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Abstract. In the modern context governed by Industry 4.0, Reconfigurable Man-
ufacturing Systems (RMSs) rose as an effective production strategy able to cope
with the increased product variety, the dynamic market demand and the need for
flexible production batches. The manufacturing environment is usually made of a
set of intelligent machines, i.e. ReconfigurableMachine Tools (RMTs), consisting
of basic and auxiliary modules, which allow performing different operations. In
this context, this paper proposes an optimization model for the dynamic design
of RMSs with alternative part routing and multiple time periods, aiming at deter-
mining the part routing mix and the auxiliary module allocation best balancing
the part flows among RMTs and the effort to install the modules on the machines.
The model is solved through the application of a genetic algorithm applying dif-
ferent crossover operators and different threshold values for the occurrence of
crossover and mutation processes. Results from the considered instance highlight
that the two point crossover operator allows achieving the lowest fitness value, i.e.
the lowest value of the defined objective function, getting a manufacturing system
configuration characterizedby low inter-cell part flowandmachine reconfiguration
time.

Keywords: Reconfigurable manufacturing systems · Reconfigurability · RMS ·
Genetic algorithm · Optimization model

1 Introduction and Literature Review

In modern industry, manufacturers are facing a high level of market globalisation,
increased product innovation and variety, dynamic customer demand and technologi-
cal advancements [1, 2]. These trends encourage industrial companies to adopt the mass
customisation paradigm to meet every customers’ request and satisfy their individual
needs. In this dynamic and changeable scenario, reconfigurability is one of the major
enablers of changeability and, from the Industry 4.0 perspective, it is an essential element
to copewith the ever-increasing complexity of themodern industrial andmarket scenario
[3–5]. ReconfigurableManufacturing Systems (RMSs) rose in 1999 as a new production
system paradigm including changeability attributes at both physical and logical levels [6,
7] joining their core features of modularity, integrability, diagnosibility, convertibility,
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customization and scalability [4]. A typical RMS structure includes a set of intelligent
machines called reconfigurable machine tools (RMTs) with an adjustable and modular
structure through a set of basic and auxiliary custommodules, which allow to increase the
set of feasible operations to perform [2, 8, 9]. In particular, eachRMT incorporates a num-
ber of basic modules that are structural elements permanently attached to the machine,
and a number of auxiliarymodules, which are kinematical ormotion-giving. Therefore, a
specific combination of suchmodules provides a particular set of operational capabilities
to the RMT. In current literature, a wide set of studies concerning optimization models
for RMS design and management has been developed [10–12]. Youssef and ElMaraghy
[13, 14] defined a novel algorithm supporting the RMS configuration selection with the
goal to find the most suitable configurations for the different demand scenarios over the
considered time horizon and to select those that allow minimizing the reconfiguration
effort. In the same field, Moghaddam et al. [15] faced the RMS configuration design in
presence of dynamic market demand. In such a context, the production system config-
uration needs to vary accordingly to the demand data at the minimum cost. To face this
issue, the Authors developed a mixed integer linear programming formulation to man-
age the first manufacturing system configuration design as well as the further required
configurations according to the dynamic demand rate. Goyal et al. [16] defined a multi-
objective model to estimate the reconfigurability potential and task capability of RMTs
according to the auxiliary module interactions. Moreover, the proposed mathematical
algorithm supported the optimal part-machine assignment in case of a single part flow
line allowing the parallel working of similar RMTs. Another wide group of researchers
proposed to arrange RMSs in cellular production patterns, leading to the rise of Cellular
Reconfigurable Manufacturing Systems (CRMSs) [9, 17, 18]. In conventional cellular
manufacturing systems (CMSs), the formation of the manufacturing cells is an activ-
ity traditionally performed during the initial setup of the CMS and the layout does not
change during the production life cycle. However, the recent trends imposed by Industry
4.0, e.g. mass production, dynamic market demand, etc., make CMSs obsolete because
of the manufacturing cells may need to vary their structure throughout the production
life cycle. To face this issue, recent studies suggest introducing the modularity attribute
in the design of the manufacturing machines to include in the cells, enabling reconfig-
urability [8, 9]. In this field, Pattanaik et al. [8] proposed a clustering-based approach to
design reconfigurable machine cells through adjustable machines. Eguia et al. [19, 20]
defined a mathematical optimization model for the design of CRMSs aiming at mini-
mizing the total inter-cell part movements and the overall production costs. According
to this background, this paper proposes an optimization model for the dynamic design
of CRMSs, best balancing the trade-off between the effort to reconfiguring the RMT
hosting the part, in terms of auxiliary module installation and disassembly, versus the
inter-cell part travel flows. The model is, then, applied to a numeric operative case study
and solved by applying a genetic algorithm (GA). According to this background and the
outlined goals, the remainder of this paper is organized as follows. Section 2 introduces
the optimizationmodel for CRMSs designwhile the description of the solving procedure
is in Sect. 3. The application of the model to the operative reference case study and the
results discussion are in Sect. 4. Finally, Sect. 5 concludes the paper with final remarks
and future opportunities for research.
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2 Optimization Model for the Design and Management of CRMSs

