
Chapter 5
Basic Principles of Neutron Radiography
and Tomography

Tushar Roy

5.1 Introduction

Neutron imaging was first used successfully in 1935, shortly after the discovery of
neutron by James Chadwick. Since then it has developed manifold and is now used
in research for a wide range of applications. With the emergence of digital detectors
with better spatial and temporal resolution, neutron imaging has developed into a
valuable and reliable technique for materials research.

Neutron imaging is a general term used for the process of forming an image on a
detector medium using neutrons as radiation source. More commonly, conventional
neutron radiography uses attenuation in the medium or absorption contrast to form
the image. Neutron imaging, in general, can also be used with other interaction
modalities like refraction, scattering, diffraction, etc.

5.2 Imaging with Radiation

When radiation passes through an object, it interacts with matter and suffers loss
in its intensity. The beam is said to undergo attenuation in the medium. The loss in
intensity is given by the well-known Beer-Lambert law:

I (x) = I0e
−μx (5.1)

where I0 is the incident intensity, I (x) is the transmitted intensity, μ is the linear
attenuation coefficient of the medium and x is the thickness of the medium. Here it is
implicitly assumed that μ is constant. For non-uniform μ, Eq. 5.1 may be expressed
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Fig. 5.1 Schematic configuration for radiography

as

I = I0e
− ∫

μ(x)dx
(5.2)

where the integral is over the path traversed by the radiation.
The Beer-Lambert law forms the basis of imaging with radiation. When the inci-

dent radiation after transmission through an object is captured on a detector/screen,
it forms a two-dimensional image of the three-dimensional object. This is known as
the radiograph of the object (Fig. 5.1).

5.3 Neutron Radiography

The interaction of neutrons [1] with nuclei of target material under investigation is
governed by the cross section (σ ), which is defined as the probability of neutron-
nuclei interaction. The cross section for a given nuclear interaction is also dependent
on other factors, such as the energy of the neutron, the type of interaction, and the
stability of the target nucleus. The intensity of a neutron beam passing through a
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target material of thickness x is expressed as

I (x) = I0e
−�t x = I0e

−Nσt x (5.3)

where I0 is the incident intensity, I is the transmitted intensity and x is the thickness
of the medium. The total macroscopic cross section (�t) is defined as

�t = Nσt = σtρNA/A (5.4)

where N is the atom density of the target material, σ t is the total microscopic cross
section, ρ is the material density, NA is the Avagadro’s number and A is the atomic
weight. Depending on the different reaction channels, the total cross-section (σ t)
defines the overall probability of neutron reaction with the target nucleus, and is
expressed as

σt = σel + σinel + σc + σ f + · · · (5.5)

where σ el is elastic scattering cross section, σ inel is inelastic scattering cross section,
σ c is capture cross section (may be split into individual capture reactions) and σ f is
fission cross section.

Comparing Eqs. 5.1 and 5.3, it may be noticed that the attenuation of neutrons in
themedium is givenby totalmacroscopic cross-section�t which is amore convenient
nomenclature used in case of neutrons, whereas the linear attenuation coefficient μ

is conventionally used for X-ray or gamma interaction. For composite materials,
Eq. 5.3 may be written as

I (x) = I0e
− ∫

�t (x)dx = I0e
− ∫

Nσt (x)dx (5.6)

Equation 5.6 is the governing principle of neutron radiography. The transmitted
neutron intensity is incident on a neutron converter screen (or neutron scintillator)
which generates light photons that can be recorded on a film or digital detector like
CCD.

Thermal Neutron Radiography requires a collimated beam of thermal neutrons
with intensity typically in the range of 106–108 n/cm2 s. The neutron beam interacts
with the sample and is attenuated in the sample depending on their interaction. Light
elements such as hydrogen (H), lithium (Li), and boron (B) and some heavy elements
such as gadolinium (Gd), cadmium (Cd), and dysprosium (Dy) have a very high
attenuation coefficient for thermal neutrons. On the other hand, materials like lead
(Pb), iron (Fe), aluminum (Al), zirconium (Zr) have very low attenuation coefficient
for thermal neutrons. Neutron radiography is therefore useful in imaging objects
containing hydrogen or light elements such as plastic, rubber, polymer even when
shielded by heavy elements like lead.
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5.4 Line Integrals and Projection Image

In the expression for intensity (Eq. 5.2), the integral on the right is a line integral
which represents the integral of the linear attenuation coefficient of the object along
a line. In the context of neutron radiography, the line integral represents the total
attenuation suffered by the incident neutron beam as it travels in a straight line
through the object.

