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Preface

It was a very different, unprecedented, and weird start of the semester, and I did
not know what to do. This semester, I was supposed to offer a new senior-level
undergraduate class on Advanced Intelligence to jointly teach students at the Depart-
ment of Bio/Brain Engineering and the Department of Mathematical Sciences. I
had initially planned a standard method for teaching machine learning, the contents
of which are practical, experience-based lectures with a lot of interaction with the
students through many mini-projects and term projects. Unfortunately, the global
pandemic of COVID-19 has completely changed the world and such interactive
classes are no longer an option most of the time.

So, I thought about the best way to give online lectures to my students. I
wanted my class to be different from other popular online machine learning courses
but still provide up-to-date information about modern deep learning. However,
not many options were available. Most existing textbooks are already outdated or
very implementation oriented without touching the basics. One option would be to
prepare presentation slides by adding all the up-to-date knowledge that I wanted to
teach. However, for undergraduate-level courses, the presentation files are usually
not enough for students to follow the class, and we need a textbook that students
can read independently to understand the class. For this reason, I decided to write
a reading material first and then create presentation files based on it, so that the
students can learn independently before and after the online lectures. This was the
start of my semester-long book project on Geometry of Deep Learning.

In fact, it has been my firm belief that a deep neural network is not a magic black
box, but rather a source of endless inspiration for new mathematical discoveries.
Also, I believed in the famous quote by Isaac Newton, “Standing on the shoulders
of giants,” and looking for a mathematical interpretation of deep learning. For me
as a medical imaging researcher, this topic was critical not only from a theoretical
point of view but also for clinical decision-making, because we do not want to create
false features that can be recognized as diseases.

In 2017, on a street in Lisbon, I had Eureka! moment in understanding hidden
framelet structure in encoder-decoder neural networks. The resulting interpretation
of the deep convolutional framelets, published in the SIAM Journal of Imaging
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Science, has had a significant impact on the applied math community and has
been one of the most downloaded papers since its publication. However, the role
of the rectified linear unit (ReLU) was not clear in this work, and one of the
reviewers in a medical imaging journal consistently asked me to explain the role
of the ReLU in deep neural networks. At first, this looked like a question that went
beyond the scope of the medical application paper, but I am grateful to the reviewer,
as during the agony of preparing the answers to the question, I realized that the
ReLU determines the input space partitioning, which is automatically adapted to
the input space manifold. In fact, this finding led to a 2019 ICML paper, in which
we revealed the combinatorial representation of framelets, which clearly shows the
crucial connection with the classic compressed sensing (CS) approaches.

Looking back, I was pretty brave to start this book project, as these are just two
pieces of my geometric understanding of deep learning. However, as I was preparing
the reading material for each subject of deep learning, I found that there are indeed
many exciting geometric insights that have not been fully discussed.

For example, when I wrote the chapter on backpropagation, I recognized the
importance of the denominator layout convention in the matrix calculus, which
led to the beautiful geometry of the backpropagation. Before writing this book,
the normalization and attention mechanisms looked very heuristic to me, with
no evidence of a systematic understanding that is even more confusing due to
their similarities. For example, AdaIN, Transformer, and BERT were like dark
recipes that researchers have developed with their own secret sauces. However,
an in-depth study for the preparation of the reading material has revealed a very
nice mathematical structure behind their intuition, which shows a close connection
between them and their relationship to optimal transport theory.

Writing a chapter on the geometry of deep neural networks was another joy
that broadened my insight. During my lecture, one of my students pointed out that
some partitions can lead to a low-rank mapping. In retrospect, this was already in
the equation, but it was not until my students challenged me that I recognized the
beautiful geometry of the partition, which fits perfectly with fascinating empirical
observations of the deep neural network.

The last chapter, on generative models and unsupervised learning, is something
of which I am very proud. In contrast to the conventional explanation of the gener-
ative adversarial network (GAN), variational auto-encoder (VAE), and normalizing
flows with probabilistic tools, my main focus was to derive them with geometric
tools. In fact, this effort was quite rewarding, and this chapter clearly unified various
forms of generative model as statistical distance minimization and optimal transport
problems.

In fact, the focus of this book is to give students a geometric insight that can
help them understand deep learning in a unified framework, and I believe that this is
one of the first deep learning books written from such a perspective. As this book is
based on the materials that I have prepared for my senior-level undergraduate class, I
believe that this book can be used for one-semester-long senior-level undergraduate
and graduate-level classes. In addition, my class was a code-shared course for
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both bioengineering and math students, so that much of the content of the work
is interdisciplinary, which tries to appeal to students in both disciplines.

I am very grateful to my TAs and students of the 2020 spring class of BiS400C
and MAS480. I would especially like to thank my great team of TAs: Sangjoon
Park, Yujin Oh, Chanyong Jung, Byeongsu Sim, Hyungjin Chung, and Gyutaek
Oh. Sangjoon, in particular, has done a tremendous job as Head TA and provided
organized feedback on the typographical errors and mistakes of this book. I would
also like to thank my wonderful team at the Bio Imaging, Signal Processing
and Learning laboratory (BISPL) at KAIST, who have produced ground-breaking
research works that have inspired me.

Many thanks to my awesome son and future scientist, Andy Sangwoo, and my
sweet daughter and future writer, Ella Jiwoo, for their love and support. You are my
endless source of energy and inspiration, and I am so proud of you. Last, but not the
least, I would like to thank my beloved wife, Seungjoo (Joo), for her endless love
and constant support ever since we met. I owe you everything and you made me a
good man. With my warmest thanks,

Daejeon, Korea Jong Chul Ye
February, 2021
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Part I
Basic Tools for Machine Learning

“I heard reiteration of the following claim: Complex theories do not work; simple
algorithms do. I would like to demonstrate that in the area of science a good old
principle is valid: Nothing is more practical than a good theory.”

–Vladimir N Vapnik



Chapter 1
Mathematical Preliminaries

In this chapter, we briefly review the basic mathematical concepts that are required
to understand the materials of this book.

1.1 Metric Space

A metric space (X, d) is a set X together with a metric d on the set. Here, a metric
is a function that defines a concept of distance between any two members of the set,
which is formally defined as follows.

Definition 1.1 (Metric) A metric on a set X is a function called the distance d :
X×X �→ R+, where R+ is the set of non-negative real numbers. For all x, y, z ∈ X,
this function is required to satisfy the following conditions:

1. d(x, y) ≥ 0 (non-negativity).
2. d(x, y) = 0 if and only if x = y.
3. d(x, y) = d(y, x) (symmetry).
4. d(x, z) ≤ d(x, y)+ d(y, z) (triangle inequality).

A metric on a space induces topological properties like open and closed sets, which
lead to the study of more abstract topological spaces. Specifically, about any point
x in a metric space X, we define the open ball of radius r > 0 about x as the set

Br(x) = {y ∈ X : d(x, y) < r}. (1.1)

Using this, we have the formal definition of openness and closedness of a set.

Definition 1.2 (Open Set, Closed Set) A subset U ∈ X is called open if for every
x ∈ U there exists an r > 0 such that Br(x) is contained in U . The complement of
an open set is called closed.
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A sequence (xn) in a metric space X is said to converge to the limit x ∈ X if and
only if for every ε > 0, there exists a natural number N such that d(xn, x) < ε for
all n > N . A subset S of the metric space X is closed if and only if every sequence
in S that converges to a limit in X has its limit in S. In addition, a sequence of
elements (xn) is a Cauchy sequence if and only if for every ε > 0, there is some
N ≥ 1 such that

d(xn, xm) < ε, ∀ m, n ≥ N.

We are now ready to define the important concepts in metric spaces.

Definition 1.3 (Completeness) A metric space X is said to be complete if every
Cauchy sequence converges to a limit; or if d(xn, xm) → 0 as both n and m
independently go to infinity, then there is some y ∈ X with d(xn, y)→ 0.

Definition 1.4 (Lipschitz Continuity) Given two metric spaces (X, dX) and
(Y, dY), where dX denotes the metric on the set X and dY is the metric on set
Y, a function f : X �→ Y is called Lipschitz continuous if there exists a real
constant K ≥ 0 such that, for all x1, x1 ∈ X,

dY(f (x1), f (x2)) ≤ KdX(x1, x2). (1.2)

Here, the constant K is often called the Lipschitz constant, and a function f with
the Lipschitz constant K is called K-Lipschitz function.

1.2 Vector Space

A vector space V is a set that is closed under finite vector addition and scalar
multiplication. In machine learning applications, the scalars are usually members of
real or complex values, in which case V is called a vector space over real numbers,
or complex numbers.

For example, the Euclidean n-space R
n is called a real vector space, and C

n

is called a complex vector space. In the n-dimensional Euclidean space R
n, every

element is represented by a list of n real numbers, addition is component-wise, and
scalar multiplication is multiplication on each term separately. More specifically, we
define a column n-real-valued vector x to be an array of n real numbers, denoted by

x =

⎡
⎢⎢⎢⎣

x1

x2
...

xn

⎤
⎥⎥⎥⎦ =
[
x1 x2 · · · xn

]� ∈ R
n,
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where the superscript � denotes the adjoint. Note that for a real vector, the adjoint
is just a transpose. Then, the sum of the two vectors x and y, denoted by x + y, is
defined by

x + y = [x1 + y1 x2 + y2 · · · xn + yn
]�
.

Similarly, the scalar multiplication with a scalar α ∈ R is defined by

αx = [αx1 αx2 · · · αxn
]�
.

In addition, we formally define the inner product and the norm in a vector space
as follows.

Definition 1.5 (Inner Product) Let V be a vector space over R. A function
〈·, ·〉V : V×V �→ R is an inner product on V if:

1. Linear: 〈α1f 1+α2f 2,g〉V = α1〈f 1,g〉V+α2〈f 2,g〉V for all α1, α2 ∈ R and
f 1,f 2,g ∈ V.

2. Symmetric: 〈f ,g〉V = 〈g,f 〉V.
3. 〈f ,f 〉V ≥ 0 and 〈f ,f 〉V = 0 if and only if f = 0.

If the underlying vector space V is obvious, we usually represent the inner product
without the subscript V, i.e. 〈f ,g〉. For example, the inner product of the two
vectors f ,g ∈ R

n is defined as

〈f ,g〉 =
n∑
i=1

figi = f�g.

Two nonzero vectors x, y are called orthogonal when

〈x, y〉 = 0,

which we denote as x ⊥ y. A vector x is orthogonal to a subset S ⊂ V, denoted by
x ⊥ S, if it is orthogonal to every element of S. The orthogonal complement of S,
denoted by S⊥, consists of all vectors in V that are orthogonal to every vector in S,
i.e.

S⊥ = {x ∈ V : 〈v, x〉 = 0, ∀v ∈ S}.

Definition 1.6 (Norm) A norm ‖ · ‖ is a real-valued function defined on the vector
space that has the following properties:

1. ‖x‖ ≥ 0, and ‖x‖ = 0 if and only if x = 0.
2. ‖αx‖ = |α|‖x‖ for any scalar α.
3. Triangular inequality: ‖x + y‖ ≤ ‖x‖ + ‖y‖ for any vectors x and y.
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From the inner product, we can obtain the so-called induced norm:

‖x‖ = √〈x, x〉.

Similarly, the definition of the metric in Sect. 1.1 informs us that a norm in a vector
space V induces a metric, i.e.

d(x, y) = ‖x − y‖, x, y ∈ V. (1.3)

The norm and inner product in a vector space have special relations. For example,
for any two vectors x, y ∈ V, the following Cauchy–Schwarz inequality always
holds:

|〈x, y〉| ≤ ‖x‖‖y‖. (1.4)

1.3 Banach and Hilbert Space

An inner product space is defined as a vector space that is equipped with an inner
product. A normed space is a vector space on which a norm is defined. An inner
product space is always a normed space since we can define a norm as ‖f ‖ =√〈f ,f 〉, which is often called the induced norm. Among the various forms of the
normed space, one of the most useful normed spaces is the Banach space.

Definition 1.7 The Banach space is a complete normed space.

Here, the “completeness” is especially important from the optimization perspective,
since most optimization algorithms are implemented in an iterative manner so that
the final solution of the iterative method should belong to the underlying space H.
Recall that the convergence property is a property of a metric space. Therefore, the
Banach space can be regarded as a vector space equipped with desirable properties
of a metric space. Similarly, we can define the Hilbert space.

Definition 1.8 The Hilbert space is a complete inner product space.

We can easily see that the Hilbert space is also a Banach space thanks to the
induced norm. The inclusion relationship between vector spaces, normed spaces,
inner product spaces, Banach spaces and Hilbert spaces is illustrated in Fig. 1.1.

As shown in Fig. 1.1, the Hilbert space has many nice mathematical structures
such as inner product, norm, completeness, etc., so it is widely used in the machine
learning literature. The following are well-known examples of Hilbert spaces:

• l2(Z): a function space composed of square summable discrete-time signals, i.e.

l2(Z) =
{

x = {xl}∞l=−∞ |
∞∑

l=−∞
|xl |2 <∞

}
.
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Fig. 1.1 RKHS, Hilbert space, Banach space, and vector space

Here, the inner product is defined as

〈x, y〉H =
∞∑

l=−∞
xlyl, ∀x, y ∈ H. (1.5)

• L2(R): a function space composed of square integrable continuous-time signals,
i.e.

L2(R) =
{
x(t) |

∫ ∞
−∞
|x(t)|2dt <∞

}
.

Here, the inner product is defined as

〈x, y〉H =
∫
x(t)y(t)dt. (1.6)

Among the various forms of the Hilbert space, the reproducing kernel Hilbert space
(RKHS) is of particular interest in the classical machine learning literature, which
will be explained later in this book. Here, the readers are reminded that the RKHS is
only a subset of the Hilbert space as shown in Fig. 1.1, i.e. the Hilbert space is more
general than the RKHS.

1.3.1 Basis and Frames

The set of vectors {x1, · · · , xk} is said to be linearly independent if a linear
combination denoted by

α1x1 + α2x2 + · · · + αkxk = 0
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implies that

αi = 0, i = 1, · · · , k.

The set of all vectors reachable by taking linear combinations of vectors in a set S
is called the span of S. For example, if S = {xi}ki=1, then we have

span(S) =
{
k∑
i=1

αixi ,∀αi ∈ R

}
.

A set B = {bi}mi=1 of elements (vectors) in a vector space V is called a basis,
if every element of V may be written in a unique way as a linear combination of
elements of B, that is, for all f ∈ V, there exists unique coefficients {ci} such that

f =
m∑
i=1

cibi . (1.7)

A set B is a basis of V if and only if every element of B is linearly independent
and span(B) = V. The coefficients of this linear combination are referred to as
expansion coefficients, or coordinates on B of the vector. The elements of a basis
are called basis vectors. In general, for m-dimensional spaces, the number of basis
vectors ism. For example, when V = R

2, the following two sets are some examples
of a basis:

{[
1
0

]
,

[
0
1

]}
,

{[
1
1

]
,

[
1
−1

]}
. (1.8)

For function spaces, the number of basis vectors can be infinite. For example, for
the space VT composed of periodic functions with the period of T , the following
complex sinusoidals constitute its basis:

B = {ϕn(t)}∞n=−∞, ϕn(t) = ei 2πnt
T , (1.9)

so that any function x(t) ∈ VT can be represented by

x(t) =
∞∑

n=−∞
anϕn(t), (1.10)

where the expansion coefficient is given by

an = 1

T

∫
T

x(t)ϕ∗n(t)dt. (1.11)

In fact, this basis expansion is often called the Fourier series.
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Unlike the basis, which leads to the unique expansion, the frame is composed
of redundant basis vectors, which allows multiple representations. For example,
consider the following frame in R

2:

{v1, v2, v3} =
{[

1
0

]
,

[
0
1

]
,

[
1
1

]}
. (1.12)

Then, we can easily see that the frame allows multiple representations of, for
example, x = [2, 3]� as shown in the following:

x = 2v1 + 3v2 = v2 + 2v3. (1.13)

Frames can also be extended to deal with function spaces, in which case the number
of frame elements is infinite.

Formally, a set of functions

� = [φk]k∈� =
[· · · φk−1 φk · · ·

]

in a Hilbert space H is called a frame if it satisfies the following inequality [1]:

α‖f ‖2 ≤
∑
k∈�
|〈f ,φk〉|2 ≤ β‖f ‖2, ∀f ∈ H, (1.14)

where α, β > 0 are called the frame bounds. If α = β, then the frame is said to be
tight. In fact, the basis is a special case of tight frames.

1.4 Probability Space

We now start with a formal definition of a probability space and related terms from
the measure theory [2].

Definition 1.9 (Probability Space) A probability space is a triple (�,F, μ) con-
sisting of the sample space �, an event space F composed of a subset of �
(which is often called σ -algebra), and the probability measure (or distribution)
μ : F �→ [0, 1], a function such that:

• μ must satisfy the countable additivity property that for all countable collections
{Ei} of pairwise disjoint sets:

μ(∪iEi) = ∪iμ(Ei);

• the measure of the entire sample space is equal to one: μ(�) = 1.
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In fact, the probability measure is a special case of the general “measure” in
measure theory [2]. Specifically, the general term “measure” is defined similarly to
the probability measure defined above except that only positivity and the countable
additivity property are required. Another important special case of a measure is the
counting measure ν(A), which is the measure that assigns its value as the number
of elements in the set A.

To understand the concept of a probability space, we give two examples: one for
the discrete case, the other for the continuous one.

Example (Discrete Probability Space)
If the experiment consists of just one flip of a fair coin, then the outcome is

either heads or tails: {H,T}. Hence, the sample space is � = {H,T}. The σ -
algebra or the event space contains 22 = 4 events, namely: {H} (“heads”),
{T} (“tails”), ∅ (“neither heads nor tails”), and {H,T} (“either heads or
tails”); in other words, F = {∅, {H}, {T}, {H,T}}. There is a 50% chance of
tossing heads and 50% for tails, so the probability measure in this example is
P(∅ = 0), P ({H}) = 0.5, P ({T}) = 0.5, P ({H,T}) = 1.

Example (Continuous Probability Space)
A number between 0 and 1 is chosen at random, uniformly. Here � = [0, 1].
In this case, the event space F can be generated by: (i) the open intervals (a, b)
on [0, 1]; (ii) the closed intervals [a, b]; (iii) the closed half-lines [0, a], and
their union, intersection, complement, and so on. Finally, the measure μ is the
Lebesgue measure, defined as the sum of the lengths of the intervals contained
in F, i.e. μ([0.2, 0.5]) = 0.3, μ([0, 0.2) ∪ [0.5, 0.8]) = 0.5, μ({0.5}) = 0.

We now define the Radon–Nikodym derivative, which is a mathematical tool
to derive the probability density function (pdf) for the continuous domain, or
probability mass function (pmf) for the discrete domain in a rigorous setting. This
is also important in deriving the statistical distances, in particular, the divergences.
For this, we need to understand the concept of an absolutely continuous measure.

Definition 1.10 (Absolutely Continuous Measure) If μ and ν are two measures
on any event set F of �, we say that ν is absolutely continuous with respect to μ, or
ν � μ, if for every measurable set A, μ(A) = 0 implies ν(A) = 0.

Theorem 1.1 (Radon–Nikodym Theorem) Let λ and ν be two measures on any
event set F of �. If λ � ν, then there exists a non-negative function g on � such
that

λ(A) =
∫
A

dλ =
∫
A

gdν, A ∈ F. (1.15)
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The function g is called the Radon–Nikodym derivative or density of λ w.r.t. ν and
is denoted by dλ/dν. One of the popular Radon–Nikodym derivatives in probability
theory is the probability density function (pdf) or probability mass function (pmf)
as discussed below.

For a probability space (�,F, μ), a random variable is defined as a function
X : � �→ M from a set of possible outcomes � to a measurable space M . For the
random variable X, we can now define the mean for its functions:

Eμ[g(X)] =
∫
X
g(x)dμ(x). (1.16)

1.5 Some Matrix Algebra

In the following, we introduce some matrix algebra that is useful in understanding
the materials in this book.

A matrix is a rectangular array of numbers, denoted by an upper case letter, say
A. A matrix with m rows and n columns is called an m× n matrix given by

A =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn

⎤
⎥⎥⎥⎦ .

The k-th column of matrix A is often denoted by ak . The maximal number of
linearly independent columns of A is called the rank of the matrix A. It is easy
to show that

Rank(A) = dim span ([a1, · · · , an]) .

The trace of a square matrix A ∈ R
n×n, denoted Tr(A) is defined to be the sum of

elements on the main diagonal (from the upper left to the lower right) of A:

Tr(A) =
n∑
i=1

aii .

Definition 1.11 (Range Space) The range space of a matrix A ∈ R
m×n, denoted

by R(A), is defined by R(A) := {Ax | ∀x ∈ R
n}.

Definition 1.12 (Null Space) The null space of a matrix A ∈ R
m×n, denoted by

N(A), is defined by N(A) := {x ∈ R
n | Ax = 0}.
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A subset of a vector space is called a subspace if it is closed under both addition and
scalar multiplication. We can easily see that the range and null spaces are subspaces.
Moreover, we can show the following fundamental property:

R(A)⊥ = N(A�), N(A)⊥ = R(A�). (1.17)

If a vector space V is Hilbert space, then it is known that for a subspace S ∈ V
and the vector y ∈ V, the point in S that is closest to y exists and is unique, and
given by

ŷ = PSy

where PS is the projector associated with the subspace S. In particular, if the
subspace S has a basis B, then the projector for S is given by

PS = B(B�B)−1B�.

The eigen-decomposition of a square matrix is defined as follows.

Definition 1.13 (Eigen-Decomposition) A (nonzero) vector v ∈ C
n is an eigen-

vector of a square matrix A ∈ C
n×n if it satisfies the linear equation

Av = λv, (1.18)

where λ is a scalar, termed the eigenvalue corresponding to v.

We now define the singular value decomposition (SVD) of A.

Theorem 1.2 (SVD Theorem) If A ∈ C
m×n is a rank r matrix, then there exist

matrices U ∈ C
m×r and V ∈ C

n×r such that U�U = V �V = I r and A =
U�V �, where I r is the r × r identity matrix and � is an r × r diagonal matrix
whose diagonal entries, called singular values, satisfy

σ1 ≥ σ2 ≥ · · · ≥ σr > 0.

The decomposition can be written as

A = [u1 · · · ur
]

⎡
⎢⎢⎢⎢⎣

σ1 0 · · · 0

0 σ2
. . .

...
...
. . .
. . . 0

0 · · · 0 σr

⎤
⎥⎥⎥⎥⎦
[
v1 · · · vr

]� =
r∑
k=1

σkukv
�
k ,

where uk and vk are called left singular vectors and right singular vectors,
respectively.
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Using the SVD, we can easily show the following:

PR(A) = UU�, PR(A�) = V V �. (1.19)

Using the SVD, we can define the matrix norm. Among the various forms of matrix
norms for a matrix X ∈ R

n×n, the spectral norm ‖X‖2 and the nuclear norm ‖X‖∗
are quite often used, which are defined by

‖X‖2 = σmax(X) = (λmax(X
�X))1/2, (1.20)

‖X‖∗ =
∑
i

σi(X) =
∑
i

(λi(X
�X))1/2, (1.21)

where σmax(·) and λmax(·) denote the largest singular value and eigenvalue,
respectively.

The following matrix inversion lemma [3] is quite useful.

Lemma 1.1 (Matrix Inversion Lemma)

(I + UCV )−1 = I − U
(
C−1 + V U

)−1
V , (1.22)

(A+ UCV )−1 = A−1 −A−1U
(
C−1 + V A−1U

)−1
V A−1. (1.23)

1.5.1 Kronecker Product

In mathematics, the Kronecker product, sometimes denoted by ⊗, is an operation
on two matrices of arbitrary size resulting in a block matrix. The formal definition
is given as follows.

Definition 1.14 (Kronecker Product) If A is an m × n matrix and B is a p × q
matrix, then the Kronecker product A⊗ B is the pm× qn block matrix:

A⊗ B =
⎡
⎢⎣
a11B · · · a1nB
...
. . .

...

am1B · · · amnB

⎤
⎥⎦ . (1.24)

The Kronecker product has many important properties, which can be exploited to
simplify many matrix-related operations. Some of the basic properties are provided
in the following lemma. The proofs of the lemmas are straightforward, which can
easily be found from a standard linear algebra textbook [4].
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Lemma 1.2

A⊗ (B + C) = A⊗ B +A⊗ C. (1.25)

(B + C)⊗A = B ⊗A+ C ⊗A. (1.26)

A⊗ B �= B ⊗A. (1.27)

(A⊗ B)⊗ C = A⊗ (B ⊗ C). (1.28)

(A⊗ B)� = A� ⊗ B�. (1.29)

(A⊗ B)−1 = A−1 ⊗ B−1. (1.30)

Lemma 1.3 If A,B,C and D are matrices of such a size that one can form the
matrix products AC and BD, then

(A⊗ B)(C ⊗D) = AC ⊗ BD. (1.31)

One of the important usages of the Kronecker product comes from the vectorization
operation of a matrix. For this we first define the following two operations.

Definition 1.15 If A = [a1 · · · an
] ∈ R

m×n, then

VEC(A) =
⎡
⎢⎣

a1
...

an

⎤
⎥⎦ ∈ R

mn, (1.32)

UNVEC(VEC(A)) = UNVEC

⎛
⎜⎝

⎡
⎢⎣

a1
...

an

⎤
⎥⎦

⎞
⎟⎠ = A. (1.33)

From these definitions, we can obtain the following two lemmas which will be
extensively used here.

Lemma 1.4 ([4]) For the matrices A,B,C with appropriate sizes, we have

VEC(CAB) = (B� ⊗ C)VEC(A), (1.34)

where VEC(·) is the column-wise vectorization operation.

Lemma 1.5 For the vectors x ∈ R
m, y ∈ R

n, we have

VEC(xy�) = (y ⊗ Im)x, (1.35)

where Im denotes the m×m identity matrix.
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Proof By plugging C = Im,A = x and B = y� into (1.34), we conclude the
proof. ��

1.5.2 Matrix and Vector Calculus

In computing a derivative of a scalar, vector, or matrix with respect to a scalar,
vector, or matrix, we should be consistent with the notation. In fact, there are two
different conventions: numerator layout and denominator layout. For example, for a
given scalar y and a column vector x = [x1, · · · , xn]� ∈ R

n, the numerator layout
has the following convention:

∂y

∂x
=
[
∂y
∂x1
· · · ∂y

∂xn

]
,
∂x

∂y
=

⎡
⎢⎢⎣

∂x1
∂y

...
∂xn
∂y

⎤
⎥⎥⎦ ,

implying that the number of the row follows that of the numerator. On the other
hand, the denominator layout notation provides

∂y

∂x
=

⎡
⎢⎢⎣

∂y
∂x1
...
∂y
∂xn

⎤
⎥⎥⎦ ,

∂x

∂y
=
[
∂x1
∂y
· · · ∂xn

∂y

]
,

where the number of resulting rows follows that of the denominator. Either layout
convention is okay, but we should be consistent in using the convention.

Here, we will follow the denominator layout convention. The main motivation
for using the denominator layout is from the derivative with respect to the matrix.
More specifically, for a given scalar c and a matrix W ∈ R

m×n, according to the
denominator layout, we have

∂c

∂W
=

⎡
⎢⎢⎣

∂c
∂w11

· · · ∂c
∂w1n

...
. . .

...
∂c
∂wm1

· · · ∂c
∂wmn

⎤
⎥⎥⎦ ∈ R

m×n. (1.36)

Furthermore, this notation leads to the following familiar result:

∂a�x

∂x
= ∂x

�a

∂x
= a. (1.37)
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Accordingly, for a given scalar c and a matrix W ∈ R
m×n, we can show that

∂c

∂W
:= UNVEC

(
∂c

∂VEC(W )

)
∈ R

m×n, (1.38)

in order to be consistent with (1.36). Under the denominator layout notation, for
given vectors x ∈ R

m and y ∈ R
n, the derivative of a vector with respect to a vector

is given by

∂y

∂x
=

⎡
⎢⎢⎣

∂y1
∂x1
· · · ∂yn

∂x1
...
. . .

...
∂y1
∂xm
· · · ∂yn

∂xm

⎤
⎥⎥⎦ ∈ R

m×n. (1.39)

Then, the chain rule can be specified as follows:

∂c(g(u))

∂x
= ∂u
∂x

∂g(u)

∂u

∂c(g)

∂g
. (1.40)

Eq. (1.37) also leads to

∂Ax

∂x
= A�. (1.41)

Finally, the following result is useful.

Lemma 1.6 Let A ∈ R
m×n and x ∈ R

n. Then, we have

∂Ax

∂VEC(A)
= x ⊗ Im. (1.42)

Proof Using Lemma 1.4, we have Ax = VEC(Ax) = (x� ⊗ Im)VEC(A). Thus,

∂Ax

∂VEC(A)
= ∂(x

� ⊗ Im)VEC(A)

∂VEC(A)

= (x� ⊗ Im)
�

= x ⊗ Im, (1.43)

where we use (1.37) and (1.29) for the second and the third equalities, respectively.
Q.E.D. ��
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Lemma 1.7 ([5]) Let x, a and B denote vectors and a matrix with appropriate
sizes, respectively. Then, we have

∂x�a

∂x
= ∂a

�x

∂x
= a, (1.44)

∂x�Bx

∂x
= (B + B�)x. (1.45)

For a given scalar function 
 : x ∈ R
n �→ R, the derivative is often called the

gradient, which can be represented by the denominator layout:

∇
 := ∂

∂x
∈ R

n.

1.6 Elements of Convex Optimization

1.6.1 Some Definitions

Let X,Y and Z be non-empty sets. The identity operator on H is denoted by I, i.e.
Ix = x,∀x ∈ H. Let D ⊂ H be a non-empty set. The set of the fixed points of an
operator T : D �→ D is denoted by

FixT = {x ∈ D | Tx = x}.

Let X and Y be real normed vector space. As a special case of an operator, we define
a set of linear operators:

B(X,Y) = {T : X �→ Y | T is linear and continuous}

and we write B(X) = B(X,X). Let f : X �→ [−∞,∞] be a function. The domain
of f is

domf = {x ∈ X|f (x) <∞},

the graph of f is

graf = {(x, y) ∈ X× R|f (x) = y},

and the epigraph of f is

epif = {(x, y) : x ∈ X, y ∈ R, y ≥ f (x)}.
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The indicator function ιC : X �→ [−∞,∞] of C ⊂ X is defined as

ιC(x) =
{

0, if x ∈ C,
∞, otherwise.

(1.46)

We often use another definition of the indicator function:

χC(x) =
{

1, if x ∈ C,
0, otherwise.

(1.47)

The support function of a set C is defined as

SC(x) = sup{〈x, y〉|y ∈ C}.

An affine function is denoted by

x �→ Tx + b, x ∈ X, y ∈ Y,T ∈ B(X,Y).

A function f is called lower semicontinuous at x0 if for every ε > 0 there exists
a neighbourhood U of x0 such that f (x) ≥ f (x0) − ε for all x ∈ U. This is
expressed as

lim inf
x→x0

f (x) ≥ f (x0).

A function is lower semicontinuous if and only if all of its lower level sets {x ∈
X : f (x) ≤ α} are closed. Alternatively, f is lower semicontinuous if and only if
the epigraph of f is closed. A function is proper if −∞ /∈ f (X) and domf �= ∅
(Fig. 1.2).

An operator A : H �→ H is positive semidefinite if and only if

〈x,Ax〉 ≥ 0, ∀x ∈ H.

Fig. 1.2 Epigraphs for (a) a lower semicontinuous function, and (b) a function which is not lower
semicontinuous
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An operator A : H �→ H is positive definite if and only if

〈x,Ax〉 > 0, ∀x ∈ H.

For simplicity, we denote A � 0 (resp. A � 0 ) for positive semidefinite (resp.
positive definite) operators. If A : Cn �→ C

n, then S
n++ and S

n+ denote the set of
n × n positive definite and semipositive definite matrices, respectively. Here, the
eigenvalues of positive semidefinite (resp. positive definite) are all real and non-
negative (resp. positive).

1.6.2 Convex Sets, Convex Functions

A function f (x) is a convex function if domf is a convex set and

f (θx1 + (1− θ)x2) ≤ θf (x1)+ (1− θ)f (x1)

for all x1, x2 ∈ domf , 0 ≤ θ ≤ 1. A convex set is a set that contains every line
segment between any two points in the set (see Fig. 1.3). Specifically, a set C is
convex if x1, x2 ∈ C, then θx1 + (1 − θ)x2 ∈ C for all 0 ≤ θ ≤ 1. The relation
between a convex function and a convex set can also be stated using its epigraph.
Specifically, a function f (x) is convex if and only if its epigraph epif is a convex
set.

Convexity is preserved under various operations. For example, if {fi}i∈I is
a family of convex functions, then, supi∈I fi is convex. In addition, a set of
convex functions is closed under addition and multiplication by strictly positive real
numbers. Moreover, the limit point of a convergent sequence of convex functions is
also convex. Important examples of convex functions are summarized in Table 1.1.

Fig. 1.3 A convex set and a
convex function
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Table 1.1 Examples of convex functions

Name f (x)

Exponential eax, ∀a ∈ R

Quadratic over linear x2/y, (x, y) ∈ R× R++
Huber function

{
|x|2/2μ, if |x| < μ
|x| − μ/2, if |x| ≥ μ

Relative entropy y log y − y log x, (x, y) ∈ R++ × R++
Indicator function ιC(x), C : convex set

Support function SC(x) = sup{〈x, y〉|y ∈ C}
Distance to a set d(x,S) = infy∈S ‖x − y‖
Affine function T x + b, x ∈ R

n.

Quadratic function x�Qx/2, x ∈ R
n,Q ∈ S+

p-norms ‖x‖p =
(∑

i |xi |p
)1/p , p ≥ 1

l∞-norm ‖x‖∞ = maxi |xi |
Max function max{x1, · · · , xn}
Log-sum-exponential log

(∑n
i=1 e

xi
)
, x = (x1, · · · , x(k)) ∈ R

n.

Gaussian data fidelity ‖y −Ax‖2, x ∈ H
Poisson data fidelity 〈1,Ax〉 − 〈y, log(Ax)〉, x ∈ R

n, 1 = (1, · · · , 1) ∈ R
n

Spectral norm ‖X‖2 = σmax(X) = (λmax(X
�X))1/2, X ∈ R

n×n

Nuclear norm ‖X‖∗ =∑i σi (X) =
∑
i (λi(X

�X))1/2, X ∈ R
n×n

Table 1.2 Examples of
concave functions

Name f (x)

Powers xp, 0 ≤ p ≤ 1, x ∈ R++
Geometric mean

(∏n
i=1 xi

) 1
n

Logarithm log x, x ∈ R++
Log determinant log det(X), X ∈ S++

A function f is concave if−f is convex. It is easy to show that an affine function
f (x) = Ax + b is both convex and concave. Examples of concave functions that
are often used in this textbook can be found in Table 1.2.

1.6.3 Subdifferentials

The directional derivative of f at x ∈ domf in the direction of y ∈ H is defined by

f ′(x; y) = lim
α↓0

f (x + αy)− f (x)
α

(1.48)
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if the limit exists. If the limit exists for all y ∈ H, then one says that f is Gãteaux
differentiable at x. Suppose f ′(x; ·) is linear and continuous on H. Then, there exist
a unique gradient vector ∇f (x) ∈ H such that

f ′(x; y) = 〈y,∇f (x)〉, ∀y ∈ H.

If a function is differentiable, the convexity of a function can easily be checked
using the first- and second-order differentiability, as stated in the following:

Proposition 1.1 Let f : H �→ (−∞,∞] be proper. Suppose that domf is open
and convex, and f is Gâteux differentiable on domf . Then, the followings are
equivalent:

1. f is convex.
2. (First-order): f (y) ≥ f (x)+ 〈y − x,∇f (x)〉, ∀x, y ∈ H.
3. (Monotonicity of gradient): 〈y − x,∇f (y)− ∇f (x)〉 ≥ 0, ∀x, y ∈ H.

If the convergence in (1.48) is uniform with respect to y on bounded sets, i.e.

lim
0�=y→0

f (x + y)− f (x)− 〈y,∇f (x)〉
‖y‖ = 0, (1.49)

then f is Fréchet differentiable and ∇f (x) is called the Fréchet gradient of f at x.
If f is differentiable and convex, then it is clear that

x ∈ arg min f ⇔ ∇f (x) = 0.

However, if f is not differentiable, we need a more general framework to character-
ize the minimizers. The sub-differential of f is a set-valued operator defined as

∂f (x) = {u ∈ H : f (y) ≥ f (x)+ 〈y − x,u〉, ∀y ∈ H}. (1.50)

The elements of sub-differential ∂f (x) are called sub-gradients of f at x. Another
important role of the subdifferentials comes from Fermat’s rule that characterizes
the global minimizers (Fig. 1.4):

Theorem 1.3 (Fermat’s Rule) Let f : H �→ (−∞,∞] be proper. Then,

arg min f = zer∂f := {x ∈ H | 0 ∈ ∂f (x)}. (1.51)

1.6.4 Convex Conjugate

A convex conjugate or convex dual is very important concept for both classical and
mordern convex optimization techniques. Formally, the conjugate function f ∗ :
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Fig. 1.4 Fermat’s rule for the global minimizer

Fig. 1.5 (a) Geometry of convex conjugate. (b) Examples of finding convex conjugate for f (x) =
bx + c

H �→ [−∞,∞] of a function f : H �→ [−∞,∞] is defined as

f ∗(u) = sup
x∈H
{〈u, x〉 − f (x)}. (1.52)

The transform in (1.52) is often called Legendre-Fenchel transform.
Figure 1.5a shows a geometric interpretation of the convex conjugate when H =

R. For example, when f (x) = x2 − x, the convex conjugate f ∗(u) at u = 1 is
the maximum difference between g(x) = x and f (x) = x2 − x, which occurs
at x = 1 in this example. The difference is also equal to the magnitude of the y-
intercept of the supporting hyerplane of f (x) at x = 1. Figure 1.5b shows another
intuitive example. Here, f (x) = bx + c. In this case, the difference between the
line g1(x) = u1x and f (x) becomes infinite at x → −∞. Similarly, the difference
between the line g2(x) = u2x and f (x) becomes infinite at x → ∞. Only when
u = b does, the maximum distance becomes finite and is equal to −c. Therefore,
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Table 1.3 Examples of convex conjugate pairs used often in imaging problems. Here,D ⊂ H and
we use the interpretation 0 log 0 = 0

f (x) domf f ∗(u) domf ∗

f (ax) D f ∗(u/a) D

f (x + b) D f ∗(u)− 〈b, u〉 D

af (x), a > 0 D af ∗(u/a) D

bx + c D
{
−c y = a
+∞, u �= a

{a}

1/x R++ −2
√−u −R+

− log x R++ −(1+ log(−u)) −R++
x log x R+ eu−1

R√
1+ x2 R −√1− u2 [−1, 1]

ex R u log(u)− u R+
log(1+ ex) R u log(u)+ (1− u) log(1− u) [0, 1]
− log(1− ex) R−− u log(u)+ (1+ u) log(1+ u) R+
|x|p
p
, p > 1 R

|u|q
q
, 1
p
+ 1
q
= 1 R

‖x‖1 R
n

{
0, ‖u‖2 ≤ 1

∞ ‖u‖2 > 1

{u ∈ R
n : ‖u‖2 < 1}

〈a, x〉 + b R
n

{
−b, u = b
∞, u �= a

{b} ⊂ R
n

1
2 x�Qx, Q ∈ S++ R

n 1
2 u�Q−1u R

n

ιC(x) C SC(u) H
log
(∑n

i=1 e
xi
)

R
n

∑n
i=1 ui log ui,

∑n
i=1 ui = 1 R

n+
− log det X−1

S
n++ log det(−U)−1 − n −Sn++

the convex conjugate of f (x) = bx + c is

f ∗(u) =
{
−c, u = b,
∞, u �= b.

