needed.
It appears that coarse porous media such as gravel or geosynthetic materials are
suitable for this task, but it turns out that movement of water in these materials is
again governed by the nonlinear Smreker—Izbash—Missbach or Forchheimer law [10,
23].

Recent serious drought events are closely related to ongoing climate changes,
see, e.g., [14, 74, 75] and references therein. Although it may be the case that the
CO, emissions are not the main reason of global warming, see, e.g., pro et contra
arguments in [11, 46, 47, 61, 62, 70], preference for fossil fuels with lower CO,
emissions will most likely not make the situation worse. Natural gas is a hydro-
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carbon gas mixture consisting primarily of methane (CH,4), and thus has the most
favorable ratio between carbon and hydrogen in terms of emission reduction of all
fossil fuels. For comparison, the amount of CO, produced by burning natural gas to
get a unit of energy is a half that of black coal (117 Ib CO; per 1 million Btu ver-
sus 205-228.6 1b CO, per 1 million Btu) according to the U.S. Energy Information
Administration (see [72]). With geographically narrowly localized conventional gas
fields, unconventional deposits (e.g., shale gas deposits) are now increasingly being
opened worldwide to meet increasing demand. In order to better exploit valuable
natural resources, one needs good mathematical models. Natural gas flow in the rock
is a very complicated process which involves heat exchange with collector rock and
may involve turbulence. One of the first to develop satisfactory mathematical models
of non-stationary flow of natural gas in a collector rock of a conventional gas field
was Leibenson [48].
It turns out that the archetypal parabolic partial differential equation

% —div (o] [Vv]P2Vv) = f(x,1) (1.4)
is a suitable model for all above situations of the fluid flow in porous medium. Note
that (1.4) becomes Leibenson’s equation of filtration of a polytropic gas in a porous
strata for 3/2 < p <2, 1 > 0, see Sect.3, and equation for the water table in an
unconfined aquifer for 3/2 < p <2, =1, see Sect.2. Note that the case p =2
corresponds to laminar flow in both Leibenson’s equation and the water table equa-
tion, while the case p = 3/2 corresponds to a flow with fully developed turbulence.
Most importantly, for practical considerations, the intermediate case 3/2 < p < 2
corresponds to a flow with some effects of turbulence. Moreover, (1.4) with/ = 1 and
2 < p < 10 is also model of fluid flow in nanoporous media (see [54]). Note that
such type of gas filtration occurs in the shale deposits, whose importance in natural
gas extraction has recently increased significantly.

2 Basic Terminology in Hydrology

2.1 Porous Medium

The attempt to formulate an exact definition of porous medium brings many pitfalls,
see Bear [6, Sects.1.2 and 1.3]. We adopt the conceptual model presented in [6,
Sects. 1.3 and 4.5.2]. Moreover, we restrict ourselves to the case where a portion of
space (domain from mathematical point of view) is occupied by two homogeneous
kinds of matter. Solid phase (say rock) forms a rigid container for fluid phase. The
space occupied by solid phase is called solid matrix and the space filled by fluid
phase is called pore space. Porous medium contains solid matrix and pore space in
any sufficiently large subdomain (but still much smaller than the whole domain). In
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fact, the pore space includes many relatively narrow channels or tubes of various
length, cross-section, and orientation. We call a junction the part of void space where
at least three channels meet each other. The channels and the junctions have more or
less uniform spatial distribution.

In the case of fluid flow, we can assume that any two points in pore space may be
connected by a curve that lies completely within it since there is no flow in isolated
pores (subsets of pore space). Consequently, the isolated pores are considered as the
part of solid matrix, see [6, Sect. 1.2]. The remaining pore space (interconnected by
channels) is usually called effective pore space. We will assume that the pore space
includes only effective pore space for simplicity and hence we will omit the term
“effective”.

2.2 Groundwater

Typical porous media considered in hydrogeology are soils, sands, gravels, porous
rocks such as sandstones, and fractured crystalline rocks such as basalts, granites,
and gneisses. In general, the pore space of these porous media can be filled by air,
vapor, and liquid phase of water. Part of the porous medium where all pores are
filled by the water in liquid phase is called saturated zone and the part where the
pores contain gaseous phase (air and vapor) and also liquid phase (of water) for at
least part of the time is called aeration zone. For the purposes of this paper, the term
groundwater is limited to the water present beneath Earth’s surface in the saturated
zone. Mathematical models presented in this paper are restricted to the motion of
water in saturated zone.

2.3 Agquifer

Note that the saturated zone can be either overlain by an impermeable layer (of rock
or clay) or it can have a free upper surface, which is called water table. The water table
is characterized as a surface where the pressure is equal to the atmospheric pressure.
An aquifer is such saturated zone which allows groundwater flow. The aquifer with
the free upper surface is called unconfined aquifer while the aquifer enclosed between
two impermeable layers is called confined aquifer. In the presented paper, we are
interested in groundwater flow through unconfined aquifer.

2.4 Velocities and Flux

The real velocity of the groundwater in the porous medium is highly and unpre-
dictably fluctuating in space and time due to irregularity of the channels and their
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(a) (b)

Fig. 1 Flow through porous medium. (a) specific discharge (or Darcy velocity) versus (b) stream-
lines of the real velocity field of the fluid

joints (and due to turbulence for high values of the Reynolds number). Thus, the real
velocity is useless for the practical purposes. Instead, average velocity (which can be
measured in practice) is used. Let us choose Cartesian coordinate system xyz, with
z being the vertical axis. Now, let us consider cross-sectional area A, perpendicular
to x-axis. Let O, be the volume of water that passes through A, per unit of time.
The sign of Q, is positive, if the water (in bulk) passes through A, in the direction
of axis x and negative otherwise. Then

aef Ox
qx = A,
In analogous way, we define g, and g.. Then, g=(qx, gy, ¢.) and g=,/q? + g} + q2.
The quantity g is called specific discharge or Darcy velocity. We also define average
. - > . . .. def - .
velocity v = q/n, where n is porosity. Similarly, v = |v| = g/n. This approach
works for any incompressible fluid (Fig. 1).

2.5 Groundwater Energy and Piezometric Head

The total mechanical energy of a unit volume of groundwater (or any other incom-
pressible fluid) is the sum of gravitational potential energy, pressure energy, and
kinetic energy
1
Er =zog+ P+ 700,

see, e.g., [59]. Here, v stands for the magnitude of average velocity of the flow, see
above. Groundwater is losing total energy while flowing due to friction with porous
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medium. Thus, its total energy decreases in the direction of the flow. The total head
hr is the height of the fictive column of groundwater with the gravitational potential

energy equal to Er, i.e.,
P I,
]’lT =z+ — + —v°.
g 28

Since the average velocity of the groundwater flow in real situations is maximally of
the order of a meter per day (that is, of the order 0.00001 m/s), the term corresponding
to kinetic energy is negligible and can be dropped. In this way, we obtain piezometric
head p
h=z+—,

08
which is the state variable in the mathematical models of underground move-
ment. Constitutive relations between specific discharge and piezometric head were
observed by in-field observations [67] as well as experimentally established in lab-
oratory conditions [15]. In general (for isotropic medium), these relations can be

written as
_® Ah
1=%\ar )"

where @ is some nondecreasing function such that ®(0) = 0. Note that the constitu-
tive laws are inferred from experiments for one-dimensional flow. However, ground-
water flow in the real world is three dimensional. The properties of the isotropic
porous medium are the same in all directions. Thus, in this case, the three-dimensional
constitutive law can be inferred from the one-dimensional one in a straightforward
manner, taking into account that the specific discharge takes the opposite direction
of the gradient of the piezometric head and no flow occurs if the gradient of the
piezometric head is zero, i.e.,

6 foth:(_j,
g = v (2.1)

h _
—®(|Vh))—— for Vh #0.
(1 I)Wh| or Vh #

In particular, we obtain the linear Darcy law (1.1) for

d(r)y=kr, r>0, 2.2)
the Smreker—Izbash—Missbach power law (1.2) for

o) = crﬁ , r>0, (2.3)

1 < m < 2, inverse Forchheimer law (inverse formula to (1.3)) for
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JaZ Fabr — 2
oy = YLETr A Y 2.4)
2b a?+4br +a

Ithas been observed by King [45] that the flow of water in low-permeable clays obeys
(2.3) with0 < m < 1. The work [68, p. 239] contains an overview of values of m for
various materials where m ranges from 0.27 to 0.89 (note that 1/m = n, exponent
n taken from [68, Table (A), Appendix I, p. 239]). Recently, it has been found that
very slow filtration (i.e., 0 < m < 1) occurs in petroleum and gas extraction from
tight shales reservoirs. For laboratory experiments with real fluids and media, see
[25, 63].

2.6 Problem of the Free Surface, the Dupuit—Forchheimer
Assumption, and Simplified Problem

In the case of unconfined aquifers, the free surface of the groundwater is the upper
boundary of the aquifer. Thus, we need to solve a partial differential equation for
both an unknown & = h(x, y, z, t) and an unknown bounded domain ® = ©(¢) in
R? that represents the aquifer.

In 1863, Dupuit [21] simplified the problem of unknown boundary by observing
that the maximal piezometric head loss per length Ah/AL is between 0.001 and
0.01 in typical unconfined aquifers and unconfined aquifer is bounded from below
by horizontal impermeable layer. Based on these observations, he formulated the
following assumptions on the flow:

(DF1) groundwater flows horizontally (and thus piezometric head is constant in
vertical direction z) and

(DF2) the Darcy law (1.1) applies to this flow (Dupuit assumed that the ground-
water flow is slow enough at these values of piezometric head loss per length so
that the nonlinear effects can be neglected).

We will derive a simplified model of groundwater flow in unconfined aquifer using
the assumption (DF1). We also assume that the lower boundary of the aquifer
formed by impermeable layer is the xy-plane. We choose 2 a bounded domain
in R? such that orthogonal projection to ®(¢) to the xy-plain is contained in
for every t € [0, T]. We remind that for a fixed x, y, ¢, the point (x, y, z) belongs
to the water table if and only if i (x, y, z,f) = z. In case there is no water above
(x,y) € Q at r, we extend the definition of the water table to contain the point
(x, ¥, 0). We assume that the water table is the graph of a function of x, y, and ¢, that
is, there exists nonnegative and sufficiently smooth function H : R?> x [0, T] — R
such that h(x, y, H(x, y,t),t) = H(x, y,t). Then the mass of the water column
stacked above arbitrary two-dimensional disk A C 2 at time ¢ is

ma(t) = / N Owater H (x, y, t)dxdy .
A
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Hence, the integral form of mass conservation law for water (or any other incom-
pressible fluid) has the following form:

n o n
mA(’Z)—mA(ll)+/ / H(x,y,z>j(x,y,r>~ﬁds=/ /f(x,y,t)dxdydt,
11 0A f A

(2.5)
where ; = 71 Owater U = Owater ¢ 15 the mass flow, 7 is normal vector of A, and f
quantifies the sources or absorption in column over the point (x, y) at time 7. Let us
recall that j(x, y, z,¢) = j(x, y, t) by the assumption (DF1).
Using m 4 (t) — ma(t)) = f,f m/,(t)dt = [, ft’f 1 Owater 2 (x, y, 1) dtdxdy , and
the divergence theorem on the second term in (2.5), we arrive at

15} OH 15} . . n
// n@walera—(x,y, t>dtdxdy*/ /le(H(xyyat)QwalerQ) dxdydt=/ /f(x,y,t)dxdydt~
AJny t n JA n JA

Since the integral identity is valid for any test disk A C €2 and any interval [t;, ;] C
[0, T'], we infer the local form of the mass conservation law

fx,y,1)

Qwater

OH . -
nw(x, v, t) —div(H(x,y,t) q) =

a.e.in Q x [0, T']. Since h(x, y, -, t) = const. by the assumption (DF1) and A (x, y,
H(x,y,t),t)=H(x, y, t) on the water table, h(x, y, z,t) = h(x,y,t)=H(x, y, 1)

and o
- ’ b t
n 2y, — div v, ) = L9200 (2.6)
ot Owater

By (DF2), we apply the Darcy law, i.e., (2.1) with (2.2) to conclude

oh k

- — —div(Jh[ Vh) = f(x, y,1) (2.7)

ot n

with a little bit of abuse of notation (‘“hiding” multiplicative constants into f). Note
that we can assume that k/n = 1 since we can get rid of this multiplicative constant
by a linear substitution in the time variable.

Based on numerous experiments and in-field observations summarized in [26],
Ph. Forchheimer [26, see p. 1782 and “Anhang,” pp. 1787-1788 ] pointed out that the
assumption (DF2) (i.e., the Darcy law (1.1)) is not accurate enough for piezometric
head loss per length greater than 0.0005 for certain porous media (sands) and thus
(1.3) has to be used instead while the assumption (DF1) is still applicable. Following
Forchheimer, we apply Forchheimer law, i.e., (2.1) with (2.4) to conclude

oh 1.< 2 |h| Vi
div

n @ + 4b|Vh| +a

ot n ) = fx,y,1). 2.8)
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Or alternatively, we apply Smreker-Izbash—Missbach law, i.e., (2.1) with (2.3) to
conclude o

C
— — Zdiv(|h| |VR|P72 Vh) = 2.
o nle(| [IVh| )=y, 1), 2.9)

where p =1+ 1/m. It turns out that the equation (2.9) is easier to handle both
theoretically and computationally and thus it is preferred in the literature.

3 Leibenson’s Equation and Flow of the Natural Gas

Following Leibenson [49], we assume that the porous medium is nondeformable,
isotropic, and homogeneous at macroscopic scale with constant porosity n and the
gas is a homogeneous mixture. The condition on the gas ensures that its density
depends on the pressure only. We also suppose that the examined thermodynamic
process is polytropic, i.e., it obeys the following relation:

P
Q !

Here, x € R3, o = o(t, x) is the density, P = P(t, x) is the pressure, v > 1 is the
polytropic index of the process, and § > 0 is a constant. The flow of the gas (as of
any fluid) in the porous medium is governed by continuity equation in the form

n% +div (o) =0 (3.2)

and an appropriate constitutive law which relates specific discharge ¢ = nv and
pressure gradient V P. Specific discharge is volumetric flux per unit area and the
term og represents mass flux per unit area. We refer to [6, Sect. 6.2] for derivation of
(3.2) for homogeneous mixture.

For compressible fluid, the specific discharge g does not provide relevant infor-
mation and mass flux must be used instead. In this way, a similar power law for
compressible gas subjected to polytropic process,

- ‘ 1
0g =—C |VP'7vp, 3 <s<l1, (3.3)

was experimentally established, where P; = PO+D/7 (see Leibenson [49]).
Plugging (3.3) into (3.2), we obtain

o[ pr
n —
ot I6)

—Cdiv(|VPI*'VP) =0
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by (3.1). This equation is often called the equation of turbulent polytropic filtration
of gas in porous medium and it has attracted attention of many researches, see, e.g.,
[4, 17, 19, 20, 24, 36].

4 Turbulence in Porous Medium and Real-World
Observations

The turbulence in porous medium was probably first conjectured from the experimen-
tally established deviations from the Darcy law by Pavlovskii [56], who proposed to
use the Reynolds number for the distinction of the validity range of the linear Darcy
law from the validity range of nonlinear laws. He also observed that formula for the
Reynolds number in the porous medium must be different than the one for a pipe. He
proposed a definition suitable for grained porous media (e.g., sand or gravel) formed
of grains of approximately the same diameter. His formula reads

o 6.5qdp
1 (0.750 +0.23)°

where d is effective diameter of the grain, p is density of the incompressible fluid
(water), and p is its dynamic viscosity. For this definition of Reynolds number, it
follows from the experiments that the Darcy law (2.2) is valid if the value of Re is
approximately below 50 to 60 (the boundary between the two cases is somewhat
blurred) and, for higher values of Re, the Smreker-Izbash—Missbach law (2.3) with
1 < m < 2 or the Forchheimer law (2.4) must be used instead. According to V. L.
Aravin and S. N. Numerov [1, p. 4 and p. 33], this was the first time in [56] when such
specification of ranges of the Reynolds number appears in the literature. As pointed
out in [1, p. 33], the value of the Reynolds number when the Darcy law becomes
inaccurate does not have to be the same as the critical value of the Reynolds number
when the turbulence in the flow occurs. Nowadays, it is known that there are at least
three ranges of Reynolds number with three different laws:

e pre-Darcy law (2.3) with O < m < 1 for very low values of the Reynolds number;

e Darcy law (2.2) for moderate values of the Reynolds number;

e post-Darcy law (2.3) with 1 < m < 2 or (2.4) for high values of the Reynolds
number.

To get the picture complete, experimental study of flow through porous media over
the complete flow regime is presented in, e.g., [2, 3, 66, 68].

Since the constitutive law can become nonlinear even in the laminar regime (as
pointed out by [1, p. 33]), we are often asked at conferences if the turbulence in the
flow through the porous medium was indeed observed in the laboratory. The modern
laboratory techniques can indeed capture the structure of turbulent vortexes, see the
recent paper [78].
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5 Functional Framework

In this section we survey relevant existence, uniqueness and regularity results con-
cerning generalized solutions of doubly nonlinear parabolic equations. There are
several approaches to generalized solutions of (singular/degenerate) doubly nonlin-
ear parabolic equations, see, e.g., [16, 18, 22, 36, 52]. For our purposes, we chose
the least technical approach presented in the survey paper by Ivanov [36] (for the
complete proofs of results surveyed in [36], see [35, 37] for p > 1 and [38] for
p>2).

Let Q be abounded domaininRY, N > 1,and T > 0. We assume that Q has C%!-

boundary (i.e., Llpschltz boundary) 9%2, see [58]. Then Qr & Qx(0,T], St o

0Q x[0,T] and 'y & St U (22 x {0}). We will use standard function spaces for
parabolic problems and, for the convenience of the reader, their traditional notation,
which is often different from the notation used in [36]. By C ([0, T] — L% (2)),
for g > 1, we denote the space of all measurable functions v on Q7 such that the
mapping f — v(-, t) acting from [0, T'] to L? (2) is continuous, i.e.,

lim |t, —t|=0= lim [v(-, %) —v(-, )| =0
+00 n—+00

n—

for every sequence {t. )7 e 1, €0, T]andt € [0, T].
By L? ([0, T] —»> whrp (Q)) we mean a space of all measurable functions on Q1
such that v(-, ) € W?(Q) fora.e. t € [0, T] and

e T 1/p
C]
||v||LF([0,T]_)W1.p(Q)) = <‘/(; ||U( t)”wl () > < +00.

Note that if v € L? ([O, T] — W“’(Q)) then the trace of v(-, t) on O is defined
forae.t € [0, T].

