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Abstract Algal biomass, which contains a range of biochemical components such
as carbohydrates, lipids, and protein, has emerged as a possible alternative to
traditional feedstocks for third-generation biofuel production and industrially high
value-added bioproduct extraction. Micro- and macro-algae are gaining popularity
as viable feedstock for biofuels such as biodiesel, biogas, bioethanol, and
biohydrogen. Other high-value-added bioproducts must be extracted from algal
biomass under the biorefinery concept to improve the economic feasibility of algal
biofuel production. In this chapter, techniques for algal biofuel production are
discussed, such as biochemical and chemical conversion routes, extraction of
bioproducts, and advanced techniques in cultivation, extraction, and starch sacchar-
ification along with biofuel and bioenergy conversion schemes. Overall, micro-and
macro- algae biorefineries open up new possibilities for many new products. The
multiproduct biorefinery technique is expected to make micro-and macro-algal
technology highly competitive and pave the way for large-scale applications.
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Nomenclature

CBP  Consolidated bioprocessing

GHG  Greenhouse gases

ORP  Open raceway pond

SHF  Separated hydrolysis and fermentation

SSCF  Simultaneous saccharification and co-fermentation
SSF Simultaneous hydrolysis and fermentation

ppm  Part per million

dw Dry weight

PLE Pressurized liquid extraction

SFE Supercritical fluid extraction

12.1 Introduction

Over the last few decades, unrestricted population growth, rapid industrialization,
and economic development have resulted in an escalation of the global energy crisis
and, as a result, exponential deterioration in non-renewable energy resources such as
coal, natural gas, and oil. In addition to the energy crisis, the prolonged use of
petroleum-based fuels has resulted in pollution and global climate change. Crude oil
(34%), coal (28%), and natural gas (23%) have all contributed significantly to global
energy generation [1]. Furthermore, the overabundance of plentiful non-renewable
resources has resulted in excess greenhouse gases (GHG) such as CO,, CH,, and
others, resulting in global climate health being disrupted. Global temperature has
been reported to be rising at an alarming rate of 0.07 °C per year, with CO, levels
increasing at a rate of 3 ppm per year, with the maximum level being 410 ppm
[1]. Researchers are seeking alternative resources that are less destructive to the
environment and economically affordable. Renewable energy options have been on
the experts’ radar for the past decade [2—4].

In this chapter, extraction of energy products in a usable form from natural
sources is referred to as primary energy production, for example, in coal mines,
crude oil fields, and hydropower facilities [5]. Aside from that, renewable energy
resources are receiving much attention in developed countries. For example, the
European Union has maintained its 2030 mandatory objective of 27%, which was
pushed backward in 2014 to 32% in June 2018 [4, 6]. At the same time, the US is
working to improve renewable energy resources.

One of the critical motivations for using renewable energy resources is to
consider ecologically favorable energy sources. Environmental awareness is high
for the world population at this time; it is believed that previous reliance on fossil
fuels has resulted in carbon dioxide (CO,) emissions, greenhouse gas (GHG)
concerns, and pollution [4].
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Fig. 12.1 Third generation biorefinery with biofuels and other high value-added compounds

Nowadays, research has investigated alternate sources of clean biofuels derived
from renewable sources that are referred to as first-generation, second generation,
and third generation. Biological biofuels are produced by biological routes like
pretreatment, harvesting, and biochemical conversion processes under the
biorefinery concept.

Biofuels like bioethanol, biodiesel, and biogas are considered clean and renew-
able. Each has massive advantages over other fuels like environmentally friendly,
low toxicity, and low burn pollutant environments for replacing fossil fuels [3]. They
can be produced from sugarcane, corn starch, and other cellulosic feedstocks.
However, although these feedstocks are less expensive than fossil fuels, their use
can influence food costs [7]. Therefore, researchers are examining alternative
sources, which do not affect the food chain and agriculture.

Micro- and macro-algal biofuels are considered to be renewable and sustainable
energy sources. Micro- and macro-algae are recognized as superior biomass as
compared to terrestrial plants—in terms of solar energy storage, nutrient assimila-
tion, and potential for biofuel production—due to significant advantages such as
higher photosynthetic efficiency, higher biomass yield and rates, and reduced toxic
gas emissions in the environment [8]. Micro- and macro-algae provide a new path to
biomass production as a sustainable material for bioethanol and other high value-
added bioactive compounds production under the biorefinery concept, shown in
Fig. 12.1 [7, 9, 10]. For example, microalgae are tiny photosynthetic microorgan-
isms, primarily existing as small cells of about 2-200 pm and inhabitants of
freshwater, seawater, and even wastewater [11]. Microalgae efficiently convert
solar light and atmospheric carbon dioxide to produce biomass by photosynthetic
process [10, 12]. Microalgae are one of the favorable possibilities for eliminating
CO, from the atmosphere by CO, bio-fixation. Microalgae can consume CO, in
three ways: CO, from soluble carbonates, atmospheric CO,, and CO, present in the
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stack and discharge gases from industries. Microalgae are described as unicellular/
multicellular photosynthetic microscopic cyanobacteria used to produce renewable
fuels [10]. Micro- and macro-algae has significant oil content that allows biodiesel
production and energy-containing polysaccharides like starch which can be
degraded chemically or enzymatically that allows bioethanol production via
fermentation [12].

This chapter intends to provide an overview of micro-and macro-algae biomass
conversion into biofuels and other high value-added compounds in terms of the
biorefinery concept. This chapter also covers cultivation, the extraction process,
enzymatic hydrolysis, and fermentation strategies.

12.2 Biorefinery of Microalgae

12.2.1 Microalgae Overview and Growth Culture
in the Accumulation of Starch

Microalgae and cyanobacteria are photosynthetic microorganisms with a cell size of
2-200 pm [12]; they can convert solar energy into chemical energy by CO, fixation
primary carbon source [13]. There are four significant modes for microalgae culti-
vation: photoautotrophic, heterotrophic, mixotrophic, and photoheterotrophic culti-
vation [13]. Therefore, they may use another carbon source, different CO,, to
produce a large amount of biomass, containing carbohydrates, lipids, proteins [12],
high-value-added compounds such as vitamin pigments, and some organic
acids [14].

Microalgae are assimilating inorganic nitrogen and phosphorus during all their
growth phases. Nitrogen source and concentration have been reported as parameters
that significantly affect lipid yields to the inside of the microalgae. Various nitrogen
sources, such as ammonia (NH,"), nitrate (NOs;~), nitrite (NO, "), and urea
(CH4N50), can be used for the culturing microalgae, and the choice of nitrogen
source will strongly depend on the type of microalgae [15, 16]. On the other hand,
the limitation of phosphorus (PO4>") source within culture medium has negatively
impacted the formation of carbohydrates and growth rate in several microalgae
strains compared with other macronutrients [17]. Environmental parameters such
as light intensity, nitrogen, carbon nutrient levels, salinity, temperature, and others
significantly impact microalgae‘biomass and chemical composition. In general,
microalgae‘growth rate and biomass production rely primarily on nitrogen availabil-
ity in culture ingredients [18]. Under nitrogen-sufficient circumstances, the majority
of oleaginous microalgae grow faster and produce less lipid. Instead, nitrogen loss or
famine causes increased lipid accumulation in microalgae, which is most likely
related to the movement of metabolic carbon from carbohydrate and protein pro-
duction to lipid production. Thus, understanding the trade-off connection between
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microalgae biomass, lipid, and nitrogen levels in a system during the culture phase is
critical for optimizing lipid and protein synthesis, among other bioproducts [19].

Microalgae are currently contributing to the global bioeconomy by providing
significant biomass for human-related uses like pharmaceuticals, cosmetics, food,
and feed [20]. Microalgae biomass is considered potential biomass for biofuel
production, such as bioethanol, biodiesel, biohydrogen, and biomethane. Therefore,
they will play a significant role in the renewable energy sector and in the uptake of
inorganic matter [21].

