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Abstract Crop yield prediction during the growing season is important for crop
income, insurance projections and even ensuring food security. Yet, modeling crop
yield is challenging because of the complexity of the relationships between crop
growth and the interrelated predictor variables. This research work employed
artificial intelligence (AI) technique for rice and potato crop yield prediction model
in the region of Tarakeswar block, Hooghly District, West Bengal, for rice and
potato. The major variables used were climatic factors, static soil parameters,
available soil nutrient, agricultural practice parameters, farm mechanization, terrain
distribution and socioeconomic condition. The analyzed datasets covered 2017 to
2018 seasons and were split into two parts with seventy percent data used for model
training and the remaining thirty percent for validation. The mean rice and potato
yield obtained from the seventy-farm plot location was about 4.68 t/ha and 18.67 t/
ha, whereas the artificial neural networks (ANN) model estimated with 97%
accuracy and R2 value of both the crop is 0.93 and 0.94 with an RMSE of 0.29 t/ha
and 1.34 t/ha, respectively. Deep neural networks (DNN) outperformed among the
three model, where only support vector machine (SVM) had a sound performance
for the training data but low for the validation dataset due to overfitting problem
within RMSE and R2 value. The optimized DNN model produced the highest
prediction accuracy 98% for rice and potato crop (RMSE = 0.20 ton/ha and 0.95 t/
ha; R2 = 0.98 and 0.97, respectively), which indicates good correlation between the
field-measured crop yield and estimated yield. These adopted methodology for
prediction crop yield to provide recommendation to the farmers, decision makers
and stakeholders can make farming more efficient and profitable.
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1 Introduction

Agriculture is backbone of the many developing countries of their socioeconomic
development and plays important role in the food management and food security
[1]. Climate change, soil variability, water use efficiency, precipitation, humidity,
topography, crop practice, weeds, pests and biotic stress, etc., are criteria for
monitoring crop yield [2]. Crop yield forecast in precision agriculture study is well
thought-out of highly significance for optimization of profit and maximization of
crop production. Once the yield is location-specifically projected, the farm inputs
such as irrigation, pesticide, mechanization and fertilizers supply could be applied
variably according to the accepted soil status and crop requirements. Consequently,
it is essential to have tools that facilitate to supervise crop growth and estimation
crop yield. Ensuring the management of food demand requires proper monitoring,
forecasting and estimating agricultural production for the land parcel [3].
Site-specific crop management (SSCM) dealing with precision agriculture
(PA) approach that is measuring, observing and responding to inter- and intra-field
spatial variability in soils and crops. Precision agriculture study requires more
intensive data collection and information, processing in real time and space to take
better crop production decisions of farm inputs, maintaining environmental quality
[4]. Whipker and Akridge [5] include growth in demand for both technological
advances and information supervision services such as, global positioning system
(GPS) auto steering guidance (e.g., Real-Time Kinetic technology), fertilizer,
variable rate irrigation and robotics, sprayer controllers and real-time decision
making based on sensor networks and remote sensing. A reliable and accurate
forecasting model for crop yields is of crucial importance for efficient decision
making process in the agricultural sector. Here, widely adopted machine learning
algorithms in crop yield prediction such as decision trees RF classification [6],
support vector machines (SVMs) [7], naïve Bayes [8], k means clustering [9],
supervised Kohonen networks (SKNs) [10], eXtreme gradient boosting (XGBoost)
[11], light gradient boosting machine (LightGBM) [12], artificial neural networks
(ANNs) [13], genetic algorithms (GAs) [14] and ensemble deep neural networks
[15] have been used successfully on remotely sensed information in cultivation with
high precision. Crop yield modeling is challenging because of the difficulty of the
interaction between crop growth and inter- or intra-predictor variables. ANN
applied for determining target corn yields using soil properties [16, 17]. According
to Noack et al. [18], ANN model is a special network structure with self-adaptive
and self-map organizations which contribute to better crop yield estimation as
compared to other traditional linear and nonlinear approaches.

