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Abstract. Predictive Maintenance (PdM) is the newest strategy for maintenance
management in industrial contexts. It aims to predict the occurrence of a fail-
ure to minimize unexpected downtimes of equipment and maximize the useful
life of the monitored components. In a data-driven approach, PdM makes use of
Machine Learning (ML) algorithms to extract relevant features from historical
signals, identify and classify possible faults (diagnostics), and predict the compo-
nents’ remaining useful life (RUL) (prognostics). The major challenge lies in the
high complexity of industrial plants, where both operational and environmental
conditions change over time and a large number of unknown a priori modes may
occur. A solution to this problem is offered by novelty detection, where a repre-
sentation of the normal operating state of the machinery is learned and compared
with online measurements in order to identify new operating conditions. In this
paper, a comparison between ML and Deep Learning (DL) methods for novelty
detection is conducted, to evaluate their effectiveness and efficiency in different
scenarios. To this purpose, a case study considering vibration data collected from
an experimental platform is carried out. Results show the superiority of DL on
traditional ML methods in all the evaluated scenarios.
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1 Introduction

As one of the pillars of the Industrial 4.0 paradigm, predictive maintenance (PdM) is
attracting researchers and practitioners of several industrial sectors. PdMallows perform-
ing maintenance interventions before a failure takes place and maximizing the useful
lives of production [1]. Thanks to enabling technologies like IIoT and edge comput-
ing, it is possible to collect a large amount of data from online condition monitoring
systems in order to assess the health condition of machinery at any point in time [2].

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
S. G. Scholz et al. (Eds.): KES-SDM 2021, SIST 262, pp. 109–119, 2022.
https://doi.org/10.1007/978-981-16-6128-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-6128-0_11&domain=pdf
http://orcid.org/0000-0003-0024-2563
http://orcid.org/0000-0001-9412-0449
http://orcid.org/0000-0002-1015-5490
http://orcid.org/0000-0001-8119-895X
http://orcid.org/0000-0002-6169-5980
https://doi.org/10.1007/978-981-16-6128-0_11


110 F. Del Buono et al.

The transformation of raw data in useful knowledge supporting the decisionmaking pro-
cess in the context of PdM is usually referred to as Prognostics and Health Management
(PHM). This process mainly consists of feature extraction, fault detection and diagnosis,
and prognostics [3]. A data-driven PHM approach makes use of condition monitoring
techniques andmachine learning (ML) algorithms to perform fault diagnostics and prog-
nostics [4]. However, their industrial applicability is limited by the fact that the training
data available to build diagnostic models typically do not include all the work conditions
that components and systems may experience during their life [5, 6]. In addition, the
data collected through an online condition monitoring system refer to equipment under
varying operating and environmental conditions. In the literature, semi-supervised and
self-adaptable approaches are proposed for fault diagnosis in evolving environments [5].
In these contexts, the occurring of a different operating condition is seen as a concept
drift detection problem. When a concept drift is detected, existing diagnostic models are
re-trained including new available data. Thus, the main goal is to detect abrupt concept
drifts which correspond to the occurrence of a novel operating condition. The concept
of drift detection can be considered as a novelty detection problem [7]. According to
[8], novelties here are seen as agglomerations of abnormal observations, i.e., anomalies,
representing a fundamental change in the underlying processes generating the observa-
tions. Hence, novelty detection can also be seen as a one-class classification problem [9].
Giving their promising results in several domains, e.g., feature learning, pattern recog-
nition, time series forecasting, Deep Learning algorithms are receiving great attention
in the context of novelty detection. However, a comparison in terms of classification
performance between ML and DL algorithms is still missing in the field of novelty
detection. In addition, existing studies only consider the case of one-class classification,
including one only normal condition during the learning process. This aspect limits their
application to industrial machinery, which operates under several normal conditions.

The main goal of the present study is to compare ML and DL performance in the
recognition of novel operating conditions of a system. In particular, two different sce-
narios and two different levels of analysis will be considered, in order to determine the
best models, in terms of prediction accuracy, in offline and online scenarios and when a
single point or a batch is considered during models training and testing. In addition, the
performance of each method is also compared in terms of required computational times
for both training and prediction, and with a varying training size.

The remaining of the paper is organized as follows. In Sect. 2, common models used
in the context of novelty detection are briefly reviewed. In particular, details on models
adopted for the comparative analysis are provided. Section 3 shows the results obtained
by the application of those models on raw vibration signals collected from a test rig.

