
Chapter 11
Deep Learning Optimization

11.1 Introduction

In Chap. 6, we discussed various optimization methods for deep neural network
training. Although they are in various forms, these algorithms are basically gradient-
based local update schemes. However, the biggest obstacle recognized by the entire
community is that the loss surfaces of deep neural networks are extremely non-
convex and not even smooth. This non-convexity and non-smoothness make the
optimization unaffordable to analyze, and the main concern was whether popular
gradient-based approaches might fall into local minimizers.

Surprisingly, the success of modern deep learning may be due to the remarkable
effectiveness of gradient-based optimization methods despite its highly non-convex
nature of the optimization problem. Extensive research has been carried out
in recent years to provide a theoretical understanding of this phenomenon. In
particular, several recent works [119–121] have noted the importance of the over-
parameterization. In fact, it was shown that when hidden layers of a deep network
have a large number of neurons compared to the number of training samples, the
gradient descent or stochastic gradient converges to a global minimum with zero
training errors. While these results are intriguing and provide important clues for
understanding the geometry of deep learning optimization, it is still unclear why
simple local search algorithms can be successful for deep neural network training.

Indeed, the area of deep learning optimization is a rapidly evolving area of
intense research, and there are too many different approaches to cover in a single
chapter. Rather than treating a variety of techniques in a disorganized way, this
chapter explains two different lines of research just for food for thought: one is based
on the geometric structure of the loss function and the other is based on the results
of Lyapunov stability. Although the two approaches are closely related, they have
different advantages and disadvantages. By explaining these two approaches, we can
cover some of the key topics of research exploration such as optimization landscape
[122–124], over-parameterization [119, 125–129], and neural tangent kernel (NTK)

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
J. C. Ye, Geometry of Deep Learning, Mathematics in Industry 37,
https://doi.org/10.1007/978-981-16-6046-7_11

227

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-6046-7_11&domain=pdf
https://doi.org/10.1007/978-981-16-6046-7_11


228 11 Deep Learning Optimization

[130–132] that have been used extensively to analyze the convergence properties of
local deep learning search methods.

11.2 Problem Formulation

In Chap. 6, we pointed out that the basic optimization problem in neural network
training can be formulated as

min
θ∈Rn

�(θ), (11.1)

where θ refers to the network parameters and � : Rn �→ R is the loss function. In the
case of supervised learning with the mean square error (MSE) loss, the loss function
is defined by

�(θ) := 1

2
‖y − f θ (x)‖2, (11.2)

where x, y denotes the pair of the network input and the label, and f θ (·) is a neural
network parameterized by trainable parameters θ . For the case of an L-layer feed-
forward neural network, the regression function f �(x) can be represented by

f θ (x) :=
(
σ ◦ g(L) ◦ σ ◦ g(L−1) · · · ◦ g(1)

)
(x) , (11.3)

where σ (·) denotes the element-wise nonlinearity and

g(l) = W (l)o(l−1) + b(l−1), (11.4)

o(l) = σ (g(l)), (11.5)

o(0) = x, (11.6)

for l = 1, · · · , L. Here, the number of the l-th layer hidden neurons, often referred
to as the width, is denoted by d(l), so that g(l), o(l) ∈ R

d(l)
and W (l) ∈ R

d(l)×d(l−1)
.

The popular local search approaches using the gradient descent use the following
update rule:

θ [k + 1] = θ [k] − ηk

∂�(θ)

∂θ

∣∣∣∣
θ=θ[k]

, (11.7)



11.3 Polyak–Łojasiewicz-Type Convergence Analysis 229

where ηk denotes the k-th iteration step size. In a differential equation form, the
update rule can be represented by

θ̇ [t] = −∂�(θ[k])
∂θ

, (11.8)

where θ̇ [t] = ∂θ[t]/∂t .
As previously explained, the optimization problem (11.1) is strongly non-convex,

and it is known that the gradient-based local search schemes using (11.7) and (11.8)
may get stuck in the local minima. Interestingly, many deep learning optimization
algorithms appear to avoid the local minima and even result in zero training errors,
indicating that the algorithms are reaching the global minima. In the following, we
present two different approaches to explain this fascinating behavior of gradient
descent approaches.

