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1 Introduction

Landslide, a type of mass wasting, is defined as the downslope movement of slope
forming materials by gravitational force.

Landslide occurrences in Himachal Pradesh have increased due to extreme cli-
matic conditions coupled with rise in man-made activities which can be attributed
to the high surge in tourism, hydropower generation, industrialization and road
construction in the area ([3]). These catastrophic events entail severe
socio-economic impact [9] through disruption of local businesses in terms of road
blockage, destruction to infrastructure and loss of human life. Landslide suscepti-
bility analysis is one important pre-hazard management tools used to delineate an
area according to its degree of susceptibility to landslide incidence [6].

The most common susceptibility mapping approaches adopted by researchers are
broadly classified as heuristic, statistic, deterministic and hybrid.

Heuristic approach (also known as knowledge-driven or qualitative) can be
direct or indirect in nature, relying on knowledge of experts for geomorphological
mapping or weight assignment of landslide causative factors thereby introducing a
degree of subjectivity, whereas statistical (also known as data-driven or quantita-
tive) approach can be grouped as bi-variate [4] and multi-variate methods, both
based on the assumption that the combination of past and present landslides con-
tributing factors aid in predicting future slides under the same condition [2].

Bi-variate approaches such as frequency ratio, information value, weight of
evidence, etc., rely on the association of each parameter class to past landslide
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occurrence instead of relative weight determination between factors [11] compared
to multi-variate methods.

This paper is an attempt to delineate regions in the study area based on their
proneness to landslides through a frequency ratio (FR) based landslide suscepti-
bility mapping using geographical information system (GIS) environment and to
understand the spatial link between the nine considered landslide-inducing factors
with the updated landslide inventory. This inter-relationship can reveal patterns
unique to the geographical area for better evaluation of landslide occurrences.

2 Study Area

The district of Kullu, one of the twelve districts of the state of Himachal Pradesh is
bounded between 31° 20ʹ to 32° 26ʹ East and 76° 56ʹ to 77° 52ʹ North and located
in the north-western Himalayan region of India as shown in Fig. 1. Bordering the
district concerned are the districts of Lahaul and Spiti (North and North-east),
Kangra (North-west), Kinnaur (South-east), Shimla (South and South-east) and
Mandi (South-west to West). It includes four tehsils (Manali, Kullu, Banjar and
Nirmand) and two sub-tehsils (Sainj and Anni) with an average annual rainfall of
1405.7 mm.

Fig. 1 Locator map of study area
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The research area (part of the Kullu tehsil) as depicted in Fig. 2, covers an area
of around 1000 km2 with elevation ranging from 1050 to 4900 m. It is accessible by
flight through the nearest airport at Bhuntar or by land through the major road
networks in the area which are the national highway NH-3 and the major district
roads of Kullu-Nagar-Manali and Jia-Manikaran.

Kullu and Kasol-Manikaran valleys run along the Beas and Parvati River
attracting a considerable number of tourists with important and famous places like
Kullu, Bhuntar, Malana, Kasol, Tosh, Khirganga.

3 Methodology

The adopted methodology in this study constitutes: (a) preparation of a compiled
landslide incidence map; (b) selection of landslide-inducing factors and thematic
maps generation; (c) frequency ratio calculation for each factor class; (d) landslide
susceptibility index evaluation for each factor; (e) creation and classification of the
final landslide susceptibility map; (f) model validation through the Area Under
Curve (AUC) and Landslide Density Index (LDI) methods.

Fig. 2 Study area
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4 Data Preparation

Factors such as slope, aspect, curvature and drainage network were extracted using
different tools from CartoSAT-1 DEM (spatial resolution of about 30 m) obtained
from the web-based platform of Bhuvan, Indian Space Research Organization
(ISRO), National Remote Sensing Centre (NRSC), Hyderabad.

Digital shape files for faults, lineaments, past landslides and lithology were
obtained from Bhukosh, Geological Survey of India (GSI) and shape file for road
network in the area was retrieved from Open Street Map website.

Landsat-8 images were obtained from the Earth Explorer, U.S. Geological
Survey (USGS) for land use and land cover classification.

