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Abstract The target tracking using the passive multi-static radar system produces
various detections via distinct signal propagation paths. Trackers solve the uncer-
tainties that arise from the measurement path as well as the measurement origin.
The existing multi-target tracking algorithms suffer from high computational loads,
because they require the entire probable joint measurement-to-track assignments.
This paper proposes to develop a comparative analysis on diverse heuristic algo-
rithms for implementing the optimized JDPA model for tracking multiple targets
using multi-static passive radar system in the presence of clutter. Here, the nature-
inspired algorithms like Particle Swarm Optimization (PSO) and Grey Wolf Opti-
mization (GWO) are used for analyzing the optimized JDPA model for tracking
multiple targets in multi-static passive scenario. This paper further, aims to tune the
position and velocity of the tracker towards the target using two heuristic algorithms,
and intends to analyze the effect of those algorithms on improving the performance
of multiple target tracking. The key objective of the proposed model is to minimize
the Mean Absolute Error (MAE) between the estimated trajectory of the track and
the true target state.

Keywords Mean absolute error · Joint probabilistic data association · Multi-target
tracking · Grey wolf optimization · Particle swarm optimization

1 Introduction

The target tracking in the existence of cluttered measurements is a challenging
problem due to measurement origin uncertainty. This problem gets further complex
for multi-static passive scenario. Generally, there is a need to handle two problems
[1]. The initial problem is the data association and the next problem is the False
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Track Discrimination (FTD). The track component count of Joint Integrated Track
Splitting (JITS), Integrated Track Splitting (ITS), andMultiple Hypotheses Tracking
(MHT) increase in a sequential time, and the probabilistic data association (PDA) [2]
is adopted to merge the tracked components into a single trajectory estimate having a
Gaussian probability density function. Joint probabilistic data association (JPDA) [3]
is employed for trackingmultiple targets in the case of cluttered environments having
known target counts. The JIPDA and JITS are the multitarget trackers that employ
the optimal multiple target data association scheme of estimating and enumerating
the entire possible joint measurement for tracking the associations [4]. Authors in
[5], proposed two new composite methods for data association based on soft and
evolutionary computing for tracking different targets in the existence of electronic
countermeasures (ECM), clutter, and false alarms. In the presence of jamming, [6]
proposed a novel clustering-based data association technique for tracking multiple
targets.

Multiple target tracking (MTT) is a significant task in sonar, radar, and various
surveillance systems. Generally, the measurements reported by the surveillance
systems from the unintended sources are called as clutter. In recent years, passive
radar gained significant interest in military and civilian applications [5]. The tradi-
tional transmitters (FM, DVB, etc.) are exploited by the passive radar in the form
of opportunity illuminators. Hence, the additional hardware requirement and the
frequency allocation are eliminated. So, in the passive radar, the target detection is
continuous, covert, and inexpensive [7]. When multiple transmitters are exploited in
a simultaneous manner, passive multi-static radar (PMSTR) is obtained. Here, the
trajectory, as well as the location of a potential target, is defined by merging the
measurements from various transmitter–receiver pairs having sharable coverage. As
a result, the PMSTR provides noteworthy advantages [8].

Still, majority of the researches are dependent on the existing resampling mecha-
nism and the weight degeneration problem is not handled in a fundamental manner.
The detailed study of swarm intelligence optimization algorithm along with the
particle filter is a novel technique for enhancing the performance of the Particle
Filter (PF) [9, 10]. Few algorithms merge the PF with the generalized interactive
genetic algorithm that may easily fall into premature convergence and leads to
inaccurate filtering process. Therefore, there is a strong need to develop alternative
heuristic-based data association techniques for PMSR scenarios.

The major contribution related to this paper is shown below:

• To implement the optimized JPDA model based on particle swarm optimization
and grey wolf optimization for the tracking of multiple targets using passive radar
with consideration of the constraints such as the position and the velocity.

• To minimize the MAE among the true target state and the estimated trajectory of
track by tuning the position as well as the velocity.

• Toperform the comparative analysis using diverse heuristic-based algorithms such
as GWO, and PSO on JPDA for the multi-target tracking for PSMR scenario.
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The organization of the paper is shown below: Sect. 2 describes a general JPDA-
based target tracking algorithm for tracking multiple targets. Section 3 presents opti-
mized JPDA based on diverse heuristic algorithms for tracking multiple targets.
Section 4 highlights the simulation setup, plots, and briefs the results. Finally, Sect. 5
gives the conclusion remarks for the paper.