11.3 Polyak–Łojasiewicz-Type Convergence Analysis

The loss function � is said to be strongly convex (SC) if

�(θ ′) ≥ �(θ) + 〈∇�(θ), θ ′ − θ〉 + μ

2
‖θ ′ − θ‖2, ∀θ , θ ′. (11.9)

It is known that if � is SC, then gradient descent achieves a global linear convergence
rate for this problem [133]. Note that SC in (11.9) is a stronger condition than the
convexity in Proposition 1.1, which is given as

�(θ ′) ≥ �(θ) + 〈∇�(θ), θ ′ − θ〉, ∀θ , θ ′. (11.10)

Our starting point is the observation that the convex analysis mentioned above
is not the right approach to analyzing a deep neural network. The non-convexity
is essential for the analysis. This situation has motivated a variety of alternatives
to the convexity to prove the convergence. One of the oldest of these conditions
is the error bounds (EB) of Luo and Tseng [134], but other conditions have been
recent considered, which include essential strong convexity (ESC) [135], weak
strong convexity (WSC) [136], and the restricted secant inequality (RSI) [137].
See their specific forms of conditions in Table 11.1. On the other hand, there
is a much older condition called the Polyak–Łojasiewicz (PL) condition, which
was originally introduced by Polyak [138] and found to be a special case of the
inequality of Łojasiewicz [139]. Specifically, we will say that a function satisfies
the PL inequality if the following holds for some μ > 0:

1

2
‖∇�(θ)‖2 ≥ μ(�(θ) − �∗), ∀θ . (11.11)



230 11 Deep Learning Optimization

Ta
bl

e
11

.1
E

xa
m

pl
es

of
co

nd
iti

on
s

fo
r

gr
ad

ie
nt

de
sc

en
t(

G
D

)
co

nv
er

ge
nc

e.
A

ll
of

th
es

e
de

fin
iti

on
s

in
vo

lv
e

so
m

e
co

ns
ta

nt
μ

>
0

(w
hi

ch
m

ay
no

tb
e

th
e

sa
m

e
ac

ro
ss

co
nd

iti
on

s)
.θ

p
de

no
te

s
th

e
pr

oj
ec

tio
n

of
θ

on
to

th
e

so
lu

tio
n

se
tX

∗ ,a
nd

�
∗

re
fe

rs
to

th
e

m
in

im
um

co
st

N
am

e
C

on
di

tio
ns

St
ro

ng
co

nv
ex

ity
(S

C
)

�
(θ

′ )
≥

�
(θ

)
+

〈∇
�
(θ

),
θ

′ −
θ
〉+

μ 2
‖θ

′ −
θ
‖2

,
∀θ

,
θ

′

E
ss

en
tia

ls
tr

on
g

co
nv

ex
ity

(E
SC

)
�
(θ

′ )
≥

�
(θ

)
+

〈∇
�
(θ

),
θ

′ −
θ
〉+

μ 2
‖θ

′ −
θ
‖2

,
∀θ

,
θ

′ s
.t
.
θ

p
=

θ
′ p

W
ea

k
st

ro
ng

co
nv

ex
ity

(W
SC

)
�
∗

≥
�
(θ

)
+

〈∇
�
(θ

),
θ

p
−

θ
〉+

μ 2
‖θ

p
−

θ
‖2

,
∀θ

R
es

tr
ic

te
d

se
ca

nt
in

eq
ua

lit
y

(R
SI

)
〈∇

�
(θ

),
θ

−
θ

p
〉≥

μ
‖θ

p
−

θ
‖2

,
∀θ

E
rr

or
bo

un
d

(E
B

)
‖∇

�
(θ

)‖
≥

μ
‖θ

p
−

θ
‖2

,
∀θ

Po
ly

ak
–Ł

oj
as

ie
w

ic
z

(P
L

)
1 2
‖∇

�
(θ

)‖2
≥

μ
(�

(θ
)
−

�
∗ )

,
∀θ



11.3 Polyak–Łojasiewicz-Type Convergence Analysis 231

Note that this inequality implies that every stationary point is a global minimum.
But unlike SC, it does not imply that there is a unique solution. We will revisit this
issue later.