4.1 Landslide Inventory

Past landslide inventory for the study area was obtained from past literatures and
Bhukosh web-platform of the Geological Survey of India (GSI) as shown in Fig. 3a.
Clustering of most historical data near the Kullu-Bhuntar led to the creation of a new
landslide inventory near the Parvati valley area through visual interpretation of
high-resolution satellite imagery from Google Earth for the year 2002–2019. Change
in vegetation and the presence of debris material were amongst the main criteria used
for landslide mapping using Google Earth historical images [5].

Landslide scars can be rapidly lost or obscured with time due to excess vege-
tation, remediation works, etc. The use of scarp identification and contour con-
nection method (SICCM) toolbox was made for semi-automatic scarp delineation of
some obscured landslide features [2].

The compiled landslide incidence shape file consisting of 211 total mapped
landslide polygons was resampled in cell resolution of 30 � 30 m for further
processing. Random splitting of samples into training (70% � 147 no.) and vali-
dating (30% � 64 no.) datasets were done using a geostatistical analyst tool as
shown in Fig. 3(b). Ground truthing for the newly mapped landslide locations was
not carried out due to remoteness and travel limitation.

4.2 Thematic Maps Preparation

Nine causative factors were selected based on past literatures in the area and data
availability. Nine thematic layers were then prepared in a GIS environment as in
Figs. 4 and 5 for correlation analysis with landslide occurrence using the frequency
ratio-based statistical method.
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Fig. 3 Landslide inventory: a Past and updated inventory. b Training and testing datasets
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Fig. 4 a Slope map. b Elevation map. c Aspect map. d Profile curvature map. e Distance to road
map. f Distance to faults/lineaments map. g Distance to drainage map. h Land use land cover map
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Slope.

Slope map depicts the angle of slope of a particular area and is directly related to
slope instability [2].

The slope map is derived from the CartoSAT-1 Digital Elevation Model
(DEM) using surface (spatial analyst) tools in GIS platform. The resulting map
is reclassified into five distinct classes namely 0°–14°, 15°–24°, 25°–33°,
34°–45°, >45° as in Fig. 4a.

Aspect.

The aspect map (Fig. 4c) indicates the facing direction of slopes. The direction
faced by the slope is measured and classified from the DEM clockwise starting
North at 0° back to North at 360° using the aspect tool in GIS platform. Flat areas
(no slope and aspect) are denoted by grey cells with value ‒1.

Different slope orientations are exposed to different amount of direct sunlight
and wind exposure along with other factors affecting vegetation type, vegetation
density, soil moisture index, etc.

Curvature.

The profile curvature map derived from the DEM using curvature (spatial analyst)
tool, indicates the degree of convexity/concavity of surfaces and also influences the
acceleration/deceleration rate of surficial flows.

The resulting map has three classes with negative values (<‒0.05) for convex
surfaces, positive values (>0.05) for concave surfaces and near zero values (‒0.05
to 0.05) for linear surfaces as in Fig. 4d.

Distance to drainage.

The distance to drainage map was created using the hydrology tools for stream
order generation from the DEM and then the Euclidean distance tool was used for
buffer at intervals of 100 m from stream network. The resulting map was divided
into five distinct classes namely 0–100 m, 100–200 m, 200–300 m, 300–400 m
and >400 m as in Fig. 4g.

Changes in the surface water levels along rivers affects slope saturation along the
banks, pore water pressure and internal strength of slope forming material due to
infiltration. High-rainfall intensity is followed by high-river discharge capacity
causing bank erosion.

Elevation.

Elevation indirectly affects landslide occurrences since it influences other important
factors such as vegetation type, rainfall intensity, temperature, wind exposure, etc.

Triangulated irregular networks (TIN) were generated from contour lines of the
area before being converted and classified into the final elevation raster with four
groups; 1050–2000 m, 2000–3000 m, 3000–4000 m and 4000–4900 m as in
Fig. 4b. Human intervention is scarce at higher elevations (>4000 m) with lesser
extent of land available and the presence of snow/glaciers all year round.
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Lithology.

The structure, strength, composition and plasticity potential for each unit are dif-
ferent [7], hence their individual influence on landslide incidence need to be
evaluated.