2 Optimized Joint Probabilistic Data Association Tracker
for Multitarget Radar Tracking

2.1 JPDA-Based Tracking

Generally optimized JPDA algorithm is applied for multiple target tracking. In the
initial step, the measurement model and motion models are defined. Thereafter, the
multiple targets tracking algorithm is denoted. The trackmanagement is performed in
three steps: initialization of the track initiation, updation of the track, and termination
of the track. The track update is accomplished by the data association, which asso-
ciates the measurements as whether these are target-originated or clutter-originated
measurements to the existing tracks by means of the track filtering step [11].

TrackMotion andMeasurementModels: The vector denoting target state XCkc at
frame kc is defined into the Cartesian domain by including the target size as displayed
in Eq. (1).

XCkc
�= [

xcτ, pc
kc , ycτ, pc

kc , xcτ, vc
kc , ycτ, vc

kc , lckc, wckc
]TC

(1)

In the above equation, the length and width of the target is defined by lckc and
wckc, and the velocity and the position components are defined by xcτ,vc

kc ,ycτ,vc
kc and

xcτ,pc
kc , ycτ,pc

kc in the region of the xc− and yc− directions, respectively. The target
dynamic is described by the nearly constant velocity model as shown in Eq. (2).

XCkc = FCXCkc−1 + �wckc (2)

The term FC is denoted in Eq. (3).

FC =
[
IC2 ⊗ FC̃ 04× 2

02× 4 IC2

]
(3)

This equation denotes the state transition model, which is applied to the previous
state XCkc−1 as displayed in Eqs. (4) and (5).

� =
[
IC2 ⊗ �̃ 04× 2

02× 2 IC2

]
(4)
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FC̃ =
[
1 TCsc

0 1

]
(5)

In the above equation, the term TCsc denotes the sampling time, ⊗ denotes the
Kronecker product, ICdc denotes the unit matrix with dimension dc, 0r×c denotes
the zero matrix with r rows and c columns, wckc denotes the process noise, which
is forecasted to be drawn from a zero mean multivariate normal distribution with
covariance QC , such that wckc ≈ ℵ(04×1, QC) and �̃ = [

TC2
sc

/
2, TCsc

]TC
as

portrayed in Eq. (6).

QC = diag
(
σ 2
pc, σ

2
vc, σ

2
lc, σ

2
wc

)
(6)

Here, the terms σ 2
wc, σ 2

lc, and σ 2
vc define the variances for the width, length, and

acceleration, and diag(•) defines the diagonalmatrix. Themeasurement vector ZCkc

at frame kc is shown in Eq. (7).

ZCkc
�=[

zcrckc, zc
ϕ

kc, zc
lc
kc, zc

wc
kc , zcθ

kc

]
(7)

In the above equation, the terms zcwckc and ztlckc define the length of the minor
and major axes, zcϕ

kc and zcrckc defines the azimuth and the range measurements of
the ellipse center, which best fits the cluster, and zcθ

kc defines the orientation of the
ellipse. The measurements originated from the target are shown in Eq. (8).

ZCkc = hc(XCkc) + ωkc (8)

Equation (9) defines the term hc(XCkc).

hc(XCkc)
�=

[√
xc2kc + yc2kc, arctan

(
yckc

/
xckc

)
, lckc,wckc, arctan

(
ycτ,vc

kc

/
xcτ,vc

kc

)]TC (9)

The above equation denotes the measurement function and the instrumental noise
vector is defined by ωkc, which is presumed to be the Gaussian with zero mean as
well as the covariance matrix as displayed in Eq. (10).

RC = diag
(
σ 2
rcrc, σ

2
rcϕ, σ 2

rclc, σ
2
rcwc, σ

2
rcθ

)
(10)

Here, the terms σ 2
rcwc and σ 2

rclc define the variances for the two sizes, σ
2
rcθ defines

the variation for the orientation of the ellipse, and σ 2
rcϕ , σ

2
rcrc defines the variances in

azimuth and range, respectively. The ETT takes the target orientation as logical with

consideration to the motion orientation such as θkc = arctan
( •
yckc

/ •
xckc

)
.