Table 1.3 summarizes these findings for a variety of functions that are often used in
applications.

It is clear that f ∗ is convex since f ∗ is a point-wise supremum of a convex
function of y. In general, if f : H �→ [−∞,∞], then the following hold:

1. For α ∈ R++, we have

(αf )∗ = αf ∗(·/α). (1.53)

2. Fenchel–Young inequality:

f (x)+ f ∗(y) ≥ 〈y, x〉, ∀x, y ∈ H. (1.54)
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3. Let f, g be proper functions from H to (−∞,∞]. Then,

f (x)+ g(x) ≥ −f ∗(u)− g∗(−u), ∀x,u ∈ H. (1.55)

If f is convex, proper, and lower semicontinuous, then the following properties
hold:

f ∗∗ = f, (1.56)

y ∈ ∂f (x)⇐⇒ f (x)+ f ∗(y) = 〈x, y〉 ⇐⇒ x ∈ ∂f ∗(y). (1.57)

1.6.5 Lagrangian Dual Formulation

Perhaps one of the most important uses of convex conjugate is to obtain the dual
formulation. More specifically, for a given primal problem (P),

(P ) : min
x∈H

f (x)+ g(x), (1.58)

we can obtain the associated dual problem using (1.55):

(D) : −min
u∈H

f ∗(u)+ g∗(−u). (1.59)

The gap between the primal and dual problem is called the duality gap.

Example: Dual for Composite Function
For the given primal problem:

(P ) : min
x∈Rn

f (x)+ g(Ax), (1.60)

with A ∈ R
n×m, the dual problem is given by

(D) : − min
u∈Rm

f ∗(A�u)+ g∗(−u).

Proof Note that (P) is equivalent to the following constraint minimization
problem:

min
x,y
f (x)+ g(y)

subject to Ax = y,

(continued)
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which provides

min
x∈Rn

f (x)+ g(Ax) ≤ min
x,y
f (x)+ g(y)+ u�(Ax)− u�y

≤ min
x
{f (x)+ (A�u)�x)} +min

y
{g(y)− u�y}

= −f ∗(A�u)− g∗(−u).

Therefore, the dual problem is

− min
u∈Rm

f ∗(A�u)+ g∗(−u).

This concludes the proof. ��

Example: Quadratic Programming Under Affine Constraint
Consider the following optimization problem:

P : min
1

2
x�x subject to b = Ax

with A ∈ R
n×n. Now, we define C = {0} such that b − Ax ∈ C. Then, the

original minimization problem becomes

min
x,y
ιC(y)+ 1

2x�x

subject to y = b −Ax.

Therefore, we have

min
x
ιC(Ax − b)+ 1

2
x�x ≤ min

x,y
ιC(y)+ 1

2
x�x + u�(Ax − b − y)

≤ min
y
ιC(y)− u�y +min

x

1

2
x�x − u�Ax + u�b

≤ min
y∈{0} −u�y +min

x

1

2
x�x − u�Ax + u�b

= 1

2
u�AA�u+ u�b,

(continued)
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where the last equality comes from x = A�u at the minimizer. Hence, the
dual problem becomes

D : min
u∈Rm

1

2
u�AA�u+ u�b.

Why is this dual formulation useful? Suppose that A is highly ill-posed,
say that n = 1000 and m = 1. Then, the dual problem (D) is a one-
dimensional problem which is computationally much less expensive than the
primal problem (P) of the dimension n = 1000. After the dual solution û is
obtained, the primal solution is just x̂ = A�û.

We formally define a Lagrangian dual problem.

Definition 1.16 ([6]) Suppose that a primal problem is given by

min
x

f0(x)

subject to fi(x) ≤ 0, i = 1, · · · , n, (1.61)

hi(x) = 0, i = 1, · · · , p. (1.62)

Then, the associated Lagrangian dual problem is defined by

max
α,ν

g(α, ν) (1.63)

subject to α ≥ 0, (1.64)

where α = [α1, · · · , αn] and ν = [ν1, · · · , νp] are referred to as the dual variables
or Lagrangian multipliers, α ≥ 0 implies that each element is non-negative, and the
Lagrangian g(α, ν) is defined by

g(α, ν) := inf
x

⎧⎨
⎩f0(x)+

n∑
i=1

αifi(x)+
p∑
j=1

νjhj (x)

⎫⎬
⎭ . (1.65)

One of the important findings in convex optimization theory [6] is that if the
primal problem is convex, then we have the following strong duality:

g(α∗, ν∗) = f0(x
∗), (1.66)

where x∗ and α∗, ν∗ are the optimal solutions for the primal and dual problems,
respectively. Often, the dual formulation is easier to solve than the primal problem.
Additionally, there is also interesting an geometric interpretation, which will be
explained later.
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1.7 Exercises

1. Show that an lp norm with 0 < p < 1 is not a norm.
2. Prove the equalities in (1.17).
3. Prove the matrix inversion lemma, Eq. (1.23).
4. Let x ∈ R

n, y ∈ R
m and A ∈ R

m×n. Then, show the following:

x̂ = arg min
x∈Rn
‖y −Ax‖2 + λ‖x‖2

= (A�A+ λI)−1A�y

= A�(AA� + λI)−1y,

where A� denotes the transpose of A, and I is an appropriate size identity
matrix. (Hint: for the last equality, you need to use the matrix inversion lemma.)

5. Prove Lemma 1.2.
6. Prove (1.31).
7. Prove Lemma 1.4.
8. Prove Lemma 1.7.
9. Show that if L is an affine mapping and f is convex, then f ◦L is also convex,

where ◦ refers to the composite function.
10. Find at least three examples of functions that are not semicontinuous.
11. In Table 1.1, show that the relative entropy, indicator function, support function,

p-norm (with p ≥ 1) and max functions are convex.
12. Let f : H �→ (−∞,∞] be proper. Suppose that domf is open and convex,

and f is Gâteux differentiable on domf . Then, show that the following are
equivalent:

a. f is convex.
b. f (y) ≥ f (x)+ 〈y − x,∇f (x)〉, ∀x, y ∈ H.
c. 〈y − x,∇f (y)− ∇f (x)〉 ≥ 0, ∀x, y ∈ H.
d. Moreover, if f is twice Gâteux differentiable on domf ,

∇2f (x) � 0, ∀x ∈ domf.

13. Let f (x) = |x| with x ∈ [−1, 1]. Find its subdifferential ∂f (x).
14. Prove Fermat’s rule in Theorem 1.3.
15. Show that the following properties hold for the subdifferentials:

a. If f is differentiable, then ∂f (x) = {∇f (x)}.
b. Let f be proper. Then, ∂f (x) is closed and convex for any x ∈ domf .
c. Let λ ∈ R++. Then, ∂(λf ) = λ∂f .
d. Let f, g be convex, and lower semicontinuous functions, and L is a linear

operator. Then

∂(f + g ◦L) = ∂f +L∗ ◦ (∂g) ◦L. (1.67)
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16. Prove Eq. (1.53).
17. Let f (x) = 1

2 (x
2
1 + x2

2)− x1 − x2. Derive the convex conjugate f ∗(x).
18. Let f be a proper function from H to (−∞,∞]. Show that

f (x)+ f ∗(y) ≥ 〈y, x〉, ∀x, y ∈ H.

19. If f is convex and lower semicontinuous, then show that

(∂f )−1 = ∂f ∗.

20. We often have the following form of the primal problem:

(P ) : min
x∈Rn

f (x)+ g(Ax), (1.68)

where

g(Ax) = ‖Ax‖1, f (x) = ‖y − x‖22
with the operator A : Rn �→ R

m. Show that the associated dual problem is
given by

− min
u∈Rm

u�AA�u+ y�A�u

subject to ‖u‖2 ≤ 1.



Chapter 2
Linear and Kernel Classifiers

2.1 Introduction

Classification is one of the most basic tasks in machine learning. In computer vision,
an image classifier is designed to classify input images in corresponding categories.
Although this task appears trivial to humans, there are considerable challenges with
regard to automated classification by computer algorithms.

For example, let us think about recognizing “dog” images. One of the first
technical issues here is that a dog image is usually taken in the form of a digital
format such as JPEG, PNG, etc. Aside from the compression scheme used in
the digital format, the image is basically just a collection of numbers on a two-
dimensional grid, which takes integer values from 0 to 255. Therefore, a computer
algorithm should read the numbers to decide whether such a collection of numbers
corresponds to a high-level concept of “dog”. However, if the viewpoint is changed,
the composition of the numbers in the array is totally changed, which poses
additional challenges to the computer program. To make matters worse, in a natural
setting a dog is rarely found on a white background; rather, the dog plays on the
lawn or takes a nap in the living room, hides underneath furniture or chews with her
eyes closed, which makes the distribution of the numbers very different depending
on the situation. Additional technical challenges in computer-based recognition of
a dog come from all kinds of sources such as different illumination conditions,
different poses, occlusion, intra-class variation, etc., as shown in Fig. 2.1. Therefore,
designing a classifier that is robust to such variations was one of the important topics
in computer vision literature for several decades.

In fact, the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [7]
was initiated to evaluate various computer algorithms for image classification at
large scale. ImageNet is a large visual database designed for use in visual object
recognition software research [8]. Over 14 million images have been hand-annotated
in the project to indicate which objects are depicted, and at least one million of
the images also have bounding boxes. In particular, ImageNet contains more than
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Fig. 2.1 Technical challenges in recognizing a dog from digital images. Figures courtesy of Ella
Jiwoo Ye

20,000 categories made up of several hundred images. Since 2010, the ImageNet
project has organized an annual software competition, the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC), in which software programs compete for
the correct classification and recognition of objects and scenes. The main motivation
is to allow researchers to compare progress in classification across a wider variety
of objects. Since the introduction of AlexNet in 2012 [9], which was the first
deep learning approach to win the ImageNet Challenge, the state-of-the art image
classification methods are all deep learning approaches, and now their performance
even surpasses human observers.

Before we discuss in detail recent deep learning approaches, we revisit the
classical classifier, in particular the support vector machine (SVM) [10], to discuss
its mathematical principles. Although the SVM is already an old classical technique,
its review is important since the mathematical understanding of the SVM allows
readers to understand how the modern deep learning approaches are closely related
to the classical ones.

Specifically, consider binary classification problems where data sets from two
different classes are distributed as shown in Fig. 2.2a,b,c. Note that in Fig. 2.2a, the
two sets are perfectly separable with linear hyperplanes. For the case of Fig. 2.2b,
there exists no linear hyperplane that perfectly separates two data sets, but one could
find a linear boundary where only a small set of data are incorrectly classified.
However, the situation in Fig. 2.2c is much different, since there exists no linear
boundary that can separate the majority of elements of the two classes. Rather, one
could find a nonlinear class boundary that can separate the two sets with small errors.
The theory of the SVM deals with all situations in Fig. 2.2a,b,c using a hard-margin
linear classifier, soft-margin linear classifier, and kernel SVM method, respectively.
In the following, we discuss each topic in detail.
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Fig. 2.2 Examples of binary classification problems: (a) linear separable case, (b) approximately
linear separable case, and (c) linear non-separable case

2.2 Hard-Margin Linear Classifier

2.2.1 Maximum Margin Classifier for Separable Cases

For the linear separable case in Fig. 2.2a, there can be an infinite number of choices
of linear hyperplanes. Among them, one of the most widely used choices of the
classification boundary is to maximize the margin between the two classes. This is
often called the maximum margin linear classifier [10].

To derive this, we introduce some notations. Let {xi , yi}Ni=1 denote the set of the
data xi ∈ X ⊂ R

d with the binary label yi such that yi ∈ {1,−1}. We now define a
hyperplane in R

d :

〈w, x〉 + b = w�x + b = 0, (2.1)

where � denotes the transpose, 〈·, ·〉 is the inner product, b ∈ R is a bias term. See
Fig. 2.3 for more details. If the two classes are separable, then there exist sets S1 and
S−1 such that the data set with yi = 1 and y1 = −1 belongs to the sets S1 and S−1,

Fig. 2.3 Geometric structure of hard-margin linear support vector machine classifier



32 2 Linear and Kernel Classifiers

respectively:

S1 = {x ∈ R
d | 〈w, x〉 + b ≥ 1}, (2.2)

S−1 = {x ∈ R
d | 〈w, x〉 + b ≤ −1}. (2.3)

Then, the margin between the two sets is defined as the minimum distance between
the two linear boundaries of S1 and S−1. To calculate this, we need the following
lemma:

Lemma 2.1 The distance between two parallel hyperplanes 
1 : 〈w, x〉 + c1 = 0
and 
2 : 〈w, x〉 + c2 = 0 is given by

m := |c1 − c2|‖w‖ . (2.4)

Proof Let m be the distance between the two parallel hyperplanes 
1 and 
2, then
there exists two points x ∈ 
1 and x2 ∈ 
2 such that ‖x1−x2‖ = m. Then, using the
Pythagoras theorem, the vector v := x1 − x2 should be along the normal direction
of the hyperplanes. Accordingly,

m = ‖x1 − x2‖ = ‖〈w/‖w‖, x1〉 − 〈w/‖w‖, x2〉‖,

since w/‖w‖ is the unit normal vector of the hyperplanes. Therefore, we have

m = ‖〈w, x1〉 − 〈w, x2〉‖
‖w‖ = |c1 − c2|‖w‖ .

Q.E.D. ��
Since 〈w, x〉 + b − 1 = 0 and 〈w, x〉 + b + 1 = 0 correspond to the linear

boundaries of S1 and S−1, Lemma 2.1 informs us that the margin between the two
classes is given by

margin := 2

‖w‖ . (2.5)

Therefore, for the given training data set {xi , yi}ni=1 with xi ∈ X ⊂ R
d and the

binary label yi ∈ {1,−1}, the maximum margin linear binary classifier design
problem can be formulated as follows:

(P) minw
1

2
‖w‖2 (2.6)

subject to 1− yi (〈w, xi〉 + b) ≤ 0, ∀i. (2.7)
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Note that the minimization of ‖w‖2/2 in (2.6) is equivalent to the maximization
of the margin 2/‖w‖2, and by noting that yi = 1 and −1 for the sets S1 and S−1,
respectively, we can see that (2.7) corresponds to the desirable constraints. Another
thing to note here is that although the cost minimization in (P) is with respect to w,
the dependency on b is hidden in this formulation. The explicit dependency on b
becomes more evident in its dual formulation described in the following.

2.2.2 Dual Formulation

The optimization problem (P) is a constrained optimization problem under inequal-
ity constraints. A standard method for the constrained optimization problem is to
use the Lagrangian dual formulation [6]. In the following, we formally define a
Lagrangian dual problem.

Definition 2.1 [6] Suppose that a primal problem is given by

min
x

f0(x)

subject to fi(x) ≤ 0, i = 1, · · · , n (2.8)

hi(x) = 0, i = 1, · · · , p. (2.9)

Then, the associated Lagrangian dual problem is defined by

max
α,ν

g(α, ν) (2.10)

subject to α ≥ 0, (2.11)

where α = [α1, · · · , αn] and ν = [ν1, · · · , νp] are referred to the dual variables or
Lagrangian multipliers, α ≥ 0 implies that each element is non-negative, and the
Lagrangian g(α, ν) is defined by

g(α, ν) := inf
x

⎧⎨
⎩f0(x)+

n∑
i=1

αifi(x)+
p∑
j=1

νjhj (x)

⎫⎬
⎭ . (2.12)

One of the important findings in convex optimization theory [6] is that if the
primal problem is convex, then we have the following strong duality:

g(α∗, ν∗) = f0(x
∗), (2.13)

where x∗ and α∗, ν∗ are the optimal solutions for the primal and dual problems,
respectively. Often, the dual formulation is easier to solve than the primal problem.
Additionally, there is also interesting geometric interpretation.
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Our binary classification problem (P) in (2.6) is a convex optimization problem
with respect to w ∈ R

d , since both the objective function and the constraint sets are
convex. Therefore, using Definition 2.1, the original problem can be converted to a
dual problem:

(D) maxα g(α)

subject to α ≥ 0,

where α = [α1, · · · , αn] is a dual variable with respect to the primal variable w and
b, and

g(α) = min
w,b

‖w‖2
2
+

n∑
i=1

αi (1− yi(〈w, xi〉 + b)) . (2.14)

At the minimizers of (2.14), the derivatives with respect to w and b should be zero,
which leads to the following first-order necessary conditions (FONC):

w =
n∑
i=1

αiyixi ,

n∑
i=1

αiyi = 0. (2.15)

The FONCs in Eq. (2.15) have very important geometric interpretations. For
example, the first equation in (2.15) clearly shows how the normal vector for the
hyperplanes can be constructed using the dual variables. The second equation leads
to the balancing conditions. These will be explained in more detail later.

By plugging these FONCs into (2.14), the dual problem (D) becomes

max
α

n∑
i=1

αi − 1

2

n∑
i=1

n∑
j=1

αiαjyiyj 〈xi , xj 〉 (2.16)

subject to
n∑
i=1

αiyi = 0, αi ≥ 0, ∀i.

Let w∗, b∗ and α∗ denote the solutions for the primal and dual problems. Then, the
resulting binary classifier is given by

y ← sign(〈w∗, x〉 + b∗) (2.17)

for the case of the primal formulation, or

y ← sign

(
n∑
i=1

α∗i yi〈xi , x〉 + b∗
)

(2.18)

for the case of the dual formulation, where sign(x) denotes the sign of x.
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2.2.3 KKT Conditions and Support Vectors

To achieve the strong duality in (2.13), the so-called Karush–Kuhn–Tucker (KKT)
conditions should be satisfied [6]. More details on the KKT conditions can be found
in the standard convex optimization textbook [6], so here we briefly introduce the
core condition that is directly related to geometric understanding of the maximum
margin linear classifier.

More specifically, suppose that x∗ and α∗, ν∗ denote the optimal solutions for
the primal and dual problems, respectively. Then, we have

g(α∗, ν∗) = f0(x
∗)+

n∑
i=1

α∗i fi(x∗)+
p∑
j=1

ν∗j hj (x∗)

= f0(x
∗)+

n∑
i=1

α∗i fi(x∗), (2.19)

where the last equality comes from the constraint hj (x∗) = 0 in the primal problem.
In order to make (2.19) equal to f0(x

∗), which corresponds to the strong duality
(2.13), the following condition should be satisfied:

α∗i > 0 #⇒ fi(x
∗) = 0 or fi(x

∗) < 0 #⇒ α∗i = 0. (2.20)

This is the key KKT condition.
If (2.20) is applied to our classifier design problem, we have

α∗i > 0 #⇒ yi(〈w∗, xi〉 + b) = 1, (2.21)

which implies that in constructing the normal vector direction w∗ of the hyperplane
using (2.15), only the training data at the class boundaries contribute:

w∗ =
n∑
i=1

α∗i yixi =
∑
i∈I+

α∗i xi −
∑
i∈I−

α∗i xi , (2.22)

where I+ and I− are index sets such that

I+ = {i ∈ [1, · · · , n] | 〈w∗, xi〉 + b = 1}, (2.23)

I− = {i ∈ [1, · · · , n] | 〈w∗, xi〉 + b = −1}. (2.24)

On the other hand, for the case of the training data xi inside the class boundaries,
yi(〈w, xi〉 + b) > 1. Therefore, the corresponding Lagrangian variable αi becomes
zero. This situation is illustrated in Fig. 2.3. Here, the set of the training data xi with
i ∈ I+ or i ∈ I− is often called the support vector, which is why the corresponding
classifier is often called the support vector machine (SVM) [10].
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Finally, the second equation in (2.15) leads to additional geometric relationship
between nonzero dual variables:

∑
i∈I+

α∗i =
∑
i∈I−

α∗i ,

which states the balancing condition between dual variables. In other words, the
weighting parameters for the support vectors should be balanced for each class
boundary.

2.3 Soft-Margin Linear Classifiers

2.3.1 Maximum Margin Classifier with Noise

As shown in Fig. 2.2b, many practical classification problems often contain data
sets that cannot be perfectly separable by a hyperplane. When the two classes are
not linearly separable (e.g., due to noise), the condition for the optimal hyperplane
can be relaxed by including extra terms:

yi(〈w, xi〉 + b) ≥ 1− ξi, ξi ≥ 0 ∀i, (2.25)

where ξi are often called the slack variables. The role of the slack variables is to
allow errors in the classification. Then, the optimization goal is to find the classifier
with the maximum margin with the minimum errors as shown in Fig. 2.4.

Fig. 2.4 Geometric structure of soft-margin linear support vector machine classifier
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The corresponding primal problem is then given by

(P′) minw,ξ

1

2
‖w‖2 + C

n∑
i=1

ξi

subject to 1− yi (〈w, xi〉 + b) ≤ ξi, (2.26)

ξi ≥ 0, ∀i,

where the optimization problem again has implicit dependency on the bias term b.
The following theorem shows that the corresponding dual problem has a form very
similar to the hard-margin classifier in (2.16) with the exception of the differences
in the constraint for the dual variables.

Theorem 2.1 The Lagrangian dual formulation of the primal problem in (2.26) is
given by

max
α

n∑
i=1

αi − 1

2

n∑
i=1

n∑
j=1

αiαjyiyj 〈xi , xj 〉 (2.27)

subject to
n∑
i=1

αiyi = 0, 0 ≤ αi ≤ C, ∀i.

Proof For the given primal problem in (2.26), the corresponding Lagrangian dual
is given by

max
α,γ

g(α, γ )

subject to α ≥ 0, γ ≥ 0, (2.28)

g(α, γ ) = max
w,b,ξ

{
1

2
‖w‖2 + C

n∑
i=1

ξi (2.29)

+
n∑
i=1

αi(1− yi (〈w, xi〉 + b)− ξi)−
n∑
i=1

γiξi

}
.

The first-order necessary conditions (FONCs) with respect to w, b and ξ lead to the
following equations:

w =
n∑
i=1

αiyixi (2.30)



38 2 Linear and Kernel Classifiers

and

n∑
i=1

αiyi = 0, αi + γi = C. (2.31)

By plugging (2.30) and (2.31) into Eq. (2.29), we have

g(α, γ ) =
n∑
i=1

αi − 1

2

n∑
i=1

n∑
j=1

αiαjyiyj 〈xi , xj 〉,

where 0 ≤ αi ≤ C, since γi = C − αi ≥ 0. This concludes the proof. ��
Another way of representing the primal problem in (2.26) is using the so-called

hinge loss [10, 11]:


hinge(y, ŷ) = max{0, 1− yŷ} , (2.32)

of which a pictorial description is given in Fig. 2.5. Specifically, we define the slack
variable:

ξi := 1− yi(〈w, xi〉 + b).

To make the slack variable represent the classification error for the data set (xi , yi)
within the class boundary, ξi should be zero when the data is already well classified,
but positive when there exists a classification error. This leads to the following
definition of the slack variable:

ξi = max{0, 1− yi(〈w, xi〉 + b)} = 
hinge (yi, 〈w, xi〉 + b) . (2.33)

Then, the primal problem in (2.26) can be represented by

min
w,b

1
2‖w‖2 + C

∑n
i=1 
hinge (yi, 〈w, xi〉 + b) . (2.34)

Fig. 2.5 Pictorial description
of hinge loss

hinge(y, ŷ) = max{0, 1−yŷ}
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Later, we will show that this representation is closely related to the so-called
representer theorem [11].

2.4 Nonlinear Classifier Using Kernel SVM

2.4.1 Linear Classifier in the Feature Space

Now consider a classification problem in R
2 as shown in Figs. 2.6 or 2.2c, where

there exists no linear hyperplane that can separate two classes. Specifically, the data
in class 1 are within an ellipse:

S1 = {x = (x1, x2) | (x1 + x2)
2 + x2

2 ≤ 2}, (2.35)

whereas class 2 data are located outside of the ellipse. This implies that although
the two classes of data cannot be separated by a single hyperplane, the nonlinear
boundary in (2.35) can separate the two classes.

Interestingly, the existence of the nonlinear boundary implies that we can find
the corresponding linear hyperplane in the higher-dimensional space. Specifically,
suppose we have a nonlinear mapping ϕ : x = [x1, x2]� �→ ϕ(x) to the feature
space in R

3 such that

ϕ(x) = [ϕ1, ϕ2, ϕ2]� =
[
x2

1 , x
2
2 ,
√

2x1x2
]�
. (2.36)

Then, we can easily see that S1 can be represented in the feature space by

S1 = {(ϕ1, ϕ2, ϕ3) | ϕ1 + 2ϕ2 +
√

2ϕ3 ≤ 2}. (2.37)

Fig. 2.6 Lifting to a high-dimensional feature space for linear classifier design
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Therefore, there exists a linear classifier in R
3 using the feature space mapping ϕ(x)

as shown in Fig. 2.6.
In general, to allow the existence of a linear classifier, the feature space should

be in a higher-dimensional space than the ambient input space. In this sense, the
feature mapping ϕ(x) works as a lifting operation that lifts up the dimension of the
data to a higher-dimensional one. In the lifted feature space by the feature mapping
ϕ(x), the binary classifier design problem in (2.27) can be defined as

max
α

n∑
i=1

αi − 1

2

n∑
i=1

n∑
i=j
αiαj yiyj 〈ϕ(xi ),ϕ(xj )〉 (2.38)

subject to
n∑
i=1

αiyi = 0, 0 ≤ αi ≤ C, ∀i.

By extending (2.18) from the linear classifier, the associated nonlinear classifier
with respect to the optimization problem (2.38) can be similarly defined by

y ← sign

(
n∑
i=1
α∗i yi〈ϕ(xi ),ϕ(x)〉 + b

)
, (2.39)

where α∗i and b are the solutions for the dual problem.

2.4.2 Kernel Trick

Although (2.38) and (2.39) are nice generalizations of (2.27) and (2.18), there exist
several technical issues. One of the most critical issues is that for the existence of a
linear classifier, the lifting operation may require a very-high-dimensional or even
infinite-dimensional feature space. Therefore, an explicit calculation of the feature
vector ϕ(x) may be computationally intensive or not possible.

The so-called kernel trick may overcome this technical issue by bypassing the
explicit construction of the lifting operation [11]. Specifically, as shown in (2.38)
and (2.39), all we need for the calculation of the linear classifier is the inner product
between the two feature vectors. Specifically, if we define the kernel function K :
X× X �→ R as follows:

K(x, x ′) := 〈ϕ(x),ϕ(x′)〉 (2.40)



2.4 Nonlinear Classifier Using Kernel SVM 41

then (2.38) and (2.39) can be converted to

max
α

n∑
i=1

αi − 1

2

n∑
i=1

n∑
j=1

αiαjyiyjK(xi , xj ) (2.41)

subject to
n∑
i=1

αiyi = 0, 0 ≤ αi ≤ C, ∀i

and the resulting classifier is

y ← sign
(∑n

i=1 α
∗
i yiK(xi , x)+ b

)
. (2.42)

For example of (2.36), the corresponding kernel is given by

K(x, y) = x2
1y

2
1 + x2

2y
2
2 + 2x1x2y1y2 = (〈x, y〉)2,

which corresponds to a polynomial function with degree 2. Therefore, the common
practice in SVM literature is to design the kernel directly rather than to obtain it
from the underlying feature mapping. The following are representative examples of
kernels that are often used in the kernel SVM.

• Polynomial kernel with degree exactly p:

K(x, y) = (x�y)p.

• Polynomial kernel with degree up to p:

K(x, y) = (x�y + 1)p.

• Radial basis function kernel with width σ :

K(x, y) = exp(−‖x − y‖2/(2σ 2)).

• Sigmoid kernel:

tanh(ηx�y + ν).

However, care should be taken since not all kernels can be used for SVM. To
be a viable option, a kernel should originate from the feature space mapping ϕ(x).
In fact, there exists an associated feature mapping if the kernel function satisfies
the so-called Mercer’s condition [11]. The kernel that satisfies Mercer’s condition
is often called the positive definite kernel. The details of Mercer’s condition can be
found from standard SVM literature [11] and will be explained later in the context
of the representer theorem.
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2.5 Classical Approaches for Image Classification

Although the SVM and its kernel extension are beautiful convex optimization
frameworks devoid of local minimizers, there are fundamental challenges in using
these methods for image classification. In particular, the ambient space X should not
be significantly large in the SVM due to the computationally extensive optimization
procedure. Accordingly, one of the essential steps of using the SVM framework is
feature engineering, which pre-processes the input images to obtain significantly
smaller dimensional vector x ∈ X that can capture all essential information of the
input images. For example, a classical pipeline for the image classification task can
be summarized as follows (see Fig. 2.7):

• Process the data set to extract hand-crafted features based on some knowledge of
imaging physics, geometry, and other analytic tools,

• or extract features by feeding the data into a standard set of feature extractors
such as SIFT (the Scale-Invariant Feature Transform) [12], or SURF (the
Speeded-Up Robust Features) [13], etc.

• Choose the kernels based on your domain expertise.
• Put the training data composed of hand-crated features and labels into a kernel

SVM to learn a classifier.

Here, the main technical innovations usually comes from the feature extraction,
often based on the serendipitous discoveries of lucky graduate students. Moreover,
kernel selection also requires domain expertise that was previously the subject of
extensive research. We will see later that one of the main innovations in the modern
deep learning approach is that this hand-crafted feature engineering and kernel
design are no longer required as they are automatically learned from the training
data. This simplicity can be one of the main reasons for the success of deep learning,
which led to the deluge of new deep tech companies.

So far we have mainly discussed the binary classification problems. Note that
more general forms of the classifiers beyond the binary classifier are of importance
in practice: for example, ImageNet has more than 20,000 categories. The extension
of the linear classifier for such a setup is important, but will be discussed later.

Fig. 2.7 Classical classifier design flowchart
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2.6 Exercises

1. For a given polynomial kernel up to degree 2,

k(x, y) = (x�y + c)2, x, y ∈ R
2,

what is the corresponding feature mapping ϕ(x) such that k(x, y) =
〈ϕ(x),ϕ(y)〉?

2. Show that the feature space dimension for the radial basis function is infinite.
3. Suppose we are given the following positively labeled data points:

x1 = [2, 1]�, x2 = [2,−1]�, x3 = [3, 1]�, (2.43)

and the following negatively labeled data points:

x4 = [1, 0]�, x5 = [0, 1]�, x6 = [0,−1]�. (2.44)

a. Are the two classes linear separable? Answer this question by visualizing their
distribution in R

2.
b. Now, we are interested in designing a hard-margin linear SVM. What are

the support vectors? Please answer this by inspection. You must give your
reasoning.

c. Using primal formulation, compute the closed form solution of the linear
SVM classifier by hand calculation. You must show each step of your
calculation. The inequality constraints may be simplified by exploiting the
support vectors and KKT conditions.

d. Using dual formulation, compute the closed form solution of the linear SVM
classifier by hand calculation. You must show each step of your calculation.
The inequality constraints may be simplified by exploiting the support vectors
and KKT conditions.

4. Suppose we are given the following positively labeled data points:

x1 = [0.5, 0]�, x2 = [1.5, 1]�, x3 = [1.5,−1]�, x4 = [2, 0]�, (2.45)

and the following negatively labeled data points:

x5 = [1, 0]�, x6 = [0, 1]�, x7 = [0,−1]�, x8 = [−1, 0]�. (2.46)

a. Are the two classes linearly separable? Answer this question by visualizing
their distribution in R

2.
b. Now, we are interested in designing a soft-margin linear SVM. Using

MATLAB, plot the decision boundaries for various choices of C.
c. What do you observe when C →∞?
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5. Suppose we are given the following positively labeled data points:

x1 = [3, 3]�, x2 = [3,−3]�, x3 = [−3,−3]�, x4 = [−3, 3]�, (2.47)

and the following negatively labeled data points:

x5 = [1, 1]�, x6 = [1,−1]�, x7 = [−1,−1]�, x8 = [−1, 1]�. (2.48)

a. Are the two classes linearly separable? Answer this question by visualizing
their distribution in R

2.
b. Find a feature mapping ϕ : R2 �→ F ⊂ R

3 so that two classes are linear
separable in the feature space F . Show this by drawing data distribution in F .

c. What is the corresponding kernel?
d. What are the support vectors in F ?
e. Using dual formulation, compute the closed form solution of a kernel SVM

classifier by hand calculation. You must show each step of your calculation.
The inequality constraints may be simplified by exploiting the support vectors
and KKT conditions.



Chapter 3
Linear, Logistic, and Kernel Regression

3.1 Introduction

In machine learning, regression analysis refers to a process for estimating the
relationships between dependent variables and independent variables. This method
is mainly used to predict and find the cause-and-effect relationship between
variables. For example, in a linear regression, a researcher tries to find the line
that best fits the data according to a certain mathematical criterion (see Fig. 3.1a).
Another important regression problem is the logistic regression. For example, in
Fig. 3.1b, the dependent variables are binary properties such as yes or no for a
given question, and the goal is to fit the binary data using continuously varying
independent variables. It is easy to understand that this problem is closely related
to the binary classification problem. For the case of Fig. 3.1c, the technical issue
is a bit different from the other two. Here, the distribution cannot be regressed out
by a linear line. Moreover, the dependent variable is not binary, but has continuous
values. In fact, a better regression approach is to fit the data with a smoothly varying
curve. In fact, this is directly related to a nonlinear regression problem.

Although regression analysis is a classical approach that can be dated back to
the least squares method by Legendre in 1805 and by Gauss in 1809, regression
analysis is still a key idea of the deep learning approaches, as will be discussed
later. Therefore, we will visit the classical regression approach to discuss three
specific forms of regression analysis: linear regression, logistic regression, and
kernel regression. Later on, this overview will prove useful in understanding modern
regression approaches using deep neural networks.
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Fig. 3.1 Example of various regression problems. The x-axes are for the independent variables,
and y-axes are for the dependent variables. (a) linear regression, (b) logistic regression, and (c)
nonlinear regression using a polynomial kernel

3.2 Linear Regression

3.2.1 Ordinary Least Squares (OLS)

A linear regression uses a linear model as shown in Fig. 3.1a. More specifically,
the dependent variable can be calculated from a linear combination of the input
variables. It is also common to refer to a linear model as Ordinary Least Squares
(OLS) linear regression or just Least Squares (LS) regression. For example, a simple
linear regression model is given by

yi = β0 + β1xi + εi, i = 1, · · · , n (3.1)

and the goal is to estimate the parameter set β = {β0, β1} from the training data
{xi, yi}ni=1.

In general, a linear regression problem can be represented by

yi = 〈xi ,β〉 + εi, i = 1, · · · , n, (3.2)

where (xi , yi) ∈ R
p × R is the i-th training data, and β ∈ R

p is referred to as the
regression coefficient. This can be represented in matrix form as

y = X�β + ε, (3.3)

where

y :=
⎡
⎢⎣
y1
...

yn

⎤
⎥⎦ , X := [x1 · · · xn

]
, ε :=

⎡
⎢⎣
ε1
...

εn

⎤
⎥⎦ .

In this mathematical formulation, xi corresponds to the independent variable,
whereas yi is the dependent variable.
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Then, the regression analysis using l2 loss or the mean squared error (MSE) loss
can be done by

min
β

(β), 
(β) := 1

2
‖y −X�β‖2, (3.4)

where the loss can be further expanded as


(β) := 1

2
‖y −X�β‖2

= 1

2
(y −X�β)�(y −X�β)

= 1

2

(
y�y − y�X�β − β�Xy + β�XX�β

)
,

The parameter that minimizes the MSE loss can be found by setting the gradient
of the loss with respect to β to zero. To calculate the gradient for the vector-valued
function, the following lemma is useful.

Lemma 3.1 [5] Let x, a and B denotes vectors and a matrix with appropriate
sizes, respectively. Then, we have

∂x�a

∂x
= ∂a

�x

∂x
= a, (3.5)

∂x�Bx

∂x
= (B + B�)x. (3.6)

Using Lemma 3.1, we have

∂
(β)

∂β

∣∣∣∣
β=β̂

= −Xy +XX�β̂ = 0,

where β̂ is the minimizer. If XX� is invertible, or X has the full row rank, then we
have

β̂ =
(
XX�

)−1
Xy. (3.7)

The full rank condition is important for the existence of the matrix inverse, which
will be revisited again in the ridge regression.

This regression setup is closely related to the general linear model (GLM), which
has been successfully used for statistical analysis. For example, GLM analysis is
one of the main workhorses for the functional MRI data analysis [14]. The main
idea of functional MRI is that multiple temporal frames of MR images of a brain
are obtained during a given task (for example, motion tasks), and then the temporal
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Fig. 3.2 General linear
model for functional MRI
analysis

variation of the MR values at each voxel location is analyzed to check whether its
temporal variation is correlated with a given task. Here the temporal time series data
y from one voxel is described as a linear combination of the model (X�), which is
often termed as the “design matrix”, containing a set of regressors as in Fig. 3.2
representing the independent variable and the residuals (i.e., the errors), then the
results are stored, displayed, and possibly analyzed further in the form of voxelwise
maps as shown in the top right of Fig. 3.2 when β = [β1, β2]�.

3.3 Logistic Regression

3.3.1 Logits and Linear Regression

Similar to the example in Fig. 3.1b, there are many important problems for which
the dependent variable has limited values. For example, in binary logistic regression
for analyzing smoking behavior, the dependent variable is a dummy variable: coded
0 (did not smoke) or 1 (did smoke). In another example, one is interested in fitting a
linear model to the probability of the event. In this case, the dependent variable only
takes values between 0 and 1. In this case, transforming the independent variables
does not remedy all of the potential problems. Instead, the key idea of the logistic
regression is transforming the dependent variable.
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Specifically, we define the term odds:

odds = q

1− q , (3.8)

where q is a probability in a range of 0–1. The odds have a range of 0–∞ with
values greater than 1 associated with an event being more likely to occur than to
not occur and values less than 1 associated with an event that is less likely to occur.
Then, the term logit is defined as the log of the odds:

logit := log(odds) = log

(
q

1− q
)
.