2 Methods for Novelty Detection

In general, novelty detection methods learn, during the training, a representation of the
normal operation of the machinery and are used at serving time to identify deviations
from this representation. During the test phase, they are therefore required to assign
novelty scores to each test data and then categorize them as belonging to a new operat-
ing condition depending on whether the score exceeds a certain threshold or not [10].
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The most common ML methods adopted for novelty detection are summarized in this
section. The Local Outlier Factor (LOF) algorithm is an unsupervised anomaly detection
method that computes the local density deviation of a given data point with respect to
its neighbors. It considers as outliers the samples that have a substantially lower den-
sity than their neighbors [11]. The Isolation Forest ‘isolates’ observations by randomly
selecting a feature and then randomly selecting a split value between the maximum and
minimum values of the selected feature. Since recursive partitioning can be represented
by a tree structure, the number of splits required to isolate a sample is equivalent to
the path length from the root node to the terminating node. This path length, averaged
over a forest of such random trees, is a measure of normality and our decision function.
Random partitioning produces noticeably shorter paths for anomalies. Hence, when a
forest of random trees collectively produces shorter path lengths for particular samples,
they are highly likely to be anomalies [12]. The One-Class Support Vector Machine is
an unsupervised learning algorithm that is trained only on the ‘normal’ data, in our case
the negative examples. It learns the boundaries of these points and is therefore able to
classify any points that lie outside the boundary as outliers [13]. The Principal Compo-
nent Analysis (PCA) is frequently used in exploratory data analysis because it reveals
the inner structure of the data and explains the variance in the data. PCA looks for corre-
lations among the variables and determines the combination of values that best captures
differences in outcomes. For anomaly detection, each new input is analyzed, and the
anomaly detection algorithm computes its projection on the eigenvectors, together with
a normalized reconstruction error. The normalized error is used as the anomaly score.
The higher the error, the more anomalous the instance is [14]. Online clustering can be
considered a distance-based novelty detection approach, in which the “normal” class is
characterized by a small number of prototype points in the data space [10]. During the
prediction step, the distance between the “normal” points and new points is computed.
A threshold is set to determine whether the current pattern belongs to the same cluster
as the normal one, or creates a new cluster. Among DL approaches, the most widely
adopted methods for novelty and anomaly detection problems are autoencoders. They
are neural architectures that compress the input data into a compact vector representation
(encoding phase) and try to reconstruct the original data starting from this intermediate
representation (decoding phase) [9, 10, 15]. In the context of novelty detection, these
architectures identify new operating conditions when the reconstruction error obtained
exceeds a certain threshold, which confirms that the processed input cannot refer to
any normal condition encountered in the training phase. This generic architecture can
be implemented using different types of neural networks: simple Feed-Forward neu-
ral networks, Convolutional Neural Networks (CNNs) or Recurrent Neural Networks
(RNNs). Feed-Forward AutoEncoder [9] relies on Multilayer Perceptrons, or MLPs for
short, to encode and decode the input data and intermediate representations respectively.
CNN AutoEncoder [15] applies convolutive filters to an input organized in a grid to
derive an intermediate representation that encodes the spatial proximity information
of the original data (encoding phase) and adopts an inverse strategy to re-expand this
intermediate knowledge. RNN AutoEncoder [10] (LSTM in our case) is based on a
recurrent connection of hidden representations generated from multiple MLPs, which
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is exploited to compress and reconstruct data while preserving their sequentiality and
order of occurrence.

3 Experimental Evaluation

For the purpose of the present study, an experimental platform was built in the Depart-
ment of Industrial Engineering of the University of Bologna. Several tests have been
conducted to get vibration signals and apply the methods described in the previous
section. The goal of this analysis is to provide a comparative evaluation of them in terms
of effectiveness and efficiency in order to understand the main trade-offs deriving from
their use. In particular, two scenarios are considered. In the first scenario, named offline,
the models are first trained on a single operating condition; then, their ability to discrim-
inate between the known condition and the other, i.e., novel conditions, was analyzed;
this scenario corresponds to the common approach, which requires the re-train of models
each time a new condition occurs; in the second scenario, named online, the models are
evaluated in terms of their ability to incorporate new knowledge. This scenario evaluates
an incremental learning approach, in which the ability to learn machinery conditions
that were unknown at the time of the initial offline training is assessed. In addition, for
each scenario, two levels of analysis are conducted. In the first case, each sample is con-
sidered separately; the prediction accuracy is computed by Eq. 1, whereN is the number
of samples, 1(x) is converts the outcome of a boolean condition (true or false) into 1 or
0, yi and ỹi represent the true and the predicted labels for the i-th sample, respectively