Finally, by C*"?(Q7) we mean a space of all continuous functions v on Q7
such that

lu(x, 1) —u(y,s)|
lvllcxvegry = max_|v(x, )|+ sup < 400
en (x,n)eQr wnoear 1X — yIA e — sV
(X, 0#(y,8)

We consider the prototype initial-boundary-value problem

%—diva(x,t, v, Vu) = f(x,1) in Or;

v=1 onlr,

(5.1)

~

where f e L®(Q7), and ¢ € CMVP(Qr) such that o) & l/(-D+1 ¢ [p
([0, T] - W'?(R)), are given functions.
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The following structural hypotheses on the Carathéodory function a are assumed
fora.e. (x,t) € Qr and any s € R and any ¥ € R":

a(x,t,s,7) - F = vy ls' [F17 — po (1 + [s]°) , (5.2)
la(x,t,5,F)| < v lsl' [FIP7" + pa Is]7 (5.3)

Here p > 1,1 > 0, vy, v; > 0, and po, 11 > 0 are certain given constants. Moreover,
0<d <!l+ pisgiven constant for [ + p >2and 6 =2 for 1 <+ p < 2. Note
that these structural assumptions are satisfied in the particular case of the equation
(1.4).

Note that 2 with Lipschitz boundary satisfies the following structural hypothesis
from [36] (so-called property of positive geometric density) on the boundary 0Q2:

Ja, €(0,1) o >0 Vxp € 92 Vp € (0, p,]: meas (R N B, (x0)) < (1 — ) meas (B, (xp)) -

From [36, Def. 1.1 and Def. 2.1], we adapt the following notion of weak solution.

Definition 1 A nonnegative function v € L*(Q7) is a weak solution (supersolu-
tion, subsolution) if

(@ veC([0,T]— LY Q)00 /ox; € LP(Qr) fora € 1/(p —1),i =1, ...,

N,and 9 & vt € L7 ([0, T] — W'P(Q)).

(b) forany ¢ € Cé(QT) and any 11, 1, € [0, T,

/quﬁdx

. . - def
(¢ = 0, for supersolution: > 0, for subsolution: < 0), where v, = (Uxys Uxys o v s
Uy, ) and

__,_/2/ {—v%+5(x,t,v,ﬁx)'v¢_f¢}dth:O’ (55
R P ot

A

v, def (1 +0)71v’”§—; in{(x,7) € Or: v > 0}, (5.6)

0 in{(x,t) € Qr:v=0}.

(c) v coincide with ¢ on I'7, that is,

v=1 onSr inthe senseof v’t!trace; 5.7
Tim [[v(-. 1) = (-, 0) @ =0. (5.8)

This definition makes sense, cf. [36, p. 24], in the general case p > 1,/ > 1 — p.
However, we limit ourselves to p > 1 and ! > 0, which are values that appear in our
models. Note that the conditions (5.7) and (5.8) do not appear in [36, Definition 2.1]
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explicitly, however, they are mentioned in previous works by the same author, see,
e.g., [38, Definition 1.2].

The following result is a basic weak comparison principle for the weak sub-
and supersolutions of the doubly nonlinear equation from the initial-boundary-value
problem (5.1).

Proposition 1 cc(see [36, Prop. 4.1]) Let the assumptions (5.2), (5.3) be fulfilled.
Assume that vy € L? ([0, T] — WI’P(Q)) is a subsolution of the equation

%_mm@muvw=ﬁwn in Or, (59

and v, € L? ([0, T] — WI’P(SZ)) is a supersolution of the equation

%—divﬁ(x,t,v, Vv) = fo(x,t) inQr, (5.10)

where fi, f» € L*(Qr). If
vy < vy on 'y (in the sense of traces) , and fi < f» in Qr 5.11)

then, for any 7 € (0, T], we have

/ Wi (x, 7) —va(x, 7)) T dx < / (v1(x, 0) — v (x, 0) " dx . (5.12)
Q Q

From this proposition, we easily obtain uniqueness of weak solutions in the class
L? ([O, T] — WLP(Q)).

Proposition 2 (see [36, Prop. 4.2]) Let assumptions (5.2), (5.3) be fulfilled. Then
there is at most one weak solution of the initial-boundary-value problem (5.1) belong-
ing to L? ([0, T]1 —> W'P(Q)).

Note that in the case of the doubly nonlinear equation, a weak solution v is assumed
to satisfy v°*+! e LP? ([0, T] — Wl'p(Q)) foro =1/(p — 1), which reduces to v €
L? ([O, T] — WLP(Q)) provided !/ = 0. For [ # 0, weak solutions to (5.1) do not
need to be of class L? ([0, T] — W'”()), in general. Note that if inf , v > 0 then
vt e L7 ([0, T] — W?(Q)) implies v € L? ([0, T] — W'P(Q)).

Proposition 3 (see [36, Theorems 5.3 and 6.1]) Let p > 1 and either
120, p+1=2

or
l<p+l<2.

Moreover, assume
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Q c RY is a bounded domain satisfying (20), (5.13)
fel®Qr), f=0aeinQ7, (5.14)
belP ([0, T] — W(}”’(Q)) N CPBIP(Qr) 4 > 0, for some B € (0, 1. (5.15)

Then there exists exactly one quasi-strong solution of the Cauchy—Dirichlet prob-
lem

{ % —div (lo/' [Vu|P2Vv) = f(x,1)  in Qr;
v:’ll) on FT,

which is Hélder continuous on Qr.
Moreover, V (v““) e LP(Qr), witha =1/p, and

[v(x, 1) —v(x', 1)
sup A o =K
.0, ey X — XM+t =1

with some X\ € (0, 1), K > 0depending onlyon N, p, [, || fllL=~(0,), meas 2, T, o,
and p* (from condition (5.4)), ||¢||LP([07THW01,,,(Q)), ||1/)||Cj,,‘;/p(E), and (8 € (0, 1).

Proposition 4 (see [36, Theorem 3.1]) Let 1 < p <2, p +1 > 2 and assume that
the structural conditions (5.2) and (5.3) are satisfied. Moreover, suppose that

(a) fora.e. (x,t) € Qr and any s € R there exist vy > 0 and b = l;(x, t,s) e RV,
|b(x,t,s)| < 400, such that for a.e. (x,t) € Qr andalls € Rand ¥, ,7; € RN

hS1ISY

1—
- o - S Lz =2 7 = 7
[, 1,5, 71) = @G, 1,5, )]+ (1 = F2) 2 walsl! 7y = ol {17y = BIP + 172 — b1}

holds.
(b) for ae. (x,t) € Qr and any ¥ € R", the functions s “a;(x,t,s,7) and
s7%;(x, t, s, sT°F) are continuous on R with respect to s. Here o = 1/ p.

(¢) W(x, 1) is nonnegative in O, ¥ € LP ([0, T] — W()"”(Q)) N L™®(Q7), and we

have the Hélder condition

[(x, 1) — (', 1)

x—x'|P+|t— t’|)’v’o/ﬂ

sup
(x,0),(x",1)€Q7 (

for some Koy > 0 and vy € (0, 1).
Then there exists a weak solution v of the Cauchy-Dirichlet problem (5.1) which is
Holder continuous in Q. Moreover, V™ e LP(Qr), a = 1/ p, and the estimate

[v(x, 1) — v, 1)
sup / o
w0, oeor (X = X'|P [t —t')V/P
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holds with constants K > 0 and v € (0, 1) dependent only on the dimension N,
the known parameters from (5.2), (5.3), a)-b), the constants o, and o, |2|, T,

¥ llwecr), SUpg, (¥), Yo, and Ko.

The following result stated in [38] guarantees the existence of a solution of (5.1)
with time-dependent boundary conditions. Let us emphasize that the result is valid
only for p > 2. As far as we know, a similar result has not been provedfor 1 < p < 2
yet. In Proposition 5, we use Einstein’s summation convention as in [38].

Proposition 5 (see [38, Theorem 1.1]) Let p > 2 and assume that the structural
conditions (5.2) and (5.3) are satisfied. Moreover, suppose that

(a) foranys e R, 7,7 € RY and a.e. (x,t) € O,
> > 1~ >
(ai(x,t,s, 7)) —ai(x, 1,5, 7)) - (r1i — rai) = vlsl'[Fy = 7l?

with v; = const. > 0.
(b) fora.e. (x,t) € Qr and all ¥ € RN, the limit

. - l
lim s %a; (x,t,s,s_“r) , a=—,
s—0+ )2
exists.
(c) forany? € RN and a.e. (x,t) € Qr,
ai(x,t,s,F)ri — f(x,t)s > —clsz, c; = const. > 0,

foralls <O. o
(d) concerning the function(x, t), (x,t) € Qr, defining the boundary condition in
(5.1), ¥(x,t) = 0,9 € W-P(Q7) N L>®(Q7) and we have the Holder condition

[Y(x, 1) — ', )]

su
Vg, (x — 217+ |t — 0y =

(.0, (" ,1)€07

0

for some Koy > 0 and v € (0, 1).

Then problem (5.1) has at least one nonnegative weak solution v(x, t) for which

lv(x,t) —v(', )]
sup / e <
0, eor (X = X'P [t —t')V/P

holds with K > 0 and v € (0, 1).
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6 Maximum and Comparison Principles

In case of singular and/or degenerate parabolic equations, it is impossible to find
explicit solutions except for very rare cases, thus we heavily rely on qualitative
methods of their study combined with numerical computations. Maximum and com-
parison principles play a prominent role among the qualitative methods. To remind
what maximum and comparison principles are, let us start with the well-known ellip-
tic Dirichlet Laplacian problem. Let u; € W'2(Q), i = 1, 2, be the weak solutions
of
—Au; = fi(x) inQ,

fi € L°(R), in a bounded domain  C R". The weak comparison principle states
that if f; < f> in  and u; < u, on 92 (in the sense of traces) then u; < u; in Q.
The strong comparison principle states that if, moreover, f; # f, in Q or u; # u,
on JQ then u; < u, in Q. In particular, the strong comparison principle says that
J1 < f>inasmall part of 2 of positive measure (and f| = f, elsewhere) is sufficient
to have u; < u, everywhere in €2.

Similar principles hold for the parabolic Cauchy—Dirichlet Laplacian problem.
Letu; € L* ([0, T] — W'3(Q)),i = 1, 2, be the weak solutions of

a—t'—Au,- = fi(x,1) in Qr,

fi € L°(Qr).Notice that this equationis a special case of (5.1) witha(x, ¢, s, 7) =7
satisfying both (5.2) and (5.3) with p = 2.If f; < f, in Oy and u; < u; on I'7 (in
the sense of traces) then u; < u; in Qr (weak comparison principle, cf. Proposition
1). If, moreover, at least one of the following three conditions holds:

e f1 #£ foinQ x (0, ) whenever 0 < 1) < T,
e u; # up on 2 x {0} (in the sense of traces),
e uy # upyon 92 x (0, fp) (in the sense of traces) whenever 0 <ty < T,

then u; < u, in Q7 (strong comparison principle).

For the linear case p = 2, itis usual to prove the maximum principles first since the
comparison principles come forth as a consequence. Letu € L? ([O, T] — wh? (Q))
be the weak solution of

aM—A = f(x,t) i
o u=f(x,t) inQr,

f € L*(L2). The weak maximum principle states thatif f > Oin Qy thenu > M &
eslg infu (in the sense of traces) in Q7. We note that although it would make more

sense to call this statement a minimum principle and to call a maximum principle

that f < 0 implies u < ess sup u, these two are equivalent (we get one from the
r

other replacing u by —u) and thus we use only the term maximum principle. The
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strong maximum principle states that if, moreover, at least one of the following three
conditions holds:

e f=£0in Q2 x (0, 1) whenever0 <1y < T,
e u # M on 2 x {0} (in the sense of traces),
e u %= M on 92 x (0, tp) (in the sense of traces) whenever 0 < ) < T,

thenu > M in Q7.

Once the maximum principle (weak or strong) is proved, the comparison principle
(weak or strong, respectively) is easily obtained choosing u = u, — u; (thus M > 0)
and f = f> — fi. Notice that the linearity of the left-hand side of the equation is
used. Conversely, if we have the comparison principle in our hands, the respective
maximum principle can be derived choosing u; = M, f1=0,u; =uand f, = f
(no linearity is used here).

Let us now replace the Laplacian by the p-Laplace operator

Apu & div (|Vu|p_2Vu) =diva(x,t,u, Vu),

p > 1,wherea(x, t,s,7) = |F|P~%F satisfies both (5.2) and (5.3). Similarly as above,
the comparison principle implies the respective maximum principle. But since the
operator is nonlinear, the maximum principle does not imply the comparison princi-
ple. In other words, the maximum principle is weaker because it is only a comparison
with the constant solution. Moreover, the uniqueness of the weak solution is a conse-
quence of the weak comparison principle (cf. Proposition 2) but not a consequence
of the maximum principle.
As for the elliptic Dirichlet p-Laplacian problem for

—Apu = f(x) inQ,

both the weak maximum and the weak comparison principle can be proved in a
standard way choosing an appropriate test function. Basically, the weak comparison
principle states that the p-Laplacian is a monotone operator. The strong maximum
principle was proved by Vazquez in 1984 [73]. The strong comparison principle was
proved by Cuesta and Takac in 1998 [12] provided 0 < f; < f>, f1 # frandu =0
on 0L2 (they focus on the influence of the right-hand side rather than the boundary
data).

While the weak maximum and the weak comparison principle for the parabolic
Cauchy—Dirichlet p-Laplacian problem for

Ou .
E—Apu:f(x,t) in Qr (6.1)

is still standard (see Proposition 1), the strong maximum and comparison principle is
much more involved when p # 2.Itfollows from Barenblatt [4] that we cannot expect

the strong maximum principle in the degenerate case p > 2 (weak diffusion) even
locally in time. Indeed, an explicit radially symmetric solution u(x, ) = o(|x|, t) =
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o(r,t), r = |x|, of (6.1) with f =0, is obtained from the well-known Barenblatt
solution of [4, Eq. (1.3)]:
m—1
:| (6.2)

do 1 0| y_if0 4
CE T pN-1 |:r <8rg

withm = p — 1, k = 1, and ¢ > 0 a constant. Hence, the case p > 2 corresponds
to k > 1/m. The support of such u (see [4, Fig.1]) at each particular time is a
compact ball with the radius starting from 0 at # = 0 (the initial condition is the Dirac
distribution located at the origin) and increasing in time at finite speed. Consequently,
if we choose Q aball in RY and an initial time in which the support of the solution is a
smaller ball (replacing ¢ by t 4 € withane > 0 small enoughin [4]),thenu # M =0
on 2 x {0} andu # 0in Q7 since u = 0 in a part of 2 (spherical shell) for positive
times until the support of the solution hits 9€2. Another counterexample to the strong
comparison principle in one spatial dimension where u; = u, on 'y, fi < f>, fi #
f> but u; £ uy is presented in [9]. On the other hand, a certain stronger condition
on the separation of f; and f, that guarantee the strong comparison principle is
formulated in [9].

Even in the singular case 1| < p < 2 (strong diffusion) the strong maximum prin-
ciple cannot hold for arbitrarily large 7. It follows from the extinction in finite time
(see DiBenedetto [19, Sect. 2 of Chap. VII.]) which implies thatif u > 0 on 2 x {0},
u=00n0Q2 x (0, T)and f = 0in 'y then u(-, t) vanishes in €2 for ¢ large enough.
Hence, the strong maximum principle # > M = 0 does not hold globally in time. A
time-local version of the strong maximum principle was proved in [7] for even more
general doubly nonlinear equation

9
EQ

%b(u(x, 1) —Apu= f(x,t) inQr, (6.3)

where b: R, — R, is a continuous function, »(0) = 0, and b € C' (0, +00) with
b’ > 01in (0, +00). Notice that if b(s) = s then (6.3) reduces to (6.1).

Theorem 1 (see [7, Theorem 1.1]) Let 1 < p < 2 and

2P b (s)

m ——— = (6.4)
s—04 |]0gS|p_]
Assume that u: Q x [0, T) — Ry is a continuous, nonnegative, weak solution of
(6.3). Then, for any fixed ty € (0, T), the solution u(-, ty) is either positive everywhere
on 2 or else identically zero on Q.
In particular, if u(¢,0) > 0 for some & € Q, then there exists T € (0, T such that
u(x,t) > 0 forall (x,t) € 2 x (0, 1), i.e., the strong maximum principle is valid
in the (N + 1)-dimensional space-time cylinder Q x (0, 7). The number T € (0, T)
can be estimated as
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T=sup{T' € (0, T]: u(&,t) >0forallt €[0,T)} > 0.

Notice that u(x, 1) = o“(|x|, t) where o is the Barenblatt solution of (6.2) is
a solution of (6.3) where b(s) =s"/¥ p=m+1,and f=0.If k < 1/m, ie.,
k < 1/(p — 1), then the Barenblatt solution is positive everywhere in RV for any
positive time. In other words, the speed of propagation is infinite, and it is reasonable
to expect at least the time-local strong maximum principle to hold in this case. Indeed,
for b(s) = s'/¥ the condition (6.4) reads as

gl=p+1/k

Iim — =
s—0+ k| log s|P~!

which is satisfied if and only if 1 — p+ 1/k > 0, i.e., k < 1/(p — 1). Obviously,
condition (6.4) is natural and matches the Barenblatt result perfectly.

7 Basic Models

7.1 Parallel Ditches

Our first model is related to irrigation and drainage. Irrigation is especially impor-
tant in agriculture while drainage is very important in building and construction. We
assume that aquifer is homogeneous, isotropic, and resting on a horizontal imper-
meable layer. Bottom of all ditches reaches the impermeable layer and the water
levels in all ditches are at equal elevation. In our first model, we will consider two
infinite parallel ditches and we will study transient groundwater flow between them
with the possible recharge due to rain. For the sketch of the problem, see the ver-
tical cross-section perpendicular to the ditches in Fig.2, where we place the axis
x to be perpendicular to the ditches and x = 0 is set to be exactly in the middle
between two ditches. Such problem has been intensively studied in [5, 51, 64, 65]
(and others, see references therein). In the aforementioned works, Darcy law is used
as constitutive law. Following Forchheimer’s observations from [26], we use non-
linear Smreker—Izbash—Missbach law instead. Thus, the governing equation is (2.9),
ie.,

% —div (1h] [VAIP>VA) = f(x. y.1) = 0. (7.1

We suppose that the problem is translation invariant with respect to y-axis, i.e.,
a possible recharge is described by f(x,y,t) = f(x,t) > 0. Thus, h(x, y,t) =
h(x,t) and Equation (2.9) reduces to

on _ 0, | oh
8t 5‘x

p—2 8h
) fx,1). (7.2)



Nonlinear Models of the Fluid Flow in Porous Media 35

The level of water in the ditches is supposed to be a constant equal to H. This enforces
the Dirichlet boundary conditions A(£L /2, t) = H. As an initial condition, we can
consider any function /o (x) suchthato(+L/2) = H and it satisfies some reasonable
additional conditions to be specified later. It will turn out that our assumptions on
the initial condition are more general than those in [5, 51, 64, 65]. We distinguish
two cases, H = 0 (dry ditches) and H > 0 (flooded ditches). Function h¢(x) — H
can be thought of as a sudden recharge at t = 0.
Case H = 0. We may directly apply Proposition 3 with / = 1 and

3
(fully developed turbulent flow) 2 < p < 2 (laminar flow)

to obtain the existence and uniqueness of the solution of the Cauchy-Dirichlet prob-

lem (7.2)in Q7 &ef (—=L/2,L/2) x (0, T]with h(£L/2,t) =_O and hg(x) such that

ho(£L/2) = 0 whenever there exists an extension v of 4y on Q such that (5.15) is
satisfied. Note that such extension exists, e.g., in the case of sy with hy(£L/2) =0
being Lipschitz function by the McShane—Whitney extension theorem.