Microalgae are also being studied as a viable biomass feedstock for biofuel
production and play a valuable role in the renewable energy sector. However,
cultivating microalgae to meet only world transportation fuel demands utilizing
microalgal biomass as feedstock raises various practical concerns and substantial
limits, such as high land usage, high energy, water, and fertilizer consumption. The
use of wastewater streams and seawater for microalgae growth may reduce the
consumption of inorganic fertilizer while treatment of the wastewater occurs. They
are of enormous importance due to their rich content in nutrients, which can fulfill
the microalgal cyanobacterial nutrient needs. Wastewater and seawater are charac-
terized by containing several different nutrients like carbon, nitrogen, phosphorus,
and potassium (macro-nutrients) such as Mg, S, Ca, Na, Cl, Fe, Zn, Cu, Mo, Mn, B,
and Co (micro-nutrients) [21]. It should be highlighted that wastewater streams limit
biomass applications because they may have various pollutants present in the
wastewater. Therefore, microalgae produced in wastewater can be mainly used to
make biofuels rather than food or feed applications [21]. For many years, microalgae
cultivation systems have been investigated. The factors more critical to microalgae
growth are; illumination, photoperiod, pH, carbon and nitrogen sources concentra-
tion, and temperature [22, 23].

These factors can be monitored in open raceway pond (ORP) and controlled in
closed PBRs since these devices offer suitable conditions for its investigation. The
open PBRs have been developed for large-scale microalgae cultivation because they
are easy to make and relatively simple to operate. These ORP generally use outdoors,
which permits microalgae to CO, uptake from the atmosphere with a poor mass
transfer rate inside the culture medium, higher risk of contamination, and a high
evaporation water rate. The closed PBRs are more complex systems because these
do not allow direct mass transfer between culture media and atmosphere, and its use
to pilot or large scale is usually considered nonviable by the enormous consumption
amount of energy, despite allowing to attain a higher yield of microalgae biomass
without risk of contamination, in comparison with open PBRs. When high-value-
added chemicals are manufactured, such as biopharmaceuticals, top-grade cos-
metics, and human health foods, closed PBRs are widely accessible [24]. Figure 12.2
shows photobioreactor technology used for microalgae culture.

The major challenge in PBRs design and scale-up is increasing the CO, transfer
rate in the gas-liquid interface into the microalgae suspension because microalgae
cannot directly use the CO, bubbles injected inside PBRs as the gas aerated into
solution is sparingly soluble in the culture medium. The way of dissolving CO,
bubbles in the culture medium is through decreasing the bubble diameter, which
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Fig. 12.2 Photobioreactors (PBRs) technology used for microalgae culture

increases the gas-liquid contacting area. It prolongs the retention time of the bubble
in the microalgae suspension so that the dissolved CO, can be captured by the
microalgae cells and converted into organic matter to form biomass through
photosynthesis [25].

The culturing of some microalgae like Chlorella, Dunaliella, Chlamydomonas,
Scenedesmus, and Spirulina in PBRs has massive carbohydrate amounts (>20% of
dry weight), which is excellent biomass for bioethanol production [26, 27]. Compared
with conventional crops, there are various advantages to employing microalgae for
bioenergy production, including: (1) the capacity to be farmed on marginal areas
without causing land-use change, (2) high exponential growth rates potential to
utilize CO, from industrial flue gas (1 kg of dry algae biomass uses about 1.83 kg
of CO,) and nutrients (mainly nitrogen and phosphorus) from wastewater, (3) semi-
continuous to continuous harvesting and (4) variable lipid content in the range of
5-50% dry weight of biomass [28, 29]. The accumulation of carbohydrates, fatty
acids, and pigments inside microalgae happens in the chloroplast, and this organelle
is in charge of the photosynthesis process [30]. The accumulated carbohydrate by
microalgae can be converted directly to ethanol under anaerobic conditions and dark
[31]. Table 12.1 shows the content of carbohydrates some microalgae cultivated in
PBRs, which can be used for bioethanol production.
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Table 12.1 Carbohydrate content in microalgae biomass for bioethanol production

% (g /

dry PBRs
Microalgae weight) | type Cultivation References
Tribonema sp. 14.5 Bubbles |- [32]

column
Chlorella vulgaris 51.0 Glass 2% COy/air, 28 °C, pH 6.2, agita- [33]
FSP-E vessel tion 300 rpm, and a light intensity
60 pmol. m? s~

Synechococcus 90.0 Glass 5% CO»/air (0.2 vvm), 28 °C, and a | [34]
elongatus PCC7942 vessel light intensity 200 pmol. m > s~

(transgenic cells)
Synechococcus PCC 60.0 Bubbles | 5% CO»/air, pH 8.0-8.5, 28 °C, and | [35]

7002 column | a light intensity 100 pmol. m ™2 s~"
Synechococcus 60.0 Bubbles | 1% COy/air, 38 °C, and a light [36]
sp. PCC 7002 column | intensity 250 pmol. m™> s~
Pseudochlorella sp. 36 Glass Air at 0.3 vvm, 27 °C, 150 rpm, and | [37]
Chlamydomonas 50 vessel a light intensity 60 pmol. m 2 ™!
mexicana

Chlamydomonas 23

pitschmannii

12.3 Extraction of Starch from Microalgae

Starch is a polysaccharide that consists of numerous glucose units joined by glyco-
sidic bonds, found naturally in green plants for energy storage. Starch content
depends on plant species, environmental conditions, and biotic or abiotic factors of
the aquatic ecosystem [38]. It is expected that third-generation biofuels produced
from algae and aquatic plants will become carbon-neutral since they use atmospheric
CO, for the energy acquiring process.

Most microalgae species contain around 37% of starch (Table 12.2); even some
strains such as Dunaliella, Scenedesmus, Spirulina, and Chlamydomonas can have
more than 50% starch [39].

Starch originates in the chloroplasts of microalgae as semi-crystalline granules
(Fig. 12.3). Anhydrous starch granules of mainly consist of two major unbranched,
and large polymers such as amylose, which is a linear polysaccharide composed
entirely of D-glucose units, joined by a-1,4-glycosidic linkages polymer, and amy-
lopectin, which is a branched-chain polysaccharide consisting of glucose units
linked primarily by a-1,4-glycosidic bonds, but with few «-1,6-glycosidic bonds,
that are responsible for the branching [48]. Starch in the microalgae cell requires
disruption of the outer cell wall composed mainly of pectin, agar, and alginates;
meanwhile, the inner cell wall comprises cellulose hemicellulose glycoprotein [49].

Dilute acid/alkali processes and enzymatic hydrolysis are traditional algae cell
disrupter methods; nevertheless, pressurized liquid extraction, supercritical fluid
extraction, ultrasonication, bead beating, microwave, and pulse electric fields have
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Table 12.2 Starch content in microalgae

R. Saxena et al.

Starch content (%

Microalgae weight) References
Dunaliella, Scenedesmus, Spirulina and ~50 [39]
Chlamydomonas

Tetraselmis subcordiformis 62.1 [39]
Chlorococcum sp. 26 [40]
Chlorella vulgaris 60 [41]
Chlamydomonas reinhardtii 49 [42]
Chlorella sorokiniana 40 [43]
Neochloris oleoabundans 27 [44]
Tetraselmis subcordiformis 44.1 [45]
Chlorella sp. 19.3-38.2% [46]
Oscillatoria sp. 63.85 [47]

Plasma
membrane
Mucilaginous

—

Fig. 12.3 Microalgae cell basic structure for starch localization

" sheath (outer wall)

Cell wall
(inner wall)

been evaluated as novel methods to achieve algal cell hydrolysis [12, 50]. After cell
wall hydrolysis, the soluble fraction needs to be separated from the solid fraction,
which conserves the starch content, usually by centrifugation. Water washes and the
centrifugation process should be repeated using a Percoll gradient to isolate pure
starch. Figure 12.4 summarizes the starch extraction process from microalgae.
Pressurized liquid extraction (PLE): Compared to conventional procedures, PLE
uses fewer solvents and delivers quicker extractions due to the fast mass transfer rate.
Solvents have enhanced solubility and lower viscosity due to the higher tempera-
tures, which helps boost mass transfer rates and penetration into the matrix.
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Fig. 12.4 Process stages for Microalgae
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Furthermore, while water is kept in its liquid state, a rise in temperature causes a
significant drop in the dielectric constant (¢). This number is typically used to
determine the polarity of a solvent. In this way, though water has a dielectric
constant of around 80 at room temperature when heated to 250 °C under appropriate
pressure to keep it liquid, it drops to approximately 30, equivalent to some dielectric
constants organic solvents like ethanol or methanol [51].