Similar to other conditions in Table 11.1, PL is a sufficient condition for
gradient descent to achieve a linear convergence rate [122]. In fact, PL is the
mildest condition among them. Specifically, the following relationship between the
conditions holds [122]:

(SC) → (ESC) → (WSC) → (RSI) → (EB) ≡ (PL),

if � have a Lipschitz continuous gradient, i.e. there exists L > 0 such that

‖∇�(θ) − ∇�(θ ′)‖ ≤ L‖θ − θ ′‖, ∀θ , θ ′. (11.12)

In the following, we provide a convergence proof of the gradient descent method
using the PL condition, which turns out to be an important tool for non-convex deep
learning optimization problems.

Theorem 11.1 (Karimi et al. [122]) Consider problem (11.1), where � has an
L-Lipschitz continuous gradient, a non-empty solution set, and satisfies the PL
inequality (11.11). Then the gradient method with a step-size of 1/L:

θ [k + 1] = θ[k] − 1

L
∇�(θ [k]) (11.13)

has a global convergence rate

�(θ [k]) − �∗ ≤
(

1 − μ

L

)k (
�(θ [0]) − �∗) .

Proof Using Lemma 11.1 (see next section), L-Lipschitz continuous gradient of the
loss function � implies that the function

g(θ) = L

2
‖θ‖2 − �(θ)

is convex. Thus, the first-order equivalence of convexity in Proposition 1.1 leads to
the following:

L

2
‖θ ′‖2 − �(θ ′) ≥ L

2
‖θ‖2 − �(θ) + 〈θ ′ − θ, Lθ − ∇�(θ)〉

= −L

2
‖θ‖2 − �(θ) + L〈θ ′, θ〉 − 〈θ ′ − θ ,∇�(θ)〉.



232 11 Deep Learning Optimization

By arranging terms, we have

�(θ ′) ≤ �(θ) + 〈∇�(θ), θ ′ − θ〉 + L

2
‖θ ′ − θ‖2, ∀θ , θ ′.

By setting θ ′ = θ [k + 1] and θ = θ [k] and using the update rule (11.13), we have

�(θ[k + 1]) − �(θ[k]) ≤ − 1

2L
‖∇�(θ [k])‖2. (11.14)

Using the PL inequality (11.11), we get

�(θ[k + 1]) − �(θ[k]) ≤ −μ

L

(
�(θ [k]) − �∗) .

Rearranging and subtracting �∗ from both sides gives us

�(θ [k + 1]) − �∗ ≤
(

1 − μ

L

) (
�(θ [k]) − �∗) .

Applying this inequality recursively gives the result. ��
The beauty of this proof is that we can replace the long and complicated proofs from
other conditions with simpler proofs based on the PL inequality [122].

11.3.1 Loss Landscape and Over-Parameterization

In Theorem 11.1, we use the two conditions for the loss function: (1) � satisfies
the PL condition and (2) the gradient of � is Lipschitz continuous. Although these
conditions are much weaker than the convexity of the loss function, they still impose
the geometric constraint for the loss function, which deserves further discussion.

Lemma 11.1 If the gradient of �(θ) satisfies the L-Lipschitz condition in (11.12),
then the transformed function g : Rn �→ R defined by

g(θ) := L

2
θ�θ − �(θ) (11.15)

is convex.

Proof Using the Cauchy–Schwarz inequality, (11.12) implies

〈∇�(θ) − ∇�(θ ′), θ − θ ′〉 ≤ L‖θ − θ ′‖2, ∀θ , θ ′.



11.3 Polyak–Łojasiewicz-Type Convergence Analysis 233

This is equivalent to the following condition:

〈θ ′ − θ ,∇g(θ ′) − ∇g(θ)〉 ≥ 0, ∀θ , θ ′, (11.16)

where

g(θ) = L

2
‖θ‖2 − �(θ).