This transformation is useful because it creates a variable with a range from −∞ to
∞ with zero associated with an event equally likely to occur and not occur. One of
the important advantages of this transformation of the dependent variable is that it
solves the problem we encountered in fitting a linear model to probabilities. If we
transform our probabilities to logits, then the range of the logit is not restricted, so
that we can apply a standard linear regression.

Specifically, using the logits transform, a linear regression model for the proba-
bility is given by

log

(
q

1− q
)
= β0 + β1x, (3.9)

from which we have

q = 1

1+ e−(β0+β1x)

= Sig(β0 + β1x), (3.10)

where Sig(x) denotes the sigmoid function:

Sig(x) = 1

1+ e−x ,

whose shape is shown in Fig. 3.3. It is remarkable that although the nonlinear
transform is originally applied to the dependent variable for linear regression, the
net result is the introduction of the nonlinearity after the linear term. In fact, this is
closely related to the modern deep neural networks that have nonlinearities after the
linear layers.
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Fig. 3.3 Sigmoid function

Fig. 3.4 Multi-class
classification problem

3.3.2 Multiclass Classification Using Logistic Regression

In SVM, we mainly discussed the binary classification problem, in which a
hyperplane is defined to separate two classes. Now, consider Fig. 3.4, where we
want to define three hyperplanes that can split the data into multiple categories.

A direct extension of the SVM for the multiple class classifier design problem is
to consider all the combinatorial combinations of the hyperplanes. More specifically,
a data xi can be on either side of the hyperplane so that given three hyperplanes in
Fig. 3.4, one could design a classifier that can potentially classify 23 = 8 classes.
Although this approach may reduce the number of hyperplanes for a given number
of classes c, one of the main technical difficulties of such extension of SVM is that
we need to consider all combinatorial combinations of the constraint sets, which is
difficult to implement.

A quick remedy for this multi-class classifier design problem is to use the logistic
regression. More specifically, for given c-class categories, we define a probability
vector q = [q1, · · · , qc]� ∈ R

c, where qi ∈ [0, 1] denotes the probability that a
data belongs to the class i. Then, by extending (3.9) to vector-valued probabilities
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for a given dependent variable x ∈ R
p, we have

⎡
⎢⎢⎢⎣

log
(
q1

1−q1

)

...

log
(
qc

1−qc
)

⎤
⎥⎥⎥⎦ = W�x + b (3.11)

where W ∈ R
p×c denotes the matrix composed of c-normal vectors in the p-

dimensional spaces, and b ∈ R
c is the associated bias term. Then, we can easily

see that the corresponding probability vector is given by

p = Sig(W�x + b), (3.12)

where Sig(·) is an element-wise sigmoid function. Then, by ranking the magnitude
of the probability, one could classify the data into the corresponding categories.
In fact, this technique is a standard method in modern classifier design using deep
neural networks. We will revisit this issue later.

3.4 Ridge Regression

Recall that the basic assumption for the linear regression solution in (3.7) is that
X� has full column rank or X has the full row rank. However, when X� is high-
dimensional, the columns of X� can be collinear, which in statistical terms refers to
the event of two (or multiple) covariates being highly linearly related. Consequently,
X� may not be of full column rank or close to not being the full column rank,
and we cannot use the standard linear regression. To deal with this issue, the ridge
regression is useful.

Specifically, the following regularized least squares problem is solved:

min
β

ridge(β),

where


ridge(β) := 1

2
‖y −X�β‖2 + λ

2
‖β‖2, (3.13)

where λ > 0 is the regularization parameter. This type of regularization is often
called the Tikhonov regularization. Using Lemma 3.1, we can easily show

∂
ridge(β)

∂β

∣∣∣∣
β=β̂

= −Xy +XX�β̂ + λβ̂ = 0,
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which leads to

β̂ =
(
XX� + λI

)−1
Xy. (3.14)

Using the following matrix inversion lemma [3],

(I + UCV )−1 = I − U
(
C−1 + V U

)−1
V , (3.15)

Eq. (3.14) can also be equivalently written by

β̂ =
(
XX� + λI

)−1
Xy

= 1

λ

(
XX�/λ+ I

)−1
Xy

= 1

λ

{
I −X

(
λI +X�X

)−1
X�
}

Xy

= 1

λ
X

{
I −
(
λI +X�X

)−1
X�X

}
y

= 1

λ
X
(
λI +X�X

)−1 {(
λI +X�X

)
−X�X

}
y

= X
(
X�X + λI

)−1
y. (3.16)

In particular, the expression in (3.16) is useful when X is a tall matrix, since the
size of the matrix inversion is much smaller than that of (3.14). Even if this is
not the case, the expression in (3.16) is extremely useful to derive the kernel ridge
regression, which is the main topic in the next section.

3.5 Kernel Regression

Recall that a nonlinear kernel SVM was developed based on the observation that
the nonlinear decision boundary in the original input space can be often represented
as a linear boundary in the high-dimensional feature space. A similar idea can be
used for regression. Specifically, the goal is to implement the linear regression in
the high-dimensional feature space, but the net result is that the resulting regression
becomes nonlinear in the original space (see Fig. 3.5).

In order to use a kernel trick similar to that used in the kernel SVM, let us revisit
the linear regression problem in (3.2). Using the parameter estimation from the ridge
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Fig. 3.5 Kernel regression concept

regression (3.16), the estimated function f̂ (x) for a given independent variable x ∈
R
p is given by

f̂ (x) := x�β̂

= x�X(X�X + λI )−1y

= [〈x, x1〉 · · · 〈x, xn〉
]
⎛
⎜⎝

⎡
⎢⎣
〈x1, x1〉 · · · 〈x1, xn〉
...

. . .
...

〈xn, x1〉 · · · 〈xn, xn〉

⎤
⎥⎦+ λI

⎞
⎟⎠

−1

y, (3.17)

where we use

x�X = [〈x, x1〉 · · · 〈x, xn〉
]

and

X�X =
⎡
⎢⎣

x�1
...

x�n

⎤
⎥⎦[x1 · · · xn

] =
⎡
⎢⎣
〈x1, x1〉 · · · 〈x1, xn〉
...

. . .
...

〈xn, x1〉 · · · 〈xn, xn〉.

⎤
⎥⎦

Since everything is represented by the inner product of the input vectors, we can
now lift the data x to a feature space using ϕ(x) to compute the inner product in
the high-dimensional feature space. Then, using the kernel trick, the inner product
in the feature space can be replaced by the kernel:

〈x, xi〉 �→ k(x, xi ) := 〈ϕ(x),ϕ(xi )〉. (3.18)

Accordingly, (3.17) can be extended to the feature space as:

f̂ (x) = [k(x, x1) · · · k(x, xn)
]
(K + λI )−1y, (3.19)
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where the K ∈ R
n×n is the kernel Gram matrix given by

K :=
⎡
⎢⎣
k(x1, x1) · · · k(x1, xn)

...
. . .

...

k(xn, x1) · · · k(xn, xn)

⎤
⎥⎦ . (3.20)

Equivalently, (3.19) can be derived from the following regression problem with
kernel:

yi =
p∑
j=1

αjk(xi , xj )+ ε (3.21)

which is a nonlinear extension of (3.2). Then, (3.19) is obtained using the following
optimization problem:

min
α∈Rp

n∑
i=1

⎛
⎝yi −

p∑
j=1

αjk(xi , xj )

⎞
⎠

2

+ λα�Kα, (3.22)

where K is the kernel Gram matrix in (3.20). This implies that the regularization
term should be weighted by the kernel to take into account of the deformation in
the feature space. More rigorous derivation of (3.22) is obtained from the so-called
representer theorem, which is the topic of the next chapter.

Figure 3.6 shows the examples of linear regression and kernel regression using
the polynomial and radial basis function (RBF) kernels. We can clearly see that
nonlinear kernel regression follows the trend much better.

Fig. 3.6 Linear and nonlinear kernel regression
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3.6 Bias–Variance Trade-off in Regression

In this section, we will discuss the important issue of the bias and variance trade-off
in regression analysis.

Let {xi , yi}ni=1 denote the training data set, where xi ∈ R
p ⊂ X is an

independent variable and yi ∈ R
p ⊂ Y is a dependent variable that has dependency

on xi . The reason we use the boldface characters xi and yi is that they can be
vectors. In regression analysis, the dependent variable is often represented as a
functional relationship with respect to the independent variable:

yi = f�(xi )+ εi , (3.23)

where εi denotes an additive error term that may stand in for unmodeled parts, and
f �(·) is a regression function (which can be possibly a nonlinear function) with the
input variable xi and parameterized by �. With a slight abuse of notation, we often
use f := f � when the dependency on the parameter � is obvious.

In (3.23), � is the regression parameter set that should be estimated from the
training data set. Usually, this parameter set is estimated by minimizing a loss. For
example, one of the most popular loss functions is l2 or the MSE loss, in which case
the parameter estimation problem is given by

min
�

1

2

n∑
i=1

‖yi − f �(xi )‖2. (3.24)

Another popular tool that is often used in regression analysis is the regularization. In
regularized regression analysis, an additional term is added to impose a constraint
on the parameter. More specifically, the following optimization problem is solved to
estimate the parameter �:

min
�

1

2

n∑
i=1

‖yi − f �(xi )‖2 + λR(�), (3.25)

where R(�) and λ are often called the regularization function and regularization
parameter, respectively.

With the estimated parameter �̂, the estimated function f̂ is defined as

f̂ (x) := f
�̂
(x). (3.26)

Suppose that the noise ε is zero mean i.i.d. Gaussian with the variance σ 2. Then, the
MSE error of the regression problem is given by

E‖y − f̂ ‖2 = E‖f + ε − f̂ ‖2

= E‖f + ε − f̂ + E[f̂ ] − E[f̂ ]‖2
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= E‖f − E[f̂ ]‖2 + E‖f̂ − E[f̂ ]‖2 + E‖ε‖2

= ‖f − E[f̂ ]‖2 + E‖f̂ − E[f̂ ]‖2 + E‖ε‖2

= ‖Bias(f̂ )‖2 + Var(f̂ )+ pσ 2, (3.27)

where we use the following for the third equality:

E[ε�(f − E[f̂ ])] = 0,

E[ε�(f̂ − E[f̂ ])] = 0,

E[(f̂ − E[f̂ ])�(f − E[f̂ ])] = 0,

and the fourth equation comes from the fact that f and E[f̂ ] are deterministic.
Equation (3.27) clearly shows that the MSE expression of the prediction error
is composed of bias and variance components. This leads to the so-called bias–
variance trade-off in regression problem, which can be explained in detail in the
following example.

3.6.1 Examples

Here, we will investigate the bias and variance trade-off for the linear regression
problem, where the regression function is given by

f (x) = 〈x,β〉 = x�β. (3.28)

By defining the expectation operation E[·], the bias and variance of the OLS in (3.7)
can be computed as follows:

Bias(f̂ ) := x�β − E[x�β̂]
= x�β − x�E[(XX�)−1Xy]
= x�β − x�(XX�)−1XE[y]
= x�β − x�(XX�)−1XX�β = 0,

since E[y] = E[X�β + ε] = X�β + E[ε] = X�β. Since the bias is zero, f̂ is
often called an unbiased estimator. Similarly, the covariance can be computed by

Var(f̂ ) := E
[
x�(β̂ − β)(β̂ − β)�x

]

= E
[
x�(XX�)−1Xεε�X�(XX�)−1x

]
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= x�(XX�)−1XE
[
εε�
]
X�(XX�)−1x

= σ 2x�(XX�)−1x.

On the other hand, the bias and covariance of the ridge regression in (3.14) are
given by

Bias(f̂ ) := x�β − E[x�(XX� + λI )−1Xy]
= x�

(
I − (XX� + λI )−1XX�

)
β

= λx�(XX� + λI )−1β,

and

Var(f̂ ) = E
[
x�(XX� + λI )−1Xεε�X�(XX� + λI )−1x

]

= σ 2x�(XX� + λI )−1XX�(XX� + λI )−1x, (3.29)

where we use E
[
εε�
] = σ 2I .

Accordingly, we can see that as λ becomes larger, the variance decreases and
the bias increases as shown in Fig. 3.7. This implies that the bias–variance trade-off
of a ridge regression depends on the regularization parameter. One could find the
optimal parameter λ∗ that leads to the minimal total prediction error which gives
the best bias–variance trade-off. The search for this optimal hyperparameter is one
of the important research topics in classical ridge regression problems.

Fig. 3.7 Bias-variance
trade-off in ridge regression
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3.7 Exercises

1. Prove the matrix inversion lemma in Eq. (3.15).
2. The blood pressures, y (mmHg), and the ages, x years, of 7 patients are shown

in the following table:

Patient id 1 2 3 4 5 6 7

x 42 70 45 30 55 25 57

y (mmHg) 98 130 121 88 182 80 125

a. Obtain the OLS estimate of blood pressure with respect to age.
b. Plot the regression line on the scatter plots.

3. A mechanic part is tested under various temperature conditions. The table below
summarizes observational data on the part for 10 trials, where the all other
experimental conditions are same except for the temperature (shown as degrees).
Damaged represents the number of damaged parts, and Undamaged represents
the number of parts that were not damaged.

Trial id 1 2 3 4 5 6 7 8 9 10

Temperature 53 57 58 63 66 67 67 67 68 69

Damaged 5 1 1 1 0 0 0 0 0 1

Undamaged 7 6 5 6 8 8 7 6 5 6

a. Write down the logistic regression model.
b. What is the estimated failure probability for a given temperature T ?

4. Show that the ridge regression in (3.14) is equivalent to the linear regression with
the following augmented dependent and independent variables:

ỹ =
[

y√
λI

]
, X̃ = [X √λI ] ,

where I is the p × p identity matrix.
5. Consider the regression problem in the following table, where x is the indepen-

dent variable and y is the dependent variable.

x 11 22 32 41 55 67 78 89 100 50 71 91

y 2330 2750 2309 2500 2100 1120 1010 1640 1931 1705 1751 2002
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a. Perform the linear regression. What is the remaining residual error?
b. Consider the following Gaussian kernel:

K(x, xi) = 1

h
√

2π
exp

(
−1

2

(
x − xi
h

)2
)
.

c. Perform the kernel regression with h = 5, 10 and 15. What do you observe?

6. By directly solving (3.22), derive the kernel regression in (3.17).
7. Show that the variance of the kernel regression in (3.29) increases with decreas-

ing regularization parameter λ.



Chapter 4
Reproducing Kernel Hilbert Space,
Representer Theorem

4.1 Introduction

One of the key concepts in machine learning is the feature space, which is often
referred to as the latent space. A feature space is usually a higher or lower-
dimensional space than the original one where the input data lie (which is often
referred to as the ambient space). Recall that in the kernel SVM, by lifting the data to
a higher-dimensional feature space, one can find a linear classifier that can separate
two different classes of samples (see Fig. 4.1a). Similarly, in kernel regression,
rather than searching for nonlinear functions that can fit the data in the ambient
space, the main idea is to compute a linear regressor in a higher-dimensional feature
space as shown in Fig. 4.1b. On the other hand, in the principal component analysis
(PCA), the input signals are projected on a lower-dimensional feature space using
singular vector decomposition (see Fig. 4.1c).

In this section, we formally define a feature space that has good mathematical
properties. Here, the “good” mathematical properties refer to the well-defined
structure such as existence of the inner product, the completeness, reproducing
properties, etc. In fact, the feature space with these properties is often called the
reproducing kernel Hilbert space (RKHS) [11]. Although the RKHS is only a small
subset of the Hilbert space, its mathematical properties are highly versatile, which
makes the algorithm development simpler.

The RKHS theory has wide applications, including complex analysis, harmonic
analysis, and quantum mechanics. Reproducing kernel Hilbert spaces are particu-
larly important in the field of machine learning theory because of the celebrated
representer theorem [11, 15] which states that every function in an RKHS that
minimizes an empirical risk functional can be written as a linear combination of the
kernel function evaluated at training samples. Indeed, the representer theorem has
played a key role in classical machine learning problems, since it provides a means
to reduce infinite dimensional optimization problems to tractable finite-dimensional
ones.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
J. C. Ye, Geometry of Deep Learning, Mathematics in Industry 37,
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Fig. 4.1 Example of feature space embedding in (a) kernel SVM, (b) kernel regression, and (c)
principle component analysis

In this chapter, we review the RKHS theory and the representer theorem. Then,
we revisit the classifier and regression problems to show how kernel SVM and
regression can be derived from the representer theorem. Then, we discuss the
limitation of the kernel machines. Later we will show how these limitations of kernel
machines can be largely overcome by modern deep learning approaches.

4.2 Reproducing Kernel Hilbert Space (RKHS)

As the theory of the RKHS originates from core mathematics, the rigorous definition
is very abstract, which is often difficult to understand for students working on
machine learning applications. Therefore, this section tries to explain the concept
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Fig. 4.2 RKHS, Hilbert space, Banach space, and vector space

from a more machine learning perspective so that students can understand why the
RKHS theory has been the main workhorse in the classical machine learning theory.

Before diving into details, the readers are reminded that the RKHS is only a
subset of the Hilbert space as shown in Fig. 4.2, i.e. the Hilbert space is more
general than the RKHS. For the formal definition of the Hilbert space, please refer
to Chap. 1.

4.2.1 Feature Map and Kernels

Here we start with the formal definition of a kernel:

Definition 4.1 Let X be a non-empty set. A function k : X × X �→ R is called a
kernel if there exists a Hilbert space H and a feature map φ : X �→ H such that
∀ x, x′ ∈ X:

k(x, x′) := 〈φ(x),φ(x′)〉H. (4.1)

For example, a feature mapping we used to explain the kernel SVM was

φ(x) = [φ1, φ2, φ3]� =
[
x2

1 x
2
2

√
2x1x2

]�
, (4.2)
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where X = R
2 (see Fig. 4.1a). We also showed that the corresponding kernel is

given by

k(x, y) = 〈φ(x),φ(y)〉
= x2

1y
2
1 + x2

2y
2
2 + 2x1x2y1y2

= (〈x, y〉)2,

for all x = [x1 x2]�, y = [y1 y2]� ∈ R
2, which corresponds to a polynomial kernel

with degree 2. Note also that the feature space can be infinite-dimensional, such as
l2(Z). In this case, using the definition of the inner product in l2(Z) (see (1.5)), the
kernel is defined as

k(x, x′) =
∞∑

l=−∞
φl(x)φl(x

′),

where φ = {φl}∞l=−∞ ∈ H.
Here it is important to emphasize that there exist almost no conditions on X,

i.e. X does not need an inner product, etc. On the other hand, the feature space H
should be a Hilbert space. This implies that the feature map imposes a mathematical
structure to the data set which does not necessarily have mathematical structures.
This is an important machine learning apparatus as it provides a versatile tool to
set the mathematical structure for all data in practice. For example, the bag-of-
words (BOW) kernel [16] used for document classification is such an example that
imposes a mathematical structure for an unstructured data such as documentations
(see Fig. 4.3).

Fig. 4.3 Bag-of-words embedding to the feature space
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Example (Bag-of-Words Kernel)
Suppose that the l-th element of the feature mapping φ(x) for a document
x denotes the number of l-th words (from a dictionary) appearing in the
document x. If we want to classify documents by their word counts, we can
use the kernel k(x, y) = 〈φ(x),φ(y)〉.

In the kernel SVM and/or kernel regression, the optimization problem for the
design of a classifier and/or regressor is formulated using kernels without ever
using the feature map. Then, if we are given a function of two arguments, k(x, x′),
how can we determine if it is a valid kernel? To answer this question, we need to
check whether there exists a valid feature map. For this, the concept of the positive
definiteness is important.

Definition 4.2 A symmetric function k : X×X �→ R is positive definite if ∀n ≥ 1,
∀(a1, · · · , an) ∈ R

n, ∀(x1, · · · , xn) ∈ Xn

n∑
i=1

n∑
j=1

aiaj k(xi , xj ) ≥ 0. (4.3)

Although this condition is both necessary and sufficient, the forward direction is
more intuitive in understanding why the kernel function should be positive definite.
More specifically, if we define the kernel as in (4.1), we have

n∑
i=1

n∑
j=1

aiaj k(xi , xj ) =
n∑
i=1

n∑
j=1

aiaj 〈φ(xi ),φ(xj )〉H

=
∥∥∥∥∥
n∑
i=1

aiφ(xi )

∥∥∥∥∥
2

H

≥ 0.

Therefore, existence of the feature mapping guarantees the positive definiteness of
the kernel.

4.2.2 Definition of RKHS

With the definition of kernels and feature mapping, we are now ready to define the
reproducing kernel Hilbert space. Toward this goal, let us revisit the feature mapping
we used to explain the kernel SVM:

φ(x) = [φ1, φ2, φ2]� =
[
x2

1 x
2
2

√
2x1x2

]�
.
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Suppose we define a function f : X �→ R via a feature maps:

f (x) =
3∑
l=1

flφl(x)

= f1x
2
1 + f2x

2
2 + f3

(√
2x1x2

)
.

In terms of feature space coordinates, f is represented by f (·):

f = f (·) := [f1 f2 f3
]�
,

so that f (x) can be represented as an inner product:

f (x) = 〈f (·),φ(x)〉H, (4.4)

where the feature map φ(x) is often called the point evaluation function at x in the
RKHS literature.

Now, the key ingredient of the RKHS is that rather than considering all of the
Hilbert space H, we consider its subset Hφ (recall Fig. 4.2) that is generated by the
evaluation function φ. More specifically, for all f (·) ∈ Hφ there exists a set {xi}ni=1,
xi ∈ X such that

f (·) =
n∑
i=1

αiφ(xi ). (4.5)

This is equivalent to saying that Hφ is a linear span of {φ(x) : x ∈ X}. Then, by
plugging (4.5) into (4.4), we have

f (x) = 〈f (·),φ(x)〉H

=
n∑
i=1

αi〈φ(xi ),φ(x)〉H

=
n∑
i=1

αik(xi , x). (4.6)

As a special case, we can easily see that the coordinate of a kernel in the feature
space, k(x′, ·) for a given x′ ∈ X, lives in an RKHS Hφ , since we have

k(x′, x) =〈k(x′, ·),φ(x)〉H = 〈φ(x′),φ(x)〉, (4.7)
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where the last equality comes from the definition of a kernel. Therefore, we can see
that

k(x′, ·) = φ(x′), (4.8)

which corresponds to (4.5) with n = 1. Accordingly, we can write a kernel in terms
of a inner product in the underlying Hilbert space:

k(x, x′) =〈k(x, ·), k(x′, ·)〉H. (4.9)

Furthermore, we can write (4.4) as follows:

f (x) = 〈f (·), k(x, ·)〉H, (4.10)

which is known as the reproducing property [11].
As such, for all f (·), g(·) ∈ Hφ we can show that there exist {αi}ri=1 and {βi}si=1

such that f (·) =∑ri=1 αik(xi , ·) and g(·) =∑si=1 βik(xi , ·), since φ(x) = k(x, ·).
Therefore, we often interchangeably use Hk to denote Hφ if the kernel k(x, x′) is
specified. This leads to the explicit representation of their inner product:

〈f, g〉H =
r∑
i=1

s∑
j=1

αiβj 〈k(xi , ·), k(x′i , ·)〉 (4.11)

=
r∑
i=1

s∑
j=1

αiβj k(xi , x
′
j ). (4.12)

The induced norm is then defined by

‖f ‖H =
√〈f, f 〉H =

r∑
i=1

r∑
j=1

αiαj k(xi , x
′
j ). (4.13)

By summarizing these findings, we are ready to provide an intuitive definition of
RKHS.

Definition 4.3 Let k : X × X �→ R be a positive definite kernel. The RKHS, Hk ,
generated by the kernel k, is a linear span of {k(x, ·) : x ∈ X} equipped with the
inner product

〈f, g〉H =
r∑
i=1

s∑
j=1

αiβj k(xi , x
′
j ), (4.14)

where f (·) =∑ri=1 αik(xi , ·) and g(·) =∑si=1 βik(x
′
i , ·).
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From the (classical) machine learning perspective, the most important reason to
use the RKHS is Eq. (4.5), which states that the feature map of the target function
can be represented as a linear span of {k(x, ·) : x ∈ X} or, equivalently, {φ(x) : x ∈
X}. This implies that as long as we have a sufficient number of training data, we can
estimate the target function by estimating their feature space coordinates.

In fact, one of the important breakthroughs of the modern neural network
approach is to relax the assumption that the feature map of the target function should
be represented as a linear span. This issue will be discussed in detail later.

4.3 Representer Theorem

Given the definition of kernels and the RKHS, the representer theorem is a simple
consequence. Recall that in machine learning problems, the loss is defined as the
error energy between the actual target and the estimated one. For example, in the
linear regression problem, the MSE loss for the given training data {xi , yi}ni=1 is
defined by


2
({xi , yi , f (xi )}ni=1

) =
n∑
i=1

‖yi − f (xi )‖2, (4.15)

where

f (xi ) = 〈xi ,β〉,

with β being the unknown parameter to estimate. In the soft-margin SVM, the loss
is given by the hinge loss:


hinge
({xi , yi , f (xi )}ni=1

) =
n∑
i=1

max{0, 1− yif (xi )}, (4.16)

where

f (xi ) = 〈w, xi〉 + b,

with w and b denoting the parameters to estimate. For the general loss function, the
celebrated representer theorem is given as follows:

Theorem 4.1 [11, 15] Consider a positive definite real-valued kernel k : X×X �→
R on a non-empty set X with the corresponding RKHS Hk . Let there be given
training data set {xi , yi}ni=1 with xi ∈ X and yi ∈ R and a strictly increasing real-
valued regularization function R : [0,∞) �→ R. Then, for arbitrary loss function
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({xi , yi , f (xi )}ni=1

)
, any minimizer for the following optimization problem:

f ∗ = arg min
f∈Hk



({xi , yi , f (xi )}ni=1

)+ R(‖f ‖H) (4.17)

admits a representation of the form

f ∗(·) =
n∑
i=1

αik(xi , ·) =
n∑
i=1

αiφ(xi ) (4.18)

for some αi ∈ R, i = 1, · · · , n; or it is equivalently represented by

f ∗(x) =
n∑
i=1

αik(xi , x). (4.19)

The proof of the representer theorem can easily be found in the standard machine
learning textbook [11], so we do not revisit it here. Instead, we briefly touch upon the
main idea of the proof, since it also highlights the limitations of kernel machines.
Specifically, the feature space coordinate of the minimizer f ∗, denoted by f ∗(·),
should be represented by the linear combination of the feature maps from the
training data {φ(xi )}ni=1 and its orthogonal complement. But when we perform the
point evaluation with {φ(xi )}ni=1 using the inner product during the training phase,
the contribution from the orthogonal complement disappears, which leads to the
final form in (4.18).

4.4 Application of Representer Theorem

In this section, we revisit the kernel SVM and regression to show how the
representer theorem can simplify the derivation.

4.4.1 Kernel Ridge Regression

Recall that the ridge regression was given by the following optimization problem:

min
β

n∑
i=1

‖yi − 〈xi ,β〉‖2 + λ‖β‖2.
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By extending this in nonparameteric form, the kernel ridge regression is given by
the following minimization problem:

min
f∈Hk

n∑
i=1

‖yi − f (xi )‖2 + λ‖f ‖2H , (4.20)

where Hk is the RKHS with the positive definite kernel k. From Theorem 4.1, we
know that the minimizer should have the form

f (·) =
n∑
j=1

αjφ(xj ). (4.21)

Using (4.4), the MSE loss becomes

n∑
i=1

‖yi − f (xi )‖2 =
n∑
i=1

‖yi − 〈f (·),φ(xi )〉‖2

=
n∑
i=1

‖yi −
n∑
j=1

αj 〈φ(xj ),φ(xi )〉‖2

=
n∑
i=1

‖yi −
n∑
j=1

αjk(xj , xi )‖2

= ‖y −Kα‖2,

where K ∈ R
n×n denotes the kernel Gram matrix given by

K =
⎡
⎢⎣
k(x1, xi ) · · · k(x1, xn)

...
. . .

...

k(xn, x1) · · · k(xn, xn)

⎤
⎥⎦ (4.22)

and

y = [y1 · · · yn
]�
, α = [α1 · · · αn

]�
. (4.23)

Similarly, the regularization term becomes

‖f ‖2H = 〈f (·), f (·)〉

=
n∑
i=1

n∑
j=1

αiαj 〈φ(xi ),φ(xj )〉
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=
n∑
i=1

n∑
j=1

αiαj k(xi , xj )

= α�Kα.

Therefore, (4.20) can be equivalently represented by the finite dimensional opti-
mization problem:

α̂ := arg min
α∈Rn
‖y −Kα‖2 + λα�Kα. (4.24)

The problem is convex; so using the first order necessary condition, we have

(K2 + λK)α̂ = Ky.

where we use K� = K due to the symmetry of the Gram matrix. If K is invertible
(which is usually the case for the standard choice of kernels), we have

α̂ = (K + λI )−1y.

Finally, using (4.4) and (4.21) we have

f ∗(x) = 〈f (·),φ(x)〉

=
n∑
i=1

αi〈φ(xi ),φ(x)〉

= [k(x1, x) · · · k(xn, x)
]
(K + λI )−1y,

which is what we obtained before.

4.4.2 Kernel SVM

Recall that the soft-margin SVM formulation (without bias) can be represented by

min
w

1
2‖w‖2 + C

∑n
i=1 
hinge (yi, 〈w, xi〉) , (4.25)

where 
hinge is the hinge loss


hinge(y, ŷ) = max{0, 1− yŷ}. (4.26)
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This problem can be solved using the representer theorem. Specifically, an extended
formulation of (4.25) in the RKHS is given by

min
f∈Hk

1

2
‖f ‖2H + C

n∑
i=1


hinge (yi, f (xi )) , (4.27)

whose minimizer f has the following coordinate in the feature space:

f (·) =
n∑
j=1

αjk(xj , ·). (4.28)

Using this, the hinge loss term becomes


hinge (yi, f (xi )) = max{0, 1− yi
n∑
j=1

αjk(xj , xi )}. (4.29)

Similarly, the regularization term becomes

‖f ‖2H = α�Kα,

where K is the kernel Gram matrix in (4.22). Now, (4.27) can be represented in an
constrained form

minα,ξ

1

2
α�Kα + C

n∑
i=1

ξi

subject to 1− yi
n∑
j=1

αjk(xj , xi ) ≤ ξi, (4.30)

ξi ≥ 0, ∀i.

For the given primal problem in (4.30), the corresponding Lagrangian dual is given
by

max
λ,γ

g(λ, γ )

subject to λ ≥ 0, γ ≥ 0, (4.31)
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g(λ, γ ) = min
α,ξ

{
1

2
α�Kα + C

n∑
i=1

ξi (4.32)

+
n∑
i=1

λi(1− yi
n∑
j=1

αjk(xj , xi )− ξi)−
n∑
i=1

γiξi

⎫⎬
⎭ ,

which can be further simplified as

g(λ, γ ) = min
α,ξ

{
1

2
α�Kα +

n∑
i=1

λi(1− ξi)+ (C − γi)ξi − r�Kα

}
, (4.33)

where

r = [y1λ1 · · · ynλn
]�
.

The first-order optimality conditions with respect to α and ξ lead to the following
equations:

Kα = Kr #⇒ α = r (4.34)

and

λi + γi = C. (4.35)

By plugging (4.34) and (4.35) into Eq. (4.32), we have

g(λ, γ ) =
n∑
i=1

λi − 1

2

n∑
i=1

n∑
j=1

λiλjyiyj k(ki , kj )

where 0 ≤ λi ≤ C and the classifier is given by

f (x) =
n∑
j=1

yjλj k(xj , x), (4.36)

which is equivalent to the kernel SVM we derived before.

4.5 Pros and Cons of Kernel Machines

The kernel machine has many important advantages that deserve further discussion.
This approach is based on the beautiful theory of the RKHS, which leads to the
closed form solution in designing classifiers and regressors thanks to the representer
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theorem. Therefore, the classical research issue is not about the machine learning
algorithm itself, but rather to find the feature space embedding that can effectively
represent the data in the ambient space.

Having said this, there are several limitations associated with the classical kernel
machines. First, the reason that enables a closed form solution in terms of the
representer theorem is the assumption that the feature space forms an RKHS. This
implies that the mapping from the feature space to the final function is assumed to be
linear. This approach is somewhat unbalanced given that only the mapping from the
ambient space to feature space is nonlinear, whereas the feature space representation
is linear. Moreover, as discussed before, the RKHS is only a subset of underlying
Hilbert space; therefore, restricting feature space within the RKHS severely reduces
available function class from the underlying Hilbert space (see Fig. 4.2). As such, it
limits the flexibility of the learning algorithm and resulting expressiveness.

Finally, the feature mapping and the associated kernel in the classical machine
learning approach are primarily selected in a top-down manner based on human
intuition or mathematical modeling that has no space that can be automatically
learned from the data. In fact, the learning part of the kernel machine is for the
linear weighting parameters in the representer (i.e. αi’s in (4.18)), whereas the
feature map itself is deterministic once the kernel is selected in a top-down manner.
This significantly limits the capability of learning. Later, we will investigate how
this limitation of the kernel machine can be mitigated by modern deep learning
approaches.

4.6 Exercises

1. Show that the following kernels are positive definite.

a. Cosine kernel: k(x, y) = cos(x − y) for ∀x, y ∈ R.
b. Polynomial kernel with degree exactly p:

k(x, y) = (x�y)p.

c. Polynomial kernel with degree up to p:

k(x, y) = (x�y + 1)p.

d. Radial basis function kernel with width σ :

k(x, y) = exp(−‖x − y‖2/(2σ 2)).

e. Sigmoid kernel:

tanh(ηx�y + ν).
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2. Let k1 and k2 be two positive definite kernels on a set X, and α, β two positive
scalars. Show that αk1 + βk2 is positive definite.

3. Let k1 be a positive definite kernel on a set X. Then, for any polynomial p(·)
with non-negative coefficients, show that the following is also a positive definite
kernel on a set X:

k(x, y) = p(k1(x, y)), x, y ∈ X.

4. Let {Xi}pi=1be a sequence of sets and ki be a collection of corresponding
positive definite functions on Xi . Then, show that

k
(
x1, · · · , xp; y1, · · · , yp

) = k1(x1, y1) · · · kp(xp, yp), xi, yi ∈ Xi ,∀i

is a kernel on the space X := X1 × · · ·Xp.
5. Let X0 ⊂ X, then the restriction of k to X0 ×X0 is also a reproducing kernel.
6. Let k be a valid kernel on X. Is the following normalized function a valid

positive definite kernel?

knorm(x, y) =
{

0, if k(x, x) = 0 or k(y, y) = 0
k(x,y)√

k(x,x)
√
k(y,y)

, otherwise
, ∀x, y ∈ X.

7. Consider a normalized kernel k such that k(x, x) = 1 for all x ∈ X. Define a
pseudo-metric on X as

dX(x, y) = ‖k(x, ·)− k(y, ·)‖H. (4.37)

a. Show that

dX(x, y) = 2(1− k(x, y)).

b. Show that dX(x, y) is not a metric. Which property of the metric does it
violate?

8. Define the mean of the feature space

μφ = 1

n

∑
φ(xi ).

a. Show that

‖μφ‖2H =
1

n2

n∑
i=1

n∑
j=1

k(xi , xj ).
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b. Show that

σ 2
φ :=

1

n

n∑
i=1

‖φ(xi )− μφ‖2H =
1

n
Tr(K)− ‖μφ‖2H,

where Tr(·) denotes the matrix trace, and K is the kernel Gram matrix

K =
⎡
⎢⎣
k(x1, xi ) · · · k(x1, xn)

...
. . .

...

k(xn, x1) · · · k(xn, xn)

⎤
⎥⎦ .

9. The kernel SVM formulation in (4.27) is often called the 1-SVM. In this
problem, we are interested in obtaining the 2-SVM, which is defined by

min
f∈Hk

1

2
‖f ‖2H + C

n∑
i=1


2
hinge (yi, f (xi )) ,

where 
2
hinge is the square hinge loss:


2
hinge(y, ŷ) =

(
max{0, 1− yŷ})2 .

Write the primal and dual problems associated with the 2-SVM, and compare
the result with the 1-SVM.

10. Consider the following kernel regression problem:

min
f∈Hk

1

2
‖f ‖2H + C

n∑
i=1


logit (yi, f (xi )) ,

where 
logit is the logistic regression loss:


logit (y, ŷ) = log(1+ e−yŷ).

Write the dual problems and find the solution as simply as possible.



Part II
Building Blocks of Deep Learning

“I get very excited when we discover a way of making neural networks better and
when that’s closely related to how the brain works.”

– Geoffrey Hinton



Chapter 5
Biological Neural Networks

5.1 Introduction

A biological neural network is composed of a group of connected neurons. A
single neuron may be connected to many other neurons and the total number
of neurons and connections in a network may be significantly high. One of
the amazing aspects of biological neural networks is that when the neurons are
connected to each other, higher-level intelligence, which cannot be observed from
a single neuron, emerges. The exact mechanism of the emergence of intelligence
from the neuronal network has been an intense research topic for neuroscientists,
biologists, and engineers, and is not yet fully understood. In fact, computational
modeling and mathematical analysis of biological neural networks are integral parts
of the neuroscience discipline called computational neuroscience, which is also
closely related to the artificial neural network community. The main assumption
in this discipline is that through the computational modeling the probable working
mechanism of the biological network can be unveiled. Moreover, understanding the
working principles of biological neuronal networks has been believed to open the
horizon to designing high-performance artificial neuronal networks.

Therefore, in this chapter, we will review the basic neurobiology regarding
individual neurons and their networks, and introduce some interesting neuro-
scientific discoveries that have inspired artificial neural networks. However, these
introductory materials are by no means extensive, so interested readers are advised
to read standard textbooks in neuroscience [17–19].

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
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Fig. 5.1 Anatomy of neurons

5.2 Neurons

5.2.1 Anatomy of Neurons

A typical neuron consists of a cell body (soma), dendrites, and a single axon (see
Fig. 5.1). The axon and dendrites are filaments that extrude from the cell body.
Dendrites typically branch heavily and extend a few hundred micrometers from the
soma. The axon leaves the soma at the axon hillock, and moves up to 1 m in humans
or more in other species. The end branches of an axon are called telodendria. At
the extreme tip of the axon’s branches are synaptic terminals, where the neuron can
transmit a signal to another cell via the synapse.

The endoplasmic reticulum (ER) in the soma performs many general func-
tions, including folding protein molecules and transporting synthesized proteins
in vesicles to the Golgi apparatus. Proteins synthesized in the ER are packaged
into vesicles, which then fuse with the Golgi apparatus. These cargo proteins are
modified in the Golgi apparatus and destined for secretion via exocytosis or for use
in the cell as shown in Fig. 5.2.