If f = 0 and Ay is Lipschitz continuous with support [xg — J, xo + 6] C (—L/2,
L/2) and ho(xp) > 0, then we will show that there exists 7 € (0, T) such that
supph(-,t) C (—L/2,L/2) for 0 <t < 7. Hence, the solution profile possesses
the finite speed of propagation in the sense of Kalasnikov [44]. We wish to use
some comparison principle. Unfortunately, the quasi-strong solutions obtained from
Proposition 3 do not have to be from L” ([O, T] - whrp (Q)) and thus Proposition 1
is not applicable. The situation becomes somewhat intricate and different framework
of weak solutions and corresponding weak comparison principle must be used (see
Diaz [16, Theorem 9, p. 329]). The following function is used as supersolution:

Fig. 2 Perturbed water level
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’ P

1 — xpl?

U = — [ o=l
(t+7 t+n7 ],

with

P p p—1\ ([ 1\
p=—m, A=———, k= ,
p—1 2p?2 —3p+1 p 2p—1

and some 7 > 0 and C > 0 such that 2o(x) < U(x, 0) and

L L
[xo — 0, x0+ ] CsuppU(-,0) C <_E’E) _

Then

Supph( ] t) C | xo— z ([ + T) -1 xo + E ([ + 7—) 2p—1 .

This means that the water from the localized sudden recharge /y(x) does not reach
any of the shores immediately.

Case H > 0. In contrast, if both the water level in the ditches and the water
table are at constant level H > 0, then the localized sudden recharge iy — H > 0
with supp(hy — H) = [xo — 9, x0 + 0] C (—L/2, L/2) and ho(xo) > O will cause
immediate rise of the water table in the whole aquifer between the ditches. In order
to apply theory from Sects. 5 and 6, we introduce a substitution v(x, ¢t) = h(x,t) — H
and we arrive at

o v P72 v L L
at_a)c(|U+H o 8x) = f(x,t) for(x,t)e(—E,E)X(O,T),
L
v<i5,z>=o fort € (0, T),
L L
v(x,0) = ho(x) — H forx e (—5, 5) .
(7.3)
For any (x,t) € Qr, we set
Hlr|P2r fors <O,
ate,t,5,1) 2 Vs + H)|rP2r  fors [0, M], (7.4)

(M + H)|r|P2r fors > M,

where M = ||ho — H| p~@) + Tl f lL~c0,)- Then a(x, t, s, r) given by (7.4) satis-
fies the assumptions of Proposition 4 with / = 0 and % < p < 2. Then by Proposi-
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tion 4, Cauchy—Dirichlet problem (5.1) possesses the unique quasi-strong solution
veLP(0,T] - W'P(=L/2, L/2))fora(x,t,s,r)givenby (7.4),4) € L ([0, T] —
Wol’p(—L/2, L/2)) is an extension of &y — H. Since v is a subsolution of (5.9) with
fi=fand v=|lho — Hllz~) + 1l fllz~o,) 1s a supersolution of (5.10) with
f2 = |l flleo- Thus, by Proposition 1, (0 <)v <v < M on Q7. It follows that v is
also the weak solution of (7.3). Since

v = —5(v+H) and (v+H)ﬁa(v+H) = p—1 8(v+H)ﬁ

ox Ox Ox p 0x

we may rewrite PDE in (7.3) as

P -2 P
o 1\ 9 (low+ )| o+ HYF
v_(p ) ‘(v ) ‘ W)

ot p Ox Ox 0x

Introducing another substitution u = (v 4+ H)?/?=D — HP/(P=D we arrive at

p-1

8((u+Hrp') ! —H) s 1\ 9
ot _( p > 5(

P72 gy

Ou —>=fwn,a$

ax

Ox

p—1

which is in fact (6.3) with b(s) = (s n H*) " _ H. Note that b(s) is a contin-

uous function, »(0) = 0, b € C'(0, +00) with ' > 0 in (0, +00), and it satisfies
(6.4) from Theorem 1. Since v € C*V/P(Qr), u = (v + H)P/@=) — gr/(=D jg 4
continuous weak solution of (7.5) (and (6.3)), Theorem 1 guarantees the existence of
7 € (0, T) such that u(x, t) > 0 for all (x,¢) € 2 x (0, 7). In particular, for f =0
this means that localized sudden recharge hy — H causes the immediate water table
rise in the whole aquifer between the ditches.

Conclusion. In the case of dry ditches (H = 0), the water from a localized sudden
recharge does not reach the shores of the ditches immediately and the boundaries
of the water mound expand toward the ditches with finite speed. In contrast, for the
flooded ditches (H > 0), the localized sudden recharge causes the immediate water
table rise in whole aquifer between the ditches. In the real world, all movements take
place at finite speeds. Thus, the above results should be interpreted as follows: for
H > 0, the water mound expands toward the ditches much faster than for H = 0.

7.2 Isothermic Nanoporous Filtration of Natural Gas

The shales are increasingly gaining importance in natural gas extraction due to their
abundance in the world in comparison with classical gas reservoirs. The size of pores
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and channels in shales is of order of several nanometers which leads to extremely
low permeability and the standard mathematical models fail in this situation, see
[54] for more details. Thus, in [54], the following mathematical model of isothermic
nanoporous filtration of natural gas was proposed (we slightly change their notation
in order not to interfere with ours)

op 0 [P (x)] L for (x,1) € (0, +00) x (0, T)
- = _ —_— X
ot ox * ox Ox ortx, 1) € U, 100 e
PO,t) = Py fort € (0, 7),
lim P(x,t) =P fort € (0, T),
P(x,0) = Py for x € (0, +00),

for 2 < p < 10, Py > 0, P > 0 being given constants. This model was analyzed
using self-similarity of solutions in [54]. Using the methods of Sect. 5, we can analyze
the problem in situations which are not self-similar including time-varying boundary

conditions, but only on a bounded interval for x. Note that, e.g., if we assume (x, t) €
0r € (0, L) x (0, T, forsome L > 0, P(0, ) = Py(t) > 0, P(L, 1) = P.(t) > 0
fort € [0, T]and P(x,0) = Pyi(x) > O0for x € [0, L] are Lipschitz functions such
that Py(0) = Py (0), Pr(0) = Pppy(L). Then Proposition 5 guarantees existence of
at least one weak solution on Q7 = (0, L) x (0, T'] together with a priori bounds on

its Holder norm.
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Denys Khusainov and Oleksii Bychkov

Abstract In this paper, we study the stability for switched systems using linear
differential subsystems with time delays. We have used Lyapunov functions to study
our results. The results are new in the literature.

Keywords Common Lyapunov function, Uniformly asymptotically stability -
Delay systems - Switched systems

1 Introduction

We understand switched time-delayed systems as systems described by a set of dif-
ferential equations with constant time delay that function on the finite time intervals,
switching while maintaining continuity and again by differential equations with time
delay [1-4].

Functioning of that system is described by the set of equations

X =fix@®),x@t—71), 1), ke K, ty <t <try1,xt+0) =g (x (% —0),1—0).

Let us assume that the value of delay is lower than the functioning time of the
subsystem of this kind, so the switched systems has solutions conformant to the
uniqueness and continuously dependent on initial conditions.

Definition 1.1 Zero solution of the switched system is called stable by Lyapunov
if for an arbitrary solution x (#) for any £ > 0 there exists  (¢) > 0 such that for an
arbitrary solution x (¢), the equation |x (t)| < €,f > fo, is correct whenever |x (fp)| <

6 ().

Definition 1.2 Zero solution for switched system is called asymptotically stable if
it is stable by Lyapunov and ligl lx (£)] = 0.
—>+00
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2 Stability of the Solutions for Switched Systems with
Linear Differential Subsystems with Time Delay

Let us review the usage of the Lyapunov common function method during the inves-
tigation into the stability of the switched systems described by the differential sub-
systems preserving the continuity in the switching points.

Let S(A, B) ={Si (A;, B;),i € N} be the set of the dynamical subsystems
S; (A;, B;), which are systems of linear differential equations [5-7]

Xi(t)=Ax(®)+Bix(t—71),i €N;,

functioning over the time intervals t € T;, T; : t;_; <t < t;. At the moment ¢ = t;,
the switching to i + 1 subsystem occurs

x(1)=Aiqx (1) + Biy1 (1t —7),i € Ny.

And the functioning of this subsystem while preserving the continuity condition
occurs on the interval t; <t < t;41. Further dynamic process occurs likewise.

It is said that the solution x (#) = 0 of a differential switched system S (A, B) is
stable if for an arbitrarily set systems S; (A, B),i = 0, 1, 2, ... and time intervals 7 :
ty <t <tgr1,s =0,1,2,... for an arbitrary £ > 0, there exists d () > 0, such that
for any solution of the system S (A, B) with initial conditions |x (s)| < 4 (¢), —7 <
s < 0 with¢ > 0, the condition |x (¢)| < € is met. Furthermore, iftLiIJPoo lx (1) =0,

then zero solution will be asymptotically stable.

Let us define the conditions for zero solution of a system S (A, B) be asymptoti-
cally stable. Investigation into the stability will be carried out by the method of the
Lyapunov function and the Razumikhin condition. There is the following result.

Theorem 2.1 For a zero solution of a differential switched system S (A, B) to be
uniformly asymptotically stable, it is enough for all its subsystems S; (A;, B;) that
the common Lyapunov function should exist.

Let us see the switched systems described only by subtractional equations. Let
S(C) ={S; (C),i € N}be asystem consisting of a set of subtractional subsystems

S;i(C):x(k+1)=Cix (k),

which function over the integer intervals 7; = [k,-_l + 1,k +2, .., ki]. Subtrac-
tional switched system S (C) is a dynamic system which is composed of a system of
subtractional equations functioning over the intervals 7;,i = 0, 1,2, ... N,.

We can say that the solution x (k) = 0 of a subtractional switched system S (C) is
stable on switchings, if for an arbitrary preset subsystems S; (C), time intervals 7; and
arbitrary € > 0, there exists J (¢) > 0, such that for an arbitrary solution of a § (C)
system with starting conditions |x (0)| < § (¢), while k = 1,2, 3, ..., the condition
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|x (k)| < € will be met. If, additionally, \ lim |x (k)| = 0, then zero solution will be
—+00

asymptotically stable.

Theorem 2.2 For a zero solution x (k) = 0 of a switched system S (C) to be uni-
formly asymptotically stable, it is enough that for all its subsystems S; (C), the
common Lyapunov function should exist.

Finally, letus consider the system S (A, B, C) = {S; (A, B). Sj (C).i € Ny, j € N2},
which consists of a set of subsystems S; (A, B), which are systems of linear differ-
ential equations with time delay [4],

x®)=Ajx®)+Bx(t—71),t €Ny,

functioning over time intervals 7; : ; <t < t;y1,i =0, 1, 2, ..., and system of sub-
tractional equations
X (l‘j +O) = Bjx (Ij —0) , ] € Nj.

At moments of time t = ¢;, the switchings occur due to subtractional subsystems
principles.

The stability conditions for a zero solution of a combined system S (A, B) =
{Si (A).S; (B),i € Ny, j € N,} have a more strict form.

Theorem 2.3 For a zero solution of subtractional switched system S (A, B, C) to
be asymptotically stable it is enough that for its differential and subtractional sub-
systems, a common Lyapunov functions should exist Vyiz (x), V,a5 (x). It is also
necessary to have monotonic decrease at the break points

Viaip (x (& = 0)) > Viig (x (5t — 0)) > Vg (x (5 +0)) > Vi (x (1 +0)) .

Notice 2.1 It is very difficult to verify the condition formulated in Theorem2.3.
Therefore, we should formulate another, more strict but easier to verify stability
condition.

Theorem 2.4 For a zero solution of a switched system S (A, B, C) to be asymp-
totically stable, it is enough that for its differential and subtractional subsystems, a
common Lyapunov function Vs, (x) should exist.

Let us consider the constructive conditions of a time-delayed switched system
stability. It is known [5] that for a time-delayed linear systems

() =Ax )+ Bx(t —1), (1)

there are the following stability conditions.

Theorem 2.5 Let A + B is an asymptoticalle stable matrix and there exists posi-
tively defined matrix H such that the following is true
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Anin (€)= 2|HBI (1+ Vo () > 0, (H) = A (H) [ Amin (H)

where Amax (H), Amin (H)—extremal eigenvalues of a symmetrical positively defined
matrix H, which is a solution for the Lyapunov matrix equation

(A+ B H+ H(A+ B)=—C, )

for any positively defined matrix C. Then zero solution for time-delayed system (2)
is asymptotically stable for any time delay T > 0.

Theorem 2.6 Let A + B be asymptotically stable matrix. Then for T < T,

_ )\min (C)
T2 HBI(AI+ B) VT o ()

time-delayed system (2) will also be asymptotically stable.

On the grounds of the aforementioned auxiliary statements, we shall formulate
the stability conditions for switched systems, whose differential part is described by
the linear time-delayed systems in the form of (2).

Theorem 2.7 Let there be symmetrical positively defined matrix H, for which matri-
cesCi = —(A; + B)T H+ H (A; + B)),i € N;, are also positively defined and the
following equation is true

Min (€ = 2| HBy| (14 (D)) = 0,1 € Ny,

Then the switched system S (A, B) will be asymptotically stable with any time delay
7> 0.
We shall get the stability conditions dependent on time delay.

Theorem 2.8 Let there be symmetrical positively defined matrix H, for which matri-
cesCi = —(A; + B,~)T H + H (A; + B;), i € N;, are also positively defined. Then
the switched system S (A, B) will be asymptotically stable with time delay T < T,

. )\min (Cl) .
To = min ,i €N;.
!MH&mmernﬁ+¢wH)
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A Method for Stabilization of Ground m
Robot Path Controlled by Airborne glectie
Autopilot with Time Delay

Alexander Domoshnitsky, Oleg Kupervasser, Hennadii Kutomanov,
and Roman Yavich

Abstract The paper addresses the problem of visual navigation of ground robots
using a camera positioned at a certain elevation above the confined area. Also, the
methods of the stability theory of delay differential equations are used in the study
of an actual engineering problem of a ground robot autonomous path. We give a
description of autopilot for the stabilization of the ground robot autonomous motion
according to desirable path. Indeed, large time delay exists in obtaining by autopilot
current information about robot position and orientation, because of big data pro-
cessing by vision-based (visual) navigation system. Despite this fact, we can prove
that autopilot can guarantee a stable desirable path. We demonstrate how to create
an appropriate controlling signal for the described information time delay and calcu-
late control parameters for case of polygonal chain path. This path consists of linear
motion along with line segments and rotations in vertices.

Keywords Time delay - Differential equations -+ Stability - Ground robots *
Airborne control - Tethered platform - Autopilot + Vision-based navigation + Visual
navigation

1 Introduction

The methods developed in the stability theory for differential equations with time
delays [1-6] are used in the paper for resolution of the important engineering prob-
lem. It is a problem of a ground robot path stabilization using airborne control carried
out by autopilot with time delay. The similar application was made by us recently for
drone autonomous stable flight controlled by autopilot with time delay [7]. However,
in [7], we give only one numerical example of the solution. Here, we find a solution
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as function of equation’s parameters. Moreover, equations of motion in [7] are com-
pletely different from equations here and describe flighting robot (not ground one).
The main new results of this paper are the following:

1. Anexample of adaptation of the mathematical theory (which was during long time
developed without any connection to physics or engineering) in solving actual
engineering problem.

2. The approach, proposed here for solving the stabilization problem of ground
robot autonomous path, is much better than previously used ones in approximate
engineering solution.

3. The adaptation of this mathematical theory for ground robot path stabilization
is a difficult problem, since the mathematical theory cannot be applied directly
and explicitly for the system describing the ground robot motion. Indeed, we
need to apply some nontrivial mathematical transform to the physical differential
equations to make such use possible.

4. Even after getting from the mathematical theory constraints for controlled param-
eters defined by autopilot (which are necessary for stabilization ground robot
path), it is also nontrivial problem to find the solution for these parameters.

This paper applies the mathematical stability theory of differential equations with
delays [1-6] to the important engineering problem. Despite the fact that engineers
prefer to use engineering approximate solutions instead of stability theory of differ-
ential equations with time delays, this theory develops very intensively. Indeed, we
can see the publication of hundreds of papers on this theory every year.

Stability analysis is the necessary component in most of papers on robotics. The
authors of these papers do not consider the time delay even though they understand
the fact of existence of such time delay in their mathematical models. The method
of Lyapunov’s functions (initially described in papers of N. Krasovskii in 1950s) is
usually applied, however, it is not appropriate frequently for stabilization by feedback
control with time delay.

Now, the main engineering technique for describing a system with the time delay
isreplacing a system with time delays to a system without time delay and applying the
usual stability theory (the method of Lyapunov’s functions for nonlinear equations
and characteristic equations for linear equations). It can be made by using two ideas
or some their combinations [8—10]:

(1) extrapolation motion of a robot forward during time of delay.

(2) finding error estimation for a current state appearing as a result of the time
delay and to use the error propagation methods for future analysis.

Using the method (2) results in the obvious decrease in the accuracy of control
and its effectiveness.

The application of method (1) is possible in the case of an inert system where the
control does not have a strong effect during the time of delay. However, a complex
algorithm is necessary even in this case. As a result, we get the increase of the calcu-
lation time and prime cost of a control system. Also, we need additional computing
power for the extrapolation. If we try to simplify of the model, it results in a decrease
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of the control effectiveness and accuracy. Also, the large work (for updating a model)
needs again after changing or upgrade of a system.

If during the delay time some noticeable influence of the control system exists (not
inert systems), then the method becomes even more complex and expensive. In this
case, we need the complex iterative schemes, these iterations can do not converge,
the long calculation time is necessary, this time can result in an additional time delay.
We can get loss of control in the system.

Application of Azbelev’s methods [2] for the stability of functional differential
equations can help to open new page in the robot control (see the work [11])). In the
work [2], based on this theory, the stability analysis and methods for finding solutions
of systems of differential equations with time delay were developed. The following
advantages of this method can be described:

. We can decrease costs and time for the development of a control system.

. If a system has been changed, we can easily to update the system control.

. The technique is universal for many types of systems.

. Due to fact that mathematical methods have high accuracy, a system would have
precise and efficient control.

5. For complex cases of not inert controlled system, where the control effect is

noticeable during the delay time, we do not get no additional delays or control

problems.

W N =

In this paper, we give the description of autopilot for stabilization of robot
autonomous path (polygonal chain). We use vision-based navigation for the find-
ing robot path parameters [12-21]. We used the new patented technology for ground
robot navigation using airborne vision-based control [22-27]. The software package
was developed that includes approaches for visual navigation control of a ground
robot (see Fig. 1) from top position (from a tower, a tethered drone, a balloon, an
antenna). Two physical prototypes (where camera is on a top position) controlled by
this software were also developed. The system is an example of control systems for
robots and can be used for the coordination of the ground robots (automated agri-
cultural machines, automated transport, aerodrome and municipal vehicles, garden
lawnmowers and so on).