The objective of this research work was to deploy three artificial intelligence
techniques, SVM, DNN and ANN, as an ordered and monitoring instrument to
develop yield prediction model for rice and potato crop in Tarakeswar block,
Hooghly, West Bengal, India.
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2 Materials and Methods

2.1 Support Vector Machines

Support vector machine (SVM) is a statistical non-parametric, supervised learning
approach to classify heterogeneous data that can also be used for regression. SVM
is basically designed for binary classification with higher accuracy but can be
extended for classification of multiple classes using pair-wise coupling techniques
[19]. Main target of the SVM learner has the optimal separation hyperplane (OSH),
which is a judgment periphery between classes that reduces classification error in
training by having the upper limit margin and afterward generalize to invisible data
by kernel functions [20]. According to Vapnik [21], SVM characteristics with
nonlinear kernel method is used for model fitting and control the hyperplanes
individually grouping sample.

2.2 Artificial Neural Network (ANN)

ANN model applicable between input and output dataset where the data set consists
of a linear and highly nonlinear relationship. ANN architecture work out multi-
faceted problems with one input layer, one output layer and zero or more hidden
layer(s). The ANN model has been used for different crop yield prediction such as,
rice [22], wheat [16], potato [23], bitter melon [24], corn and soybean [25] and
maize [26]. The popularity of SVM is due to its several promising characteristics,
such as the kernel trick and structural risk minimization principle [27]. A robust
ANN model relies on the appropriate collection of inputs and of representative
training and testing datasets. One hidden layer neural network structure to predict
rice and potato yield using input variable on climate, soil and farm practice man-
agement [28]. The simulation of the neural network process learning two phases:
(I) training the network with known datasets and (II) testing the trained network for
model generalization with the validation purpose. The study set of the Levenberg–
Marquardt algorithm for chosen to train the selected multilayer perceptron
(MLP) whose computations and analyzes inbuilt function into the MATLAB nn
toolbox. A single layer of output neuron and a single hidden neuron consists of
MLPs structure. The MLP function Y essential adjusted across the subsequent
linear grouping of multivariate calculation [29] (Eq. 1).

Y x;x; bð Þ ¼ G2

X
j
xjG1

X
ij
xijxi þ bj

� �
þ b

h i� �
ð1Þ

where x indicates ith-dimensional involvement trajectory, j represents number of
hidden neurons, x and b are neural weights and biases. The sigmoid tangent
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activation function G1 and the linear activation function G2 [30], are computed as
follows (Eq. 2)

G1ðnÞ ¼ 2
1þ expð�2nÞ � 1

G2ðnÞ ¼ n
ð2Þ

where n represents weighted sum of evidence from the previous layer of neurons.
The Levenberg–Marquardt backpropagation optimization algorithm [31] cou-

pled with Bayesian regulation used to train MLPs modifies the usual cost function
Fe (the sum of squared errors) by considering an additional term, namely the sum of
squared neural weights Fx: (Eq. 3).

F ¼ aFe þ cFx ð3Þ

where a and c are objective function parameters automatically set at their optimum
values by the Bayesian regularization proposed by MacKay [32]. Bayesian regu-
lation reduces variance errors because the minimization constrains the weights to
small values.

Artificial neural network (ANN) structure was preset up to predict rice and
potato yield using inputs twenty-one criteria with 10 number of hidden neurons.
The target values consider as yield values for the ANN models in each crop. Error
backpropagation (EBP) algorithm training by randomizing the network weights and
training set order in the ANNs [33]. Under the EBP algorithm, models are
instantiated. All the data were normalized to scale of 0–1 for use in the ANN model.
The ANN model was trained and tested with measured yield data (obtained from
farmers) from 2017 and 2018 (sites were divided into 70% of training versus 30%
of testing sites). In a preliminary analysis, the choice of the variables appeared more
significant than the number of neurons in the hidden layer. The most adequate
combination of variables was thus searched using three hidden neurons, and the
optimum number of neurons in the hidden layer was determined afterwards. All
variables were tested individually. The one that yielded the highest model perfor-
mance was selected.

2.3 Deep Neural Network

Generic AI techniques infrequently have difficulties with overfitting that can be
resolved through a demanding optimization method in a deep network architecture
which overcome the problem of local minima. Backpropagation algorithm
improves accuracy through backward and forward optimization. In these courses,
suitable activation functions, such as rectified linear units (ReLU) and sigmoid
managed the delinquent of vanishing gradients of loss functions, through the
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backpropagation development. The parameter optimization model used for tuning
of our DNN model. The ‘activation’ function a() is liable for the network scheme’s
nonlinearity, and designs the real line to nearly subclass of it. We use the linear
activation function (ReLU) found to substantially improve performance over earlier
alternatives [34], (Eq. 4):

f xð Þ ¼ 0 for x\0
x for x� 0

�
ð4Þ

which is a variant of the ReLU: a() ()x x = max 0.
Methods that we used for training neural networks and implemented in the

TensorFlow Keras sklearn packages in Jupyter notebook. 70% data is spilt into
training and testing data for model validation with ‘adam optimization algorithm’
MSE loss function [35]. This loss function is reduced through gradient descent
backpropagation algorithm with an iterative method [36] (Eq. 5).

