
Cancer Metabolism and Aggressive Tumor
Behavior 2
Sanjib Chaudhary, Ashu Shah, Ramesh Pothuraju,
Imayavaramban Lakshmanan, Apar Kishor Ganti,
and Surinder K. Batra

Abstract

Aggressive tumor behavior poses a serious threat to the success of cancer therapy.
Altered cancer metabolism is a hallmark feature of tumor initiation, progression,
and metastases. During these processes, the tumor cells suffer bioenergetic and
nutrient demand, which is met by metabolic reprogramming or preferential
nutrient usage facilitated by the acquisition of driver oncogenic mutations and
inactivation of tumor-suppressor genes. The metabolic heterogeneity and plastic-
ity of tumor cells provide cellular fitness and survival advantage in the harsh
tumor microenvironment (TME), resulting in aggressive tumor growth and resis-
tance to chemotherapies. Besides, other cell types, including stroma, immune
cells, and extracellular matrix in the TME, undergo metabolic switching that
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influences disease progression. Because aberrant glucose metabolism is central to
tumor cell metabolic reprogram, various clinical trials targeting glucose uptake
and its metabolites in combination with other molecular targets have been
focused on reducing tumor progression by inhibiting the metabolic interplay.
Here, we describe in detail how the metabolic plasticity of cancer cells and TME
results in tumor progression and aggressiveness. In addition, we highlight the
current approaches being explored for therapeutic intervention. This overview
will help in understanding the intricated metabolic networks and open new
avenues of cancer treatment.
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2.1 Introduction

Metabolic alterations are a characteristic hallmark feature of tumor cells, facilitating
tumor cell proliferation, invasion, immune evasion, and metastases [1]. These
aggressive features impose a serious therapeutic hurdle in cancer treatment [1] and
are responsible for almost 90% of cancer-related mortality and morbidity [2]. Typi-
cally, cancer metastasis involves three main steps—invasion, intravasation, and
extravasation. The initial step of metastasis involves detachment of tumor cells
from the primary site and invasion of the local milieu directly via blood vessels
(intravasation) or lymphatic system. The invasion or dissemination of tumor cells
from the primary site to surrounding tissue/stroma occurs either as single cells or
clusters [3, 4]. However, only a small subset of disseminated tumor cells survive the
shear stress and protective immune cells attached to the endothelial linings of blood
vessels and extravasate to facilitate successful metastasis [5].

The tumor mass also harbors a small population of “stemlike” cells known as
cancer stem cells (CSCs) that influence various aspects of tumor biology. CSC was
first identified in acute myeloid leukemia in 1994 and its potential role in tumor
aggressiveness, therapy, relapse, and metastasis of hematological and solid tumor
cells was subsequently recognized [6, 7]. These CSCs (0.05–1%) are characterized
by the expression of distinct surface markers based on the origin of tumors [8]. Like
pluripotent stem cells, CSCs show several salient features such as surviving for
longer periods, quiescence, resistance to apoptosis, and ability to undergo self-
renewal and differentiation [6, 7]. Such self-renewal property allows CSCs to initiate
uncontrolled proliferation with diverse molecular, cellular, and metabolically active
phenotypes, subsequently resulting in the significant increase in heterogeneity of
primary and metastatic tumors [7, 9]. The acquisition of heterogeneous tumor
phenotypes increases the survival advantage during treatment with chemotherapy
causing therapy resistance and relapse in various cancer types [9, 10]. To fulfill their
energy and biosynthetic demand, tumor cells and CSC increase their nutrient uptake
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(glucose and glutamine) from the environment [1, 11]. The marked increase in the
glucose consumption by tumor cells compared to normal cells in the presence of
oxygen (O2) was first discovered by Otto Warburg (1926) and is known as the
Warburg effect [12]. TheWarburg effect is well established in a variety of tumors [1]
and has been exploited for tumor diagnosis and staging by positron-emission
tomography (PET) using radiolabeled glucose analog 18F-fluorodeoxyglucose
(18F-FDG) [13].

Altered cancer cell metabolism is associated with various stages of tumorigenesis.
As altered metabolism enhances the cellular fitness of tumor cells by increasing the
nutrient uptake, it is essential to understand how these nutrients are utilized, and
what metabolic changes occur as a result of preferential nutrient uptake in the tumor
microenvironment (TME) in order to promote the tumor progression [1].

This chapter describes in detail the role of altered glucose metabolism in tumor
progression and metastasis, metabolic heterogeneity of CSCs, and its association
with chemoresistance. In addition, we summarize how the metabolic plasticity of
tumor cells influences the TME, leading to disease aggressiveness or therapeutic
resistance. We also highlight the potential therapeutic approaches being used to
target cancer metabolism.