5.2.2 Signal Transmission Mechanism

Neurons specialize in forwarding signals to individual target cells via synapses. At
a synapse, the membrane of the presynaptic neuron comes into close proximity to
the membrane of the postsynaptic cell (see Fig. 5.3). Although there are electric
synapses where the presynaptic and postsynaptic neurons are directly fused together
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Fig. 5.2 ER and Golgi apparatus for protein synthesis and transport

for fast electric signal transmission [18, 19], chemical synapses, which transmit the
action potential via neurotransmitters, are the most common and are of great interest
for artificial neural networks.

As shown in Fig. 5.3, in a chemical synapse, electrical activity in the presynaptic
neuron is converted into the release of neurotransmitters that bind to receptors
located in the membrane of the postsynaptic cell. The neurotransmitters are usually
packaged in a synaptic vesicle, as shown in Fig. 5.3. Therefore, the amount of the
actual neurotransmitter at the postsynaptic terminal is an integer multiple of the
number of neurotransmitters in each vesicle, so this phenomenon is often referred to
as quantal release. The release is regulated by a voltage-dependent calcium channel.
The released neurotransmitter then binds to the receptors on the postsynaptic
dendrites, which can trigger an electrical response that can produce excitatory
postsynaptic potentials (EPSPs) or inhibitory postsynaptic potentials (IPSPs).
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Fig. 5.3 Chemical synapse between presynaptic terminal and postsynaptic dendrite

The axon hillock (see Fig. 5.1) is a specialized part of the cell body that is
connected to the axon. Both IPSPs and EPSPs are summed in the axon hillock and
once a trigger threshold is exceeded, an action potential propagates through the rest
of the axon. This switching behavior of the axon hillock plays a very important role
in the information processing of neural networks, as will be discussed in detail later
in Chap. 6.

5.2.3 Synaptic Plasticity

Synaptic plasticity is the ability of synapses to strengthen or weaken over time
as their activity increases or decreases. In fact, synaptic plasticity is one of
the important neurochemical foundations of learning and memory that is often
mimicked by artificial neural networks.

Two of the best studied forms of the synaptic plasticity in the neuronal cell are
long-term potentiation (LTP) and long-term depression (LTD). Specifically, LTP
is a sustained strengthening of the synapses based on recent patterns of activity.
These are patterns of synaptic activity that cause a long-lasting increase in signal
transmission between two neurons. The opposite of LTP is long-term depression
(LTD), which leads to a long-lasting decrease in synaptic strength.

In contrast to the artificial neural network, in which the synaptic plasticity
changes are usually modeled by simple weight changes, the synaptic plastic
change in biological neurons often results from the change in the number of
neurotransmitter receptors located on a synapse. For example, as shown in Fig. 5.4,
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during the LTP additional receptors are fused to the membrane by exocytosis,
which are then moved to the postsynaptic dendrite by lateral diffusion within the
membrane. On the other hand, in the case of LTD, some of the redundant receptors
are moved into the endocytosis region by lateral diffusion within the membrane, and
then absorbed by the cell via endocytosis.

Because of the dynamics of learning and synaptic plasticity, it becomes clear that
the trafficking of these receptors is an important mechanism to meet the demand
and supply of the receptors at various synaptic locations in the neurons. There are
various mechanisms that are being intensively researched by neurobiologists. For
example, assembled receptors leave the endoplasmic reticulum (ER) and reach the
neural surface via the Golgi network. Packets of nascent receptors are transported
along microtubule tracks from the cell body to synaptic sites through microtubule
networks. Figure 5.5 shows critical steps in receptor assembly, transport, intracellu-
lar trafficking, slow release and insertion at synapses.

5.3 Biological Neural Network

One of the most mysterious features of the brain is the emergence of higher-
level information processing from the connections of neurons. To understand this
emergent property, one of the most extensively studied biological neural networks
is the visual system. Therefore, in this section we review the information processing
in the visual system.

5.3.1 Visual System

The visual system is a part of the central nervous system that enables organisms to
process visual detail as eyesight. It detects and interprets information from visible
light to create a representation of the environment. The visual system performs a
number of complex tasks, from capturing light to identifying and categorizing visual
objects.

As shown in Fig. 5.6, the reflected light from objects shines on the retina. The
retina uses photoreceptors to convert this image into electrical impulses. The optic
nerve then carries these impulses through the optic canal. Upon reaching the optic
chiasm, the nerve fibers decussate (left becomes right). Most of the optic nerve
fibers terminate in the lateral geniculate nucleus (LGN). The LGN forwards the
impulses to V1 of the visual cortex. The LGN also sends some fibers to V2 and V3.
V1 performs edge detection to understand spatial organization. V1 also creates a
bottom-up saliency map to guide attention.
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Fig. 5.6 Anatomy of visual system and information processing

5.3.2 Hubel and Wiesel Model

One of the most important discoveries of Hubel and Wiesel [20] is the hierarchical
visual information flow in the primary visual cortex. Specifically, by examining the
primary visual cortex of cats, Hubel and Wiesel found two classes of functional
cells in the primary visual cortex: simple cells and complex cells. More specifically,
simple cells at V1 L4 respond best to edge-like stimuli with a certain orientation,
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Fig. 5.7 Hubel and Wiesel
model for primary visual
cortex

position and phase within their relatively small receptive fields (Fig. 5.7). They
realized that such a response of the simple cells could be obtained by pooling the
activity of a small set of input cells with the same receptive field that is observed in
LGN cells. They also observed that complex cells at V1 L2/L3, although selective
for oriented bars and edges too, tend to have larger receptive fields and have some
tolerance with regard to the exact position within their receptive fields. Hubel and
Wiesel found that position tolerance at the complex cell level could be obtained
by grouping simple cells at the level below with the same preferred orientation but
slightly different positions. As will be discussed later, the operation of pooling LGN
cells with the same receptive field is similar to the convolution operation, which
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Fig. 5.8 Hierarchical models of visual information processing

inspired Yann LeCun to invent the convolutional neural network for handwritten zip
code identification [21].

The extension of these ideas from the primary visual cortex to higher areas
of the visual cortex led to a class of object recognition models, the feedforward
hierarchical models [22]. Specifically, as shown in Fig. 5.8, as we go from V1
to TE, the size of the receptive field increases and the latency for the response
increases. This implies that there is a neuronal connection along this path, which
forms a neuronal hierarchy. A more surprising finding is that as we go along this
pathway, neurons become sensitive to more complex inputs that are not sensitive to
transforms.

5.3.3 Jennifer Aniston Cell

An extreme form or surprising example of this information processing hierarchy
can be found in the discovery of the so-called “Jennifer Aniston Cell” [23], which
represents a complex but specific concept or object. For those who do not know
Jennifer Aniston, she was one of the most popular American actresses of the 1990s,
having starred in America’s favorite sitcom, Friends.
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Fig. 5.9 The anatomical location of the medial temporal lobe

The study involved eight epilepsy patients who were temporarily implanted with
a single cell recording device to monitor the activity of brain cells in the medial
temporal lobe (MTL). The medial temporal lobe contains a system of anatomically
related structures that are essential for declarative memory (conscious memory for
facts and events). The system consists of the hippocampal region (Cornu Ammonis
(CA) fields, dentate gyrus, and subicular complex) and the adjacent perirhinal,
entorhinal, and parahippocampal cortices (see Fig. 5.9).

During the single cell recording, the authors in [23] noticed a strange pattern on
the medial temporal lobe (MTL) of the brain in one of their participants. Every time
the patient saw a picture of Jennifer Aniston, a specific neuron in the brain fired.
They tried to show the words “Jennifer Aniston,” and again it would fire. They tried
other ways to summon Jennifer Aniston in other ways, and each time it fired. The
conclusion was inevitable: for this particular person, there was a single neuron that
embodied the concept of Jennifer Aniston.

The experiment showed that individual neurons in the MTL respond to the
faces of certain people. The researchers say that these types of cell are involved
in sophisticated aspects of visual processing, such as identifying a person, rather
than just a simple shape. This observation leads to a fundamental question: can a
single neuron embody a single concept? Although this issue will be investigated
thoroughly throughout the book, the short answer is “no” because it is not the single
neuron in isolation, but a neuron from a densely connected neural network that can
extract the high-level concept.
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5.4 Exercises

1. Explain the role of the following structure in a neuron:

a. Soma
b. Dendrite
c. ER
d. Golgi apparatus
e. Axon hillock
f. Synapse

2. It is important to have a sense for the relative orders of magnitude of cellular
components. Please specify each physical parameter for a synapse.

a. Vesicle diameter
b. Synapse width
c. Vesicles released per active zone per action potential
d. Synaptic cleft width

3. Explain the differences between electrical and chemical synapses.
4. Explain the different types of neurotransmitters and their roles.
5. Explain the differences between ionotropic receptors and metabotropic recep-

tors.
6. Explain the mechanism of LTD and LTP.
7. What is the role of the neurotransmitter trafficking?
8. Explain the visual information processing step by step.
9. Explain why the Hubel and Wiesel model implies the convolutional processing

in the visual cortex.
10. What is the main observation from the Jennifer Aniston cell?



Chapter 6
Artificial Neural Networks
and Backpropagation

6.1 Introduction

Inspired by the biological neural network, here we discuss its mathematical
abstraction known as the artificial neural network (ANN). Although efforts have
been made to model all aspects of the biological neuron using a mathematical model,
all of them may not be necessary: rather, there are some key aspects that should not
be neglected when modeling a neuron. This includes the weight adaptation and the
nonlinearity. In fact, without them, we cannot expect any learning behavior.

In this chapter, we first describe a mathematical model for a single neuron,
and explain its multilayer realization using a feedforward neural network. We then
discuss standard methods of updating weight, often referred to as neural network
training. One of the most important parts of neural network training is gradient
computation, so the rest of this chapter discusses the main weight update techniques
known as backpropagation in detail.

6.2 Artificial Neural Networks

6.2.1 Notation

Since the mathematical description of an artificial neural network involves several
indices for neuron, layers, training sample, etc., here we would like to summarize
them for reference so that they can be used in the rest of the chapter.

First, each training data set is usually represented as bold face lower case letters
with the index n: for example, the following are used to indicate the n-th training-
data-related variables:

xn, yn, {xn, yn}Nn=1, on,gn.
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Second, with a slight abuse of notation, the subscript i and j for the light face lower-
case letters denotes the i-th and j -th element of a vector: for example, oi is the i-th
element of the vector o ∈ R

d :

oi = [o]i , or o = [o1 · · · od
]�
.

Similarly, the double index ij indicates the (i, j) element of a matrix: for example,
wij is the (i, j)-th element of a matrix W ∈ R

p×q :

wij = [W ]i,j or W =
⎡
⎢⎣
w11 · · · w1q
...
. . .

...

wp1 · · · wpq

⎤
⎥⎦ .

This index notation is often used to refer to the i-th or j -th neuron in each layer of
a neural network. To avoid potential confusion, if we refer to the i-th element of the
n-th training data vector xn is referred to as (xn)i . Next, to denote the l-th layer, the
following superscript notation is used:

g(l),W (l), b(l), d(l).

Accordingly, by combining the training index n, for example g
(l)
n refers to the l-th

layer g vector for the n-th training data. Finally, the t-th update using an optimizer
such as the stochastic gradient method can be denoted by [t]: for example,

�[t],V [t]

refer to the t-th update of the parameter map � and V , respectively.

6.2.2 Modeling a Single Neuron

Consider a typical biological neuron in Fig. 6.1 and its mathematical diagram in
Fig. 6.2. Let oj , j = 1, · · · , d denote the presynaptic potential from the j -th
dendric synapse. For mathematical simplicity, we assume that the potential occurs
synchronously, and arrives simultaneously at the axon hillock. At the axon hillock,
they are summed together, and fires an action potential if the summed signal
is greater than the specific threshold value. This process can be mathematically
modeled as

neti = σ
⎛
⎝

d∑
j=1

wijoj + bi
⎞
⎠ , (6.1)
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Fig. 6.1 Anatomy of neurons

Fig. 6.2 A mathematical model of a single neuron

where neti denotes the action potential arriving at the i-th synaptic terminal of the
telodendria, and bi is the bias term for the nonlinearity σ(·) at the axon hillock. Note
that the wij is the weight parameter determined by the synaptic plasticity, and the
positive values imply that wijoj are the excitatory postsynaptic potentials (EPSPs),
whereas the negative weights correspond to the inhibitory postsynaptic potentials
(IPSPs).

In artificial neural networks (ANNs), the nonlinearity σ(·) in (6.1) is modeled
in various ways as shown in Fig. 6.3. This nonlinearity is often called the activa-
tion function. Nonlinearity may be perhaps the most important feature of neural
networks, since learning and adaptation never happen without nonlinearity. The
mathematical proof of this argument is somewhat complicated, so the discussion
will be deferred to later.
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Fig. 6.3 Various forms of activation functions

Among the various forms of the activation functions, one of the most successful
ones in modern deep learning is the rectified linear unit (ReLU), which is defined as
[24]

σ(x) = ReLU(x) := max{0, x}. (6.2)

The ReLU activation function is called active when the output is nonzero. It is
believed that the non-vanishing gradient in the positive range contributed to the
success of modern deep learning. Specifically, we have

∂ReLU(x)

∂c
=
{

1, if x > 0

0, otherwise
, (6.3)

which shows that the gradient is always 1 whenever the ReLU is active. Note that
we set the gradient 0 at x = 0 by convention, since the ReLU is not differentiable at
x = 0.

In evaluating the activation function σ(x), the gain function, which refers to the
input/output ratio, is also useful:

γ (x) := σ(x)
x
, x �= 0. (6.4)
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For example, the ReLU satisfies the following important property:

γ (x) = ∂σ(x)
∂x

=
{

1, if x > 0

0, otherwise
, (6.5)

which will be used later in analyzing the backpropagation algorithm.
There is an additional advantage of using the ReLU compared to other nonlineari-

ties. As will be explained in detail later, the ReLU divides the input and feature space
into two disjoint sets, i.e. active and inactive areas, resulting in a piecewise linear
approximation of a nonlinear mapping onto the partitioned geometry. Accordingly,
a neural network within each partition can be viewed as locally linear, even though
the overall map is highly nonlinear. This is the geometric picture of a deep neural
network that we would like to highlight for readers in this book.

6.2.3 Feedforward Multilayer ANN

Biological neural networks are composed of multiple neurons that are connected
to each other. This connection can have complicated topology, such as recurrent
connection, asynchronous connection, inter-neurons, etc.

One of the most simple forms of the neural network connection is the multi-layer
feedforward neural network as shown in Figs. 6.4 and 6.8. Specifically, let o(l−1)

j

denote the j -th output of the (l − 1)-th layer neuron, which is given as the j -th
dendrite presynaptic potential input for the l-th layer neuron, and w(l)ij corresponds
to the synaptic weights at the l-th layer. Then, by extending the model in (6.1) we
have

o
(l)
i = σ

⎛
⎝
d(l)∑
j=1

w
(l)
ij o

(l−1)
j + b(l)i

⎞
⎠ , (6.6)

Fig. 6.4 Examples of multilayer feedforward neural networks
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for i = 1, · · · , d(l), where d(l) denotes the number of dendrites of the l-th layer
neuron. This can be represented in a matrix form

o(l) = σ
(
W (l)o(l−1) + b(l)

)
, (6.7)

where W (l) ∈ R
d(l)×d(l−1)

is the weight matrix whose (i, j) elements are given by
w
(l)
ij , σ (·) denotes the nonlinearity σ(·) applied for each elements of the vector, and

o(l) =
[
o
(l)
1 · · · o(l)d(l)

]� ∈ R
d(l) , (6.8)

b(l) =
[
b
(l)
1 · · · b(l)d(l)

]� ∈ R
d(l) . (6.9)

Another way to simplify the multilayer representation is using the hidden nodes
from linear layers in between. Specifically, an L-layer feedforward neural network
can be represented recursively using the hidden node g(l) by

o(l) = σ (g(l)), g(l) = W (l)o(l−1) + b(l), (6.10)

for l = 1, · · · , L.

6.3 Artificial Neural Network Training

6.3.1 Problem Formulation

For given training data {xn, yn}Nn=1, a neural network training problem can be then
formulated as follows:

�̂ = arg min
�
c(�), (6.11)

where the cost function is given by

c(�) :=
N∑
n=1



(
yn,f �(xn)

)
. (6.12)

Here, 
 (·, ·) denotes a loss function, and f �(xn) is a regression function with the
input xn, which is parameterized by the parameter set �.

For the case of an L-layer feedforward neural network, the regression function
f�(xn) in (6.12) can be represented by

f�(xn) :=
(
σ ◦ g(L) ◦ σ ◦ g(L−1) · · · ◦ g(1)

)
(xn) , (6.13)
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Fig. 6.5 Examples of cost functions for a 1-D optimization problem: (a) both local and global
minimizers exists, (b) only a single global minimizer exist, (c) multiple global minimizers exist

where the parameter set � is composed of the synaptic weight and bias for each
layer:

� =
⎡
⎢⎣

W (1), b(1)

...
...

W (L), b(L)

⎤
⎥⎦ . (6.14)

As discussed before for kernel machines in Chap. 4, the formulation in (6.11)
is so general that it covers classification, regression, etc., by simply changing the
loss function (for example, l2 loss for the regression, and the hinge loss for the
classification). Unfortunately, in contrast to the kernel machines, one of the main
difficulties in the neural network training is that the cost function c(�) is not
convex, and indeed there exist many local minimizers (see Fig. 6.5). Therefore, the
neural network training critically depends on the choice of optimization algorithm,
initialization, step size, etc.

6.3.2 Optimizers

In view of the parameterized neural network in (6.13), the key question is how the
minimizers for the optimization problem (6.11) can be found. As already mentioned,
the main technical challenge of this minimization problem is that there are many
local minimizers, as shown in Fig. 6.5a. Another tricky issue is that sometimes
there are many global minimizers, as shown in Fig. 6.5c. Although all the global
minimizers can be equally good in the training phase, each global minimizer
may have different generalization performance in the test phase. This issue is
important and will be discussed later. Furthermore, different global minimizers can
be achieved depending on the specific choice of an optimizer, which is often called
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the implicit bias or inductive bias of an optimization algorithm. This topic will also
be discussed later.

One of the most important observations in designing optimization algorithms is
that the following first-order necessary condition (FONC) holds at local minimizers.

Lemma 6.1 Let c : Rp �→ R be a differentiable function. If �∗ is a local minimizer,
then

∂c

∂�

∣∣∣∣
�=�∗

= 0. (6.15)

Indeed, various optimization algorithms exploit the FONC, and the main dif-
ference between them is the way they avoid the local minimum and provide fast
convergence. In the following, we start with the discussion of the classical gradient
descent method and its stochastic extension called the stochastic gradient descent
(SGD), after which various improvements will be discussed.

6.3.2.1 Gradient Descent

For the given training data {xn, yn}Nn=1, the gradient of the cost function in (6.12) is
given by

∂c

∂�
(�) =

∂
(∑N

n=1 

(
yn,f �(xn)

))

∂�

=
N∑
n=1

∂


∂�

(
yn,f �(xn)

)
, (6.16)

which is equal to the sum of the gradient at each of the training data. Since the
gradient is the steep direction for the increasing cost function, the steep descent
algorithm is to update the parameter in its opposite direction:

�[t + 1] = �[t] − η ∂c
∂�
(�)

∣∣∣∣
�=�[t]

= �[t] − η
N∑
n=1

∂


∂�

(
yn,f �(xn)

)∣∣∣∣
�=�[t]

, (6.17)

where η > 0 denotes the step size and �[t] is the t-th update of the parameter
�. Figure 6.6a illustrates why gradient descent is a good way to minimize the cost
for the convex optimization problem. As the gradient of the cost points toward the
uphill direction of the cost, the parameter update should be in its negative direction.
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Fig. 6.6 Steepest gradient descent example: (a) convex cases, where steepest descent succeeds,
(b) non-convex case, where the steepest descent cannot go uphill, (c) steepest gradient leads to
different local minimizers depending on the initialization

After a small step, a new gradient is computed and a new search direction is found.
By iterating the procedure, we can achieve the global minimum.

One of the downsides of the gradient descent method is that when the gradient
becomes zero at a local minimizers at t∗, the update equation in (6.17) make the
iteration stuck in the local minimizers, i.e.:

�[t + 1] = �[t], t ≥ t∗. (6.18)

For example, Fig. 6.6b,c show the potential limitation of the gradient descent. For
the case of Fig. 6.6b, during the path toward the global minimum, there exists uphill
directions, which cannot be overcome by the gradient methods. On the other hand,
Fig. 6.6c shows that depending on the initialization, different local minimizers can
be found by the gradient descent due to the different intermediate path. In fact, the
situations in Fig. 6.6b,c are more likely situations in neural network training, since
the optimization problem is highly non-convex due to the cascaded connection of
nonlinearities. In addition, despite using the same initialization, the optimizer can
converge to a completely different solution depending on the step size or certain
optimization algorithms. In fact, algorithmic bias is a major research topic in modern
deep learning, often referred to as inductive bias.

This can be another reason why neural network training is difficult and depends
heavily on who is training the model. For example, even if multiple students are
given the exact same training set, network architecture, GPU, etc., it is usually
observed that some students are successfully training the neural network and others
are not. The main reason for such a difference is usually due to their commitment
and self-confidence, which leads to different optimization algorithms with different
inductive biases. Successful students usually try different initializations, optimizers,
different learning rates, etc. until the model works, while unsuccessful students
usually stick to the parameters all the time without trying to carefully change them.
Instead, they often claim that the failure is not their fault, but because of the wrong
model they started with. If the training problem were convex, then regardless of the
inductive bias they have in training, all students could be successful. Unfortunately,
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neural network training is highly non-convex, so it is highly dependent on the
student’s inductive bias. The good news is that once students learn how to make a
model work, the intuition they gain from such experiences usually works for training
more complicated neural networks.

Indeed, advances in algorithms to optimize deep neural networks can be viewed
as overcoming operator dependency. The following describes the various methods
of systematically reducing the operator-dependent inductive bias for training neural
networks, although the same problem still exists, albeit in a reduced manner, due to
the non-convexity of the problems.

6.3.2.2 Stochastic Gradient Descent (SGD) Method

We say that the update equations in (6.17) are based on full gradients, since at
each iteration we need to compute the gradient with respect to the whole data set.
However, if n is large, computational cost for the gradient calculation is quite heavy.
Moreover, by using the full gradient, it is difficult to avoid the local minimizer, since
the gradient descent direction is always toward the lower cost value.

To address the problem, the SGD algorithm uses an easily computable estimate
of the gradient using a small subset of training data. Although it is a bit noisy, this
noisy gradient can even be helpful in avoiding local minimizers. For example, let
I [t] ⊂ {1, · · · , N} denote a random subset of the index set {1, · · · , N} at the t-th
update. Then, our estimate of the full gradient at the t-th iteration is given by

∂c

∂�
(�)

∣∣∣∣
�=�[t]

% N

|I [t]|
∑
i∈I [t]

∂


∂�

(
yn,f �(xn)

)∣∣∣∣
�=�[t]

, (6.19)

where |I [t]| denotes the number of elements in I [t]. As the SGD utilizes a small
random subset of the original training data set (i.e. |I [t]| � N ) in calculating the
gradient, the computational complexity for each update is much smaller than the
original gradient descent method. Moreover, it is not exactly the same as the true
gradient direction so that the resulting noise can provide a means to escape from the
local minimizers.

6.3.2.3 Momentum Method

Another way to overcome the local minimum is to take into account the previous
updates as additional terms to avoid getting stuck in local minima. Specifically, a
desirable update equation may be written as

�[t + 1] = �[t] − η
t∑
s=1

βt−s ∂c
∂�
(�[s]) (6.20)
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Fig. 6.7 Example trajectory of update in (a) stochastic gradient, (b) SGD with momentum method

for an appropriate forgetting factor 0 < β < 1. This implies that the contribution
from the past gradient is gradually reduced in calculating the current update
direction. However, the main limitation of using (6.20) is that all the history of
the past gradients should be saved, which requires huge GPU memory. Instead,
the following recursive formulation is mostly used which provide the equivalent
representation:

V [t] = β(�[t] −�[t − 1])− η ∂c
∂�
(�[t]),

�[t + 1] = �[t] + V [t]. (6.21)

This type of method is called the momentum method, and is particularly useful
when it is combined with the SGD. The example update trajectory of the SGD with
momentum is shown in Fig. 6.7b. Compared to the fluctuating path, the momentum
method provides a smoothed solution path thanks to the averaging effects from the
past gradient, which results in fast convergence.

6.3.2.4 Other Variations

In neural networks, several other variants of the optimizers are often used, among
which ADAGrad [25], RMSprop [26], and Adam [27] are most popular. The main
ideas of these variants is that instead of using the fixed step size η for all elements of
the gradient, an element-wise adaptive step size is used. For example, for the case
of the steepest descent in (6.17), we use the following update equation:

�[t + 1] = �[t] −ϒ[t] & ∂c

∂�
(�[t]), (6.22)

where ϒ[t] is a matrix with the step size and & is the element-wise multiplication.
In fact, the main difference in these algorithms is how to update the matrix ϒ[t]
at each iteration. For more details for specific update rules, see the original papers
[25–27].
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6.4 The Backpropagation Algorithm

In the previous section, various optimization algorithms for neural network training
were discussed based on the assumption that the gradient ∂c

∂�
(�[t]) is computed.

However, given the complicated nonlinear nature of the feedforward neural network,
the computation of the gradient is not trivial.

In machine learning, backpropagation (backprop, or BP) [28] is a standard way
of calculating the gradient in training feedforward neural networks, by providing
an explicit and computationally efficient way of computing the gradient. The term
backpropagation and its general use in neural networks were originally derived in
Rumelhart, Hinton and Williams [28]. Their main idea is that although the multi-
layer neural network is composed of complicated connections of neurons with a
large number of unknown weights, the recursive structure of the multilayer neural
network in (6.10) lends itself to computationally efficient optimization methods.

6.4.1 Derivation of the Backpropagation Algorithm

The following lemma, which was previously introduced in Chap. 1, is useful in
deriving the BP algorithm:

Lemma 6.2 Let A ∈ R
m×n and x ∈ R

n. Then, we have

∂Ax

∂VEC(A)
= x ⊗ Im. (6.23)

Lemma 6.3 For the vectors x ∈ R
m, y ∈ R

n, we have

VEC(xy�) = (y ⊗ Im)x, (6.24)

where Im denotes the m×m identity matrix.

For the derivation of the backpropagation algorithm, we tentatively assume that
the bias terms are zero, i.e. b(l) = 0, l = 1, · · · , L. In this case, the neural network
parameter � in (6.14) can be simplified as

� =
⎡
⎢⎣

W (1)

...

W (L)

⎤
⎥⎦ , (6.25)



6.4 The Backpropagation Algorithm 103

where W (l) ∈ R
d(l)×d(l−1)

. Using the denominator layout as explained in Chap. 1,
we have

∂c

∂�
=

⎡
⎢⎢⎣

∂c

∂W (1)

...
∂c

∂W (L)

⎤
⎥⎥⎦ , (6.26)

so that the weight at the l-th layer can be updated with the increment:

�� =
⎡
⎢⎣
�W (1)

...

�W (L)

⎤
⎥⎦ , where �W (l) = −η ∂c

∂W (l)
. (6.27)

Therefore, ∂c/∂W (l) should be specified. More specifically, for a given training data
set {xn, yn}Nn=1, recall that the cost function c(�) in (6.12) is given by

c(�) =
N∑
n=1



(
yn,f�(xn)

)
, (6.28)

where f�(xn) is defined in (6.13). Now define the l-th layer variable with respect
to the n-th training data:

o(l)n = σ (g(l)n ), g(l)n = W (l)o(l−1)
n , (6.29)

for l = 1, · · · , L, with the initialization

o(0)n := xn, (6.30)

where the bias is assumed zero. Then, we have

o(L)n = f�(xn) ,

Using the chain rule for the denominator convention (see Eq. (1.40))

∂c(g(u))

∂x
= ∂u
∂x

∂g(u)

∂u

∂c(g)

∂g
(6.31)



104 6 Artificial Neural Networks and Backpropagation

we have

∂c

∂VEC(W (l))
=

N∑
n=1

∂g
(l)
n

∂VEC(W (l))

∂

(
yn, o

(L)
n

)

∂g
(l)
n

.

Furthermore, Lemma 6.2 informs us

∂g
(l)
n

∂VEC(W (l))
= o(l−1)

n ⊗ I d(l) . (6.32)

We further define the term:

δ(l)n :=
∂

(
yn, o

(L)
n

)

∂g
(l)
n

, (6.33)

which can be calculated using the chain rule (6.31) as follows:

δ(l)n =
∂o
(l)
n

∂g
(l)
n

∂g
(l+1)
n

∂o
(l)
n

· · · ∂o
(L)
n

∂g
(L)
n

∂

(
yn, o

(L)
n

)

∂o
(L)
n

= �(l)n W (l+1)��(l+1)
n W (l+2)� · · ·W (L)��(L)n εn (6.34)

for l = 1, · · · , L, and the error term εn is computed by

εn =
∂

(
yn, o

(L)
n

)

∂o
(L)
n

.

In (6.34), we use

�(l)n :=
∂o
(l)
n

∂g
(l)
n

=
∂σ
(
g
(l)
n

)

∂g
(l)
n

∈ R
d(l)×d(l) , (6.35)

which is calculated using the denominator layout as explained in Chap. 1, and

∂g
(l+1)
n

∂o
(l)
n

= ∂W
(l+1)o

(l)
n

∂o
(l)
n

= W (l+1)�, (6.36)
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which is obtained using the denominator convention (see (1.41) in Chap. 1).
Accordingly, we have

∂c

∂VEC(W (l))
=

N∑
n=1

∂g
(l)
n

∂VEC(W (l))

∂

(
yn, o

(L)
n

)

∂g
(l)
n

=
N∑
n=1

(
o(l−1)
n ⊗ I d(l)

)
δ(l)n

=
N∑
n=1

VEC
(
δ(l)n o(l−1)�

n

)
,

where we use (6.32) and (6.33) for the second equality, and Lemma 6.3 for the last
equality. Finally, we have the following derivative of the cost with respect to W (l):

∂c

∂W (l)
= UNVEC

(
∂c

∂VEC(W (l))

)

= UNVEC

(
N∑
n=1

VEC
(
δ(l)n o(l−1)�

n

))

=
N∑
n=1

δ(l)n o(l−1)�
n ,

where we use the linearity of UNVEC(·) operator for the last equality. Therefore, the
weight update increment is given by

�W (l) = −η ∂c

∂W (l)

= −η
N∑
n=1

δ(l)n o(l−1)�
n . (6.37)

6.4.2 Geometrical Interpretation of BP Algorithm

This weight update scheme in (6.37) is the key in BP. Not only is the final form of
the weight update in (6.37) very concise, but it also has a very important geometric
meaning, which deserves further discussion. In particular, the update is totally
determined by the outer product of the two terms δ(l)n and o

(l−1)
n , i.e. δ(l)n o

(l−1)�
n .

Why are these terms so important? This is the main discussion point in this section.
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First, recall that o
(l−1)
n is the (l − 1)-th layer neural network output given by

(6.29). Since this term is calculated in the forward path of the neural network, it is
nothing but the forward-propagated input to the l-th layer neuron. Second, recall
that

εn =
∂

(
yn, o

(L)
n

)

∂o
(L)
n

.

If we use the l2 loss, this term becomes

εn =
∂
(

1
2‖yn − o

(L)
n ‖2
)

∂o
(L)
n

= o(L)n − yn,

which is indeed the estimation error of the neural network output. Since we have

δ(l)n = �(l)n W (l+1)��(l+1)
n W (l+2)� · · ·W (L)��(L)n εn , (6.38)

this implies that δ(l)n is indeed the backward-propagated estimation error down to
the l-th layer. Therefore, we can find that the weight update is determined by the
outer product of the forward-propagated input and backward-propagated estimation
error.

In terms of calculation, the forward and backward terms o
(l)
n and δ(l)n can be

efficiently calculated using recursive formulae. More specifically, we have

o(l−1)
n = σ

(
W (l−1)o(l−2)

n

)
, (6.39)

δ(l)n = �(l)n W (l+1)�δ(l+1)
n , (6.40)

with the initialization by

o(0)n = xn, δ(L)n = εn. (6.41)

The geometric interpretation and recursive formulae are illustrated in Fig. 6.8.

6.4.3 Variational Interpretation of BP Algorithm

The variational principle is a scientific principle used within the calculus of
variations [29], which develops general methods for finding functions that minimize
the value of quantities that depend upon those functions. The calculus of variations
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Fig. 6.8 Geometry of backpropagation

is a field of mathematical analysis pioneered by Isaac Newton, which uses variations
to reduce the energy function [29].

Given the incremental variation in (6.37), we are therefore interested in finding
whether it indeed reduces the energy function. For this, let us consider a simplified
form of the loss function with l2 loss with N = 1. In the following, we show that
for the case of neural networks with ReLU activation functions, the BP algorithm is
indeed equivalent to the variational approach.

More specifically, let the baseline energy function, which refers to the cost
function before the perturbation, be given by


(y, o(L)) = 1

2
‖y − o(L)‖2, (6.42)

where the subscript n for the training data index is neglected here for simplicity and

o(L) := σ
(
W (L)o(L−1)

)
, (6.43)

One of the important observations is that for the case of the ReLU, (6.43) can be
represented by

o(L) := �(L)g(L), where g(L) = W (L)o(L−1), (6.44)

where �(L) ∈ R
d(L)×d(L) is a diagonal matrix with 0 and 1 values given by

�(L) =

⎡
⎢⎢⎢⎢⎢⎢⎣

γ1 · · · 0 · · · 0
...
. . .

...
. . .

...

0 · · · γj · · · 0
...
. . .

...
. . .

...

0 · · · 0 · · · γd(L)

⎤
⎥⎥⎥⎥⎥⎥⎦
, (6.45)
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where

γj = γ
(
[g(L)]j

)
, (6.46)

where [g(L)]j denotes the j -th element of the vector g(L) and γ (·) is defined in
(6.4). Thanks to (6.5), we have

�(l) = �(l), l = 1, · · · , L, (6.47)

where �(l) is defined as the derivative of the activation function in (6.35). Therefore,
using the recursive formula, we have

o(L) = �(L)W (L) · · ·�(l)W (l)o(l−1). (6.48)

Using this, we now investigate whether the cost decreases with the perturbed
weight

�W (l) = −ηδ(l)o(l−1)�. (6.49)

When the step size η is sufficiently small, then the ReLU activation patterns from
W (l)+�W (l) do not change from those by W (l) (this issue will be discussed later),
so that the new cost function value is given by


̂(y, o(L)) := ‖y −�(L)W (L) · · ·�(l)(W (l) +�W (l))o(l−1)‖2.

Recall that we have

δ(L) = o(L) − y

= �(L)W (L) · · ·�(l)W (l)o(l−1) − y.

Accordingly, we have


̂(y, o(L)) = ‖ − δ(L) −�(L)W (L) · · ·�(l)�W (l)o(l−1)‖2 (6.50)

= ‖ − δ(L) + η�(L)W (L) · · ·�(l)δ(l)o(l−1)�o(l−1)‖2

=
∥∥∥
(
I − η‖o(l−1)‖2M(l)

)
δ(L)
∥∥∥2
,

where we use ‖o(l−1)‖2 = o(l−1)�o(l−1) and

M(l) = �(L)W (L) · · ·W (l+1)�(l)�(l)W (l+1)� · · ·W (L)��(L),
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which comes from (6.38). Now, we can easily see that for all x ∈ R
d(L) we have

x�M(l)x = ‖�(l)W (l+1)� · · ·W (L)��(L)x‖2 ≥ 0, (6.51)

so that M(l) is positive semidefinite, i.e. its eigenvalues are non-negative. Further-
more, we have

∥∥∥
(
I − η‖o(l−1)‖2M(l)

)
δ(L)
∥∥∥2 ≤ λ2

max

(
I − η‖o(l−1)‖2M(l)

)

× ‖δ(L)‖2, (6.52)

where λmax(A) denotes the largest eigenvalue of A. In addition, we have

λ2
max

(
I − η‖o(l−1)‖2M(l)

)
=
(

1− η‖o(l−1)‖2λmax

(
M(l)
))2

.

Therefore, if the largest eigenvalue satisfies

0 ≤ λmax

(
M(l)
)
≤ 2

η‖o(l−1)‖2 , (6.53)

we can show


̂(y, o(L)) ≤ ‖δ(l)‖2 = 
(y, o(L)),

so the cost function value decreases with the perturbation.
It is important to emphasize that this strong convergence result is due to the

unique property of the ReLU in (6.47), which is never satisfied with other activation
functions. This may be another reason for the success of the ReLU in modern
deep learning. Having said this, care should be taken since this argument is true
only for sufficiently small step size η, so that the ReLU activation patterns after
the perturbation do not change. In fact, this may be another reason to choose an
appropriate step size in the optimization algorithm.

6.4.4 Local Variational Formulation

Another way of understanding BP is via propagation of the cost function. As shown
in Fig. 6.8, after the forward and backward propagation of the input and error,
respectively, the resulting optimization problem for the weight update at the l-th
layer is given by

min
W
‖ − δ(l) −Wo(l−1)‖2. (6.54)
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Note that we have a minus sign in front of δ(l) inspired by its global counterpart in
(6.50). By inspection, we can easily see that the optimal solution for (6.54) is given
by

W ∗ = − 1

‖o(l−1)‖2 δ(l)o(l−1)�, (6.55)

since plugging (6.55) in (6.54) makes the cost function zero. Therefore, the optimal
search direction for the weight update should be given by

�W (l) = −ηδ(l)o(l−1)�, (6.56)

which is equivalent to (6.49). The take-away message here is that as long as we can
obtain the back-propagated error and the forward-propagated input, we can obtain a
local variational formulation, which can be solved by any means.

6.5 Exercises

1. Derive the general form of the activation function σ(x) that satisfies the following
differential equation:

σ(x)

x
= ∂σ(x)

∂x

2. Show that (6.21) is equivalent to (6.20).
3. Recall that L-layer feedforward neural network can be represented recursively

by

o(l) = σ (g(l)), g(l) = W (l)o(l−1) + b(l), (6.57)

for l = 1, · · · , L. When the training data size is 1, the weight update is given by

�W (l) = −γ δ(l)o(l−1)�, (6.58)

where γ > 0 is the step size and

δ(l) := ∂

(
y, o(L)

)

∂g(l)
. (6.59)

a. Derive the update equation similar to (6.58) for the bias term, i.e. �b(l).
b. Suppose the weight matrix W (l), l =, · · · , L is a diagonal matrix. Draw

the network connection architecture similarly to Fig. 6.8. Then, derive the
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backprop algorithm for the diagonal term of the weight matrix, assuming that
the bias is zero. You must use the chain rule to derive this.

