
Chapter 6
Advanced Neutron Imaging

Yogesh S. Kashyap

6.1 Introduction

In traditional neutron radiography, we are primarily concerned with the intensity
variations caused by inhomogeneous attenuation of the neutron beam in the object.
This inhomogeneous neutron attenuation causes an intensity modulation in the trans-
mitted beam, which is referred to as absorption contrast. It is worthwhile to point out
that this absorption imaging includes both attenuation and scattering out of the beam,
mostly due to incoherent scattering. This concept of attenuation-based imaging has
been widely used since the discovery of X-ray by Rontgen, and later on, the same
principles were adopted by the neutron imaging community. However, this approach
fails to workwithmaterials of high transmittance or when one is interested in probing
the magnetic or electric field distribution inside a bulk. In order to overcome the
limitations of conventional neutron imaging techniques, the concept of wave particle
duality of neutrons, as defined through quantummechanics, can be invoked. In terms
of wave picture, neutron–matter interaction can then be treated on par with wave
matter interaction, and hence, the concept of “phase of wave” can be implemented to
improve the capabilities of existing neutron imaging techniques. The development
of the neutron phase-contrast imaging technique is, therefore, an important advance-
ment in improving the contrast and sensitivity of the existing transmission-based
neutron imaging techniques [1–4].

Because phase information is often lost in traditional transmission imaging,
many approaches have been developed to convert the unseen “phase” to inten-
sity modulation. The concept of phase-contrast imaging was discovered in 1942
by Zernike, and he invented optical Zernike phase-contrast (ZPC) microscope to
visualize phase undulations [5]. Zernike was awarded the Nobel Prize in Physics in
1953 for this invention. Following it, Nomarski then devised differential interference
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contrast (DIC) microscopy in 1952, based on beam-splitting and shear interferom-
etry concepts [6]. The disadvantage of these proposed techniques was that quantita-
tive image analysis was not possible. In 1972, Gerchberg and Saxton [7] proposed
Gerchberg-Saxton (GS) algorithm, the first iterative phase-retrieval algorithm for
quantitative phase measurement, and the ideas have been successfully demonstrated
in the fields of optical and X-ray microscopy. In contrast to iterative methods, Teague
first proposed the idea of free-space propagation to recover phase quantitatively, in a
non-iterative manner, using the transport of intensity equation (TIE) in 1982 [8, 9].

However, the widespread adoption of phase-based techniques for neutrons started
only in early 2000. This long delay could be attributed to multiple reasons such as
difficulties in fabrication of neutron optics, need for high mechanical stability in
optical alignment and low neutron source coherence combined with low neutron
flux at neutron imaging facilities. During the previous decade, new developments in
fabrication technologies of neutron optics along with the availability of high bright-
ness neutron sources have contributed towards the adoption of various phase-sensing
techniques for neutrons.

On a different note, neutron spin-based imagingwith polarized neutrons combines
absorption (attenuation) and phase-based interactions and has become an important
visualization probe for magnetic fields, domains and quantum effects such as the
Meissner effect and flux trapping among others. It is achieved by obtaining the
change in polarization of the neutron beam due to Larmor precession as it passes
through a region of magnetic field. The neutron’s deep penetration capability in most
of the materials makes it a unique probe for non-destructive study of magnetic fields
inside objects.

This chapter describes the basic principles of neutron phase-sensitive imaging and
polarized neutron imaging, and presents an overview of the progress in this emerging
field of neutron imaging in the last decade.

6.2 Basic of Phase-Contrast Imaging

The neutron–matter interaction (nuclear interaction, for simplicity) through the wave
model can be best described through the complex refractive index of the matter,
expressed as:

n =
√
1 − V

E
= 1 − λ2N

2π

√
b2c −

( σr

2λ

)2 + i
σrNλ

4π
= nr + ini (6.1)

where λ is neutron wavelength, N is the mean number of scattering nuclei per unit
volume and bc = 〈b〉 is the mean coherent scattering length. The complex refraction
index counts for absorption (σ a) and incoherent scattering (σ s, incoh) processes. (σ r)
= (σ a) + (σ s, incoh) is the total reaction cross section per atom. One can express the
complex refractive index simply as follows:
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n(r, λ) = 1 − δ(r, λ) − iβ(r, λ) (6.2)

Real part δ corresponds to the phase of the propagating wave and β represents the
absorption in the medium. Furthermore, if the neutron absorption within the object
is negligible, the imaginary component in the above relation may be ignored, and the
complex refractive index of the object for monochromatic neutron of wavelength λ

can be compactly described through the following relation:

n = 1 − λ2Nbc
2π

(6.3)

Consider a plane wave with amplitude A0, and initial wave-vector k, incident
on a material with thickness d and refractive index (Fig. 6.1). Let the amplitude of
the unperturbed wave after the material be ψ = A0ei(kd−ωt); where k = ω/c, and
amplitude of the perturbed wave after the object is given by

ψ = A0e
i(k ′d−ωt) = A0e

−i ω
c δde− ω

c βdei(kd−ωt) (6.4)

where k ′ = nω/c. It may be noted that this equation contains a phase factor
exp(−iφ(d)) with φ(z) = ωδd/c, which represents the phase difference between
matter and vacuum (in terms of wave picture). Similarly, the amplitude attenuation of
thewave is given by exp(−ωβd/c). Hence, the intensity in the exit plane of the object
is I = |ψ |2 = I0e−2kβd = I0e−μd , which is nothing but Lambert–Beer’s law where
I0 = |A0|2 and attenuation coefficientμ is defined asμ = 2kβ = 4πβ/λ. This is the
basic principle of conventional neutron radiography where the information based on
differential attenuation or absorption is recorded. However, it can be observed that
any information contained in the phase of the wave has been completely lost. The
phase-contrast technique aims to detect this component of the wave by using suitable
optical elements.