Comparative Analysis on Diverse Heuristic-Based Joint … 263

A random group of false or noisy clutter measurements is received by the sensor
in every scan [12]. The noisy measurement count present in the surveillance space is
designed using aPoisson distributionwith known intensity called the cluttermeasure-
ment density. The clutter measurement density having measurement ZTkt,i t is repre-
sented with the help of the shortcut ρ

(
ZTkt,i t

)
. The amount of the surveillance space

at time kt is denoted by VTkt , and hence the probability that the clutter measurement
count that equals mt in VTkt at time kt tends to follow the Poisson distribution as in
Eq. (11).

utFT (mt) = e
− ∫

V Tkt

ρkt,i t dV T

⎛

⎝
∫

V Tkt

ρkt,i t dV T

⎞

⎠
mt

mt !
(11)

In the above equation, the cluttermeasurement density is denotedbyρkt,i t = PTf ar

V Tsrc
,

where VTsrc and PTf ar represents the sensor resolution cell volume and probability
of false alarm.Theprobability of false alarmpersistentlymakes an effect on the clutter
measurement count, meaning that when the probability of false alarm PTf ar rises,
the disorder measurement density ρkt,i t also rises, and the mean clutter measurement
count present in the surveillance space VTkt rises, thereby generating an enhanced
clutter measurement count at every time kt . In the case of target tracking, the clutter
measurement density describes either a priori known or an estimated priori in an
adaptive manner on the basis of the current measurements.

Multiple Target Tracking Procedure: The tracking process works on the basis
of the JPDA, where a Bayesian technique associates the checked measure-
ments to the tracks by means of the probabilistic weights [13]. The manage-
ment of the track follows the M

/
N logic. The filtering stage is performed

by the unscented KF. The predicted or updated target state having its covari-

ance at frame kc is defined by XC jc
kc/kc

(
XC jc

kc/kc−1

)
and PC jc

kc/kc

(
PC jc

kc/kc−1

)
.

At frame kc, a cluster of JCkc active or preliminary tracks are described as
Tkc = {

T1(kc), . . . , T jc(kc), . . . , TJCkc(kc)
}
, where T jc(kc) assumes the jcth

track. A validation gate region ζ
jc
kc for each jc ∈ [1, · · · , JCkc] is formed. The

target-originated measurements denote the Gaussian that is spread on the outer of
a predicted measurement ZC jc

kc/kc−1 of the target jc, and then the gate is defined as
displayed in Eq. (11).

ζ
jc
kc =

{
ZC :

(
ZC − ZC jc

kc/kc−1

)TC(
SC jc

kc

)−1(
ZC − ZC jc

kc/kc−1

)
< γ

}
(12)

In the above equation, the threshold γ represents the gating probability PCGC ,
and the innovation covariance that is the difference between the prediction and its
measurement is defined by SC jc

kc . The gating probability defines the probability, in
which a measurement evolved by target jc is checked in an accurate manner.
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2.2 Tracking Steps

The developed multiple target tracking system employs the optimized JPDA algo-
rithm for handling the data association problem in the path of the targets of objects
in an effective manner [14]. The different steps in the track management are shown
in Fig. 1.

Initiation of Track: The association of measurement to T jc(kc) if it lies in the gated
region. The unassociatedmeasurement is termed as the initiator and a temporary track
is generated. After detecting the initiator, the gate set up is started. If the detection
lies in the gate region, then the track is called a preliminary track; elseways, it is
referred to as dropped. The initialization of JPDA is done to set up the gate for the
next frame. Beginning with the third scan, the logic of M detections out of N scans is
utilized for the gates that follow. Finally, for the scan number N + 2, if the necessity
of logic is completed, then the track is called as a confirmed or active track; elseways,
it is called as a discarded track.

Termination of the Track: The track terminates when the following conditions are
checked: no detection was validated in the previous N∗ sampling times; the track
uncertainty reached the threshold, and the output represents an impossible maximum
velocity vcmax.

Updation of theTrack: All the tracks update the target state via the JPDAapplication
rule. The updation of the state of the target is based on the measurement-to-track
JPDA association rule and the prediction of the state of the target is considered from
the motion model.