Supercritical fluid extraction (SFE):. Carbon dioxide is the most often used
supercritical fluid for extracting natural sources, including microalgae. Its low
critical temperature and pressure (31.1 °C and 73.8 bar) are easily attained, and it
is GRAS for the food sector, inexpensive and safe. Another unique feature of this
method is that supercritical CO, (sc-CO,) is a very selective solvent. The most
significant factors during extraction are temperature and pressure, which together
govern the density of the sc-CO,. Hence, it is the capacity to selectively remove
particular compounds from the natural matrix [51].

Diluted acid/alkali hydrothermal process: This is a chemical, non-mechanical,
cheap, and fast method for microalgae cell wall disruption. Nevertheless, it uses the
breakdown of essential compounds and produces toxic elements that usually inhibit
fermentation [52]. Acidic or alkali hydrolysis is a non-specific reaction, generally
performed with concentrations between 1 and 10% w/v and temperatures of
100-160 °C [39, 50]. These chemicals limit used in more significant amounts during
hydrolysis; then, pH adjustment before the fermentation process is needed that
releases more salt, inhibiting yeast activity [50].

Enzymatic hydrolysis: Classified as the most efficient biological and
non-mechanical pretreatment, particularly for microalgae [53], hydrolysis made by
enzymes is a costly and slow procedure but environmental-friendly. This biological
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hydrolysis often requires expensive pretreatment processes to enhance efficiency
[52]. Apart from the pretreatment and enzyme costs, enzymatic hydrolysis provides
a more specific disruption with low heating cost and no degradative effects derived
from the mild temperature and pressure used [50].

Ultrasonic treatment: Ultrasonic pretreatment is a mechanical technology that
produces alternating low- and high-pressure waves (20—100 MHz) in the aqueous
phase, causing the formation and vigorous collapse of microbubbles [52, 54]. The
microbubbles’ violent failure occurs within a few microseconds inducing the occur-
rence of cavitation. All processes generate theoretical temperatures and pressures of
up to 5000 K and 500 bar and initiate powerful hydro-mechanical shear forces and
highly reactive radicals [55].

Bead beating: Another mechanical method is the bead-beating method, which
involves applying glass or steel beads into a vessel where the high-speed agitating
movement of beads can disrupt the algal cell wall. Bead beating is used for both
disruption and extraction [56]. This disruptive mechanical method is considered an
efficient technique [57].

Microwave: Microwave method is based on the perpendicular mixture of electric
and magnetic waves that fluctuate at defined frequencies ranging from 0.3 to
300 GHz [58]. Microwaves use high-frequency waves to create water molecule
vibrations inside microalgae biomass, increasing the humidity and pressure caused
by water evaporation, causing cell wall rupture [12, 57]. Microwaves have various
advantages like fast heating, uni-directional heat flow and mass, selective energy
dissipation, more rapid, increase purity and yield capacity of the anticipated
product [52].

Pulsed electric field lysis: In this technique, cells in a liquid media are subjected to
pulses of a strong electric field ranging from 100 V/cm to 300 kV/cm within a short
period of nanoseconds or milliseconds, which principally affects the formation of
pores in the cell wall [12, 52]. The pores formed in the cell wall allow biochemical
components to leach out from the cell. Pretreatment methods for microalgae used as
feedstock for biofuels are summarized in Table 12.3.

12.4 Enzymatic Hydrolysis of Microalgae Starch

Enzymatic hydrolysis (saccharification) is the critical step for converting polysac-
charides into monosaccharides that requires the action of cellulolytic enzymes
sequentially and synergistically for subsequent fermentation and bioethanol produc-
tion [12, 65]. Enzymatic saccharification of starch is performed at high temperatures,
and it is separated into three parts: gelatinization of starch, liquefaction, and
saccharification.

Gelatinization of starch and liquefaction involves breaking starch granules into a
gelatinized suspension at 105 °C followed by converting oligosaccharides from
gelatinized starch at 95 °C by using an a-amylase enzyme that has thermostable
properties as shown in Fig. 12.5. The saccharification process converts saccharide
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Table 12.3 Pretreatment processes for starch extraction from microalgae sources
Source Pretreatment Operational conditions Yield (%) References
Chlorella Salina | Physiochemical | Megazyme total starch 323.1 £32.03 |[59]
analysis kit (90 °C, (increment)
30 min) 96.60 + 2.73
(starch
recovery)
Chlorella Enzymatic 15 FPU for Celluclast 6.7% [60]
sorokiniana 1.5 L and 15 IU for ~1.4%
Nannochloropsis Novozyme 188 per g of | ~2.7*
gaditana DW
Scenedesmus
almeriensis
Chlorella Enzymatic 240 a-amylase units and | 10.1* [60]
sorokiniana 750 amyloglucosidase ~6.0%
Nannochloropsis units for Liquozyme SC | ~4.0%
gaditana DS and Spirizyme fuel
Scenedesmus
almeriensis
Chlamydomonas | Ultrasonic 30 W and 20 kHz for 93.8 [61]
fasciata 0-40 min
Scenedesmus 30 W for 25 min 91.0 [50]
obliquus
Chlorella Salina 30 W and 25 kHz for 35.7 [59]
5 min
Chlorella Salina | Bead beating 950 mg of glass beads 65.4 [59]
(15.8 g of glass beads/1 g
of biomass) at 5 min
Chlorella sp. Microwave Irradiation power of 82° [62]
530 W at 2450 MHz fre-
quency, for 45 s
Nannochloropsis Irradiation power of ~70° [63]
oculata 943 W at 2450 MHz fre-
quency, for 5 min
Ulva ohnoi Pulse electric Field strength of 59.4 [64]
field 1 kV em™", pulse dura-
tion of 50 ps, and pulse
repetition rate of 3 Hz

*Yield % referred to a total carbohydrate
®% of cell rupture

polymer to monomers like glucose with additional disaccharides like maltose and
isomaltose at significantly lower concentrations. Glucoamylase and isoamylase
enzymes are added during the process to break down a-(1 — 4) glycosidic bonds
as well as a-(1 — 6) glycosidic bonds at 65 °C [66—69].

Enzymatic hydrolysis efficiency depends on enzymes, substrate loading, pH,
temperature, and incubation time, such as Synechococcus sp. PCC 7002, a marine
cyanobacterium with a rich source of carbohydrates, was used for bioethanol
production as feedstock when boosted accumulation was induced by nitrogen
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Fig. 12.5 Starch gelatinization, liquefaction, and saccharification

sources like nitrate [36, 70]. Optimizing the enzymatic hydrolysis process is essen-
tial in developing a cost-effective and efficient saccharification strategy for increased
sugar concentration. The optimal enzymatic hydrolysis process conditions vary
depending on the configuration of carbohydrates between the green, brown, and
red algae [71]. Enzymatic saccharification structures use mild temperatures and have
lesser ruin risks. Enzymes, typically amylases, cellulases, and pectinases (separately
or together), are used to saccharify microalgae biomass [72].

Enzymatic hydrolysis is an eco-friendly process for the environment due to the
low energy consumption and fermentable sugars produced from the feedstocks
under light operational conditions, absence of corrosive problems, and excellent
yields of free and limited byproducts [73]. Enzymatic hydrolysis uses mild operating
conditions, gives high sugar yields, has high selectivity, and generates minimal
byproducts formation [74]. Enzymatic hydrolysis has other advantages like proce-
dure conditions with ensuing low energy requirements, high selectivity and biolog-
ical specificity, and straightforward scale-up [75, 76]. However, enzymatic
hydrolysis has disadvantages like the capital cost of enzymes and problematic
recovery, making the process uneconomical. Enzymatic hydrolysis primary effec-
tiveness depends on operation limits like temperature, pH, time, enzyme type and
concentration, and parameter optimization for obtaining high yields and reducing
capital costs [75].