In Fig. 5.2, the object is represented by the function f (x, y). In the co-ordinate
system shown in figure,

s = x cos θ + y sin θ

t = −x sin θ + y cos θ
(5.7)

We define the line integral as

Pθ (s) =
∫

(s,θ)line

f (x, y)dt (5.8)

where the line (s, θ ) is the line along which the integral is evaluated (or the path of
the neutron beam through the object) and is given by the equation

s = x cos θ + y sin θ (5.9)

Fig. 5.2 Projection data in
parallel beam geometry
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Using a delta function, Eq. 5.8 can be re-written as

Pθ (s) =
∞∫

−∞

∞∫

−∞
f (x, y)δ (x cos θ + y sin θ − s)dxdy (5.10)

The set of line integrals Pθ (s) are combined to form a projection. The simplest
form of projection is a collection of parallel ray integrals as given by Pθ (s) for a
constant θ and is known as parallel projection. The projections can be formed for
various angles θ by rotating either the object or the source-detector pair. In the case
of neutrons, the source cannot be moved; hence the object (or sample) is rotated.
The complete set of projections at various angles is used to deduce cross-sectional
information of the object and this technique is known as tomography.

5.5 Principles of Neutron Computed Tomography

Tomography is derived from the Greek word ‘tomos’ (which means slice or section)
and ‘graphia’ (which means to draw). Computed Tomography (CT) [2–4] technique
is used to obtain cross-sectional information/images of objects. A conventional radio-
graph is a projection image of the density and thickness variation of the sample.
The information along the path of the incident beam is integrated/superimposed
in the radiographed and cannot be discerned as such. However, a combination of
multiple projection images (radiographs) acquired at various angles can be used to
extract features from the complete volume of the object. This technique is known
as Computed Tomography. The cross-sectional information is extracted mathemati-
cally using various reconstruction methods. The mathematical basis for tomographic
imaging was first explained by Radon [5].

Figure 5.3 shows the schematic of data acquisition for transmission tomography.
A neutron beam is incident on the sample. The transmitted intensity (radiograph)
is recorded by the detector. The sample is rotated using a sample manipulator and
the projections (or radiographs) are recorded by the detector for different angles.
The set of projections are then used to reconstruct the complete three-dimensional
volume of the object on a three-dimensional grid which is discretized into unit cells
known as ‘voxels’ (short for volume pixels). The reconstructed volume represents
the attenuation map of the object.

5.5.1 The Radon Transform

The Radon transform [5] was defined by Johann Radon in 1917. Let R2 denote the
2D Euclidean space (Fig. 5.4) with a point representation x = (x, y) in Cartesian
co-ordinate.
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Fig. 5.3 Schematic configuration for transmission tomography

Fig. 5.4 Co-ordinate system
for parallel beam projection

In the rotated co-ordinate system (s, t) with axes parallel to vectors θ̂ (θ) and
θ̂⊥(θ), we have

(
s
t

)

=
(

cos θ sin θ

− sin θ cos θ

)(
x
y

)

(5.11)

and

(
x
y

)

=
(
cos θ − sin θ

sin θ cos θ

)(
s
t

)

(5.12)
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A function f (x, y) in R
2 is denoted by f (s, t) =

f (x cos θ + y sin θ,−x sin θ + y cos θ) in the rotated co-ordinate system (s, t), that
is the rotation of (x, y) by an angle θ in the counter-clockwise direction.

The integrals of a 2D function f (s, t) along all possible lines is called the (two-
dimensional) Radon Transform of f (s, t)

g(s, θ) =
∞∫

−∞
f (s, t)dt (5.13)

5.5.2 The Fourier Slice Theorem

An important property of the Radon transform is its close correspondence with the
Fourier transform.