Input Object 

detection

JPDA Tracker

Track initiate

Track termination

Track update

Tracker towards 

multiple targets

Fig. 1 Multi-target tracking model on the basis of the optimized JPDA algorithm
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3 Contribution of Diverse Heuristic Algorithms for Target
Tracking

3.1 Tracker Update and Objective

The position and the velocity of the object target are considered as xcτ,pc
kc(u), yt

τ,pc
kc(u) and

xcτ,vc
kc(u), yc

τ,vc
kc(u), in which u = 1, 2, . . . , NV , and NV denotes the total considered

target count. Here, the tracker points with position as well as velocity are considered
as xcτ,pc

tr−kc(u), ycτ,pc
tr−kc(u), and xc

τ,vc
tr−kc(u), ycτ,vc

tr−kc(u), respectively. The position as well
as the velocity of the tracker are updated by the heuristic algorithms in the path of
the target. In every instant, the position as well as the velocity of the tracker in the
path of the multiple targets are updated by the heuristic algorithms.

The major objective of updating the tracking points using the heuristic algorithms
is to reduce the MAE among the targeted point and the tracked point. The novel
position as well as velocity is used to track the position as well as the velocity. The
MAE between the target as well as the tracked output is computed. The optimization
happens for each time instance for reducing the error in each instance. The experi-
ments are accomplished for 2 targets, 3 targets, and 5 targets. The objective model
is displayed in Eq. (12).

Ob = argmin(MAE)
{
xcτ,pc

kc(u),yc
τ,pc
kc(u),xc

τ,vc
kc(u),yc

τ,vc
kc(u)

}
(13)

In the above equation, the objective model is described by Ob, the position of
the object target is defined by xcτ,pc

kc(u), yc
τ,pc
kc(u), and the velocity of the object target is

defined by xcτ,vc
kc(u), yc

τ,vc
kc(u). MAE is, “ameasure of difference between two continuous

variables”, as shown in Eq. (13).

MAE =

pc∑

kc=1

∣∣
∣xcτ,pckc(u)

− xcτ,pctr−kc(u)
, ycτ,pckc(u)

−, ycτ,pctr−kc(u)
, xcτ,vckc(u)

− xcτ,vctr−kc(u)
, ycτ,vckc(u)

− ycτ,vctr−kc(u)

∣∣
∣

pc
(14)

Here, the tracker points with position and velocity is defined by
xcτ,pc

tr−kc(u), ycτ,pc
tr−kc(u) and xcτ,vc

tr−kc(u), ycτ,vc
tr−kc(u), respectively.

3.2 Comparative Heuristic Algorithms

The heuristic algorithms like PSO-based JPDA, GWO-based JPDA are compared
withmulti-target tracking using JPDA in terms of cost function and themean absolute
error.
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GWO: GWO [6] is a novel meta-heuristic optimization algorithm. The major aim is
to criticize the behaviour of the grey wolves for hunting in a cooperative manner. It
represents a large-scale search technique that is centered on three optimal samples.
To model the leadership structure, four sorts of grey wolves are considered: “alpha,
beta, delta, and omega” “Hunting, looking for the prey, surrounding the prey, and
assaulting the prey” are the three key processes employed here. It can also handle
classical engineering design problems [17].

PSO: PSO [15] defines a population-oriented stochastic optimization algorithm. The
structure is modified to attain the best performance. The distinct topology structures
and various parameters configuration are also considered into effect. Hence, it is used
for different application sectors. This algorithm initiates with the swarm population
initialization and the particle fitness interpretation. Moreover, it also computes the
swarm (global) optimal position and the individual (personal) best-suited position.
It also updates the velocity of the position and the particle. This process stops when
the most appropriate solution is achieved.

Target tracking can be thought of as a numerical optimization issue in which the
local mode of the similarity measure is tracked using particle swarm optimization.
The objective function is based on a multiple patch-based target representation and
an area covariance matrix. The goal positions and velocities obtained in this manner
are then used in a particle swarm optimization-based algorithm to optimize the paths
obtained in the early step. After that, the final optimization is done using a conjugate
process. To find strong local minima, the particle swarm algorithm is used, and the
conjugate gradient is utilized to accurately identify the local minimum [16].

