
Chapter 12
Generalization Capability of Deep
Learning

12.1 Introduction

One of the main reasons for the enormous success of deep neural networks is
their amazing ability to generalize, which seems mysterious from the perspective
of classic machine learning. In particular, the number of trainable parameters in
deep neural networks is often greater than the training data set, this situation
being notorious for overfitting from the point of view of classical statistical
learning theory. However, empirical results have shown that a deep neural network
generalizes well at the test phase, resulting in high performance for the unseen data.

This apparent contradiction has raised questions about the mathematical foun-
dations of machine learning and their relevance to practitioners. A number of
theoretical papers have been published to understand the intriguing generalization
phenomenon in deep learning models [147–153]. The simplest approach to studying
generalization in deep learning is to prove a generalization bound, which is typically
an upper limit for test error. A key component in these generalization bounds is the
notion of complexity measure: a quantity that monotonically relates to some aspect
of generalization. Unfortunately, it is difficult to find tight bounds for a deep neural
network that can explain the fascinating ability to generalize.

Recently, the authors in [154, 155] have delivered groundbreaking work that can
reconcile classical understanding and modern practice in a unified framework. The
so-called “double descent” curve extends the classical U-shaped bias-variance trade-
off curve by showing that increasing the model capacity beyond the interpolation
point leads to improved performance in the test phase. Particularly, the induced bias
by optimization algorithms such as the stochastic gradient descent (SGD) offers
simpler solutions that improve generalization in the over-parameterized regime.
This relationship between the algorithms and structure of machine learning models
describes the limits of classical analysis and has implications for the theory and
practice of machine learning.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
J. C. Ye, Geometry of Deep Learning, Mathematics in Industry 37,
https://doi.org/10.1007/978-981-16-6046-7_12

243

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-6046-7_12&domain=pdf
https://doi.org/10.1007/978-981-16-6046-7_12

244 12 Generalization Capability of Deep Learning

This chapter also presents new results showing that a generalization bound
based on the robustness of the algorithm can be a promising tool to understand
the generalization ability of the ReLU network. In particular, we claim that it
can potentially offer a tight generalization bound that depends on the piecewise
linear nature of the deep neural network and the inductive bias of the optimization
algorithms.

12.2 Mathematical Preliminaries

Let Q be an arbitrary distribution over z := (x, y), where x ∈ X and y ∈ Y denote
the input and output of the learning algorithm, andZ := X×Y refer to the sample
space. Let F be a hypothesis class and let �(f , z) be a loss function. For the case of
regression with MSE loss, the loss can be defined as

�(f , z) = 1

2
‖y − f (x)‖2.

Over the choice of an i.i.d. training set S := {zn}Nn=1, which is sampled according
to Q, an algorithmA returns the estimated hypothesis

f S = A(S). (12.1)

For example, the estimated hypothesis from the popular empirical risk minimization
(ERM) principle [10] is given by

f ERM = argmin
f ∈F

R̂N (f), (12.2)

where the empirical risk R̂N (f) is defined by

R̂N (f) := 1

N

N∑

n=1

� (f , zn) , (12.3)

which is assumed to uniformly converge to the population (or expected) risk defined
by:

R(f) = Ez∼Q� (f , z) . (12.4)

If uniform convergence holds, then the empirical risk minimizer (ERM) is consis-
tent, that is, the population risk of the ERM converges to the optimal population
risk, and the problem is said to be learnable using the ERM [10].

12.2 Mathematical Preliminaries 245

In fact, learning algorithms that satisfy such performance guarantees are called
the probably approximately correct (PAC) learning [156]. Formally, PAC learnabil-
ity is defined as follows.

Definition 12.1 (PAC Learnability [156]) A concept class C is PAC learnable if
there exist some algorithm A and a polynomial function poly(·) such that the
following holds. Pick any target concept c ∈ C. Pick any input distribution P
over X. Pick any ε, δ ∈ [0, 1]. Define S := {xn, c(xn)}Nn=1 where xn ∼ P are
i.i.d samples. Given N ≥ poly(1/ε, 1/δ, dim(X), size(c)), where dim(X), size(c)
denote the computational costs of representing inputs x ∈ X and target c, the
generalization error is bounded as

Px∼Q {AS(x) �= c(x)} ≤ ε, (12.5)

where AS denotes the learned hypothesis by the algorithm A using the training
data S.

The PAC learnability is closely related to the generalization bounds. More
specifically, the ERM could only be considered a solution to a machine learning
problem or PAC-learnable if the difference between the training error and the
generalization error, called the generalization gap, is small enough. This implies
that the following probability should be sufficiently small:

P

{
sup
f ∈F

|R(f) − R̂N (f)| > ε

}
. (12.6)

Note that this is the worst-case probability, so even in the worst-case scenario, we
try to minimize the difference between the empirical risk and the expected risk.

A standard trick to bound the probability in (12.6) is based on concentration
inequalities. For example, Hoeffding’s inequality is useful.