The Fourier Slice Theorem (also called Central Slice Theorem) [6] states: “The
one-dimensional Fourier transform of a projection of a function f (x, y), i.e. the
Fourier transformofdata along a line through theorigin in theRadon spaceof f (x, y),
is same as the data along the same line through the two-dimensional Fourier transform
F(u, v) of f (x, y)”. The principle of Fourier Slice theorem is schematically shown
in Fig. 5.5.

The Fourier transform of g(s, θ) is given by

Fig. 5.5 Schematic representation of Fourier Slice theorem
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G(R, θ) =
∞∫

−∞
g(s, θ)e−i2πRsds (5.14)

Using Eq. 5.12, this becomes

G(R, θ) =
∞∫

−∞

⎧
⎨

⎩

∞∫

−∞

∞∫

−∞
f (x, y)δ(x cos θ + y sin θ − s)dxdy

⎫
⎬

⎭
e−i2πRsds (5.15)

Changing the order of integration, we get

G(R, θ) =
∞∫

−∞

∞∫

−∞
f (x, y)

⎧
⎨

⎩

∞∫

−∞
δ(x cos θ + y sin θ − s)e−i2πRsds

⎫
⎬

⎭
dxdy (5.16)

The inner integral in Eq. 5.16 contributes under the condition stated in Eq. 5.11.
Thus we have

G(R, θ) =
∞∫

−∞

∞∫

−∞
f (x, y)e−i2π(x cos θ+y sin θ)Rdxdy (5.17)

Substituting

u = R cos θ

v = R sin θ

Equation 5.17 becomes

G(R, θ) =
∞∫

−∞

∞∫

−∞
f (x, y)e−i2π(xu+yv)dxdy = F(u, v) (5.18)

Thus it is shown that the 1D Fourier TransformG(R, θ) of projection data g(s, θ)

is indeed equal to the two-dimensional Fourier transform F(u, v) of f (x, y). This
is the Fourier Slice Theorem.

We can rewrite Eq. 5.18 as

G(R, θ) = F(R cos θ, R sin θ) (5.19)
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5.5.3 Direct Fourier Method

Once F(u, v) is obtained from the Fourier Transform G(R, θ) of the projection data
g(s, θ) using Fourier Slice Theorem, the function f (x, y) may be calculated using
the Inverse Fourier Transform on F(u, v). This is the Direct Fourier reconstruction.

However, there is a catch. The standard Inverse Fourier Transform requires data
on a rectangular grid whereas Fourier slice Theorem gives data on a polar grid. For
a practical implementation, a complicated frequency space interpolation is required
[7, 8].

5.5.4 Backprojection

Let us suppose that the projection data is g(s, θ ). The backprojection operator Bmay
be defined as

[B f ](x, y) =
π/2∫

−π/2

g(s, θ)dθ (5.20)

Qualitatively, the backprojection step is akin to “smearing out” the line integral
data (projection data) along the same lines in the reconstructed object that produced
the line integrals in the original object and adding the data for all the projected rays.
However, the quality of the reconstructed image generated depends on the number
of projections used. Figure 5.6 shows the effect of number of projections on the final
reconstructed image. This is illustrated using a Shepp-Logan phantom [9]. Increasing
the number of projections enhances the image contrast and reduces the streaks due
to backprojection.

5.5.5 Filtered Backprojection Method

If the reconstruction process consists of backprojection only, the net effect is low-pass
filtering which is manifested easily when we have a point object. To compensate for
the loss in information related to sharp features on account of low-pass filtering, it is
essential to filter the projection data with a high-pass filter before the backprojection
step (Fig. 5.7). This forms the basis of filtered backprojection (FBP) scheme. FBP is
the most widely used technique for 2D tomography reconstruction.