We develop robot visual navigation using the cameras located on tethered aerial
apparatus or towers, tracking the robots on the operation area and observing their
environment including artificial and natural landmarks. Two prototypes of these
navigation systems were created in the Laboratory of Applied Mathematics of Ariel
University in teamwork with TRANSIST VIDEO LLC (Skolkovo, Moscow) [22,
23].

The main insight is that “eyes” of a robot are not positioned on the robot but can
be separate autonomous system. Hence, the “eyes” can come up and observe the
robot position from above. We describe in the paper algorithms that can be used for
the physical prototypes of the system. The system includes a camera in the upper
position connected to computer, the computer that can control the robot. Computer
software can analyze image obtained from the camera, looks for difference between
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Fig. 1 Airborne terrestrial robot control, some possible camera dispositions; 1—camera, 2—
lawnmower; 3—moving up and down long antenna; 4—open door; 5—press button; 6—ground-
based energy charged device (ECD); 7—lawn; 8—Tline of sight; 9—blind spot

actual ground robot position and desirable position, and send Wi-Fi command to
reduce the difference.

We present here how to create a relevant controlling signal for autopilot if the
information time delay from navigation system exists. We will use the described
autopilot for the robot control of path parameters found from the vision-based navi-
gation.

In this paper, description of motion equations and parameters of robot path con-
trolled by airborne autopilot is based on the results of the presentation [28].

The structure of the paper is the following. The first section is Introduction. We
described here the theme of the paper—state of the art with references in the field
of stability theory methods and methods of description for robot path controlled by
autopilot with time delay. The second section gives detailed preliminary results for
mathematical stability theory methods, which are used for stabilization of the ground
robot path controlled by airborne autopilot. The equation for the ground robot path
is described. In the third section, we use the mathematical stability theory for finding
parameters controlled by airborne autopilot, which are necessary for the robot path
stability and finding upper boundary for the time delay. The fourth section is the
conclusion.
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2 Preliminary Results of the Investigation for Ground
Robot’s Flight Stability

2.1 Mathematical Preliminary Results: Stability of Systems
with Time Delays

Sign L, denotes the space of essentially bounded measurable functions: [0, o0) —

R. In the paper, sign “e” is the Euler number. Let us investigate the non-homogenous
system of differential equations

X (1) =Y pij()x;(t = 0;;()), t € (0, +00)

j=1
xi(&) =x0),£<0,i=1,...,n. 2.1

Here, the components x; : [0, +00) — R of the vector x = col{xy, ..., x,} are
assumed to be absolutely continuous and their derivatives xlf € L.

P.(t) = Pij([),',jzl YYYY , are n x n matrices with entries p;;(t) € Lo, 0;;(t) € Loo
fork=1,...,mandi,j=1,...,n.

A vector function x is a solution of (2.1) if it satisfies system (2.1) for almost all
t € [0, +00).

Let us define

0F = esssup;>o{0;i (1)}

It was demonstrated in Proposition 2.3 in [1]:

Assume that the following conditions are correct:
1.1 The matrix P is Hurwitz, i.e., all its eigenvalues have negative real parts, for
t > 0. The matrix P is Metzler, i.e., all its off-diagonal elements are nonnegative for
t > 0: p;j(t) > Oforeveryi # j,herei, j=1,...,n.

1.2 Foreveryi =1, ..., n the conditions is correct: | p;; ()0 < i

then system (2.1) is exponentially stable.

Let us investigate the system of second-order differential equations

X (1) = qi(Ox,(t = 7(0) + Y pij(0)x;(t — 6:;(1)) = 0,1 € [0, +00)
j=1

X (6) = x;(0); x, (&) =x,(0),6 <0,i =1,....,n, (2.2)
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Here, the components x; : [0, +00) — R of the vector x = col{xy, ..., x,} are
assumed to be absolutely continuous and their derivatives x; € L.

P = {p,'j(t)}i,j:l ..... , aren x nmatrices with entries p;;(t) € Loo,qi(t) € Leo,
0ij(t) € Loo, Ti(t) € Loo, I, j=1,...,n.

A vector function X is a solution of (2.2) if it satisfies system (2.2) for almost all
t € [0, +00).

Let us denote

T = esssup;>o{7i (1)}.

It was shown in Theorem 1.1 in [6]: (some misprinting from this paper is corrected
here):

Assume that the following conditions are correct:

1.1 The matrix P is Hurwitz, i.e., all its eigenvalues have negative real parts, for
t>0

pi(t) << —e<0,q;(t) << —€<0,4|pii(®)] < qiz(t).

The matrix P is Metzler, i.e., all its off-diagonal elements are nonnegative for
t > 0: p;j(t) = Oforeveryi # j, wherei, j=1, ..., n.

1.2 Foreveryi = 1, ..., n the following conditions are correct:
lgi ()77 < 1, 6i(t) < 7 (t) < 77 < 00

e’

then system (2.2) is exponentially stable.

2.2 Engineering Preliminary Results: Motion Equations of
Ground Robot

2.2.1 Nonlinear Equations for Robot Motion

We can introduce the following parameters and variables, which are used in ground
robot equations of motion (see Fig.2) [28]:

1. for variables describing motion:

x and y—coordinates of ground robot
a—angular of rotation of the robot on the plane
v—translation velocity of the robot

w—angular velocity of the robot
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Fig. 2 Ground robot

2. Ground robot parameters:

R—wheel radius,
[—distance between wheels.

3. Controlling signals:

wg and w; —angle velocities of rotation of the right and left wheels

From [28] rotation and forward movement are described by the following system
of equations:

X = vcosa
y =vsina
d=w

v = Rlwtan) 3 9)

2R(wr—wr)

w = ]

2.2.2 Stationary Desirable Trajectory

2.2.2.1 Solution of Nonlinear Equation

Path curve can be described by formulas (Fig. 3):
x = fi(s);y = f,(s)
where s is some parameter (0 < 5 < S,4x), fv, fy are some functions.
Let us define some variables describing stationary path:

— . .
V (s) = (%, 9) is s-vector velocity
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Fig. 3 Ground robot path

V(s) = /()2 + ()2 is s-velocity

T (s) = “;((5)) is tangent to trajectory

sin(a(s)) = (€ €y (s))
cos(a(s)) = ( €, T(s))

where ?x, é V are orts of axes OX and OY
%
d(s) = (&= T £y} is s-vector acceleration

dSZ ’
a(s) =, /( x)2 + (d )2 is s-acceleration
T a(s) = (s) — (@ (s)- T (s)7T (s) is s-normal component of acceleration
T (s) = "8‘ is normal to trajectory
w(s) = m is s-angular velocity

Vi(s)
Smax

Sw = J, V (s)ds is full length of path.

2.2.2.2 Time Dependence of Stationary Trajectory
We use variable s as time, but it is not time. So, we need to define real dependence
of motion parameters on time 7.

Let us choose some mean velocity of ground robot

vmin = Vmeun = vmax

where Vi, Viuax are minimal and maximal velocity of robot.
Maximal time of the motion can be found from formula:
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Tmax = VS_W, so0 <t = Tmax'
If we suppose motion with constant velocity V() = V,yeqn, as a result we can find
dependence of time ¢ on s:

Jo V(s)ds

Vinean

t(s) =

However, some maximal angular velocity wpax €xists and robot can exceed this
maximal angular velocity in some points with high curvature if robot moves with
constant velocity V,eq,. So, robots need to decrease its constant velocity (Vj,eqn) to
prevent from exceeding.

Angular velocity as function of time can be found from formula:

w(t) = 439
ds
w(t) and w,, > wWpax. Then K = 2
Sw

Tnaxnew

Namely, suppose that w,, = maxo<;<7,

max Wax

and new value of maximal time iS T},4x,,, = K * Tinax and Viyean,,, =

If Viean,,, < Vimin TObOt NEeds to stop in points with high curvature and change
only angle in these points. We recommend estimating our trajectory by polygonal
chain path. This path consists of linear motion along with line segments with constant
translational velocity and zero angular velocity, and rotations in vertices with constant
angular velocity and zero translational velocity.

2.2.3 Linear Equations for Perturbations with Respect to Stationary
Solution

2.2.3.1 Concluding Linear Equation for the Perturbations
As a result, that the system (1) is nonlinear, the analysis of stability is too hard for
these equations. So, we need to make linearization of the equations. Let us suppose
that the parameters x(¢), y(¢), a(t), v(t), w(t) corresponds to steady flight and have
also some small increments 6x(¢), §y(t), da(t), dv(t — 7), dw(t — 7). These small
increments are the results of perturbation forces changing the path.

We can define the following deviations of the stationary path:

X(@) 4+ 0x(t) = (v(t) + dv(t — 7)) cos(a(t) + da(t))
= (v(t) + dv(t — 7)) (cos(a(t)) cos(da(t)) — sin(a(t)) sin(da(t)))

y(@) + 6y(t) = (v(1) + 6v(t — 7)) sin(u(r) + de(t))
= (v() + dv(t — 7)) (cos(a(t)) sin(dax(t)) + sin(a(t)) cos(da(t)))

a(t) + da(t) = w(t) + dw( — 7).
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The resulting nonlinear equations for the perturbations:

5x(1) = du(t — 7)(cos(a(t)) cos(Ba(t)) — sin(a(t)) sin(Ba(r)))
+u(t)(cos(a(t))(cos(alt)) — 1) — sin(a(t)) sin(5a(t)))

5y (t) = dv(t — 7)(cos(a(t)) sin(dax(t)) + sin(a(t)) cos(da(t)))
+ v(r)(cos(a(t)) sin(da(t)) + sin(a(t))(cos(da(t))) — 1)

0a(t) = dw(t — 7).

After linearization of nonlinear equations for perturbation, we get the following
linear equations:

0x(t) = dv(t — 1)cos(a(t)) — v(t) sin(a(?))da(t)
oy(t) = dv(t — 1) sin(a(t)) + v(¢) cos(a(t))da(t)
0c(t) = dw(t — 7). (2.3)

The control parameters dv(t — 7), dw(t — 7)are defined by equations:

vt —7) = a,()ox(t —7) +a,(t)6y(t — 7) + a.(t)da(t —T)
dw(t —7) = by (1)ox(t —T) + by (1)dy(t — 7) + b (t)da(t — T) 2.4)

where parameters a,(t), a,(t), an(t), by (t), by(t), bo(t) can be chosen freely by
autopilot to provide the stationary path to be stable. We will find in the next section
an algorithm finding these parameters for polygonal chain path.

2.2.3.2 Description of Controlled Parameters in Linear Equations Defined by
Autopilot

If stationary parameters cannot guarantee themselves stability of the desirable station-
ary trajectory, it is necessary to use autopilots (Fig. 4). The autopilot makes so that the
controlling parameters dv(t — 7), dw(t — 7) will be some functions of the output-
controlled parameters (dx(¢); dy(¢); dce(t)), which are perturbations according to
the desirable stationary trajectory. The output parameters values can be obtained by
the autopilot from navigation measurements, for example, i.e., from vision-based
navigation, satellite navigation, inertial navigation and so on. Using the navigation
measurements, the autopilot creates controlling signals to reduce undesirable per-
turbation. However, time delay exists in getting output-controlled parameters by
autopilot for any navigation measurements, which has noticeable value for the visual
navigation. So, some problem exists because of the lack of the information for the
control. In the paper, we present that even when the time delay exists, we can create
control signals giving a stable path.
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Fig. 4 Automatic control

3 Analysis of Robot Path Stability

3.1 Adjusting the System of Linear Differential Equation for
Perturbations to the Form Appropriate for Using
Preliminary Mathematical Theory

‘We recommend estimating our trajectory by polygonal chain path. This path consists
of linear motion along with line segments with constant translational velocity and zero
angular velocity (Rotation), and rotations in vertices with constant angular velocity
and zero translational velocity (Linear motion).
3.1.1 Rotation
Stationary solution

alt) =wt+ ¢

v(t) =0.

Let us choose the initial time t=0 in such a way that ¢ = 0 So, we get following
equations for perturbations

6x(t) = dv(t — 1)cos(wt)
0y(t) = ov(t — 7) sin(wt)
da(t) = dw(t — 1)

ov(t —7) = a,(t)ox(t — 1) +a,(t)oy(t — 1) + a(t)do(t —T)
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dw(t — 1) = by (1)ox(t —T) + by (1)dy(t — T) + bo(t)dax(t — 7).
Let us pass to the rotating system of coordinate:
X, (1) = x(t) cos(wt) + y(¢) sin(wt)
yr(t) = —x(t) sin(wt) + y(t) cos(wt).
Let us find differential equations for x, (¢) and y, (¢):

0x,(t) = 6x(¢) cos(wt) + §y(¢) sin(wt) — wdx(t) sin(wt) + wdy(t) cos(wt) =
=0v(t — 1) + wdy, (1)

0y, (1) = —0x(¢t) sin(wt) + 6y(¢) cos(wt) — wdx(t) cos(wt) — wdy(t) sin(wt) =
=—wox,(1).

Finally,

0x,(t) = 6v(t — 1) + wdy, (t)

oy, (t) = —wix, (t)

oa(t) = dw(t — 1)

We see that this system can be divided into two independent system of equations
0%, (1) = 0v(t — 7) + wdy, (1)

8y, (1) = —wix, (1)

and

oa(t) = dw(t — 7).

3.1.1.1 Differential equations for dx, () , dy, (¢)
Let us suppose

a,(t) = —2a,cos(w(t — 1))
ay(t) = —2a,sin(w(t — 7))

a,(t) =0
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So

vt —7) = a,(@)ox(t —7) +a,(t)oy(t —T7) =
—2a,cos(w(t —1)ox(t — 1) — 2a,sin(w(t — 7))oyt — 7) = —2ardx,(t — 7).

Finally, differential equations for x, (¢) and y,(¢):

0x,(t) = —2a,0x,(t —7) + wdy, (1)
6)')5’([) = _waxr(t)-

We can find second-order differential equation:

8%, (1) = —2a,0%-(t — T) + WOy, (1) = —2a,6%,(t — ) — wW?6x,(t)
0x,-(t) +2a,0x,.(t — 1)

Sy, (1) = » @3.1)
3.1.1.2 Differential Equations for d«/(z)
For angle of rotation, we get
oa(t) = dw(t — 1)
Control parameter for coordinates velocity is following
by(t)=0
by(t)=0
b (t) = ba
dw(t — 1) = bydal(t — ).
Differential equation for da(z)
0a(t) = bda(t — 7). (3.2)

3.1.2 Linear Motion
Stationary solution

a(t) = a = const
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v(t) = v = const.
So, we get the following equations for perturbations
0x(t) = dv(t — 1)cos(a) — v sin(a)da(t)
0y(t) = dv(t — 7) sin(a) + v cos(a)da(t)
oa(t) = dw(t — 1)
ov(t —7) = a,(t)ox(t — 1) +a,(t)oy(t —T) + a,(t)do(t —T)
dw(t —7) = by (1)0x(t —7) +by()dy(t —T) + bo(t)da(t — 7).
Let us pass to rotated system of coordinate:
x1(t) = x(t) cos(a) + y(¢) sin(a)
v (t) = —x(¢) sin(a) + y(t) cos().
Let us find differential equations for x;(¢), y;(¢) and a(¢):
0x;(t) = vt — 1)
Syi(t) = via(r)
0a(t) = dw(t — 7).
We see that this system can be divided to two independent system of equation
0x;(t) = vt — 1)
and
Syi(t) = via(r)

da(t) = dw(t — 7).

3.1.2.1 Differential Equations for dx;(¢)
Let us suppose

a,(t) =0

a,(t) = —ajcos(a)
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ay(t) = —asin(a).
So, control signal for coordinates velocity is following:
ov(t —7) = —aidox;(t — 7).
Differential equation for dx;(¢):
0x1(t) = —a;dx;(t — 7). (3.3)

3.1.2.2 Differential Equations for dy,(r) , da(t)
Let us suppose

b, =0
by =—a
b, = —2b.

So, control signal for angular velocity is following:
ow(t — 1) = —ady(t — 1)+ =2bda(t — 7).

Differential equations for §y;(¢) and da(t)
oy (1) = voa(t)

oa(t) = —ady;(t — ) — 2bda(t — 7).
We can find second-order differential equation:
oa(t) = =2b6c(t — 1) —ady,(t — 1) = =2bdc(t — 7) — avdalt — T)

_2b5a(t —7T) + 0&(r)
» .

oyt —71) = (34
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3.2 Applying the Mathematical Theory for Stabilization of
Ground Robot Real Trajectory with Respect to the
Chosen Desirable Stationary Trajectory

3.2.1 Constrains for the Differential Equation Constants

3.2.1.1 Rotation

3.2.1.1.1 Differential Equations for dx,(t) , 0y, (t)

Apply the condition 1.1 of Theorem 1.1 in [6], presented in Sect.2 of the paper, to
the system (3.1):

0%, (t) = —2a,6%,(t — T) — w?6x,(2).
Condition 1.1 of Theorem 1.1 is fulfilled if:
—2a, <0

—w? <0

(—2a,)? >4uw?.
As a result, we get

w#0
a, > |wl. (3.5)

Because y, (¢) is function of x, () and its derivative

6yr ([) — 5)'(,(1)+2(fz,:6x,(t—r)

if x, (t) is exponentially stable then y, (¢) is also exponentially stable.
3.2.1.1.2 Differential Equations for da(t)
Apply the condition 1.1 of Proposition 2.3 in [1], presented in Sect.?2 of this paper,
to the system (3.2)

0a(t) = by oal(t — 1)

Condition 1.1 of Proposition 2.3 is fulfilled if:

by <0 (3.6)
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3.2.1.2 Linear motion
3.2.1.2.1 Differential Equations for dx; ()
Apply the condition 1.1 of Proposition 2.3 in [1], presented in Sect.?2 of this paper,
to the system (3.3)

0x;(t) = —a;0x;(t — 1)

Condition 1.1 of Proposition 2.3 is fulfilled if:

—a; < 0.

Finally
a >0 (3.7)

3.2.1.2.2 Differential Equations for y,(¢), da(t)
Apply the condition 1.1 of in Theorem 1.1 in [6], presented in Sect.?2 of this paper,
to the system (3.4)

Séut) = —2b5c(t — 7) — avdalt — 7).

Condition 1.1 of in Theorem 1.1 is fulfilled if:

-2b <0
—av <0
(—2b)? > 4av
Finally
b>0
b* > av > 0. (3.8)

Because y;(¢) is function of J«(¢) and its derivative

6}’[ (t _ ,7_) — _ 2bda(t—T)+6a(t)

a

if da(t) is exponentially stable then y,(¢) is also exponentially stable.
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3.2.2 Constrains for Time Delay

3.2.2.1 Rotation

Differential Equations for x,(¢) , dy,(¢)

Apply the condition 1.2 of in Theorem 1.1 in [6], presented in Sect.?2 of this paper,
to the system

r< = . (3.9)

Differential Equations for d«(r)
Apply the condition 1.2 of Proposition 2.3 in [1], presented in Sect.?2 of this paper,
to the system

|bolT < 1.
Finally
< : (3.10)
"= bl ‘
Final
From (3.9), (3.10)
<! andr< 1 @3.11)
T and 7 .
~ elbal = 2ela,|

3.2.2.2 Linear Motion

Differential Equations for x;(¢)

Apply the condition 1.2 of Proposition 2.3 in [1], presented in Sect.?2 of this paper,
to the system

1
la|T < <.