2.2 Altered Glucose Metabolism in Tumor Cells

Human somatic cells cultured in petri dish undergo limited cell division and become
senescent to die due to the “Hayflick limit” named after the first observation by
Leonard Hayflick in 1961 [14]. However, tumor cells overcome this “limit” to
facilitate limitless cell division, by accumulating oncogenic mutation, inactivating
tumor-suppressor genes, and sustaining telomerase activity. This process is driven
by the metabolic rewiring of tumor cells to improve their cellular fitness and
selective survival advantage [1]. Typically, in normal cells, the influx of glucose is
driven by extracellular signals rather than bioenergetic demand. For instance, mam-
mary epithelial cells cultured in detached condition from extracellular matrix have
suppressed glucose uptake despite high glucose present in the medium, resulting in
decreased mitochondrial function and ATP production [1]. However, constitutive
activation of AKT alone can stimulate glycolysis to restore the mitochondrial
function and maintain ATP levels despite growth factor deprivation. In normal
cells, glucose diffuses into the mitochondria, where it enters the tricarboxylic acid
cycle (TCA) to oxidize glucose to carbon dioxide and generate NADH and FADH2

molecules with a little amount of lactate generation via oxidative phosphorylation
(OXPHOS) pathway. NADH and FADH2 then enter the electron transport chain to
generate net two ATP molecules per glucose consumed.

In 1926, Otto Warburg observed that cancer cells preferentially utilize glycolysis
even in the presence of O2 to support their energy requirement (Warburg effect)
[12]. The aerobic glycolysis generates building blocks for macromolecules (proteins,
lipids, and nucleotides) required to maintain enhanced growth and proliferation of
cancer cells [1]. However, aerobic glycolysis is highly inefficient as it generates only
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two ATP molecules per molecule of glucose metabolized compared to 36 ATP
molecules generated via OXPHOS. This low energy production is compensated by
PI3K/AKT signaling, a key master regulator of glucose uptake. During PI3K/AKT
signaling, AKT drives the transcription of the glucose transporter GLUT1 and its
translocation to the cell surface.

AKT also induces the hexokinase (HK) activity to phosphorylate glucose and
prevents effluxing of glucose back to the extracellular space. In addition, AKT also
activates the phosphofructokinase and thus promotes the irreversible function of
glycolysis. Increased GLUT1 and HK activity increases the glucose uptake by
100-fold in tumor cells, leading to the generation of more ATP molecules during
aerobic glycolysis than OXPHOS [12]. However, during aerobic glycolysis, the
tumor cells generate high amounts of lactate as a by-product (Fig. 2.1). Inhibiting
this pathway by inhibitors targeting PI3K or receptor tyrosine kinases can result in
the blockade of glucose uptake by the tumor cells [15, 16]. Moreover, aberrant
activation of the PI3K/AKT pathway is shown to induce growth factor-independent
tumor progression [1].

Apart from PI3K/AKT signaling, oncogenic proteins such as Ras are known to
increase the transcription of GLUT1 [17, 18]. In pancreatic cancer, Kras mutation is

Fig. 2.1 Metabolic reprogramming in tumor and normal cells
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an early oncogenic insult that initiates pancreatic intraepithelial neoplasia develop-
ment and later progresses to pancreatic ductal adenocarcinoma (PDAC) with addi-
tional genetic mutations, including Trp53. Increased glycolysis is a key feature of
Kras-driven tumorigenesis [17, 19]. Abrogation of Kras signaling in the PDAC
murine model has been shown to result in tumor regression along with severe
reduction of Glut1 transcription and rate-limiting glycolytic enzymes [20]. Apart
from elevated glycolysis, Kras also fuels the glycolytic intermediates to pentose
phosphate and hexosamine biosynthesis [20]. At the molecular level, Kras-driven
glycolysis is mediated by the activation of MAP kinase, which increases the cMyc-
dependent transcription of glycolytic enzymes. During cellular stress, such as
starvation, mutant Kras cooperates with other antioxidant enzymes such as
paraoxonase 2 (Pon2) to increase glycolysis in PDAC [21]. In lung cancer, mutant
Kras is responsible for metabolic heterogeneity and metabolizes the glucose differ-
ently based on the degree of lesion (low to high grade) in KrasG12D;Trp53�/� lung
tumors [22]. In addition, lung cancer patients and NSCLC cell lines (49%) also gain
homozygous mutation for Kras (G12D) [23, 24], which influences the glycolytic
switch, maintenance of redox balance, channeling of glucose metabolites to the TCA
cycle, and biosynthesis of glutathione [22, 25]. Increased glutathione in the homo-
zygous mutant Kras in NSCLC protects the cells from reactive oxygen species
(ROS)-mediated abnormalities, thereby increasing the selective growth of these
cells during lung tumor progression [26].