Mathematically, the high-pass filter is nothing but a ramp filter in the Fourier
domain. The filtered backprojection algorithm may be derived as follows. Using
inverse Fourier transform on Eq. 5.18, the object function f (x, y) can be expressed
as
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Fig. 5.6 Effect of number of projections on the backprojected image (Illustration uses a Shepp-
Logan phantom)

Fig. 5.7 Schematic representation of a Direct Fourier Transform. b Filtered backprojection

f (x, y) =
∞∫

−∞

∞∫

−∞
F(u, v)ei2π(ux+yv)dudv (5.21)

By substituting

u = R cos θ

v = R sin θ
(5.22)

Equation 5.21 becomes
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f (x, y) =
2π∫

0

∞∫

0

Gθ (R, θ)ei2πR(x cos θ+y sin θ)RdRdθ (5.23)

where Gθ (·) is the Fourier function in polar co-ordinates. We can re-write Eq. 5.23
as

f (x, y) =
π∫

0

∞∫

0

Gθ (R, θ)ei2πR(x cos θ+y sin θ)RdRdθ

+
π∫

0

∞∫

0

Gθ (R, θ + π)ei2πR(x cos(θ+π)+y sin(θ+π0)RdRdθ (5.24)

Using the fact that Fourier function Gθ (·) is periodic with period 2π

Gθ (R, θ + π) = Gθ (−R, θ) (5.25)

Using the interval 0 ≤ θ < π for −∞ < R < ∞, Eq. 5.24 may be written as

f (x, y) =
π∫

0

⎡

⎣
∞∫

−∞
Gθ (R, θ)|R|ei2πR(x cos θ+y sin θ)dR

⎤

⎦dθ (5.26)

Using the Fourier slice theorem, the 2D Fourier transform Fθ (R, θ) is equal to
the 1D Fourier transform of the projection at angle θ , we get

f (x, y) =
π∫

0

⎡

⎣
∞∫

−∞
Gθ (R, θ)|R|ei2πR(x cos θ+y sin θ)dR

⎤

⎦dθ

=
π∫

0

⎡

⎣
∞∫

−∞

⎡

⎣
∞∫

−∞
g(s, θ)e−i2πRsds

⎤

⎦|R|ei2π(x cos θ+y sin θ)dR

⎤

⎦dθ (5.27)

Equation 5.27 describes the complete filtered backprojection scheme. The projec-
tion data g(s, θ) are Fourier transformed

(∫ ∞
−∞ g(s, θ)e−i2πRsds

)
, filtered with a

ramp filter |R|, inversely Fourier transformed
(∫ ∞

−∞ [. . .] . . . ei2πR(x cos θ+y sin θ)dR
)

and finally backprojected
(∫ π

0 [. . .]dθ
)
.
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5.6 Algebraic Reconstruction Techniques

In the algebraic reconstruction technique, the projections are expressed as a set of
linear equations. The construction of the attenuation distribution is then obtained by
calculating the least squares (LS) solution for the set of equations. The algebraic
reconstruction techniques, such as ART, SART, and SIRT are methods for solving
the LS problem using different types of iterations.

5.6.1 Image Representation

CT imaging can be described by the following equation:

g = A f (5.30)

where g = (g1, g2, . . . , gM)T is the observable (measured) data, i.e. projections,
f = ( f1, f2, . . . , fN )T is unknown linear attenuation distribution in the object,
and A is a M × N system matrix. Projections are 2D images of 3D objects which
are not used directly for analysis. Reconstruction is a procedure used to transform
projections to a meaningful 3D distribution of attenuation in the object, and then the
reconstructed images are used for analysis. From the mathematical point of view,
reconstruction is an inverse problem: the aim is to find unknown f using known g by
solving the Eq. (5.30). Therefore, most theories of inverse problems can be applied
in the field of tomographic reconstruction.

In an algebraic approach toCT problem, it is assumed that the reconstructed object
consists of a matrix of unknowns, and the projection data are modeled by a set of
linear equations. The solution of the reconstruction problem is then obtained by the
Least Square solution for the set of equations.