The lithology digital shape file was rasterized and resampled to cell resolution of
30 � 30 m with a total of thirteen lithological units in the area as shown in Fig. 5.

Land use/land cover.

The Land use land cover (LULC) map was derived from Landsat-8 OLI/TRS
images (courtesy of the United States Geological Survey (USGS) Earth Explorer)
taken in October 2017 with cloud cover less than 10%. A supervised classification
was performed using the Interactive supervised classification tool after selecting
and merging training samples from the study area for each class. The five resulting
classes are built-up area, agricultural land, barren land, forest (evergreen, decidu-
ous), snow/glaciers and water bodies.

LULC map (Fig. 4h) can be associated to landslide occurrences since it illus-
trates the extent of human activity, agricultural land use, degree of deforestation
amongst others.

Fig. 5 Lithology map

192 B. C. Sujeewon and R. Sarkar



Distance from faults/lineaments.

Landslides are more likely to occur in faulted and fractured regions which leads to
inhomogeneity thereby reducing their stability and strength.

Buffer zones at interval of 200 m were created from the merged faults/
lineaments shape file. The resulting map (Fig. 4f) was rasterized with 30 m cell
resolution and reclassified into six categories namely 0–200 m, 200–400 m,
400–600 m, 600–800 m, 800–1000 m and >1000 m.

Distance to roads.

Road widening and construction in hilly areas often lead to vegetation removal,
change in drainage pattern and alteration to slope profiles through slope-cutting
process, all contributing to slope instability [12]. The road networks considered for
analysis in the area consists of national highway, major district roads and local
roads to better assess the spatial relationship between road network and landslide
occurrence.

The resulting map was rasterized with 30 m cell resolution and reclassified
into six categories with 200 m buffering intervals namely 0–200 m, 200–400 m,
400–600 m, 600–800 m, 800–1000 m and >1000 m.

5 Frequency Ratio Statistical Method

Frequency ratio, a data-driven statistical approach adopted in this study, has been
used and validated by many researchers [1, 6, 8]. A table was created for all the nine
landslide causative factors considered along with each of their classes.

The tabulate area tool was used to find out the pixel-wise contribution of every
factor class to the training dataset of the updated landslide inventory for the cal-
culation of frequency ratios (FR) as per Eq. (1).

FR ¼ PL=
Pn

i¼1 PL

PC=
Pn

i¼1 PC
ð1Þ

where

PL = Landslide pixels in a particular class.

Pn
i¼1

PL = Sum of all landslide pixels covering the area.

PC = Pixels of a particular class.
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Pn
i¼1

PC = Sum of all pixels covering the area.

Values above unity signify high correlation, whereas values less than unity
demonstrate low correlation. The results are summarized in Table 1.

The FR values were then used for the reclassification of each of the nine cau-
sative thematic maps in the GIS platform for the final susceptibility map preparation
using the Landslide Susceptibility Index (LSI) values [11] computed as per Eq. (2).

LSI ¼ FRSlo þ FRAsp þ FRCurv þ FRLulc þ FRLith þ FREle þ FRDR þ FRDD þ FRDF=L

� �

ð2Þ

where

FRSlo, FRAsp,… = Sum of frequency ratios of each factor.
The final landslide susceptibility map was created using the Raster Calculator

tool and reclassified into five categories using Natural Jenks break method namely
very low, low, moderate, high and very high as in Fig. 6.

6 Results and Discussions

The Landslide Density Index (LDI) was computed as per Eq. (3) for each sus-
ceptibility class to evaluate the quality of produced landslide susceptibility map
[13]. The increasing order of LDI (Table 2) imply that the frequency of landslide
occurrence increases with increasing (very low to very high) susceptibility class.

LDI ¼ % landslide pixels in susceptibility class
% class pixels in susceptibility class

ð3Þ

Receiver operator characteristics (ROC) method was then used to assess the
fitness and prediction accuracy of the model through the Area Under Curve
(AUC) of the success rate curve and the prediction rate curve [10, 11] using the
sampled training (70%) and validation (30%) datasets, respectively.