Theorem 12.1 (Hoeffding’s Inequality [157]) If x1, x2, · · · , xN are N i.i.d. sam-
ples of a random variable X distributed by P, and a ≤ xn ≤ b for every n, then for
a small positive nonzero value ε:

P

{∣∣∣∣∣E[X] − 1

N

N∑

n=1

xn

∣∣∣∣∣ > ε

}
≤ 2 exp

(−2Nε2

(b − a)2

)
. (12.7)

246 12 Generalization Capability of Deep Learning

Assuming that our loss is bounded between 0 and 1 using a 0/1 loss function
or by squashing any other loss between 0 and 1, (12.6) can be bounded as follows
using Hoeffding’s inequality:

P

{
sup
f ∈F

|R(f) − R̂N (f)| > ε

}
= P

⎧
⎨

⎩
⋃

f ∈F
|R(f) − R̂N (f)| > ε

⎫
⎬

⎭

(a)≤
∑

f ∈F
P

{
|R(f) − R̂N (f)| > ε

}
(12.8)

= 2|F| exp(−2Nε2),

where |F| is the size of the hypothesis space and we use the union bound in (a) to
obtain the inequality. By denoting the right hand side of the above inequality by δ,
we can say that with probability at least 1 − δ, we have

R(f) ≤ R̂N (f) +
√
ln |F| + ln 2

δ

2N
. (12.9)

Indeed, (12.9) is one of the simplest forms of the generalization bound, but still
reveals the fundamental bias–variance trade-off in classical statistical learning
theory. For example, the ERM for a given function class F results in the minimum
empirical loss:

R̂N (f ERM) = min
f ∈F

R̂N (f), (12.10)

which goes to zero as the hypothesis class F becomes bigger. On the other hand, the
second term in (12.9) grows with increasing |F|. This trade-off in the generalization
bound with respect to the hypothesis class size |F| is illustrated in Fig. 12.1.

Although the expression in (12.9) looks very nice, it turns out that the bound is
very loose. This is due to the term |F| which originates from the union bound of all
elements in the hypothesis class F. In the following, we discuss some representative
classical approaches to obtain tighter generation bounds.

12.2.1 Vapnik–Chervonenkis (VC) Bounds

One of the key ideas of the work of Vapnik and Chervonenkis [10] is to replace
the union bound for all hypothesis class in (12.8) with the union bound of simpler
empirical distributions. This idea is historically important, so we will review it here.

12.2 Mathematical Preliminaries 247

Fig. 12.1 Generation bound behavior according to the hypothesis class size |F|

More specifically, consider independent samples z′
n := (x′

n, y
′
n) for n =

1, · · · , N , which are often called “ghost” samples. The associated empirical risk
is given by

R̂′
N(f) = 1

N

N∑

n=1

�
(
f , z′

n

)
. (12.11)

Then, we have the following symmetrization lemma.

Lemma 12.1 (Symmetrization[10]) For a given sample set S := {xn, yn}Nn=1 and
its ghost samples set S′ := {x′

n, y
′
n}Nn=1 from a distribution Q and for any ε > 0

such that ε ≥ √
2/N , we have

P

{
sup
f ∈F

|R(f) − R̂N (f)| > ε

}
≤ 2P

{
sup
f ∈F

|R̂′
N(f) − R̂N (f)| >

ε

2

}
. (12.12)

Vapnik and Chervonenkis [10] used the symmetrization lemma to obtain a much
tighter generalization bound:

P

{
sup
f ∈F

|R(f) − R̂N (f)| > ε

}
≤ 2P

{
sup

f ∈FS,S′
|R̂′

N(f) − R̂N (f)| >
ε

2

}

= 2P

⎧
⎨

⎩
⋃

f ∈FS,S′
|R̂′

N(f) − R̂N (f)| > ε

⎫
⎬

⎭

248 12 Generalization Capability of Deep Learning

≤ 2GF(2N) · P
{
|R̂′

N(f) − R̂N (f)| > ε
}

≤ 2GF(2N) exp(−Nε2/8),

where the last inequality is obtained by Hoeffding’s inequality and FS,S′ denotes
the restriction of the hypothesis class to the empirical distribution for S,S′. Here,
GF(·) is called the growth function defined by

GF(2N) := |FS,S′ |, (12.13)

which represents the number of the most possible sets of dichotomies using the
hypothesis class F on any 2N points from S and S′.

The discovery of the growth function is one of the important contributions of
Vapnik and Chervonenkis [10]. This is closely related to the concept of shattering,
which is formally defined as follows.

Definition 12.2 (Shattering) We say F shatters S if |F| = 2|S|.

In fact, the growth function GF(N) is often called the shattering number: the
number of the most possible sets of dichotomies using the hypothesis class F on
any N points. Below, we show several facts for the growth function:

• By definition, the shattering number satisfies GF(N) ≤ 2N .
• When F is finite, we always have GF(N) = |F|.
• If GF(N) = 2N , then there is a set of N points such that the class of functions F

can generate any possible classification result on these points. Figure 12.2 shows
such a case where F is the class of linear classifiers.

Fig. 12.2 Most possible sets of dichotomies using linear classifier on any three points. The
resulting shattering number is GF(3) = 8

12.2 Mathematical Preliminaries 249

Accordingly, we arrive at the following classical VC bound [10]:

Theorem 12.2 (VC Bound) For any δ > 0, with probability at least 1−δ, we have

R(f) ≤ R̂N (f) +
√
8 lnGF(2N) + 8 ln 2

δ

N
. (12.14)

Another important contribution of the work by Vapnik and Chervonenkis [10]
is that the growth function can be bounded by the so-called VC dimension, and
the number of data points for which we cannot get all possible dichotomies (=VC
dimension +1) is called the break point.