5.6.2 Observation Model

Let us consider the vector of linear attenuation coefficients in the pixels f =
( f1, f2, . . . , fN )T ∈ R

N×1. The projection data g = (g1, g2, . . . , gM)T ∈ R
MX1

can be expressed as a set of linear equations.

g1 = a11 f1 + a12 f2 + · · · + a1N fN
g2 = a21 f1 + a22 f2 + · · · + a2N fN
...

gM = aM1 f1 + aM2 f2 + · · · + aMN fN

(5.31)
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where εi is the additive noise. In matrix notation, Eq. 5.31 can be written as

⎛

⎜
⎜
⎜
⎜
⎜
⎝

g1
g2
.

.

gM

⎞

⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

a11 a12 . . a1N
a21 a22 . . a2N
. . . . .

. . . . .

aM1 aM2 . . aMN

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎝

f1
f2
.

.

fN

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(5.32)

or

g = A f (5.33)

For a 2D slice, N = n2p is the total number of pixels andM = np ·nϕ is the number
of detectors, np is the number of pixels in one row of the planar image and nϕ is
the number of acquisition angles. The matrix A ∈ R

M×N is called the observation
matrix or the probability system matrix. The matrix element ai j is the path traveled
by the neutron in the i th pixel when the neutron is detected by the j th projection bin.

If the matrix A is modeled correctly it includes all the physical features of the
detecting system. Forming projection bins as a linear combination of attenuation
coefficients is clearly a discrete version of integrating attenuation coefficients over
some path length as presented in Eq. 5.31.

5.6.3 The Linear Least Square Estimation

Equation 5.33 can be solved using linear least square (LS) estimation. Our aim is to
solve the estimate f̂LS satisfying the condition

f̂LS = argmin‖g − A f ‖ (5.34)

Knowing the projection data g and constructing the probability system matrix A,
our task is to solve the LS problem denoted by Eq. 5.34. The observation model is
mostly under-deterministic, that is, N > M . In such a case, the LS problem has no
unique solution and some of the solutions must be chosen based on constraints. Most
commonly, the minimum norm solution is used. Furthermore, the inverse problem
of CT is usually ill-posed and some regularization may be needed in solving the LS
problem. In addition, the matrix A is usually very large and the LS solution must be
computed iteratively.
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5.6.4 Implementation of ART

To implement the algorithm for computation, an initial guess of the solution is
required. This guess, denoted by f (0)

1 , f (0)
2 , f (0)

3 , . . . , f (0)
N ,may be assigned a value of

zero or an average value of the projection sum to all the initial fi ’s. The reconstruction
process may be expressed mathematically as follows:

f (k)
j = f (k−1)

j + gi − ∑N
j ′=1 f (k−1)

j ′ ai j ′
∑N

j ′=1 a
2
i j ′

ai j (5.35)

In Eq. 5.35, gi is themeasured ray-sum along the i th ray. The term
∑N

j=1 f (k−1)
j ai j

may be considered to be the computed ray-sum for the same ray based on the (k −
1)th iteration. The correction 
gi to the j th cell is obtained by first calculating the
difference between the measured ray-sum and the computed ray-sum, normalizing
this difference by

∑N
j=1 a

2
i j and then assigning this value to all the image cells in the

i th ray, each assignment being weighted by the corresponding ai j .
There are different variants of ART. These algorithms differ in the manner in

which corrections are applied and are presented here in brief.

5.6.5 Additive ART

The additive ART or simple ART algorithm was originally proposed by Gordon
[10] for CT reconstruction. In this method, corrections are applied to all the voxels
through which the i th ray passes, before calculating the correction for the next ray.
The correction applied to j th cell of the object grid for i th ray is computed as [4,
11–13]

f̂ (k)
j = f̂ (k−1)

j + λ
ai j
gi

αi
(5.36)

where 
gi = gi − ĝi , αi = ∑N
j=1 a

2
i j and λ is a relaxation parameter and λ < 1.