Finally

1
< —. (3.12)
ela|

Differential Equations for y;(¢), da(¢)
Apply the condition 1.2 of in Theorem 1.1 in [6], presented in Sect.?2 of this paper,
to the system
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T <00
2lblr < L.
Finally
1
< 3.13
"= 2elb| (3-13)
Final
From (3.12), (3.13)
< dr < ! (3.14)
T and7 < — .
~ 2e|b] ~elal

3.3 Final Solution

3.3.1 For Rotation

Stationary solution

at) =wt + ¢
v(t) =0
¢=0.

Control parameters: From (3.5), (3.6)

ov(t — 1) = —2a,cos(w(t — 71))0x(t — 7) — 2a,sin(w(t — 7))oyt — T)
w#0

a, > |wl

dw(t — 1) = byda(t — )

b, < 0.
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3.3.2 For Linear Motion
Stationary solution

at) =«

v(t) = v.

Control parameters:
From (3.7), (3.8)

ov(t — 1) = —ajcos(a)dx(t — 1) — aisin(a)dy(t — 7)

a >0

ow(t — 1) = asin(a)dx(t — 1) —acos(a)dy(t — 1) — 2bda(t — T)
av >0

b > Jav.

3.3.3 Delay Time
From (3.11), (3.14)

and 7 < and 7 < and 7 <

1
<
T = e|a\’ =

— Ze\bl - 26\ar\

4 Conclusion

We demonstrated the possibility to get stable ground robot path using airborne auto-
matic control when there exists the delay of time in transfer of motion parameter
information from navigation measurement system to autopilot. We can find the con-
trolled parameters for some types of path (polygonal chain) and estimated upper
boundary of time delay for such system.

It should be mentioned that all these results were obtained in linear assumption
for perturbations. If noise is large and as a result, the correspondent perturbations
are too large to use linear assumption, then our results are incorrect.
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Some Properties of the Solution of the )
Nonlinear Equation of Oscillations in oo
Modeling the Magnetic Separation

Yaroslav Petrivskyi and Volodymyr Petrivskyi

Abstract A qualitative analysis of the equation simulating the process of dry enrich-
ment of raw materials with weak magnetic properties on a drum magnetic separator
is carried out. The parametric nature of the role of the free term of the equation,
which is the bifurcation point for the model, is established. The study of the proper-
ties of the singular point made it possible to allow to build a function to characterize
a periodic partial solution and an algorithm for calculating the separation angle of
the particle from the surface of the drum during enrichment by the dry separation
method, which is convenient for practical use. From a physical point of view, in the
process of magnetic separation, when there is friction proportional to the square of
the angular velocity in the system, with the force acting on the particles of constant
magnetic force, the work expended on overcoming the friction forces increases with
the square of the angular velocity, while the operation of the external forces remains
unchanged.

Keywords Bifurcation point - Phase portrait + Period function

1 Main Part

A differential equation is described that describes the motion of a particle with weak
magnetic properties on the surface of a drum of a magnetic separator during dry
magnetic enrichment on a separator with an overhead feed. According to Murrariu
[1], such an equation has the following form:

Y. Petrivskyi ()
Rivne state humanitarian university, Rivne, Ukraine
e-mail: prorectorsgu@ukr.net

V. Petrivskyi
Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021 71
A. Domoshnitsky et al. (eds.), Functional Differential Equations and Applications,

Springer Proceedings in Mathematics & Statistics 379,
https://doi.org/10.1007/978-981-16-6297-3_5


http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-6297-3_5&domain=pdf
mailto:prorectorsgu@ukr.net
https://doi.org/10.1007/978-981-16-6297-3_5

72 Y. Petrivskyi and V. Petrivskyi

d*o , g do\’ F,
— = sin@ £ ugy———cosf — | — | + —————, (D
A2~ R+b “R+b dr) " 0,V,(R+b)

where 6—the angle of rotation of the drum, R—the radius of the drum, b—the
particle size, the “+4” sign and the coefficient of dynamic friction p, characterize
the first phase, when the particle hits the drum, the “—" sign and the coefficient of
static friction p, characterize the third phase, namely the process of separation of
the particle from the drum, F;,—the magnetic force acting on the particle, V,—the
volume of the particle and g—the acceleration of gravity.

At the stage of changing the nature of particle friction from dynamic to static, the
second phase, the particle moves with a constant angular velocity equal to the speed
of rotation of the drum. The corresponding equation has the following form:

d*6 do
ST _oor =
dt? dt

= w,. 2)

To conduct a qualitative study and create an algorithm that is convenient for
applied research and simulate the process of particle motion on a drum, we transform
the particle motion equation (1) defined relative to the angle 6 into the equivalent
equations of motion of a particle relative to the angular velocity of this particle. For
this purpose, we denote

Then
asinf £bcosf = Asin (6 + ¢),

where A = /a% + a%, angle ¢ denoting like
COS(p — Cl—l’ Cl—2
,/a12+a% ,/alz—l—a%

Given these transformations, Eq. (1) is simplified:

sing =

d*o Fin

do\*
Y e Asin(0+¢s)—(Z) +BB=——"  _ A>0,B>0. (3
g = Asin (0 £ ) <dt) + oV, Rip) AT 0EZ0G

In general, Eq. (1), when the free term is equal to zero or when the value of the
magnetic force F,, is similar to the equation simulating the damped oscillations of
a pendulum immersed in a medium, which, when the pendulum moves, creates a
force proportional to the square of its speed and directed opposite to this speed.
Quite detailed qualitative studies of this equation are known, for example, given
in [1, 2], where the case of dynamical systems, reduced under certain simplifying
assumptions to the mathematical model of the oscillation of a pendulum with “linear
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friction” under the influence of constant torque, is also studied. It also shows cases
where physical analogies can be reduced to the indicated type of model with “linear
friction”, for example, the problem of the synchronous motor, the problem of parallel
operation of generators, etc.

For the convenience of studying Eq. (1), we introduce new x =6 £ ¢, ,, y = ‘;—’[‘
variables. We obtain a non-conservative system of two first-order equations:
dx
2 = y
4 - 2 : “)
{EzAsmx—y + B

Equivalent to system (4) is the equation of integral curves on the cylinder, which,
like system (4) and initial Eq. (3), cannot be directly integrated.

dy Asinx+y>*+ B
e (5)
X y
Note that isoclines % = 0 are biased quadratic sinusoids whose equations are of
the form

y? = Asinx + B. (6)

Equivalent to system (4) is the equation of integral curves on the cylinder, which,
like system (4) and initial Eq. (3), cannot be directly integrated.

The graph of curve (7) suppresses the OX axis, respectively, the axis 6, only at
values £ < 1. When £ > 1, the isocline does not cross the OX axis.

The coordinates of the singular points, the equilibrium state of the system, can be
found by solving the system:

y=0
{Asinx—y2+B=0 @)

Obviously, for % > 1, singular points do not exist. At % < 1, there are two distinct
points: (1) y; = 0, x; = arcsin %; (2) y» =0,x, =7 — arcsin %, 0< arcsin% <
5. When x5 = %i, equilibrium positions merge. Thus, the % parameter value is
bifurcation for Eq. (1). To clarify the nature of the equilibrium states of system (4), we
linearize the right-hand side of the second equation of system (4) in a neighborhood
of singular points, making the change x = x; + &,i = 1, 2. Expanding sinx in a
series of powers and limiting ourselves to linear terms, we obtain

dr _
o= ®)

dy . .
T =Acosx§,i=1,2

The corresponding characteristic equation for system (9) has the following form

[3]:
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A*— Acosx; =0, 9

whereas cos x; > 0 then we have two real roots of different signs, which means that
the first singular point with coordinates y; = 0, x; = arcsin% is a singular point
of the saddle type, and the characteristic lines on the phase plane are a family of
hyperbolas. For the second case cos x, < 0, the characteristic equation has purely
conjugated roots and, accordingly, a singular point with coordinates y, = 0, x, =
T — arcsin% is a center point.

The results obtained make it possible to construct a phase portrait of the system
(4) (Fig.1).

Denoting right parts of Eq. (4) like F(x, y) and G(x, y), we will get the corre-
sponding value of Bendixson’s criterion parameter:

F, + G;, = —2y.

Thus, for the trajectories on the phase cylinder in the region where y > 0, dynamic
system (4) does not have closed paths on the phase cylinder that do not cover the
cylinder and can have the largest one limit cycle covering the cylinder. When it exists,
such a cycle is necessarily stable, according to the obtained characteristic indicator.

Further, the following calculation algorithm is proposed for finding the necessary
parameters of the dry magnetic separation process on a drum separator. To do this,
we carry out further transformations of Eq. (3). According to [4], we set

de
v(0) = ("), (92 = E) ) (10)
Then differentiating the right and left side of (8),

Vo' =20'9". 1D

Substituting the substitution (10) and (11) in Eq. (3), we obtain
V'O +2v(0) = 2Asin(0 + ¢4 5) + 2B. (12)
Equation (12) is alinear, inhomogeneous first-order differential equation with con-
stant coefficients, defined with respect to the function v = v(0). In accordance with

notation (10), @ = /v(0) is the particle angular velocity. The solution of Eq.(12)
accordingly has the following form:

4 2
V(@) = Cexp ¥ +§A sin(0 £ ¢y.5) — gA cos(6 =+ ¢g.5) + B, (13)

where C—const., “4-” sign and parameter ¢, characterize the first phase when the
particle hits the drum and the “—” sign and the parameter ¢; characterize the third
phase.
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Fig. 1 Phase portrait of a non-conservative system (4)

The result allows us to conduct research on the existence of a function of a periodic
solution of Eq. (1). Considering the substitution (10), for the case when the periodic
solution curve (periodic orbit) intersects the axis ® at a point & = 6y, there is a curve
on the phase plane

do 4 2
i Ce 20 + §A sin(@ £ ¢4, s) — §A cos(@ £ ¢4, s) + B.

Given the symmetry of the periodic orbit, for the period function, we obtain the
expression



76 Y. Petrivskyi and V. Petrivskyi

do

0o
T (6) =/ '
0 \/Ce—z" + $Asin(0 £ ¢y ) — 2Acos(0 + ¢q,) + B

We carry out the transformation of the radical expression for the case of a particular
solution to Eq. (1). Marking A; = A Ay = 2A D= A7+ A= %A, coso =
% and sina = %, we get

$AsinO £ ¢gs) — 2Acos(0 £ ¢y ) + B = Dsin(® £y —a) + B =
Asin(d + ¢y —a) + L2

Sl

Given that special points y; = 0, x; = arcsin % and y, =0, x, = 7 — arcsin %
defined for 0 < arcsin f; < 7, where sin(x) = % and sin(0 & ¢g s — &) = cos(5 —
0 £ ¢4 5 + ), denoting f B = ﬁ sin(x) = sin(x) = —cos(l + x), we get %

A cos( —0x¢ss+a) + sin 6. Labehng for convemence T—0x¢ss+a=0
and % + x = 6, finally, the root expression takes the form

4 2 2A
§A sin(f = ¢y.5) — §A cos(0 £ ¢y5) + B = ——=(cosf — cosbp).

V5

Next, applying the formula for each of the cosines cos y = 1 — 2sin® £ and by
changing the integration variable in the transformed integral,

T(6p) =

Ao
V2A /0 J/cost —cosby

Using sin ¢ = sin 7
g T sin%

is expressed through the full elliptic integral of the first kind.

V5T do V5 : <9o>
T (60) = = 2 k). k=sin(2).
@ ="z, J1—k2sin’(¢) V24 hk=sinl5

The boundary value of this integral is known [6]:

lim

/ 7 d¢ / 7 J
=0Jo /1 —k2sin’(¢) Jo
The results obtained allow us to assert the validity of the following theorem.

Theorem 1 For non-negative parameter values % < 1 for a partial periodic solu-

tion of Eq. (1), when periodic orbits tend to a singular point of the center type, there
s
N
mation of periodic orbits to the separatrix, the period function increases unlimitedly.

exists a boundary value of the period equal to and with the unlimited approxi-

Consider the practical application of the results for a specific example of the
separation process.
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Thus, taking into account the initial conditions, the process of particle motion
on the drum is modeled by the following problems with initial conditions for linear
equations of the first order. I phase.

V(@) +2v(0) =2Asin(@ + ¢g) + B (14)
V|0 = 0.

At the initial time r = 0, when the particle hits the drum, its speed is zero. The
end of the first phase is a point in time #; when the particle velocity becomes equal
to the speed of the drum. Then the dynamic friction coefficient u, or accordingly
parameter ¢, in Eq. (13) changes to the coefficient of static friction u, or parameter

bs-
II phase.

w, =/ v(@),t > 1, (15)

where w,—drum angular velocity.
III phase.

V(@) +2v(0) = 2Asin(@ — ¢;) + 2B (16)
v|l:[2 = (1)3.

The condition for the separation of the particle from the drum (the end of the
third phase) is the condition that the value of the centrifugal force exceeds the value
of the magnetic force with a decrease in the radial component of gravity. Figure 2
schematically shows the phases of particle motion on the drum corresponding to
problems (14)—(16).

Consider an example for the model values of the physico-mechanical param-
eters of the separation process [7]: R =0.25m,b = 0.002m, uy = 0.75, ug =
0.15, p = 4700 & F = 3.2 % 10_4H.

Anillustration of the solution to problem (14) simulating the first phase of particle
motion is shown in Fig. 3. The point of intersection of the particle’s velocity curve
with the straight line, the speed of rotation of the drum, characterizes the value of
the angle of rotation at which the first phase of the process ends, namely, the angular
velocity of the particle is equal to the angular velocity of the drum. Based on the
general solution (13), the initial condition of problem (16), we find the solution to
the problem for this case.

4 2
v(0) = 53.6exp~ —|—§A sin(0 + ¢y) — §A cos(0 + ¢q) + B. (17)
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Fig. 2 The phase state of the particle on the drum magnetic separator: 1—the angular velocity of
the drum is greater than the angular velocity w, of the particle w; 2—the angular velocity of the
particle is equal to the angular velocity of the drum; 3—the angular velocity of the particle is greater
than the angular velocity of the drum (separation of particles from the drum)

From the condition %:\/53.6 exXp_og —i—%A sin(0 + ¢gq) — %A cos(@ + ¢y4) + B,
we can find value 6; = 0.53 rad.

After the transitional second phase, solving problem (14), under the initial con-
dition determined by the angular velocity of the drum, we obtain the solution to the
problem in the following form:

4 2
v(0) =37.3exp +§A sin(@ + ¢;) — gA cos(0 + ¢;) + B. (18)

In Fig.4, the curve characterizing the motion of the particle during phase III is
located above the straight line—the angular velocity of the drum.

When the value of the centrifugal force acting on the particle exceeds the value
of the magnetic force, the value of the radial component of the gravity decreases, the
particle detaches from the drum, namely
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Fig. 3 Particle and drum velocity plots

F. =ma*(R+b) > Fy, + Fy,. (19)

Based on formula (13) and condition (16) for our case, we find the angle 65 when
there is a separation of particles from the drum, namely 3 = 1.29rad.

In Fig.5, graphs are constructed that illustrate the increase in the value of the
centrifugal force acting on the particle and the decrease in the value of the radial
component of gravity with a constant magnetic force. The point of intersection of
the graphs is the value of the separation angle of the particle from the drum.

2 Conclusion

It is complemented by the existing universality of the process of mathematical mod-
eling, which consists in the fact that the ordinary equation of oscillation covers a
wide range of processes—from the operation of a system of synchronous motors to
the enrichment of minerals. An expression is found for the period function for a par-
ticular solution of oscillation equation (1). The practical significance of the results of
the research is as follows. From a physical point of view, in the process of magnetic
separation, when there is friction proportional to the square of the angular veloc-
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Fig. 4 Particle and drum velocity plots
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Fig. 5 Values of the centrifugal force acting on the particle and the radial component of gravity
with a constant magnetic force
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ity in the system, with the force acting on the particles of constant magnetic force,
the work expended on overcoming the friction forces increases with the square of
the angular velocity, while the operation of the external forces remains unchanged.
Therefore, if the value of the parameter in Eq. (3) % > 1, the permanent component
of the magnetic force is so large that it exceeds the maximum value of the centrifugal
force acting on the magnetic particle, the separation of the magnetic particle will not
occur—the separation process is absent under any initial conditions. This condition
will be observed until a balance is established between the friction scattering forces
and the magnetic force. The value of the parameter % = 1 is bifurcation point. When

the value of the parameter is % < 1, the moment characterizing the value of the radial

component of gravity exceeds the corresponding moment of magnetic force.
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Epoxy Polymer et

S. V. Rusakov, V. G. Gilev, and A. Yu. Rakhmanov

Abstract A diffusion-kinetic model is presented in the form of a system of partial
differential equations of the parabolic type, which allows one to estimate the ablation
of the components of the epoxy polymer in the liquid phase under conditions of
imbalance in the stoichiometric equilibrium simulating the effect of vacuum. An
analysis of the proposed model showed that the boundaries of the mass fraction of
the hardener, at which a transition to the gel fraction is possible, are between 10 and
60%, which corresponds to the results of a full-scale experiment. Additionally, using
the constructed mathematical model, the effective values of the kinetic parameters
were determined at which the estimated time of yield loss is in good agreement with
the experimental one.

Keywords Reokinetic * Viscosity + Epoxy resin - Hardening + Numerical
modeling

1 Introduction

Epoxy-based composites are widely used due to their high durability properties,
good adhesion to different materials, resistance to external factors, and low shrinkage
rate. They are also of low weight, which makes them promising for creating large
deployable structures in Earth orbit and in outer space. In outer space, such objects
are exposed to high vacuum, the flow of charged particles and atomic oxygen, rapid
temperature changes. All these factors can significantly affect the polymerization
result of the target structure [1, 2]. The cost of conducting full-scale experiments
directly in outer space is too expensive, and sometimes an experiment is not possible
at all. In this case, the mathematical modeling is almost the only way to research the
process.
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To estimate the kinetics of curing of epoxy oligomers, various models are used,
areview of which is given in [3]. Reference [4] presents the mathematical model of
curing kinetics and viscosity changes during curing of a binder, based on the dimen-
sions theory. As another example, [5—7] describes molecular dynamics methods for
exploring the curing process of thermosetting polymers which allow predicting the
evolution of the degree of crosslinking depending on the curing time, and the gelation
time depending on the molecular structure of the copolymer and curing conditions.
Reference [8] a describes mathematical model of the curing process, based on sta-
tistical methods of analysis. The model allows predicting the evolution of the degree
of crosslinking depending on the curing time and the gelation time depending on the
molecular structure of the copolymer.