R ¼ ðc�ŷ Þ2 þ khTh ð5Þ

where h � vec b;C1;C2; . . .;CL
� �

and k denoted tunable hyperparameter. Greater
values of k lead character unbending fits, while values close to zero will typically
reason overfitting in higher networks.

2.4 Performance of Model Evaluation

After calibration and validation of the SVM, DNN and ANN model, variables of
each farm plot was laid into the model for crop yield prediction per unit area. The
performance of the model is evaluated by calculating the root mean square error
(RMSE), which gives an estimate of the standard deviation of the residuals (pre-
diction errors), as follows (Eq. 6)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 Z � ðZ�

i Þ2
� �

n

vuut ð6Þ

where Zi = observed value of the ith observation; Z�
i is the predicted value of the ith

observation; and n = number of points collected. The RMSE tends to place more
emphasis on larger errors and, therefore, gives a more conservative measure than
the mean absolute error [37].
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2.5 Study Region

The study region covers with a total area of 119.93 km2 is located between 22.89°
N latitude and 88.02° E longitude and mean elevation of the area is approximately
40 m above sea level (Fig. 1). In the 2011 census, total population of the area was
179,148. The study area is located on old alluvial agro climatic zone. Major
growing field crop in kharif season is rice and rabi season is potato. The cropping
intensity of the study area is very high and total land use for crop cultivation
63.85%. The total irrigated area was 11,828 ha [38]. The region characterized by
moist subhumid type climate with higher growing period of 180–210 days as result
of relatively high rainfall and relative humidity, low PET, warm temperature and
low relief. The average annual rainfall of 1350–2500 mm and annual temperature
ranging from 10 to 41 °C [39].

2.6 Data Acquisition

In the study area, rice and potato yields are affected by many factors, such as climatic
factor, water use efficiency, biotic stress, soil conditions, farm mechanization, terrain
distribution and socioeconomic condition. These factors should be measured using
appropriate index. A reconnaissance survey of the study area was made in advance
of the farming zone for total twenty-one factor such as, soil pH, electrical conduc-
tivity (EC), soil organic carbon (SOC), soil texture (ST), available nitrogen (N),
available phosphorus (P), available potassium (K), available zinc (Zn), seed rate,
mechanization level, irrigation, drainage, pesticide rate, pest affected, source of
irrigation, FYM uses, farmer status, NDVI for rice and SAVI or potato, precipitation,
temperature, slope and elevation. Various open-source spatial data and secondary
information were collected for the proposed crop yield prediction analysis. The

Fig. 1 Study area map
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elevation and slope degree map of the study area has been produced from the digital
elevation model (DEM)—spatial resolution of 30 � 30 m extracted from
SRTMGL1_003 in Google Earth Engine code editor. Climatic data TRMMmonthly
precipitation and temperature data MOD11A1in degree in acquired by the GEE API.

2.7 Image Processing

In our study, GEE utilized the spatial resolution of 10 m Sentinel-2B Multi-Spectral
Instrument, Level-1C, Descending direction and orbit number 33, images with filter
metadata for rice 2017-10-01 to 2017-10-30 and for potato 2018-01-15 to
2018-02-15, less than 5% cloud cover images using for rice growing season NDVI
and potato season SAVI analysis in the study area [40, 41]; (Eqs. 7 and 8).

NDVI ¼ NIR�REDð Þ= NIRþREDð Þ ð7Þ

SAVI ¼ 1:5 NIR� REDð Þ= NIRþREDþ 0:5ð Þ ð8Þ

where NIR = near infrared band (band 8), R = red band (band 4).
Vegetation indices (Vis) were verified to be one of the maximum effective

indicators of crop growing conditions in the study area. NDVI and SAVI have been
widely used in crop monitoring and crop yield applications [42]. We trained the
classifiers based on a subset of the farmers’ declarations. Ground truth data ac-
quired via field inspection were used to develop the models. All parameters are
well-defined for reclassifying raster datasets then the extracted value for further
analysis using ArcGIS 10.5 software.