The aim of this section is to introduce and describe the optimization model for the
dynamic design of CRMSs. The production context is made of a set of Reconfigurable
Machine Cells (RMC) including a number of RMTs. Each RMT is characterized by a
library of basic and auxiliary modules. As described in Sect. 1, the basic modules are
structural elements permanently attached to the machines, while auxiliary modules are
dynamic entities, which can be assembled and disassembled to/from the RMT when
needed to provide different operational capabilities. Next Fig. 1 shows a conceptual
framework of a typical CRMS structure, derived from [21].

Fig. 1. Schematic of a cellular RMS structure, derived from [21].

2.1 Problem Description, Assumptions and Notations

The proposed CRMS model relies on an initial RMT-RMC assignment and explores
how to best-balance the reconfigurability effort, i.e. assembly and disassembly of the
auxiliary modules on/from the RMTs, and the part flow among the RMCs, by using
the available information about the operation sequence and the compatibility among the
auxiliary modules, operations and RMTs. To this aim, the model minimizes the sum of
the inter-cell, i.e. inter-RMC, parts travel time and the reconfiguration time to assemble
and disassemble the auxiliarymodules defining the part batch flows and themost suitable
allocation of the modules to the RMTs. For the sake of brevity, in the following, analytic
details about model indices, parameters, variables and the objective function formulation
will be provided; while the complete formulation of the logical constraints is omitted.
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The following notations are used.

• Indices

i parts i = 1, . . . ,M
j RMCs j = 1, . . . ,N
k modules type k = 1, . . . ,K
m RMTs m = 1, . . . ,Z
o operations in part work cycle o = 1, . . . ,Oi

t time periods t = 1, . . . ,T

• Parameters

Gomk 1 if operation o can be performed on RMT m using an auxiliary module of
type k; 0 otherwise

[
binary

]

MACmj 1 if RMT m is assigned to RMC j; 0 otherwise
[
binary

]

R maximum number of modules per RMT and period [#]
rit definition of the operation in which the batch of part i is in period t
tijj1 travel time for batch of part i from cell j to cell j1[min/batch]
λmk assembly time of module type k on RMT m[min/module]
μmk disassembly time of module type k from RMT m[min /module]
τom time to perform operation o on RMT m

[
min/op

]

ξ available time per RMT [min/machine]
δi planned production volume during a predefined period of time for part i

[parts]

• Decisional Variables

Fijj1t 1 if batch of part i moves from RMC j to RMC j1 in period t; 0 otherwise[
binary

]

Wmit 1 if batch of part i is processed by RMT m in period t; 0 otherwise
[
binary

]

σmkt 1 if module type k is on RMT m in period t, 0 otherwise
[
binary

]

Xmkt 1 if module type k is assembled on RMT m in period t, 0 otherwise
[
binary

]

Ymkt 1 if module type k is disassembled from RMT m in period t, 0 otherwise[
binary

]

• Objective function

minψ Part travel time and module assembly/disassembly time [min], as in (1)

ψ =
T∑

t=1

Z∑

m=1

K∑

k=1

Xmkt · λmk +
T∑

t=1

Z∑

m=1

K∑

k=1

Ymht · μmk +
M∑

i=1

N∑

j=1

N∑

j1=1

T−1∑

t=1

Fijj1t · tijj1
(1)
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The first and the second terms are for the module assembly and disassembly time
on/from RMTs, respectively, while the third term is for the part travel time. Next Sect. 3
introduces the procedure used to solve the model, based on GA.