However, all these models are not applicable for considering the polymerization
processes occurring in open space. Reference [9]. In particular, high vacuum leads
to the entrainment of part of the components of the mixture, i.e., violation of the
stoichiometric balance of the components of the mixture. In this regard, the problem
of the contribution of each of the components of the binder in the polymerization
process, as well as the research of the dependence of the gelation time and other
physical properties of the material on the ratio of the proportions of epoxy resin and
hardener is still relevant. The problem of entrainment of the substance during the
curing of epoxy in open space was posted in [10]. The mathematical model based
on a special choice of initial and boundary conditions for describing the process of
ablation of hardener molecules was described in [11]. Reference [12] has presented
the investigation of the effect of hardener concentration on the viscosity of the epoxy
binder in the initial portion of the polymerization process. It has also shown that the
calculation results are in good agreement with experimental data.

This paper focuses on the new model in the form of a system of partial differential
equations of the parabolic type, which allows one to estimate the ablation of the
components of the epoxy polymer in the liquid phase under conditions of imbal-
ance in the stoichiometric equilibrium simulating the effect of vacuum. Estimates of
the model parameters obtained as a result of processing full-scale experiments are
presented.

2 Problem Formulation

In this paper, we’ll consider an endless layer of epoxy polymer in the liquid phase. In
this case, we can restrict ourselves to a one-dimensional formulation of the problem
with a spatial coordinate that is directed across the layer (Fig. 1).

As a mathematical model, we consider an initial-boundary value problem of the
form

e system of equations

ICP(1,x) 9
ot T ox

aCP(t, x)

(D (cr, com) 200

) — K (CP, C™) CP (¢, x)C" (1, x),
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Fig. 1 Geometric view X A
VACUUM
331888
LIQUID
EPOXY POLYMER

SIS,

ACT (1, x) D

acC™ (1, x)
ot T ax

(D (Cep,C“m) 3
X

) — K (CP, CM) CP (1, )C " (1, %), (1)

t>0, xe(,L(®1)
e nitial conditions

C(0,x) = C; = const, C(0,x) = C§" = const,

(2)
C&P +Cem =1, xel[0, LO0)],

e boundary conditions

D(Ce”, cf"") 8Ce;it, 0 _ D(CW,’ Cam) aca';iz, 0 _,
D(Ce”, C“’")%}’Cl’m) = —ap(N)aep (cel’, C“’”)Ce”(t, L)),
D(Ce”, C)w = — (1) (Ce”, C“’")C”’”(t, L) ()

Introduce the following notations:
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C(t,x), C"(t,x)—mass fraction of unreacted (in the liquid phase) epoxy
resin and hardener molecules;

Ker(cer, Cc™y, K™ (C, C*")—Xkinetic parameters that determine the speed
of the polymerization reaction;

D (C°P, C*™)—diffusion coefficient;

L (t)—epoxy polymer layer thickness;

Qep (C er, C‘””), Aam (CE" ,C “’”)—ablation factor coefficient;

2
t
ap(t) =1 —exp (— (;) —(empirical) coefficient determining the “start” of

the ablation mechanism, T—parameter of adjustment.

To determine the diffusion coefficient, we will use the well-known Einstein for-
mula:
DT C
D(CP.C™) = — s, Dy= — “)
n (Cep, Cam) 6mr

where Cg = 1.38 - 1072 J/K—Boltzmann const, r—effective molecular radius,
n (C?, C")—dynamic viscosity of epoxy polymer.

We’ll determine the ablation coefficients, including work to overcome the energy
barrier [11]

e am 1 Aepn(Cer, Cam) MepV,
S S N Nz e) RPRRL
&)
1 Aa'n Cep? Cam amyam
2 T Cp

where m,,, m,,—mass of molecules, y,,,, Yan—empirical constants.

An epoxide composite is a high molecular compound. Accordingly, values r, m,,,
and m,,, in expressions (4)—(5) could only be considered as some effective values.
In this case, full-scale experiments are required to estimate the parameters Dy, A,
and A,,,. In this model, there are three time-based characteristics that determine the
nature of the curing process and

[D/L2] 1, [ae,,/L, aam/L] l, [Ke,,, Kam] . Since all these functions are
solution dependent, the ratios of the rates of the processes (diffusion, ablation, and
kinetic) can change at different points in time of the polymerization process.

The curing process of the epoxy polymer is characterized by a monotonic increase
in viscosity until there is a loss of fluidity: as r — t* viscosity n(t) — oo (¢* is
the solidification time). From formula (4.1), it follows that the diffusion coefficient
tends to zero as t — t*, and the system of equations (1) degenerates into a system
of distributed dynamic equations.
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Viscosity is included in both the diffusion coefficient and the entrainment coef-
ficient. Therefore, we propose to consider the asymptotic behavior of the func-
tion f(z) =z-erfc (ﬁ) ~a/D, , where z ~ n. It’s easy to show that as z —
o0 f(z) — 0 in the corresponding boundary conditions (3), the singularity does
not occur. The graphical representation of this function is in Fig.2. It shows that
the ratio of diffusion time to ablation time is not monotonous and depends on the
viscosity.

3 Kinetic Model

Let’s consider the kinetic component of the system of equations in more detail (1).
It is a result of the use of the simplest two component dynamic model of the form

d(p:;(t) = —KTeT 0" (), ¢7(0) =1,
(6)

where ¢°P(t), ¢“" (t)—the proportion of unreacted molecules (oligomers) of epoxy
resin and hardener, which are associated with the desired functions of equations (1)
by simple relations C (1) = C; P (1), C"(t) = C{" ™ (t).

In the zero approximation, we can assume that K¢, K" = const, then the
problem (2.1) has an analytical solution. So, if K" > K then

C Kam
P (1) = , C=—+—1,
(1+ C)exp(KerCt) — 1 Kep
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» Ker K
Pty = ——¢"(t 1-— ; 7
00 = 2o ()+( Kam) )
if K? > K"then
C KeP
¢ (1) = , C=———1,
1+ C)exp(KemCt) — 1 Kam

®)

Kam o | Kam
a4 Sl

In the case of stoichiometric balance K = K" = K we obtain: ¢’ (t) = ¢*"(t) =
@(t), then we get the Cauchy problem for one equation, the solution of which is

(1) =

e) = (1+Kn™". )

4 The Research Subject

The experiments used an epoxy composition of “cold” curing: oligomer-epoxy resin
L, hardener—E P H 161 certified for use in structural composite materials for avia-
tion purposes. The mixture that used in experiments was prepared in the weight ratio
of epoxy resin to hardener 4:1, recommended by the manufacturer. Measurements of
the mass of solutions and their components required to calculate the concentration
of the mixture were performed using analytical scales LV-210 having 2nd accuracy
class, the absolute measurement error of which is 0.4 mg. After preparation, the
mixture was mixed for 1-2 min with an Electromechanical mixer and an additional
1-2min in an ultrasonic bath Digital Ultrasonic Cleaner CD 4820 at a frequency of
40 kHz. The last operation also contributes to the degassing of the mixture.

S5 Experimental Settings and Procedure

The control of the polymerization process of the binder was carried out by rhe-
ological method on a rotary rheometer Physica MCR 501. Used geometry is
& cone — plate >>. The cone has a diameter of 25mm and angle of 1°. Such geom-
etry ensures uniformity of the shear rate gradient in the measuring gap. A special
temperature device H — PT D200 based on the Peltier effect was used to maintain
and change the temperature regime. During the experiment, 0.07m! of solution was
placed on the working surface of the rheometer plate. The thickness of the solu-
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tion layer along its outer radius was 0.04mm for rapid establishment of the working
temperature in the sample even under the conditions of heat generation due to the
polymerization reaction. All experiments were carried out under the conditions of
shear deformation of the mixture according to the harmonic law with a frequency of
1 Hz in the deformation control mode, which allows to evaluate not only viscous, but
also viscoelastic characteristics of the samples. In order to minimize heat generation
in the sample due to shear flow, all measurements were carried out in a discrete mode
of temperature change. The measurement time of each experimental point was no
more than 15s. The interval between measurements (standby mode) was in the range
from 5 to 30 min. The process continued until the reaction mixture began to enforce
a strong resistance to shear deformation.

6 Result and Discussion

The results of changes in the complex viscosity of the polymerized adhesive composi-

tion at a temperature of 40 °C in the case of stoichiometric balance of the components

is in Fig. 3. It can be seen that over a period of time the viscosity changes slightly.
Then it grows intensive by several orders of magnitude.

In [13], in order to approximate the dependence of the viscosity of the polymer-

izing composition, it was proposed to use the empirical Chong formula [14]

ay @\’
= (1 e w(m/wm) ’ (1o

where ¥ (1)—the mass fraction of epoxy resin and hardener molecules reacting which
in the absence of vacuum ablation creating spatial concentration inhomogeneity. ¥ (¢)
is determined by a simple relation

V() =1—C oPt) — C§" o (1), an
Flg 3. Changes in th§ 5000 - . Pas
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composition in the 4000 -
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Fig. 4 Changes in the
viscosity of the binder during
polymerization depending on
the mass concentration of the
hardener. T = 45°C
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where no—viscosity value at the initial time, y,,—the part of oligomers (epoxy resin
and hardener molecules) that have entered into a polymerization reaction, in which
the transition from the liquid phase to the gel-fraction phase. The parameter a is
empirical and is used to approximate the experimental data. In Fig. 3, the solid curve
shows the dependence (10), where a = 16 and v, = 0.51. The analytical solution
of Eq.(9) with K = 0.0059 was used to determine the function 1 (¢) according to
an.

During vacuum ablation near the surface of the polymer layer, the stoichiometric
balance may be disturbed, which will affect the value of the kinetic parameters K’
and K.

To evaluate these changes, a series of experiments were performed with various
mass fraction of hardener. Reference [4] shows an example of changing the viscosity
of the polymerized adhesive composition depending on the concentration of the
hardener. Stoichiometric equilibrium corresponds to a hardener concentration of
20%. Experiments have shown that at hardener (Cam) concentrations of less than
10% and more than 60%, the mixture does not solidify (Fig.4).

The change in viscosity in the curing process of epoxy resins is complex, but in
most cases, the purely practical interest is not the entire range of viscosity changes,
but only the critical point of loss of fluidity: solidification time 7*. The used geometry
of the rheometer does not allow to register the change of rheological properties from
the beginning of the reaction to its almost complete end. A well-known method for
determining the hardening time is to determine the maximum achievable value of
the viscosity of the material and to construct the inverse viscosity dependence 1/n
at the final stages of curing [15], which, as a rule, is well approximated by a straight
line (see, for example, Fig.5). The intersection of this line with the abscissa axis
determines the moment of reaching infinite viscosity. The results of this process are
presented in Fig. 6.

Based on the chemical composition of the epoxy composition it is possible to
show the validity of the ratio
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Analysis of the proposed model (6), given the fact that stoichiometric balance is
determined by the ratio of 4:1 showed that the boundaries of the mass fraction of
curing agent in which the transition in gel fraction is possible are in range of 10% and
60%, which corresponds to the results of the experiment (see Fig. 6). In addition, with
using the constructed mathematical model, it is possible to determine the effective
value of the kinetic parameters, at which the estimated time of flow loss is in good
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agreement with the experimental one. In this case, the reasoning was based on the
following:

e analytical solutions (7)-(9)
e the fact that at time ¢ the value of the function defined by the relation (11) is equal

to ¥ (t) = 0.5

The results of these calculations are shown in Fig. 7. It can be seen that the depen-
dence K“"(C*™") is a piecewise linear function and the values K (C*™") can be
determined from the relation (12).

7 Conclusion

The diffusion-kinetic model presented in the paper and the parameters included in it
can be identified accurately enough using laboratory experiments, which allows to
hope for the possibility of its use in the problem of assessing the vacuum ablation of
an epoxy polymer during the polymerization process.
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Modeling of Control of the Immune )
Response in the Acute Form glectie
of an Infectious Disease Under

Conditions of Uncertainty

M. V. Chirkov and S. V. Rusakov

Abstract The paper considers a numerical solution of the problem of discrete control
of the immune response in an infectious disease under conditions of uncertainty. The
immune processes are described by ordinary differential equations with a retarded
argument. Conditions of uncertainty imply that values of the parameters of the model
are unknown and their estimates are adjusted by new clinical and laboratory data. We
use an algorithm that allows one, within the framework of the mathematical model of
infectious disease, to construct the control function and at the same time to identify
parameters. We deal with the control of the immune response in the acute form of
an infectious disease. Immunotherapy consisting in the injection of donor antibodies
is chosen as a controlling factor. In doing so, it is shown that immunotherapy is an
effective treatment for the acute form of an infectious disease. The presented results
are based on simulation of experimental data.

Keywords Mathematical model of immune response * Discrete control *
Immunotherapy

1 Introduction

Mathematical models of the immune response in infectious diseases are applied to
study the dynamics of the immune defense of the organism against viral and bacterial
infections. As a rule, these models are represented by nonlinear systems of ordinary
differential equations [1, 5, 7-10, 16] that contain a large number of parameters. The
values of the parameters of models characterize the properties of the immune system
and antigens. Using estimates of parameters calculated on the basis of laboratory data,
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one can analyze the immune response in a patient and develop the most appropriate
treatment regimen.

The solving of these problems is complicated by the fact that the conventional
approach allows one to obtain estimates of parameters only at the end of the disease
when the prognosis and recommendations on the choice of treatment lose their rel-
evance. Therefore, it is of interest to develop methods that enable one to construct a
control under conditions of uncertainty where values of parameters are unknown but
the range they belong to is known and their estimates are adjusted by new clinical
and laboratory data.

2 Basic Mathematical Model of Infectious Disease

The main defense mechanism that eliminates antigens from the organism is an
immune reaction targeted only against a specific antigen causing a given disease.
After penetrating into an organism, antigens begin to proliferate in the cells of a
target organ, which leads to the damage of an organ. An immune response involves
the formation of antibodies that can neutralize antigens. The generation of antibodies
is preceded by stimulation of the immune system, which consists of the formation of
plasma cells that produce antibodies. An antibody binds an antigen and the outcome
of the disease depends on the struggle between them.

The immune response described above is reflected in the basic mathematical
model of an infectious disease proposed by Marchuk [7]. Using the model, one can
predict the course of the disease and its outcome and the introduction of control
functions allows one to give recommendations on the choice of treatment.

The model describes the dynamics of the following variables: v(t), s(¢), and f(¢)
are the relative concentrations of antigens, plasma cells, and antibodies, respectively,
and m (¢) is the proportion of target organ cells destroyed by antigens.

Including the control [3, 4], the basic model of an infectious disease in the nondi-
mensional form can be represented by a system of ordinary differential equations

%=a1v—azfv,

ds

o= Em)as f(t — vt —7) —as(s — 1),

df _

E—a4(s—f)—agfl/+u,

dm _ :
E—aﬁu—mm (1)

with initial conditions for t € [—7, 0]

v(t) =wd@), s@) =1, f@) =1, m@) =0, 2
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where 60(¢) is the Heaviside function defined by the formula

_ 1 fort=>0,
b0) = {O fort <O0. )

The control function u = u(t) € U describes the injection of donor antibodies
from the external environment (immunotherapy) and £(m) characterizes the mal-
function of the immune system due to considerable damage of an organ

1, 0<m<m*,

Em)y=1 m—1 (4)

, m*<m<1,

m* —1

where m™* is the maximum proportion of cells destroyed by antigens when the normal
functioning of the immune system is still possible.

Values of the parameters of the model are unknown but there is a range of admis-
sible values

ai € la;,a"l, i=1,L, 5

where L is the number of parameters (L = 8 in the basic model of an infectious
disease).

Model (1) describes general regularities common to all infectious diseases. The
infectious disease is assumed to be a conflict between pathogenic multiplying anti-
gens and the immune system of an organism. The study of the basic model of infec-
tious disease resulted in obtaining qualitatively different types of solution, which
were interpreted as forms of the disease: subclinical, acute, chronic, and lethal.

The form of the solution is uniquely determined by initial conditions and parameter
values, which are referred to as immunological status of an organism. In this regard,
it is necessary to solve the problem of control under conditions of uncertainty where
estimates of parameters are adjusted during the construction of a control.

3 Algorithm of Control Under Conditions of Uncertainty

We assume that the laboratory data can be obtained at certain time moments corre-
sponding to the grid nodes

]‘[:{ti ‘t;=iAt, i=1,N, At=T/N}. (6)

Thus, the input data are discrete. The control function u = u(t) that characterizes
the rate of injection of donor antibodies is chosen from the set



100 M. V. Chirkov and S. V. Rusakov
U={u(@):u@)=u;_1 €[0,b], t€lti_1,t;), i=1,N, u(T)=un_1}, (7)

where the parameter b > 0 denotes the physiologically admissible doses of medica-
ments.
To construct a control function with uncertainty, we use the algorithm proposed in
[13—15]. The algorithm for the construction of a program of treatment is as follows:
On the set of admissible values of parameters, the K sets of parameters are ran-
domly generated

aPeo=1ara;=a +jh, j=0,M;, hj=-—-" i=T L, k=1K. (8)

For ¢ € [], we define the admissible parameter sets that satisfy the following
condition:

v, 0®) — (1) <e, i=0,N, k=1K, 9

where v**P(#;) is the laboratory data obtained on the basis of medical analyses; € is
the value of acceptable deviation of the calculated values of the antigen concentration
from laboratory data, K; is the number of parameter sets at time #;. The estimate of
parameters is defined by the formula

=l j=T,L, i=0,N, (10)

where J; represents the number of admissible parameter sets at time ¢;; and J; < Kj,
i=0,N,K;=Ji_1,i =1, N, Ky = K, where K is the initial number of parameter
sets; J; = K; — H;,i = 0, N, where H; is the number of inadmissible parameter sets
at time ;.

To construct a control function, we apply the algorithm proposed in [11, 12].
The idea of the algorithm is as follows: the dynamics of antigens must be put into a
necessary level corresponding to a certain solution of the basic mathematical model
of an infectious disease. This solution is considered to be the support solution. The
antigen concentration values obtained from the support solution are given on the grid

(6)
Vi), i=1,N. 11
If the predicted level of the antigen concentration does not coincide with the

support value, then as a control u;, we choose the value that leads the solution curve
of the antigen concentration to a necessary level.
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4 Results of Computational Experiments

The support solution is determined by solving the system

d

d—j =aqiv—afv,

ds

o= Em)as f(t — vt — 1) —as(s — 1),
d

d—{=a4(s—f)—agfu—cu,

dm

E = aegV — ajm,

du f—1—k (12)
pu— — — KU

dt

with initial conditions for ¢ € [—7, 0]
v(t) =®@), s@)=1, f@)=1, m@) =0, u@®)=0 (13)

with ¢ = 1, k = 4. This variation of the basic model is proposed in [2, 6]. If a; <
az, ¢ >0, k > 0 then system (12) is exponentially stable. In this case, the control
provides stability of the state of a healthy organism. The status of a healthy body is
determined by the following stationary solution of the basic model:

v=0,s=1, f=1, m=0.

To construct a control function under conditions of uncertainty, we utilize an
imitation of clinical and laboratory indicators. The experimental values in criterion
(9) are determined by the solving of model (12)—(13) for a specific set of parameter
values. Further, considering that the parameter values are unknown, we construct
a control and simultaneously correct values of the parameters for problem (1)—(5)
using algorithm (6)—(11). Calculations are carried out with parameters corresponding
to the acute form of a disease.