4 Results and Discussions

4.1 Simulation Setup

TheDVB-based passive radar networkwhich consists of four transmitters of opportu-
nity located on ground is used for tracking multiple targets. Three different scenarios
are considered for simulation: In scenario 1 two crossing targets moving with equal
and uniform velocities are considered, scenario 2 presumes two crossing targets with
an additional target moving along straight path and lastly scenario 3 five targets
moving with uniform velocity are assumed. Further, it is assumed that all the targets
appear simultaneously and are corrupted by heavy clutter and noise. Simulation
of targets is carried out for 30 s with sampling period of 1 s and the simulation
is carried out for 100 Monte Carlo runs. The heuristic algorithm-based JPDA for
tracking multiple targets using multi-static passive radar system is implemented in
MATLAB 2020a, and the results are tabulated and analyzed. The proposed variants
of JPDA algorithms optimize the position and velocity of the targets for minimizing
the MAE between the estimated trajectory of the track and the true target state.
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4.2 Convergence Analysis

The convergence analysis of the suggested and existing heuristic-based JPDA for
multiple targets tracking with passive radar system having multiple radar sites is
portrayed in Fig. 2. From Fig. 2a for scenario 1, at 100th iteration, the cost function
is better in the case of JPDA. Similarly, in Fig. 2b for scenario 2, at 100th iteration,
the cost function is improved in the case of PSO-JPDA.Moreover, while considering
Fig. 2c for scenario 3, at 100th iteration, the cost function is better with the PSO-
JPDA. Hence, it is clear that cost function is better with distinct heuristic algorithms
in considering the multi-target tracking scenarios. Also, from the convergence plots,
we can infer that the PSO-based JPDA converges faster to the optimized range and
velocity values even for complex scenarios like 2 and 3.

(a) (b)

(c)

Fig. 2 Convergence analysis of the distinct heuristic-based JPDA for multiple target tracking with
multi-static passive radar system for a Scenario case-1, b Scenario case-2, and c Scenario case-3
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Table 1 Overall MAE
analysis for multiple targets
tracking using multistatic
passive radar system for three
different cases

Algorithm Scenario 1 Scenario 2 Scenario 3

JPDA 0.52227 0.56051 0.56668

GWO-JPDA 0.5111 0.54319 0.55192

PSO-JPDA 0.4991 0.52483 0.53723

4.3 Overall MAE Analysis

The overall MAE analysis for the multiple targets tracking for the aforementioned
three scenarios is portrayed in Table 1 and plotted in Fig. 3. MAE is a statistic
that calculates the average magnitude of errors in a sequence of estimates without
accounting for the course of the predictions. It is the average of the modulus of the
differences between estimates and actual observations over the test sample, where
all individual differences are given equal weight. Compared to MAE, the root mean
square error (RMSE) is difficult to understand and does not adequately explain the
average error. So in this work, we computed MAE instead of RMSE. The mean
absolute error is calculated on the same scale as the data and hence called as scale-
dependent accuracy. From the computedMAE, we can infer that for all scenarios the
PSO-based JPDA gives the minimum mean absolute error and JPDA-based tracker
has slightly higher MAE compared to the other two algorithms.

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

1 2 3

M
A
E

Scenario

Overall MAE Analysis

JPDA
GWO

PSO

JPDA

GWO

PSO

JPDA
GWO

PSO

Fig. 3 Mean absolute error for JPDA, GWO-JPDA, and PSO-JPDA based multiple target tracking
for Scenario case-1, Scenario case-2, and Scenario case-3
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5 Conclusion

This paper has developed a comparative analysis on diverse heuristic algorithms for
developing the optimized JDPA model for tracking multiple targets using a multi-
static passive radar system in the presence of clutter. The algorithms such as GWO,
and PSOwere utilized for analyzing the optimized JDPAmodel for trackingmultiple
targets using passive radar system. It also tuned the position as well as the velocity
of the tracker towards the target by means of distinct algorithms, and intended to
analyze the effect of those algorithms on enhancing the multi-target tracking. As a
major objective, it minimized theMAE between the estimated trajectory of track and
the true target state. The cost function value for the scenario considering more than
two targets is minimum for PSO-based JPDA and converges faster. The MAE for all
the three scenarios under consideration is minimum for PSO-based JPDA making a
good choice for multiple target tracking using optimal JPDA-based tracker. Further,
the genetic algorithm-based optimization may be adopted for the data association in
multi-target tracking and compared with the traditional JPDA.
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