4. Let a two-layer ReLU neural network f � have an input and output dimension for
each layer in R

2, i.e. f � : x ∈ R
2 �→ f �(x) ∈ R

2. Suppose that the parameter
� of the network is composed of weight and bias:

� =
{
W (1),W (2), b(1), b(2)

}
, (6.60)

which are initialized as follows:

W (1) = W (2) =
[

1 −1
0 1

]
, b(1) = b(2) =

[
1
0

]
. (6.61)

Then, for a given l2 loss function


(�) = 1

2
‖y − f (x)‖2 (6.62)

and a training data

x = [1,−1]�, y = [1, 0]�, (6.63)

compute the weight and bias update for the first two iterations of the backpropa-
gation algorithm. It is suggested that the unit step size, i.e. γ = 1, be used.

5. We are now interested in extending (6.54) for the training data composed of N
samples.

a. Show that the following equality holds for the local variation formulation:

min
W

N∑
n=1

‖ − δ(l)n −Wo(l−1)
n ‖2 = min

W
‖ −�(l) −WO(l−1)‖2F , (6.64)

where ‖ · ‖F denotes the Frobenious norm and

�(l) =
[
δ
(l)
1 · · · δ(l)N

]
, O(l−1) =

[
o
(l−1)
1 · · · o(l−1)

N

]
.

b. Show that there exists a step size γ > 0 such that the weight perturbation

�W (l) = −γ
N∑
n=1

δ(l)n o(l−1)�
n

reduces the cost value in (6.64).
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6. Suppose that our activation function is sigmoid. Derive the BP algorithm for
the L-layer neural network. What is the main difference of the BP algorithm
compared to the network with a ReLU? Is this an advantage or disadvantage?
Answer this question in terms of variational perspective.

7. Now we are interested in extending the model in (6.6) to a convolutional neural
network model

o
(l)
i = σ

⎛
⎝
d(l)∑
j=1

h
(l)
i−j o

(l−1)
j + b(l)i

⎞
⎠ , (6.65)

for i = 1, · · · , d(l), where h(l)i is the i-th element of the filter h(l) =
[h(l)1 , · · · , h(l)p ]�.

a. If we want to represent this convolutional neural network in a matrix form,

o(l) = σ
(
W (l)o(l−1) + b(l)

)
, (6.66)

what is the corresponding weight matrix W (l)? Please show the structure of
W (l) explicitly in terms of h(l) elements.

b. Derive the backpropagation algorithm for the filter update �h(l).



Chapter 7
Convolutional Neural Networks

7.1 Introduction

A convolutional neural network (CNN, or ConvNet) is a class of deep neural
networks, widely used for analyzing and processing images. Multilayer perceptrons,
which we discussed in the previous chapter, usually require fully connected
networks, where each neuron in one layer is connected to all neurons in the next
layer. Unfortunately, this type of connections inescapably increases the number of
weights. In CNNs, the number of weights can be significantly reduced using their
shared-weights architecture originated from translation invariant characteristics of
the convolution.

A convolutional neural network was first developed by Yann LeCun for hand-
written zip code identification [21], inspired by the famous experiments by Hubel
and Wiesel for a cat’s primary visual cortex [20]. Recall that Hubel and Wiesel
found that simple cells in the primary visual cortex of a cat respond best to edge-
like stimuli at a particular orientation, position, and phase within their relatively
small receptive fields. Yann LeCun realized that the aggregation of LGN (lateral
geniculate nucleus) cells with the same receptive field is similar to the convolution
operation, which led him to construct a neural network as the cascaded applications
of convolution, nonlinearity, and image subsampling, followed by fully connected
layers that determine linear hyperplanes in the feature space for the classification
tasks. The resulting network architecture, shown in Fig. 7.1, is called LeNet [21].

While the algorithm worked, training to learn 10 digits required 3 days! Many
factors contributed to the slow speed, including the vanishing gradient problem,
which will be discussed later. Therefore, simpler models that use task-specific
handcrafted features such as support vector machines (SVMs) or kernel machines
[11] were popular choices in the 1990s and 2000s, because of the artificial neural
network’s (ANN) computational cost and a lack of understanding of its working
mechanism. In fact, the lack of understanding of the ANN has been the main
criticism of many contemporary scientists, including the famous Vladmir Vapnik,
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Fig. 7.1 LeNet: the first CNN proposed by Yann LeCun for zip code identificiation [21]

the inventor of the SVM. In the preface of his classical book entitled The Nature of
Statistical Learning Theory [10], Vapnik expressed his concern saying that “Among
artificial intelligence researchers the hardliners had considerable influence (it is
precisely they who declared that complex theories do not work, simple algorithms
do)”.

Ironically, the advent of the SVM and kernel machines has led to a long period of
decline in neural network research, often referred to as the “AI winter”. During the
AI winter, the neural network researchers were largely considered pseudo-scientists
and even had difficulty in securing research funding. Although there have been
several notable publications on neural networks during the AI winter, the revival of
convolutional neural network research, up to the level of general public acceptance,
has had to wait until the series of deep neural network breakthroughs at the ILSVRC
(ImageNet Large Scale Visual Recognition Competition).

In the following section, we give a brief overview of the history of modern CNN
research that has contributed to the revival of research on neural networks.

7.2 History of Modern CNNs

7.2.1 AlexNet

ImageNet is a large visual database designed for use in visual object recognition
software research [8]. ImageNet contains more than 20,000 categories, consisting of
several hundred images. Since 2010, the ImageNet project has an annual software
contest, the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [7],
where software programs compete to correctly classify and detect objects and
scenes. Around 2011, a good ILSVRC classification error rate, which was based
on classical machine learning approaches, was about 27%.

In the 2012 ImageNet Challenge, Krizhevsky et al. [9] proposed a CNN
architectures, shown in Fig. 7.2, which is now known as AlexNet. The AlexNet
architecture is composed of five convolution layers and three fully connected layers.
In fact, the basic components of AlexNet were nearly the same as those of LeNet by
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Fig. 7.2 The ImageNet challenges and the CNN winners that have completely changed the
landscape of artificial intelligence

Yann LeCun [21], except the new nonlinearity using the rectified linear unit (ReLU).
AlexNet got a Top-5 error rate (rate of not finding the true label of a given image
among its top 5 predictions) of 15.3%. The next best result in the challenge, which
was based on the classical kernel machines, trailed far behind (26.2%).

In fact, the celebrated victory of AlexNet declared the start of a “new era” in
data science, as witnessed by more than 75k citations according to Google Scholar
as of January 2021. With the introduction of AlexNet, the world was no longer
the same, and all the subsequent winners at the ImageNet challenges were deep
neural networks, and nowadays CNN surpasses the human observers in ImageNet
classification. In the following, we introduce several subsequent CNN architectures
which have made significant contributions in deep learning research.

7.2.2 GoogLeNet

GoogLeNet [30] was the winner at the 2014 ILSVRC (see Fig. 7.2). As the name
“GoogLeNet” indicates, it is from Google, but one may wonder why it is not written
as “GoogleNet”. This is because the researchers of “GoogLeNet” tried to pay tribute
to Yann LeCun’s LeNet [21] by containing the word “LeNet”.

The network architecture is quite different from AlexNet due to the so-called
inception module[30], shown in Fig. 7.3. Specifically, at each inception module,
there exist different sizes/types of convolutions for the same input and stack-
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Fig. 7.3 Inception module in GoogLeNet

ing all the outputs. This idea was inspired by the famous 2010 science fiction
film Inception, in which Leonardo DiCaprio starred. In the film, the renowned
director Christoper Nolan wanted to explore “the idea of people sharing a dream
space. . . That gives you the ability to access somebody’s unconscious mind.” The
key concept which GoogLeNet borrowed from the film was the “dream within a
dream” strategy, which led to the “network within a network” strategy that improves
the overall performance.

7.2.3 VGGNet

VGGNet [31] was invented by the VGG (Visual Geometry Group) from University
of Oxford for the 2014 ILSVRC (see Fig. 7.2). Although VGGNet was not the
winner of the 2014 ILSVRC (GoogLeNet was the winner at that time, and the
VGGNet came second), VGGNet has made a prolonged impact in the machine
learning community due to its modular and simple architecture, yet resulting in
a significant performance improvement over AlexNet [9]. In fact, the pretrained
VGGNet model captures many important image features; therefore, it is still widely
used for various purposes such as perceptual loss [32], etc. Later we will use
VGGNet to visualize CNNs.

As shown in Fig. 7.2, VGGNet is composed of multiple layers of convolution,
max pooling, the ReLU, followed by fully connected layers and softmax. One of
the most important observations of VGGNet is that it achieves an improvement
over AlexNet by replacing large kernel-sized filters with multiple 3 × 3 kernel-
sized filters. As will be shown later, for a given receptive field size, cascaded
application of a smaller size kernel followed by the ReLU makes the neural network
more expressive than one with a larger kernel size. This is why VGGNet provided
significantly improved performance over AlexNet despite its simple structure.
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7.2.4 ResNet

In the history of ILSVRC, the Residual Network (ResNet) [33] is considered another
masterpiece, as shown in its citation record of more than 68k as of January 2020.

Since the representation power of a deep neural network increases with the
network depth, there has been strong research interest in increasing the network
depth. For example, AlexNet [9] from 2012 LSVRC had only five convolutional
layers, while the VGG network [31] and GoogLeNet [30] from 2014 LSVRC
had 19 and 22 layers, respectively. However, people soon realized that a deeper
neural network is hard to train. This is because of the vanishing gradient problem,
where the gradient can be easily back-propagated to layers closer to the output,
but is difficult to be back-propagated far from the output layer since the repeated
multiplication may make the gradient so small. As discussed in the previous chapter,
the ReLU nonlinearity partly mitigates the problem, since the forward and backward
propagation are symmetric, but still the deep neural network turns out to be difficult
to train due to an unfavorable optimization landscape [34]; this issue will be
reviewed later.

As shown in Fig. 7.2, there exist bypass (or skip) connections in the ResNet,
representing an identity mapping. The bypass connection was proposed to promote
the gradient back-propagation. Thanks to the skip connection, ResNet makes it
possible to train up to hundreds or even thousands of layers, achieving a significant
performance improvement. Recent researches reveals that the bypass connection
also improves the forward propagation, making the representation more expressive
[35]. Furthermore, its optimization landscape can be significantly improved thanks
to bypass connections that eliminate many local minimizers [35, 36].

7.2.5 DenseNet

DenseNet (Dense Convolutional Network) [37] exploits the extreme form of skip
connection as shown in Fig. 7.4. In DenseNet, at each layer there exists skip
connections from all preceding layers to obtain additional inputs.

Since each layer receives inputs from all preceding layers, the representation
power of the network increases significantly, which makes the network compact,
thereby reducing the number of channels. With dense connections, the authors
demonstrated that fewer parameters and higher accuracy are achieved compared
to ResNet [37].
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Fig. 7.4 Architecture of DenseNet

Fig. 7.5 Architecture of U-Net

7.2.6 U-Net

Unlike the aforementioned networks that are designed for ImageNet classification
task, the U-Net architecture [38] in Fig. 7.5 was originally proposed for biomedical
image segmentation, and is widely used for inverse problems [39, 40].

One of the unique aspects of U-Net is its symmetric encoder–decoder architec-
ture. The encoder part consists of 3× 3 convolution, batch normalization [41], and
the ReLU. In the decoder part, upsampling and 3 × 3 convolution are used. Also,
there are max pooling layers and skip connections through channel concatenation.

The multi-scale architecture of U-Net significantly increases the receptive field,
which may be the main reason for the success of U-Net for segmentation, inverse
problems, etc., where global information from all over the images is necessary to
update the local image information. This issue will be discussed later. Moreover,
the skip connection is important to retain the high-frequency content of the input
signal.
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The symmetric and multi-scale architecture of U-Net inspired many signal
processing discoveries [42], providing important insights into understanding the
geometry of deep neural networks.

7.3 Basic Building Blocks of CNNs

Although the aforementioned CNN architectures appear complicated, a closer look
at them reveals that they are nothing but cascaded combinations of simple building
blocks such as convolution, pooling/unpooling, ReLU, etc. These components are
even considered as basic or “primitive” tools in signal processing. In fact, the
emergence of the superior performance from the combination of the basic tools is
one of the mysteries of deep neural networks, which will be discussed extensively
later. In the meanwhile, this section provides a detailed explanation of the basic
building blocks of CNNs.

7.3.1 Convolution

The convolution is an operation that originates from fundamental properties of linear
time invariant (LTI) or linear spatially invariant (LSI) systems. Specifically, for a
given LSI system, let h denote the impulse response, then the output image y with
respect to the input image x can be computed by

y = h ∗ x, (7.1)

where ∗ denotes the convolution operation. For example, the 3× 3 convolution case
for 2-D images can be represented element by element as follows:

y[m, n] =
1∑

p,q=−1

h[p, q]x[m− p, n− q], (7.2)

where y[m, n], h[m, n] and x[m, n] denote the (m, n)-element of the matrices Y ,H

and X, respectively. One example of computing this convolution is illustrated in
Fig. 7.6, where the filter is already flipped for visualization.

It is important to note that the convolution used in CNNs is richer than the
simple convolution in (7.1) and Fig. 7.6. For example, a three channel input signal
can generate a single channel output as shown in Fig. 7.7a, which is often referred
to as multi-input single-output (MISO) convolution. In another example shown in
Fig. 7.7b, a 5× 5 filter kernel is used to generate 6 (resp. 10) output channels from
3 (resp. and 6) input channels. This is often called the multi-input multi-output
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Fig. 7.6 An example of convolution with 3× 3 filter

(MIMO) convolution. Finally, in Fig. 7.7c, the 1× 1 filter kernel is used to generate
32 output channels from 64 input channels.

All these seemingly different convolutional operations can be written in a general
MIMO convolution form:

yi =
cin∑
j=1

hi,j ∗ xj , i = 1, · · · , cout , (7.3)

where cin and cout denote the number of input and output channels, respectively,
xj , yi refer to the j -th input and the i-th output channel image, respectively, and hi,j
is the convolution kernel that contributes to the i-th channel output by convolving
with the j -th input channel images. For the case of 1 × 1 convolution, the filter
kernel becomes

hi,j = wij δ[0, 0],

so that (7.3) becomes the weighted sum of input channel images as follows:

yi =
cin∑
j=1

wijxj , i = 1, · · · , cout . (7.4)

7.3.2 Pooling and Unpooling

A pooling layer is used to progressively reduce the spatial size of the representation
to reduce the number of parameters and amount computation in the network. The
pooling layer operates on each feature map independently. The most common
approaches used in pooling are max pooling and average pooling as shown in
Fig. 7.8b. In this case, the pooling layer will always reduce the size of each feature
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Fig. 7.7 Various convolutions used in CNNs. (a) Multi-input single-output (MISO) convolution,
(b) Multi-input multi-output (MIMO) convolution, (c) 1× 1 convolution
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Fig. 7.8 (a) Pooling and unpooling operation, (b) max and average pooling operation

map by a factor of 2. For example, a max (average) pooling layer in Fig. 7.8b applied
to an input image of 16× 16 produces an output pooled feature map of 8× 8.

On the other hand, unpooling is an operation for image upsampling. For example,
in a narrow meaning of unpooling with respect to max pooling, one can copy the
max pooled signal at the original location as shown in Fig. 7.9a. Or one could
perform a transpose operation to copy all the pooled signal to the enlarged area
as shown in Fig. 7.9b, which is often called the deconvolution. Regardless of the
definition, unpooling tries to enlarge the downsampled image.

It was believed that a pooling layer is necessary to impose the spatial invariance
in classification tasks [43]. The main ground for this claim is that small movements
in the position of the feature in the input image will result in a different feature
map after the convolution operation, so that spatially invariant object classification
may be difficult. Therefore, downsampling to a lower resolution version of an input
signal without the fine detail may be useful for the classification task by imposing
invariance to translation.
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Fig. 7.9 Two ways of unpooling. (a) Copying to the original location (unpooling), (b) copying to
all neighborhood (deconvolution)

However, these classical views have been challenged even by the deep learning
godfather, Geoffrey Hinton. In “Ask Me Anything” column on Reddit he said, “the
pooling operation used in convolutional neural networks is a big mistake and the
fact that it works so well is a disaster. If the pools do not overlap, pooling loses
valuable information about where things are. We need this information to detect
precise relationships between the parts of an object. . . ”.

Regardless of Geoffrey Hinton’s controversial comment, the undeniable advan-
tage of the pooling layer results from the increased size of the receptor field.
For example, in Fig. 7.10a,b we compare the effective receptive field sizes, which
determine the areas of input image affecting a specific point at the output image
of a single resolution network and U-Net, respectively. We can clearly see that
the receptive field size increases linearly without pooling, but can be expanded
exponentially with the help of a pooling layer. In many computer vision tasks, a
large receptive field size is useful to achieve better performance. So the pooling and
unpooling are very effective in these applications.

Before we move on to the next topic, a remaining question is whether there exists
a pooling operation which does not lose any information but increases the receptive
field size exponentially. If there is, then it does address Geoffrey Hinton’s concern.
Fortunately, the short answer is yes, since there exists an important advance in this
field from the geometric understanding of deep neural networks [40, 42]. We will
cover this issue later when we investigate the mathematical principle.
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Fig. 7.10 Receptive fields of
networks (a) without pooling
layers, (b) with pooling layers

7.3.3 Skip Connection

Another important building block, which has been pioneered by ResNet [33] and
also by U-Net [38], is the skip connection. For example, as shown in Fig. 7.11, the
feature map output from the internal block is given by

y = F(x)+ x,

where F(x) is the output of the standard layers in the CNN with respect to the input
x, and the additional term x at the output comes directly from the input.

Thanks to the skipped branch, ResNet [33] can easily approximate the identity
mapping, which is difficult to do using the standard CNN blocks. Later we will
show that additional advantages of the skip connection come from removing local
minimizers, which makes the training much more stable [35, 36].
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Fig. 7.11 Skip connection in ResNet

7.4 Training CNNs

7.4.1 Loss Functions

When a CNN architecture is chosen, the filter kernel should be estimated. This is
usually done during a training phase by minimizing a loss function. Specifically,
given input data x and its label y ∈ R

m, an average loss is defined by

c(�) := E[
 (y,f �(x)
)], (7.5)

whereE[·] denotes the mean, 
(·) is a loss function, and f �(x) is a CNN with input
x, which is parameterized by the filter kernel parameter set �. In (7.5), the mean is
usually taken empirically from training data.

For the multi-class classification problem using CNNs, one of the most widely
used losses is the softmax loss [44]. This is a multi-class extension of the binary
logistic regression classifier we studied before. A softmax classifier produces nor-
malized class probabilities, and also has a probabilistic interpretation. Specifically,
we perform the softmax transform:

p̂(�) = ef�(x)

1�ef�(x)
, (7.6)
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where ef�(x) denotes the element-by-element application of the exponential. Then,
using the softmax loss, the average loss is computed by

c(�) = −E
[
m∑
i=1

yi log p̂i(�)

]
, (7.7)

where yi and p̂i denote the i-th elements of y and p̂, respectively. If the class label
y ∈ R

m is normalized to have probabilitistic meaning, i.e. 1�y = 1, then (7.7) is
indeed the cross entropy between the target class distribution and the estimated class
distribution.

For the case of regression problems using CNNs, which are quite often used for
image processing tasks such as denoising, the loss function is usually defined by the
norm, i.e.

c(�) = E‖y − f�(x)‖pp (7.8)

where p = 1 for the l1 loss and p = 2 for the l2 loss.

7.4.2 Data Split

In training CNNs, available data sets should be first split into three categories:
training, validation, and test data sets, as shown in Fig. 7.12. The training data is also
split into mini-batches so that each mini-batch can be used for stochastic gradient
computation. The training data set is then used to estimate the CNN filter kernels,
and the validation set is used to monitor whether there exists any overfitting issue in
the training.

For example, Fig. 7.13a shows the example of overfitting that can be monitored
during the training using the validation data. If this type of overfitting happens,
several approaches should be taken to achieve stable training behavior as shown in
Fig. 7.13b. Such a strategy will be discussed in the following section.

Fig. 7.12 Available data split into training, validation, and test data sets
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Fig. 7.13 Neural network training dynamics: (a) overfitting problems, (b) no overfitting

7.4.3 Regularization

When we observe the overfitting behaviors similar to Fig. 7.13a, the easiest solution
is to increase the training data set. However, in many real-world applications, the
training data are scarce. In this case, there are several ways to regularize the neural
network training.

7.4.3.1 Data Augmentation

Using data augmentation we generate artificial training instances. These are new
training instances created, for example, by applying geometric transformations such
as mirroring, flipping, rotation, on the original image so that it doesn’t change the
label information.
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Fig. 7.14 Example of dropout

7.4.3.2 Parameter Regularization

Another way to mitigate the overfitting problem is by adding a regularization term
for the original loss. For example, we can convert the loss in (7.5) to the following
form:

creg(�) := E[

(
y,f �(x)

)] + R(�), (7.9)

where R(�) is a regularization function. Recall that similar techniques were used
in the kernel machines.

7.4.3.3 Dropout

Another unique regularization used for deep learning is the dropout [45]. The idea of
a dropout is relatively simple. During the training time, at each iteration, a neuron is
temporarily “dropped” or disabled with probability p. This means all the inputs and
outputs to some neurons will be disabled at the current iteration. The dropped-out
neurons are resampled with probability p at every training step, so a dropped-out
neuron at one step can be active at the next one. See Fig. 7.14. The reason that the
dropout prevents overfitting is that during the random dropping, the input signal for
each layer varies, resulting in additional data augmentation effects.

7.5 Visualizing CNNs

As already mentioned, hierarchical features arise in the brain during visual informa-
tion processing. A similar phenomenon can be observed in the convolution neural
network, once it is properly trained. In particular, VGGNet provides very intuitive
information that is well correlated with the visual information processing in the
brain.

For example, Fig. 7.15 illustrates the input signal that maximizes the filter
response at specific channels and layers of VGGNet [31]. Remember that the filters
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Fig. 7.15 Input images that maximize filter responses at specific channels and layers of VGGNet

are of size 3×3, so rather than visualizing the filters, an input image where this filter
activates the most is displayed for specific channel and layer filters. In fact, this is
similar to the Hubel and Wiesel experiments where they analyzed the input image
that maximizes the neuronal activation.

Figure 7.15 shows that at the earlier layers the input signal maximizing filter
response is composed of directional edges similar to the Hubel and Wiesel
experiment. As we go deeper into the network, the filters build on each other and
learn to code more complex patterns. Interestingly, the input images that maximize
the filter response get more complicated as the depth of the layer increases. In one
of the filter sets, we can see several objects in different orientations, as the particular
position in the picture is not important as long as it is displayed somewhere where
the filter is activated. Because of this, the filter tries to identify the object in multiple
positions by encoding it in multiple places in the filter.

Finally, the blue box in Fig. 7.15 shows the input images that maximize the
response on the last softmax level in the specific classes. In fact, this corresponds to
the visualization of the input images that maximize the class categories. In a certain
category, an object is displayed several times in the images. The emergence of the
hierarchical feature from simple edges to the high-level concept is similar to visual
information processing in the brain.

Finally, Fig. 7.16 visualizes the feature maps on the different levels of VGGNets
in relation to a cat picture. Since the output of a convolution layer is a 3D volume, we
will only visualize some of the images. As can be seen from Fig. 7.16, a feature map
develops from edge-like features of the cat to information with the lower-resolution,
which describes the location of the cat. In the later levels, the feature map works with
a probability map in which the cat is located.
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Fig. 7.16 Visualization of feature maps at several channels and layers of VGGNets when the input
image is a cat

7.6 Applications of CNNs

CNN is the most widely used neural network architecture in the age of modern
AI. Similar to the visual information processing in the brain, the CNN filters are
trained in such a way that hierarchical features can be captured effectively. This can
be one of the reasons for CNN’s success with many image classification problems,
low-level image processing problems, and so on.

In addition to commercial applications in unmanned vehicles, smartphones,
commercial electronics, etc., another important application is in the field of
medical imaging. CNN has been successfully used for disease diagnosis, image
segmentation and registration, image reconstruction, etc.

For example, Fig. 7.17 shows a segmentation network architecture for cancer
segmentation. Here, the label is the binary mask for cancer, and the backbone CNN
is based on the U-Net architecture, where there exists a softmax layer at the end
for pixel-wise classification. Then, the network is trained to classify the background
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Fig. 7.17 Cancer segmentation using U-Net

Fig. 7.18 CNN-based low-dose CT denoising

and the cancer regions. Very similar architecture can be also used for noise removal
in low-dose CT images, as shown in Fig. 7.18. Instead of using the softmax layer,
the network is trained with a regression loss of l1 or l2 using the high-quality, low-
noise images as a reference. In fact, one of the amazing and also mysterious parts of
deep learning is that a similar architecture works for different problems simply by
changing the training data.

Because of this simplicity in designing and training CNNs, there are many
exciting new startups targeting novel medical applications of AI. As the importance
of global health care increases with the COVID-19 pandemic, medical imaging
and general health care are undoubtedly among the most important areas of AI.
Therefore, for the application of AI to health, opportunities are so numerous that
we need many young, bright researchers who can invest their time and effort in AI
research to improve human health care.

7.7 Exercises

1. Consider the VGGNet in Fig. 7.2. In its original implementation, the convolution
kernel was 3× 3.

a. What is the total number of convolution filter sets in VGGNet?
b. Then, what is the total number of trainable parameters in VGGNet including

convolution filters and fully connected layers? (Hint: for the fully connected
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layers, the number of parameters should be input dimension × output
dimension).

2. Let your neural network code for Modified National Institute of Standards and
Technology database (MNIST) classification be denoted by f �(x), where �

represents trainable parameters and x is the input image. The last layer of your
neural network should be the softmax layer given by

p̂(�) = ef�(x)

1�ef�(x)
, (7.10)

where ef�(x) denotes the element-by-element application of the exponential.

a. What is the meaning of the softmax layer?
b. Suppose you define the loss function for the MNIST classifier by

c(�) = −E
[

10∑
i=1

yi log p̂i(�)

]
, (7.11)

where p̂i denotes the i-th element of p̂. Then, what is {yi}10
i=1? Provide

answers when the label has the values 1 and 5.

3. For the given U-Net architecture in Fig. 7.5, compute the effective receptive
field size. Now, suppose that there exist no pooling layers. What is the effective
receptive field size?

4. Let u = [u[0], · · · , u[n − 1]]� ∈ R
n and v = [v[0], · · · , v[n − 1]]� ∈ R

n. We
define a circular convolution between the two vectors:

(u� v)[n] =
n−1∑
i=0

u[n− i]v[n],

where the periodic boundary condition is assumed. Now, for any vector x ∈ R
n1

and y ∈ R
n2 with n1, n2 ≤ m, define their circular convolution in R

n:

x � y = x0 � y0,

where x0 = [x, 0n−n1]� and y0 = [y, 0n−n2]�. Finally, for any v ∈ R
n1 with

n1 ≤ n, define the flip v[n] = v0[−n].
a. For an input signal x ∈ R

n and a filter ψ ∈ R
n, show that

y = x � ψ = H
n
r (x)ψ , (7.12)
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where H
n
r (x) ∈ R

n×r is a wrap-around Hankel matrix:

H
n
r (x) =

⎡
⎢⎢⎢⎣

x[0] x[1] · · · x[r − 1]
x[1] x[2] · · · x[r]
...

...
. . .

...

x[n− 1] x[n] · · · x[r − 2]

⎤
⎥⎥⎥⎦ . (7.13)

b. For an input signal x ∈ R
n and a filter ψ ∈ R

r with r ≤ n, show the following
commutative relationship for the circular convolution in R

n:

x � ψ = H
n
r (x)ψ = H

n
n(ψ)x = ψ � x. (7.14)

c. For a given f ,u ∈ R
n and v ∈ R

r with r ≤ n, show that

u�Fv = u� (f � v) = f� (u � v) = 〈f ,u � v〉, (7.15)

where F = H
n
r (f ).

d. Let the multi-input single-output (MISO) circular convolution for the p-
channel input Z = [z1, · · · , zp] ∈ R

n×p and the output y ∈ R
n be defined

by

y =
p∑
j=1

zj � ψ
j
, (7.16)

where ψ i ∈ R
r denotes a r-dimensional vector and ψ i ∈ R

n refers to its flip.
Then, show that (7.16) can be represented in a matrix form:

y = Z � � = H
n
r|p (Z)�, (7.17)

where

� =
⎡
⎢⎣

ψ1

...

ψp

⎤
⎥⎦

and

H
n
r|p (Z) :=

[
H
n
r (z1) H

n
r (z2) · · · Hnr (zp)

]
. (7.18)
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e. Let the multi-input multi-output (MIMO) circular convolution for the p-
channel input Z = [z1, · · · , zp] ∈ R

n×p and q-channel output Y =
[y1, · · · , yq ] ∈ R

n×q be defined by

yi =
p∑
j=1

zj � ψ i,j , i = 1, · · · , q, (7.19)

where p and q are the number of input and output channels, respectively;
ψ i,j ∈ R

r denotes a r-dimensional vector and ψ i,j ∈ R
n refers to its flip.

Then, show that (7.19) can be represented in a matrix form by

Y =
p∑
j=1

H
n
r (zj )�j = H

n
r|p (Z)�,

where

� =
⎡
⎢⎣

�1
...

�p

⎤
⎥⎦ where �j =

[
ψ1,j · · · ψq,j

]
.

f. In convolutional neural networks (CNNs), a 1×1 convolution often follows
the convolution layer. For 1-D signals, this operation can be written as

yi =
p∑
j=1

wj

(
zj � ψ i,j

)
, i = 1, · · · , q, (7.20)

where wj denotes the j -th index of 1×1 convolution filter weighting. Show
that this can be represented in a matrix form by

Y =
p∑
j=1

wjH
n
r (zj )�j = H

n
r|p (Z)�w, (7.21)

where

�w =
⎡
⎢⎣
w1�1
...

wp�p

⎤
⎥⎦ . (7.22)



Chapter 8
Graph Neural Networks

8.1 Introduction

Many important real-world data sets are available in the form of graphs or networks:
social networks, world-wide web (WWW), protein-interaction networks, brain
networks, molecule networks, etc. See some examples in Fig. 8.1. In fact, the
complex interaction in real systems can be described by different forms of graphs,
so that graphs can be a ubiquitous tool for representing complex systems.

A graph consists of nodes and edges as shown in Fig. 8.2. Although it looks
simple, the main technical problem is that the number of nodes and edges in
many interesting real-world problems is very large, and cannot be traced by simple
inspection. Accordingly, people are interested in different forms of machine learning
approaches to extract useful information from diagrams.

With a machine learning tool, for example, a node classification can be carried
out in which different labels are assigned to each node in a complex diagram. This
could be used to classify the function of proteins in the interaction network (see
Fig. 8.3a). Link analysis is another important problem in graph machine learning,
which is about finding missing links between nodes. As shown in Fig. 8.3b, link
analysis can be used for repurposing drugs for new types of pathogens or diseases.
Yet another important goal of graph analysis is community detection. For example,
one could identify a subnetwork that consists of disease proteins (see Fig. 8.3c).

Despite the wide range of possible applications, approaches to neural networks in
graphs are not as mature as other studies of neural networks for images, voices, etc.
This is because the processing and learning of graph data require new perspectives
on neural networks.

For example, as shown in Fig. 8.4, the basic assumption of convolutional neural
networks (CNNs) is that images have pixel values on regular grids, but graphs
have irregular node and edge structure so that the applications of basic modules
such as convolution, pooling, etc., are not easy. Another serious problem is that,
although CNN training data consists of images or their patches of the same size, the
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Fig. 8.1 Examples of graphs in real life

Fig. 8.2 Nodes and edges in a graph

training data of the graph neural network usually consists of graphs with different
numbers of nodes, network topology, and so on. For example, in graphical neural
network approaches for examining the toxicity of drug candidates, the chemicals
in the training data set can have a different number of molecules. This leads to the
fundamental question in the graph machine learning task: What do we learn from
the training data?

In fact, the main advantage of neural network approaches over other machine
learning approaches like compressed sensing [46] and low-rank matrix factorization
[47], etc. is that the neural network approaches are inductive, which means that the
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Fig. 8.3 Several application goals of machine learning on graphs: (a) node classification, (b) link
analysis, (c) community detection

Fig. 8.4 Difference between image domain CNN and graph neural network

trained neural network is not just applied to the data on which the network resides
and was originally trained, but also to other unseen data during training.

However, given that each graph in training data is different in its structure (for
example, with different node and edge numbers and even topology), what kind of
inductive information can we get from the graph neural network training? Although
the universal approximation theorem [48] guarantees that neural networks can
approximate any nonlinear function, it is not even clear which nonlinear function
a graph neural network tries to approximate.

Hence the main aim of this chapter is to answer these puzzling questions. In fact,
we will focus on how machine learning researchers came up with brilliant ideas to
enable inductive learning independent of different graph structures in the training
phase.

8.2 Mathematical Preliminaries

Before we discuss graph neural networks, we review basic mathematical tools from
graph theory.
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Fig. 8.5 Examples of graphs
and their adjacency matrices

8.2.1 Definition

We denote a graph G = (V ,E) with a set of vertices V (G) = {1, · · · , N} with
N := |V | and edges E(G) = {eij }, where an edge eij connects vertices i and j if
they are adjacent or neighbors. The set of neighborhoods of a vertex v is denoted
by N(v). For weighted graphs, the edge eij has a real value. If G is an unweighted
graph, then E is a sparse matrix with elements of either 0 or 1.

For a simple unweighted graph with vertex set V , the adjacency matrix is a square
|V |×|V |matrix A such that its element auv is one when there is an edge from vertex
u to vertex v, and zero when there is no edge. See Fig. 8.5 for some examples of
adjacency matrices for undirected graphs. Note that the dimension of the adjacency
matrix varies depending on the number of nodes in the graph.

8.2.2 Graph Isomorphism

A graph can exist in different forms having the same number of vertices, edges,
and also the same edge connectivity. Such graphs are called isomorphic graphs.
Formally, two graphs G and H are said to be isomorphic if (1) their numbers
of components (vertices and edges) are equal, and (2) their edge connections are
identical. Some examples of isomorphic graphs are shown in Fig. 8.6.

Graph isomorphism is widely used in many areas where identifying similarities
between graphs is important. In these areas, the graph isomorphism problem is often
referred to as the graph matching problem. Some practical uses of graph isomor-
phism include identifying identical chemical compounds in different configurations,
checking equivalent circuits in electronic design, etc.

Unfortunately, testing graph isomorphism is not a trivial task. Even if the number
of nodes is the same, two isomorphic graphs, for example, can have different
adjacency matrices, since the order of the nodes in the isomorphic graph can be
arbitrary, but the structure of their adjacency matrices is critically determined by
the order of the nodes. In fact, the graph isomorphism problem is one of the few
standard problems whose complexity remains unsolved.
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Fig. 8.6 Examples of
isomorphic graphs. All four
graphs are isomorphic to each
other

8.2.3 Graph Coloring

A node coloring is a function V (G) �→ � with arbitrary codomain �. Then a
node colored or colored graph (G, l) is a graph G endowed with a node coloring
l : V (G) �→ �. We say that l(v) is a color of v ∈ V (G).

Figure 8.7 shows an example of graph coloring in a molecular system [49]. In
the initial phase, each node is colored with feature vectors that consist of various
chemical properties. In this case, the codomain is � ⊂ R

5. Using machine learning
approaches, the node colors can be updated sequentially by taking into account the
color information of neighboring nodes to extract useful global properties of the
molecule.

8.3 Related Works

Since each diagram in the training data has a different configuration, the main
concern of machine learning of graphs is to assign latent vectors in the common
latent space to graphs, subgraphs, or nodes so that standard CNN, perceptron, etc.
can be applied to the latent space for inference or regression. This procedure is often
called graph embedding, as shown in Fig. 8.8. One of the most important research
topics in graph neural networks is to find an inductive rule for the graph embedding
that can be applied to graphs with a different number of nodes, topologies, etc.

Unfortunately, one of the difficulties associated with the graphs is that they are
unstructured. In fact, there is a lot of unstructured data that we encounter in everyday
life, and one of the most important classes of unstructured data is natural language.
Therefore, many of the graphics machine learning techniques are borrowed from
natural language processing (NLP). So this section explains the key idea of natural
language processing.
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Fig. 8.7 Node coloring example in a molecular system. (a) Initial coloring with feature vectors,
(b) its successive update using a machine learning approach

Fig. 8.8 Concept of graph embedding to a latent vector

8.3.1 Word Embedding

Word embedding is one of the most popular representations for natural language
processing. Basically, it is a vector representation of a particular word that can
capture the context of a word in a document, its semantic and syntactic similarity,
its relationship to other words, and so on.

For example, consider a vocabulary “king”. From its semantic meaning, one
could come to the following conclusion:

King – Man + Woman = Queen. (8.1)
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Fig. 8.9 Example of vector
operation via word
embedding

However, there is no mathematical operation in natural language to formally derive
(8.1). Hence, the idea of word embedding is to perform this operation through vector
operations in latent space. Specifically, let V(·) denote a mapping of a vocabulary
to a vector in R

d . Then, the goal of the word embedding is to find the mappings V
so that

V(King)−V(Man)+V(Woman) = V(Queen). (8.2)

This concept is illustrated in Fig. 8.9. There are several ways to embed a word. The
main problem here is to represent each word in large text as a vector so that similar
words are close together in latent space.

Among the various ways of performing word embedding, the so-called word2vec
is one of the most frequently used methods [50, 51]. Word2vec is composed of
a two-layer neural network. The network is trained in two complementary ways:
continuous bag of words (CBOW) and skip-gram. The key idea of these approaches
is that there are significant causal relationships and redundancies between words in
natural languages, the information of which can be used to embed words in vector
space. In the following, we describe them in detail.

8.3.1.1 CBOW

CBOW begins with the assumption that a missing word can be found from its
surrounding words in the sentence. For example, consider a sentence: The big dog
is chasing the small rabbit. The idea of CBOW is that a target word in the sentence
(which is usually the center word), for example, “dog” as shown in Fig. 8.10, can be
estimated from the nearby words within the context window (for example, using
“big” and “is” for the case of context window size c = 1). In general, for a
given context window size c, the i-th word xi is assumed to be estimated using
the adjacent words within a window, i.e. {xj | j ∈ Ic(i)}, as shown in Fig. 8.10,
where

Ic(i) := {i − c, · · · , i − 1, i + 1, · · · , i + c}. (8.3)
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Fig. 8.10 Example of context and center words in CBOW

Fig. 8.11 Encoder–decoder structure of CBOW

Now, here comes the fun part. In CBOW, rather than directly estimating the word
xi , it employs an encoder-decoder structure as depicted in Fig. 8.11. Specifically, an
encoder, represented by the shared weight W , converts input xn into a corresponding
latent space vector, and then the decoder with the weight W̃ converts the latent
vector into the estimate of the target word x̂i .