The various solution curves correspond to different values of parameters of the
model. The model parameters are identified in terms of values of concentration of
antigens. It follows that the solution curves of the chosen characteristic must lie
in a certain neighborhood of experimental values. Thus, we obtain a range where
the solution curves of concentration of antigens must be. In Fig. 1, the bounds of
this range are depicted by the dashed curves. If the solution curve for some set of
parameters goes beyond the range at a point of an interval of integration, further
computations with this set of parameters are not carried out. Figure 1 shows the
possible solution curves going beyond the allowable ranges.

Figure 2a—d illustrate the dynamics of the immune response during the natural
course of the disease (solid curves) and in the case of the obtained program of
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Fig. 1 Solution curves of antigen concentration

treatment (dashed curves). The following values were used: m* =0, 1; b =5; 7=
0,5; vp=10"% £ =2,5-10"*. The acute form of the disease is characterized by
a rapid increase of antigen concentration in an organism, by a strong and effective
immune response, and by a rapid decrease of antigen quantity down to the values
tending to zero. This situation is understood as recovery. The control function is
shown in Fig. 2e. The treatment program consists of the increasing injection of donor
antibodies.

The obtained estimates of parameters and the exact values are presented in Table 1.
The bounds of the range of admissible values and the step of grid ® are determined
for each parameter. The average error of the estimates of parameters is 1.93%.

Thus, the algorithm proposed makes it possible to construct the treatment program
and to estimate the immunological status of the organism, i.e., values of the model
parameters.

5 Conclusion

Results of numerical experiments show that immunotherapy is an effective treatment
in the acute form of a disease. Using the considered algorithm, one can construct
the control of the immune response under conditions of uncertainty correcting the
estimates of parameters by using the new clinical and laboratory data.
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Fig. 2 (continued)

Table 1 Parameters of the model

Parameter |a; a;t hi Estimate Exact value | Error,%

1,75 2,25 0,1 2,024 2,000 1,20
ay

0,55 1,05 0,1 0,799 0,800 0,13
a

9550 10550 100 10033 10000 0,33
as

0,145 0,195 0,01 0,168 0,170 0,20
a4

0,25 0,75 0,1 0,513 0,500 2,60
as

7,5 12,5 1 10,214 10,000 2,14
ae

0,095 0,145 0,01 0,124 0,120 3,33
az

5,5 10,5 1 8,443 8,000 5,54
ag
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Some Problems of Mathematical ®
Modeling of Radiophysical Sounding e
Signals

Alexey Kolchev and Ivan Egoshin

Abstract The greatest attention in radiophysical sounding is paid to determining
parameters of known phenomena. Therefore, the main task in sounding signal pro-
cessing is to detect known signals and evaluate their parameters. However, an impor-
tant scientific problem is the problem of the discovery of still unknown phenomena.
In this paper, we propose a mathematical model of the received signal in the form
of a mixture of two probability distributions to detect unknown signals. The random
process that describes the signal is assumed to be substantially unsteady (different
sections of the process have different probability distributions). Parameters in the
system of Kolmogorov differential equations (process intensity) randomly depend
on time under these conditions. It is shown that the intensity in the proposed model
of the mixture does not depend on the fraction of samples of the selected compo-
nent. Machine learning methods to detect sounding signals and methods for detecting
outliers of random processes to select signal samples are proposed. The developed
methods are used in an ionosphere sounding equipment with a chirp signal. The
equipment kits were provided to various scientific institutions of Russia and also
placed at geophysical stations along the Northern Sea Route, Russia. These methods
can be used to extract arbitrary signals with their similar statistical characteristics.

Keywords Modeling - Signal processing - Hazard function
1 Introduction

A standard task in radiophysical research is a task of evaluating signal parameters
when sounding known processes or phenomena. In this case, the shape of received
signals is known, and their parameters are unknown. The research task of radio-
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physical sounding consists in detecting signals of an unknown form from unknown
processes (since the phenomenon has not yet been discovered, no one has already
observed similar signals) or from complex and non-stationary processes (for exam-
ple, round-the-world HF signals of ionospheric propagation, signals of angular iono-
spheric scattering [1, 2]).

The purpose of this work is to develop methods for detecting and extracting
unknown signals during radiophysical sounding.

2 Chirp Sounding of the Ionosphere

In the paper, signals of the oblique sounding of the ionosphere are considered as
radiophysical signals. Figure 1 shows a diagram of such sounding. A transmitter
continuously emits a chirp sounding signal. Typically, the frequency tuning speed is
100-500 kHz/s, and the sounding range is from 3 to 30 MHz [3, 4]. The transmitted
signal is reflected from the ionosphere and enters the receiving antenna. At the same
time, signals of all radio equipments operating in the range of 3-30 MHz also get to
the receiving antenna.

Figure 2 shows a spectrogram of a signal at the input of the receiver. The time is
plotted on the vertical axis and the sounding frequency on the horizontal axis. The
chirp sounding signal has the form of an oblique line, and the signals of extraneous
radio equipment have the form of vertical lines.

Figure 2 shows that the sounding signal crosses signals from other radio equip-
ment. These can be signals of various types: speech, music and discrete signals. The
signals are completely different and unknown to the receiving side.

The signal is processed by compression in the frequency domain in the receiver.
This method consists in the fact that the received signal is multiplied by a local oscil-
lator signal, and then an element-wise spectral analysis of the difference frequency
signal is performed [5].

Fig. 1 Diagram of ionosphere
ionosphere chirp sounding

chirp signal

transmitter
antenna receiver
antenna

frequency

v

time
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The result of the ionosphere sounding is an ionogram (see Fig.3), which char-
acterizes the dependence of the amplitude of the radio signal A from the sounding
frequency f and the group delay time t. The amplitude of the signal corresponds to
a gradation of brightness in the image.

Spectrally lumped noise is located in separate columns of the ionogram. The
power of fluctuation noise varies with frequency.

Figure4a shows an example of a 4-second signal fragment at the output of the
ionosonde receiver with a chirp signal, which is divided into four parts correspond-
ing to the individual signal processing elements. Figure4b shows corresponding
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Fig. 4 Elements of the signal (a) at the output of the chirp receiver of the ionosonde and their
corresponding histograms (b)

histograms of the samples distribution of this signal. Figure4 shows that not only
do the distribution parameters of the signal samples vary from element to element,
but the distribution laws themselves change. Thus, the signal is processed under
conditions of a priori nonparametric uncertainty [6].

During the build of the ionogram, the processing of the received signal is done
element-wise and each signal element has its own central frequency f, and occupies
its own frequency band, different from other elements (the results of processing the
signal element correspond to a separate column on the ionogram). Therefore, the
spectrally lumped noise (label 3 in Fig. 3), the characteristics of the received signals
(label 1 in Fig. 3), and the fluctuation noise power (label 2 in Fig. 3) will change from
one element to another in the frequency band of the processed signal. This causes a
change in the statistical characteristics of the signal at the output of the ionosonde
receiver.

3 Statistical Signal Model

Processing in the receiver by some transformations (filtering, decomposition over
a certain basis, etc.) leads to the fact that the detected signals have significantly
different values of a certain physical parameter.

Since, in modern devices, signals at the final stage of processing are always
presented in digital form, the problem of signal detection at the output of a device
can be formulated as follows.

Consider a set of n numbers xp, x,, ..., x, that are results of some observations
(we assume that digital samples are uncorrelated and independent). If the signal of
propagation modes is absent, then all samples x, x5, ..., X, are considered as a real-
ization of independent and identically distributed random variables X, X», ..., X,
with cumulative distribution function F (x) (or as n realizations of a random variable
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X). If there are samples in the set that are associated with the signal, then we will
suppose that the random variables X, X», ..., X, are also independent, the samples
Xy, X5, ..., X;u (m < n) have the distribution F (x), while the samples X, 1, ..., X,
have a distribution F; (x) “shifted to the right” relative to F;(x) (or there are (n — m)
realizations of a random variable Y).

In this formulation, the problem of detecting the presence of samples of the signal
in the set becomes the problem of determining whether the set is obtained from
samples of the random variable X or from samples of the random variable Z which
is a two-component mixture of the random variables X and Y.

Moreover, if fi(x) is a probability density function of the random variable
X, and f>(x) is a probability density function of the random variable Y, then a
probability density function of the random variable Z can be written as fz(x) =
(1 —=nh)- filx) +h- f(x), where h = (n —m)/n is a fraction of samples of the
random variable Y in the mixture.

The subsequent simplification of the model is linked to the characteristic of the
data structure: we assume that the samples are non-negative and the values of the
selected samples are not less than those of the rest of the samples.

Under these assumptions, the distribution density function f,(x) and the distri-
bution function F;(x) of the resulting random variable Z can be written as follows:

I =n)fi(x),0 = x < xq,

fz(x) =1 h- falx), xp <x < x, (1)
O’ X ¢ [09 xa) ) [xb’ XC],

0,x <0,
(1—-h)Fi(x),0 <x < x4,
1—h-(1—-F(x),x <x<x,
1, x > x.,

Fz(x) = @)

where [0, x,) is an interval of possible values of the random variable X, and [x;, x.]
is an interval of possible values of the random variable Y (x; < x.). Fi(x) is a dis-
tribution function of the random variable X, and F>(x) is a distribution function of
the random variable Y.

Fig. 5 The distribution 0.8
density function of the fz (1]
component Z 0.6

0.4
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It follows from (1) and (2) that if 7 < 1, then the effect of the second component
on fz(x) and Fz(x) is small (see Fig.5).

4 Signal Detection Method

Thus, the task is reduced to finding a functional characterization of the mixture
components for which the contribution of the component Y to the functional char-
acterization of the whole mixture would not depend on A. That is, for x > x;, the
dependence was only on the properties of the random variable Y and it should be
given relative to the fraction of samples. Therefore, it should be a local characteristic
in the vicinity of some x = x(, depending on the proportion of samples exceeding
xo. The main local characteristic of a continuous random variable Z at a point x is
its distribution density function f,(x(). Find the probability that Z > xy:

+00
P(Z>x) = [ fz(x)dx =1— P(Z < xo) =1 — Fz(x0).
X0

Next, build their ratio: lf fv(xg?o)

A similar construction is found in reliability theory, where the uptime 7T is a
random variable [7].

There is a correspondence with the failure rate; A(¢) is the ratio of the number of
failed objects per unittime An(At)/ At to the average number of objects that continue
to work properly in a given time interval N, (¢): A(t) = NAAr:EtA)tA) -, where An(Ar)
is a number of object failures over a period of time from r — Az/2 to t + At/2;

A A
N (1) = w and N (¢) is a number of objects that work properly on the

interval [0; 7] from the original N objects.
When At — 0, the value A”(A’) tends to the density of the distribution of failures:
] 1 An(An) __

= fu(t), and A]}TO va—’u(’) = P(t) determines the probability of uptime

-0 N()At
over time T < t. The probability of failure during this time: Q(¢) = 1 — P ().
When At — 0, A(t) = f"“) = L0 L0 SO p )i a distri-

P() -0 — 1=F, ()’

1— [ fu(ndt

bution function of failures. The failure rate A(ti is often called a hazard function.
For a random variable Z, the hazard function is written as follows:

0,x <0,
(1=h)-f1(x)
Az(x) = SO mmnRm 0= < e 3)
1 — Fz(x) Aa(x), xp < x < X,
0,x > x.,
where A>(x) = 5 ! ZF(X() is the hazard function of the random variable Y.

Equation (3) shows that the hazard function of the random variables mixture
expressed by (1) for x, < x < x. does not depend on the fraction of the component
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Y in the mixture. The hazard function A(x) can, therefore, be used to detect samples
of the second component in the mixture for small values of 4 [8].

The practical application of the hazard function in detecting ionosphere sounding
signals can be made on the basis of training sets. Let there be a set of experimental
data samples containing only a component X (there is a set of realizations of arandom

Fig. 6 Result of the signal rel.
detection method un.

threshold

255

170

“IMOE

=2
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process). Construct an averaged normalized sample hazard function A,,eq, (x) using
this set. Normalization is carried out so that 0 < A,,,.4,(x) < 1. A normalized hazard
function Ay (x), 0 < Ay (x) < 1, is determined for a set of N samples of a signal that
does not belong to the set of the training set.

The difference Ay (x) from A,,.q,(x) can be estimated by a distance d between
|

these functions by defining it, for example: d = f [An (X)) — Apean (X)|dx.

0

If the value d does not exceed a certain threshold value e(d < ¢), then it is consid-
ered that the set contains only one component X. If d > ¢, then it is considered that
the set contains two components X and Y. The threshold value ¢ can be determined
by the training set. An example of the operation of this method is presented in Fig. 6.

Figure 6b shows a source ionogram. An operator marked the extreme observed
frequencies (LOF and MOF) on it. Figure 6a shows a plot of the d versus frequency
and threshold level. Figure 6¢ shows the result of the algorithm.

5 Signal Extraction Method

In the framework of the proposed statistical model in the form of a mixture of
distributions, the sign of a sample corresponding to the sample of the extracted signal
is that it exceeds the interval of possible values of a random variable X. From the
point of view of a random process, such a sample can be considered an outlier of the
random process or interpreted as an anomalous sample. In this work, the threshold
was chosen according to the method of [9], which was constructed for a wide class
of distribution laws and takes into account the excess of distribution:
if for the sample x, an estimate

x—X>o0-(1.554+0.8ve —1-1g(n/10)) “)

is performed, then this sample is considered abnormal (i.e., the sample is considered
to be the sounding signal) where n is a number of samples; X is a sample mean; o is
a standard deviation and ¢ is an excess.

So that the calculation of the excess, the sample mean and the standard deviation is
not affected by abnormal samples, the calculation is first performed on the initial part
of the variation series of the size in the M samples (M > 50% of the total number of
samples N). Removing from the original set abnormal samples gives an estimate h
for the exact value of the quantity 4. The procedure for extracting abnormal samples
can be repeated with a new value M =1 — h~1 and a new estimate f?z of the exact
value of the value & can be obtained. That is, the method can be considered iterative.
Since each subsequent iteration reduces the error of false selection, but increases
the error of skipping the “useful” signal, the number of iterations is established
experimentally.
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6 The Experimental Results

After applying the method for extracting abnormal samples, the image remains “pep-
per” noise—single noise emissions (random process) with an intensity comparable
to the useful signal. To remove such noise, often use spatial filters with different
shapes and sizes of apertures. These filters are also considered by the authors, but
the conducted experiments have shown that their use entails a loss (deletion) of
“weak” signal. It will if the time dispersion range of weak signal corresponds to 1-2
elements (pixels). The use of different morphological transformations or smooth-
ing filters (such as averaging, Gaussian filter) distorts tracks of propagation signal
modes.

This reason has been considered an alternative method of digital image
processing—The Progressive Probabilistic Hough Transform.

The Progressive Probabilistic Hough Transform [10] allows to find any set straight
lines and curves on the image. The classical Hough transform is based on the repre-
sentation of a required object in the form of the parametrical equation:

X-cos® +y-sin® = R, (®)]

where x, y are the point coordinates on the image, R is the normal distance to the
line from the origin and @ is the angle between the normal and the x-axis.

The straight line may be interpreted as a parametric transformation between an
image space (x, y) and a parameter space or a Hough space (R, ®@). Any point
in the image space can be transformed to a sinusoidal curve in the Hough space
given by this equation. Conversely, a point (R, ®) in the Hough space uniquely
describes a straight line in the image plane. Thus, collinear points in the image will
be transformed to sinusoidal curves in the Hough space which intersect at a common
point. The parameters of a line in the image can be found by finding this intersection.

The result of the classical Hough transform is endless straight lines, which makes
it impossible to extract signal propagation mode on the ionogram. Thus, additional
analysis must be carried out consisting in comparison of found endless lines with the
original image and approval of their lengths with existing points of the original image.
However, such analysis requires additional computational costs. In this connection,
an essential step to optimize the algorithm is that will not take all the ionogram image
points for the Hough transform, and only a part p, where 0% < p < 100% [10]. That
is, at first “control” points from the image are extracted, and the Hough transform is
carried out for it.

Figure 7 shows the operation of the stages of the algorithm. Figure 7a shows the
source ionogram, Fig. 7b is a stage of signal detection (use of the hazard function),
Fig.7c is a stage of signal extraction (using the method of extraction of abnormal
samples), and Fig. 7d is the result of using the Hough transform to extract signals.
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Fig. 7 The effectiveness of the method for signal extracting on ionograms. The bottom figures
show that the signal is extracted quite efficiently

7 Conclusions

The hazard function can be used to detect signals within the framework of the model
of a mixture of probability distributions. The algorithm for detecting sounding sig-
nals using the hazard function is proposed to be implemented on the basis of training
sets. Using the same model, the method for extracting the tracks of signal propaga-
tion modes on the ionogram without losing (deleting) the “weak” signal has been
developed. The frequency range or the time scattering range of the weak signal cor-
responds to 1-2 spectral elements of the ionogram. The method can also be used for
other image signals with similar statistical properties, for example, in the reliability
theory, in the analysis of economic processes.
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Abstract Immunotherapy with Bacillus Calmette-Guérin (BCG)—an attenuated
strain of Mycobacterium bovis (M. bovis) used for anti-tuberculosis immunization—
is a clinically established procedure for the treatment of superficial bladder cancer.
Bunimovich-Mendrazitsky et al. [16] studied the role of BCG immunotherapy in
bladder cancer dynamics in a system of nonlinear ODEs. The purpose of this paper
is to develop a first mathematical model that uses PDEs to describe tumor-immune
interactions in the bladder as a result of BCG therapy considering the geometrical
configuration of the human bladder. A mathematical analysis of the BCG as a PDE
model identifies multiple equilibrium points, and their stability properties are iden-
tified so that treatment that has the potential to result in a tumor-free equilibrium
can be determined. Estimating parameters and validating the model using published
data are taken from in vitro, mouse, and human studies. The model makes clear that
the intensity of immunotherapy must be kept within limited bounds. We use numer-
ical analysis methods to find the solution of the PDE describing the tumor-immune
interaction; in particular, analysis of the solution’s stability for given parameters is
presented using Computer Vision methodologies.
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1 Introduction and Related Work

Bladder Cancer (BC) is the seventh most common cancer worldwide. It is esti-
mated that around 400,000 new cases are diagnosed annually and 150,000 people
die directly from BC every year [1]. Bacillus Calmette—Guérin (BCG) has been used
to treat non-invasive BC for more than 40 years [2]. It is one of the most successful
biotherapies for cancer in use. Despite long clinical experience with BCG, the mech-
anism of its therapeutic effect is still under investigation. BCG immunotherapy has
proven to reduce both recurrence and progression of BC and, therefore, represents an
important tool in the treatment of BC. BCG treatment protocols differ mainly by the
amount of the injected dosage, the injection rate, and the schedule of the treatment
[3].

Mathematical modeling of biological processes in general and medical processes,
in particular, is an active field of study. The benefit gained from describing a system
using mathematical modeling is the ability to analyze and understand it better by
using only theoretical analysis, which decreases the need for clinical experiments
to further understand the system in question [4]. Several mathematical models that
describe the interactions of the immune system with tumor cells based on ODE are [5—
11]. Study of the bladder cancer using mathematical modeling has been researched
in the past from different angles [12-15].