Fig. 6.1 Example of phase shift and wave attenuation as the wave passes through the object



184 Y. S. Kashyap

Therefore, it can be stated that phase-contrast imaging additionally takes advan-
tage of the real portion of the refractive index (1 − δ), whereas traditional neutron
radiography takes advantage of the imaginary part (β). In contrast to X-rays, which
have a refractive index of slightly less than unity, neutrons have a refractive index
that can be larger than or less than unity. This is due to the fact that neutrons’ coherent
scattering length can be either positive or negative. The phase shift due to nuclear
coherent scattering for an object of uniform thickness D for the neutrons can be
expressed as 
φ = −NbcλD.

In order to further illustrate these conclusions and evaluate the advantage of phase-
based approach over conventional absorption-based neutron imaging, consider a
simulated phantomconsisting of a carbon tube enclosed in a lead cylinder. Figure 6.2a
shows the absorption and (b) the phasemap of the simulated phantom.As observed in
Fig. 6.1a, absorptionmap of the item ismostly attributable to lead and the carbon tube
is totally hidden. These are common circumstances in which traditional radiography
fails to probe the materials. The phase map is presented in Fig. 6.2b, and the phase
contributions of both the lead and carbon sinkers are apparent.

Similarly, phase shift due tomagnetic interaction, for a uniform length of thickness
D can be expressed as


φmag = ±μBmλD

2π�2
(6.5)

where μ is the neutron dipole moment, B the applied magnetic field, m the neutron
mass and λ is neutron wavelength.

It may be noted that phase shifts can appear in the presence of different varieties of
scalar and vector electromagnetic potentials. Although not discussed here, phase shift
effects can also occur due to gravitational [10], Coriolis [11],Aharonov–Cashire [12],
Aharonov–Bohm [13], magnetic Josephson [14], Fizeau [15] and geometric (Berry)

Fig. 6.2 a Absorption and b phase shift distribution of a carbon tube enclosed in the lead cylinder
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Table 6.1 Type of
interaction and different types
of phase shift due to these
potentials [10–16]

Type of interaction Type of potential Phase shift

Nuclear 2π�
2

m bδ3(r) −NbλD

Magnetic −→μ · −→
B μmλDB

2π�2

Gravitation m−→g · −→r mimgλgA sin(α)

2π�2

Coriolis �ω(
−→r × −→

k ) 2m
�

−→ω · −→A
Aharonov–Cashire −μ · (−→ν × −→

E )/c 2μ
�c

−→
E · −→D

Aharonov–Bohm −→μ · −→
B μBT

�

Josephson (magnetic) −→μ · −→
B ωt

Fizeau NA −NbλD
(

ωz
vz−ωz

)
Geometric NA /2

[16] interactions, and have been verified experimentally using neutron interferometry
techniques, and the same has been briefly presented in Table 6.1.

To expand on the concepts, we examine the most fundamental type of phase-
contrast imaging, which involves free-space propagation of a coherent wave-field
through a transparent object and then measuring the intensity modulation with a
spatially resolved detector after propagating the exit wavefront over a distance z
behind the object. This is the classical way of observing the diffraction effects using
more coherent laser sources. In the absence of the object in the beam path, a constant
intensity would be recorded on the detector. If we place the object in the beam
path, make the beam propagation distance zero after the object, we have a contact
image that shows only absorption-contrast. It is worth noting that a contact image of a
perfectly transparent object just shows the intensity distribution in the detector plane.
Nonetheless, the object shifts the phase of the wavefield, but the wave amplitude
remains constant, and thus, the intensity remains constant. Refraction and diffraction
create amplitude fluctuations in the propagating wavefield due to interference of
wavefields, which leads to variations in the recorded intensity when the detector
is moved further away from the object. Figure 6.3 shows the different regimes of
the phase-contrast imaging where the detector can be placed, and the data can be
recorded. This completely depends upon the object-related information that one
wants to retrieve from these measurements. The advantage of the near-field regime
is that there is a direct correlation between the data recorded on the detector and the
phase-contrast effect. Sometimes, one need not retrieve the phase difference, and
the projection image itself can be used for further analysis. However, in the far-field
regime, one records the interference pattern (in reciprocal space), and hence, suitable
phase retrieval algorithms need to be employed before any meaningful conclusion
can be drawn from the recorded pattern. Near-field regimes are easy to implement
experimentally; however, sensitivity in terms of phase difference would be higher in
the far-field regime.
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Fig. 6.3 Different regimes in the X-ray/neutron phase-contrast imaging

Figure 6.4 shows schematics of various phase-sensing techniques, which have
been implemented using thermal and cold neutron sources. In what follows, we
discuss in detail the basic ideas behind different phase-contrast imaging techniques
and present some experimental findings using these techniques.

Fig. 6.4 a Crystal-based interferometer, b analyser-based setup, c grating-based setup, d
propagation-based setup for neutron-based phase-contrast imaging [17]
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6.3 Neutron Interferometry

6.3.1 Single-Crystal Neutron Interferometers

Interferometry is the most obvious choice when one is interested in measuring the
phase shifts. Maier-Leibnitz made the first attempts to build a neutron interferometer
in 1962with coherent neutronbeams.Maier-Leibnitz andSpringer [18] using apair of
prisms, andup to60μmpath separationwas reported.However, thefirst successfulX-
ray interferometer, equivalent toMach–Zehnder optical interferometers,was reported
by Bonse and Hart in 1965 [19] using perfect single crystals, and later, the same
technique was also adopted for neutron interferometry [20]. The interferometer is
made up of three crystal slices that are carved from a single big, nearly flawless
monolithic silicon crystal (Fig. 6.5). The first crystal slice serves as a beam splitter,
dividing the monochromatic and well-collimated entering beam into two coherent
neutron beams.