Thus, using the monotonicity of gradient equivalence in Proposition 1.1, we can
show that g(θ) is convex. ��

Lemma 11.1 implies that although � is not convex, its transformed function by
(11.15) can be convex. Figure 11.1a shows an example of such case. Another impor-
tant geometric consideration for the loss landscape comes from the PL condition.
More specifically, the PL condition in (11.11) implies that every stationary point is
a global minimizer, although the global minimizers may not be unique, as shown in
Fig. 11.1b,c. While the PL inequality does not imply convexity of �, it does imply
the weaker condition of invexity [122]. A function is invex if it is differentiable and
there exists a vector-valued function η such that for any θ and θ ′ in R

n, the following
inequality holds:

�(θ ′) ≥ �(θ) + 〈∇�(θ), η(θ , θ ′)〉. (11.17)

A convex function is a special case of invex functions since (11.17) holds when we
set η(θ, θ ′) = θ ′ − θ . It was shown that a smooth � is invex if and only if every
stationary point of � is a global minimum [140]. As the PL condition implies that
every stationary point is a global minimizer, a function satisfying PL is an invex
function. The inclusion relationship between convex, invex, and PL functions is
illustrated in Fig. 11.2.

The loss landscape, where every stationary point is a global minimizer, implies
that that there are no spurious local minimizers. This is often called the benign
optimization landscape. Finding the conditions for a benign optimization landscape

Fig. 11.1 Loss landscape for the function �(x) with (a) (11.15) is convex, and (b, c) PL conditions



234 11 Deep Learning Optimization

Fig. 11.2 Inclusion
relationship between invex,
convex and PL-type functions

of neural networks was an important theoretical interest of the theorists in machine
learning. Originally observed by Kawaguch [141], Lu and Kawaguchi [142] and
Zhou and Liang [143] have proven that the loss surfaces of linear neural networks,
whose activation functions are all linear functions, do not have any spurious local
minima under some conditions and all local minima are equally good.

Unfortunately, this good property no longer stands when the activations are
nonlinear. Zhou and Liang [143] show that ReLU neural networks with one hidden
layer have spurious local minima. Yun et al. [144] prove that ReLU neural networks
with one hidden layer have infinitely many spurious local minima when the outputs
are one-dimensional.

These somewhat negative results were surprising and seemed to contradict the
empirical success of optimization in neural networks. Indeed, it was later shown
that if the activation functions are continuous, and the loss functions are convex
and differentiable, over-parameterized fully-connected deep neural networks do not
have any spurious local minima [145].

The reason for the benign optimization landscape for an over-parameterized
neural network was analyzed by examining the geometry of the global minimum.
Nguyen [123] discovered that the global minima are interconnected and concen-
trated on a unique valley if the neural networks are sufficiently over-parameterized.
Similar results were obtained by Liu et al. [124]. In fact, they found that the
set of solutions of an over-parameterized system is generically a manifold of
positive dimensions, with the Hessian matrices of the loss function being positive
semidefinite but not positive definite. Such a landscape is incompatible with
convexity unless the set of solutions is a linear manifold. However, the linear
manifold with zero curvature of the curve of global minima is unlikely to occur
due to the essential non-convexity of the underlying optimization problem. Hence,
gradient type algorithms can converge to any of the global minimum, although the
exact point of the convergence depends on a specific optimization algorithm. This
implicit bias of an optimization algorithm is another important theoretical topic
in deep learning, which will be covered in a later chapter. In contrast, an under-
parameterized landscape generally has several isolated local minima with a positive
definite Hessian of the loss, the function being locally convex. This is illustrated in
Fig. 11.3.



11.4 Lyapunov-Type Convergence Analysis 235

Fig. 11.3 Loss landscapes of (a) under-parameterized models and (b) over-parameterized models

11.4 Lyapunov-Type Convergence Analysis

Now let us introduce a different type of convergence analysis with a different
mathematical flavor. In contrast to the methods discussed above, the analysis of
the global loss landscape is not required here. Rather, a local loss geometry along
the solution trajectory is the key to this analysis.

In fact, this type of convergence analysis is based on Lyapunov stability analysis
[146] for the solution dynamics described by (11.8). Specifically, for a given
nonlinear system,

θ̇ [t] = g(θ [t]), (11.18)

the Lyapunov stability analysis is concerned with checking whether the solution
trajectory θ [t] converges to zero as t → ∞. To provide a general solution for this,
we first define the Lyapunov function V (z), which satisfies the following properties:

Definition 11.1 A function V : Rn �→ R is positive definite (PD) if

• V (z) ≥ 0 for all z.
• V (z) = 0 if and only if z = 0.
• All sublevel sets of V are bounded.