2.8 Yield Data

Average crop yield information and non-spatial attributive data of each and every
farm plot was derived from field survey during post-harvest periods using GPS
ground truth point coordinate order. For yield map generation, kriging interpolation
was selected because it is a non-biased method for predicting the values of criteria
between the data points assessed using ArcGIS spatial analyst tools with natural
breaks jeans method.
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2.9 Soil Nutrient Analysis

Between the years of 2017 and 2018, a soil survey was conducted in the study area,
resulting in a detailed within each agricultural farm site; seventy soil samples were
collected at five evenly distributed points and then mixed thoroughly to obtain a
representative sample according to procedures laid out in the Soil Survey Manuals
[43]. Soil samples were collected at depths of 0–30 cm from the study area with the
special soil auger system. All sampling positions were located by GPS measure-
ments (GPS III Plus, Garmin, Olathe, Kansas, USA). All seventy soil samples were
air-dried, crushed, and then passed through a 2.0 mm sieve and the resulting fine
earth (<2.0 mm) was retained for further analysis. Measured soil chemical prop-
erties included pH (in water, soil/solution ratio of 1:2.5); available nitrogen,
determined using Kjehldahl method [44]; available phosphorus (P), determined
using the Olsen method [45]; organic carbon (SOC), determined by Walkely and
Black method [46]; available zinc, determined by DTPA method with estimation by
Perkin Elmer Atomic Absorption Spectrophotometer (AAS) in ppm. Percentages of
sand (>50 lm), silt (2–50 lm) and clay (<2 lm) were determined and used to
identify the textural class from the textural USDA triangle using hydrometer [47].

3 Results and Discussion

3.1 Accuracy of Yield Prediction

3.1.1 SVM

SVM-based classification models were used for the yield prediction of rice and
potato crop. Experiments have been conducted involving one-against-one
multi-classification method, k-fold cross validation and polynomial kernel func-
tion for SVM training with the result 95% accuracy level. The model used the
residuals values to check model performance and reviewed after training a model,
based on the difference between the predicted and true responses in terms of the
trend of regression models. After training a regression model, check the predicted
response versus record number. Then SVM cross validate results verified the pre-
diction errors for investigating the predicted and true responses without using the
corresponding observation. The SVM model produced the least prediction accuracy
for rice and potato (RMSE = 1.09 ton/ha and 5.59 t/ha) crop, respectively (Tables 1,
2 and 3).
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3.1.2 ANN

The supervised ANN was trained with the twenty-one input predictor variables and
output yield classes with ten hidden neurons multi-perceptions layer. The best
results were structured along with optimum parameters of the artificial neural
network modeling for estimating crop yield. In order to test the ability of the neural
networks, cross validation was used by leaving 30% of all samples randomly so that
after training on the 70% samples, the prediction was verified on this set (Fig. 2,
Table 3). In the other hand, ANN model performance of the training, testing and
validation performance showing in regression plot gave better agreement than other
models (Fig. 2) with 97% accuracy, and R2 value of both the crop are 0.93 and
0.94, respectively. The best overall results for the prediction of rice and potato yield
in cross validation and independent validation were obtained from the ANN