2.3 Cancer Stem Cells Exhibit Heterogeneous Metabolic
Characteristics

Stem cells are undifferentiated cells with a unique capacity for self-renewal and
multiple differentiation in multicellular organisms [27, 28]. As somatic cells have
limited cell division, replenishing of the damaged cells is achieved by stem cells and
self-renewing its progenitors for maintaining the tissue homeostasis. At physiologi-
cal condition, stem cells reside in the hypoxic microenvironment, which enables
them to maintain their undifferentiated state, proliferate, and commit to cell fate
[29]. Due to spatial residence, stem cells rely heavily on anaerobic glycolysis to
support their energy requirement [30]. The reliance of stem cells on glycolysis is due
to fewer or immature mitochondria, which protects the genome from ROS generated
by OXPHOS and limits oxidation of proteins and lipids [31]. A key driver for
glucose metabolism in a low-O2 environment is the activation of transcription factor
hypoxia-inducible factor 1 α (HIF1α). During anaerobic glycolysis, HIF1α
heterodimerizes with HIF1β to promote the transcription of glycolytic genes
[32]. The hypoxic condition stabilizes the HIF1α protein by preventing hydroxyl-
ation and facilitates the expression of pyruvate dehydrogenase kinase (PDK2 and 4)
to prevent pyruvate from entering into the TCA cycle, thus blocking mitochondrial
respiration. However, depletion of HIF1α in stem cells results in the reversal of this
phenotype, thereby allowing the cells to undergo mitochondrial respiration rather
than glycolysis. The transition from glycolysis to mitochondrial respiration is
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responsible for the exhaustion of hematopoietic stem cells, and thus suggests the
pivotal role of HIF1α in maintaining the hematopoietic stem cell function [33].

Like stem cells, CSCs have the ability to self-renew and maintain an undifferen-
tiated state, remain quiescent, and activate DNA repair machinery. CSCs are
associated with tumor initiation, relapse, therapy resistance, and metastatic dissemi-
nation [7, 10]. Several studies have identified and characterized CSCs in various
malignancies for use as biomarkers or targeted therapies [34]. The stemness features
are tightly regulated by several transcription factors (TF) such as OCT4, SOX2,
KLF4, and Nanog. Shinya Yamanaka, in 2006, first demonstrated that four TFs
(Oct4, cMyc, Sox2, and Klf4) could induce pluripotency in the mouse embryonic
fibroblast suggesting the importance of TFs in stemness [35]. Like cancer cells,
CSCs also undergo metabolic adaptation to the cellular environment, such as
hypoxia versus normoxia and proliferative versus quiescence. Such changes in the
cellular environment cause a shift in the metabolic states that gives rise to cellular
heterogeneity in CSCs [11, 36]. The existence of heterogeneity in tumor cells and
CSCs represents a major therapeutic hurdle in several cancers.

Though CSCs are metabolically very active, controversy regarding their energy
metabolism (glycolytic or mitochondrial respiration) is still under scrutiny. In
general, glycolytic activity is mainly responsible for maintaining the stemness traits
of stem cells, embryonic stem cells, and induced pluripotent stem cells. For example,
increased glycolysis in non-small cell lung cancer (NSCLC) leads to the elevation of
ABCG2 transporter in the side population [37] via activation of the AKT pathway.
Constitutive expression of active AKT also increases the glycolytic rate and aerobic
glycolysis independently of the growth factor [37, 38]. Apart from glycolysis, CSCs
also utilize OXPHOS for alternative energy generation in response to their physio-
logical needs, suggesting its metabolic flexibility. Recent findings have shown that
liver CSCs are highly OXHPOS dependent compared to the non-stem cells, which
was evident from increased mitochondrial DNA copy number, mitochondrial con-
tent, and ROS. In addition, as a result of the treatment with 2-deoxy-D-glucose
(2-DG), the high OXPHOS liver CSCs promote the expression of stemness surface
markers CD133 and CD44 [39]. Overall, we now understand that CSCs can undergo
metabolic reprogramming (glycolysis or OXPHOS) to support their stemness.

2.4 Metabolic Plasticity Drives Cancer Cell Metastasis

As tumor cells are highly active metabolically, there is a dramatic change in the TME
with increased hypoxia, nutrient shortage, and lactic acid buildup. Most of the
metabolic pathways are interconnected and flexible, allowing the tumor cells to
reprogram their metabolic activity for glucose catabolism and maintain the redox
balance during changing microenvironment. The metabolic plasticity ensures the
survival of the tumor cells by increasing their cellular fitness during nutrient starva-
tion. For example, in the case of chronic glucose starvation in serous ovarian cancer
cells, tumor cells undergo metabolic reprogramming to generate cell types that are
highly heterogenic. Such generation of heterogenic cell types is driven by the
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ZEB1-dependent transcription of NNMT (nicotinamide N-methyltransferase),
which is highly expressed in the metastatic and recurrent tumors compared to
matched primary carcinoma. In addition, ZEB1-dependent expression of NNMT
also confers resistance to glucose dependence and increases the migration of ovarian
cancer cells suggesting metabolic adaptation during glucose restriction [40].

Tumor cells increase their metastatic potential by metabolic reprogramming by
shifting from glycolysis to OXPHOS [41]. The metabolic shift to OXHPOS is
coordinated by transcriptional coactivator PGC-1α (peroxisome proliferator-
activated receptor-gamma coactivator-1α), a key regulator involved in mitochondrial
biogenesis and metabolism [42]. Recent studies using the systems biology approach
by utilizing AMPK and HIF1 signatures in The Cancer Genome Atlas indicated the
presence of a hybrid phenotype that enables the cells to consume various types of
nutrients [41, 43]. It also provides cellular advantages such as efficient energy
production through multiple metabolism pathways, synthesizes biomass for rapid
cell proliferation, and maintains ROS at a moderate level to favor ROS-mediated
signaling [44]. Such phenotype was evident in circulating tumor cells isolated from
highly metastatic mouse basal type breast cancer cell line (4T1) [45]. The hybrid
phenotype is characterized by high levels of HIF1/pAMPK (AMP-activated kinase),
which favors both glycolysis and OXPHOS. In contrast, another phenotype with
high HIF1/low pAMPK expression and low HIF1/high pAMPK expression in triple-
negative breast cancer exclusively favored glycolysis and OXPHOS, respectively
[41]. Such metabolic plasticity creates a major clinical hurdle, considering that the
current clinical strategies targeting metabolism have been largely ineffective. Thus,
simultaneous targeting of both the pathways (glycolysis and OXPHOS) may be
critical to eliminate these metabolically highly flexible tumor cells [41, 46].