The second slice serves as a mirror, allowing the two beams in the third slice,
the analyser, to recombine. To compensate for the interferometer’s built-in phase
patterns, a compensator is frequently used in one of the coherent beams. The sample
is placed between the mirror and the analyser in one of the two beams.

Neutron interferometry can be considered as a method of measuring the phase
difference induced by a sample (in the direction of the illuminating wave’s propaga-
tion) across spatial locations perpendicular to the wave’s propagation, modulo 2π.
The intensity I (x, y) recorded in the detector plane can be given as follows:

Fig. 6.5 A neutron interferometer made of a single piece of perfect silicon crystal. a A diagram of
the interferometer: at the first plate, an incident beam is split into two beam paths, which are then
recombined at the last plate. The intensity modulation of two beams leaving the interferometer is
typical and depends on the relative phase of the two beams in the interferometer [21]. b Photographs
of a variety of neutron interferometers [22]
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Fig. 6.6 Neutron phase tomography of aluminium screw from the phase shifts using neutron
interferometry [24]

I (x, y) = I0(x, y) + a(x, y) cos[�(x, y) + φr(x, y)] (6.6)

where I0(x, y) is the background illumination intensity, a(x, y) is the amplitude
of the beam, �(x, y) is the phase of the object and φr(x, y) is the reference phase.
There are various techniques such as Fourier transform, fringe skeletonization, phase-
stepping, phase-shifting, temporal and spatial heterodyning which can be used for
phase extraction from the recorded interferogram. In practice, techniques of “phase
unwrapping” need to be employed to produce a phase image in the range [−π, π ]
from the interferogram.

Furthermore, it is also possible to do tomographic measurement by collecting
projection images at multiple rotation angles and local distribution of the refrac-
tive index decrement can then be reconstructed using conventional filtered back-
projection algorithms [4, 23]. Figure 6.6 shows the first reconstructed 3D phase
tomography images of the aluminium screw [4].

6.3.2 Moire Interferometry

Although perfect crystal neutron interferometry is very sensitive to small phase shifts
for thermal or cold neutrons, however, these interferometers are not only difficult to
fabricate, but have narrow wavelength acceptance and also require very stringent
conditions in terms of vibration isolation and incident beam collimation. In order to
overcome the limitations of existing single-crystal interferometers, research has been
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Fig. 6.7 Three PGMI schematic diagram where the third grating is offset from the echo plane to
produce the Moire pattern [25]

carried out to develop grating-based interferometers. Recent advances in far-field
phase grating-basedMoiré interferometry have allowed neutron interferometry to be
extended to medium-intensity thermal neutron sources, demonstrating the potential
for neutron interferometry studies to be extensively employed. Figure 6.7 shows
the schematic of the experimental technique [25]. The first grating (G1) diffracts a
neutron beam into three rays: one transmitted and two deflected. The second grating
(G2) is placed between phase grating G1 and analyser grating G3. This grating’s
principal function is to refocus diffracted waves from G1 into a sequence of Fourier
image in a specified plane downstream. The G3 grating is positioned close to this
plane in order to induce phase Moiré effects between itself and the Fourier images.
The three grating setup has the advantage that large sample size (~cm2) can be
accommodated due to large possible separation between the second and third grating.
Therefore, by detecting changes in the interference pattern, as compared with the
empty interferometer, the microstructures within the material can be detected.

It should be noted that, unlike the near-field gratings discussed later in this chapter,
phase-based Moire gratings are effective in the far-field region, producing interfer-
ence fringes (~mm scale) that are orders of magnitude greater than the grating’s
period (~μm scale), allowing direct detection with an neutron imaging detector [26].

6.4 Near-Field Phase-Contrast Imaging

As discussed previously, there is a simple linear relation between phase shifts and
intensity recorded by the detector in the near-field regime as given by the transport
of intensity equation. The transport of the intensity equation (TIE), which Teague
had undeniably first derived in 1982, is simply an alternative statement of the energy
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conservation law and sets out a quantitative relationship between the variation of the
longitudinal intensity I(x) and the phase of the coherent beam φ(x). In the compact
form, the can be expressed as follows:

∇ · [I (x)∇φ(x)] = −2π

λ

∂

∂z
I (x) (6.7)

where z represents longitudinal displacement along the beam. Expanding the left
hand side of the above equation, one can then rewrite the above as follows:

∇ I (x) · ∇φ(x) + I (x)∇2φ(x) = −2π

λ

∂

∂z
I (x) (6.8)

where the two terms on the LHS can be identified as the phase gradient (the first
derivative) and phase curvature (the second derivative), respectively. Therefore, both
phase gradient and phase curvature determine the longitudinal fluctuation of the
intensity. Like a prism, the phase gradient causes intensity translation and consti-
tutes a prism-like effect that transversely displaces optical energy. The transverse
displacement is directly proportional to the local deflection angles (refraction).

Similarly, like a lens, phase curvatures cause intensity convergence or divergence
and measures the Laplacian of the phase (Fresnel diffraction). This interpretation of
the transport of intensity equation has therefore opened the door for the development
of new non-interferometric phase-contrast techniques. In the following section, we
describe phase-contrast techniques thatmeasure the first derivative of phase (analyser
and grating-based neutron imaging) and second derivative of phase (propagation-
based phase-contrast imaging) and discuss some experimental results.