The Lyapunov function V has an analogy to the potential function of classical
dynamics, and −V̇ can be considered the associated generalized dissipation func-
tion. Furthermore, if we set z := θ [t] to analyze the nonlinear dynamic system in
(11.18), then V̇ : z ∈ R

n �→ R is computed by

V̇ (z) =
(

∂V

∂z

)�
ż =

(
∂V

∂z

)�
g(z). (11.19)



236 11 Deep Learning Optimization

The following Lyapunov global asymptotic stability theorem is one of the keys
to the stability analysis of dynamic systems:

Theorem 11.2 (Lyapunov Global Asymptotic Stability [146]) Suppose there is
a function V such that 1) V is positive definite, and 2) V̇ (z) < 0 for all z �= 0 and
V̇ (0) = 0. Then, every trajectory θ [t] of θ̇ = g(θ) converges to zero as t → ∞.
(i.e., the system is globally asymptotically stable).

Example: 1-D Differential Equation
Consider the following ordinary differential equation:

θ̇ = −θ.

We can easily show that the system is globally asymptotically stable since the
solution is θ [t] = C exp(−t) for some constant C, and θ [t] → 0 as t → ∞.
Now, we want to prove this using Theorem 11.2 without ever solving the
differential equation. First, choose a Lyapunov function

V (z) = z2

2
,

where z = θ [t]. We can easily show that V (z) is positive definite. Further-
more, we have

V̇ = zż = −(θ [t])2 < 0, ∀θ [t] �= 0.

Therefore, using Theorem 11.2 we can show that θ [t] converges to zero as
t → ∞.

One of the beauties of Lyapunov stability analysis is that we do not need an
explicit knowledge of the loss landscape to prove convergence. Instead, we just need
to know the local dynamics along the solution path. To understand this claim, here
we apply Lyapunov analysis to the convergence analysis of our gradient descent
dynamics:

θ̇ [t] = − ∂�

∂θ
(θ[t]) .

For the MSE loss, this leads to

θ̇[t] = −∂f θ [t](x)

∂θ

(
y − f θ[t](x)

)
. (11.20)



11.4 Lyapunov-Type Convergence Analysis 237

Now let

e[t] := f θ [t](x) − y ,

and consider the following positive definite Lyapunov function

V (z) = 1

2
z�z,

where z = e[t]. Then, we have

V̇ (z) =
(

∂V

∂z

)�
ż = z�ż. (11.21)

Using the chain rule, we have

ż = ė[t] =
(

∂f

∂θ

)�
θ̇[t] = −K te[t],

where

K t = Kθ[t] :=
(

∂f θ

∂θ

)�
∂f θ

∂θ

∣∣∣∣∣
θ=θ[t]

(11.22)

is often called the neural tangent kernel (NTK) [130–132]. By plugging this into
(11.21), we have

V̇ = −ηe[t]�K te[t]. (11.23)

Accordingly, if the NTK is positive definite for all t , then V̇ (z) < 0. Therefore,
e[t] → 0 so that f (θ[t]) → y as t → ∞. This proves the convergence of gradient
descent approach.

11.4.1 The Neural Tangent Kernel (NTK)

In the previous discussion we showed that the Lyapunov analysis only requires
a positive-definiteness of the NTK along the solution trajectory. While this is a
great advantage over PL-type analysis, which requires knowledge of the global loss
landscape, the NTK is a function of time, so it is important to obtain the conditions
for the positive-definiteness of NTK along the solution trajectory.

To understand this, here we are interested in deriving the explicit form of the
NTK to understand the convergence behavior of the gradient descent methods.



238 11 Deep Learning Optimization

Using the backpropagation in Chap. 6, we can obtain the weight update as follows:

∂f θ

∂VEC(W (l))
= ∂g

(l)
n

∂VEC(W (l))

∂o
(l)
n

∂g
(l)
n

∂g
(l+1)
n

∂o
(l)
n

· · · ∂o
(L)
n

∂g
(L)
n

= (o(l) ⊗ I d(l) )�
(l)
n W (l+1)��(l+1)

n W (l+2)� · · · W (L)��(L)
n .