Amylase enzyme is one of the most popular enzymes because it catalyzes starch
to glucose precisely and effectively, as shown in Table 12.4. For example, a-amylase
can randomly cut a-1-4-glucoside bonds of amylose or amylopectin, resulting in
short-chain dextrin and maltose [76, 77]. In contrast, glucoamylase can cut o-1-6-
glucoside bonds in amylopectin, which a-amylase cannot attack [76, 78]. The
a-amylase and glucoamylase enzymes coordinate to complete the hydrolysis process
for ethanol production from starch converted into glucose by fermentation.
a-Amylases (EC 3.2.1.1) are endo-acting enzymes used to arbitrarily cut of a-1,4
glycosidic bonds present inside the starch and quickly break down the starch
completely and release non-reducing ends for glucoamylase. Glucoamylases
(EC 3.2.1.3) is an exo-acting enzyme that cut a-1,4 glycosidic bond and a-1,6
glycosidic bond to produce monomers sugar, the non-reducing ends that released
from the starch degradation [79, 80].
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Table 12.4 Bioethanol production from microalgae using amylolytic enzymes with optimal
operating conditions

Enzymes and operational
Algae species condition Concentration Product References
Chlorella a-Amylase 0.464 £+ 0.013 g/g Bioethanol | [83]
sorokiniana Amyloglucosidase reducing sugar
Chlorella Cellulase, amylase 58.78% total reducing | Bioethanol | [84]
sorokiniana (150 rpm, 72 h, sugar
pH 55_65) 0.504 gethanol/gglucose
Chlorella a-Amylase 54.5% Bioethanol | [85]
vulgaris Amyloglucosidase Reducing sugar
CTec2
(50 °C, 200 rpm, 72 h)
Mixed Cellulase (50 °C, pH 4.5) |96.3% Bioethanol | [86]
microalgae Maximum sugar yield
Mixed Cellclast, p-Glucosidase, | 0.126 Zemanol/dried Bioethanol | [87]
microalgae a-Amylase, algac
Neochloris sp., | Amyloglucosidase (pH 5,
Scendesmus 60 °C, 150 rpm)
sp., chlorella
sp.
Rhizoclonium Mixed enzyme 140.72 mg/g reduc- Bioethanol | [71]
sp. Cellulase ing-sugar
Amylase 195.84 mg/g reducing
Xylanase sugar
Pectinase
(45 °C, 48 h)
Spirulina Amylase 6.5 g/L ethanol Bioethanol | [88]
platensis
Synechococcus | Lysozyme (100 mg/L, 0.27 Zethanol/Eeell dry Bioethanol | [36]
Sp. 37 °C for 3 h), weight
a-Amylase 240 U/g
(85 °C for 1.5 h),
Amyloglucosidase 750 U
pH 5.5-6
Tetraselmis a-Amylase (AmyP) with | 74.4% from 4% or Biofuel [89]
subcordiformis | calcium (40 °C, 2 h) 53% from 8% raw
microalgae starch
hydrolysate
Arthrospira Amylolytic enzyme (- 43 g/L glucose con- Bioethanol | [90]
platensis a-amylase 0.3 U/L, centration (without
glucoamylase 0.1 U/L) lysozyme or CaCl,)
168 h 67 g/L glucose con-
centration
(with lysozyme or
CaClz)

For cellulose, endo p-(1-4)-glucanase arbitrarily hydrolyzed amorphous areas of
cellulose p-(1-4)-glycosidic bond and creating an innovative chain end. The exo
B-(1-4)-glucanase enzyme performances on non-reducing ends of cellulose
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molecule and cellodextrins and redeeming cello-oligomers and cellobiose units
(each unit has two pB-(1-4) bonded glucose molecules). Hydrolysis is the final step
to produce glucose monomers using B-glucosidase of these -linkages of cellobiose
molecules [81, 82]. Hemicellulose is like xylose, galactose, mannose, and other
sugars with B-(1-4) and p-(1-3) linkages. These linkages are cut by enzymes like
xylanases, a-L-arabinofuranosidase, and p-glucosidase and change into glucose
monomer‘s sugars. Starch and glycogen have a-(1-4) D-glucosidic bonds that are
hydrolyzed in a liquefaction process using a-amylase. Maltodextrin is a mixture of
polymers of glucose having three or more a-(1-4)-linked D-glucose units. By the
saccharification process, maltodextrin transforms into glucose oligomers by using
amyloglucosidase. Saccharification process performance depends on both a-(1-4)
and a-(1-6) D-glucosidic bonds [82].

Many authors have worked on enzymatic hydrolysis and its strategies on
microalgae biomass. For example, Choi et al. [75] showed that hydrolysis efficiency
improves to around 94% with a fermentation yield of approximately 60% for
S. cerevisiae S288C in enzymatic hydrolysis of Chlamydomonas reinhardtii (ini-
tially carbohydrate content 59.7%), treated by SHF with amylases enzymes, in
which a-amylase (0.005% v/w) from Bacillus licheniformis was used at 90 °C for
30 min, and with pH 6 to liquefaction and amyloglucosidase (0.2% v/w) from
Aspergillus niger at 55 °C for 45 min, and pH 4.5 to saccharification [75].

Ho et al. [33] used a mixture of enzymes that contained endoglucanase
(0.65 U mL™h, B-glucosidase (1.50 U mL™"), and amylase (0.09 U mL™!) for
enzymatic hydrolysis on C. vulgaris biomass. This biomass had initial carbohydrates
51% and glucose 93.1%. Feedstock and enzyme ratio was 10 g mL ™", at 200 rpm for
shaking on 45 °C with 20 g L' and reported results as 0:461 ggiycose/Zaigae AW
(~97%) after 48 h. Furthermore, those authors compared results with dilute acid
hydrolysis biomass performed at 1% H,SOy, 121 °C, 20 min, and 50 g/L of biomass.
Lastly, 23.6 g/L (~100%) glucose concentration yields a similar yield by enzymatic
hydrolysis [33].

Kim et al. [91] studied two enzymes separately for analyzed the enzymatic
hydrolysis effect of microalgae, 1% (w/v): cellulase (Celluclast 1.5 L) and pectinase
(Pectinex SP-L). The activities of these enzymes were 0:122 FPU/mg of protein and
240 Ul/mg of protein. These enzymes were added (1.88 mg protein/g) on C. vulgaris
biomass (22.4% of total carbohydrates) for bioethanol production, at 50 °C,
200 rpm, pH 4.8, 72 h. After enzymatic hydrolysis, sugar released from cellulase
and pectinase 10% and 45%, respectively, liberating 0:1 g glucose/g algae
dw. Various methods for cell lysis applied on C. vulgaris with bead beating
combined with pectinase enzyme that extracts from Aspergillus aculeatus. After
that, sugar extraction improved between 45% to 70%, and 89% ensuing fermentation
yield after 12 h with S. cerevisiae KCTC 7906. The pectinase enzyme seems more
practical than cellulases, amylases, and xylanases [91].

Moller et al. [36] reported Synechococcus sp. PCC 7002 biomass for enzymatic
hydrolysis. They used 3 g/L of biomass concentration to afford 60% carbohydrate
content efficiency for enzymatic hydrolysis and achieved 80% sugars with hydro-
lyzed after enzymatic treatment. These enzymes are lysozyme and o-glucanases



12 Third Generation Biorefineries Using Micro- and Macro-Algae 387

Liquozyme SC DS, and Spirizyme for biofuel. Ethanol yields reached 86% of the
theoretical maximum rate with the help of S. cerevisiae [36].