Furthermore, one of the most important assumptions of CBOW is that the latent
vector of the missing word is represented as the average value of the latent vectors
of the adjacent words, i.e.

hi = 1

2c − 1

∑
k∈Ic(i)

Wxk. (8.4)
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Fig. 8.12 Example of
one-hot vector encoding for
vocabularies

Specifically, using the 2c − 1 input vectors and the shared encoder weight, we
generate 2c − 1 latent vectors, after which their average value is generated. Then,
the center word is estimated by decoding from the averaged latent vector with the
weight W̃ :

x̂i = W̃
�
hi . (8.5)

Note that other than the softmax unit in the network output, which will be explained
later, there are no non-linearities in the hidden layer of CBOW.

To start off, one should first build the corpus vocabulary, where we could map
each vocabulary to a unique numeric identifier xi . For example, if the corpus size is
M , then xi is an M-dimensional vector with one-hot vector encoding as shown in
Fig. 8.12. Once the neural network in CBOW is trained, the word embedding can be
simply done using the encoder part of the network.

The very strict assumption that the center word may be similar to the average of
the surrounding vocabularies in the latent space works amazingly well, and CBOW
is one of the most popular classical word embedding techniques [50, 51].

8.3.1.2 Skip-Gram

Skip-gram can be seen as a complementary idea of CBOW. The main idea behind
the skip-gram model is this: once the neural network is trained, the latent vector
generated by the focus word can predict every word in the window with high
probability. For example, Fig. 8.13 shows the example of how we extract the focus
word and the target word within different window sizes. Here the green word is the
focus word from which the target words in the window are estimated.
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Fig. 8.13 The focus and target vocabularies in skip-gram training

Similar to CBOW, the neural network training is carried out in the form of latent
vectors. In particular, the focus word encoded with a one-hot vector is converted to
a latent vector using an encoder with the weight W , and then the latent vector is

decoded via a parallel decoder network with the shared weight W̃
�

, as shown in
Fig. 8.14. So the basic assumption of skip-gram can be written by

xj % W̃
�
hi , ∀j ∈ Ic(i), (8.6)

where the latent vector hi is given by

hi = Wxi . (8.7)

Again, there are no non-linearities in the hidden layer of skip-gram other than the
softmax unit in the network output.

8.3.2 Loss Function

The loss function for the neural network training in word2vec deserves further
discussion. Similar to the classification problem, the loss function is based on the
cross entropy between the target word and the generated word from the decoder.
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Fig. 8.14 Encoder–decoder
structure of skip-gram

In the case of CBOW in particular, it should be remembered that the target
vector xi is also a one-hot encoded vector. Let tk denote the nonzero index of the
vocabulary vector xk . Then, the loss function of CBOW can be written as a softmax
function:


CBOW(W , W̃ ) = − log

(
e
w̃�ti hi

∑M
k=1 e

w̃�tkhi

)

= −w̃�ti hi + log

(
M∑
k=1

e
w̃�tkhi
)
, (8.8)

where the latent vector hi is given by the average latent vector in (8.4). On the other
hand, the loss function for the skip-gram is given by


skipgram(W , W̃ ) = − log

⎛
⎝

C∏
j∈Ic(i)

e
w̃�tj hi

∑M
k=1 e

w̃�tkhi

⎞
⎠

= −
∑
j∈Ic(i)

w̃�tjhi + C log

(
M∑
k=1

e
w̃�tkhi
)
, (8.9)

where the latent vector hi is given by (8.7).
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In both approaches, the computationally intensive step is the calculation of the
denominator terms, since we have to calculate them for each corpus of size M .
One of the main research efforts is to approximate this term without sacrificing the
accuracy [50, 51].

8.4 Graph Embedding

Similar to word embedding, graph embedding is used to convert nodes, subgraphs,
and their features into vectors in latent space so that similar nodes, subgraphs, and
features are close together in latent space.

As summarized in Fig. 8.15, currently there exist three types of approaches
for graph embedding: matrix factorization, random walks, and neural network
approaches [52]. In the following, we first briefly review the first two approaches,
then we discuss neural network approaches in detail.

8.4.1 Matrix Factorization Approaches

The main assumption of matrix factorization approaches for graph embedding is that
an adjacency matrix can be decomposed into low rank matrices. More specifically,
for a given adjacency matrix A ∈ R

N×N , its low rank matrix decomposition is to
find U ,V ∈ R

N×d such that

A % UV �, (8.10)

Fig. 8.15 Various approaches for graph embedding
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where d is the latent space dimension. Then, the i-th node embedding in the latent
space R

d is given by

hi = V �xi ∈ R
d ,

where xi ∈ R
N is again the one-hot vector encoded i-th node vector.

Aside from the computational complexity of matrix decomposition, there are
several limitations in matrix factorization approaches as a graph embedding. First,
to use a matrix factorization approach, the number of the nodes should be the same.
Second, the approach is not inductive, but rather transductive. This means that the
learned embedding transform only works for the graph with the same adjacency
matrix and if the connectivity changes, the embedding does not hold anymore.

8.4.2 Random Walks Approaches

Random walks approaches for graph embedding are very closely related to the word
embedding, in particular, word2vec [50, 51]. Here, we review two powerful random
walk approaches: DeepWalks [53] and node2vec [54].

8.4.2.1 DeepWalks

The main intuition of DeepWalks [53] is that random walks are comparable to
sentences in the word2vec approach so that word2vec can be used for embedding
each node of a graph. More specifically, as depicted in Fig. 8.16, the method
basically consists of three steps:

• Sampling: A graph is sampled with random walks. A few random walks with
specific length are performed from each node.

• Training skip-gram: The skip-gram network is trained by accepting a node from
the random walk as a one-hot vector as an input and target.

• Node embedding: From the encoder part of the trained skip-gram, each node in
a graph is embedded into a vector in the latent space.

Fig. 8.16 Graph node embedding using DeepWalks
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Fig. 8.17 BFS and DFS random walks in node2vec

8.4.2.2 Node2vec

Node2vec is a modification of DeepWalks with subtle but significant differences.
Node2vec is parameterized by two parameters p and q. The parameter p prioritizes
a breadth-first-search (BFS) procedure, while the parameter q prioritizes a depth-
first-search (DFS) procedure. The decision of where to walk next is therefore
influenced by probabilities 1/p or 1/q. As shown in Fig. 8.17, BFS is ideal
for learning local neighbors, while DFS is better for learning global variables.
Node2vec can switch to and from the two priorities depending on the task. Other
procedures, such as the use of skip-gram, are exactly the same as DeepWalks.

8.4.3 Neural Network Approaches

Recently, there has been significant progress and growing interest in graph neural
networks (GNNs), which comprise graph operations performed by deep neural net-
works. For example, spectral graph convolution approaches [55], graph convolution
network (GCN) [56], graph isomorphism network (GIN) [57], graphSAGE [58], to
just name a few.

Although these approaches have been derived from different assumptions and
approximations, common GNNs typically integrate the features on each layer
in order to embed each node features into a predefined feature vector of the
next layer. The integration process is implemented by selecting suitable functions
for aggregating features of the neighborhood nodes. Since a level in the GNN
aggregates its 1-hop neighbors, each node feature is embedded with features in
its k-hop neighbor of the graph after k aggregation layers. These features are then
extracted by applying a readout function to obtain a nodal embedding.
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Specifically, let x
(t)
v denote the t-th iteration feature vector at the v-th node.

Then, this graph operation is generally composed of the AGGREGATE, and
COMBINE functions:

a(t)v = AGGREGATE
({{

x(t−1)
u : u ∈ N(v)

}})
,

x(t)v = COMBINE
(
x(t−1)
v , a(t)v

)
,

where the AGGREGATE function collects features of the neighborhood nodes to
extract the aggregated feature vector a

(t)
v , and COMBINE function then combines

the previous node feature x
(t−1)
v with aggregated node features a

(t)
v to output the

node feature x
(t)
v .

One of the most important considerations in designing GNNs as a graph
embedding method is that the AGGREGATE function is a function of {{·}}
that denotes the multiset. Multiset is a set (a collection of elements where the
order is not important) where elements may appear multiple times. Therefore, the
AGGREGATE function should be operated with various sets of nodes and should
be independent of the order of the elements in the sets.

The importance of the condition is well illustrated in Fig. 8.18. For example, at
t = 1, each node has distinct set of neighborhood nodes, so the neural network
should be applicable for all these node configurations with the shared weight.
Similar situations can happen at t = 2, since the nodes A and B have three and
two connecting nodes, respectively. One simple example of an AGGREGATE

Fig. 8.18 Example of aggregation function operation in a GNN
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function that satisfies this requirement is a sum operation:

a(t)v = AGGREGATE
({{

x(t−1)
u : u ∈ N(v)

}})

=
∑
u∈N(v)

x(t−1)
u . (8.11)

Although this sum operation is one of the most popular approaches in GNNs, we
can consider a more general form of the operation with desirable properties. This is
the main topic in the following section.

8.5 WL Test, Graph Neural Networks

Compared to the matrix factorization and random walks approaches, the success
of graph embedding using neural networks appears mysterious. This is because in
order to be a valid embedding, the semantically similar input should be closely
located in the latent space, but it is not clear whether the graph neural network
produces such behaviors.

For the case of matrix factorization, the embedding transform is obtained from
the assumption that the latent vector should live in the low-dimensional subspace.
For the case of random walks, the underlying intuition for the embedding is similar
to that of word2vec. Therefore, these approaches are guaranteed to retain semantic
information in the latent space. Then, how do we know that the neural-network-
based graph embedding also conveys the semantic information?

This understanding is particularly important because a GNN algorithm is usually
designed as an empirical algorithm and not based on the top-down principle in
order to achieve the desired embedding properties. Recently, a number of authors
[57, 59–62] has shown that the GNN is indeed a neural network implementation
of Weisfeiler–Lehman (WL) graph isormorphism test [63]. This implies that if the
embedding vectors of a GNN are distinct from each other, then the corresponding
graphs are not isormophic. Therefore, GNNs may retain useful semantic information
during the embedding. In this section, we review this exciting discovery in more
detail.

8.5.1 Weisfeiler–Lehman Isomorphism Test

As discussed before, determining whether two graphs are isomorphic is a challeng-
ing problem. It is not even known whether there is a polynomial time algorithm for
determining whether graphs are isomorphic.

In this sense, the Weisfeiler–Lehman (WL) algorithm [63] is a mechanism to
efficiently assign fairly unique attributes. The core idea of the Weisfeiler–Lehman
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isomorphism test is to find a signature for each node in each graph based on
the neighborhood around the node. These signatures can then be used to find the
correspondence between nodes in the two graphs. Specifically, if the signatures of
two graphs are not equivalent, then the graphs are definitively not isomorphic.

We now describe the WL algorithm formally. For a given colored graph G,
the WL computes a node coloring c

(t)
v : V (G) �→ �, depending on the coloring

from the previous iteration. To iterate the algorithm, we assign each node a tuple
that contains the old compressed label (or color) of the node and a multiset of the
compressed labels (colors) of the neighbors of the node:

m(t)v =
{
c(t)v ,
{{

c(t)u | u ∈ N(v)
}}}
, (8.12)

where {{·}} denotes the multiset, which is a set (a collection of elements where order
is not important) in which elements may appear more than once. Then, HASH(·)
bijectively assigns the above pair to a unique compressed label that was not used in
previous iterations:

c(t+1)
v = HASH

(
m(t)v

)
. (8.13)

If the number of colors does not change between two iterations, then the algorithm
ends. This procedure is illustrated in Fig. 8.19.

To test two graphs G and H for isomorphism, we run the above algorithm
in “parallel” on both graphs. If the two graphs have different numbers of nodes,
which are colored in the WL algorithm, it is concluded that the graphs are not
isomorphic. In the algorithm described above, the “compressed labels” serve as

Fig. 8.19 WL algorithm for graph isormorphism test
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signatures. However, it is possible that two non-isomorphic graphs have the same
signatures, so this test alone cannot provide conclusive evidence that two graphs are
isomorphic. However, it has been shown that the WL test can be successful in the
graph isomorphism test with a high degree of probability. This is the main reason
the WL test is so important [63].

8.5.2 Graph Neural Network as WL Test

Recall that a GNN computes a sequence {x(t)v }v∈V for t ≥ 0 of vector embeddings
of a graph G = (V ,E). In the most general form, the embedding is recursively
computed as

a(t)v = AGGREGATE
({{

x(t−1)
u : u ∈ N(v)

}})
, (8.14)

where {{·}} is the multi-set and the aggregation function is symmetric in its arguments,
and the updated feature vector is given by

x(t)v = COMBINE
(
x(t−1)
v , a(t)v

)
. (8.15)

From (8.14) and (8.15) in comparison with (8.12) and (8.13), if we identify x
(t)
v

as the coloring at the t-th iteration, i.e. c
(t)
v , then we can see that there are

remarkable similarities between GNN updates and the WL algorithm in terms of
their arguments, which are made up of multiset neighborhoods and the previous
node. In fact, these are not incidental findings; there is a fundamental equivalence
between them.

For example, in graph convolutional neural networks (GCNs) [56] and graph-
SAGE [58], theAGGREGATE function is given by an average operation, whereas
it is just a simple sum in the graph isormorphism network (GIN) [57]. One could use
the element-by-element max operation as the AGGREGATE function, or even a
long short-term memory (LSTM) can be used [58]. Similarly, a simple sum followed
by a multilayer percentron (MLP) can be used as the COMBINE function, or the
weighted sum or concatenation followed by an MLP could be used [58, 59]. In
general, the GNN operation can be represented by

x(t+1)
v = σ

(
W
(t)
1 x(t)v +

∑
u∈N(v)

W
(t)
2 x(t)u

)
, (8.16)

for some matrices W
(t)
1 ,W

(t)
2 and the nonlinearity σ(·) [59]. One of the important

discoveries in [59] is that for a given coloring {x(t−1)
v }v∈V , there always exist

matrices W
(t)
1 and W

(t)
2 which makes the update (8.16) equivalent to the WL

algorithm in (8.12) and (8.13). Therefore, the GNN is indeed a neural network
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implementation of the WL algorithm for the graph isomorphism test, and the way
GNNs produce node embedding is to map the graph to a signature that can be used
to test the graph matching.

8.6 Summary and Outlook

So far we have discussed the graphical neural network approach as a modern method
of performing graph embedding. The most important finding is that the GNN is
actually a neural network implementation of the WL test. Therefore, GNN fulfills
the important properties of embedding: if the two feature vectors in latent space are
different, the underlying graph is different.

The embedding of the graph with GNNs is by no means complete. In order to get
a really meaningful graph embedding, the vector operation in latent space should
have the same semantic meaning as in the original diagram, similar to that of word
embedding. However, it is still not clear whether the current GNN-based embedding
of graphs can lead to such versatile properties.

Hence, the field of graphic neural networks is still a wide open area of research
and the next level of breakthroughs will require many good ideas from young and
enthusiastic researchers.

8.7 Exercises

1. Show that every connected graph with n vertices has at least n− 1 edges.
2. For the case of CBOW, recall that the target vector xi is also a one-hot encoded

vector. Let tk denote the nonzero index of the vocabulary vector xk . Then, show
that the loss function of CBOW can be written as a softmax function:


CBOW(W , W̃ ) = − log

(
e
w̃�ti hi

∑M
k=1 e

w̃�tkhi

)

= −w̃�ti hi + log

(
M∑
k=1

e
w̃�tkhi
)
, (8.17)

where the latent vector hi is given by the average latent vector.
3. Classify, up to isomorphism, all connected graphs (simple or not simple) with 5

vertices and 5 edges. You may find that every simple, connected graph with 5
vertices and 5 edges is isomorphic to exactly one of the five cases.

4. Let G be a graph with 4 connected components and 20 edges. What is the
maximum possible number of vertices in G?
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5. The GIN was proposed as a special case of spatial GNNs suitable for graph clas-
sification tasks. The network implements the aggregate and combine functions
as the sum of the node features:

x(k)v = MLP(k)
(
(1+ ε(k)) · x(k−1)

v +
∑

u∈N(v) x
(k−1)
u

)
, (8.18)

where ε(k) = 0.1, and MLP is a multilayer perceptron with ReLU nonlinear-
ity.

a. Draw the corresponding graph, whose adjacency matrix is given by

A =

⎡
⎢⎢⎣

0 1 1 0
1 0 1 1
1 1 0 0
0 1 0 0

⎤
⎥⎥⎦ .

b. Suppose that the input node feature is a one-hot feature matrix:

X(0) =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

and the MLP weight matrix W (1) = W (2) is given by

W (1) =

⎡
⎢⎢⎣

0.1 −0.2 −0.3 0.4
−0.1 0.2 −0.3 0.4
0.4 0.3 0.2 −0.1
−0.4 0.3 0.2 −0.1

⎤
⎥⎥⎦ .

Then, obtain the next layer feature matrices X(1) and X(2) assuming that there
exists no bias at each MLP.



Chapter 9
Normalization and Attention

9.1 Introduction

In this chapter, we will discuss very exciting and rapidly evolving technical fields of
deep learning: normalization and attention.

Normalization originated from the batch normalization technique [41] that
accelerates the convergence of stochastic gradient methods by reducing the covariate
shift. The idea has been extended further to various forms of normalization, such
as layer norm [64], instance norm [65], group norm [66], etc. In addition to the
original use of normalization for better convergence of stochastic gradients, adaptive
instance normalization (AdaIN) [67] is another example where the normalization
technique can be used as a simple but powerful tool for style transfer and generative
models.

On the other hand, attention has been drawn to computer vision applications
based on intuition that we “attend to” a particular part when processing a large
amount of information [68–72]. Attention has played the key role in the recent
breakthroughs in natural language processing (NLP), such as Transformer [73],
Google’s Bidirectional Encoder Representations from Transformers (BERT) [74],
OpenAI’s Generative Pre-trained Transformer (GPT)-2 [75] and GPT-3 [76], etc.

For beginners, the normalization and attention mechanisms look very heuristic
without any clue for systematic understanding, which is even more confusing due
to their similarities. In addition, understanding AdaIN, Transformer, BERT, and
GPT is like reading recipes the researchers developed with their own secret sauces.
However, an in-depth study reveals a very nice mathematical structure behind their
intuition.

In this chapter, we first review classical and current state-of-the art normalization
and attention techniques, and then discuss their specific realization in various
deep learning architectures, such as style transfer [77–83], multi-domain image
transfer [84–87], generative adversarial network (GAN) [71, 88, 89], Transformer
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[73], BERT [74], and GPT [75, 76]. Then, we conclude by providing a unified
mathematical view to understand both normalization and attention.

9.1.1 Notation

In deep neural networks, a feature map is defined as a filter output at each layer. For
example, feature maps from VGGNet are shown in Fig. 9.1, where the input image
is a cat. Since there exist multiple channels at each layer, the feature map is indeed
a 3D volume. Moreover, during the training, multiple 3D feature maps are obtained
from a mini-batch.

Fig. 9.1 Examples of feature maps on one channel of each layer of VGGNet
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To make the notation simple for mathematical analysis, in this chapter a feature
map for each channel is vectorized. Moreover, we often ignore the layer-dependent
indices in the features. Specifically, the feature map on a layer is represented by

X = [x1 · · · xC
] ∈ R

HW×C, (9.1)

where xc ∈ R
HW×1 refers to the c-th column vector of X, which refers to the

vectorized feature map of size ofH×W at the c-th channel. We often useN := HW
to denote the number of pixels. Equation (9.1) is often represented with row vectors
to explicitly show the row dependency:

X =
⎡
⎢⎣

x1

...

xHW

⎤
⎥⎦ ∈ R

HW×C, (9.2)

where xi ∈ R
1×C refers to the i-th row vector, representing the channel dimensional

feature at the i-th pixel location.

9.2 Normalization

The basic idea of normalization is to normalize the input/feature layer by recentering
and rescaling, although specific details differ depending on algorithms. Perhaps the
most influential paper that has opened up the research field of normalization is on
batch normalization [41], reflected in the total number of 25k citations as of Feb.,
2021. Thus, we first review the batch normalization techniques, and discuss how
this evolves into different forms of the normalization techniques.

9.2.1 Batch Normalization

Batch normalization was originally proposed to reduce the internal covariate shift
and improve the speed, performance, and stability of artificial neural networks.
During the training phase of the networks, the distribution of the input on the
current layer changes accordingly if the distribution of the feature on the previous
layers changes, so that the current layer has to be constantly adapted to new
distributions. This problem is particularly severe for deep networks because small
changes in shallower hidden layers are amplified as they propagate through the
network, causing a significant shift in deeper hidden layers. The method of batch
normalization is therefore proposed to reduce these undesirable shifts by recentering
and scaling.
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Specifically, the batch normalization is carried out by the following transform:

yc =
γc

σ̄c
(xc − μ̄c1)+ βc1, (9.3)

for all c = 1, · · · , C, where 1 ∈ R
HW denotes the vector of ones, γc and βc are

trainable parameters for the c-th channel, and μ̄c and σ̄c are the mini-batch statistics
defined by

μ̄c = 1

HW
E[1�xc], (9.4)

σ̄c =
√

1

HW
E[‖xc − μ̄c1‖2], (9.5)

where the expectation E[·] is taken over the mini-batch. In matrix form, (9.3) can be
represented by

Y = XT + B, (9.6)

where

T =

⎡
⎢⎢⎣

γ1
σ̄1
· · · 0

...
. . .

...

0 · · · γC
σ̄C

⎤
⎥⎥⎦ , ∈ R

C×C (9.7)

B =
C︷ ︸︸ ︷[

1 · · · 1
]
⎡
⎢⎢⎣
β1 − γ1μ̄1

σ̄1
· · · 0

...
. . .

...

0 · · · βC − γCμ̄C
σ̄C

⎤
⎥⎥⎦ .

In addition to reducing the internal covariate shift, it is believed that batch
normalization has many other advantages. With this additional operation, the
network can use a higher learning rate without gradients vanishing or exploding.
In addition, the batch normalization appears to have a regularization effect so that
the network improves its generalization properties and therefore there is no need
to use dropout to reduce overfitting. It has also been observed that with the batch
normalization, the network becomes more robust towards different initialization
schemes and learning rates.

For example, Fig. 9.2 shows that the batch norm (BN) layer is used within
the structure of DenseNet [37] to improve the learning rate of the ImageNet
classification task. Similarly, a powerful CNN image denoiser was proposed in [90]
by just cascading BN layer, ReLU, and filter layers as shown in Fig. 9.3.
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Fig. 9.2 Batch norm layer in DenseNet

Fig. 9.3 The use of batch norm in CNN denoiser

9.2.2 Layer and Instance Normalization

Batch normalization is a powerful tool, but not without its limitations. The main
limitation of batch normalization is that it depends on the mini-batch when
calculating (9.4) and (9.5). Then, how can we mitigate the problem of batch
normalization?

To understand this question, let us look into the volume of the feature maps that
are stacked along the mini-batch in Fig. 9.4. The left column of Fig. 9.4 shows the
normalization operation in batch norm, whereby the shadow area is used to calculate
the mean and standard deviation for centering and rescaling. Here, B denotes the
size of the mini-batch.
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Fig. 9.4 Various forms of feature normalization methods. B: batch size, C: number of channels,
and H,W : height and width of the feature maps

In fact, the picture of batch norm shows that there are several normalization
options. For example, the layer normalization [64] computes the mean and standard
deviation along the channel and image direction without considering the mini-batch.
More specifically, we have

yc =
γ

σ
(xc − μ1)+ β1, (9.8)

for all c = 1, · · · , C. Here, γ and β are channel-independent trainable parameters,
while μ and σ are computed by

μ = 1

HWC

C∑
c=1

1�xc, (9.9)

σ =
√√√√ 1

HWC

C∑
c=1

‖xc − μ1‖2. (9.10)

In the layer normalization, each sample within the mini-batch has a different normal-
ization operation, allowing arbitrary mini-batch sizes to be used. The experimental
results show that layer normalization performs well for recurrent neural networks
[64].

On the other hand, the instance normalization normalizes the feature data for each
sample and channel as shown on the right-hand side of Fig. 9.4. More specifically,
we have

yc =
γc

σc
(xc − μc1)+ βc1, (9.11)
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for all c = 1, · · · , C, where

μc = 1

HW
1�xc, (9.12)

σc =
√

1

HW
‖xc − μc1‖2, (9.13)

whereas γc and βc are trainable parameters for the channel c. In matrix form, (9.11)
can be represented by

Y = XT + B, (9.14)

where T and B are similar to (9.7) but calculated for each sample.

9.2.3 Adaptive Instance Normalization (AdaIN)

With AdaIN [67], a new chapter of normalization method has opened, which
goes beyond the classical normalization methods that were designed to improve
the performance and reduce the dependency on learning rate. The most important
finding of AdaIN is that the instance normalization transformation in (9.11) provides
an important hint for the style transfer.

Before we discuss the details of AdaIN, we first explain the concept of image
style transfer. Figure 9.5 shows an example of image style transfer using AdaIN
[67]. Here, the top row shows the content images associated with the content feature
X = [x1, · · · , xC], while the left-most column corresponds to style images that are
associated with the style feature S = [s1, · · · , sC]. The aim of the image style
transfer is then to convert the content images into a stylized image that is guided by
a certain style image. How does AdaIN manage the style transfer in this context?

The main idea is to use the instance normalization in (9.11), but instead of using
γc and βc that are calculated by its own feature, these values are calculated as the
standard deviation and the mean value of the style image, i.e.

βsc =
1

HW
1�sc, (9.15)

γ sc =
√

1

HW
‖sc − β2

c 1‖2, (9.16)

where sc is the c-th channel feature map from the style image. In matrix form,
AdaIN can be represented by

Y = XT xT s + Bx,s , (9.17)
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Fig. 9.5 Examples of image style transfer using AdaIN [67]

where T x and T s are diagonal matrices computed from X and S, respectively:

T x =

⎡
⎢⎢⎣

1
σ1
· · · 0

...
. . .

...

0 · · · 1
σC

⎤
⎥⎥⎦ ∈ R

C×C (9.18)

T s =
⎡
⎢⎣
γ s1 · · · 0
...
. . .

...

0 · · · γ sC

⎤
⎥⎦ ∈ R

C×C, (9.19)
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Fig. 9.6 The network architecture of AdaIN style transfer

whereas Bx,s is the bias term computed using both X and S:

Bx,s =
C︷ ︸︸ ︷[

1 · · · 1
]
⎡
⎢⎢⎣
βs1 − γ s1

σ1
μ1 · · · 0

...
. . .

...

0 · · · βsC − γ sC
σC
μC

⎤
⎥⎥⎦ (9.20)

The generation of the style feature map can be done with the same encoder, as
shown in Fig. 9.6, whereby both content and style images are given as inputs for the
VGG encoder for feature vector extraction, from which the AdaIN layer changes
the style using the AdaIN operation described above.

9.2.4 Whitening and Coloring Transform (WCT)

The whitening and coloring transform (WCT) is another powerful method of image
style transfer [79], which is composed of a whitening transform followed by a
coloring transform. Mathematically, this can be written by

Y = XT xT s + Bx,s , (9.21)

where Bx,s is the same as (9.20), and the whitening transform T x and the coloring
transform T x are computed by X and S, respectively:

T x = Ux�
− 1

2
x U�x , T s = U s�

1
2
s U�s , (9.22)
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where Ux,�x and U s ,�s are from the eigen-decomposition of the covariance
matrices of X and S:

X�X = Ux�xU
�
x , S�S = U s�sU

�
s (9.23)

Therefore, we can easily see that AdaIN is a special case of WCT, when the
covariance matrix is diagonal.

9.3 Attention

In cognitive neuroscience, attention is defined as the behavioral and cognitive
process in which one selectively focuses on one aspect of information and ignores
other perceptible information. In this section we describe a biological analogy of
attention at the neuronal level and discuss its mathematical formulation.

9.3.1 Metabotropic Receptors: Biological Analogy

It is known that there are two types of neurotransmitter receptors: ionotropic and
metabotropic receptors [91]. Ionotropic receptors are transmembrane molecules
that can “open” or “close” a channel so that different types of ions can migrate
in and out of the cell, as shown in Fig. 9.7a. On the other hand, the activation of
the metabotropic receptors only indirectly influences the opening and closing of ion
channels. In particular, a receptor activates the G-protein as soon as a ligand binds to
the metabotropic receptor. Once activated, the G-protein itself goes on and activates
another molecule called a “secondary messenger”. The secondary messenger moves
until it binds to ion channels, located at different points on the membrane, and opens
them (see Fig. 9.7b). It is important to remember that metabotropic receptors do not
have ion channels and the binding of a ligand may or may not lead to the opening
of ion channels at different locations on the membrane.

Mathematically, this process can be modeled as follows. Let xn be the number
of neurotransmitters that bind to the n-th synapse. G-proteins generated at the n-th
synapse are proportional to the sensitivity of the metabotropic receptor, which is
denoted by kn. Then, the G-proteins generate the secondary messengers that bind to
the ion channel at the m-th synapse with the sensitivity of qm. Since the secondary
messengers are generated from metabotropic receptors at various synapses, the total
amount of ion influx from the m-th synapse is determined by the sum given by

ym =
N∑
n=1

qmknxn, m = 1, · · · , N, (9.24)
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Fig. 9.7 Two different types of neurotransmitter receptors and their mechanisms
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which can be represented by a vector form

y = T x, where T := qk�. (9.25)

Note that the matrix T in (9.25) is a transform matrix from x to y. Indeed, the
transform matrix T is a rank-1 matrix. Accordingly, the output y is constrained to
live in the linear subspace of the column vector, i.e. R(q), where R(·) denotes the
range space. This implies that the activation patterns in the neuron follow the ion
channel sensitivity patterns, q, while their magnitude is modulated by k.

This could explain another role for the metabotropic receptors. In particular,
metabotropic receptors act more for their prolonged activation than for a short-
term activation as in the case of ionotropic receptors, since the activation pattern
is determined by the ion channel distributions to which the secondary messengers
bind rather than by the specific location at which the original neurotransmitter is
released. Thus, the synergistic combination of the q and k determines the general
behavior of neuronal activation.

9.3.2 Mathematical Modeling of Spatial Attention

In (9.25), the vectors q and k are often referred to as query and key. It is
remarkable that even with the same key k, a totally different activation pattern can
be obtained by changing the query vector q. In fact, this is the core idea of the
attention mechanism. By decoupling the query and key, we can dynamically adapt
the neuronal activation patterns for our purpose. In the following, we review the
general form of the attention developed based on this concept.

In artificial neural networks, the model (9.24) is generalized for vector quantities.
Specifically, the row vector output at the m-th pixel ym ∈ R

C is determined by the
vector version of query qm ∈ R

d , keys kn ∈ R
d , and values xn ∈ R

C :

ym =
N∑
n=1

amnx
n, (9.26)

where m = 1, · · · , N and

amn := exp
(
score(qm, kn)

)
∑N
n′=1 exp

(
score(qm, kn

′
)
) . (9.27)

Here, score(·, ·) determines the similarity between the two vectors. In matrix form,
(9.26) can be represented by

Y = AX, (9.28)
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where

X =
⎡
⎢⎣

x1

...

xN

⎤
⎥⎦ , Y =

⎡
⎢⎣

y1

...

yN

⎤
⎥⎦ , (9.29)

and

A =
⎡
⎢⎣
a11 · · · a1N
...
. . .

...

aN1 · · · aNN

⎤
⎥⎦ . (9.30)

Various forms of the score functions are used for attention:

• Dot product: score(qm, kn) := 〈qm, kn〉.
• Scaled dot product: score(qm, kn) := 〈qm, kn〉/√d.
• Cosine similarity: score(qm, kn) := 〈qm,kn〉

‖qm‖‖kn‖ .

For example, in dot production attention, the query and key vectors are usually
generated using linear embeddings. More specifically,

qn = xnWQ, kn = xnWK, n = 1, · · · , N, (9.31)

where WQ,WK ∈ R
C×d are shared across all indices. Matrix form representation

of the query and key are then given by

Q = XWQ, K = XWK, (9.32)

where Q,K ∈ R
N×d are given by

Q =
⎡
⎢⎣

q1

...

qN

⎤
⎥⎦ , K =

⎡
⎢⎣

k1

...

kN

⎤
⎥⎦ , (9.33)

We are often interested in the embedding of xn to a smaller-dimensional vector
vn ∈ R

dv , which leads to the matrix representation of values:

vn = xnWV ∈ R
dv , (9.34)

where WV ∈ R
C×dv is the linear embedding matrix for the values. Then, attention

is computed by

ym =
N∑
n=1

amnv
n, (9.35)
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where

amn := exp
(〈xmWQ, x

nWK 〉
)

∑N
n′=1 exp

(〈xmWQ, xn
′
WK 〉

) , (9.36)

or in matrix form, we have

Y = AXWV , (9.37)

where X,Y and A are defined by (9.29) and (9.30), respectively.

9.3.3 Channel Attention

So far, we have discussed the mathematical formulation of spatial attention. One
downside of spatial attention is that we need a matrix multiplication of N × N
size of attention map A, which can be computationally intensive. To address the
problem, channel attention techniques have been developed. One of the most well-
known methods for channel attention is the so-called squeeze and excitation network
(SENet), which won the 2017 ImageNet challenge [68].

The SENet is composed of two steps: the squeeze and the excitation (see
Fig. 9.8). In the squeeze step, a 1×C-dimensional vector z is generated by average
pooling as follows:

z = 1

N
1�X. (9.38)

At the excitation step, a 1 × C weight vector w is generated from z using a neural
network F� which is parameterized by �:

w = F�(z). (9.39)

Fig. 9.8 Architecture of SENet
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Then, the final attended map is given by

Y = XW , where W := [diag(w)], (9.40)

where diag(w) is a diagonal matrix whose diagonal component is obtained by the
vector w. One can easily see that associated computational complexity is minimal.
Still, the SENet provides efficient channel attention mechanism, which significantly
improves the performance of the neural network [68].

9.4 Applications

In this section, we provide a review of the exciting applications of normalization
and attention in modern deep learning.

9.4.1 StyleGAN

One of the most exciting developments in CVPR 2019 was the introduction of a
novel generative adversarial network (GAN) called StyleGAN from Nvidia [89]. As
shown in Fig. 9.9, StyleGAN can generate high-resolution images that were realistic
enough to shock the world.

Although generative models, specifically GANs, will be discussed later in
Chap. 13, we are introducing StyleGAN here, as the main breakthrough of style-
GAN comes from AdaIN. The right-hand neural network of Fig. 9.10 generates the

Fig. 9.9 Examples of fake faces generated by StyleGAN
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Fig. 9.10 Architecture of StyleGAN

latent codes used as the style image feature vector, while the left-hand network
generates the content feature vectors from random noise. The AdaIN layer then
combines the style features and the content features in order to generate more
realistic features for each resolution. In fact, this architecture is fundamentally
different from the standard GAN architecture that we will review later, with the
fake image only being generated by a content generator (for example, the one on the
left). Through the synergistic combination with another style generator, StyleGAN
successfully produces very realistic images.

9.4.2 Self-Attention GAN

One important advantage of the attention mechanism is the separate control of
query and key vectors. In the case of self-attention, both the query and the key are
obtained from the same data set. In this case, the attention tries to extract the global
information from the same input signal in order to find out which part of the signal
needs to be focused.
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Fig. 9.11 Architecture of self-attention GAN. Both key and query are generated by the input
features

In a self-attention GAN (SAGAN) [71], self-attention layers are added into the
GAN so that both the generator and the discriminator can better capture model
relationships between spatial regions (see Fig. 9.11). It should be remembered that
in convolutional neural networks, the size of the receiving field is limited by the size
of the filter. With this in mind, self-attention is a great way to learn the relationship
between a pixel and all other positions, even regions that are far apart so that global
dependencies can be easily grasped. Hence, a GAN endowed with self-attention is
expected to handle details better.

More specifically, let X ∈ R
N×C be the feature map with N pixels and C

channels, and xm ∈ R
C denote the m-th row vector of X, which represents the

feature vector at the m-th pixel location. The query, key, and the value images are
then generated as follows:

qm = xmWQ, km = xmWK, vm = xmWV (9.41)

for all pixel indices m = 1, · · · , N . Note that WQ,WK,WV ∈ R
C×C matrices can

be implemented using 1× 1 convolution (see Fig. 9.11). Then, similar to (9.37), the
attended image is represented by

Y = AV = AXWV , (9.42)

where

V =
⎡
⎢⎣

v1

...

vN

⎤
⎥⎦ , (9.43)

and the (m, n)-th element of A matrix is given by

amn := exp
(〈qm, kn〉)

∑N
n′=1 exp

(
〈qm, kn′ 〉

) . (9.44)
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Then, the final self attended feature map is calculated by

O = YWO, (9.45)

which can also be implemented using 1× 1 convolution.
As shown in (9.42) and (9.45), the new feature vector om is generated at the

m-th pixel location by the linear combination of the value vectors {vn}Nn=1 across
the whole image by weighting the elements of the attention map A. Therefore,
the receptive field of the self-attention map is an overall image, which makes the
image generation more effective. A disadvantage, however, is that we need a matrix
multiplication of N × N size of attention map A, which can be computationally
expensive.

9.4.3 Attentional GAN: Text to Image Generation

In Attentional GAN (AttnGAN) [72], the authors proposed an attention-driven
architecture for text-to-image generation (see Fig. 9.12). In addition to the detailed
structure for a fine-grained translation, the key idea of AttnGAN is to use the cross-
domain attention. In particular, the query vector is generated from image areas,
while the key vector is generated from word features. By combining the query and
key, AttnGAN can automatically select the word level condition to generate different
parts of the image [72].

9.4.4 Graph Attention Network

In the graph attention network (GAT) [69], the main focus is on a node which a
neural network should visit more in order to achieve better embedding in the middle
node (Fig. 9.13). To incorporate the graph connectivity, the authors suggested
specific constraints on the query, key, and value vectors as follows:

qv = xvW , ku = vu = xuW , u ∈ N(v). (9.46)

From this, the attentional coefficients between the nodes are calculated by

evu = score(qv, ku),

where score(·) denotes the specific attention mechanism. To make the coefficient
easily accessible across different nodes, the coefficients are normalized by

αvu = exp(evu)∑
u′∈N(v) exp(evu′)

. (9.47)
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Fig. 9.13 Graph attention network

Then, the graph neural network is represented by the normalized connective
coefficient:

xv = σ
⎛
⎝ ∑
u∈N(v)

αvux
uW

⎞
⎠ . (9.48)

9.4.5 Transformer

Transformer is a deep machine learning model that was introduced in 2017 and
was originally used for natural language processing (NLP) [73]. In NLP, the
recurrent neural networks (RNN) such as Long Short-Term Memory (LSTM) [92]
had traditionally been used. In RNN, the data is processed in a sequential order
using the memory unit inside. Although Transformers are designed to process
ordered data sequences such as speech, unlike the RNN, Transformer processes the
entire sequence in parallel to reduce path lengths, making it easier to learn long-
distance dependencies in sequences. Since its inception, Transformer has become
the building block of most state-of-the-art architectures in NLP, resulting in the
development of famous state-of-the-art Bidirectional Encoder Representations from
Transformers (BERT) [74], Generative Pre-trained Transformer 3 (GPT-3) [76], etc.