Similarly, we have

∂f θ

∂b(l)
= ∂g

(l)
n

∂b(l)

∂o
(l)
n

∂g
(l)
n

∂g
(l+1)
n

∂o
(l)
n

· · · ∂o
(L)
n

∂g
(L)
n

= �(l)
n W (l+1)��(l+1)

n W (l+2)� · · · W (L)��(L)
n .

Therefore, the NTK can be computed by

K
(L)
t :=

(
∂f θ

∂θ

)�
∂f θ

∂θ

∣∣∣∣∣
θ=θ [t]

=
L∑

l=1

(
∂f θ

∂VEC(W (l))

)�
∂f θ

∂VEC(W (l))
+

(
∂f θ

∂b(l)

)�
∂f θ

∂b(l)

=
L∑

l=1

(‖o(l)[t]‖2 + 1)M(l)[t],

where

M(l)[t] = �(L)W (L)[t] · · ·W (l+1)[t]�(l)�(l)W (l+1)�[t] · · ·W (L)�[t]�(L).

(11.24)

Therefore, the positive definiteness of the NTK comes from the properties of
M(l)[t]. In particular, if M(l)[t] is positive definite for any l, the resulting NTK
is positive definite. Moreover, the positive-definiteness of M(l)[t] can be readily
shown if the following sensitivity matrix is full row ranked:

S(l) := �(L)W (L)[t] · · ·W (l+1)[t]�(l).

11.4.2 NTK at Infinite Width Limit

Although we derived the explicit form of the NTK using backpropagation, still the
component matrix in (11.24) is difficult to analyze due to the stochastic nature of
the weights and ReLU activation patterns.



11.4 Lyapunov-Type Convergence Analysis 239

To address this problem, the authors in [130] calculated the NTK at the infinite
width limit and showed that it satisfies the positive definiteness. Specifically, they
considered the following normalized form of the neural network update:

o(0)
n = x, (11.25)

g(l) = 1√
d(l)

W (l)o(l−1)
n + βb(l−1), (11.26)

o(l) = σ (g(l)), (11.27)

for l = 1, · · · , L, and d(l) denotes the width of the l-th layer. Furthermore,
they considered what is sometimes called LeCun initialization, taking W

(l)
ij ∼

N
(

0, 1
d(l)

)
and b

(l)
j ∼ N(0, 1). Then, the following asymptotic form of the NTK

can be obtained.

Theorem 11.3 (Jacot et al. [130]) For a network of depthL at initialization, with a
Lipschitz nonlinearity σ , and in the limit as the layers width d(1) · · · , d(L−1) → ∞,
the neural tangent kernel K(L) converges in probability to a deterministic limiting
kernel:

K(L) → κ(L)∞ ⊗ I dL
. (11.28)

Here, the scalar kernel κ(L)∞ : Rd(0)×d(0) �→ R is defined recursively by

κ(1)∞ (x, x′) = 1

d(0)
x�x′ + β2, (11.29)

κ(l+1)∞ (x, x′) = κ(l)∞ (x, x′)ν̇(l+1)(x, x′) + ν(l+1)(x, x′), (11.30)

where

ν(l+1)(x, x′) = Eg

[
σ(g(x))σ (g(x′)

] + β2, (11.31)

ν̇(l+1)(x, x′) = Eg

[
σ̇ (g(x))σ̇ (g(x′)

]
, (11.32)

where the expectation is with respect to a centered Gaussian process g of covariance
ν(l), and where σ̇ denotes the derivative of σ .

Note that the symptotic form of the NTK is positive definite since κ
(L)∞ > 0.

Therefore, the gradient descent using the infinite width NTK converges to the global
minima. Again, we can clearly see the benefit of the over-parameterization in terms
of large network width.



240 11 Deep Learning Optimization

11.4.3 NTK for General Loss Function

Now, we are interested in extending the example above to the general loss function
with multiple training data sets. For a given training data set {xn}Nn=1, the gradient
dynamics in (11.7) can be extended to

θ̇ = −
N∑

n=1

∂�(f θ (xn))

∂θ
= −

N∑
n=1

∂f θ (xn)

∂θ

∂�(xn)

∂f θ (xn)
,

where �(xn) := �(f (xn)) with a slight abuse of notation. This leads to

ḟ θ (xm) =
(

∂f θ (xm)

∂θ

)�
θ̇

= −
N∑

n=1

(
∂f θ (xm)

∂θ

)�
∂f θ (xn)

∂θ

∂�(xn)

∂f θ (xn)

= −
N∑

n=1

K t (xm, xn)
∂�(xn)

∂f θ (xn)
,

where K t (xm, xn) denotes the (m, n)-th block NTK defined by

K t (xm, xn) :=
(

∂f θ (xm)

∂θ

)�
∂f θ (xn)

∂θ

∣∣∣∣∣
θ=θ[t]

.