ART reconstruction usually tend to be noisy due to approximations introduced
in the evaluation of ai j ’s. The reconstruction thus results in poor approximations of
corresponding ray-sums. The effect of noise can be reduced by using the relaxation
parameter λ.
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5.6.6 Simultaneous Iterative Reconstruction Technique
(SIRT)

In simultaneous iterative reconstruction technique (SIRT), the elements of the
unknown function f j for a particular cell are modified after all the correction values
corresponding to individual rays have been calculated. The correction applied to j th
cell of the object grid is computed as

f̂ (k)
j = f̂ (k−1)

j +
Nc j∑

i=1

λ
ai j
gi

αi
(5.37)

The algorithm is similar to additive ART but the correction 
gi = gi − ĝi is
applied for all the i th rays before moving on to the next cell. This usually results in
smoother reconstructions at the expense of slower convergence rates.

5.6.7 Simultaneous ART (SART)

The SARTmethodwas invented byAnderson andKak [2, 14]. It connects advantages
of ART and SIRT algorithms. It was found to be very efficient, accurate and superior
in implementation [2, 11, 12, 14]. It yields good quality reconstruction with single
iteration.

For each projection angle θ , the correction is applied to the j th cell sequentially
for all i th rays as follows:

f̂ (k)
j = f̂ (k−1)

j + λ
aiθ j

(
giθ − ĝiθ

)

∑N
j=1 a

2
iθ j

(5.38)

One iteration is completed when all i th rays have been used exactly once. Since
SART updates the values of cells in the image for each projection angle, it is well
suited for GPU-based corrections. However, SART is slightly slower than ART in
terms of computational time, due to the voxel-based pooling of correction terms.

5.7 Energy-Resolved Neutron Imaging

Energy resolved neutron imaging techniques comprise of experiments where specific
energy is selected (using double crystalmonochromator [15] or time-of-flightmethod
[16] or mechanical velocity chopper [17]) to form an image corresponding to a single
energy. In this way, neutron images can be formed single energies over the entire
neutron spectrum, and we can obtain an image stack of energy-resolved images for
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Fig. 5.8 Schematic of energy-resolved neutron imaging experimental setup at Bilby beamline,
Australian centre for neutron scattering (reproduced from [18]with permission fromAIPpublishing)

the same object. Figure 5.8 shows the schematic of an energy-resolved experimental
setup at Bilby beamline, Australian Centre for Neutron Scattering [18].

The selection of energy in a continuous neutron spectrum source (such as reactor
source) can be implemented using a monochromator or velocity chopper system.
However, this is achieved at the cost of reduced neutron intensity as a small fraction
of the available neutrons are only utilized to achieve high wavelength resolution for
a relevant bandwidth. The use of pulsed neutron sources (like spallation sources) can
offer high spectral resolutions with large wavelength ranges without any additional
penalty on neutron intensity.

One of the most popular energy-resolved technique is the neutron Bragg edge
imaging [19, 20]. Neutron Bragg edge imaging enables spatially resolved studies
of crystalline structures by exploiting the Bragg edges in the transmission spectra
recorded in each pixel of an imaging detector. Bragg edges in the transmission spec-
trum are the signature of Bragg scattering from polycrystalline materials. For a given
crystal lattice family hkl, with lattice spacing dhkl, the scattering angle increases
with the wavelength (λ) upto λ = 2dhkl sin(π/2). Beyond this wavelength, the
Bragg condition cannot be satisfied any longer, which results in a sharp drop of
the attenuation of the material, called the Bragg edge.

Figure 5.9 shows the total cross-section for different polycrystalline materials
and the associated Bragg edges. Thus, the analysis of the Bragg edges allows for the
characterization of crystalline features of materials such as lattice strains or phase
fractions. The Bragg cut-offs for many crystal materials are in this energy range
that allows radiography contrast variations by applying energy-selective imaging
techniques.
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Fig. 5.9 Total cross-section and the associated Bragg edges for different polycrystalline materials

5.8 Summary

Neutron radiography and neutron tomography and its related neutron imaging tech-
niques have established themselves as invaluable non-destructive inspectionmethods
and quantitative measurement tools. The focus of this chapter has been to understand
the mathematics of neutron image formation and methods for volumetric measure-
ments using computed tomography and related reconstruction methods. The focus
has been primarily related to the estimation of macroscopic material interaction
cross-sections which is the goal of image analysis. A discussion of volumetric recon-
struction techniques using analytic or iterative computed tomography algorithms has
been done.
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