3 Solving Procedure

The goal of the model is to determine the part batch flow among RMTs and RMCs
as well as the best allocation of the auxiliary modules to the RMTs for part process-
ing, considering the part work cycle and the compatibility information among auxiliary
modules, operations and RMTs. Due to the model complexity, a heuristic method, i.e.
GA, is chosen as solving method. GA relies on the concept of evolutionary computation
reproducing the natural selection and biological reproduction of animal species. In fact,
it originates from Darwin’s “survival of the fittest” concept, meaning that a good parent
produces better offspring, and it has been successfully applied over the time for flexible
job-shop and flow-shop scheduling [22]. Prior to its application, GA requires to design
the genetic representation, e.g. chromosome, of the candidate solutions. A chromosome
represents each solution in the initial solution set of the population and it evolves through
a crossover and a mutation operator to produce offspring, with the aim to improve the
current set of solutions. The chromosomes are then evaluated through a fitness func-
tion, and the less fit chromosomes are replaced with better children. Such process of
crossover, evaluation and selection is repeated for a number of iterations, usually up to
the point in which the system ceases to improve. To summarize, Table 1 lists the main
steps to follow for GA implementation to determine the optimum or near to optimum
manufacturing configurations.

Table 1. Steps for GA implementation.

Genetic algorithm (GA) implementation steps

Step A: Parent selection

Step B: Crossover

Step C: Mutation

Step D: Fitness evaluation

Step E: Termination criterion

In this study, the stepA, i.e. parent selection, is implemented according to the roulette
method. Therefore, the probability of selecting a string is closely related to its fitness
value. As reference example, in case of objective function to minimize, the lower the
fitness of a string, the higher the probability that it will be selected as a parent. The step B,
i.e. crossover, aims at combining the genetic information of the parents to generate new
offspring. Initially, the algorithm defines a random value in the range 0–1, called cross,
which is then compared to a value, called pcross, which corresponds to the probability
of implementing a crossover operator and its value is set by the user. If the relation
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cross < pcross is verified, the crossover process will occur. Therefore, the higher the
value of pcross, the more strings generated will be the result of a genetic exchange.
Several crossover operators exist: the most widespread as well as those applied in this
study are the one point crossover, the two point crossover and the uniform crossover.
The step C, i.e. mutation, is performed to maintain genetic diversity from one generation
of a population of GA chromosomes to the next. The probability of occurrence of this
operator is given by the value pmut. Traditionally, this variable assumes low values as it
expresses the probability that errors can occurr during the genetic exchange. Therefore,
for each allele, the system will define a random value in the range 0–1, called mut,
which is compared to pmut. If the relationmut ≤ pmut is verified, the mutation operator
will occur, i.e. the allele value changes from 0 to 1 and vice-versa. Once concluded the
mutation phase, the evaluation of the generated strings occurs, i.e. step D. In particular,
it is verified that each child satisfies all the model constraints: if even one constraint is
not satisfied, the string is automatically discarded, otherwise the process moves toward
the fitness function evaluation according to Eq. (1). The algorithm ends, i.e. step E, once
a specific number of strings has been generated.

4 Case Study

In this section, a numeric operative case study is presented to evaluate the efficiency of the
proposedmodel and its solving procedure. The instance considers themanufacturing of 5
products through a global set of 6 tasks. Moreover, the production environment includes
3 RMCs and 5 RMTs, i.e. RMT #1 and RMT #4 in RMC #1, RMT #2 in RMC #2 and
RMT #3 and RMT #5 in RMC #3, while the equipment library has a set of 5 auxiliary
module types. The compatibility matrix among tasks, RMTs and auxiliary modules is
in Table 2.

Table 2. Compatibility data among tasks, RMTs and modules.

Tasks (o) (Auxiliary modules) - [unitary processing times in minutes]

RMT #1 RMT #2 RMT #3 RMT #4 RMT #5

1 (1, 3) - [0.012] (1) - [0.007]

2 (1) - [0.01] (1, 4) - [0.011]

3 (2, 5) - [0.008]

4 (4) - [0.009] (4, 5) - [0.009]

5 (2, 5) - [0.012] (2, 5) - [0.011]

6 (3, 4) - [0.007]

This matrix shows the task execution modes, i.e. the RMT/RMTs needed for their
processing, the required modules (in round brackets) and the unitary processing times
(in squared brackets). Additional data about part work cycles, daily production volumes
and auxiliary modules assembly and disassembly time are not detailed for the sake of
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brevity. Other relevant data concern the parameter R, set to a value equal to 6 units, and
parameter T equal to 120 periods.