The computed AUC of the success rate curve (Fig. 7) and the prediction rate
curve (Fig. 8) were 0.873 and 0.803, respectively, as shown in Fig. 5. This indi-
cates that the model had 87.3% training accuracy and 80.3% prediction accuracy.

The fitness and prediction accuracy of this frequency ratio-based model were
considered reasonable.

The frequency ratios computed as in Table 1 gives an insight about the landslide
distribution in each factor class.
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Table 1 Frequency ratio results for the nine factors considered

Land use land cover Class
pixels

% Class
pixels

Landslide
pixels

%
Landslide
pixels

FR

Built up 146,846 0.14516 23,400 0.17687 1.21842

Forest 308,834 0.3053 9900 0.07483 0.24511

Water Body 4629 0.00458 900 0.0068 1.48662

Snow/Glaciers 123,809 0.12239 1800 0.01361 0.11116

Barren Land 203,861 0.20153 15,300 0.11565 0.57385

Agricultural Land/Grass 223,609 0.22105 81,000 0.61224 2.76974
Slope (°) Class

pixels
% Class
pixels

Landslide
pixels

%
Landslide
pixels

FR

0–14 137,223 0.12973 5400 0.04082 0.31462

15–24 261,701 0.24741 18,900 0.14286 0.57741

25–33 321,808 0.30424 44,100 0.33333 1.09564

34–45 241,211 0.22804 49,500 0.37415 1.64071

>45 95,810 0.09058 14,400 0.10884 1.20164
Aspect Class

pixels
% Class
pixels

Landslide
pixels

%
Landslide
pixels

FR

Flat 87 0.00008 0 0 0

North 64,632 0.06111 8100 0.06122 1.00184

Northeast 125,781 0.11893 17,100 0.12925 1.08678

East 132,831 0.1256 20,700 0.15646 1.24576

Southeast 121,512 0.11489 19,800 0.14966 1.30259

South 121,435 0.1153 29,700 0.22449 1.94696

Southwest 156,412 0.11482 14,400 0.10884 0.94794

West 156,412 0.14789 14,400 0.10884 0.73596

Northwest 146,739 0.13875 4500 0.03401 0.24515

North 66,228 0.06262 3600 0.02721 0.43453
Profile curvature Class

pixels
% Class
pixels

Landslide
pixels

%
Landslide
pixels

FR

Convex 113,351 0.10555 16,200 0.12245 1.16009

Flat 669,252 0.6232 72,900 0.55102 0.88418

Concave 291,289 0.27125 43,200 0.32653 1.20382
Distance to road (m) Class

pixels
% Class
pixels

Landslide
pixels

%
Landslide
pixels

FR

0–200 138,618 0.13702 67,500 0.5102 3.72347

200–400 87,959 0.08695 6300 0.04762 0.54768

400–600 71,444 0.07062 3600 0.02721 0.3853
(continued)
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Table 1 (continued)

Distance to road (m) Class
pixels

% Class
pixels

Landslide
pixels

%
Landslide
pixels

FR

600–800 59,745 0.05906 5400 0.04082 0.69112

800–1000 54,078 0.05346 11,700 0.08844 1.65435

>1000 599,789 0.59289 37,800 0.28571 0.4819
Distance to faults/
lineaments (m)