Table 1 Area statistics for rice yield measured and predicted

Rice t/ha Measured Predicted

Area in ha Area in % Area in ha Area in %

<3 17.28 6.15 23.63 8.40

3–4 42.45 15.10 80.43 28.61

4–5 177.01 62.96 97.62 34.72

>5 44.38 15.79 79.45 28.26

Total 281.12 100.00 281.12 100.00

Table 2 Area statistics for potato yield measured and predicted

Potato t/ha Measured Predicted

Area in ha Area in % Area in ha Area in %

<10 5.38 1.91 51.06 18.16

10–15 63.17 22.47 62.12 22.10

15–20 136.99 48.73 109.06 38.80

>25 75.58 26.88 58.87 20.94

Total 281.12 100.00 281.12 100.00

Table 3 Yield prediction performances of SVM, ANN and DNN model

Model Accuracy % RMSE R2 Mean predicted
yield t/ha

Rice Potato Rice Potato Rice Potato Rice Potato

SVM 95 95 1.09 5.59 0.89 0.90 4.01 18.15

ANN 97 97 0.29 1.342 0.93 0.94 4.74 18.28

DNN 98 98 0.20 0.95 0.98 0.97 4.98 26.8

Note SVM—support vector machine; ANN—artificial neural network; DNN—deep neural
network; RMSE—root mean square error
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networks for the prediction of the low-yield category. The accuracy of prediction
reached 97% for both cross validation and independent validation (Table 3). Yield
maps the distinction finding between measured and predicted yield is revealed
(Fig. 3), where the predicted yield is classified into four groups for rice, as high
yield (>5 t/ha), moderate yield (4–5 t/ha), marginal yield (3–4 t/ha) and low yield
(<3 t/ha); same way for potato yield classes as high yield (>20 t/ha), moderate yield
(15–20 t/ha), marginal yield (10–15 t/ha) and low yield (<10 t/ha) built on four
equal class of the yield datasets (Tables 1 and 2). High spatial similarity between
the measured and the predicted yield for both the crops (Figs. 3 and 4).

Matsumura et al. [48], reported a close relationship between the predicted yield
and the measured yield for maize cultivation in Jilin, China, where the fertilizer and
climate variable as a good predictor. Papageorgiou et al. [49] presented that yield
classification of field into four different yield categories based on combination of
superior predictor variable such as soil, climate and vegetation indices, terrain
distribution, local practice and socioeconomic. Uno et al. [50] have utilized remote
sensing vegetation indices as crop parameters for predict yield maps similar to our
study, where vegetation indices are used, NDVI for rice and SAVI for potato crop
as a predictor for crop yield estimation. Area statistics were derived for rice and
potato cultivation in Tarakeswar block, Hooghly District for different crops yields,

Fig. 2 ANN model performance in training testing and validation sample a, b, c rice; d, e, f potato
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Fig. 3 Crop yield maps estimated by ANN model for rice and potato a rice measured b rice
predicted c potato measured d potato predicted

Fig. 4 Model loss progression during training/validation for a rice and b potato crop
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the total area under rice and potato cultivation was also estimated as 281.12 ha
(Fig. 3; Tables 1 and 2).

3.1.3 DNN

Srivastava et al. [51] reported that the DNN model output result accuracy improved
for crop yield prediction depending upon by fine tuning of hyperparameters opti-
mization level, activation function, layer structure, loss function, intensive opti-
mizer and drop-out ratio. The optimized DNN model produced the highest
prediction accuracy for rice and potato (RMSE = 0.20 ton/ha and 0.95 t/ha) with
best 98% accuracy for both the crops, respectively (Table 3). Computation power of
DNN model is very high due to optimizing the model in local minima within the
loss surface. One set of mini batches containing the entire dataset is called ‘epoch.’
Our research work has 30 epochs and batch size 25 to model progression during
training validation process for potato and rice crop yield prediction 26.8 and 4.98 t/
ha in the study area with the good predictor for yield (Fig. 4).

4 Discussion

These adopted methodology for prediction of rice and potato yield help to provide
recommendation to the farmers, decision makers and stakeholders, to take decisions
that can make their farming more efficient and profitable [52]. The mean rice and
potato yield obtained from the farm plot location was about 4.68 and 18.67 t/ha,
whereas the ANN model estimated average rice and potato was 4.74 and 18.28 t/ha.
The R2 value was found to be 0.933 (93.3%) and 0.941 (94.1%) with an RMSE of
0.29 and 1.34 t/ha and, which indicates that there is good correlation between the
field-measured crop yield and estimated yield. Deep neural networks (DNN) out-
performed among the three model; where only support vector machine (SVM) had a
sound performance for the training data but low for the validation dataset due to
overfitting problem within RMSE and R2 value. DNN model was very well pre-
dicting crop yield with low RMSE for the validation dataset nearly for the rice crop
(4.98 t/ha) and potato crop (26.98 t/ha) of their respective average yield values. For
validation, estimated crop yield values obtained from the model were compared
with the field yield value. Training and validation of the model derived the best
combination of parameters for estimation of rice and potato crop yield. The scatter
plot of the ANN for the predicted versus actual rice and potato yields of training,
testing and validation showed better agreement in models’ estimation. Deliberating
this content by field examination with the local farmer, and it was exposed that
although the low yield zones was acidic soil, low organic carbon, high electrical
conductivity, low mechanization level and pest affected issue was accountable for
the low yield class in the affected zones.
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5 Conclusion