Definition 12.3 (VC Dimension) The VC dimension of a hypothesis class F is the
largest N = dV C(F) such that

GF(N) = 2N.

In other words, the VC dimension of a function class F is the cardinality of the
largest set that it can shatter.

This means that the VC dimension is a measure of the capacity (complexity,
expressiveness, richness, or flexibility) of a set of functions that can be learned from
a statistical binary classification algorithm. It is defined as the cardinality of the
largest number of points that the algorithm can classify with zero training error. In
the following, we show several examples where we can explicitly calculate the VC
dimensions.

Example: Half-Sided Interval
Consider any function of the form F = {f (x) = χ(x ≤ θ), θ ∈ R}. It
can shatter two points, but any three points cannot be shattered. Therefore,
dV C(F) = 2.

Example: Half Plane
Consider a hypothesis class F composed of half planes in R

d . It can shatter
d + 1 points, but any d + 2 points cannot be shattered. Therefore, dV C(F) =
d + 1.

250 12 Generalization Capability of Deep Learning

Example: Sinusoids
f is a single-parametric sine classifier, i.e, for a certain parameter θ , the
classifier fθ returns 1 if the input number x is larger than sin(θx) and 0
otherwise. The VC dimension of f is infinite, since it can shatter any finite
subset of the set {2−m | m ∈ N}.

Finally, we can derive the generalization bound using the VC dimension. For this,
the following lemma by Sauer is the key element.

Lemma 12.2 (Sauer’s Lemma[158]) Suppose that F has a finite VC dimension
dV C . Then

GF(n) ≤
dV C∑

i=1

(
n

i

)
(12.15)

and for all n ≥ dV C ,

GF(n) ≤
(

en

dV C

)dV C

. (12.16)

Corollary 12.1 (VC Bound Using VC Dimension) Let dV C ≥ N . Then, for any
δ > 0, with probability at least 1 − δ, we have

R(f) ≤ R̂N (f) +
√
8dV C ln 2eN

dV C
+ 8 ln 2

δ

N
. (12.17)

Proof This is a direct consequence of Theorem 12.2 and Lemma 12.2.
�
The VC dimension has been studied for deep neural networks to understand

their generalization behaviors [159]. Bartlett et al. [160] proves bounds on the VC
dimension of piece-wise linear networks with potential weight sharing. Although
this measure could be predictive when the architecture changes, which happens only
in depth and width hyperparameter types, the authors in [159] also found that it
is negatively correlated with the generalization gap, which contradicts the widely
known empirical observation that over-parametrization improves generalization in
deep learning [159].

12.2 Mathematical Preliminaries 251

12.2.2 Rademacher Complexity Bounds

Another important classical approach for the generalization error bound is
Rademacher complexity [161]. To understand this concept, consider the following
toy example. Let S := {(xn, yn)}Nn=1 denote the training sample set, where
yn ∈ {−1, 1}. Then, the training error can be computed by

errN(f) = 1

N

N∑

n=1

1 [f (xn) �= yn] , (12.18)

where 1[·] is an indicator function computed by

1 [f (xn) �= yn] =
{
1, {f (xn), yn} = {1,−1}, {−1, 1}
0, {f (xn), yn} = {1, 1}, {−1,−1} . (12.19)

Then, (12.18) can be equivalently represented by

errN(f) = 1

N

N∑

n=1

1 − ynf (xn)

2

= 1

2
− 1

N

N∑

i=1

ynf (xn)

︸ ︷︷ ︸
correlation

. (12.20)

Therefore, minimizing the training error is equivalent to maximizing the correlation.
Now, the core idea of the Rademacher complexity is to consider a game where a
player generates random targets {yn}Nn=1 and another player provides the hypothesis
that maximize the correlation:

sup
f ∈F

1

N

N∑

n=1

ynf (xn). (12.21)

Note that the idea is closely related to the shattering in VC analysis. Specifically,
if the hypothesis class F shatters S = {xn, yn}Nn=1, then the correlation becomes
a maximum. However, in contrast to the VC analysis that considers the worst-
case scenario, Rademacher complexity analysis deals with average-case analysis.
Formally, we define the so-called Rademacher complexity [161].

252 12 Generalization Capability of Deep Learning

Definition 12.4 (Rademacher Complexity[161]) Let σ1 · · · , σN be independent
random variables P{σn = 1} = P{σ= − 1} = 1

2 . Then, the empirical Rademacher
complexity of F is defined by

RadN(F,S) = Eσ

[
sup
f ∈F

1

N

N∑

n=1

σnf (xn)

]
, (12.22)

where σ = [σ1, · · · , σN]�. In addition, the general notion of Rademacher
complexity is computed by

RadN(F) := ES [RadN(F,S)] . (12.23)

Another important advantage of Rademacher complexity is that it can be easily
generalized to the regression problem for the vector target. For example, (12.23) can
be generalized as follows:

RadN(F) = E

[
sup
f ∈F

1

N

N∑

n=1

〈σ n,f (xn)〉
]

, (12.24)

where {σ n}Nn=1 refers to the independent random vectors. In the following, we pro-
vide some examples where the Rademacher complexity can be explicitly calculated.

Example: Minimum Rademacher Complexity
When the hypothesis class has one element, i.e. |F| = 1, we have

Rad(F) = E

[
sup
f ∈F

1

N

N∑

n=1

σnf (xn)

]
= f (x1) · E

[
1

N

N∑

n=1

σn

]
= 0,

where the second equality comes from the fact that f (xn) = f (x1) for all n

when |F| = 1. The final equation comes from the definition of the random
variable σn.