Class
pixels

% Class
pixels

Landslide
pixels

%
Landslide
pixels

FR

0–200 95,610 0.09451 8100 0.06122 0.64781

200–400 87,818 0.08681 12,600 0.09524 1.09711

400–600 82,262 0.08132 9900 0.07483 0.92024

600–800 72,002 0.07117 4500 0.03401 0.47789

800–1,000 68,400 0.06761 11,700 0.08844 1.30796

>1000 605,541 0.59858 85,500 0.64626 1.07966
Distance to drainage (m) Class

pixels
% Class
pixels

Landslide
pixels

%
Landslide
pixels

FR

0–100 82,554 0.0861 15,300 0.11565 1.41715

100–200 69,486 0.06869 18,900 0.14286 2.07983

200–300 74,861 0.074 7200 0.05442 0.73543

300–400 61,776 0.06107 8100 0.06122 1.0026

>400 722,956 0.71464 82,800 0.62585 0.87575
Elevation (m) Class

pixels
% Class
pixels

Landslide
pixels

%
Landslide
pixels

FR

1050–2000 264,717 0.2603 101,700 0.76871 0.83979

2000–3000 430,533 0.42335 28,800 0.21769 0.14622

3000–4000 281,431 0.27674 1800 0.01361 0.05916

4000–4900 40,277 0.03961 0 0 0
Lithology Class

pixels
% Class
pixels

Landslide
pixels

%
Landslide
pixels

FR

Schist and quartzite 159,066 0.15724 8100 0.06122 0.38938

Carbonaceous slate,
phyllite, limestone,
quartzite

74,580 0.07372 1800 0.01361 0.18455

Carbonaceous slate,
phyllite, quartzite

13,122 0.01297 0 0 0

Diamictite, shale, slate,
sandstone, limestone

4463 0.00441 0 0 0

Sillimanite—kyanie bearing
schist, quartzite

204,013 0.20167 60,300 0.45578 2.26007

White-green quartzite,
phyllite, basic flows

197,575 0.1953 18,900 0.14286 0.73146

(continued)
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Table 1 (continued)

Lithology Class
pixels

% Class
pixels

Landslide
pixels

%
Landslide
pixels

FR

Streaky and banded gneiss 23,534 0.02326 3600 0.02721 1.16969

Phyllite, quartzite with
basic flows

13,721 0.01356 0 0 0

Schist, gneiss, migmatite,
quartzite, marble

116,964 0.11562 2700 0.02041 0.17651

Schist, phyllite, quartzite 57,587 0.05692 4500 0.03401 0.59752

Slate, phyllite,
quartzarenite, limestone,
metabasics

87,693 0.08668 28,800 0.21769 2.51125

Granitoid, gneiss,
migmatite

5695 0.00563 0 0 0

Gravel, pebble, sand, silt
and clay

53,620 0.053 3600 0.02721 0.51338

Fig. 6 Final landslide susceptibility map
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The LULC map showed highest landslide occurrences around the built-up area,
agricultural land area and near water bodies, whilst the lowest being in the forest
and snow/glaciers areas.

There was an increasing trend in landslide incidence as slope increased with
highest value recorded for slope between 33° and 44°.

The south, south-east and east aspect were found more prone to landslides in the
area whereas slope with no aspect had zero frequency ratio.

Convex and concave surfaces had highest values of frequency ratio compared to
linear surfaces showing implication of convexity and concavity in landslide
happening.

Increase in slope instability due to road construction in the area can be justified
by the highest FR values (3.72347) obtained in the 0–100 m range of the buffered
road network.

Table 2 Landslide density index (LDI) calculation results

Susceptibility Class
pixels

% Class
pixels

Landslide
pixels

% Landslide
pixels

LDI

Very low 335,136 0.33192 4500 0.07813 0.2354

Low 300,859 0.29797 9000 0.15625 0.5244

Moderate 183,862 0.18210 6300 0.10938 0.6006

High 136,632 0.13532 16,200 0.28125 2.0784

Very high 53,205 0.05269 21,600 0.37500 7.1166

Fig. 7 Success rate curve
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The highest frequency ratio values 1.41715 and 2.07983 for the drainage buf-
fered zones of 0–100 m and 100–200 m, respectively, from the stream networks
signify strong association to slope instability.

The lower two elevation zones (1050–2000 m and 2000–3000 m) have highest
FR values (0.83979 and 0.14622) and also have more man-made activities com-
pared to higher elevations in the area often covered with snow coupled with scarce
human intervention and lesser extent of land.

For the lithologic contribution to landslides, the two groups namely slate,
phyllite, quartzarenite, limestone, metabasics and sillimanite-kyanie bearing schist,
quartzite have the highest FR values of 2.51125 and 2.26007, respectively, and out
of thirteen, four groups had zero FR values, hence no contribution was observed.

7 Conclusion

The validation results showed reasonable prediction accuracy of the data-driven
model adopted for mapping landslide susceptibility in this region using the nine
selected factors. This model can be used for the generation of better landslide
susceptibility maps for future planning and mitigation measures, but not as a
replacement for detailed, localized studies performed by experts.

Fig. 8 Prediction rate curve
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