A powerful AI technique, integration of SVM, ANN and DNN, provides an
effective tool to crop yield prediction and assesses the contribution of each aspect to
the target crop yield. Non-influencing factors are adjusted by the weights of the
ANN. Two other AI classifiers, SVM and DNN, were shown to be powerful for the
classification and crop yield prediction; however, the remarkable results of AI on
the agricultural sector enhance in precession agriculture methodologies. Hence, this
tool helps the farmers, decision makers and stakeholders take decisions that can
make their farming more efficient and profitable. This research tries to establish an
intelligent information and crop yield prediction accuracy analysis in sustainable
agriculture development. Future studies AI may concentrate on the calibration and
trying of this model in macro-level region of organizing data from systematic
ground observations, ground sensors, climate, UAV and RADAR remote sensing.
Generalized prediction models for diverse crops utilizing parameters development
of operational, real-time calculate optimum N rate prediction, crop water stress, like
leaf area index, potential evapotranspiration, chlorophyll content, etc., can be
developed on same lines for yield forecast.

References

1. Prasad, A.K., Chai, L., Singh, R.P., Kafatos, M.: Crop yield estimation model for IOWA
using remote sensing and surface parameters. Elsevier Int. J. Appl. Earth Obs. Geoinf. 8,
26–33 (2006)

2. Singha, C., Swain, K.C., Swain, S.K.: Best crop rotation selection with GIS-AHP technique
using soil nutrient variability. Agriculture 10, 213 (2020)

3. Bingfang, W., Qiangzi, L.: Crop area estimation using remote sensing on two-stage stratified
sampling. Int. Soc. Photogrammetry Remote Sens. (ISPRS) 20, 12–23 (2004)

4. Mulla, D.J.: Twenty five years of remote sensing in precision agriculture: key advances and
remaining knowledge gaps. Biosys. Eng. 114(4), 358–371 (2013). https://doi.org/10.1016/j.
biosystemseng.2012.08.009

5. Whipker, L.D., Akridge, J.D.: Precision agricultural services dealership survey results. Staff
paper. Dept. Agricultural Economics, Purdue University, W. Lafayette, IN, USA (2006)

6. Gyamerah, S.A., Ngare, P., Ikpe, D.: Crop yield probability density forecasting via quantile
random forest and Epanechnikov Kernel function (2019). ArXiv: abs/1904.10959

7. Virnodkar, S.S., Pachghare, V.K., Patil, V.C., Jha, S.K.: Remote sensing and machine
learning for crop water stress determination in various crops: a critical review. Precision
Agric. (2020). https://doi.org/10.1007/s11119-020-09711-9

8. Kaur, S., Kalsi, S.: Analysis of wheat production using Naïve Bayes classifier. Int. J. Comput.
Appl. 178(14), 0975–8887 (2019)

9. Shidnal, S., Latte, M.V., Kapoor, A.: Crop yield prediction: two-tiered machine learning
model approach. Int. J. Inf. Technol. (2019). https://doi.org/10.1007/s41870-019-00375-x

10. Pantazi, X.E., Moshou, D., Alexandridis, T., Whetton, R.L., Mouazen, A.M.: Wheat yield
prediction using machine learning and advanced sensing techniques. Comput. Electron.
Agric. 121, 57–65 (2016). https://doi.org/10.1016/j.compag.2015.11.018

Rice and Potato Yield Prediction Using … 197

http://dx.doi.org/10.1016/j.biosystemseng.2012.08.009
http://dx.doi.org/10.1016/j.biosystemseng.2012.08.009
http://dx.doi.org/10.1007/s11119-020-09711-9
http://dx.doi.org/10.1007/s41870-019-00375-x
http://dx.doi.org/10.1016/j.compag.2015.11.018


11. Zhang, W., Quan, H., Srinivasan, D.: Parallel and reliable probabilistic load forecasting via
quantile regression forest and quantile determination. Energy 160, 810–819 (2018)

12. Cao, J., Zhang, Z., Tao, F., Zhang, L., Luo, Y., Han, J., Li, Z.: Identifying the contributions of
multi-source data for winter wheat yield prediction in China. Remote Sens. 12(5), 750 (2020).
https://doi.org/10.3390/rs12050750

13. Kim, N., Ha, K.-J., Park, N.-W., Cho, J., Hong, S., Lee, Y.W.: A comparison between major
artificial intelligence models for crop yield prediction: case study of the midwestern United
States, 2006–2015. ISPRS Int. J. Geo Inf. 8(5), 240 (2019). https://doi.org/10.3390/
ijgi8050240