Example: Maximum Rademacher Complexity
When |F| = 2N , we have

Rad(F) = E

[
sup
f ∈F

1

N

N∑

n=1

σnf (xn)

]
= E

[
1

N

N∑

n=1

σ 2
n

]
= 1,

(continued)

12.2 Mathematical Preliminaries 253

where the second equality comes from the fact that we can find a hypothesis
such that f (xn) = σn for all n. The final equation comes from the definition
of the random variable σn.

Although the Rademacher complexity was originally derived above for the
binary classifiers, it can also be used to evaluate the complexity of the regression.
The following example shows that a closed form Rademacher complexity can be
obtained for ridge regression.

Example: Ridge Regression
Let F be the class of linear predictors given by y = w�x with the restriction
of ‖w‖ ≤ W and ‖x‖ ≤ X. Then, we have

Rad(F,S) = Eσ

[
sup

w:‖w‖≤W

1

N

N∑

n=1

σnw
�xn

]

= 1

N
Eσ

[
sup

w:‖w‖≤W

w�
(

N∑

n=1

σnxn

)]

(a)= W

N
Eσ

∥∥∥∥∥

N∑

n=1

σnxn

∥∥∥∥∥
(b)≤ W

N

√√√√
N∑

n=1

Eσ ‖σnxn‖2

= W

N

√√√√
N∑

n=1

‖xn‖2 ≤ WX√
N

,

where (a) comes from the definition of the l1 norm, and (b) comes from
Jensen’s inequality.

Using the Rademacher complexity, we can now derive a new type of generaliza-
tion bound. First, we need the following concentration inequality.

Lemma 12.3 (McDiarmid’s Inequality[161]) Let x1, · · · , xN be independent
random variables taking on values in a set X and let c1, · · · , cn be positive real
constants. If ϕ : XN �→ R satisfies

sup
x1,··· ,xN ,x′

n∈A
|ϕ(x1, · · · , xn, · · · , xN) − ϕ(x1, · · · , x′

n, · · · , xN)| ≤ cn,

254 12 Generalization Capability of Deep Learning

for 1 ≤ n ≤ N , then

P{|ϕ(x1, · · · , xN) − Eϕ(x1, · · · , xN)| ≥ ε} ≤ 2 exp

(
− 2ε2
∑N

n=1 c2n

)
. (12.25)

In particular, if ϕ(x1, · · · , xN) = ∑N
n=1 xn/N , the inequality (12.25) reduces to

Hoeffding’s inequality.

Using McDiarmid’s inequality and symmetrization using “ghost samples”, we
can obtain the following generalization bound.

Theorem 12.3 (Rademacher Bound) Let S := {xn, yn}Nn=1 denote the training
set and f (x) ∈ [a, b]. For any δ > 0, with probability at least 1 − δ, we have

R(f) ≤ R̂N (f) + 2RadN(F) + (b − a)

√
ln 1/δ

2N
, (12.26)

and

R(f) ≤ R̂N (f) + 2RadN(F,S) + 3(b − a)

√
ln 2/δ

2N
. (12.27)

Unfortunately, many theoretical efforts using the Rademacher complexity to
understand the deep neural network were not successful [159], which often resulted
in a vacuous bound similar to the attempts using VC bounds. Therefore, the need to
obtain a tighter bound has been increasing.

12.2.3 PAC–Bayes Bounds

So far, we have discussed performance guarantees which hold whenever the training
and test data are drawn independently from an identical distribution. In fact,
learning algorithms that satisfy such performance guarantees are called the probably
approximately correct (PAC) learning [156]. It was shown that the concept class C
is PAC learnable if and only if the VC dimension of C is finite [162].

In addition to PAC learning, there is another important area of modern learning
theory—Bayesian inference. Bayesian inferences apply whenever the training and
test data are generated according to the specified prior. However, there is no
guarantee of an experimental environment in which training and test data are
generated according to a different probability distribution than the previous one. In
fact, much of modern learning theory can be broken down into Bayesian inference
and PAC learning. Both areas investigate learning algorithms that use training data

12.2 Mathematical Preliminaries 255

as the input and generate a concept or model as the output, which can then be tested
on test data.

The difference between the two approaches can be seen as a trade-off between
generality and performance. We define an “experimental setting” as a probability
distribution over training and test data. A PAC performance guarantee applies to a
wide class of experimental settings. A Bayesian correctness theorem applies only
to experimental settings that match those previously used in the algorithm. In this
restricted class of settings, however, the Bayesian learning algorithm can be optimal
and generally outperforms the PAC learning algorithms.

The PAC–Bayesian theory combines Bayesian and frequentist approaches [163].
The PAC–Bayesian theory is based on a prior probability distribution concerning
the “situation” occurring in nature, and a “rule” expresses a learner’s preference for
some rules over others. There is no supposed relationship between the learner’s bias
for rules and the nature distribution. This differs from the Bayesian inference, where
the starting point is a common distribution of rules and situations, which induces a
conditional distribution of rules in certain situations.

Under this set-up, the following PAC–Bayes generalization bound can be
obtained.