Accuracy (Acc) = 1

N

N∑

i=1

1(yi = ỹi) (1)

A second level of analysis considers a batch of samples instead of single samples.
In this case, the batch accuracy is given by Eq. 2, where |Bk | indicates the cardinality of
the k-th batch, with k = 1, . . . ,M andM the number of batches, yk,j and ỹk,j represent
respectively the true and the predicted labels for the j-th sample in the k-th batch.

Batch Accuracy (B.Acc) = 1

M

M∑

k=1

1(
|Bk |∑

j=1

1
(
yk,j = ỹk,j

) = |Bk |) (2)

Hence, a prediction is considered correct when all the samples of a batch are cor-
rectly predicted. Finally, the performance of each model is also evaluated in terms of
computational time of both training and testing.

The Dataset. The platform is shown in Fig. 1. It is composed of an asynchronousmotor,
a gearbox made of two pulleys that exchange the rotation through a belt, two shafts that
share the motion thanks to a couple of gears, and an electromagnetic brake. The platform
is provided with three triaxial accelerometers, which are placed on the bearing’s sup-
port, next to the second pulley and the two gearboxes, respectively. They have a sampling
frequency of 12.8 kHz per axis and an acceleration range of 500 Gpeak. A complete
description of the platform can be found in [17]. For the purposes of experimentation,
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tests in four distinct operating conditions and a fault condition are conducted. The rota-
tional speed is fixed at 660 rpm, while the distance between the pulley and the braking
torque varies. The parameters, the duration, and the number of batches of each condition
are shown in Table 1. Note that each batch has a length of 10 min. A representation
of the raw signals in the 4 operating conditions is provided in Fig. 1. The considered
signals represent a multivariate series where each feature is an acceleration. As can be
seen, while the accelerations in the first operating condition are rather stable, signifi-
cant oscillations occur in the other conditions, but only state 4 describes an anomalous
operation of the machinery (i.e. states 1–3 represent normal operating conditions). Note
that, since C4 is a fault condition, it will be used only as test data (i.e. no model will be
trained on this anomalous state).

Table 1. Dataset description

Operating
conditions

Distance between
pulleys (mm)

Braking torque
(Nm)

Duration (min) Number of
batches

C1 27.33 0.1 70 7

C2 27.33 0.5 150 15

C3 27.54 0.1 70 7

C4 27.54 0.1 30 3

Fig. 1. Raw signals corresponding to each operating condition

Offline Evaluation Scenario. To carry out this evaluation we trained themodels in turn
on one batch at a time and we evaluated them on the remaining batches. This evaluation
is repeated until each batch has been used for model training. The behavior we expect to
obtain is that for all the test data associated with the samemachine condition used for the
training no novelty state is detected, while newmachinery conditions are detected for the
other samples. The results of this experiment are shown in Table 2, where for each model
and training machinery condition, the accuracy, given by Eq. 1, and the batch accuracy,
given by Eq. 2, computed over all the datasets are reported. The models that provide
the worst performance are SVM, IF and LOF, while the remaining models are almost
equivalent.With the exception of C3where they produce poor results, these threemodels
generate good performance on single samples (i.e. they obtain accuracy values in the
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range 0.66–0.97), however, in batch-level evaluation, they produce many false alarms
(i.e. they obtain batch accuracy values in the range 0.3–0.6). Furthermore, it is possible
to see how the most difficult operating condition to identify is C3, in which SVM, IF and
MLP show the most significant reductions in performance, while C1 is recognized by
the models with the highest effectiveness. This differentiation in performance does not
apply to LSTM and CNNwhich are highly effective on all scenarios without distinction.

Table 2. Breakdown of model performance by operating condition

Algorithm All C1 C2 C3

Acc. B. Acc. Acc. B. Acc. Acc. B. Acc. Acc. B. Acc.