6.4.1 Analyser-Based Neutron Imaging

Analyser-based imaging is a form of imaging that utilizes the properties of a single
crystal to bring out the phase gradients as per the refractive index variation in the
sample [27]. This modality corresponds to Schlieren imaging in classical optics [28]
and was adopted for neutron imaging using a combination of diffractive neutron
optics [29, 30]. The angular deviation due to refraction of neutron beam as it trans-
verses the object, gives rise to local phase gradient, lending the name differential
phase to this contrast modality. Due to the weak nature of neutron–matter inter-
action, angular deviations due to local phase gradients are within a few arcsec or
microradians. This matches with the angular acceptance or the Darwin width of
perfect single crystals (as an example, for Si(111) the Darwin width is ~8 arcsec for
thermal neutrons). This implies that only the neutrons travelling within this narrow
angular widthwill be transmitted or reflected by the crystal analyser, and that toowith
variable degree of reflectivity. Usually, a monochromatic neutron beam, selected by
using a neutron monochromator, is incident upon a sample, and the transmitted beam
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is then reflected by an analyser single crystal. The intensity recorded by the detector
after transmission through the analyser in each position can be expressed as follows

I = I0R(θa + α(x, y)) (6.9)

where α(x, y) is the refraction angle, I0 is the apparent absorption intensity, and
R(θ) is the reflectivity of the analyser crystal at the angle θ. The analyser is aligned
at the Bragg angle as that of the monochromator, and by rotating the crystal analyser
around the Bragg angle, data at multiple points on the rocking curve is collected.
This data can be subsequently processed to separate both absorption and refraction
contribution from the object. Furthermore, one can repeat the measurement steps at
different sample orientation and three-dimensional tomography can be carried out.
A tomographic reconstruction based on the standard filtered back projection method
(FBP) and utilising the linear filter function (Ram-Lak filter) would, however, not
result in a proper reconstruction of the real component of the refractive index. Using
the Fourier derivative theorem, a new filter function defined as follows can be derived
[2].

F(k(ν)) =
{−i sign(ν), |ν| ≤ 1/2
y′

0, |ν| ≥ 1/2
y′ (6.10)

where ν is represents spatial frequency component and sign(ν) is the sign function.
Spatially unresolved, disorderly or partially arranged samplemicrostructures may

lead to the small angle neutron scattering around the refracted ray. The unresolved
microstructuremaybroaden the refracted neutronbeam, and the samecanbe recorded
in the transmitted direct beam.Themethod, therefore, can be used to obtain signatures
of small-angle scattering contrast because the relevant angular range of refraction
matches well with small-angle scattering from structures in the micrometre and sub-
micrometre range (100 nm–10 μm). The following line integral may be used to
quantify and approximate the small-angle scattering-induced width of the refracted
beams or their angular distribution [31]


θ2 =
∫

σ(x, y)N (x, y)

R2(x, y)
dl (6.11)

where σ is the scattering cross-section, N the particle density and R is a parameter
with the dimension of a length specifying an average size or correlation length in
the scattering object. In contrast to the phase shift, with this definition of small-
angle scatter signal, one can reconstruct slices using the conventional linear filter.
Using double single-crystal setup, the first attempts to probe the spatial distribution
of small-angle scattering signal using a spatially resolved neutron imaging detector
have been reported [31]. Figure 6.8 shows three-dimensional phase tomographic
reconstruction of the aluminium cylinder with asymmetric hole along with different
cut-away sections using analyser-based phase-contrast imaging. Figure 6.9 shows
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Fig. 6.8 Three-dimensional refraction contrast reconstruction of the sample volume (aluminium
cylinder with asymmetric hole drilled); cut-open (a, b); view from top (c); sagittal cut (d); frontal
cut (e). Reproduced from [30] with permission from © Elsevier 2004

Fig. 6.9 Reconstructed sample cross section of Al matrix filled with different concentrations of
β-carotene in D2O: (1) 23.0 (5) wt%, (2) 11.6 (5) wt%, (3) 5.8 (5) wt%, (4) 3.8 (5) wt%; a refraction
contrast; b absorption contrast; c USANS contrast. Reproduced from [31] with permission from
Copyright © 2004 American Institute of Physics

ultrasmall angle X-ray contrast tomography slice images of different concentrations
of β-carotene in D2O inside various holes in a square Al matrix.

6.4.2 Near-Field Grating-Based Neutron Imaging

When a plane wave illuminates a periodic transmission mask, coherent wave prop-
agation in the near-field causes a periodic self-image of the transmission mask. If
the plane wave and the diffraction mask were both infinitely long, these recurrences
would continue indefinitely. This phenomenon, known as the Talbot effect, was first
observed in 1836 by Talbot and is a natural consequence of Fresnel diffraction.
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The Talbot effect is used in neutron grating interferometer imaging, which requires a
phase grating to create a near-fieldTalbot diffraction pattern and an analyser grating to
analyse the interference pattern [2]. Simply put, it is a multi-collimator that converts
local angular deviations into variation in locally transmitted intensity that can be
easily detected with a neutron imaging detector [32].