2.5 Lactic Acid Secretion, Utilization, and Tumor Progression

As a result of increased metabolic rate in tumor cells, there is a significant accumu-
lation of lactic acid and H+ in the cytosol. Almost 85% of the incoming glucose is
converted to lactic acid, which needs to be eliminated from the tumor cells to prevent
acidosis and support higher rates of glycolysis. This elimination of lactic acid and H
+ from the cytosol to the microenvironment is assisted by the increased expression of
monocarboxylate transporter isoforms (MCT1 and 4) and Na-driven proton release,
respectively [47, 48]. Overexpression of MCT1 and 4 has been associated with poor
prognosis and high mortality in several cancers [47]. The dependence on MCTs to
expel lactate is based on the fact that lactic acid is a weak acid, which prevents them
from diffusion across the membrane. However, studies have shown that the dissoci-
ation of lactate to H+ generation is not the primary cause for acidosis. Rather the
coupling of ATP hydrolysis and glycolysis is the major source of H+ production
which contributes to acidification (low pH) [49].

Heterogeneous distribution of glucose in the intratumoral area, apart from
activating HIF1α, also activates the oncogene cMYC to upregulate LDHA (lactate
dehydrogenase A), leading to the generation of NAD+ which in turn activates
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glycolysis, thus maintaining the vicious cycle [50, 51]. Besides HIF1α and cMYC,
lactate also regulates the transcription of RAS, PI3KCA, E2F1, tumor-suppressor
genes (BRCA1 and BRCA2), and genes that mediate cell cycle and cell proliferation
[52]. On the contrary, cMYC and tumor suppressor P53 also activate the transcrip-
tion of MCT1 to favor lactate uptake [53, 54]. HIF1α activates the transcription of
MCT4 to expel lactate from the cells [55]. Under physiological conditions, lactate
concentration in the blood and normal tissues ranges between 1.5 and 3 mmol/L
[56]. The levels can rise up to 40 mmol/L concentrations in tumors [57]. When
lactate is not eliminated from the cells, it can lead to lactic acid acidosis, which is
common in most highly mitotic tumors. Tumor-associated acidosis was first
documented in acute leukemia patients in 1963 [58]. In general, lactic acid acidosis
in cancer patients results from a failure in lactate clearance from the liver due to
deficiencies in thiamine and/or riboflavin. Thiamine functions as a cofactor that
facilitates the conversion of pyruvate to acetyl-CoA by pyruvate dehydrogenase.
Due to thiamine deficiency, this conversion from pyruvate to acetyl-CoA prevents
the entry of the latter into the TCA cycle [59]. Thus, balancing lactic acid production
and expulsion by cancer cells is essential to prevent intracellular acidification and
apoptosis.

Though lactate was previously considered as a “metabolic waste” product of
glycolysis, recent studies have demonstrated the role of lactate levels in driving
tumor progression, immune escape, angiogenesis, cell migration, and drug resistance
[51, 56]. TME is composed of stromal cells, endothelial cells, and immune cells.
Immune cells primarily surveil the body to eliminate any pathogen, including tumor
cells. However, tumor cells release anti-inflammatory cytokines and recruit immuno-
suppressive cell types in the TME to inhibit the immune response [60]. Lactate
accumulation also dampens the antitumor activity of NK cells and NKT cells by
inducing apoptosis [61, 62]. In several tumors, tumor-associated macrophages
undergo polarization in response to lactate-induced transcription of vascular endo-
thelial growth factor (VEGF) and arginase 1 [63]. Furthermore, lactate also assists
the tumor cells in evading immune response by expressing its receptor G protein-
coupled receptor 81 (GPCR81). In lung cancer cells, the activation of GPCR81
receptor results in the upregulation of programmed death-ligand 1 (PD-L1) in the
membrane, which blocks the antitumor immune response. On the contrary, blocking
the LDHA enzyme which converts pyruvate to lactate in the tumor cells increases the
efficiency of programmed cell death 1 (PD1) therapy [64].