Clustering 0.988 0.758 0.998 0.941 0.978 0.627 0.995 0.830

LOF 0.817 0.572 0.990 0.840 0.915 0.544 0.411 0.326

PCA 0.965 0.808 0.999 0.945 0.939 0.752 0.981 0.772

SVM 0.658 0.351 0.982 0.715 0.703 0.290 0.189 0.067

IF 0.880 0.619 0.994 0.867 0.967 0.598 0.561 0.379

MLP 0.957 0.911 1.000 1.000 0.945 0.906 0.933 0.821

LSTM 0.989 0.944 0.998 0.977 0.984 0.927 0.990 0.942

CNN 0.989 0.939 0.998 0.980 0.984 0.919 0.989 0.933

Online Evaluation Scenario. Drawing inspiration from [7], in this experiment we sim-
ulate the adoption of the models in a dynamic scenario where a continuous monitoring
of the machinery is performed, and an incremental knowledge of the operating condi-
tions of the machinery is learned by the diagnostic system. To create this experimental
scenario we have considered the three settings shown in Table 3.

Table 3. Online scenario configurations

Conf Training set Test set

Known set Novel set

S1 C1 (10 min) C1 (70 min) C2, C3, C4 (150 + 70 min +
10 min)

S2 C1, C2 (10 + 10 min) C1, C2 (70 + 150 min) C3, C4 (70 min + 10 min)

S3 C1, C2, C3 C1, C2, C3 C4

In the first configuration, each model is trained exclusively on a 10-min batch of C1
and an operating cycle is then applied to the other machinery settings. In the second
configuration, it is assumed that the model has also learned of the existence of C1 and
C2, and the same operating cycle is applied to other machinery settings. Finally, the
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last configuration evaluates the behavior of each model when trained jointly on all three
states. Note how each model stores for each state a limited amount of data compared to
the totality ofmeasurementsmade (i.e. only 10min of data for each state are considered).
In this way 1) the model is trained quickly and it can continue to monitor the behavior
of the machinery and 2) no dedicated storage is needed to store the entire measurement
history. Results of this scenario are reported in Table 4, where for each model the batch
accuracy is reported both for the entire test set, i.e., all observations included in both
known and novel tests as defined in Table 3, and the known and novel sets as defined in
Table 3, individually. Similar resultswere obtained considering the record-level accuracy,
which were not reported due to space constraints. From Table 4, it is possible to observe
that the configuration where the models perform best is the first one (S1), where the
models are trained exclusively on C1. This confirms that C1 is significantly different
from the other states, thus facilitating its distinction with respect to the other states. In
this configuration, the worst-performing models are SVM, LOF, and IF, which correctly
recognize C2, C3, and C4 as new operating conditions, however they tend to wrongly
categorize batches belonging to C1. In the second configuration, on the other hand, there
is a significant reduction in the effectiveness of the models, with the exception of LSTM
and CNN. In more detail, the LOF, PCA, and Clustering models hardly recognize C1
and C2 as already known operating conditions (low accuracies on the known set). This
is probably due to the integration of C2 with the training data, which has made the
separation between the operating conditions less marked. Finally, by analyzing the third
configuration, it is possible to note how all the models produce good performance in
recognizing the known set, however they are no longer able to discriminate it with respect
to the state C4, which actually presents, in the phase preceding the failure, very similar
characteristics compared to other conditions. In particular, all models except LSTM and
CNN have an accuracy equal to 0, i.e. they cannot correctly predict even a batch. A more
detailed analysis of these results revealed that the record-level accuracy of these models
varies in the range 0.1–0.33, while for LSTM and CNN in the range 0.81–0.83.

Table 4. Models batch accuracy in online scenario

Algorithm C1 C2 C3

Test Known Novel Test Known Novel Test Known Novel

Clustering 0.941 0.732 1.000 0.567 0.503 0.700 0.410 0.455 0.000

LOF 0.840 0.304 0.990 0.456 0.395 0.586 0.690 0.767 0.000

PCA 0.945 0.750 1.000 0.235 0.000 0.729 0.000 0.000 0.000

SVM 0.715 0.321 0.825 0.618 0.565 0.729 0.790 0.878 0.000

IF 0.867 0.411 0.995 0.618 0.626 0.600 0.757 0.841 0.000

MLP 1.000 1.000 1.000 0.871 1.000 0.600 0.900 1.000 0.000

LSTM 0.997 0.893 1.000 0.935 0.952 0.900 0.743 0.772 0.476

CNN 0.980 0.911 1.000 0.922 0.912 0.943 0.790 0.847 0.286
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To further inspect the superiority shown by the LSTM-basedAutoEncoder over com-
petitivemethods, we propose in Fig. 2 a visual inspection of its internal representation for
the examined operating conditions. In the figure this representation is compared with the
raw distribution of operating states when projected into a two-dimensional space gener-
ated by the popular t-SNE technique [15]. As you can see, the embedded space created
by the LSTMemphasizes the separation between the different operating conditionsmore
than in the original feature space.