Typically, an absorbing mask with transmitting slits, also known as a source
grating, is placed near the neutron source (pin-hole) to create an array of line sources,
with each line source meeting the differential phase-contrast image process coher-
ence requirements. The need for the periodic absorption mask arises, as usually, the
neutron sources are highly incoherent, and therefore, there is a need to generate a
coherent source for generating near-field diffraction pattern. The period and distances
are chosen so that at the chosen Talbot distance, the interference patterns due to
different individual beams from the source grating are superimposed constructively.
The relationship between the different relevant parameters can be expressed as: ps
= paD1/D2, where ps is the source grating period and D1 is the distance between
source grating and phase grating, D2 is the distance between phase and analyser
grating, and pa is period of analyser grating. To separate the phase information from
the recordedMoire pattern, a phase stepping approach or Fourier transform approach
can be used. Just like the analyser-based imaging, both the phase gradient and the
attenuation image can be reconstructed using a set of the recorded interferogram.

Similar to the analyser-based imaging, another application of grating-based
imaging setup is to detect dark-field image contrast, through analysis of the decrement
visibility of interference pattern. The visibility is defined as V = (Imax − Imin)/(Imax

+ Imin), where Imax and Imin are the maximum and the minimum intensity of a modu-
lation period across the beam. The loss of visibility can be either due to small-angle
scattering from sub-microscopic structures or when magnetic features affect spin-up
and spin-down components of the neutron [32]. Likewise as in the analyser-based
imaging, one can carry out three-dimension tomographic reconstruction of the real
part of the refractive index using Hilbert filter followed by back projection [2].

The dark-field contrast, which is caused by local convolution of the small-angle
scattering function with the amplitude of the interference pattern, has a logarithmic
dependence on the sample thickness, allowing for tomographic reconstruction similar
to conventional tomography algorithm [33]. This differs from dark-field contrast in
an analyser-based setup, which is quantified as a broadening of the angular intensity
distribution. Although the functionality of grating interferometers is quite similar to
that of analyser-based imaging, the key advantage is that it can accept a significantly
higher neutron wavelength spread and input divergence.

Figure 6.10 shows a tomographic reconstruction of a piece of aluminium with
several drilled holes, displaying the refractive index distribution, dark-field contrast
and three-dimensional rendering of a sediment found in the dark-field tomogram
[33].

Figure 6.11a shows a (110)-oriented iron silicon (FeSi) single-crystal disc using
dark-field neutron imaging technique. The structures in the dark-field image arise
due to strongly degraded neutron wave-front on account of multiple refraction at the
domain walls, leading to enhanced scattering of neutron wave. Figure 6.12b shows
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Fig. 6.10 A tomographic reconstruction of a piece of aluminium with 4 mm drilled holes a the
refractive index distribution (from differential phase contrast data), b dark-field contrast (displaying
image contrast due to sediments) and c a three-dimensional rendering of a sediment found in the
dark-field tomogram. Reproduced from [33] with permission from Copyright © 2008 American
Institute of Physics

(a) (b) 

Fig. 6.11 a Dark-field image of a 1 mm monocrystalline FeSi plate. Reproduced with permission
from [35] Copyright © 2008 American Institute of Physics. b Neutron transmission and dark-field
images of ultra-pure niobium as a function of magnetic field showing the flux line lattice within the
vortex domains and the vortex lattice domain formation [34]

3D neutron dark-field imaging of morphology of vortex lattice domain structure
in the Type-II superconductor (ultra-pure niobium) as a function of magnetic field
[34]. Thus, the neutron phase-contrast imaging provides a powerful non-destructive
method in direct visualization and better understanding the magnetic domains within
the bulk of a magnetic material as first postulated by Weiss.
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(b) (a) 

Fig. 6.12 Neutron radiograph of iron spring within an aluminium matrix a absorption image, b
phase-contrast image

6.4.3 Free-Space Propagation-Based Neutron Imaging

If the analyser crystal in the analyser-based phase-contrast imaging setup is removed
from the beam path, the neutron beam originating from the sample at various angles
will propagate through free space until they reach the detector. A traditional absorp-
tion image can be obtained by placing the detector directly behind the sample.
However, if the detector is moved away from a well collimated coherent neutron
beam, Fresnel or near-field diffraction occurs [36]. To elaborate, the rays that do not
pass by the edges of the object remains undeflected. Those that go through it are
slightly deflected, and become out of phase when compared to the undeflected ones.
The various sets of wavefronts superimpose and interfere at some distance behind
the sample because they originate from a single coherent source. The “image” is
formed due to the superposition of the distorted wavefront with the undistorted inci-
dent wavefront. This superposition gives rise to interference fringes at the edges or
feature boundaries as there is a discontinuity in phase at these edges. These fringes
improve edge visibility (contrast). In practice, the blurring of the image caused by
the divergence of the neutron beam limits the maximum sample-to-detector distance
[37]. Figure 6.12 depicts an iron spring encased in an aluminium matrix. It may
be noted that thermal neutrons have an extremely small absorption cross-section in
aluminium. Even for springs constructed of iron, the absorption image (Fig. 6.12a)
shows very weak contrast. The phase contrast image (Fig. 6.12b) on the other hand,
even for the aluminium matrix, displays substantially improved contrast, and the
structure within the matrix is obvious due to the edge enhancement [38].

The edge-enhancement effect at the edges is illustrated in Figs. 6.13 and 6.14
using a conical piece of lead and iron syringe. Lead is high-Z element but has low
neutron attenuation cross-section and high coherent scattering cross-section. The
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Fig. 6.13 Left Neutron phase radiograph of lead sample with conical hole and Right edge profile
across highlighted area

Fig. 6.14 Left Neutron phase radiograph of iron syringe and Right edge profile across the
highlighted area

profile map across the drilled hole in the lead is shown in Fig. 6.13. In the plotted
profile, the enhancement of intensity across the edges, owing to the phase effects
is obvious. A similar enhancement effect across the edge of the iron syringe is
also clearly visible in Fig. 6.14. These results conclusively demonstrate that this
approach of phase-contrast imaging clearly produces superior images as compared
to conventional neutron radiographs. One of the critical demands of this technique
is that one need to have very coherent beam of neutrons. This demand increases data
collection time as effective coherence property of the neutron source is achieved
using a small aperture (~1 mm). Similarly, high-resolution detectors are needed to
record the increased visibility at the edges or across the discontinuities within the
sample.