Mahdy et al. [92] used urban wastewater to cultivate C. vulgaris have carbohy-
drate 39.6% and protein 33.3%. They used two enzymes separately, like 2.5 L
alcalase (0:585 AU/g dw), and viscozyme (36:3 FBG/g dw), to solubilize protein-
carbohydrate. These two enzymes alcalase with pH 8 (3.2% w/v), and 5.5%
viscozyme, were carried out in enzymatic hydrolysis at 50 °C, for 3 h, in which
pH was maintained during the process. The authors reported that the hydrolysis
efficiency of organic matter was 54.7% for proteins (alcalase) and 28.4% for
carbohydrates (Viscozyme) [92].

12.5 Conversion of Microalgae starch into Monomers
for Ethanol

Starch is the principal polysaccharide formed in microalgae and can be converted
into bioethanol using enzymes and microorganisms. Enzymes such as a-amylase
and glucoamylase break the glycosidic bonds present in starch, then S. cerevisiae
yeast is used in fermentation to reduce sugars [46]. Fermentation is a metabolic
process, principally converting monosaccharide sugars into bioethanol and other
value-added products using fermentative microorganisms [82, 93]. In the fermenta-
tion process, yeast and bacteria are commonly used as fermentative microorganisms.
Some fermentative organisms play an essential role in fermentation, like
S. cerevisiae, Z. mobilis, E. coli, P. stipitis, Kluyveromyces fragilis, K. marxianus,
and Klebsiella oxytoca; the result is microalgal photosynthesis and intracellular
anaerobic fermentation-derived bioethanol [93]. Saccharomyces and Zymomonas
fermentative microorganisms are frequently used for bioethanol production, such as
molasses, starch-based substrate (like algae), sweet sorghum cane extract, lignocel-
lulose, and other wastes. Z. mobilis is a natural ethanologenic microorganism that
has many advantageous properties, such as higher ethanol tolerance efficiency up to
16% and ethanol yield in a varied pH between 3.5 and 7.5. Z. mobilis does not need
controlled aeration during fermentation time, which reduces the product capital cost.
Z. mobilis is an appropriate industrial microbial biocatalyst used for the commercial
production of bioproducts through metabolic engineering [94]. Zymomonas is a
gram-negative bacteria with several advantages, including a higher specific rate of
sugar uptake, a higher ethanol yield, lower biomass production, and the absence of
the need for controlled oxygen addition during fermentation [95], and it is used for
bioethanol production from starch and glycogen in fermentation [70, 96]. Theoreti-
cally, ethanol yields (0.49 to 0.50) g/g, or ethanol yields of up to 97% of theoretical
values, can be obtained [97].

S. cerevisiae may play a critical role in the industrial biotechnology sector to
develop a green replacement for petrochemical products due to its outstanding
productivity to convert monomer sugars like glucose into ethanol and its high
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tolerance. In addition, Saccharomyces is generally recognized as a harmless micro-
organism according to generally recognized as safe (GRAS) criteria. While growing,
it produces flocs in the fermentation media that quickly settle down and separate.
S. cerevisiae has a higher tolerance for alcohol, higher glucose uptake, and higher
bioethanol yield than Zymomonas microorganism [70, 98]. Theoretically, 1 kg of
glucose and xylose produce 0.51 kg ethanol with 0.49 kg of CO, [82, 93, 99].

One of the main complications of effective fermentation is the incapability of
commonly used microorganisms that convert pentose sugars into bioethanol. There-
fore, economic bioethanol production must use all potential feedstocks (i.e., cellu-
lose and hemicellulose). Naturally occurring microorganisms that convert primary
pentose sugar from hemicellulose like xylose into bioethanol exist, for example,
specific bacteria, fungi, and yeasts [74]. Fermentation processes are represented by
the following strategies [74, 93, 100]:

. Separated hydrolysis and fermentation (SHF)

. Simultaneous hydrolysis and fermentation (SSF)

. Simultaneous saccharification and co-fermentation (SSCF)
. Consolidated bioprocessing (CBP)

A W N =

SSF and SHF are primarily used to produce bioethanol from microalgae using
different fermentation strategies with various fermentative microorganisms
(Table 12.5). The total valuation of the fermentation process is usually based on
cell growth, consumption of reducing sugar, and bioethanol production. Environ-
mental and operational factors greatly influence bioethanol production from algal
biomass, like (i) nutrient levels; (ii) alkalinity; (iii) concentration of toxic substances;
(iv) temperature; and (v) optimum pH of the fermenting microorganism [74].

12.5.1 Separated Hydrolysis and Fermentation (SHF)

Enzymatic saccharification of starchy biomass is carried out first in a SHF process at
the optimum temperature using a saccharifying enzyme. The saccharified solution is
then fermented using suitable microorganisms [93]. These advantages of SHF are
the low capital cost of chemicals, short residence time, and simple equipment
systems, which inspire its large-scale processing [93, 100]. The SHF process is
usually active in research studies to enhance the operative conditions such as pH,
temperature, and time of both stages, which help determine the diverse mechanisms
involved in the process and the effect as displayed by several parameters and
continuous fermentation with cell recycling. Nevertheless, the operation procedure
of SHF has some drawbacks. When compared with SSF (Sect. 12.5.2 below), the
SHF process has disadvantages such as higher capital cost due to the large mechan-
ical setup for separation steps, and elevated enzyme concentrations and low solids
loading required to achieve good ethanol yields.

Moreover, the longtime running of the process may lead to contamination of the
substrate by microorganisms [108]. The main advantage of the SHF process is that
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enzymatic hydrolysis and fermentation work at their optimum conditions. However,
the operational disadvantage of the SHF process is an accumulation of sugars that
inhibit enzyme activity [100, 109].

12.5.2 Simultaneous Saccharification and Fermentation
(SSF)

SSF process uses both saccharification (enzyme hydrolysis) and fermentation pro-
cesses in a single reactor or vessel, unlike SHF. In this process, feedstocks, enzymes,
and yeast are added in an organized and orderly way to release fermentable (mono-
mer) sugars, and then monomer sugars are converted into bioethanol [93, 100]. SSF
is an effective process over the dilute acid or high-temperature water pretreated
biomass, providing more exposure to the hydrolase enzymes. Saccharides are
converted into fermentable sugars using cellulases and xylanases enzymes in SSF
[93, 110]. SSF process required compatible conditions with similar pH, temperature,
and optimum substrate concentration [93, 111].

Many studies specify that SSF provides better processing than other methods due
to reduction in capital cost, due to the requirement of a small number of enzymes,
processing time, lower risk of contamination, minor inhibitory effects, and higher
production of ethanol [93, 99, 108, 112, 113].

12.5.3 Simultaneous Saccharification and Co-Fermentation
(SSCF)

Fermentative microorganisms like Saccharomyces cerevisiae are used in fermenta-
tion for bioethanol production. Still, these fermentative microorganisms are not able
to convert carbohydrates like pentose sugars into bioethanol under mild conditions,
which leads to impurities in biomass and decreases bioethanol production. Geneti-
cally engineered yeasts can be used to convert leftover pentose sugars into
bioethanol. Genetically modified yeasts and cellulase enzyme complex are used in
the same vessel or equipment for ethanol production from feedstock in SSCF. SSCF
process is usually the same as the SSF process [114]. SSCF process has many
advantages like eliminating end products of enzymatic saccharification that inhibit
cellulases or f-glucosidases enzymes and higher yield of ethanol and efficiency than
separate hydrolysis and fermentation (SHF), and reduced capital cost [115].

SSCEF is a capable process for bioethanol production from both pentose sugars
(hemicellulose) and hexose sugars (cellulose) in which saccharification and fermen-
tation coincide in a single vessel and reactor [74, 93]. SSCF is a recommended
process when a significant contribution of the pentoses sugars (C5) originates after
hydrolysis. Genetically modified microorganisms like S. cerevisiae and Z. mobilis
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are primarily used in the SSCF to break down glucose and xylose. To reach the
higher ethanol yield route, Peralta-Ruiz et al. [116] did the handling of simulated
technological paths by ASPEN PLUS 7.1 software which was based on experimen-
tal information; simulation results showed the advancement of ethanol yield by
23.6% in the SSCF pathway, 20.1% enhancement by SSF pathway as well as
18.5% advancement by the SHF pathway also. Therefore, SSCF can achieve the
hydrolysis and co-fermentation of pentose and hexose sugars in the same vessel or
reactor without restrictive ethanol made from cellulosic biomass [93, 117]. SSCF
process can break down glucose and pentoses in the same vessel or reactor. Simul-
taneously, SSF is separated from pentoses in fermentation, but both approaches have
a quick enzymatic hydrolysis process, low capital cost, and higher ethanol yield than
SHF [93, 118].