As shown in Fig. 9.14, Transformer-based language translation consists of an
encoder and decoder architecture. The main idea of Transformer is the attention
mechanism discussed earlier. In particular, the essence of the query, key, and value
vectors in the attention mechanism is fully utilized so that the encoder can learn the
language embedding and the decoder performs the language translation.
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Fig. 9.15 Network architecture of encoder of Transformer

In particular, sentences from, for example, English are used on the encoder to
learn how to embed each word in a sentence. In order to learn the long-range
dependency between the words within the sentence, a self-attention mechanism
is used on the encoder. Of course, self-attention is not enough to perform a
complicated speech embedding task. Therefore, there are an additional residual
connection, a layer normalization, and a neural feedforward network, followed
by additional units of encoder blocks (see Fig. 9.15). Once trained, Transformer’s
encoder generates the word embedding, which contains the structural role of each
word within the sentence.

In the decoder, these embedding vectors from the encoder are now used to
generate the key vectors, as shown in Figs. 9.14 and 9.16. This is combined with
the query vector that is generated from the target language, like French. This hybrid
combination then creates the attention map, which serves as the transformation
matrix of the words between the two languages by taking into account their
structural roles.
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Fig. 9.16 Generation of key vectors for each decoder layer of Transformer

Another important component of Transformer is the positional encoding (see
the positional encoding blocks in Figs. 9.14 and 9.15). In contrast to RNN and
LSTM, each word in a sentence is processed simultaneously by Transformer in
order to capture longer dependencies in a sentence, so the model itself does not
have any notion of position for each word. However, the position of a word within
a sentence is important as it determines the grammar and the semantics of the
sentence. Therefore, there is a need to consider the order of the words, and the
positional encoding is used for this. To be a valid positional encoding, a method
should output a unique encoding of the position of each word in a sentence and
easily generalize to longer sentences.

Among the various possible approaches, the original authors of Transformer used
the sine and cosine functions of different frequencies [73]. More specifically, let n
be the desired position in an input sentence and pn ∈ R

d be its corresponding
encoding, where d is the encoding dimension for which an even number is chosen.
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Then, the position encoding vector is given by

pn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sin(ω1n)

cos(ω1n)

sin(ω2n)

cos(ω2n)
...

sin(ωd
2
n)

cos(ωd
2
n)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R
d , where ωk = 1

100002k/d
. (9.49)

This position encoding vector is then added to the word embedding vector xn ∈ R
d

to obtain a position encoded word embedding vector:

xn← xn + pn, (9.50)

which is then fed into the self-attention module in Transform.
Readers may wonder why the positional encoding vector is summed with a

word embedding instead of concatenation. Although this was used empirically
in the original paper [73], recent theoretical analysis showed that Transformer
architecture with additive positional encodings is Turing complete [93] and can be
reparametrized to express any convolutional layer [94].

Transformer is an ingenious combination of the full mathematical principle of
attention, which uses separate query and key vectors for the specific purpose of
language translation. Because of this, Transformer has become the main workhorse
for modern NLP.

9.4.6 BERT

One of the latest milestones in NLP is the release of BERT (Bidirectional Encoder
Representations from Transformers) [74]. This release of BERT can even be seen as
the beginning of a new era in NLP. One of the unique features of BERT is that the
resulting structure is as regular as FPGA (Field Programmable Gate Array) chips, so
the BERT unit can be used for different purposes and languages by simply changing
the training scheme.

The main architecture of BERT is the cascaded connection of bidirectional
transformer encoder units, as shown in Fig. 9.17. Due to the use of the encoder-part
of the Transformer architecture, the number of input and output features remains
the same, while each feature vector dimension may be different. For example,
the input feature can be a one-hot coded word, the feature dimension of which
is determined by the size of the corpus vocabulary. The output may be the low
dimensional embedding that sums up the role of the word in context. The reason for
using the bidirectional Transformer encoder is based on the observation that people
can understand the sentence even if the order of the words within the sentence is
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Fig. 9.17 BERT architecture

Fig. 9.18 Pre-training and fine-tuning scheme for BERT training

reversed. By considering the reverse order, the role of each word in context is better
summarized as an attention map, resulting in more efficient embedding of words.

Yet another beauty of BERT lies in the training. More specifically, as shown
in Fig. 9.18, BERT training consists of two steps: pre-training and fine-tuning. In
the pre-training step, the goal of the task is to guess the masked word within an
input sentence. Figure 9.19 shows a more detailed explanation of this masked word
estimation. Approximately 15% of the words in the input sentence from Wikipedia
are masked with a specific token (in this case, [MASK]), and the goal of the training
is to estimate the masked word from the embedded output in the same place. Since
the BERT output is just an embedded feature, we need an additional fully connected
neural network (FFNN) and softmax layer to estimate the specific word. With this
additional network we can correctly pre-train the BERT unit.

Once BERT pre-training is finished, the BERT unit is fine-tuned using supervised
learning tasks. For example, Fig. 9.20 shows a supervised learning task. Here, the
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input for BERT consists of two sentences, separately with another token [SEP]. The
goal of supervised learning is then to assess whether the second sentence is a correct
continuation of the first sentence. The output of this is now embedded in the BERT
Output 1, which is then used as an input of fully connected neural network, followed
by a softmax layer to estimate whether the second sentence is next. Since the same
number is entered and output in BERT, the first word of the input record should be
a token that indicates the vacant word [CLS].

Another example of a supervised fine-tuning is the classification of whether the
sentence is spam or not, as shown in Fig. 9.21. In this case, only a single sentence is
used as the BERT input and Output 1 of BERT is used to classify whether the input
sentence is spam or not.

In fact, there are multiple ways of utilizing the BERT unit for supervised fine
tuning, which is another important advantage of BERT [74].

9.4.7 Generative Pre-trained Transformer (GPT)

Generative pre-trained transformers (GPTs) are language models developed by
OpenAI that produce human-like text. In particular, the third-generation model,
GPT-3, is arguably the most powerful and controversial artificial intelligence model
for NLP due to its incredible ability to produce text that is indistinguishable from
what written by humans [76].

Recall that BERT requires pre-training for a large corpus of text, followed by
fine-tuning a specific task. However, the requirement of a task-specific, finely tuned
training data set consisting of thousands or tens of thousands of examples is often
quite demanding. This is very different from humans, who are usually able to
complete a new language task using a few examples.

GPT-2 [75] and GPT-3 [76] were developed based on the observation that
scaling the language model greatly improves task-agnostic, few-shot performance,
and sometimes even competes with prior art fine-tuning approaches. The goal of
GPT training is similar to BERT pre-training, where the next word in a sentence
is estimated based on the previous words in a sentence. For this reason, GPT
stands for generative pre-trained Transformer. For example, the GPT is trained to
generate the word “awesome” by using the preceding words “The latest language
model GPT-3 is” as input. While this pure pre-training scheme doesn’t improve
BERT’s performance, one of the main reasons for the success of GPT-2, and GPT-
3 in particular, is its massive architecture that makes generative pre-training even
more powerful than fine-tuning. Compared to the largest BERT architecture with
around 340 million parameters, GPT-3 is extremely massive with around 175 billion
parameters.

Recall that the generative estimation of the following word can be done by the
Transformer decoder in the language translation. Accordingly, GPT-3 consists of
a stack of 96 Transformer decoder layers, which differs from the encoder-only
architecture in BERT (see Fig. 9.22). Each decoder layer is composed of multiple
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Fig. 9.22 Differences in BERT and GPT architecture

Fig. 9.23 Architecture of GPT decoder block

Fig. 9.24 Difference between the self-attention in BERT and masked self-attention in GPT-3

decoder blocks, which consist of masked self-attention blocks with a width of 2048
tokens and a feedforward neural network (see Fig. 9.23). As shown in Fig. 9.24, the
masked self-attention calculates the attention matrix using the preceding words in a
sentence that can be used to estimate the next word.

To train the 175 billion weights, GPT-3 is trained with 499 billion tokens or
words. Sixty percent of the training data set comes from a filtered version of
Common Crawl consisting of 410 billion tokens. Other sources are 19 billion tokens
from WebText2, 12 billion tokens from Books1, 55 billion tokens from Books2, and
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3 billion tokens from Wikipedia [76]. Nonetheless, the performance of GPT-3 can
be affected by the quality of the training data. For example, it was reported that
GPT-3 generates sexist, racist and other biased and negative language when it was
asked to discuss Jews, women, black people, and the Holocaust [95].

9.4.8 Vision Transformer

Inspired by the fact that Transformer architecture has become state of the art
for NLP, researchers have explored its applications for computer vision. As
mentioned earlier, in computer vision, attention is usually applied in connection
with convolutional networks, so that certain components of convolutional networks
are replaced with attention while maintaining their overall structure. In [96], the
authors have shown that this dependence on CNNs is not necessary and a pure
transformer applied directly to sequences of image patches can work very well in
image classification tasks.

Their model, called Vision Transformer (ViT), is depicted in Fig. 9.25. To handle
2D images, the input image x is reshaped into a sequence of flattened 2D patches,
after each patch is embedded into a D-dimensional vector using a trainable linear
projection. Transformer then uses a constant latent vector size D through all of its
layers. Position embeddings are added to the patch embeddings to retain positional
information. The resulting sequence of embedding vectors serves as input to the
encoder. With regard to the [Class] token on the front, a learnable embedding
in the sequence of embedded patches at the output of the Transformer encoder
serves as the entire image representation. A classification head is attached during
both pre-training and fine-tuning to train the network to have the embedded image
representation for the best classification results.

The Transformer encoder in ViT consists of alternating layers of multi-headed
self-attention and MLP blocks. Layer norm and residual connections are applied
before and after every block, respectively. The MLP contains two layers with a
GELU non-linearity. Typically, ViT is trained on large data sets, and fine-tuned to
(smaller) downstream tasks. For this, we remove the pre-trained prediction head
and attach a zero-initialized D × K feedforward layer, where K is the number of
downstream classes.

9.5 Mathematical Analysis of Normalization and Attention

So far we have discussed normalization and attention. Normalization was originally
developed for accelerating stochastic gradient methods, and has been extended
to style transfer, image generation, etc. On the other hand, due to its ability
to learn long-range relationships and its flexibility from manipulating query and
key, attention has been successfully extended to various applications, leading to
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breakthroughs in natural language processing approaches such as BERT, GPT-3,
etc.

As you may have noticed while reading, normalization and attention may have
a very similar mathematical formulation. For example, for a given feature map
X ∈ R

HW×C , the instance normalization, AdaIN, and WCT can be represented
as follows:

Y = XT + B, (9.51)

where the channel-directional transform T and the bias B are learned from the
statistics of the feature maps. The only differences between instance normalization,
AdaIN, and WCT are their specific ways of estimating T and B. For example,
all elements of T are estimated from the input features in the case of instance
normalization, while they are estimated from the statistics on content and style
images in the case of AdaIN and WCT. The main difference between WCT, instance
normalization and AdaIN is that T is a densely populated matrix for the case of
WCT, while instance norm and AdaIN use a diagonal matrix.

On the other hand, the spatial attention can be represented by

Y = AX, (9.52)

where A is calculated from its own feature for the case of self-attention, or with the
help of other domain features for the case of cross-domain attention. Similarly, the
channel attention such as SENet can be computed as

Y = XT , (9.53)

where the diagonal matrix T is again calculated from X.
This implies that normalization and attention, with the exception of the specific

differences in the generation of A,T ,W , and B, can be viewed as a special case of
the following transformation:

Y = AXT + B. (9.54)

Mathematically, A modifies the column space of X, whereas T control the row
space of X. Therefore, the attention map A differs from T and controls different
factors and the variations in the feature X.

Based on this observation, Kwon et al. [97] proposed the so-called Diagonal
GAN. This is based on the following intuition: although A was a dense matrix
obtained from X in the original self-attention, the insight from AdaIN can be used to
obtain an efficient diagonal attention map A from a novel attention code generator
for content control. Specifically, they introduced a novel diagonal attention (DAT)
module to manipulate the content feature maps as shown in Fig. 9.26b. One of
the important advantages of the method is that thanks to the symmetry in (9.54),
both AdaIN and DAT can be applied to each layer, so that the image content and
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style can be modulated independently. This leads to an effective disentanglement of
the content and style components in generated images. Furthermore, the proposed
method has flexibility by selectively controlling the spatial attribute of generated
images at arbitrary resolution by changing the hierarchical attention maps.

As shown in Fig. 9.27, the combination of AdaIN and DAT is quite impressive.
For given source images in Fig. 9.27a, which are generated from arbitrary style and
content code, (b) shows the samples with varying style codes and fixed content code.
Note that the hairstyles and identities vary while the face directions and expressions
are similar. On the other hand, if we generate samples with varying content codes
and fixed style, the face direction and expression for the same person or animal
changes. Finally, if the content and style codes are both varied as shown in (c),
the face direction, expression, hair styles, and person’s identity change accordingly.
This clearly shows the disentanglement between style and content.

One may wonder whether additive noise at each layer of styleGAN in Fig. 9.26b
may serve a similar role in the content variation. In fact, the addition of the noise
for the original styleGAN is from a similar motivation, as indicated by the authors’
claim that the right-hand network generates the content feature vectors from random
noise. That said, it should be remembered that the additive noise terms are basically
additions to the bias term in (9.54), which is fundamentally different from A that
modulates the column space of X. In fact, the additional bias terms both affect the
row and column spaces of X, resulting in the entangled modulation between the
style and content.

9.6 Exercises

1. Find the conditions when the WCT transform in (9.22) is reduced to AdaIN.
2. Let the feature map with the number of pixels H × W = 4 and the channels
C = 3 be given by

X =

⎡
⎢⎢⎣

1 2 3
−1 −3 0
5 −2 1
0 0 −5

⎤
⎥⎥⎦ . (9.55)

a. Perform the layer normalization of X.
b. Perform the instance normalization of X.
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Fig. 9.27 (Top) 1024×1024 images generated by our method, trained using CelebA-HQ data set.
(Bottom) 512×512 images generated by our method, trained using AFHQ data set. (a) A source
image generated from arbitrary style and content code. (b) Samples with varying style codes and
fixed content code. (c) Samples generated with varying content codes and fixed style. (d) Samples
generated with both varying content and style codes
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3. Additionally, suppose that the feature map for the style image is given by

S =

⎡
⎢⎢⎣

0 1 1
−1 −1 1
1 0 0
−1 1 1

⎤
⎥⎥⎦ . (9.56)

a. For the given feature map in (9.55), perform the adaptive instance normaliza-
tion from X to the style of S.

b. For the given feature map in (9.55), perform the WCT style transfer from X

to the style of S.

4. Using the feature map in (9.55), we are interested in computing the self-attention
map. Let WQ and W k be the embedding matrices for the query and key,
respectively:

WQ =
⎡
⎣

2 1
0 1

2
0 0

⎤
⎦ , WK =

⎡
⎣

1
3 0
1 −1

10 5

⎤
⎦ . (9.57)

a. Using the dot product score function, compute the attention matrix A.
b. What is the attended feature map, i.e. Y = AX?
c. For the case of masked self-attention in GPT-3, compute the attention mask A

and attended feature map Y = AX.

5. For a given positional encoding in (9.49) for the Transformer with encoding
dimension d = 10, compute the positional encoding vector pn for n =
1, · · · , 10.

6. Explain the following sentence in detail: “BERT has encoder only structure,
while GPT-3 has decoder only architecture.”

7. For a given feature map X ∈ R
N×C , show that the feature map of styleGAN after

the application of AdaIN and noise is represented by

Y = XT + B. (9.58)

Specify the structure of the matrices T and B.
8. For a given feature map X ∈ R

N×C , show that the feature map of the Diagonal
GAN after the application of AdaIN, DAT, and noise is represented by

Y = AXT + B. (9.59)

Specify the structure of the matrices A, T and B, and their mathematical roles.



Part III
Advanced Topics in Deep Learning

“I am really confused. I keep changing my opinion on a daily basis, and I cannot
seem to settle on one solid view of this puzzle. No, I am not talking about world
politics or the current U.S. president, but rather something far more critical to
humankind, and more specifically to our existence and work as engineers and
researchers. I am talking about . . . deep learning.”

– Michael Elad



Chapter 10
Geometry of Deep Neural Networks

10.1 Introduction

In this chapter, which is mathematically intensive, we will try to answer perhaps the
most important questions of machine learning: what does the deep neural network
learn? How does a deep neural network, especially a CNN, accomplish these goals?
The full answer to these basic questions is still a long way off. Here are some of
the insights we’ve obtained while traveling towards that destination. In particular,
we explain why the classic approaches to machine learning such as single-layer
perceptron or kernel machines are not enough to achieve the goal and why a modern
CNN turns out to be a promising tool.

Recall that at the early phase of the deep learning revolution, most of the
CNN architectures such as AlexNet, VGGNet, ResNet, etc., were mainly developed
for the classification tasks such as ImageNet challenges. Then, CNNs started to
be widely used for low-level computer vision problems such as image denoising
[90, 98], super-resolution [99, 100], segmentation [38], etc., which are considered as
regression tasks. In fact, classification and regression are the two most fundamental
tasks in machine learning, which can be unified under the umbrella of function
approximation. Recall that the representer theorem [15] says that a classifier design
or regression problem for a given test data set {(xi , yi)}ni=1 can be addressed by
solving the following optimization problem:

min
f∈Hk

1

2
‖f ‖2H + C

n∑
i=1


 (yi, f (xi )) , (10.1)
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where Hk denotes the reproducing kernel Hilbert space (RKHS) with the kernel
k(x, x′), ‖ · ‖H is the Hilbert space norm, and 
(·, ·) is the loss function. One of the
most important results of the representer theorem is that the minimizer f has the
following closed-form representation:

f (x) =
n∑
i=1

αik(xi , x), (10.2)

where {αi}ni=1 are learned parameters from the training data set. For example, if a
hinge function is used as a loss, the solution becomes a kernel SVM, whereas if an
l2 function is used as a loss, it becomes a kernel regression.

In general, the solution f (x) in (10.2) is a nonlinear function of the input x based
on the kernel k(xj , ·), which is nonlinearly dependent upon x. This nonlinearity of
the kernel makes the expression in (10.2) more expressive, thereby generating a
wide variation of functions within the RKHS Hk .

That said, the expression in (10.2) still has fundamental limitations. First, the
RKHS Hk is specified by choosing the kernel in a top-down manner, and to the best
of our knowledge, there is no way to automatically learn from the data. Second,
once the kernel machine is trained, the parameters {αi}ni=1 are fixed, and it is not
possible to adjust them at the test phase. These drawbacks lead to the fundamental
limitations of the expressivity of neural networks, which means the capability of
approximating any function. Of course, one could increase the expressivity by
increasing complexity of the learning machines, for example, by combining multiple
kernel machines. However, our goal is to achieve better expressivity for a given
complexity constraint, and in this sense the kernel machine has problems.

10.1.1 Desiderata of Machine Learning

Given the limitations of the kernel machine, we can state the following desiderata—
the desired things that an ultimate learning machine should satisfy:

• Data-driven model: The function space that a learning machine can represent
should be learned from the data, rather than specified by a top-down mathemati-
cal model.

• Adaptive model: Even after the machine has learned, the learned model should
adapt to the given input data at the test phase.

• Expressive model: The expressivity of the model should increase more than the
model complexity increases.

• Inductive model: The learned information from the training data should be used
at the test phase.

In the following, we review two classical approaches—single layer perceptron and
frame representation—and explain why these classical models failed to meet the
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desiderata. Later we will show how the modern deep learning approaches have been
developed by overcoming the drawbacks of these classical approaches by exploiting
their inherent strengths.

10.2 Case Studies

10.2.1 Single–Layer Perceptron

The single-layer perceptron is a special case of the multilayer perceptron (MLP),
which consists of fully connected neurons at the single hidden layer. Specifically,
let ϕ : R �→ R be a nonconstant, bounded, and continuous activation function. Let
X ⊂ R

m denote the input space. Then, a single-layer perceptron f� : X �→ R can
be represented by

f�(x) =
d∑
i=1

viϕ
(
w�i x + bi

)
, x ∈ X, (10.3)

where wi ∈ R
m is a weight vector, vi, bi ∈ R are real constants, and � =

{(wi , vi , bi)}di=1 represents the neural network parameters. Then, the parameters
are estimated by solving the following optimization problem using the training data
{(xi , yi)}Ni=1:

min
�

n∑
i=1


 (yi, f�(xi ))+ λR(�), (10.4)

where λ is a regularization parameter and R(�) is a regularization function with
respect to the parameter set �.

One of the classical results for the representation power of single-layer percep-
trons dates from 1989 [48]. It states that a feed-forward network with a single hidden
layer containing a finite number of neurons can approximate continuous functions
on compact subsets under mild assumptions on the activation function.

Theorem 10.1 (Universal Approximation Theorem[48]) Let the space of real-
valued continuous functions on a compact set X be denoted by C(X). Then, given
any ε > 0 and any function g ∈ C(X), there exist an integer d such that the single
layer perceptron in (10.3) is an approximate realization of the function f ; that is,

|f�(x)− g(x)| < ε

for all x ∈ X.



198 10 Geometry of Deep Neural Networks

The theorem thus states that simple neural networks can represent a wide variety
of interesting functions when given appropriate parameters. In fact, the universal
approximation theorem was a blessing for classic machine learning; it promoted the
research interests of the neural network as a powerful functional approximation, but
also turned out to be a curse for the development of machine learning by preventing
understanding of the role of deep neural networks.

More specifically, the theorem only guarantees the existence of d, the number
of neurons, but it does not specify how many neurons are required for a given
approximation error. Only recently have people realized that the depth matters, i.e.
there exists a function that a deep neural network can approximate but a shallow
neural network with the same number of parameters cannot [101–105]. In fact, these
modern theoretical studies have provided a theoretical foundation for the revival of
modern deep learning research.

When compared with the kernel machine (10.2), the pros and cons of the single-
layer perception in (10.3) can be easily understood. Specifically, ϕ

(
w�i x + bi

)
in

(10.3) works similarly as a kernel function k(xi , x), and vi in (10.3) is similar to the
weight parameter αi in (10.2). However, the nonlinear mapping in the perceptron,
i.e. ϕ

(
w�i x + bi

)
, does not necessarily satisfy the positive semidefiniteness of the

kernel, thereby increasing the approximable functions beyond the RKHS to a larger
function class in Hilbert space. Therefore, there exists potential for improving the
expressivity. On the other hand, the weighting parameters vi are still fixed once the
neural network is trained, which leads to limitations similar to those of the kernel
machines.

10.2.2 Frame Representation

Now, we review another class of function representation called a frame [1]. To
understand the mathematical concept of a frame, we start with its simplified form—
the basis.

In mathematics, a set B = {bi}mi=1 of elements (vectors) in a vector space
V is called a basis, if every element of V may be written in a unique way as a
linear combination of elements of B, that is, for every f ∈ V , there exists unique
coefficient {ai} such that

f =
m∑
i=1

aibi . (10.5)

Unlike the basis, which leads to the unique expansion, the frame is composed of
redundant basis vectors, which allows multiple representation. Frames can also be
extended to deal with function spaces, in which case the number of frame elements
is infinite. Formally, a set of functions

� = [φk]k∈� =
[· · · φk−1 φk · · ·

]
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in a Hilbert space H is called a frame if it satisfies the following inequality [1]:

α‖f ‖2 ≤
∑
k∈�
|〈f ,φk〉|2 ≤ β‖f ‖2, ∀f ∈ H, (10.6)

where α, β > 0 are called the frame bounds. If α = β, then the frame is said to be
tight. In fact, a basis is a special case of tight frames.

By writing ck := 〈f ,φk〉 as the expansion coefficient with respect to the k-th
frame vector φk and defining the frame coefficient vector

c = [ck]k∈� = ��f ,

(10.6) can be equivalently represented by

α‖f ‖2 ≤ ‖c‖2 ≤ β‖f ‖2, ∀f ∈ H. (10.7)

This implies that the energy of the expansion coefficients should be bounded by the
original signal energy, and for the case of the tight frame, the expansion coefficient
energy is the same as the original signal energy up to the scaling factor.

When the frame lower bound α is nonzero, then the recovery of the original
signal can be done from the frame coefficient vector c = ��f using the dual frame
operator �̃ given by

�̃ = [· · · φ̃k−1 φ̃k · · ·
]
, (10.8)

which satisfies the so-called frame condition:

�̃�� = I , (10.9)

because we have

f̂ := �̃c = ���f = f ,

or equivalently,

f =
∑
k∈�
ckφ̃k =

∑
k∈�
〈f ,φk〉φ̃k. (10.10)

Note that (10.10) is a linear signal expansion, so it is not useful for machine
learning tasks. However, something more interesting occurs when it is combined
with a nonlinear regularization. For example, consider a regression problem to
estimate a noiseless signal from the noisy measurement y:

y = f + w, (10.11)
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where w is the additive noise and f is the unknown signal to estimate. If we
formulate a loss function as follows:

min
f

1

2
‖y − f ‖2 + λ‖��f ‖1, (10.12)

where ‖ · ‖1 is the l1 norm, then the solution satisfies the following [106]:

f̂ =
∑
k∈�
ρλ
(〈y,φk〉

)
φ̃k, (10.13)

where ρλ(·) is a nonlinear thresholding function that depends on the regularization
parameter λ. This implies that the signal representation changes depending on the
input y, since only a small set of coefficients 〈y,φk〉will be nonzero after processing
with the nonlinear thresholding, and the signal is represented by only a small set of
dual bases φ̃k corresponding to the locations of the nonzero expansion coefficients.

For the last few decades, one of the most widely used frame representations in
signal processing is the wavelet frame, or framelet [106], where its basis function
captures the multi-resolution scale and shift dependent features. For example,
Fig. 10.1 illustrates the Haar wavelet basis across different scale parameters j .
As the scale increases, the support of the basis φk becomes narrow so that it can
capture more localized behavior of the signal after applying the inner product. More
specifically, Fig. 10.2 shows the noiseless original signal f and its noisy version y,
and their wavelet expansion coefficients. Here, ds(n) denotes the s-scale wavelet
expansion coefficients. As shown in Fig. 10.2, for the smooth noiseless signal, most
of the wavelet expansion coefficients are zero except a few expansion coefficients
at lower scales. On the other hand, for the noisy signal, the small magnitude
nonzero wavelet expansion coefficients are found across all scales. Therefore,
the main idea of the wavelet shrinkage for signal denoising [107] is zeroing out
the small-magnitude wavelet coefficients using a thresholding operation ρλ(·) and
retaining large wavelet coefficients beyond the threshold values that have important
signal characteristics. Accordingly, reconstruction using (10.13) can recover the
underlying noiseless signals.

Extending this idea beyond the signal denoising, other successful tools in the
signal processing theory are the compressed sensing or sparse recovery techniques
[46]. In particular, compressed sensing theory is based on the observation that when
images are represented via bases of frames, in many cases they can be represented
as a sparse combination of bases or frames, as shown in Fig. 10.3. Thanks to
the sparse representation, even when the measurements are very few below the
classical limits such as Nyquist limit, one could obtain a stable solution of the
inverse problem by searching for the sparse representation that generates an output
consistent with the measured data, as shown in Fig. 10.3. As a result, the goal of
the image reconstruction problem is to find an optimal set of sparse basis functions
suitable for the given measurement data. This is why the classical method is often
called the basis pursuit [46].
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Fig. 10.1 Haar wavelet basis across scales

In contrast to the kernel machine in (10.2), the basis pursuit using the frame
representation has several unique advantages. First, the function space that the basis
pursuit can generate is often larger than the RKHS from (10.2). In fact, this space is
often called the union of subspaces [108], which is a large subset of a Hilbert space.
Second, among the given frames, the choice of active dual frame basis φ̃k is totally
data-dependent. Therefore, the basis pursuit representation is an adaptive model.
Moreover, the expansion coefficients ρλ

(〈y,φk〉
)

of the basis pursuit are also totally
dependent on the input y, thereby generating more diverse representation than the
kernel machine with fixed expansion coefficients.

Having said this, one of the most fundamental limitations of the basis pursuit
approach in (10.13) is that it is transductive, which does not allow inductive learning
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Fig. 10.2 Wavelet coefficients for two signals across scales

Fig. 10.3 Reconstruction principle of compressed sensing
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from the training data. In general, the basis pursuit regression in (10.12) should be
solved for each data set, since the nonlinear thresholding function should be found
by an optimization method for each data set. Therefore, it is difficult to transfer the
learning from one data set to another.

10.3 Convolution Framelets

Before we dive into the convolutional neural network, here we briefly review the
theory of deep convolutional framelets [42], which is a linear frame expansion but
turns out to be an important stepping stone to understand the geometry of CNN. For
simplicity, we consider the 1-D version of the theory.

10.3.1 Convolution and Hankel Matrix

Let an n-dimensional signal x ∈ R
n be represented by

x = [x[0] · · · x[n− 1]]� ∈ R
n.

Then, the following results are standard in signal processing:

• Given two vectors x,h ∈ R
n, the circular convolution is defined by

(x � h)[i] =
n−1∑
k=0

x[i − k]h[k], (10.14)

where appropriate periodic boundary conditions are imposed on x.
• For any v ∈ R

n1 and w ∈ R
n2 with n1, n2 ≤ n, define the convolution in R

n as

v � w = v0 � w0,

where

v0 =
[
v� 0�n−n1

]�
, w0 =

[
w� 0�n−n2

]�
.

• For any v ∈ R
n1 with n1 ≤ n, define the flip of v as v[n] = v0[−n], where we

use the periodic boundary condition.
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Using these notations, a single-input single-output (SISO) circular convolution
of the input f and the filter ψ ∈ R

r with r ≤ n can be represented by:

y[i] = (x � ψ)[i] =
n−1∑
k=0

x[i − k]ψ0[−k]. (10.15)

By defining a Hankel matrix H
n
r (x) ∈ R

n×r as

H
n
r (x) =

⎡
⎢⎢⎢⎣

x[0] x[1] · · · x[r − 1]
x[1] x[2] · · · x[r]
...

...
. . .

...

x[n− 1] x[n] · · · x[r − 2]

⎤
⎥⎥⎥⎦ (10.16)

the convolution in (10.15) can be compactly represented by

y = x � ψ = H
n
r (x)ψ . (10.17)

Then, we can obtain the following key equality [109], whose proof is repeated here
for educational purposes:

Lemma 10.1 For a given f ∈ R
n, let Hnr (f ) ∈ R

n×r denote the associated Hankel
matrix. Then, for any vectors u ∈ R

n and v ∈ R
r with r ≤ n and Hankel matrix

F := H
n
r (f ), we have

u�Fv = u� (f � v) = f� (u � v) = 〈f ,u � v〉, (10.18)

where v[n] := v[−n] denotes the flipped version of the vector v.

Proof We only need to show the second equality. This can be shown as

f� (u � v) = f�
(
u � v0

)

=
n−1∑
i=0

f [i]
(
n−1∑
k=0

u[k]v0[i − k]
)

=
n−1∑
k=0

u[k]
(
n−1∑
i=0

v0[i − k]f [i]
)

=
n−1∑
k=0

u[k]
(
n−1∑
i=0

v0[−(k − i)]f [i]
)
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=
n−1∑
k=0

u[k](f � v)[k]

= u� (f � v) .

This concludes the proof. ��

10.3.2 Convolution Framelet Expansion

Lemma 10.1 provides an important clue for the convolution framelet expansion.
Specifically, for a given signal f ∈ R

n, consider the following two sets of matrices,
�̃,� ∈ R

n×n and �̃,� ∈ R
r×r , such that they satisfy the following frame

condition[42]:

�̃�� = In ��̃
� = I r . (10.19)

Then, we have the following trivial equality:

H
n
r (f ) = �̃��Hnr (f )��̃

� = �̃C�̃
�
, (10.20)

where

C = ��Hnr (f )� ∈ R
n×r , (10.21)

whose (i, j)-th element is given by

cij = φ�i Hnr (f )ψj = 〈f ,φi � ψj 〉, (10.22)

where φi and ψj denote the i-th and the j -th column vector of � and �,
respectively, and the last equality of (10.22) comes from Lemma 10.1.

Now, we define an inverse Hankel operator Hn(−)r : Rn×r �→ R
n such that for any

f ∈ R
n, the following equality satisfies

f = H
n(−)
r

(
H
n
r (f )
)
. (10.23)

Then, the following key equality can be obtained [42]:

H
n(−)
r

(
�̃C�̃

�) = 1

r

r∑
j=1

(
�̃cj
)
� ψ̃j (10.24)

= 1

r

∑
i,j

cij (φ̃i � ψ̃j ). (10.25)
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By combining (10.25) with (10.20) and (10.22), we have

f = 1

r

∑
i,j

〈f ,φi � ψj 〉
(
φ̃i � ψ̃j

)
. (10.26)

This implies that {φi � ψj }i,j constitutes a frame for R
n and {φ̃i � ψ̃j }i,j

corresponds to its dual frame. Furthermore, for many interesting signals f in real
applications, the Hankel matrix H

n
r (f ) has low-rank structures [110–112], which

makes the expansion coefficients cij nonzero only at small index sets. Therefore,
the convolution framelet expansion is a concise signal representation similar to the
wavelet frames [42, 109].

In the convolution framelet, the functions φi , φ̃i correspond to the global basis,
whereas ψ i , ψ̃ i are local basis functions. Therefore, by the convolution between
the global and local basis to generate a new frame basis, convolution framelets can
exploit both local and global structures of signals [42, 109], which is an important
advance in signal representation theory.

10.3.3 Link to CNN

Although the convolution framelet is a linear representation, the reason we care
about it so much is that it reveals the role of the pooling and convolution filters in
CNNs. More specifically, using (10.17), we can show that the convolution framelet
coefficient matrix C in (10.21) can be represented by

C = [c1 · · · cr
]

= ��Hnr (f )� = ��(f � �), (10.27)

where

f � � := [f � ψ1 · · · f � ψ r
]

(10.28)

which corresponds to the single-input multi-output (SIMO) convolution. Note that
the convolution operation is local since the filter weights are multiplied with the
pixels within the receptive field. After the convolution operation, �� is multiplied
with all elements of the filtered output, which corresponds to the global operation.

On the other hand, by combining (10.24) with (10.20), we have

f = 1

r

r∑
j=1

(
�̃cj
)
� ψ̃j , (10.29)
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Fig. 10.4 Single-resolution encoder–decoder networks. (a) single-level convolutional framelet
decomposition with identity pooling. (b) multi-level convolutional framelet deconvolution with
identity pooling

Fig. 10.5 Multi-resolution encoder–decoder networks

which shows the processing step of the framelet coefficient C at the decoder.
More specifically, we apply the global operation �̃ to cj first, after which multi-
input single-output (MISO) convolution operation is performed to obtain the final
reconstruction.

In fact, the order of these signal processing operations is very similar to the
two-layer encoder–decoder architecture, as shown in Figs. 10.4 and 10.5. At the
encoder side, the SIMO convolution operation is performed first to generate multi-
channel feature maps, after which the global pooling operation is performed. At the
decoder side, the feature map is unpooled first, after which the MISO convolution
is performed. Therefore, we can easily see the important analogy: the convolution
framelet coefficients are similar to the feature maps in CNNs, and �, �̃ work as a
pooling and unpooling layers, respectively, whereas �, �̃ correspond to the encoder
and decoder filters, respectively. This implies that the pooling operation defines the
global basis, whereas the convolution filters determine the local basis, and the CNN
tries to exploit both global and local structure of the signal.
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Fig. 10.6 Encoder–decoder CNNs without skip connection

Furthermore, by simply changing the global basis, we can obtain various network
architectures. For example, in Fig. 10.4, we use � = �̃ = In, whereas we use the
Haar wavevelet transform as global pooling for the case of Fig. 10.5.

10.3.4 Deep Convolutional Framelets

Now, we are ready to explain the multilayer convolution framelets, which we call
deep convolutional framelets [42]. For simplicity, we consider encoder–decoder
networks without skip connections, as shown in Fig. 10.6, although the analysis
can be applied equally well when the skip connections are present. Furthermore, we
assume symmetric configuration so that both encoder and decoder have the same
number of layers, say κ; the input and output dimensions for the encoder layer El
and the decoder layer Dl are symmetric:

El : Rdl−1 �→ R
dl , Dl : Rdl �→ R

dl−1 , l ∈ [κ], (10.30)

where [n] denotes the set {1, · · · , n}. At the l-th layer, ml and ql denote the
dimension of the signal, and the number of filter channels, respectively. The length
of filter is assumed to be r .

We now define the l-th layer input signal for the encoder layer from ql−1-input
channels,

zl−1 :=
[
zl−1�

1 · · · zl−1�
ql−1

]� ∈ R
dl−1 , (10.31)

where � denotes the transpose, and zl−1
j ∈ R

ml−1 refers to the j -th channel input

with the dimension ml−1. The l-th layer output signal zl is similarly defined. Note
that the filtered output is now stacked as a single column vector in (10.31), which
is different from the former treatment at the convolution framelet where the filter
output for each channel is stacked as an additional column. It turns out that the
notation in (10.31) makes the mathematical derivation for multilayer convolutional
neural networks much more trackable than the former notation, although the role of
the global and local basis are clearly seen in the former notation.
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Then, for the linear encoder–decoder CNN without skip connections, as shown
in Fig. 10.6a, we have the following linear representation at the l-th encoder layer
[35]:

zl = El�zl−1, (10.32)

where

El =

⎡
⎢⎢⎣

�l � ψ l1,1 · · · �l � ψ lql ,1
...

. . .
...

�l � ψ l1,ql−1
· · · �l � ψ lql ,ql−1

⎤
⎥⎥⎦ , (10.33)

where �l denotes the ml × ml matrix that represents the pooling operation at the
l-th layer, and ψ li,j ∈ R

r represents the l-th layer encoder filter to generate the i-

th channel output from the contribution of the j -th channel input, and �l � ψ li,j
represents a single-input multi-output (SIMO) convolution [35]:

�l � ψ li,j =
[
φl1 � ψ li,j · · · φln � ψ li,j

]
. (10.34)

Note that the inclusion of the bias can be readily done by including additional rows
into El as the bias and augmenting the last element of zl−1 by 1.

Similarly, the l-th decoder layer can be represented by

z̃l−1 = Dl z̃l , (10.35)

where

Dl =

⎡
⎢⎢⎣

�̃
l � ψ̃

l

1,1 · · · �̃
l � ψ̃

l

1,ql
...

. . .
...