The neutron beam must have a high degree of transverse spatial coherence, as
characterized by the cross-correlation between two points in the wave (at all times),
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in order to obtain the phase-induced intensity variation in the image. The coherence
area, whose width is given by the transverse coherence length, characterizes the
extent of spatial coherence (lc = λR

a ). It is dependent on the neutron wavelength
λ, neutron source dimension a and the distance between source and object R. To
improve phase effects in phase-contrast neutron imaging, the following must be
achieved: (a) maximization of the R/a of the system and (b) maximization of the
neutron beam effective wavelength. These goals must be achieved while meeting
the accompanying design restrictions, such as a sufficient neutron flux on the image
plane and an appropriate SNR for neutron radiography.

Like the previous phase-contrasting approaches, computed tomography can be
performed again in order to re-build quantitatively the 3D distribution of the of
the object refractive index. As discussed previously, phase tomography reconstruc-
tion algorithms can be divided into two classes. In the first case, one retrieves the
phase using earlier described approaches and then uses the conventional filtered back
projection (FBP) algorithm to reconstruct the real part of the refractive index. This
is a two-step methodology and the process of phase retrieval and reconstruction are
decoupled with each other. If the projections or the recorded images contain informa-
tion about the second derivative of the some function g(x, y, z), or more specifically,
the Laplacian of the phase shift generated by the object, then the same (line-integral)
can be expressed as:

L(y′, z, θ) =
∞∫

−∞

(
∂2g(x ′, y′, z)

∂2y′ + ∂2g(x ′, y′, z)
∂2z

)
dx ′ (6.12)

Therefore, the tomographical reconstruction utilizing the traditional FBP will not
lead to an appropriate reconstruction of the original object function.Using the Fourier
derivative theorem, a new filter function defined as follows can be derived [39]

F(k(ν)) =
{ |ν|

ν2+ω2 , |ν| ≤ 1/2
y′

0, |ν| ≤ 1/2
y′ (6.13)

where ν and ω are frequency components in two orthogonal direction in the Fourier
space. This one-step approach, although less accurate than the earlier discussed
two-step method, is easy to implement computationally. This algorithm was first
derived byBronikov in the context of X-ray phase-contrast tomography.We illustrate
the same using an example of a carbon tube inside the lead cylinder, as discussed
previously.

Bronikov version of back-projection technique was used for tomographic recon-
struction of the lead (Pb)-containing carbon sinker sample in phase-contrast mode.
We have generated radiography data over 180° in the step of 1°, and it was used as
input to the reconstruction algorithm. Figure 6.15b shows the reconstructed image at
the midplane of Fig. 6.15a, which is nothing but the phase radiograph of the object.
The edge-enhancement effects in the phase-contrast mode help to increase contrast
and makes it possible to image these materials using neutrons. Figure 6.15b brings
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Fig. 6.15 a Phase contrast image of carbon sinker enclosed in lead matrix, b tomographically
reconstructed slice image

out the spatial distribution of the carbon sinker enclosed within lead cylinder. It may
be noted that this technique is able to provide the distribution of coherent scattering
length density without any need of neutron optics.

6.5 Polarized Neutron Imaging

Itmay be recalled that neutrons can interactwith amagnetic field by the virtue of spin,
and hence, are an excellent probe for studyingmagnetic field distributions. Therefore,
the distribution of magnetic fields, and even electric fields within solid samples can
be examined and visualized in three-dimensions, which is not possible with any other
available experimental technique. Over the last decade, a number of experimental
techniques utilising polarized neutron beam have been developed, allowing for the
spatially resolved investigation of magnetic field distribution [40–47]. The most
common methods for polarizing neutrons are as follows:

(i) Total external reflection from polarizing magnetic multi-layer-based super-
mirrors such as Fe/Si-based polarizing supermirror. This technique is most
suitable to obtain the polarized neutron in cold energy region.

(ii) It is preferred to use Bragg reflection by single crystals such as Cu2MnAl
(Heusler crystals), to obtain polarized neutrons in thermal neutrons.

(iii) PolarizedHe-3filters,which rely on the spin-dependent absorption of neutrons
by 3He; anti-parallel spins have a significant absorption cross-section,whereas
all neutrons with parallel spins pass through the filter cell. The benefit of the
filter is that it works well over a wide range of neutron energies.
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It is worth recalling that the neutron’s spin, which is oriented anti-parallel to
its magnetic moment, will experience Larmor precession around the field, as it
transverses region of magnetic field of intensity B. Polarized neutron imaging is
based on measuring the precession angles of a spins of polarized monochromatic
neutron beam that is transmitted through a magnetic field in combination of neutron
imaging detector. The use of an area detector allows for themeasurement of a spatially
resolved magnetic field distribution. When working with a beam of neutrons, which
is an ensemble of many neutrons, it is more convenient to deal with the polarization
vector rather than individual spins. Precession of the polarization vector can thus be
used instead of neutron spin (S). The polarization vector (P) may be thought of as the
normalized average spin orientation of the whole beam and defined as expectation
values of the Pauli spin matrices (σ ) as P = 〈σ 〉 = 2

�
〈S〉.