Higher lactate in the TME is associated with an increased metastasis in various
cancers [48] and correlates with poor clinical outcome [56]. The mechanisms by
which lactate promotes metastasis are multifactorial: (1) modifies several cell adhe-
sion molecules, such as integrins, which assist in cell binding to the extracellular
matrix, making them more migratory [65], and (2) induces the expression of
proteases (MMP9, cathepsin B, and hyaluronidase) to degrade the surrounding
tissues, thereby allowing tumor cells to metastasize [66, 67]. Apart from metastasis
promotion, lactate buildup is also associated with the induction of therapy resistance.
In NSCLC, prolonged treatment with tyrosine kinase inhibitors (EGFR and MET)
results in a metabolic shift towards increased glycolysis and lactate production. This
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lactate, in turn, promotes the secretion of hepatocyte growth factor by cancer-
associated fibroblast (CAF) in an NFkB-dependent manner to activate MET signal-
ing to induce therapy resistance [68]. Thus, targeting lactate metabolism or uptake
has proven to be an important strategy for cancer therapy.

2.6 Glucose Metabolism, Chromatin Structure,
and Chemoresistance

Changes in the global chromatin structure are associated with gene expression, DNA
repair, and tumor progression [69]. Typically opening and closing of chromatin
structure is facilitated by the acetylation of histones (H3, H4, H2A, and H2B in
nucleosome core) catalyzed by the balanced action of histone acetyl transferase
(HAT) and histone deacetylase (HDACs). During harsh metabolic reactions, tumor
cells meet the increasing demand for energy and precursors for biosynthesis by
initiating the distinct transcription of metabolic genes via chromatin remodeling
[70]. The metabolites generated during the metabolic reaction are taken up by the
cells actively or passively through the plasma membrane or nuclear membrane to
modify the chromatin structure or processed by the metabolic enzymes to function as
a substrate or cofactor for the chromatin-remodeling enzymes. Acetyl-CoA is one
such metabolic by-product that functions as a substrate for HAT activity. The
canonical histone acetylation involves addition of acetyl group at lysine residue
which is derived from the metabolite acetyl-CoA. Acetyl-CoA generated during
glucose metabolism is funneled through mitochondrial metabolism via a citrate
intermediate, which is exported and lysed in the cytosol by ATP-citrate lyase to
generate acetyl-CoA. Therefore, nutrient availability is vital in regulating the chro-
matin structure and gene expression during metabolic reprogramming.

The study by Liu et al. (2015) has shown that inhibiting glycolysis with 2-DG or
silencing two rate-limiting enzymes, hexokinase-1 (HK1) and pyruvate kinase
(PKM), results in condensing of the chromatin structure and reduced tumor cell
proliferation [71]. Besides, increased glycolysis results in higher accumulation of
cellular acetyl-CoA, a substrate for acetyltransferases, which increases the histone
acetylation, thereby enabling the cells to undergo efficient DNA repair and induce
chemoresistance [71].

Another chromatin-associated protein, MORC2, a member of the Microrchidia
family CW-type zinc finger (MORC) family of proteins, is upregulated in several
cancers [72]. It also regulates transcription by modifying the chromatin structure
[73, 74]. During tumorigenesis, MORC2-mediated transcription is catalyzed by the
interaction with histone HDAC1, HDAC4, and EZH2 [75]. Likewise, during glu-
cose metabolism, cMYC directly targets the expression of HK2, PFKM, ENO1,
GLUT1, and LDHA [76], while MORC2 is known to regulate LDHA by cooperating
with cMYC to promote the migration of breast cancer cells [75, 77, 78]. As
numerous metabolic pathways converge onto cMYC regulation, attempts to block
or restore altered pathways driven by cMYC can lead to novel strategies in cancer
treatment.
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2.7 Cross Talk Between Tumor Microenvironment
and Metabolism in Disease Progression

As discussed earlier, metabolic plasticity allows tumor cells to adapt themselves to
changing TME [1]. Aberrant tumor vasculature in the TME causes heterogeneous
perfusion (O2 and nutrients) across the tumor vessels, which promotes a hypoxic
environment [79]. The competitive metabolic milieu in the TME also results in the
variable nutrient utilization among tumor cells, immune cells, and stromal popula-
tion [80, 81]. Besides, tumor cells adapt to their metabolic needs in the hypoxic
conditions of TME through HIF1, which activates enzymes of glycolytic flux.
Overall, the intratumoral metabolic heterogeneity by the nonuniform distribution
of nutrients is influenced by various factors, including the composition of TME,
disease stage, and mutation load [82]. Here, we will discuss in detail how stroma,
extracellular matrix (ECM), and immune cell metabolism are reprogrammed by
tumor cells and influence the disease progression.