Fig. 2. LSTM-based AutoEncoder embedded space compared with the original feature space

Impact of Data Size on Performance. In this subsection, the impact of the size of the
training data onmodel performance and computation time is assessed. For the evaluation
of the performance, each model is trained on a variable number of batches associated
with the same machinery state, i.e. 5, 10, 20 and 30 min of data. Each model is then
required to recognize the test data as referring to a novel or already known condition
of the machinery. Results of this experiment are shown in Fig. 3, where for each model
the evolution of batch accuracy as the training size increases is reported for all the three
states considered. Results show that the performance of deep learning models is high
even with a small amount of training data (e.g., 5 min) and is not influenced by the
availability of further training data. As for the other approaches, the variable availability
of training data influences their performance (with the exception of the PCA which
produces equivalent results for all the settings considered). In particular, Clustering and
SVM are more effective as the size of the training set increases: SVM achieves accuracy
improvements in the range between 9–20%, while Clustering between 6–20%. Similar
trends are also confirmed for the LOF and IF models on C1 and C2. However, the latter
two models perform worse as the size of the training set increases when trained on
C3. A more detailed analysis of these results has revealed that in this setting they are
unable to distinguish new states (i.e., LOF and IF generate a batch accuracy of 3 and
6%, respectively). The evaluation of computational time with varying training size is
conducted to assess 1) the impact of a training process on the inactivity of each model,
and 2) their velocity in detecting possible new operating conditions of the machinery
(i.e., the prediction time). Note that models are run on a VM deployed on Google Cloud
with 12 GB of RAM, GPU K80, and Intel(R) Xeon(R) CPU @ 2.30 GHz. For each
model, both training and test times are considered. Each model is trained on 5, 10, 20
and 30 min of data and the relative times are recorded. In addition, the prediction time
over 1 sample, 10-, 20- and 30-min batches was also recorded. The results of these two
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experiments are displayed in Fig. 4 on the left and right plots respectively. From the plot
on the left in Fig. 4, it is possible to observe how themodels require very different training
times. Models like SVM and PCA only take a fewmilliseconds to complete the training.
Times equal to almost two orders of magnitude are instead produced by IF and MLP
models. Clustering and CNN, on the other hand, require times in the order of a second
or a few tens of seconds. Finally, the LSTM model is the one that produces the highest
training times: from 4 min in the configuration with fewer data to a maximum of 20 min.
A confirmation of these trends is obtained by analyzing the prediction times shown in
the right plot, although the latter are two orders of magnitude lower. From these results
it is also possible to note that the Clustering approach produces significantly higher
prediction times than the other techniques (with the exception of LSTM). This is due to
the quadratic nature of the approach, although it was partially alleviated through a mixed
training strategy where a first clustering solution was produced from 1000 samples and
then the remaining data were included in an online fashion. Finally, it is possible to
observe how the time required to evaluate whether a single sample belongs to an already
known or novel state is a few milliseconds, making them all suitable for operating in an
online scenario.

Fig. 3. Performance evaluation as the training size increase

Fig. 4. Train (left) and test (right) performance by varying the data size

4 Conclusions

In this paper we have provided a comparative analysis of the performance of traditional
techniques (e.g. Clustering, LOF, PCA, SVM, IF) and more advanced approaches based
on deep learning models (Autoencoder, CNN) for novelty detection tasks in the context
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of fault diagnosis under varying operating conditions. The evaluation has been con-
ducted in multiple test scenarios. The effectiveness was measured both in offline and
online settings, in order to compare the ability of the models to exploit already known
information and to incorporate new ones for the purpose of novelty detection. Further-
more, a variable dimension of the data was considered to analyze their impact on the
time and effectiveness performance of these techniques. The main outcomes of the eval-
uation can be summarized as follows. First, traditional methods are less effective than
DL-based models, however the latter requires more time for both training and inference.
Second, methods based on autoencoders have shown greater robustness to noisy signals
than competitive approaches. In summary, these results support the direction towards a
beneficiary use of Deep Learning techniques in the context of novelty detection. Results
in terms of testing times are promising for industrial streaming applications of fault diag-
nostics under dynamic environments. Further assessments in more complex scenarios
will be conducted to verify the generality of this consideration.
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