That precession of the polarization vector as the neutron transverse through a
region of stationarymagnetic field (B) can be described byBloch-equation as follows:

d 
P
dt

= γn[ 
P(t) × 
B(t)] (6.14)

whereγ n is neutron’s gyromagnetic ratio.As the polarization vector precesses around
the magnetic field B(t), its instantaneous angular velocity of the precession is given
by:

ω(t) = γn

∣∣∣ 
B(t)
∣∣∣ sin θ (6.15)

where the angle θ is the angle between the vectors P(t) and B(t) and is independent of
orientation of the magnetic field vector. It is important to note that if there are magnet
field components perpendicular to the original polarization direction, neutron spins
will fluctuate between the two spin-states, and consequently, the polarization vector
will oscillate as well. The following formula may be used to calculate the rotation
angle of the polarization vector around the magnetic field B(t):

dφ = ω(t)dt (6.16)

Substituting the neutron path variable ds (dt = ds/v) for the time variable dt, one
can obtain following relation:

dφ(s) = ω
ds

v
=

(
λm

h

)
ωds = γn

λm

h

∣∣∣ 
B(s)
∣∣∣ sin θds (6.17)

where v and λ are the neutron velocity and wavelength, respectively,m is the mass of
neutron, h is the Planck constant and ds is a short section of neutron path. Therefore,
total angle of spin precession around the vectorB can be easily obtained by integrating
Eq. (6.17) across the neutron path:
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φ =
∫

γn
λm

h

∣∣∣ 
B(s)
∣∣∣ sin θds (6.18)

The spin precession is dependent on the magnitude and direction of the magnetic
field, as well as the neutron wavelength, as can be seen from the preceding equa-
tion. As a result, a monochromatic neutron beam with a longer wavelength (cold
neutrons) is preferred to precisely investigate the magnetic field. It is worth noting
that the precession angle can be linked to the integrated field along the neutrons
path through the magnetic field, provided monochromatic neutron beam is used for
carrying out the experiments. However, it is also possible to utilize polychromatic
neutron beam, if the energy of neutron can bemeasured, and therefore, its wavelength
distribution is known or can be precisely measured. Multiple observations with all
conceivable combinations of neutron beam polarization vectors and in combination
with polarization analyser are required for a complete three-dimensional reconstruc-
tion of the magnetic field vector B. A typical experimental arrangement for carrying
out polarized neutron imaging experiments is shown in Fig. 6.16.

As seen from Fig. 6.16, the signal recorded by the two-dimensional neutron
detector placed after the neutron analyser is nothing but a two-dimensional inho-
mogeneous intensity distribution (projection image), and the same can be expressed
as a product of the contrast due to polarization vector rotation, Ip(x, y), and the
traditional attenuation image, Iabs(x, y), as follows:

I (x, y) = Ia(x, y) × Ip(x, y) = Ia(x, y)
1

2
(1 + cosα(x, y)) (6.19)

where

Ia(x, y) = I0(x, y)e
− ∫

μ(x,y,z)dz (6.20)

Fig. 6.16 Experimental setup for polarized neutron imaging. Reproduced from [48] with permis-
sion from © 2009 Elsevier
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where μ(x, y, z) is the sample’s linear attenuation coefficient as a function of spatial
coordinates (x, y, z), I0(x, y) is the incident beam’s intensity, and α is the angle
the analyser maximum direction of transmission and neutron polarization vector. It
should be emphasized that, as can be shown from Eq. (6.19), the measured intensity
is only dictated by the sample attenuation if there are no magnet field components
perpendicular to the initial polarization direction (φ = 0 because no rotational preces-
sion is present for θ = 0). Alternatively, if the magnetic field of the sample can be
turned off (e.g. magnetic field created by a current), the impact of sample attenuation
may be evaluated first and subsequently utilized for normalization and to isolate the
magnetic field component from Eq. (6.19). Another option is to rotate the polarizer
180° and repeat the measurement for two spin components separately. The degree
of beam depolarization can be reconstructed precisely [8] using spin up and down
measurements for both with the sample and without sample, and the attenuation
attributable to the sample can be easily isolated.

The other directions of magnetic field components can be studied by realigning
the spin polarizer and analyser along the other axes. By varying the orientations
of the spin polarizer and analyser, a series of nine measurements may be acquired,
allowing the complete three-dimensional magnetic field distribution to be recon-
structed. Figure 6.17a shows an example of distribution of trapped magnetic field
in a Niobium superconducting radio-frequency cavity, and influence of AC external
magnetic field on flux trapping behaviour by varying their amplitude, frequency and
offset was investigated. The spatially resolved magnetic field distribution within the
cavity shows that in contrast to type-I superconductor, the trapped flux seems to be
homogeneously distributed. Similarly Fig. 6.17b shows three-dimensional distribu-
tion of magnetic field within the type-I superconductor lea at 4.3 K. This shows
that polarized neutron imaging can be used to visualize and quantify an arbitrary
magnetic vector; fields within bulk materials can be visualized and quantified in 3D

(a) (b)

Fig. 6.17 a Nboxid sample (orientation 90°), Boffset = 0 mT … 5 mT (horizontal images) and
increasing AC-frequency f = 0.1, 0.25 and 0.5 Hz (vertical images), blue ~0.5 and red ~0.9 normal-
ized intensity [50]. b Tensorial neutron tomographymeasurement of the three-dimensional distribu-
tion of the y-component of the magnetic vector field inside the bulk of the superconductor at 4.3 K. a
3D visualization of the magnetic flux density, b colour-coded magnetic flux density (y-component)
in the vertical cross section (yz-plane) and cmagnetic flux distribution in selected horizontal planes
as marked by the arrows [49]
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(a) (b) 

Fig. 6.18 a Photograph of the Ramsey apparatus. Reproduced from [51] with permission from
Copyright © 2009 Elsevier. b A radiography image of 9 mm-long cylindrical ferromagnetic rod
obtained using Ramsey technique showing magnetic field lines and corresponding phase shifts.
Reproduced from [52] with permission from Copyright © 2009 American Physical Society

using a set of nine spin-polarized neutron imaging measurements and using novel
tensorial multiplicative algebraic reconstruction techniques [49].