4.1 Genetic Algorithm Application

The GA algorithm used to solve and validate the proposed model is implemented in
Microsoft Excel software using the Visual Basic for Applications (VBA) tool. The pro-
cedure starts with the generation of five parent strings considering the most relevant
variable, i.e. Wmit , which specifies the RMT on which the part is located in each time
period. Each parent has 3’000 binary values, i.e. 5 parts × 5 RMT × 120 time periods,
and because of each part has to be processed by one RMT in each time period, 600
alleles of each string will take the value 1 while the remaining the value 0. Next Table 3
lists the five parents, satisfying all the model constraints, and their fitness value.

Table 3. Parent selection.

String Fitness value [min]

Parent 1: Wmit1 10860.12

Parent 2: Wmit2 10826.18

Parent 3: Wmit3 10432.82

Parent 4: Wmit4 11556.42

Parent 5: Wmit5 9988.17

Once defined the parents, the algorithm selects two of them among the five available.
Then, the crossover operator takes place, considering as values of pcross 0.90, 0.95 and
0.98 and the one point, two point and uniform as crossover operators. The mutation
phase follows the crossover, performed setting as values of pmut 0.0002, 0.0001 and
0.002. Once these steps have been completed, the algorithm verifies that the two children
satisfy the model constraints. In case of success, the child fitness is evaluated and it will
be included in the set of the available parents. Finally, the algorithm checks whether the
generated string is the hundredth, i.e. termination criterion: if not, it proceeds generating
other offspring and repeating the process, otherwise it ends.

4.2 Experimental Results and Discussion

Amulti-scenario analysis is performed varying, in each scenario, the crossover operator
method and the pcross and pmut values according to the data discussed in Sect. 4.1,
getting a total of 18 scenarios. Aggregated results are in next Fig. 2.

Results mark that the best scenario, in terms of lower fitness value, is the ID. 8, with
a fitness value equal to 8995.91 min. Such scenario corresponds to the application of
the two point crossover operator, while the selected pcross and pmut values are 0.95
and 0.0001, respectively. Conversely, the scenario characterized by the highest fitness
is the ID. 1, with a fitness value equal to 12128.82 min. Such scenario corresponds to
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Fig. 2. Multi-scenario analysis results.

the application of the one point crossover operator, while the selected pcross and pmut
values are 0.95 and 0.0002, respectively. Indeed, moving from such two scenarios, the
fitness undergoes an increase of about 34%. Another relevant aspect to highlight is that
the minimum and maximum fitness values are the same for all the scenarios in which the
uniform crossover has been applied, i.e. scenario ID. 3, 6, 9, 12, 15, 18 with minimum
fitness equal to 9988.17 min and max fitness equal to 11556.42 min. Moreover, such
values correspond to the fitness of the parents. Therefore, the uniform method does not
generate offspring with lower fitness values than the initial ones. Additional scenarios
need to be assessed in the future, considering a wider set of pcross and pmut values as
well as a more complex instance.

5 Conclusions and Future Research

In the last years, Reconfigurable Manufacturing Systems (RMS) emerged as an efficient
manufacturing solution able to cope with the emerging industrial and market trends, e.g.
dynamic market demand, short product life cycles, and flexible batches. To reach this
goal, such systems use intelligent machines made by fixedmodules and auxiliary custom
modules, which can be assembled and disassembled when needed to provide different
operational opportunities. In this scenario, this paper proposes a mathematical optimiza-
tion model for the dynamic design of Cellular Reconfigurable Manufacturing Systems
(CRMS) with the aim to best-balance the trade-off between the effort to reconfigure the
manufacturing machine hosting the parts, in terms of auxiliary module assembly and
disassembly, versus the inter-cell part travel flows. The model is, then, applied to an
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operative case study and solved by applying a genetic algorithm. Moreover, a multi-
scenario analysis is performed applying different crossover operators, i.e. one point, two
point and uniform, and different threshold values for the occurrence of crossover and
mutation processes. Results from the considered instance highlight that the two point
crossover operator allows achieving the lowest fitness value, i.e. the lowest value of
the defined objective function. Future research deal with the inclusion of other relevant
dimensions in the model formulation, e.g. economic, and the application of the model
to larger instances.
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