Stroma: The contribution of stroma for tumor growth and progression is well
established in different cancers, but how alterations in stromal composition support
tumor growth are still unclear. The metabolic interplay between cancer cells and
TME is a well-recognized hallmark of tumors. The accumulation of different
metabolic intermediates and their by-products in the TME activates stromal cells
through paracrine signaling and alters their phenotype [83]. Stroma modulation by
growing tumor is synonymous to the regeneration of damaged tissue and involves
(a) monocyte recruitment and activation to pro-inflammatory M1 phenotype for
clearance of necrotic tissue and subsequent transition to M2 phenotype;
(b) fibroblast recruitment, their differentiation to myofibroblasts, and secretion of
ECM for surrounding cells survival; and (c) immunosuppressive milieu
characterized by Tregs, M2 macrophages, and myeloid-derived suppressor cells
[84]. This stromal regeneration by tumors is driven by alteration of metabolic
consumption in the TME, which includes autophagy in stromal fibroblasts by
glucose depletion and AMPK activation and secretion of nonessential amino acids,
which leads to enhanced tumor growth [85, 86]. CAFs are the main component of
tumor stroma and engage in tumor progression by promoting tumor cells to undergo
EMT and enhancing the stem cell traits and metastatic dissemination
[87, 88]. Accumulating evidence shows that CAFs undergo metabolic
reprogramming during their activation, including utilization of aerobic glycolysis
and increased autophagy for mobilization of the nutrients into the TCA cycle
[89, 90]. Also, CAF-derived exosome is seen to mediate metabolic reprogramming
[91]. While in PDAC, the oncogenic mutation is observed to regulate signaling in
both the tumor cells and adjacent stromal cells. By cell-specific proteome labeling
and multivariate phosphoproteomics, it is observed that tumor cell KRAS
(KRASG12D) interacts with fibroblast to initiate reciprocal signaling in tumor
cells. This reciprocal signaling results in distinct tumor cell phosphoproteome,
which regulates tumor cell proliferation and apoptosis and increases mitochondrial
capacity [92]. Tumor cells also interact with the CAFs and reprogram their cellular
metabolism to adapt to the nutrient deprivation in the harsh TME. One such classic
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example is the reciprocal interplay between prostate cancer cells and CAFs which
results in EMT and metabolic shift in the tumor cells. As prostate cancer cells come
in contact with CAFs, it reprograms the metabolism of cancer cells towards aerobic
metabolism, thereby decreasing the dependence on glucose and shift towards aerobic
metabolism. This process is driven by reducing GLUT1 expression and increasing
the lactate load by MCT1. Therefore, prostate cancer cells by inducing symbiosis
with CAFs utilize their by-products, favoring them to grow in a low-glucose
environment [88]. While MCT1 can induce lactate uptake or secretion in cancer
cells, MCT4 promotes lactate efflux in CAFs through HIF1α induction under
hypoxic conditions and results in tumor promotion [93]. In fact, triple-negative
breast cancer patients with high stromal MCT4 expression show poor prognosis
[94]. In addition, stroma-associated pancreatic stellate cells also secrete nonessential
amino acids, decreasing the tumor cell dependence on glucose and serum-derived
nutrients [85]. Likewise, CAFs in ovarian tumors utilize carbon to produce gluta-
mine for cancer cells. This shows the existence of novel cross talk between tumor
cells and CAFs in metabolic regulation of tumor cells [95]. Thus, targeting the
glutamine pathway in both tumor and stroma resulted in a significant decrease in
tumor growth [96]. However, the mechanistic link between CAFs and tumor nutrient
demand is not clear. A detailed understanding of these pathways would help in
dissecting the actionable targets, including targeting both tumor and TME simulta-
neously. This approach of simultaneous targeting is limited by the cell-dependent
function of different actionable target proteins. These targets are present in both
tumor epithelium and TME but possess opposite functions. For example, prostate
tumor epithelium-mediated downregulation of p62 in stromal fibroblasts resulted in
impaired metabolism through reduced mTOR activity and cMYC expression and
release of ROS and IL-6, which in turn enhanced epithelial invasion and
tumorigenesis [97]. Therefore, inhibiting their activity in tumor cells could be
compensated by increased stromal reactivation.

ECM: Extracellular matrix (ECM) consists of an intricate network of secreted
proteins that provide biochemical and mechanical support to different tissues and
organs. Tumor cells interact with ECM via transmembrane integrin receptors to
control cell migration, proliferation, and metabolism. Tumor relieves anchorage
dependence and gets disengaged from the ECM for metastases and dissemination.
However, ECM detachment results in impaired glucose uptake, reduced cellular
ATP levels, and increased ROS production. Tumor cells endure this stressful
environment by altering their nutrient utilization from glycolysis to glutamine-
derived TCAmetabolism mediated by AMPK-regulated NRF2 expression [98]. Glu-
tamate production through AMPK-mediated glutamine metabolism helps to reduce
oxidative stress following anchorage independence. ECM composition and organi-
zation are influenced by the presence of CAFs in TME [99]. Higher collagen content
has been correlated with altered metabolism in breast cancer due to reduced oxygen
and glucose consumption and increased glutamine consumption by tumor cells
[100]. In head and neck squamous cell carcinoma (HNSCC), cancer cell-derived
glutamate promotes ECM remodeling by maintaining the redox state in CAFs, and
aspartate from CAFs sustains cancer cell proliferation [101]. These opposite results
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might be due to different tumor types and altered TME composition. ECM
undergoes continuous remodeling by expressing a variety of matrix-degrading
enzymes, resulting in altered nutrient uptake by the tumor cells. For instance,
hyaluronan degradation in ECM enhances transporter GLUT1 mobilization to the
plasma membrane and promotes glucose uptake and increased migration of cancer
cells [102]. In a nutshell, the studies mentioned above fill a gap in understanding the
varying metabolic requirements of cells in anchorage-dependent and -independent
conditions. A better understanding of the underlying mechanisms of ECM
remodeling and metabolic rewiring in tumors could encourage the development of
novel therapeutic interventions.