Another approach enabling polarized neutron imaging is to use Ramsey’s tech-
nique of separated oscillating fields in conjunction with a neutron imaging detector,
which is comparable to other spin-echo techniques like pulsed nuclear magnetic
resonance or neutron spin-echo (Fig. 6.18). A neutron Ramsey apparatus consists of
a region homogeneous steady magnetic field through use of permanent magnets
or coils, and the spins of the (monoenergetic) polarized neutron beam is non-
adiabatically flipped twice by 90° by a combination of two phase-locked fields
oscillating perpendicularly the direction of steady magnetic field. A spin analyser is
positioned between the neutron imaging detector and the second spin flipper, and by
successively scanning the oscillating field around the Larmor frequency, quantita-
tive distribution of the magnetic fields may be obtained through careful analysis of
obtained Ramsey pattern.

6.6 Neutron Spin-Echo Imaging

As discussed in previous section, one can use different types of neutron optical
elements to introduce modulation in the neutron beam. These structured modula-
tions of the neutron beam intensity in presence and absence of the object helps to
retrieve phase gradients that can be related to the real part of the neutron scattering
length. The basic idea of neutron spin-echo imaging technique is to manipulate the
polarization state of beam, and generate controlled spatial modulation of the neutron
beam intensity by creating Larmor precession phase differences. Such modulations
have been already used in small-angle scattering experiments.

Figure 6.19 shows the fundamental concept of the experimental setup. The setup
is realized by two triangular magnetic field sectors with equal apex angles, in which
the spins of a polarized neutron beam precesses around the external magnetic field.
Magnetic fields within these triangular sectors are of opposing sign and strength,
and these values are modified based on the distances between these devices and the
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Fig. 6.19 Schematic illustration of experimental setup for carrying out neutron spin-echo imaging
[53]

detector. The precession of neutron spin in the first magnetic field is fully compen-
sated by the second magnetic field for those neutrons that arrive at the detector plane
along the optical axis of the triangle magnetic field areas, fulfilling the requirement
of a spin-echo of the precession in each device [47].

The precession of the neutron spin, along a path parallel to the optical axis,
is proportionally to the relative distance from the optical axis. The precession of
neutron spin in the triangular region of magnetic field B, as shown in Fig. 6.19, is
dependent only on the height of the neutron path, say y, and be expressed as follows:

φ = 2λmγn B

h tan θ0
y (6.21)

where θ0 is the inclination of the precession field surfaces to the beam, λ the wave-
length and γ n and m the gyromagnetic ratio and the mass of the neutron and the h is
the Planck constant. For the neutron travelling along another path and arriving at the
same height from the optical axis will likewise have a spin-echo, if L1B1 = L2B2,
where B1 and B2 are the magnetic fields in the precession devices and L1 and L2 are
the distances to the detector. The resultant spin precession is only dependent on the
location of the neutron (y-coordinate) at the detector which can be simply written as

φ = 2λmγn

h tan θ0
(B1 − B2)y (6.22)

This precession results at the lateral modulation in the neutron beam intensity are
recorded at detector with a period:

p = πhλ tan θ0

2mγn(B1 − B2)
(6.23)

The period of the modulation is determined by the wavelength employed, the
magnetic field settings and the field inclination. Figure 6.20 depicts an example of
neutron spin-echo-based imaging. The object consist of two cuvettes kept on top of
each other, while the top cuvette contained a magnetic metal powder of few micron
grain size, and the lower cuvette was filled monodispersed polystyrene nanoparticles
of 136 nm diameter suspended in D2O solution. The pixel-by-pixel analysis of data
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Fig. 6.20 a Sample setup photo with the exposed area highlighted. bAttenuation contrast image of
exposed region. cDark-field SEMSANS image displaying the visibility of the spin-echomodulation
at a certain spin-echo length. Three areas of interest are highlighted in b, c: powder sample (i), empty
beam area (j) and PS dispersion (k) [53]

showed good agreement with the complimentary SESANSmeasurements and theory
curves describing the structural features of 1μm and 136 nm for the metallic powder
and the PS dispersion, respectively [53].

The data was analysed pixel by pixel and found to be in good agreement with
complementary SESANS measurements and generated theoretical curves. The data
could bemodelled and explain properlywith dimensions of 1μmand136nmmetallic
powder, thereby validating the proposed approach.

6.7 Summary

We have outlined various advanced phase neutron imaging techniques, which can be
easily implemented in a conventional neutron imaging facility. The phase-contrast
imaging extends the use of neutrons for new class of materials like metal compos-
ites, metal foams, where the contrast in the attenuation-based imaging is expected
to be quite weak. We believe that the phase-based neutron imaging will be useful in
increasing utilization of neutron imaging for industrial problems. In parallel, neutron
spin-dependent interaction with the matter can be used to map the electric and
magnetic field within the bulk of the materials. Due to high penetration depth of
neutrons in most of the materials, the polarized neutron imaging is uniquely placed.
One can even combine the phase-sensitive interaction with polarized neutrons to
obtain anisotropic distributions in magnetic fields.
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