Theorem 12.4 (PAC–Bayes Generalization Bound) [163] Let Q be an arbitrary
distribution over z := (x, y) ∈ Z := X × Y. Let F be a hypothesis class and let
� be a loss function such that for all f and z we have �(f , z) ∈ [0, 1]. Let P be a
prior distribution over F and let δ ∈ (0, 1). Then, with probability of at least 1 − δ

over the choice of an i.i.d. training set S := {zn}Nn=1 sampled according to Q, for
all distributions Q over F (even such that depend on S), we have

Ef ∼Q [R(f)] ≤ Ef ∼Q
[
R̂N (f)

]
+
√

KL(Q||P) + lnN/δ

2(N − 1)
, (12.28)

where

KL(Q||P) := Ef ∼Q [lnQ(f)/P(f)] (12.29)

is the Kullback–Leibler divergence.

Recently, PAC–Bayes approaches have been studied extensively to explain
the generalization capability of neural networks [149, 153, 164]. According to a
recent large scale experiment to test the correlation of different measures with the
generalization of deep models [159], the authors confirmed the effectiveness of the
PAC–Bayesian bounds and corroborate them as a promising direction for cracking
the generalization puzzle. Another nice application of PAC–Bayes bounds is that it
provides a mean to find the optimal distributionQ∗ by minimizing the upper bounds.
This technique has been successfully used for the linear classifier design [164], etc.

256 12 Generalization Capability of Deep Learning

12.3 Reconciling the Generalization Gap
via Double Descent Model

Recall that the following error bound can be obtained for the ERM estimate in
(12.2):

R(f ∗
ERM) ≤ R̂N (f ∗

ERM)︸ ︷︷ ︸
empirical risk (training error)

+ O
(√

c

N

)

︸ ︷︷ ︸
complexity penalty

, (12.30)

where O(·) denotes the “big O” notation and c refers to the model complexity such
as VC dimension, Rademacher complexity, etc.

In (12.30), with increasing hypothesis class size |F|, the empirical risk or
training error decreases, whereas the complexity penalty increases. The control of
the functional class capacity can be therefore done explicitly by choosing F (e.g.
selection of the neural network architecture). This is summarized in the classic U-
shaped risk curve, which is shown in Fig. 12.3a and was often used as a guide for
model selection. A widely accepted view from this curve is that a model with zero
training error is overfitted to the training data and will typically generalize poorly
[10]. Classical thinking therefore deals with the search for the “sweet spot” between
underfitting and overfitting.

Lately, this view has been challenged by empirical results that seem mysterious.
For example, in [165] the authors trained several standard architectures on a copy
of the data, with the true labels being replaced by random labels. Their central
finding can be summarized as follows: deep neural networks easily fit random labels.
More precisely, neural networks achieve zero training errors if they are trained on
a completely random labeling of the true data. While this observation is easy to
formulate, it has profound implications from a statistical learning perspective: the
effective capacity of neural networks is sufficient to store the entire data set. Despite
the high capacity of the functional classes and the almost perfect fit to training data,
these predictors often give very accurate predictions for new data in the test phase.

These observations rule out VC dimension, Rademacher complexity, etc. from
describing the generalization behavior. In particular, the Rademacher complexity
for the interpolation regime, which leads to a training error of 0, assumes the
maximum value of 1, as previously explained in an example. Therefore, the classic
generalization bounds are vacuous and cannot explain the amazing generalization
ability of the neural network.

The recent breakthrough in Belkin et al.’s “double descent” risk curve [154, 155]
reconciles the classic bias–variance trade-off with behaviors that have been observed
in over-parameterized regimes for a large number of machine learning models. In
particular, when the functional class capacity is below the “interpolation threshold”,
learned predictors show the classic U-shaped curve from Fig. 12.3a, where the
function class capacity is identified with the number of parameters needed to specify
a function within the class. The bottom of the U-shaped risk can be achieved at

12.3 Reconciling the Generalization Gap via Double Descent Model 257

Fig. 12.3 Curves for training risk (dashed line) and test risk (solid line). (a) The classical U-
shaped risk curve arising from the bias–variance trade-off. (b) The double descent risk curve,
which incorporates the U-shaped risk curve (i.e., the “classical” regime) together with the observed
behavior from using high-capacity function classes (i.e., the “modern” interpolating regime),
separated by the interpolation threshold. The predictors to the right of the interpolation threshold
have zero training risk

the sweet spot which balances the fit to the training data and the susceptibility
to over-fitting. When we increase the function class capacity high enough by
increasing the size of the neural network architecture, the learned predictors achieve
(almost) perfect fits to the training data. Although the learned predictors obtained
at the interpolation threshold typically have high risk, increasing the function class
capacity beyond this point leads to decreasing risk, which typically falls below the
risk achieved at the sweet spot in the “classic” regime (see Fig. 12.3b).

In the following example we provide concrete and explicit evidence for the
double descent behavior in the context of simple linear regression models. The
analysis shows the transition from under- to over-parameterized regimes. It also
allows us to compare the risks at any point on the curve and explain how the risk in
the over-parameterized regime can be lower than any risk in the under-parameterized
regime.