Immune cells: The hallmarks of TME, including hypoxia, low pH, lactate
accretion, waste accumulation, and very high demand for nutrients, create a compet-
itive niche for different cells present in the TME [81, 103]. Multiple studies have
demonstrated that this nutrient-competitive milieu favors tumor progression and
dampens effector T-cell functions but not necessarily their proliferation [104–
106]. Metabolic heterogeneity in the TME plays a key role in the differential
intratumoral immune cell recruitment. Metabolic reprogramming by cell-intrinsic
and -extrinsic nutrient availability in the TME results in the differential activity of
immune cells [107, 108]. Also, tumor cells, by employing the Warburg pathway,
limit the nutrient supply to immune cells, thereby inducing the immunosuppression
[103]. Increased glycolysis is a hallmark of metabolic alterations of activated
immune cells, including macrophages, NK cells, dendritic cells, B cells, and effector
T cells [109]. Multiple studies have described T-cell activation by complex meta-
bolic regulation [110, 111]. Earlier studies have shown the association between the
differentiation state of T cells (naïve, effector, or memory) and their metabolic
activity [112]. Naïve T cells have basal glucose requirements and depend mainly
on fatty acid oxidation and glutaminolysis for their nutrient supply, while activated T
cells undergo metabolic switching towards glucose metabolism. For T-cell activa-
tion, CD28 costimulation promotes glucose uptake via the PI3K-AKT pathway, and
TCR activation induces glutaminolysis through ERK/MAPK pathway [113]. Addi-
tionally, enhanced mTOR activity results in the activation of CD8+ T cell and
stabilization of HIF1α required for CD4+ T-cell proliferation and activation. Effec-
tor T-cell subsets, including TH17, TH1, TH2, and activated CD8+ T cells, have
been shown to possess high glycolytic activity as seen by increased mTOR activa-
tion. Thus, metabolic reprogramming in activated T cells through PI3K-AKT,
mTOR, AMPK, and HIF1α signaling pathways gives rise to similar metabolic
profiles of both cancer cells and activated T cells [114–116]. This has been one of
the major challenges posed by therapeutic interventions directed towards cancer
cells.

Glycolysis is important in immune cell programming from TH17 to Treg type
[117, 118]. The different metabolic requirement of various immune cells is dictated
by their functional activity. This is consistent with the idea that CD28 signaling for
T-cell activation is dependent on increased glucose uptake while M2 macrophages
and Tregs can survive in low-glucose conditions as they utilize fatty acid oxidation
for nutrient requirement [119, 120]. In fact, switching of Treg metabolic pathway to
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fatty acid oxidation may be due to suppression of mTOR by AMPK [81, 121]. Also
hypoxia in TME induces high adenosine concentrations by tumor cells; it exerts an
immunosuppressive effect through the binding of adenosine receptors in various
immune cells [122]. Likewise, lactate accumulation by excessive glycolytic activity
in the TME engenders metabolic reprogramming of both tumor and immune cells
and angiogenesis through increased VEGF secretion [56, 88]. In one study, exces-
sive lactate accumulation resulted in reduced T-cell effector function and polariza-
tion towards Treg phenotype [123, 124] (Fig. 2.2). In addition, reduced activation of
infiltrated immune cells (T cell, B cell, and NK cell) and poor monocyte differentia-
tion by excessive lactate concentrations in the TME endow tumor cells with the
ability to proliferate at higher levels. While T cells rely solely on glycolysis for their
nutrient requirement, hypoxia-induced mitochondrial function loss has also been
linked to T-cell exhaustion through MYC-regulated pathway [125]. Nevertheless,
there remains a gap in metabolic heterogeneity and its association with immune cell
type due to limitations in traditional technologies that help determine the metabolic
profile. Recent advancements in flow cytometry and mass spectrometry-based anal-
ysis have encouraged researchers to develop innovative approaches of profiling
patient samples at a single-cell level. CyTOF-based multiplexing in flow cytometry
has allowed single-cell metabolic profiling of human CD8+ T cells in colorectal
carcinoma patients [126]. This study suggested that the metabolic heterogeneity in
the peripheral and tumor-infiltrating CD8+ T-cell subsets causes differences in their
functional attributes. Therefore, delineating the effect of metabolic reprogramming

Fig. 2.2 Effect of high lactate accumulation and hypoxia in tumor microenvironment (TME) on
T-cell effector function and reprogramming to immunosuppressive Treg cells
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on tumor immune cell function and distribution will allow intervention with phar-
macological inhibitors to remodel the immune response.