12.5.4 Consolidated Bioprocessing (CBP)

CBP integrates hydrolysis (saccharification) and fermentation of feedstock to the
desired bioproduct, requiring fewer energy inputs and fewer equipment requirements
than the conventional multi-step fermentation process [119]. Microorganisms, which
have been modified to enhance the production of ethanol as well as tolerance of
ethanol. Instead of this, there is no single commercially available consolidated
bioprocessing (CBP) organism reported. One single genetically engineered micro-
organism is used for hydrolysis and fermentation steps in the biological approach to
CBP. A consortium consists of an enzyme-producing strain that can hydrolyze the
biomass and another two different strains that can ferment C5 and C6 sugars into
ethanol. Brethauer and Studer [120] proposed a model utilizing Trichoderma reesei,
which necessitates aerobic conditions for resourceful enzyme secretions; Saccharo-
myces cerevisiae breakdown hexoses sugar to ethanol. Scheffersomyces stipitis is
one of the best natural yeasts that uses pentose sugars and capably produces ethanol
under microaerophilic conditions. In a biofilm membrane reactor, all of these
microbes convert lignocellulosic biomass into ethanol, and the approach seems
reasonable. Still, the primary obstacle of CBP is controlling the consortium. It is
also challenging to find microorganisms with identical fermentation conditions
[100], potentially reducing capital costs and increasing process efficiency. However,
microorganisms producing enzymes for hydrolysis of biomass and fermentation of
released sugars are still in the early stage of development [121].



392 R. Saxena et al.
12.6 Macroalgae Biorefinery

Macroalgae can constitute the raw materials for third-generation biorefineries as
these are composed of fermentable carbohydrates and have the advantage of not
having lignin in their structure. This section will review the chemical and structural
characteristics of macroalgae that can be used in a biorefinery.

According to their photosynthetic pigment, macroalgae, also known as “sea-
weed,” are photosynthetic aquatic organisms divided into red, green, and brown
varieties. Thus, these are Chlorophyta (green algae), Rhodophyta (red algae), and
Phaeophyta (brown algae). Macroalgae do not compete for space in farmed areas
since they are aquatic plants. Water makes up 90-85% of its content, in addition to
collecting CO, from the atmosphere [122, 123].

Macroalgae have structures similar to land plants since they have leaves, stems,
and some roots, as shown in Fig. 12.6, and are listed as:

e The Thallus: which is a body-like structure that can perform photosynthesis.

¢ Lamina or blades: lamina is a leaf-like structure, having great property to absorb
sunlight, and it is one of the keys of photosynthetic systems.

» Stripe: it a stem-like structure that provides support and exists only in some
species. It can be long and challenging that transports sugars from the blades and
acts as an attachment.

* Floats: floating structures filled with a kind of gas that is located on the lamina and
stipe. They hold mainly carbon monoxide, and the primary function is to maintain
the edges in shallow waters where light is easily captured.

* Holdfast: it is a root-like structure that assists in holding the plant on the surface of
rocks and does not penetrate in the sand. It does not support gathering nutrients
from the surroundings.

* Frond, commonly referred to as the combination of the blade and stipe [124]

+ Blade «

» Stipes *

» Holdfast «

Fig. 12.6 Morphology characteristics of macroalgae
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The required components for growth are frequently available in the coastal
environment; therefore, seaweed production does not require arable land or fertilizer.
Furthermore, macroalgae biomass outputs can be higher than most terrestrial crops
throughout a growing season [125]. In this regard, using seaweed biomass to make
biofuels seems to be a potential approach for supplementing and securing energy
supply while also reducing reliance on fossil fuels, which is in line with the EU’s
goal [8].

Macroalgae are extremely important, since they can control pollution, eutrophi-
cation, and increase biomass in water bodies due to increased nutrients such as
nitrogen and phosphorus. They also have characteristics that make them good
candidates for application in the biorefinery. Macroalgae have higher efficiency in
photon conversion than terrestrial plants and accumulate large amounts of carbohy-
drate biomass from inexpensive nutrient sources. Because they are buoyant, they do
not produce structural polysaccharides like hemicellulose and lignin, so the process
for ethanol production, in the pretreatment part, is much more straightforward
[26]. Biomass production from red algae produces more energy than other biomass
sources. Like terrestrial plants, macroalgae contain high value-added chemicals like
carbohydrates, lipids, proteins, and other compounds, such as chlorophyll or carot-
enoid pigments. Carbohydrates are divided into polysaccharides and monosaccha-
rides. These carbohydrates are in the cell walls and are generally alginates, agar,
carrageenan, cellulose, fucoidan, and hemicellulose [124]. Macroalgae have advan-
tages over terrestrial plants because several of these carbohydrates are different from
glucose polysaccharides. These compounds can be used in various processes, almost
always stabilizing thickening or gelling agents [126]. Also, macroalgae contain
sulfur carbohydrates (sulfated carbohydrates) such as fucoidan, which has immuno-
modulatory and anti-inflammatory activities, lower blood lipid levels, and anticoag-
ulant, antithrombotic antivirus antitumor, and antioxidant activity and activity
against hepatopathy and renal disease, among others [127]. In the same way,
mannitol, sugar alcohol, has hydrating and antioxidant activity and has a sweet
taste, so it is used as a sweetener and reduces the crystallization of sugars.

Red algae, also called Rhodophyta, have agar and carrageenans in their cell wall,
composed of sulfated galactan [128]. Green algae or Chlorophyta have three
heteropolysaccharides  in  their cell wall:  glucuronoxylorhamnans,
glucuronoxylorhamnogalactans, or xyloarabinogalactans. Finally, the brown algae
or Phaeophyta’s cell wall comprises alginate, a uronide polymer comprising
mannuronate and guluronate residues, and laminarin, a pillar of B-1,3-linked glucose
moieties with -1,6-linked branches [129].

As can be inferred, the composition of the different types of algae varies. Of the
10—-15% of the dry matter that makes up algae, 60—65% is carbohydrates, and like all
plants, this composition is influenced by the growing conditions and the climate
[26]. In general, the carbohydrate composition is as follows:

e Green algae. Polysaccharides: mannan, ulvan, starch, cellullose. Monosaccha-
rides: glucose, mannose, uronic acid.
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* Red algae. Polysaccharides: carrageenan, agar, cellulose, lignin. Monosaccha-
rides: glucose, galactose, agarose,

* Brown algae. Polysaccharides: laminarin, mannitol, alginate, glucan, cellulose.
Monosaccharides: glucose, galactose, uronic acid.

Compared to other compounds, brown and red algae have less lipid content than
green algae. In contrast, green algae species have higher cellulose content than red
and brown algae and may contain starch. Furthermore, macroalgae have a higher
range of alkali metals and halogen content [122].

Enzymatic hydrolysis research is focused on producing high-value products from
seaweed biomass since the product yields could be more profitable in focused
markets than biofuels. Seaweed is known to contain a wide array of naturally
occurring bioactive compounds; carotenoids, fatty acids, phycocolloids, sterols,
and an extensive range of secondary metabolites [130]. Compared with terrestrial
biomass sources, algal biomass is composed mainly of lipids and proteins and has a
faster growth rate, thus increasing photosynthetic efficiency [131]. This hydrolysis
could imply a reliable source for biofuels and high added-value products. Table 12.6
lists some of the research reported for producing higher value-added compounds
from seaweed biomass.