258 12 Generalization Capability of Deep Learning

Example: Double Descent in Regression [155]
We consider the following linear regression problem:

y = x�β + ε, (12.31)

where β ∈ R
D and x and ε are a normal random vector and a variable, where

x ∼ N(0, ID) and ε ∼ N(0, σ 2). Given training data {xn, yn}Nn=1, we fit a
linear model to the data using only a subset T ⊂ [D] of cardinality of p,
where [D] := {0, · · · ,D}. Let X = [x1, · · · , xN] ∈ R

D×N be the design
matrix, y = [y1, · · · , yN]� be the vector of response. For a subset T , we use
βT to denote its |T |-dimensional subvector of entries from T ; we also use XT

to denote an N × p sub-matrix of X composed of columns in T . Then, the
risk of β̂, where β̂T = X

†
T y and β̂T c = 0, is given by

E

[
(y − x�β̂)2

]
=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(‖βT c‖2 + σ 2)
(
1 + p

N−p−1

)
; if p ≤ N − 2

∞; if N − 1 ≤ p ≤ N + 1

‖βT ‖2
(
1 − N

p

)

+(‖βT c‖2 + σ 2)
(
1 + N

p−N−1

)
; if p ≥ N + 2.

(12.32)

Proof Recall that x is assumed to be a Gaussian distribution with zero mean
and identity covariance, so that the mean squared prediction error can be
written as

E

[
(y − x�β̂)2

]
= E

[
(x�β + σε − x�β̂)2

]
= σ 2 + E‖β − β̂‖2

= σ 2 + ‖βT c‖2 + E‖βT − β̂T ‖2,

where β denotes the ground-truth regression parameter and we use the
independency of the test phase regressor x and the training phase design
matrix X. Our goal is now to derive the closed form expression for the second
term.
(Classical regime) For the given training data set, we have

β̂T = (XT X�
T)−1XT y = (XT X�

T)−1XT X�
T βT + (XT X�

T)−1XT η

= βT + (XT X�
T)−1XT η,

(continued)

12.3 Reconciling the Generalization Gap via Double Descent Model 259

where

η := y − X�
T βT = ε + X�

T cβT c .

By plugging this into the second term, we have

E‖βT − β̂T ‖2 = E

[
η�PR(XT)η

]
= Tr

(
E
[
PR(XT)

]
E

[
ηη�]) .

In addition, we have

E

[
ηη�] = E

[
εε�]+ E

[
X�

T cβT c

(
X�

T cβT c

)�]

= (σ 2 + ‖βT c‖2)IN,

where R(XT) denotes the range space of XT and PR(XT) denotes the
projection to the range space of XT . Furthermore, PR(XT) is Hotelling’s T-
squared distribution with parameter p and N − p + 1 so that

TrE
[
PR(XT)

] =
{

p
N−p−1 , if p ≤ N − 2

+∞, if p = N − 1
. (12.33)

Therefore, by putting them together we conclude the proof for the classical
regime.
(Modern interpolating regime) We consider p ≥ N . Then, we have

β̂T = X�
T (XT X�

T)−1y = X�
T (XT X�

T)−1X�
T βT + X�

T (XT X�
T)−1η

= X�
T (XT X�

T)−1X�
T βT + X�

T (XT X�
T)−1η

= PR(X�
T)βT + X�

T (XT X�
T)−1η,

where

η := y − X�
T βT = ε + X�

T cβT c .

Therefore,

E

[
‖βT − β̂T ‖2

]
= E

[
‖P⊥

R(X�
T)

βT ‖2
]

+ E

[
η�(XT X�

T)−1η
]
.

(continued)

260 12 Generalization Capability of Deep Learning

Furthermore, we have

E

[
‖P⊥

R(X�
T)

βT ‖2
]

=
(
1 − n

p

)
‖βT ‖2

E

[
η�(XT X�

T)−1η
]

= Tr
(
E(XT X�

T)−1
E

[
ηη�]) ,

where we use the independency between XT and XT c and ε for the second
equality. In addition, we have

E

[
ηη�] = E

[
εε�]+ E

[
X�

T cβT c

(
X�

T cβT c

)�]

= (σ 2 + ‖βT c‖2)IN.

Finally, the distribution of P := (XT X�
T)−1 is inverse-Wishart with identity

scale matrix IN with p degrees of freedom. Accordingly, we have

Tr
(
E(XT X�

T)−1
)

=
{

N
p−N−1 , if p ≥ N + 2

+∞, if p = N,N + 1
.

By putting them together, we have

E

[
(y − x�β̂)2

]
=
(
1 − N

p

)
‖βT ‖2 + (σ 2 + ‖βT c‖2)

(
1 + N

p − N − 1

)
,

for p ≥ N and E

[
(y − x�β̂)2

]
= ∞ for p = N,N + 1. This concludes the

proof.
�

Figure 12.4 illustrates an example plot for the linear regression problem analyzed
above for a particular parameter set.

12.4 Inductive Bias of Optimization

All learned predictors to the right of the interpolation threshold fit perfectly with
the training data and have no empirical risk. Then, why should some—especially
those from larger functional classes—have a lower test risk than others so that
they generalize better? The answer is that the functional class capacity, such
as VC dimension, or Rademacher complexity, does not necessarily reflect the
inductive bias of the predictor appropriate for the problem at hand. Indeed, one

12.5 Generalization Bounds via Algorithm Robustness 261

Fig. 12.4 Plot of the risk in (12.32) as a function of p under the random selection of T . Here
‖β‖2 = 1, σ 2 = 1/25 and N = 40

of the underlying reasons for the appearance of the double descent model in the
previous linear regression problem is that we impose an inductive bias to choose the
minimum norm solution β̂T = XT (X�

T XT)−1y for the over-parameterized regime,
which leads to the smooth solution.