2.8 Therapeutic Targeting of Glucose Metabolism

Developing therapeutic strategies targeting the Warburg pathway in tumors has been
a long-standing approach to eliminate or delay tumor progression. Several drugs
targeting enzymes and intermediates of glycolytic pathways have been evaluated in
clinical trials [127] with little success. It is now becoming clear that cancer cells
exhibit hybrid metabolism (glycolysis and OXPHOS) under stress conditions
induced by the oncogenic activation of Ras, MYC, and c-SRC or ROS generation
[128, 129]. Such metabolic plasticity orchestrates the tumor cell proliferation and
metastasis by maintaining ROS levels and efficient energy production [45]. In fact,
there exist reports indicating the synergistic effect of a combination of glycolytic
inhibitor 2-DG decreasing the glucose uptake and metformin inhibiting OXPHOS
activity on the growth and metastatic potential of tumor cells [130]. Regardless of the
impressive data with 2-DG in several preclinical studies, clinical data are not very
satisfactory [131, 132]. A recent clinical trial in PC patients with 2-DG was stopped
due to slow accrual. Likewise, clinical trials of other cancers with 2-DG were not
satisfactory and unambiguous. Clinical trials combining 2-DG with other chemo-
therapeutic agents including cisplatin, docetaxel, or radiation are currently ongoing
[127]. Data obtained from initial trials are quite encouraging and might open new
avenues for cancer treatment. Several other anti-glycolytic agents target different
enzymes and intermediates of the glycolytic pathway, including glucose uptake and
phosphorylation, fructose phosphorylation, glucotriose metabolism, pyruvate for-
mation, oxidation, lactate dehydrogenase, and tumor acidosis [127]. One of the most
effective anti-glycolytic agents, 3-bromopyruvate (3-BrPA), a pyruvate analog, acts
by targeting GAPDH and inhibiting both tumor glycolysis and mitochondrial
OXPHOS. As a result, cancer cells undergo energy deficiency through ATP dimi-
nution and apoptosis and eventually die, leading to decreased tumor growth. In
addition, studies have shown the anticancer effect of 3-BrPA through suppressing
tumor invasion, angiogenesis, and metastasis. 3-BrPA has shown antitumor potential
not only as a single agent but also acting synergistically in combination with
cytotoxic agents and ABC transporters to restore drug sensitivity [133, 134]. As
3-BrPA is stable in the acidic TME, it has the potential for efficient tumor cell killing
with reduced off-target toxicity. However, nonspecific alkylation by 3-BrPA can
induce toxicity in the normal immune and stem cells. Therefore, several attempts are
being made for local-regional delivery of 3-BrPA through catheters, microencapsu-
lation, or intra-arterial routes to minimize the toxicity [135, 136]. Likewise, syner-
gistic inhibition of glycolysis and OXPHOS by a combination of metformin with
bromodomain and extra-terminal motif (BET) inhibitor, JQ-1, has been tested in
pancreatic cancer [137]. These combinatorial targeting strategies could provide ways
to overcome therapy resistance and achieve durable responses. The metabolic
plasticity of cancer cells in the harsh TME is mediated by a cross talk between
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gene regulation and metabolic pathways [1]. A recent study devised a theoretical
framework to couple gene signatures and metabolic interplay in the hybrid metabo-
lism phenotype. This study indicated a direct correlation between AMPK and
OXPHOS, and HIF1 and glycolysis, highlighting the significance of targeting
abnormal metabolism in cancer by modulating both genes and metabolic pathways
[41]. The multifaceted interactions between different signaling pathways regulate
metabolic reprogramming in cancer cells, allowing them to proliferate and sustain
therapeutic resistance. The inhibition of key metabolic regulators, including KRAS,
MYC, P53, HIF1α, and PI3K/AKT/mTOR pathways, could be an effective
approach towards tumor killing. For instance, targeting KRAS in PDAC patients
showed promising results in preclinical studies; however, it had no positive influence
on patient survival [17]. Similarly, preclinical studies targeting EGFR and CDK4/6
by afatinib and palbociclib have shown great promise in reducing tumor progression
by reducing metabolic reprogramming in HNSCC [138]. Several ongoing preclinical
and clinical studies targeting HIF1α, MYC, and P3K/mTOR pathways in various
cancers are under progress. Nevertheless, the metabolic plasticity of cancer cells
poses a serious therapeutic challenge in targeting a specific pathway as they can
overcome the inhibitory effect by activating the alternative metabolic pathways. In
addition, other cells of TME, including stroma, fibroblasts, and immune cells, also
influence the metabolic milieu of tumor cells and help them survive in a stressful
environment. Therefore, current approaches focus on combining anti-glycolytic
agents that target different metabolic pathways or their combination with other
chemotherapeutic agents to overcome the therapeutic resistance. Overall, the knowl-
edge acquired from these studies will help develop an understanding on future
therapeutic perspectives based on metabolic reprogramming.

2.9 Concluding Remarks

Metabolic reprogramming is employed by tumor cells/CSCs to survive and grow in
the harsh TME to generate energy and precursors for the biosynthetic process and
maintain their redox balance. This reprogramming is achieved by acquiring
mutations in the oncogene and tumor-suppressor genes which activates the down-
stream signaling pathways associated with tumor progression, metastases, and
therapy resistance. Apart from metabolic switching from glycolysis to OXPHOS,
tumor cells also acquire a hybrid phenotype and utilize both metabolic pathways.
While most studies are limited to investigating altered metabolism in tumor cells, a
broader understanding of metabolic cooperativity between the tumor cells and
stromal compartments may help delineate intricated metabolic pathways and exploit
them for novel anticancer therapies.
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