Now, consider the following Lyapunov function candidate:

V (z) =
N∑

m=1

�(f θ (xm)) =
N∑

m=1

�(zm + f ∗
m),

where

z =

⎡
⎢⎢⎢⎣

z1

z2
...

zN

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

f θ (x1) − f ∗(x1)

f θ (x2) − f ∗(x2)
...

f θ (xN) − f ∗(xN)

⎤
⎥⎥⎥⎦ ,



11.5 Exercises 241

and f ∗(xm) refers to f θ∗(xm) with θ∗ being the global minimizer. We further
assume that the loss function satisfies the property that

∀n, �(f θ (xn)) > 0, if f θ (xn) �= f ∗
n , �(f n∗) = 0,

so that V (z) is a positive definite function. Under this assumption, we have

V̇ (z) =
N∑

m=1

(
∂�(f θ (xm))

∂zm

)�
żm =

N∑
m=1

(
∂�(xm)

∂f θ (xm)

)�
ḟ θ (xm)

∣∣∣∣∣
θ=θ [t]

= −
N∑

m=1

N∑
n=1

(
∂�(f θ (xm))

∂f θ (xm)

)�
K t (xm, xn)

∂�(f θ (xn))

∂f θ (xn)

∣∣∣∣∣
θ=θ [t]

= −e[t]�K[t]e[t],

where

e[t] =

⎡
⎢⎢⎣

∂�(f θ (x1))

∂f θ (x1)

...
∂�(f θ (xN))

∂f θ (xN)

⎤
⎥⎥⎦

θ=θ[t]

, K[t] =
⎡
⎢⎣

K t (x1, x1) · · · K t (x1, xN)
...

. . .
...

K t (xN, x1) · · · K t (xN, xN).

⎤
⎥⎦

Therefore, if the NTK K[t] is positive definite for all t , then Lyapunov stability
theory guarantees that the gradient dynamics converge to the global minima.

11.5 Exercises

1. Show that a smooth �(θ) is invex if and only if every stationary point of �(θ) is a
global minimum.

2. Show that a convex function is invex.
3. Let a > 0. Show that V (x, y) = x2 + 2y2 is a Lyapunov function for the system

ẋ = ay2 − x , ẏ = −y − ax2.

4. Show that V (x, y) = ln(1 + x2) + y2 is a Lyapunov function for the system

ẋ = x(y − 1) , ẏ = − x2

1 + x2
.

5. Consider a two-layer fully connected network f� : R
2 → R

2 with ReLU
nonlinearity, as shown in Fig. 10.10.



242 11 Deep Learning Optimization

(a) Suppose the weight matrices and biases are given by

W (0) =
[

2 −1
1 1

]
, b(0) =

[
1

−1

]

W (1) =
[

1 2
−1 1

]
, b(1) =

[−9
−2

]
.

Given the corresponding input space partition in Fig. 10.11, compute the
neural tangent kernel for each partition. Are they positive definite?

(b) In problem (a), suppose that the second layer weight and bias are changed to

W (1) =
[

1 2
0 1

]
, b(1) =

[
0
1

]
.

Given the corresponding input space partition, compute the neural tangent
kernel for each partition. Are they positive definite?


	11 Deep Learning Optimization
	11.1 Introduction
	11.2 Problem Formulation
	11.3 Polyak–Łojasiewicz-Type Convergence Analysis
	11.3.1 Loss Landscape and Over-Parameterization

	11.4 Lyapunov-Type Convergence Analysis
	11.4.1 The Neural Tangent Kernel (NTK)
	11.4.2 NTK at Infinite Width Limit
	11.4.3 NTK for General Loss Function

	11.5 Exercises