Considering the growing markets worldwide, such as the surge in some popula-
tional sectors demanding healthy products for consumption and some species of
seaweed have been consumed historically in Asian cultures for millennia [132],
opportunities exist for using edible seaweed biomass food formulations. Several
studies propose the implementation of bioactive extracts in meat and meat derived
products since the current overview of meat have been dwindling and is no longer
considered essential in the human diet; polysaccharides, protein, omega-3 fatty
acids, carotenoids, phenolic compounds, vitamins, and minerals could transform
meat into a functional food since some formulations can improve the “bad” nutri-
tional aspects but the most significant drawback encountered is the organoleptic
modification of the meat, that impact negatively in consumer acceptance [133].

Biologically active compounds could become the backbone of some biorefinery
processes. Laminaria japonica is a reliable source of alginate oligosaccharides that
possesses a wide assortment of exploitable qualities: antioxidant, prebiotic activity,
cytokine-inducing activity in mononuclear blood cells, and plant rooting enhancers,
which are usually obtained with environmentally harsh procedures. It has been
confirmed that a combination of commercial cellulases for the saccharification
process and an engineered yeast (Yarrowia lipolytica) obtain a yield of 91.7% [16]
and an oligosaccharide purity of 92.6%, with the added benefits of being an
environmentally friendly procedure. Bioactive peptides with pharmaceutical activi-
ties are also obtainable since seaweed can be utilized as another alternative protein
source, peptides are a given, and some peptides available from macroalgae present
antioxidant, antihypertensive, anti-inflammatory, and antidiabetic activities, this,
however, is limited to the variation of the protein content influenced by several
factors, and the obtention can be difficult since the complex constitution of seaweed
hinders the obtention of bioactive peptides. Also, there is a lack of proteomic studies
to reduce the scope of peptide utilization and identification [134].
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Table 12.6 High value-added bioproducts obtainable from macroalgal biomass using specific

enzymes
Enzyme
utilized/ Bioproduct
Algae methodology obtained Purposed outlook References
Hizikia fusiforme | Commercial Fucoidan Antioxidant for food [136]
cellulases or cosmetic
application
Sargassum Recombinant Fucoidan Anticancer and [137]
horneri fucoidanase radiosensitizer action
FFA1
Macrocystis Commercial Bioactive proteins | Antioxidant, potential | [138]
pyrifera cellulases antihypertensive
Chondracanthus | Commercial Bioactive proteins Antioxidant [138]
chamissoi cellulases
Palmaria Cellulases/ Protein Protein-rich feed for [139]
palmata alkaline poultry or fish
extraction
Laminaria Alginate lyase/ | Low-molecular- Anti-obesity agent [140]
Jjaponica thermo—acid | weight polysaccha-
pretreatment rides rich in uronic
acid
Sargassum Commercial Bioactive Antioxidant [141]
Sulvellum cellulases carbohydrates
Porphyra dioica Prolyve®1000 Bioactive proteins Antioxidant [142]
and
Flavourzyme®™
Gracilaria H,0,-assisted | Sulfated rich agar Improved gel strength | [143]
lemaneiformis enzymatic
method
Laminaria Cellulase and | Alginate Prebiotic, [16]
Jjaponica recombinant oligosaccharides immunomodulating,

alginate lyase

antioxidant and plant
rooting agent

Macroalgal biomass is predominantly used for high value-added byproducts and
food production around the world. The biorefinery approximation for biofuels,
bioactive compounds, and biomaterials production is currently under development
[135]. The number of algal fuel producer companies is increasing globally, and there
is undeniable potential for the utilization of enzymes for the marine biomass
transformation industry.

12.6.1 Enzymatic Hydrolysis of Macroalgal Biomass

The more widespread utilization of enzymes in biorefinery is the hydrolysis of the
structural polysaccharides to promote a more effective saccharification process to
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widen the availability of assimilable sugars for posteriors biotransformation via
microorganism‘s metabolism. Since the financial implications regarding the cost of
the whole saccharification process do not allow the sole utilization of enzymes
[7, 144], some methodologies have been coupled to synergize and lower the targeted
production costs of biofuel or high added value products. All costs can provide
seaweed biomass even in countries with cold weather; Nordic countries have limited
light levels and low temperatures that hinder first-generation biofuels, but the vast
coastlines are rich in marine biomass. For example, Saccharina latissima known for
its high carbohydrate content, is widely available in the warm cost and studies to
have been made for its utilization in methane production; an enzyme complex of -1-
3/1-4-glucanase, cellulase, xylanase, B-glucosidase, B-xylosidase,
a-L-arabinofuranosidase was utilized to improve the reducing sugar release of
alkaline treated pulp for anaerobic digestion. Enzymatic hydrolysis of macroalgal
biomass can potentially harness 1760 m® per hectare of the productive seafloor for
S. latissima [145].

Industries revolving around marine biomass residues can be a good source for
biofuels and high added-value products. An estimated 57,500 tons of carrageenan
are annually produced, and as long the hydrocolloid industry is growing, its waste
will increment accordingly. The waste obtained from the carrageenan extraction of
Kappaphycus alvarezii can be transformed with an acid pretreatment and later
enzymatically hydrolyzed to enhance the saccharification of galactose and glucose
13.8 g/L of ethanol yield after a fermentation process utilizing a modified Saccha-
romyces cerevisiae (ATCC 200062) [146]. Agar is another phycocolloid obtained
from red algae, and the agar extraction industry for Gelidium and Gracilaria
seaweeds produces around 100,000 tons of carbohydrate-rich residues each year;
this residue still has potential for the extraction of valuable compounds, according to
a study [147] that hydrolyzed the residues using a sulfamic acid pretreatment and
enzymatic hydrolysis.

12.6.2 Conversion of Sugars into Ethanol from Macroalgae

Bioethanol can be produced from macroalgae by converting sugars released in the
enzymatic saccharification process [148] by fermentation using various microorgan-
isms [149], as shown in Table 12.7. Fermentation is a process in which alcohol and
CO; (carbon dioxide) are converted from glucose; stoichiometrically, 1 g of glucose
produces 0.51 g of ethanol along with 0.49 g of CO, after fermentation. Bioethanol
yields are highly dependent on temperature, pH level, growth rate, alcohol tolerance,
osmotic resistance, and genetic stability of the fermenting microorganism. Among
the organisms that can be employed in bioethanol production, the mainly used
Saccharomyces cerevisiae, Pichia angophorae, Pichia stipitis [150, 151],
Kluyveromyces marxianus [152], Zymomonas mobilis [153], among others shown
in Table 12.6.
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K. marxianus is a species of yeast that is thermotolerant with proficiency to
ferment an extensive range of substrates. Some advantages involve the consumption
of several sugars at elevated temperatures and weak glucose repression.
K. marxianus can work at temperatures up to 47 °C with a solid affinity for xylose
[152] and possesses high growth rates and less tendency to ferment when exposed to
excess sugars [154]. Z. mobilis is a bacterium facultatively anaerobic and
nonsporulating ethanologenic that converts sugars to ethanol through the Entner-
Doudoroff pathway; this microorganism accumulates less biomass during fermen-
tation more sugar can be converted to ethanol, increasing its observed yield.
Z. mobilis metabolizes glucose, fructose, and sucrose. It can endure high sugar
concentrations [155]. P. stipitis, also known as Scheffersomyces stipites, is a homo-
thallic yeast that can ferment pentose sugar like xylose. The fermentation starting is
not dependent on sugar concentration. However, it is regulated by a decrease in
oxygen availability. It possesses a greater respiratory capacity owing to the existence
of an alternate respiration system. It also includes the enzyme dihydroorotate
dehydrogenase, which grants the ability to grow anaerobically [152]. Pichia
angophorae showed that fermentation could occur with hydrolysates containing
laminarin and mannitol present in brown macroalgae [151]. Other microorganisms
have been used, like the marine yeast Meyerozyma guilliermondii, which can be a
candidate for the marine bases substrates [156], non-adapted Pachysolen
tannophilus, and the marine fungus Cladosporium sphaerospermum have also
been studied on macroalgae feedstock for bioethanol production [157, 158]. How-
ever, Saccharomyces cerevisiae are the most employed microorganisms mainly due
to their effectiveness, resistance to high ethanol and inhibitor concentrations, and
high osmotic resistance [150, 151]. S. cerevisiae is the most exploited yeast in
industrial for bioethanol production [157]. Besides that, S. cerevisiae has an excep-
tional function in high sugar concentrations that merge passive sugar transport with
high glucose flux through glycolysis to ethanol production, despite the presence of
oxygen, thereby having a strong positive Crabtree effect. These are an excellent
advantage in the extensive industrial configuration where anaerobiosis has an addi-
tional level of difficulty, namely removing available oxygen in a closed batch
bioreactor or fed-batch bioreactor using setting at the time of fermentation and
avoiding the integration of ethanol at the final step of fermentation [159].