One of the models was invented by Bunimovich-Mendrazitsky et al. [16]. Their
model assumed continuous BCG instillation and allowed both exponential and logis-
tic growth for tumor cells inside the bladder. They studied the equilibria when the
stability and analysis of the system’s bifurcation was the main focus. It was found
that bistability excises so that a treatment may result in the tumor-free equilibrium
or high-tumor state, depending on the initial tumor size reflected by the cancer cell
count. The equations describe a balance between a high dosage which caused the
patient to suffer from side effects and too little dosage caused inefficient treatment.

The mathematical model proposed by Bunimovich-Mendrazitsky et al. [16] is as
follows:

dB()
=2 = —pEWB®) — p2BOTL0) — B +b (1)
dE(t)
=5 = B + a0 + pEW B — psEOT (1) 5
dT,
df’) — PBOT, (1) — pTi(VE(1) 3)
dT,(0)
S A OT0) — PBOT ). @)

The state variables B(t), E(t), T; (t), and T, (¢) represent the concentration of BCG
in the bladder, effector cell population, tumor cell population that has been infected
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with BCG, and tumor cell population that is uninfected with BCG, respectively. The
parameter p; is the rate of BCG killed by effector cells; p; is the infection rate of
uninfected tumor cells by BCG; pj is the rate of destruction of tumor cell infected
by BCG by effector cells; p4 is the immune response activation rate; ps is the rate of
effector cells deactivation after binding with infected tumor cells. « is the growth rate
of effector cell population; A is the tumor population growing rate; b is the strength
of BCG instillation.

Several attempts of modeling the problem have taken under consideration only the
population’s size of different cells in the system over time, based on the biological
dynamic of the system using Ordinary Differential Equations (ODEs) [6, 7]. One
approach to improve the model is taking under consideration an approximation of
the geometry configuration of the bladder in the mathematical modeling yielding in
Partial Differential Equations (PDEs). The PDEs Model’s parameters sensitivity and
solution’s stability for given parameters is the main focus of this paper. We combine
numerical calculations with computer vision algorithms to find the PDE’s model
solution’s stability for a non-Lyapunov PDE system.

2 Mathematical Modeling and Numerical Analysis

The mathematical model differs from the Bunimovich-Mendrazitsky et al. [ 16] model
by taking under consideration the geometrical configuration of the human bladder.
The new model can be described by the following system of PDEs:

0B(r, 1)
o7 =-—pE@ )B(r, 1) — p2BOT,(r, 1)
1 0 ,0B(r1) )
—l/le(VJ)+b+D1—2—( B—r)
0E(r, t)
8t :_M2E(r’t)+a’1—‘i(r5t)+p4E(r’t)B(r’t)
IE( ©)
2 r,t)
—psE@r, 0T (r, t)+Dz ( ar —0)
D B 0T 1)~ psTir DEG D+ Ds g2 D) )
! ar ar
oT,(r, 1) 1 0 ,0T,(r1)
By = AT, (r, 1) — p2B(r, )T, (r, t)+D4——( T)' 3

All the variables with the same notation and meaning as described in Egs. (1)—(4).
D, Dy, D3, Dy are the diffusion rate in the system for B(r, t), E(r, t), T;(r, t), and
T, (r, t) respectively. The variable ¢ stands for the time of the system and r stands for
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the euclidean distance in R? from the point (0, 0, 0) in polar coordinates. The center
of the system’s geometry is defined to be (0, 0, 0).

In the scope of this paper, it will be assumed that the bladder has a form of a
perfect sphere ring satisfying the following condition:

re<x*+y* 4+ <R 9)

The variables x, y, z are the Cartesian coordinates system, rp and R are the radius
of the internal and external spheres of the geometrical configuration, respectively.
We ignore the three tunnels connected to the approximately ellipsoidal shape of the
bladder’s epithelium and approximate the ellipsoidal shape with a sphere shape.

The PDE system differs from the ODE system in two ways: 1) the PDE model adds
another dimension (r); 2) the PDE model takes under consideration the geometry of
the problem, and the diffusion factor added to each population, respectively.

The inner sphere boundary condition is given to be:

0B(.0) _, VE(n) _ o ATi(nn) _ AT 0) _

0. (10)
ar ar or or
The initial condition is assumed to be
B(r.ty) = 0. E(r10) = 0. T,(r.10) = 7——. Ti(r.1p) = 0, (11)
— 70

where ¢ > 0 is the tumor cells distribution factor.

2.1 Biological Border and Start Conditions

The boundary condition of the external sphere is unknown. It is assumed that naturally
the cell population spread over time satisfies diffusion equations. Therefore, one can
find the boundary condition of the external sphere by reverse engineering the values
that best satisfy the known start conditions and internal boundary sphere conditions.
Algorithm 1 addresses this problem (Fig. 1).

2.2 Numerical Analysis

The set of equations can be classified as a set of nonlinear, second order, partial
differential equations from R? to R*, where R? is the space of time (marked by 7) and
radial distance from the center of the bladder’s geometry configuration (marked by
r) and R* is the populations’ counts of all four populations (marked by E, B, T;, T,,).
In such case, it is possible to use Galerkin-Petrov’s method [17] taking the form
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Algorithm 1 Find external sphere boundary conditions

1: procedure EXTERNALBOUNDARY(startConditions, internal BoundaryCondition)  The
external sphere boundary conditions

2:  sample uniformly points from the inner and outer sphere and mark as P

30 i<« 1

4:  while start condition not satisfied do

5 starr < lo — @

6: run diffusion equations with system’s start conditions and internal boundary condition at
tstare and the points P

7: i<—i+1

8:  return P > The external boundary conditions

contw, 2% 20 e ) psnn 2 a2
ryt,uy, —)— =7r —\(r r,t,u, — swr,t,u, —).
or’ ot or or or

This method is a numerical process allowing to retrieve the populations’ size of all
four cell populations given the start condition, boundary condition, and Eqs. (5)—(8).

The calculation has been performed on a software by Matlab (version 2012b)
using the pdepe method [17] while replacing the build in matrix exponent function
with Lazebnik and Yantz’s function [18]. Few tests have been conducted to examine
the results and differences between the ODE model and the PDE model.

InFigure (1), the x-axis represents the time that has been passed from the beginning
of the treatment in weeks and the y-axis is the size of the cell population. This graph
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Fig. 2 Delta in cell population over time between the ODE and PDE models

averages a thousand iteration results in order to reduce the error which inherently
takes place in numerical calculation. One can notice a reduction in the cancer cell
population decrements over time reflecting the effect of the treatment. Furthermore,
the decrements of the BCG-infected cell in the first graph can be explained by the fact
that the BCG is injected into the system in the same place, but the immune system
increases its effort to fight the disease as described in the second graph (E), which in
turn leads to a decrease in the BCG-infected cell population.

The PDE model provides further understanding of the system as its predicts the
population size to be two orders of magnitude bigger than the original ODE model
prediction. A Pearson correlation between each individual population size between
the ODE and the PDE models provides poor results showing that there is no linear
correlation between the models and they provide different predictions for the system.
On the other hand, the difference between the models converges to a constant for
all the cell population after the fifth week, basically indicating a correlation which
converges to one between the ODE and PDE models in long enough treatments.

Figure (2) shows the deltas in the different populations between the two models
when the x-axis is the time passed from the beginning of the treatment in days and
the y-axis is the difference between the sizes of the cells populations (Fig. 2).
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3 PDE Model Parameters Sensitivity Analysis

The numerical calculation of the PDE allows to analyze the system’s sensitivity to
different parameters. The first parameter is the influence of the insert rate of BCG
into the bladder (). From clinical experiments [16], it is known that b € [10°, 107].
The least squares [20] analysis method has been used to calculate the effect on
the system’s output. Note that [t,-](7)0 € [0, 70] such that Vi : A(t;y1 — t;) = c¢. The
function family used to approximate the real function is

o By, eR: f(a,B,y,8) = aeft + yeab (13)

The algorithm to calculate function f which minimizes the sum of the square of
the errors between the function value and model’s value is

Algorithm 2 Find best fitting function to parameter’s behavior

1: procedure PDELEASTSQUARES(PDE model, boundaries, f, &)
: > f is the approximation function and h is the sample step size

3 T < empty list

4. i <0

5: b < boundaries[0]

6:  while b < boundaries[1] do
7 tstart(_["_o_i

8 T[i] <—solve(PDEmodel)

9: R2[i1, T[i] <«LeastSquaresFit(z, T[i], normal distribution))
10: b<«<b+h
11: i<—i+1

12: RZ, bestModel « LeastSquaresFit([boundaries[0], boundaries[1], h], T, f)
13:  return best Model

Running the algorithm given a sampling step in the size of 1071641 ” _ 990 provides

the following results:

R? =0.993, T(t, b) = (23.104¢ 985107 _ 357 4288 5 (3¢ —3732229x107hy,,

(1=(2.919¢~565.818¢10~%b 4 15,~33.018+10 1,
TN (26537 1374107 9b 13 15, 74532410~ 1)

)2
(14)

e

R? = 0.976, T, (t, b) = (27.107e92629%10%0 _ 3 ()9 4 10~ 1-295+107%hy,

el*(269'1 18*10—3e53.978*10_9b_245'631*10—38—341.431*10_%)
b

15)
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R* = 0.983, T;(t, b) = (1.783 % 1074341070 _ 9 264 4 100~ 7-944+1077by,

6 o
[ (1=(15.502¢~L06¥1070b | 0 673,—6-538%1077 ),
e (12.788¢— 118341070 1 7 616,—6.754x1078 )

(16)

A smaller b produces a smaller BCG-infected population (B) and also a smaller
effector cell population (E). The decrease in the tumor cell population (7°) over
time has a lower rate for smaller b. Not enough injected BCG can even produce the
unwanted result that tumor cell population decrements will not reset at the end of
the treatment. On the other hand, bigger b produces a higher peak around the end of
the first week of the treatment risking the penitent immune system.

To approximate the influence function of parameter b, the least square analysis
method can be used again with function (13). From clinical experiments [16], it is
known that this treatment is reasonable when T}, (fp) € [2 * 10°, 3 % 10°]. Running
algorithm (2) provides the following results:

R% = 0.995, T, (r, to) = (1.93 % 10" 1385107 Tutrt0) _ 1 64 4 10112 11¥107 Tulrio))

67 (- -4
@700 (0) 1345, 2184107 )

= -
(107232241070 Tu (10) _g 77,1.88104 )7, (710

(17)

e

4 PDE Model Solution’s Stability Analysis

The PDE does not satisfy the conditions needed to use Lyapunov’s stability anal-
ysis method. On the other hand, the numerical calculation of the system does not
diverge to infinity. One can analyze the image of the dynamics of the system by
solving the PDE for given parameters. Such analysis will allow to find a function
g(T,, BCG, time) — {0, 1} when the source space contained in R* and the image
space is exactly {0, 1}. This allows to set the start condition of the problem and to
find whether the treatment will succeed or not without the need to solve the PDE
from scratch each time.

Calculating an approximation to the function g first requires to sample the param-
eter’s space. There are six parameters affecting the system: ¢, BCG, T, Cy, C3, C3
when Cy, C,, C; € R are thresholds of the three population sizes T, B, E, respec-
tively, depending if the treatment succeeded or not. Assume there are lower and
upper boundaries from biological experiments for the parameters yielding a com-
pact parameter’s set. This is because the set is complete as a sub-set of R® and
bounded. Assuming the solution is continuous and can be restored from discrete
sampling, define & €, 1 >> h such that 4 is the size of the sampling step.

Using the output of the algorithm (3), one can extract the border pixels. In this
case, a border pixel is a pixel with neighbor pixels from in the case the treatment
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Algorithm 3 Sample the PDE’s image space of function g

procedure PDEIMAGESAMPLING(P D Emodel, B, C,h) > B is an array of boundries, C is an
array of thresholds and h is the sample step size
output < zeros(B[0][0], B[O][1], B[1][0], B[1][1], B[2][0], B[2][1])
while i € [B[0][0], B[0][1] do
while j € [B[1][0], B[1][1]] do
while k£ € [B[2][0], B[2][1]] do
s <—solve(PDEmodel(i, j, k))
if s[0] < ¢l and s[1] < ¢2 and s[2] < ¢3 then
output[i][j1k] < 1
EndIf
return output

succeeded and in the case is did not succeeded. Boundary following algorithm [19]
for the three-dimensional case performs such a task.

One can take advantage again of the least squares analysis method to find an
approximation to the function describing the border between the two cases. We
assume that the model is as follows:

F(x,y) =aisin(x) 4+ azcos(x) + azsin(y) + ascos(y) + assin(x)cos(y) + agsin(y)cos(x)

+azsin(x)sin(y) + agcos(x)cos(y).
(13)

This produces the following models for both the PDE and the ODE models,
respectively

Fpae(x,y) = 2.644sin(x) + 3.904cos(x) + 9.636sin(y) + 8.931cos(y) — 8.544sin(x)cos(y)

—2.607sin(y)cos(x) — 1.266sin(x)sin(y) — 9.393cos(x)cos(y)
(19)

Using Eq. (19), itis possible to predict the needed time (if it exists) so that the tumor
cell population size is small enough 7 (¢, r) < Cj on one hand and the effector, BCG-
infected, cell populations sizes are not growing to large B(t,r) < Co, E(t,r) < C;
on the other hand, yielding a successful treatment, given only the tumor’s initial cell
population size and the BCG injection rate.

5 Conclusions and Future Work

It is safe to claim that mathematical modeling is a useful tool for studying the mech-
anism of tumor growth and response to therapy. The use of numerical simulation of
complex mathematical models that is not yet analytically solvable can help predict
the outcome of treatment and determine better therapeutic protocols. As population
analysis is a common way of describing such systems [8—10], it is important to add
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the geometrical configuration of the problem into the dynamics since the system
parameter values vary across different geometries.

Bifurcation analysis of the mathematical model considered in this paper was not
previously available because the numerical methods developed for bifurcation anal-
ysis require continuous vector fields. We found that PDE representation in bladder
cancer treatment with BCG provides more accurate predictions to observations done
in vitro in mice and humans than the ODE representation. As can be observed from
Figure (2), the delta between the ODE and PDE model in all cell population sizes are
in afactor of 100, where the PDE model’s predictions better fits previous observations
with respect to the ODE model’s predictions [16].

On the other hand, after five weeks of treatment, the delta between the models
converges to a constant for each population function (E, B, T;, T,,) and basically
indicates a complete linear correlation between the ODE and PDE models (R? = 1.

The difference between the models is initially associated with the introduction
of the geometry reflected in the diffusion coefficients introduced into the dynamics
of the system. In fact, from the very beginning, there is a disagreement between the
models: for PDE there is diffusion dynamics, and for ODE there is an instant reaction
to the introduction of BCG. After diffusion spreads throughout the space, it behaves
like an instantaneous response, and therefore, the ODE and PDE models ultimately
work identically, as can be seen from the calculation of the delta between the models.

This study develops a numerical method for the stability analysis of PDE’s solu-
tions of a mathematical model with pulsed BCG immunotherapy based on well-
known algorithms from the field of computer vision. We can make a few clinical
conclusions based on analysis of function (19): (1) BCG injected with a rate smaller
than sixty thousand cells almost does not have an effect. (2) In the case of bladder
cancer, when there are 10% or less cancer cells from the overall population and BCG
is injected at a rate of eighty thousand cells, then the cancer can be cured in ninety
percent of the cases for the treatment that is given between eight and ten weeks. (3)
There is a strong linear correlation between the amount of BCG injected and the time
of the treatment in the successful cases when the cancer cell population is around
five percent of the overall cell population at the beginning of the treatment.
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Abstract We consider mathematical models of infectious diseases built by G. L.
Marchuk in his well-known book on immunology. These models are in the form
of systems of ordinary delay differential equations. We add a distributed control in
one of the equations describing the dynamics of the antibody concentration rate.
Distributed control looks here naturally since the change of this concentration rather
depends on the corresponding average value of the difference of the current and
normal antibody concentrations on the time interval than on their difference at the
point ¢ only. Choosing this control in a corresponding form, we propose some ideas
of the stabilization in the cases, where other methods do not work. The main idea
is to reduce the stability analysis of a given integro-differential system of the order
n, to one of the auxiliary systems of the order n + m, where m is a natural number,
which is “easy” for this analysis in a corresponding sense. Results for these auxiliary
systems allow us to make conclusions for the given integro-differential system of the
order n. We concentrate our attempts in the analysis of the distributed control in an
integral form. An idea of reducing integro-differential systems to systems of ordinary
differential equations is developed. We present results about the exponential stability
of stationary points of integro-differential systems using the method based on the
presentation of solution with the help of the Cauchy matrix. Various properties of
integro-differential systems are studied by this way. Methods of the general theory
of functional differential equations developed by N. V. Azbelev and his followers
are used. One of them is the Azbelev W-transform. We propose ideas allowing to
achieve faster convergence to stationary point using a distributed control. We obtain
estimates of solutions using estimates of the Cauchy matrices.
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1 Introduction

Mathematical models in the form of systems of nonlinear ordinary differential equa-
tions are used in many fields of science and technology to describe various phenom-
ena. In medicine, the purpose of mathematical modeling is the analysis and prediction
of the development of diseases and their possible treatment. A comprehensive work
on mathematical models in the field of immunology was summarized by Marchuk
in his book [18]. The models constructed there reflect the most significant patterns
of the immune system acting during these diseases. This model was studied in many
works. Note, for example, the recent papers [19, 20] and the bibliography therein.
The adding control was proposed, for example, in [6, 7, 9-11, 16, 17, 22, 23]. In
the works [8, 21], the basic mathematical model that takes into account the discrete
control of the immune response is proposed. See also the recent papers [7, 10, 17],
where distributed control was considered. It can be noted that the use of information
about the behavior of a disease and the immune system for a long time (defined by
distributed control, for example, in the form of an integral term) looks very natural
in choosing the strategy of a possible treatment. Optimal control in the basic model
of the infectious disease was considered in the work [8], where the control function
characterizing realization of an immunotherapy which includes in administration of
immunoglobulin or donor antibodies is proposed. In the work [2], the model of influ-
ence of an immunotherapy on dynamics of an immune response which represents
generalization of basic model was considered. On the basis of the proposed model,
the problem of determination of coefficients on the basis of laboratory dates was
considered and a suitable management was proposed in [5, 8]. Such task was called
control in uncertain conditions [22]. A control algorithm in uncertain conditions was
proposed in the work ([8], see pp. 71-73).

In the recent papers [7, 10, 17], we present new approach for the study of the
model of infectious diseases. In this paper, we summarize their results and formulate
mathematical problems which look very natural from the medical point of view.

Our contribution in the modeling is a distributed feedback control which is added
to the equation describing the concentration of antibodies. This step transforms these
systems into functional differential ones. As a result, we have to study the properties
of solutions of these systems such as asymptotic behavior in the neighborhood of
stationary points and stability of the stationary points. the importance of stationary
points should be stressed. These points describe the conditions of the healthy body
or the chronic disease. The aim of the treatment is to lead the process to one of
the stationary points. Further, we try to obtain estimates of solutions of linear and
nonlinear systems of functional differential equations. One of the ways to these
estimates is the construction of the Cauchy matrix. First steps in this direction were
proposed in the recent paper [10].