14. Martin, C.M.: Crop yield prediction using artificial neural networks and genetic algorithms
(2009). http://purl.galileo.usg.edu/uga_etd/martin_charles_m_200912_ms, http://hdl.handle.
net/10724/26098

15. Khaki, S., Wang, L.: Crop yield prediction using deep neural networks. Front. Plant Sci. 10,
621 (2019)

16. Norouzi, M., Ayoubi, S., Jalalian, A., Khademi, H., Dehghani, A.A.: Predicting rainfed wheat
quality and quantity by artificial neural network using terrain and soil characteristics. Acta
Agriculturae Scandinavica, Sect B—Soil Plant 60(4), 341–352 (2010)

17. Drummond, S.T., Sudduth, K.A., Joshi, A., Birrell, S.J., Kitchen, N.R.: Statistical and neural
methods for site-specific yield prediction. Trans. ASAE 46(1), 5–14 (2003)

18. Noack, S., Knobloch, A., Etzold, S., Barth, A., Kallmeier, E.: Spatial predictive mapping
using artificial neural networks. Int. Arch. Photogrammetry, Remote Sens. Spatial Inf. Sci. 40
(2), 79 (2014)

19. Khobragade, A., Athawale, P., Raguwanshi, M.: Optimization of statistical learning algorithm
for crop discrimination using remote sensing data. In: 2015 IEEE International Advance
Computing Conference (IACC), pp. 570–574 (2015)

20. Pal, M., Mather, P.M.: Support vector machines for classification in remote sensing. Int.
J. Remote Sens. 26(5), 1007–1011 (2005)

21. Vapnik, V.: Statistical Learning Theory. Wiley, New York, NY, USA (1998)
22. Gandhi, N., Petkar, O., Armstrong, L.J.: Rice crop yield prediction using artificial neural

networks. In: IEEE Technological Innovations in ICT for Agriculture and Rural Development
(TIAR), Chennai, pp. 105–110 (2016)

23. Fortin, J.G., Anctil, F., Parent, L., et al.: Site-specific early season potato yield forecast by
neural network in Eastern Canada. Precision Agric. 12, 905–923 (2011). https://doi.org/10.
1007/s11119-011-9233-6

24. Marizel, B.V., Louella, M., Salenga, M.: Bitter melon crop yield prediction using machine
learning algorithm. Int. J. Adv. Comput. Sci. Appl. (IJACSA) 9(3) (2018). https://doi.org/10.
14569/IJACSA.2018.090301

25. Kross, A., Znoj, E., Callegari, D., Kaur, G., Sunohara, M., van Vliet, L., McNairn, H.:
Evaluation of an artificial neural network approach for prediction of corn and soybean yield.
In: Proceedings of the 14th International Conference on Precision Agriculture, Montreal, QC,
Canada, pp. 24–27 (2018)

26. Adisa, O.M., Botai, J.O., Adeola, A.M., Hassen, A., Botai, C.M., Darkey, D., Tesfamariam,
E.: Application of artificial neural network for predicting maize production in South Africa.
Sustainability 11, 1145 (2019)

27. Vapnik, V.N.: An overview of statistical learning theory. IEEE Trans. Neural Netw. 10(5),
988–999 (1999)

28. Liu, J., Goering, C.E., Tian, L.: A neural network for setting target corn yields. Trans. ASAE
44, 705 (2001). https://doi.org/10.13031/2013.6097

29. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal
approximators. Neural Netw. 2(5), 359–366 (1989)

30. Yonaba, H., Anctil, F., Fortin, V.: Comparing sigmoid transfer functions for neural network
multistep ahead streamflow forecasting. J. Hydrol. Eng. 15(4), 275–283 (2010)

31. Coulibaly, P., Anctil, F., Bobée, B.: Daily reservoir inflow forecasting using artificial neural
networks with stopped training approach. J. Hydrol. 230, 244–257 (2000)

198 C. Singha and K. C. Swain

http://dx.doi.org/10.3390/rs12050750
http://dx.doi.org/10.3390/ijgi8050240
http://dx.doi.org/10.3390/ijgi8050240
http://purl.galileo.usg.edu/uga_etd/martin_charles_m_200912_ms
http://hdl.handle.net/10724/26098
http://hdl.handle.net/10724/26098
http://dx.doi.org/10.1007/s11119-011-9233-6
http://dx.doi.org/10.1007/s11119-011-9233-6
http://dx.doi.org/10.14569/IJACSA.2018.090301
http://dx.doi.org/10.14569/IJACSA.2018.090301
http://dx.doi.org/10.13031/2013.6097