Another critical parameter is the fermentation strategy chosen. The primary users
are SHF, Separate Hydrolysis and Co-Fermentation (SHCF), SSF, Simultaneous
Saccharification and Co-Fermentation (SSCF), and Pre-Simultaneous Saccharifica-
tion and Fermentation (PSSF), for bioethanol production based on first and second-
generation. Table 12.8 shows all strategies in detail.

Studies have been reported for bioethanol production from macroalgae. Tan et al.
[171], used Saccharomyces cerevisiae PE-2 under SSF strategy and reached 12.23
and 14.19 g/L of ethanol concentration employing water and hydrolysate from
hydrothermal pretreatment as a medium, respectively, obtaining a conversion yield
of 81%. Hou et al. [162] used Laminaria digitate as a feedstock for bioethanol
production under SSF and SHF strategies using S. cerevisiae (Quick Yeast, Doves
Farm Foods Ltd.), their results were 14.7 £ 0.3 g/L of ethanol equivalent to a



399

12 Third Generation Biorefineries Using Micro- and Macro-Algae

[eLt “TLT]

SP[AIA [ouRy)R

9y SurseaIour £qaIay) ‘[OUBY)Q 0} UOISIOAUOD J) U JoJsuel) ssew oY) Jutaoxdwr ‘Axmys oy ur
KIISOISIA JO UOTIONPAI A} SMO[[e $s001d S, “suonipuod [ewndo ay) Je 95e)s UONRIUSULIDJ ) JIB)S
0} (s)wsrueSI00101W SUTNUSWLIRY 9 JO UONIPPE Y} AQ PIMO[[0] ‘SOWAZUD a1} JO suonIpuod fewmdo
AU} I8 ‘Y $¢ PUR $ U2am)aq A[[eIdUa3 ‘SISA[OIPAY ONeWAZUD Jo 23e1S ISIY Y} JO SISISuU0d SSd

4SSd

[1L1-691]

Kouaroyap Arewrtid 9y sasudwod (UONLIUWIRY I0J D, GE—0E

pue SISA[OIpAY dnjewAZus 10§ D, ()S) UONBIUAWLID) pue SISA[0IPAY Jo sermyeradwe) jeumdo oy
UQ9M19q 9OUIIYJIP ) ‘JOAIMOH “pased]al sredns oy Jo 1seak Aq wisijoqejow pider oy ur Sunnsar
9rex uonjonpoid [ouey)e 19)sey A 03 anp Aareredas yrom jeyy soyoroidde 1oa0 parrsyard Afensn
st yoeoidde snoauelNWIS "UOHBUIWIEIUOD YSLI-MO] JUdWAINbaI SWAZUD $SI] Se yons saFejueape
[e10A9s sey $s9001d JSS "sosojuad pue sas0Xay J0J SWSIULSIOOIONU PUE SOWAZUD SIOPISUOD PUOIIS
A 1Y) ST JDSS PUEB JSS USOMIDq 9OUIYIP ) ‘SAIT)enS 9A0qE Y} UT UY "SWSIUeSI00Ion 1seak
Uo AJSUSIUI AI0W [PIM 1091J P[nod juduneanald woly s1o3quyur Ing ‘Isey st ssaooid oy, -oSe)s
9[SuIs © UI S2SOXAY ) JO UONRIUAULIDJ PUE JeS[ROIORW JO SISA[OIPAY OIBWAZU SAUIQUIOD JSS

d08S

ASS

[891 “L91]

ssaoo0ad

A1) JO 150D [[BI2AO FUISLAIOUI S[TRIUD YOIYMm ‘sasojuad Surjerruaisse jo ojqeded swsIue3I00IoMWU pue
SQWIAZUD JO 9sn ‘sawn) $s001d 3uo[ are sagejueApesi(q 2Inpadoid yoes 10j djenbape are suonpuod
ey are saSejueapy "dels puodds Y} U PAJUSULISY A[SNOSUE)NUWIIS T8 SISOXAY pue sasojuad jey)
SI JDHS Pue JHS U99M1aq 20UARJIP oy, "eouewiofrod [erouad Surzrurxew snyy ‘(armeradud)
‘Hd) suonipuod [ewndo Je 1o pared 9q ued suonerado ylog “A[ereredss pounrofrod are sasoxay
JO UONEBIUAULID) pUR JBTF[BOIOBW WOIJ sapLeyodesAod ay) Jo SISA[OIPAY 21oym ssado1d e s JHS

dDHS

dHS

SAIURIRJIY

uonduosaq

uonejuasaidar oewaydS

A3oreng

Je3eoroewr wolj uononpoid [OUBYIS0Iq UI Pasn SAISAjens U]y §°7T dqeL



400 R. Saxena et al.

conversion yield of 50.5% under SSF strategy, and 20.7 £ 0.5 g/L of ethanol
equivalent to a conversion yield of 70.6 £ 1.8 under SHF strategy. They concluded
that the lesser ethanol produced is due to the low efficiency in the enzymatic
hydrolysis stage (enzymes work at optimal conditions at 50 °C, and the experiment
was carried out at 32 °C. Kim et al. [163] investigated bioethanol production from
autoclave treated Gelidium amansii as biomass. The research study states that the
comparative analysis of SHF and SSF for 2% (w/v) supports the SSF process for the
highest bioethanol conversion yield corresponding to 90.7% with 3.33 mg/mL and
84.9% with 3.78 mg/mL, respectively. On proceeding for the SSF process at 15%,
solid loading (w/v) gives a satisfactory result with an increment in bioethanol
concentration 25.07 mg/mL with 76.9% conversion yield. Lee et al. [161] worked
with thermotolerant yeast S. cerevisiae DK 410362 under SSF strategy, scaling from
3 to 6% (w/v) of solid loading. They achieved 3.84 and 6.65 g/L. of maximum
ethanol concentration for 3 and 6%, reaching 78.41 and 67.39% ethanol yield,
respectively. Another study, El Harchi et al. [158], adapted Pachysolen tannophilus
to ferment Ulva rigida biomass under SHF strategy; they reached 11.92 g/L of
ethanol concentration 72.35% conversion yield.

The studies highlight that sugars from macroalgae could be a potential feedstock
for bioethanol production. However, additional research is needed to achieve an eco-
friendly and economically viable process. Further, more studies are required to fully
comprehend the antiviral action mechanisms of algal chemicals and reap the benefits
of their utilization as functional additives in the pharmaceutical and food sectors.

12.7 Conclusions and Future Outlook

Micro- and macro-algae biomass can produce novel bioproducts and are used as an
indigenous biological source serving as a bridge between the environment and
changing climatic conditions by creating eco-friendly energy products with exten-
sive food, medicine, bioenergy, and cosmetics industries in terms of biorefinery.
Micro- and macro-algae biofuel production under the biorefinery strategy is
expected to significantly enhance algae biofuels’ overall cost-effectiveness. How-
ever, integrating diverse biomass conversion methods in a whole algal biorefinery
operation remains a fundamental problem. Before industrial use of algal technology
and the commercialization of microalgal biofuels becomes realized, considerable
technological breakthroughs and increased biomass production are required. In
terms of biorefinery, technical advancements in extraction technique and enzymatic
saccharification are necessary to improve the cost-effectiveness of end products such
as micro-and macro-algae biofuels. Nonetheless, algal biorefinery processes can be
implemented in the near future if the expense of biofuels is compensated by revenue
from bioproducts for the circular bioeconomy.
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