Among the various interpolation solutions, choosing the smooth or simple
function that perfectly fits the observed data is a form of Occam’s razor: the simplest
explanation compatible with the observations should be preferred. By considering
larger functional classes that contain more candidate predictors that are compatible
with the data, we can find interpolation functions that are “simpler”. Increasing
the functional class capacity thus improves the performance of classifiers. One
of the important advantages of choosing a simpler solution is that it is easy to
generalize by avoiding unnecessary glitches in the data. Increasing the functional
class capacity to the over-parameterized area thus improves the performance of the
resulting classifiers.

Then, one of the remaining questions is: what is the underlying mechanism by
which a trained network becomes smooth or simple? This is closely related to
the inductive bias (or implicit bias) of an optimization algorithm such as gradient
descent, stochastic gradient descent (SGD), etc. [166–171]. Indeed, this is an active
area of research. For example, the authors in [168] show that the gradient descent
for the linear classifier for specific loss function leads to the maximum margin SVM
classifier. Other researchers have shown that the gradient descent in deep neural
network training leads to a simple solution [169–171].

12.5 Generalization Bounds via Algorithm Robustness

Another important question is how we can quantify the inductive bias of the
algorithm in terms of a generalization error bound. In this section, we introduce
a notion of algorithmic robustness for quantifying the generalization error, which

262 12 Generalization Capability of Deep Learning

was originally proposed in [172], but has been largely neglected in deep learning
research. It turns out that the generalization bound based on algorithmic robustness
has all the ingredients to quantify the fascinating generalization behavior of the deep
neural network, so it can be a useful tool for studying generalization.

Recall that the underlying assumption for the classical generalization bounds is
the uniform convergence of empirical quantities to their mean [10], which provides
ways to bound the gap between the expected risk and the empirical risk by the
complexity of the hypothesis set. On the other hand, robustness requires that a
prediction rule has comparable performance if tested on a sample close to a training
sample. This is formally defined as follows.

Definition 12.5 (Algorithm Robustness [172]) Algorithm A is said to be
(K, ε(·))-robust for K ∈ N and ε(·) : Z �→ R, if Z := X × Y can be partitioned
into K disjoint sets, denoted by {Ci}Ki=1 such that the following holds for all training
sets S ⊂ Z:

∀s ∈ S,∀z ∈ Z; if s, z ∈ Ci, then |�(AS, s) − �(AS, z)| ≤ ε(S) (12.34)

for all i = 1, · · · ,K , whereAS denotes the algorithmA trained with the data set S.

Then, we can obtain the generalization bound based on algorithmic robustness.
First, we need the following concentration inequality.

Lemma 12.4 (Breteganolle–Huber–Carol Inequality [173]) If the random vec-
tor (N1, · · · , Nk) is multinomially distributed with parametersN and (p1, · · · , pk),
then

P

{
k∑

i=1

|Ni − Npi | ≥ 2
√

Nλ

}
≤ 2k exp(−2λ2), λ > 0. (12.35)

Theorem 12.5 If a learning algorithm A is (K, ε(·))-robust, and the training
sample set S is generated by N i.i.d samples from the probability measure μ, then
for any δ > 0, with probability at least 1 − δ we have

|R(AS) − R̂N (AS)| ≤ ε(S) + M

√
2K ln 2 + 2 ln(1/δ)

N
, (12.36)

where

M := max
z∈Z

|�(AS, z)|.

12.5 Generalization Bounds via Algorithm Robustness 263

Proof Let Ni be the set of indices of points of S that fall into the Ci . Note that
(|N1|, · · · , |NK |) is an i.i.d. multinomial random variable with parameters N and
(μ(Ci), · · · , μ(CK)). Then, the following holds by Lemma 12.4.

P

{
K∑

i=1

∣∣∣∣
|Ni |
N

− μ(Ci)

∣∣∣∣ ≥ λ

}
≤ 2K exp

(
−Nλ2

2

)
. (12.37)

Hence, the following holds with probability at least 1 − δ,

K∑

i=1

∣∣∣∣
|Ni |
N

− μ(Ci)

∣∣∣∣ ≤
√
2K ln 2 + 2 ln(1/δ)

N
. (12.38)

The generalization error is then given by

|R(AS) − R̂N (AS)| ≤
∣∣∣∣∣

K∑

i=1

Ez∼μ�(AS, z|z ∈ Ci)μ(Ci) − 1

N

N∑

n=1

�(AS, si)

∣∣∣∣∣

(a)≤
∣∣∣∣∣

K∑

i=1

Ez∼μ�(AS, z|z ∈ Ci)
|Ni |
N

− 1

N

N∑

n=1

�(AS, si)

∣∣∣∣∣

+
∣∣∣∣∣

K∑

i=1

Ez∼μ�(AS, z|z ∈ Ci)μ(Ci) −
N∑

n=1

Ez∼μ�(AS, z|z ∈ Ci)
|Ni |
N

∣∣∣∣∣

(b)≤ 1

N

∣∣∣∣∣∣

K∑

i=1

∑

j∈Ni

max
z2∈Cj

|�(AS, sj) − �(AS, z2)|
∣∣∣∣∣∣

+ max
z∈Z

|�(AS, z)|
K∑

i=1

∣∣∣∣
|Ni |
N

− μ(Ci)

∣∣∣∣

(c)≤ ε(S) + M

K∑

i=1

∣∣∣∣
|Ni |
N

− μ(Ci)