32. MacKay, D.J.C.: Bayesian interpolation. Neural Comput. 4, 415–447 (1992)
33. Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice Hall, Upper

Saddle River, NJ (1999)
34. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In:

Proceedings 27th International Conference on Machine Learning (ICML-10), pp. 807–814
(2010)

35. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014). arXiv [preprint]
arXiv:1412.6980

36. Crane-Droesch, A.: Machine learning methods for crop yield prediction and climate change
impact assessment in agriculture. Environ. Res. Lett. 13, 114003 (2018)

37. Webster, R., Oliver, M.A.: Geostatistics for Environmental Scientists. John Wiley and Sons,
Brisbane, Australia (2001)

38. UNDP.: District human development report (HDR): Hooghly (2011). Development and
Planning Department Government of West Bengal (2011)

39. Swain, K.C., Zaman, Q., Jayasuriya, H.P.W., Fang, J.: Estimation of rice yield and protein
content using remote sensing images acquired by radio controlled unmanned helicopter.
2008 Providence, Rhode Island, June 29–July 2, 2008 (2008)

40. Huete, A.R.: A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 25, 295–309
(1988)

41. Tucker, C.J.: Red and photographic infrared linear combinations for monitoring vegetation.
Remote Sens. Environ. 8, 127–150 (1979)

42. Sitokonstantinou, V., Papoutsis, I., Kontoes, C., Arnal, A., Andrés, A.P., Zurbano, J.A.:
Scalable parcel-based crop identification scheme using sentinel-2 data time-series for the
monitoring of the common agricultural policy. Remote Sens. 10(6), 911 (2018). https://doi.
org/10.3390/rs10060911

43. Soil Survey Division Staff.: Soil. In: Survey Manual (Indian Print), Hb. No. IS, USDA,
Washington, D.C (2000)

44. Subbaiah, B.V., Asija, G.L.: A rapid procedure for determination of available nitrogen in soil.
Curr. Sci. 25, 259–260 (1965)

45. Olsen, S.R., Cole, C.V., Watanabe, F.S., Dean, L.A.: Estimation of available phosphorus in
soils by extraction with sodium bicarbonate. USDA Circular 939. Washington D.C (1954)

46. Walkley, A., Black, L.A.: An examination of datjareff method for determining soil organic
matter: and a proposed modification of the chromic acid titration method. Soil Sci. 37, 29–38
(1934)

47. USDA.: Agricultural research service, soil texture classification. Department of Biological
System Engineering, Washington State University, USA (1980)

48. Matsumura, K., Gaitan, C.F., Sugimoto, K., Cannon, A.J.: Maize yield forecasting by linear
regression and artificial neural networks in Jilin, China. J. Agric. Sci. 153, 399–410 (2015)

49. Papageorgiou, E.I., Aggelopoulou, K.D., Gemtos, T.A., Nanos, G.D.: Yield prediction in
apples using fuzzy cognitive map learning approach. Comput. Electron. Agri. 91, 19–29
(2013)

50. Uno, Y., Prasher, S.O., Lacroix, R., Goel, P.K., Karimi, Y., Viau, A., Patel, R.M.: Artificial
neural networks to predict corn yield from compact airborne spectrographic imager data.
Comput. Electron. Agri. 47(2), 149–161 (2005)

51. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a
simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958
(2014)

52. Singha, C., Swain, K.C., Nayak, L.: Flood susceptibility mapping through the GIS-AHP
technique using the cloud. ISPRS Int. J. of Geo-Inform. 9(12), 720 (2020)

Rice and Potato Yield Prediction Using … 199

http://dx.doi.org/10.3390/rs10060911
http://dx.doi.org/10.3390/rs10060911

	9 Rice and Potato Yield Prediction Using Artificial Intelligence Techniques
	Abstract
	1 Introduction
	2 Materials and Methods
	2.1 Support Vector Machines
	2.2 Artificial Neural Network (ANN)
	2.3 Deep Neural Network
	2.4 Performance of Model Evaluation
	2.5 Study Region
	2.6 Data Acquisition
	2.7 Image Processing
	2.8 Yield Data
	2.9 Soil Nutrient Analysis

	3 Results and Discussion
	3.1 Accuracy of Yield Prediction
	3.1.1 SVM
	3.1.2 ANN
	3.1.3 DNN


	4 Discussion
	5 Conclusion
	References