∣∣∣∣

(d)≤ ε(S) + M

√
2K ln 2 + 2 ln(1/δ)

N
,

where (a), (b), and (c) are due to the triangle inequality, the definition of Ni , and the
definition of ε(S) and M , respectively.
�

Note that the definition of robustness requires that (12.34) holds for every training
sample. The parameters K and ε(·) quantify the robustness of an algorithm. Since
ε(·) is a function of training samples, an algorithm can have different robustness
properties for different training patterns. For example, a classification algorithm is
more robust to a training set with a larger margin. Since (12.34) includes both the
trained solution AS and the training set S, robustness is a property of the learning

264 12 Generalization Capability of Deep Learning

algorithm, rather than the property of the “effective hypothesis space”. This is why
the robustness-based generalization bound can account for the inductive bias from
the algorithm.

For example, for the case of a single-layer ReLU neural network f
 : R2 → R
2

with the following weight matrix and bias:

W(0) =
[
2 −1
1 1

]
, b(0) =

[
1

−1

]

the corresponding neural network output is given by

o(1) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[0, 0]�, 2x − y + 1 < 0, x + y − 1 < 0,

[2x − y + 1, 0]�, 2x − y + 1 ≥ 0, x + y − 1 < 0,

[0, x + y − 1]�, 2x − y + 1 < 0, x + y − 1 ≥ 0,

[2x − y + 1, x + y − 1]�, 2x − y + 1 ≥ 0, x + y − 1 ≥ 0.

Here, the number of partitions is K = 4.
On the other hand, consider a two-layer ReLU network with the weight matrices

and biases given by

W(0) =
[
2 −1
1 1

]
, b(0) =

[
1

−1

]
,

W(1) =
[
1 2
0 1

]
, b(1) =

[
0
1

]
.

The corresponding neural network output is given by

o(2) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[0, 1]�, 2x − y + 1 < 0, x + y − 1 < 0,

[2x − y + 1, 1]�, 2x − y + 1 ≥ 0, x + y − 1 < 0,

[2x + 2y − 2, x + y]�, 2x − y + 1 < 0, x + y − 1 ≥ 0,

[4x + y − 1, x + y]�, 2x − y + 1 ≥ 0, x + y − 1 ≥ 0.

Therefore, in spite of the twice larger parameter sizes, the number of partitions is
K = 4, which is the same as the single-layer neural network. Therefore, in terms
of the generalization bounds, the two algorithms have same upper bound up to the
parameter ε(S). This example clearly confirms that generalization is a property of
the learning algorithm, rather than the property of the effective hypothesis space or
the number of parameters.

12.6 Exercises 265

12.6 Exercises

1. Compute the VC dimension of the following function classes:

(a) Interval [a, b].
(b) Disc in R2.
(c) Half space in R

d .
(d) Axis-aligned rectangles.

2. Show that the classifier fθ that returns 1 if the input number x is larger than
sin(θx) and 0 otherwise can shatter any finite subset of the set {2−m | m ∈ N}.

3. Prove the following properties of Rademacher complexity:

(a) (Monotonicity) If F ⊂ G, then RadN(F) ≤ RadN(G).
(b) (Convex hull) Let conv(F) be the convex hull of F. Then RadN(F) =

RadN(conv(F)).
(c) (Scale and shift) For any function class F and c, d ∈ R. RadN(cF + d) =

|c|RadN(F).
(d) (Lipschitz composition) If φ is an L-Lipschitz function, then RadN(φ ·F) ≤

L · RadN(F).

4. Let F be the class of linear predictors given by y = w�x with the restriction of
‖w‖1 ≤ W1 and ‖x‖∞ ≤ X∞ for x ∈ R

d . Then, show that

RadN(F) ≤ W1X∞
√
2 ln(d)√

N
.

5. Let A be a set of N vectors in R
m, and let ā be the mean of the vectors in A.

Then:

RadN(A) ≤ max
a∈A ‖a − ā‖2 ·

√
2 logN

m
.

In particular, ifA is a set of binary vectors,

RadN(A) ≤
√
2 logN

m
.

6. For a metric space S, ρ and T ⊂ S we say that T̂ ⊂ S is an ε-cover of T, if
∀t ∈ T, there exists t ′ ∈ T such that ρ(t, t ′) ≤ ε. The ε-covering number of T is
defined by

N(ε,T, ρ) = min{|T′| : T′ is an ε-cover of T}.

266 12 Generalization Capability of Deep Learning

If Z is compact w.r.t. metric ρ, �(AS, ·) is Lipschitz continuous with
Lipschitz constant c(S), i.e.,

|�(AS, z1) − �(AS, z2)| ≤ c(S)ρ(z1, z2), ∀z1, z2 ∈ Z,

then show that A is (K, ε(S))-robust, where

K = N(γ/2,Z, ρ), ε(S) = c(S)γ

for γ > 0.

	12 Generalization Capability of Deep Learning
	12.1 Introduction
	12.2 Mathematical Preliminaries
	12.2.1 Vapnik–Chervonenkis (VC) Bounds
	12.2.2 Rademacher Complexity Bounds
	12.2.3 PAC–Bayes Bounds

	12.3 Reconciling the Generalization Gap via Double Descent Model
	12.4 Inductive Bias of Optimization
	12.5 Generalization Bounds via Algorithm Robustness
	12.6 Exercises