�̃
l � ψ̃

l

ql−1,1 · · · �̃
l � ψ̃

l

ql−1,ql

⎤
⎥⎥⎦ , (10.36)

where �̃
l

denotes the ml ×ml matrix that represents the unpooling operation at the

l-th layer, and ψ̃
l

i,j ∈ R
r represents the l-th layer decoder filter to generate the i-th

channel output from the contribution of the j -th channel input.
Then, the output v of the encoder-decoder CNN with respect to input z can be

represented by the following representation [35]:

v = T�(z) =
∑
i

〈bi , z〉 b̃i (10.37)
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where � refers to all encoder and decoder convolution filters, and bi and b̃i denote
the i-th column of the following matrices, respectively:

B = E1E2 · · ·Eκ , B̃ = D1D2 · · ·Dκ (10.38)

Note that this representation is completely linear, since the representation does
not vary once the network parameters � are trained. Furthermore, consider the
following multilayer frame conditions for the pooling and filter layers:

�̃
l
�l� = αIml−1 , � l�̃

l� = 1

rα
I rql−1 , ∀l, (10.39)

where In denotes the n× n identity matrix and α > 0 is a nonzero constant, and

� l =

⎡
⎢⎢⎣

ψ l1,1 · · · ψ lql ,1
...

. . .
...

ψ l1,ql−1
· · · ψ lql ,ql−1

⎤
⎥⎥⎦ , (10.40)

�̃
l =

⎡
⎢⎢⎣

ψ̃
l

1,1 · · · ψ̃
l

1,ql
...

. . .
...

ψ̃
l

ql−1,1 · · · ψ̃
l

ql−1,ql

⎤
⎥⎥⎦ , (10.41)

Under these frame conditions, we showed in [35] that (10.37) satisfies the perfect
reconstruction condition, i.e

z = L�(z) :=
∑
i

〈bi , z〉 b̃i , (10.42)

hence the corresponding deep convolutional framelet is indeed a frame representa-
tion, similar to wavelet frames [113].

In the deep convolutional framelets, all the encoder and decoder filters can
be estimated from the training data set; hence, it is a data-driven model. More
specifically, for the given training data {xi , yi}ni=1, the CNN parameter � is
estimated by solving the following optimization problem:

min
�

n∑
i=1


 (yi,L�(xi ))+ λR(�). (10.43)

Once the parameter � is learned, the encoder and decoder matrices El and Dl are
determined. Therefore, the representations are entirely data-driven and dependent
on the filter sets that are learned from the training data set, which is different from
the classical kernel machine or basis pursuit approaches, where underlying kernels
or frames are specified in a top-down manner.
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That said, the deep convolutional framelet does not yet meet the desiderata of the
machine learning, since once it is trained, the frame representation does not vary,
hence the data-driven adaptation is not possible. In the next section, we will show
that the last missing element is the nonlinearity such as ReLU, which plays key roles
in machine learning.

10.4 Geometry of CNN

10.4.1 Role of Nonlinearity

In fact, the analysis of deep convolutional framelets with the ReLU nonlinearities
turns out to be a simple modification, but it provides very fundamental insights on
the geometry of the deep neural network.

Specifically, in [35] we showed that even with ReLU nonlinearities the expres-
sion (10.37) is still valid. The only change is that the basis matrices have additional
ReLU pattern blocks in between encoder, decoder, and skipped blocks. For example,
the expression in (10.38) is changed as follows:

B(z) = E1�1(z)E2�2(z) · · ·�κ−1(z)Eκ , (10.44)

B̃(z) = D1�̃
1
(z)D2�̃

2
(z) · · · �̃κ−1

(z)Dκ , (10.45)

where �l (z) and �̃
l
(z) are the diagonal matrices with 0 and 1 elements indicating

the ReLU activation patterns.
Accordingly, the linear representation in (10.37) should be modified as a

nonlinear representation:

v = T�(z) =
∑
i

〈bi (z), z〉 b̃i (z), (10.46)

where we now have an explicit dependency on z for bi (z) and b̃i (z) due to the input-
dependent ReLU activation patterns, which makes the representation nonlinear.

Again the filter parameter � is estimated by solving the optimization problem in
(10.43) by replacing L�(z) with T�(z) in (10.46). Therefore, the representations
are entirely data-driven.

10.4.2 Nonlinearity Is the Key for Inductive Learning

In (10.44) and (10.45), the encoder and decoder basis matrices have an explicit
dependence on the ReLU activation pattern on the input. Here we will show that
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Fig. 10.7 Reconstruction principle of deep learning

this ReLU-activation-dependent diagonal matrix provides a key role in enabling
inductive learning.

Specifically, the nonlinearity is applied after the convolution operation, so the on-
and-off activation pattern of each ReLU determines a binary partition of the feature
space at each layer across the hyperplane that is determined by the convolution.
Accordingly, in deep neural networks, the input space is partitioned into multiple
non-overlapping regions so that input images for each region share the same linear
representation, but not across the partition. This implies that two different input
images are automatically switched to two distinct linear representations that are
different from each other, as shown in Fig. 10.7.

This leads to an important insight: although the CNN approach and the basis
pursuit in Fig. 10.3 appear to be two completely different approaches, there exists a
very close relationship between the two. Specifically, the CNN is indeed similar to
the classical basis pursuit algorithm that searches for the distinct linear representa-
tion for each input, but in contrast to the basis pursuit, the CNN is inductive since
it does not solve the optimization problem for a new input, rather it only switches
to different frame representations by changing the ReLU activation patterns. This
inductivity from the learned filter coefficients is an important advance over the
classical signal processing approach.

10.4.3 Expressivity

Given the partition-dependent framelet geometry of CNN, we can easily expect that
with a greater number of input space partitions, the nonlinear function approxima-



10.4 Geometry of CNN 213

Fig. 10.8 Expressivity increases exponentially with channels, depth, and skip connections

tion by the piecewise linear frame representation becomes more accurate. Therefore,
the number of piecewise linear regions is directly related to the expressivity or
representation power of the neural network. If each ReLU activation pattern is
independent of the others, then the number of distinct ReLU activation patterns
is 2# of neurons, where the number of neurons is determined by the number of the
entire features. Therefore, the number of distinct linear representation increases
exponentially with the depth, width, and skip connection as shown in Fig. 10.8 [35].
This again confirms the expressive power of CNN thanks to the ReLU nonlinearities.

10.4.4 Geometric Meaning of Features

One of the interesting questions in neural networks is understanding the meaning
of the intermediate features that are obtained as an output of each layer of neural
network. Although these are largely regarded as latent variables, to our best
knowledge the geometric understanding of each latent variable is still not complete.
In this section, we show that this intermediate feature is directly related to the
relative coordinates with respect to the hyperplanes that partition the product space
of the previous layer features.
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To understand the claim, let us first revisit the ReLU operation for each neuron at
the encoder layer. Let Eli denote the i-th column of encoder matrix El and zlibe the
i-th element of zl . Then, the output of an activated neuron can be represented as:

zli =
|〈Eli , zl−1〉|
‖Eli‖︸ ︷︷ ︸

distance to the hyperplane

× ‖Eli‖, (10.47)

where the normal vector of the hyperplane can be identified as

nl = Eli . (10.48)

This implies that the output of the activated neuron is the scaled version of the
distance to the hyperplane which partitions the space of feature vector zl−1 into
active and non-active regions. Therefore, the role of the neural network can be
understood as representing the input data with a coordinate vector using the relative
distances with respect to multiple hyperplanes.

In fact, the aforementioned interpretation of the feature may not be novel, since
a similar interpretation can be used to explain the geometrical meaning of the
linear frame coefficients. Instead, one of the most important differences comes from
the multilayer representation. To understand this, consider the following two layer
neural network:

zli = σ(El�i zl−1), (10.49)

where

zl−1 = σ
(
E(l−1)�zl−2

)
= �(zl−1)E(l−1)�zl−2, (10.50)

where �(zl−1) again encodes the ReLU activation pattern. Using the property of
the inner product and adjoint operator, we have

zli = σ(El�i zl−1)

= σ
(〈

Eli ,�(z
l−1)E(l−1)�zl−2

〉)

= σ
(〈

�(zl−1)Eli ,E
(l−1)�zl−2

〉)
. (10.51)

This indicates that on the space of the unconstrained feature vector from the
previous layer (i.e. no ReLU is assumed), the hyperplane normal vector is now
changed to

nl = �(zl−l )Eli . (10.52)
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Fig. 10.9 Two-layer neural network with two neurons for each layer. Blue arrows indicate the
normal direction of the hyperplane. The black lines are hyperplanes for the first layers, and the red
lines correspond to the second layer hyperplanes

This implies that the hyperplane in the current layer is adaptively changed with
respect to the input data, since the ReLU activation pattern in the previous layer,
i.e. �(zl−l ), can vary depending on inputs. This is an important difference over
the linear multilayer frame representation, whose hyperplane structure is the same
regardless of different inputs.

For example, Fig. 10.9 shows a partition geometry of R2 by a two-layer neural
network with two neurons at each layer. The normal vector directions for the second
layer hyperplanes are determined by the ReLU activation patterns such that the
coordinate values at the inactive neuron become degenerate. More specifically, for
the (A) quadrant where two neurons at the first layers are active, we can obtain two
hyperplanes in any normal direction determined by the filter coefficients. However,
for the (B) quadrant where the second neuron is inactive, the situation is different.
Specifically, due to (10.52), the second coordinate of the normal vector, which
corresponds to the inactive neuron, becomes degenerate. This leads to the two
parallel hyperplanes that are distinct only by the bias term. A similar phenomenon
occurs for the quadrant (C) where the first neuron is inactive. For the (D) quadrant
where two neurons are inactive, the normal vector becomes zero and there exists no
partitioning. Therefore, we can conclude that the hyperplane geometry is adaptively
determined by the feature vectors in the previous layer.

In the following, we provide several toy examples in which the partition geometry
can be easily calculated.
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Fig. 10.10 An example two-layer neural network

Problem 10.1 (Partition Geometry of Two-Layer Neural Network in R
2) Consider

a two layer fully connected network f� : R2 → R
2 with ReLU nonlinearity, as

shown in Fig. 10.10.

(a) Suppose the weight matrices and biases are given by

W(0) =
[

2 −1
1 1

]
, b(0) =

[
1
−1

]
,

W(1) =
[

1 2
−1 1

]
, b(1) =

[−9
−2

]
.

Draw the corresponding input space partition, and compute the output mapping
with respect to an input vector (x, y) in each input partition. Please derive all
the steps explicitly.

(b) In problem (a), suppose that the bias terms are zero. Compute the input space
partition and the output mapping. What do you observe compared to the one
with bias?

(c) In problem (a), suppose that the second layer weight and bias are changed as

W(1) =
[

1 2
0 1

]
, b(1) =

[
0
1

]
.

Draw the corresponding input space partition, and compute the output mapping
with respect to an input vector (x, y) in each input partition. Compared to the
original problem in (a), what do you observe?
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Solution 10.1

(a) Let x = [x, y]� ∈ R
2. At the first layer, the output signal is given by

o(1) = σ
(
W(0)x+ b(0)

)
=
[
σ(2x − y + 1)
σ (x + y − 1)

]
,

where σ is the ReLU. Now, at the second layer, we need to consider all cases
where each ReLU is active or inactive.

(i) If 2x − y + 1 < 0 and x + y − 1 < 0, then o(1) = [0, 0]�, o(2) =
σ
(
W(1)o(1) + b(1)) = σ [−9,−2]� = [0, 0]�.

(ii) If 2x − y + 1 ≥ 0 and x + y − 1 < 0, then o(1) = [2x − y + 1, 0]�.
Hence, o(2) = σ (W(1)o(1) + b(1)) = σ ([2x − y − 8,−2x + y − 3])�.
Therefore,

o(2) =
{ [0, 0]�, 2x − y − 8 < 0,
[2x − y − 8, 0]�, otherwise.

(iii) If 2x−y+1 < 0 and x+y−1 ≥ 0, then o(1) = [0, x+y−1]� and o(2) =
σ
(
W(1)o(1) + b(1)) = σ ([2x + 2y − 11, x + y − 3])�. Therefore,

o(2) =

⎧⎪⎪⎨
⎪⎪⎩

[0, 0]�, x + y − 3 < 0,

[0, x + y − 3]�, 2x + 2y − 11 < 0, x + y − 3 ≥ 0,

[2x + 2y − 11, x + y − 3]�, otherwise.

(iv) If 2x − y + 1 ≥ 0 and x + y − 1 ≥ 0, then o(1) = [2x − y + 1, x + y −
1]� and o(2) = σ (W(1)o(1) + b(1)) = σ ([4x + y − 10,−x + 2y − 4])�.
Therefore,

o(2) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[0, 0]�, 4x + y − 10 < 0,−x + 2y − 4 < 0,

[4x + y − 10, 0]�, 4x + y − 10 < 0,−x + 2y − 4 ≥ 0,

[0,−x + 2y − 4]�, 4x + y − 10 ≥ 0,−x + 2y − 4 < 0,

[4x + y − 10,−x + 2y − 4]�, otherwise.

The resulting input space partition is shown in Fig. 10.11, where the
corresponding linear mapping and its rank are illustrated. Note that around
the two full rank partitions, there exist rank-1 mapping partitions, which
join with the rank-0 mapping partition.
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Fig. 10.11 Input space partitioning for the problem (a) case

(b) At the first layer, the output signal is given by

o(1) = σ
(
W(0)x+ b(0)

)
=
[
σ(2x − y)
σ (x + y)

]
,

where σ is the ReLU. At the second layer, we again consider all cases where
each ReLU is active or inactive.

(i) If 2x − y < 0 and x + y < 0, then o(1) = [0, 0]�, o(2) = σ (W(1)o(1)) =
[0, 0]�.

(ii) If 2x − y ≥ 0 and x + y < 0, then o(1) = [2x − y, 0]�. Hence,

o(2) = σ
(
W(1)o(1) + b(1)

)
= σ ([2x − y,−2x + y])� = [2x − y, 0]�.

(iii) If 2x − y < 0 and x + y ≥ 0, then o(1) = [0, x + y]]� and

o(2) = σ
(
W(1)o(1)

)
= σ ([2x + 2y, x + y])� = [2x + 2y, x + y]�.

(iv) If 2x − y ≥ 0 and x + y ≥ 0, then o(1) = [2x − y, x + y]� and o(2) =
σ
(
W(1)o(1) + b(1)) = σ ([4x + y,−x + 2y])�. Therefore,

o(2) =
{
[4x + y, 0]�, −x + 2y < 0,

[4x + y,−x + 2y]�, otherwise.
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Fig. 10.12 Input space partitioning for the problem (b) case

The resulting input space partition is shown in Fig. 10.12, where the corre-
sponding linear mapping and its rank are illustrated. Similar to problem (a),
around the two full rank partitions, there exist rank-1 mapping partitions, which
join with the rank-0 mapping partition. Since there is no bias term, all the
hyperplanes should contain the origin. Also, there are no hyperplane with same
normal vector, since parallel hyperplanes cannot be formed without bias terms.
As a result, the input space partition becomes simpler compared to (a).

(c) At the first layer, the output signal is given by

o(1) = σ
(
W(0)x+ b(0)

)
=
[
σ(2x − y + 1)
σ (x + y − 1)

]

where σ is the ReLU. Now, at the second layer, we need to consider all cases
where each ReLU is active or inactive.

(i) If 2x − y + 1 < 0 and x + y − 1 < 0, then o(1) = [0, 0]�, o(2) =
σ
(
W(1)o(1) + b(1)) = σ [0, 1]� = [0, 1]�.

(ii) If 2x−y+1 ≥ 0 and x+y−1 < 0, then o(1) = [2x−y+1, 0]�. Hence,
o(2) = σ (W(1)o(1) + b(1)) = σ ([2x − y + 1, 1])� = [2x − y + 1, 1]�.

(iii) If 2x−y+1 < 0 and x+y−1 ≥ 0, then o(1) = [0, x+y−1]� and o(2) =
σ
(
W(1)o(1) + b(1)) = σ ([2x + 2y − 2, x + y])� = [2x+2y−2, x+y]�.
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Fig. 10.13 Input space
partitioning for the problem
(c) case

(iv) If 2x−y+1 ≥ 0 and x+y−1 ≥ 0, then o(1) = [2x−y+1, x+y−1]�
and o(2) = σ (W(1)o(1) + b(1)) = σ ([4x + y − 1, x + y])� = [4x + y −
1, x+y]�. The resulting input space partition is shown in Fig. 10.13, where
the corresponding linear mapping and its rank are illustrated. There is no
hyperplane formed by the second layer. This shows how weight and bias
change the complexity of the input partition.

10.4.5 Geometric Understanding of Autoencoder

We are now interested in providing a more in-depth discussion on geometry of deep
neural networks for regression problems, in particular, autoencoder. Autoencoders
have the same input and output domains, and are commonly used for low-level
computer vision problems, such as image denoising [90, 98], super-resolution
[99, 100] and so on. Although we provide a discussion on the autoencoder, similar
geometric understanding can be applied to other regression problems, where the
input and output domains are different. Later we will show that the geometric
understanding of the autoencoder also gives a clear insight on the geometry of
classifiers.

Based on the discussion so far, we now understand that the deep neural network
with ReLU nonlinearities partitions the input data space into piecewise linear
regions. In fact, this view is directly related to the manifold structure of the data,
and we believe that the main fundamental principle to explain the success of deep
learning is its efficient use of the manifold structure in the data.

First, we provide some differential geometric definition.
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Fig. 10.14 Manifold geometry of autoencoder [114]

Definition 10.1 An n-dimensional manifold is a topological space, covered by a
set of open sets � ⊂ ∪αUα . For each open set Uα , there exists a homeomorphism
ϕα : Uα �→ R

n, and the pair (Uα, ϕα) form a chart. The union of the chart forms an
atlas A = {(Uα, ϕα)}.

As shown in Fig. 10.14, suppose X is the ambient space, μ is a probability
distribution defined on X. The support of μ,

�(μ) := {x ∈ X : μ(x) > 0} (10.53)

is a low-dimensional manifold in X. For a given local chart (Uα, ϕα), ϕα : Uα �→ F
is called an encoder, where F is called the latent space or feature space. A point
x ∈ � is called a sample; its image ϕα(x) is the corresponding feature of x. The
inverse map ψα := ϕ−1

α : F �→ � is called the decoder [114].
Then, an autoencoder consists of two parts, the encoder and the decoder. The

encoder takes a sample x ∈ X and maps it to the feature map z ∈ F, z = ϕ(x).
The encoder ϕ : X �→ F maps � to its latent representation D = ϕ(�)

homomorphically. After that, the decoder ψ : F �→ X maps z to the reconstruction
x of the same shape as x,

x̂ = ψ(z) = ψ ◦ ϕ(x).

This relation can be seen in the following commutative diagram [114]:
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In practice, both encoder and decoder are parameterized with the parameter �,
so that the autoencoder is described by

x̂ = T�(x) = ψ� ◦ ϕ�(x)

and the parameter estimation problem can be solved by

min
�

n∑
i=1


 (yi,T�(xi ))+ λR(�), (10.54)

which is the same as the CNN training.
Figure 10.14 shows an example geometry of each step of the autoencoder with

ReLU nonlinearities. Here, the ambient space X is R3 and the feature space is two-
dimensional, i.e. F ⊂ R

2. The sample x is a 3-D point so that the input manifold
M := �(μ) ⊂ X is a two-dimensional surface within R

3, which is low-dimensional
(see Fig. 10.14). The input samples are mapped to the feature space manifold in
Fig. 10.14 using the parameterized encoder ϕ�. Then, this feature manifold is
mapped back to the original ambient space using the parameterized decoder ψ�

as Fig. 10.14. Due to the ReLU nonlinearities, the input manifold M is partitioned
into piecewise linear regions D(ϕ�).

The specific operation on each piecewise linear region is then defined during
the training phase. For example, in Fig. 10.15, the input manifold is a noisy point
cloud, whereas the label data at the output are the noiseless 3D surfaces. During
the training, the specific operation of the neural network is guided as a low-rank
mapping on the reconstruction manifold, as discussed in Problem 10.1. Therefore,
the noisy outliers from the input manifold are projected into the reconstruction
manifold via a trained neural network, which is piecewise linear at each cell but
globally nonlinear [114].

10.4.6 Geometric Understanding of Classifier

The geometric understanding of the autoencoder now gives a clear picture of what
happens in the deep neural network classifier. In this case, we only have an encoder
to map to the latent space, which leads to a simplified commutative diagram:

Since the encoder is also parameterized with � and equipped with a ReLU, the input
manifold is also partitioned into piecewise linear regions, as shown in Fig. 10.14d.
Then, the linear layer followed by softmax assigns to the class probability for each
piecewise linear cell.
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Fig. 10.15 Denoising as a piecewise linear projection on the reconstruction manifold [114]

10.5 Open Problems

Our discussion so far reveals that the deep neural network is indeed trained to
partition the input data manifold such that the linear mapping at each piecewise
linear region can effectively perform machine learning tasks, such as classification,
regression, etc. Therefore, we strongly believe that the clue to unveil the mystery
of deep neural networks comes from the understanding of the high-dimensional
manifold structure and its piecewise linear partition, and how the partitions can be
controlled.

In fact, many machine learning theoreticians have been focusing on this, thereby
generating many intriguing theoretical and empirical observations [115–118]. For
example, although we mentioned that the number of linear regions can potentially
increase exponentially with the network complexity, they observed that the actual
number of piecewise linear representation for specific tasks is much smaller. For
example, Fig. 10.16 shows that the number of linear regions indeed converges to
a smaller value compared to the initialization as the number of epochs increases
[115, 116].
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Fig. 10.16 Here the authors [115, 116] show the linear regions that intersect a 2D plane through
input space for a network of depth 3 and width 64 trained on MNIST

Fig. 10.17 Linear regions and classification regions of models trained with different optimization
techniques [117]

Note that only the number of epochs determines the number of piecewise linear
regions, but also, depending on the choice of the optimization algorithms, the
number of linear regions varies. For example, Fig. 10.17 shows that the number
of linear regions varies depending on the optimization algorithms, which leads to
the different classification boundaries. Here, the gray curves in the bottom row are
transition boundaries separating different linear regions, and the color represents
the activation rate of the corresponding linear region. In the top row, different colors
represent different classification regions, separated by the decision boundaries. The
models were trained on the vectorized MNIST data set, and this figure shows a
two-dimensional slice of the input space.

In fact, this phenomenon can be understood as a data-driven adaptation to
eliminate the unnecessary partitions for machine learning tasks. Note that the
partition boundary can collapse, resulting in a smaller number of partitions, as
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discussed in Problem 10.1(c). It is believed that there is a compromise between
the approximation error and the robustness of the neural network in terms of the
number of piecewise linear areas. Many of these questions remain unanswered, and
many research efforts need to clearly understand the partition geometry of the neural
network.

Finally, while it was largely disregarded during our discussion, for the case
of CNNs, the choice of the hyperplanes becomes further constrained due to the
convolutional relationship. For example, to encode the data manifold in R

3 with
the r = 2 convolution filter with the filter coefficient of [1, 2], the following three
vectors determine the normal direction of the three hyperplanes:

nl1 =
[
1 2 0

]
, nl2 =

[
0 1 2

]
, nl3 =

[
2 0 1

]
, (10.55)

where we assume the circular convolution and no pooling operation (i.e. �l = I 3).
This implies that each channel of the convolution filter determines an orthant
of the underlying feature space, and the feature vectors are directly related to
the coordinate on the resultant orthant. Therefore, understanding piecewise linear
regions in CNNs requires a much more in-depth understanding of the high-
dimensional geometry, which may be another very exciting research topic.

10.6 Exercises

1. Prove (10.24).
2. Prove the equality (10.25).
3. Fill in the missing step in (10.26).
4. Show (10.29).
5. Our goal is to derive the input–output relation in (10.32) at the encoder.

(a) Show that

(�l � ψ lj,k)
�zl−1
k = �l�(zl−1

k � ψ
l

j,k). (10.56)

(b) Using (10.56), prove (10.32).

6. Our goal is to derive the input–output relation in (10.35) at the decoder.

(a) Show that

(�̃
l � ψ̃

l

j,k)z̃
l
k = �̃

l
z̃lk � ψ̃

l

j,k. (10.57)

(b) Using (10.57), prove (10.35).

7. Under the frame condition (10.39), derive the perfect reconstruction condition in
(10.42).
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8. Consider a three-layer fully connected network f� : R2 → R
2 with ReLU

nonlinearity.

(a) Suppose the weight matrices and biases are given by

W (0) =
[

1 −1
1 1

]
, b(0) =

[
1
−1

]
,

W (1) =
[

2 2
1 1

]
, b(1) =

[
0
1

]
,

W (2) =
[

1 2
−1 1

]
, b(2) =

[−1
−1

]
.

Draw the corresponding input space partition, and compute the output
mapping with respect to an input vector (x, y) in each input partition. Please
derive all the steps explicitly.

(b) In problem (a), suppose that the bias terms are zero. Compute the input space
partition and the output mapping. What do you observe compared to the one
with bias?

(c) In problem (a), the last layer weight W (2) and bias b(2) are changed due to
the fine tuning. Please give an example of W (2) and bias b(2) that gives the
smallest number of partitions.



Chapter 11
Deep Learning Optimization

11.1 Introduction

In Chap. 6, we discussed various optimization methods for deep neural network
training. Although they are in various forms, these algorithms are basically gradient-
based local update schemes. However, the biggest obstacle recognized by the entire
community is that the loss surfaces of deep neural networks are extremely non-
convex and not even smooth. This non-convexity and non-smoothness make the
optimization unaffordable to analyze, and the main concern was whether popular
gradient-based approaches might fall into local minimizers.

Surprisingly, the success of modern deep learning may be due to the remarkable
effectiveness of gradient-based optimization methods despite its highly non-convex
nature of the optimization problem. Extensive research has been carried out
in recent years to provide a theoretical understanding of this phenomenon. In
particular, several recent works [119–121] have noted the importance of the over-
parameterization. In fact, it was shown that when hidden layers of a deep network
have a large number of neurons compared to the number of training samples, the
gradient descent or stochastic gradient converges to a global minimum with zero
training errors. While these results are intriguing and provide important clues for
understanding the geometry of deep learning optimization, it is still unclear why
simple local search algorithms can be successful for deep neural network training.

Indeed, the area of deep learning optimization is a rapidly evolving area of
intense research, and there are too many different approaches to cover in a single
chapter. Rather than treating a variety of techniques in a disorganized way, this
chapter explains two different lines of research just for food for thought: one is based
on the geometric structure of the loss function and the other is based on the results
of Lyapunov stability. Although the two approaches are closely related, they have
different advantages and disadvantages. By explaining these two approaches, we can
cover some of the key topics of research exploration such as optimization landscape
[122–124], over-parameterization [119, 125–129], and neural tangent kernel (NTK)
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[130–132] that have been used extensively to analyze the convergence properties of
local deep learning search methods.

11.2 Problem Formulation

In Chap. 6, we pointed out that the basic optimization problem in neural network
training can be formulated as

min
θ∈Rn


(θ), (11.1)

where θ refers to the network parameters and 
 : Rn �→ R is the loss function. In the
case of supervised learning with the mean square error (MSE) loss, the loss function
is defined by


(θ) := 1

2
‖y − f θ (x)‖2, (11.2)

where x, y denotes the pair of the network input and the label, and f θ (·) is a neural
network parameterized by trainable parameters θ . For the case of an L-layer feed-
forward neural network, the regression function f�(x) can be represented by

f θ (x) :=
(
σ ◦ g(L) ◦ σ ◦ g(L−1) · · · ◦ g(1)

)
(x) , (11.3)

where σ (·) denotes the element-wise nonlinearity and

g(l) = W (l)o(l−1) + b(l−1), (11.4)

o(l) = σ (g(l)), (11.5)

o(0) = x, (11.6)

for l = 1, · · · , L. Here, the number of the l-th layer hidden neurons, often referred
to as the width, is denoted by d(l), so that g(l), o(l) ∈ R

d(l) and W (l) ∈ R
d(l)×d(l−1)

.
The popular local search approaches using the gradient descent use the following

update rule:

θ [k + 1] = θ [k] − ηk ∂
(θ)
∂θ

∣∣∣∣
θ=θ[k]

, (11.7)
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where ηk denotes the k-th iteration step size. In a differential equation form, the
update rule can be represented by

θ̇ [t] = −∂
(θ[k])
∂θ

, (11.8)

where θ̇ [t] = ∂θ[t]/∂t .
As previously explained, the optimization problem (11.1) is strongly non-convex,

and it is known that the gradient-based local search schemes using (11.7) and (11.8)
may get stuck in the local minima. Interestingly, many deep learning optimization
algorithms appear to avoid the local minima and even result in zero training errors,
indicating that the algorithms are reaching the global minima. In the following, we
present two different approaches to explain this fascinating behavior of gradient
descent approaches.

11.3 Polyak–Łojasiewicz-Type Convergence Analysis

The loss function 
 is said to be strongly convex (SC) if


(θ ′) ≥ 
(θ)+ 〈∇
(θ), θ ′ − θ〉 + μ
2
‖θ ′ − θ‖2, ∀θ , θ ′. (11.9)

It is known that if 
 is SC, then gradient descent achieves a global linear convergence
rate for this problem [133]. Note that SC in (11.9) is a stronger condition than the
convexity in Proposition 1.1, which is given as


(θ ′) ≥ 
(θ)+ 〈∇
(θ), θ ′ − θ〉, ∀θ , θ ′. (11.10)

Our starting point is the observation that the convex analysis mentioned above
is not the right approach to analyzing a deep neural network. The non-convexity
is essential for the analysis. This situation has motivated a variety of alternatives
to the convexity to prove the convergence. One of the oldest of these conditions
is the error bounds (EB) of Luo and Tseng [134], but other conditions have been
recent considered, which include essential strong convexity (ESC) [135], weak
strong convexity (WSC) [136], and the restricted secant inequality (RSI) [137].
See their specific forms of conditions in Table 11.1. On the other hand, there
is a much older condition called the Polyak–Łojasiewicz (PL) condition, which
was originally introduced by Polyak [138] and found to be a special case of the
inequality of Łojasiewicz [139]. Specifically, we will say that a function satisfies
the PL inequality if the following holds for some μ > 0:

1

2
‖∇
(θ)‖2 ≥ μ(
(θ)− 
∗), ∀θ . (11.11)
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Note that this inequality implies that every stationary point is a global minimum.
But unlike SC, it does not imply that there is a unique solution. We will revisit this
issue later.

Similar to other conditions in Table 11.1, PL is a sufficient condition for
gradient descent to achieve a linear convergence rate [122]. In fact, PL is the
mildest condition among them. Specifically, the following relationship between the
conditions holds [122]:

(SC) → (ESC) → (WSC) → (RSI) → (EB) ≡ (PL),

if 
 have a Lipschitz continuous gradient, i.e. there exists L > 0 such that

‖∇
(θ)− ∇
(θ ′)‖ ≤ L‖θ − θ ′‖, ∀θ , θ ′. (11.12)

In the following, we provide a convergence proof of the gradient descent method
using the PL condition, which turns out to be an important tool for non-convex deep
learning optimization problems.

Theorem 11.1 (Karimi et al. [122]) Consider problem (11.1), where 
 has an
L-Lipschitz continuous gradient, a non-empty solution set, and satisfies the PL
inequality (11.11). Then the gradient method with a step-size of 1/L:

θ [k + 1] = θ[k] − 1

L
∇
(θ [k]) (11.13)

has a global convergence rate


(θ [k])− 
∗ ≤
(

1− μ
L

)k (

(θ [0])− 
∗) .

Proof Using Lemma 11.1 (see next section), L-Lipschitz continuous gradient of the
loss function 
 implies that the function

g(θ) = L
2
‖θ‖2 − 
(θ)

is convex. Thus, the first-order equivalence of convexity in Proposition 1.1 leads to
the following:

L

2
‖θ ′‖2 − 
(θ ′) ≥ L

2
‖θ‖2 − 
(θ)+ 〈θ ′ − θ, Lθ −∇
(θ)〉

= −L
2
‖θ‖2 − 
(θ)+ L〈θ ′, θ〉 − 〈θ ′ − θ ,∇
(θ)〉.
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By arranging terms, we have


(θ ′) ≤ 
(θ)+ 〈∇
(θ), θ ′ − θ〉 + L
2
‖θ ′ − θ‖2, ∀θ , θ ′.

By setting θ ′ = θ [k + 1] and θ = θ [k] and using the update rule (11.13), we have


(θ[k + 1])− 
(θ[k]) ≤ − 1

2L
‖∇
(θ [k])‖2. (11.14)

Using the PL inequality (11.11), we get


(θ[k + 1])− 
(θ[k]) ≤ −μ
L

(

(θ [k])− 
∗) .

Rearranging and subtracting 
∗ from both sides gives us


(θ [k + 1])− 
∗ ≤
(

1− μ
L

) (

(θ [k])− 
∗) .

Applying this inequality recursively gives the result. ��
The beauty of this proof is that we can replace the long and complicated proofs from
other conditions with simpler proofs based on the PL inequality [122].

11.3.1 Loss Landscape and Over-Parameterization

In Theorem 11.1, we use the two conditions for the loss function: (1) 
 satisfies
the PL condition and (2) the gradient of 
 is Lipschitz continuous. Although these
conditions are much weaker than the convexity of the loss function, they still impose
the geometric constraint for the loss function, which deserves further discussion.

Lemma 11.1 If the gradient of 
(θ) satisfies the L-Lipschitz condition in (11.12),
then the transformed function g : Rn �→ R defined by

g(θ) := L
2

θ�θ − 
(θ) (11.15)

is convex.

Proof Using the Cauchy–Schwarz inequality, (11.12) implies

〈∇
(θ)− ∇
(θ ′), θ − θ ′〉 ≤ L‖θ − θ ′‖2, ∀θ , θ ′.
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This is equivalent to the following condition:

〈θ ′ − θ ,∇g(θ ′)− ∇g(θ)〉 ≥ 0, ∀θ , θ ′, (11.16)

where

g(θ) = L
2
‖θ‖2 − 
(θ).

Thus, using the monotonicity of gradient equivalence in Proposition 1.1, we can
show that g(θ) is convex. ��

Lemma 11.1 implies that although 
 is not convex, its transformed function by
(11.15) can be convex. Figure 11.1a shows an example of such case. Another impor-
tant geometric consideration for the loss landscape comes from the PL condition.
More specifically, the PL condition in (11.11) implies that every stationary point is
a global minimizer, although the global minimizers may not be unique, as shown in
Fig. 11.1b,c. While the PL inequality does not imply convexity of 
, it does imply
the weaker condition of invexity [122]. A function is invex if it is differentiable and
there exists a vector-valued function η such that for any θ and θ ′ in R

n, the following
inequality holds:


(θ ′) ≥ 
(θ)+ 〈∇
(θ), η(θ , θ ′)〉. (11.17)

A convex function is a special case of invex functions since (11.17) holds when we
set η(θ, θ ′) = θ ′ − θ . It was shown that a smooth 
 is invex if and only if every
stationary point of 
 is a global minimum [140]. As the PL condition implies that
every stationary point is a global minimizer, a function satisfying PL is an invex
function. The inclusion relationship between convex, invex, and PL functions is
illustrated in Fig. 11.2.

The loss landscape, where every stationary point is a global minimizer, implies
that that there are no spurious local minimizers. This is often called the benign
optimization landscape. Finding the conditions for a benign optimization landscape

Fig. 11.1 Loss landscape for the function 
(x)with (a) (11.15) is convex, and (b, c) PL conditions
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Fig. 11.2 Inclusion
relationship between invex,
convex and PL-type functions

of neural networks was an important theoretical interest of the theorists in machine
learning. Originally observed by Kawaguch [141], Lu and Kawaguchi [142] and
Zhou and Liang [143] have proven that the loss surfaces of linear neural networks,
whose activation functions are all linear functions, do not have any spurious local
minima under some conditions and all local minima are equally good.

Unfortunately, this good property no longer stands when the activations are
nonlinear. Zhou and Liang [143] show that ReLU neural networks with one hidden
layer have spurious local minima. Yun et al. [144] prove that ReLU neural networks
with one hidden layer have infinitely many spurious local minima when the outputs
are one-dimensional.

These somewhat negative results were surprising and seemed to contradict the
empirical success of optimization in neural networks. Indeed, it was later shown
that if the activation functions are continuous, and the loss functions are convex
and differentiable, over-parameterized fully-connected deep neural networks do not
have any spurious local minima [145].

The reason for the benign optimization landscape for an over-parameterized
neural network was analyzed by examining the geometry of the global minimum.
Nguyen [123] discovered that the global minima are interconnected and concen-
trated on a unique valley if the neural networks are sufficiently over-parameterized.
Similar results were obtained by Liu et al. [124]. In fact, they found that the
set of solutions of an over-parameterized system is generically a manifold of
positive dimensions, with the Hessian matrices of the loss function being positive
semidefinite but not positive definite. Such a landscape is incompatible with
convexity unless the set of solutions is a linear manifold. However, the linear
manifold with zero curvature of the curve of global minima is unlikely to occur
due to the essential non-convexity of the underlying optimization problem. Hence,
gradient type algorithms can converge to any of the global minimum, although the
exact point of the convergence depends on a specific optimization algorithm. This
implicit bias of an optimization algorithm is another important theoretical topic
in deep learning, which will be covered in a later chapter. In contrast, an under-
parameterized landscape generally has several isolated local minima with a positive
definite Hessian of the loss, the function being locally convex. This is illustrated in
Fig. 11.3.
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Fig. 11.3 Loss landscapes of (a) under-parameterized models and (b) over-parameterized models

11.4 Lyapunov-Type Convergence Analysis

Now let us introduce a different type of convergence analysis with a different
mathematical flavor. In contrast to the methods discussed above, the analysis of
the global loss landscape is not required here. Rather, a local loss geometry along
the solution trajectory is the key to this analysis.

In fact, this type of convergence analysis is based on Lyapunov stability analysis
[146] for the solution dynamics described by (11.8). Specifically, for a given
nonlinear system,

θ̇ [t] = g(θ [t]), (11.18)

the Lyapunov stability analysis is concerned with checking whether the solution
trajectory θ [t] converges to zero as t → ∞. To provide a general solution for this,
we first define the Lyapunov function V (z), which satisfies the following properties:

Definition 11.1 A function V : Rn �→ R is positive definite (PD) if

• V (z) ≥ 0 for all z.
• V (z) = 0 if and only if z = 0.
• All sublevel sets of V are bounded.

The Lyapunov function V has an analogy to the potential function of classical
dynamics, and −V̇ can be considered the associated generalized dissipation func-
tion. Furthermore, if we set z := θ [t] to analyze the nonlinear dynamic system in
(11.18), then V̇ : z ∈ R

n �→ R is computed by

V̇ (z) =
(
∂V

∂z

)�
ż =
(
∂V

∂z

)�
g(z). (11.19)
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The following Lyapunov global asymptotic stability theorem is one of the keys
to the stability analysis of dynamic systems:

Theorem 11.2 (Lyapunov Global Asymptotic Stability [146]) Suppose there is
a function V such that 1) V is positive definite, and 2) V̇ (z) < 0 for all z �= 0 and
V̇ (0) = 0. Then, every trajectory θ [t] of θ̇ = g(θ) converges to zero as t → ∞.
(i.e., the system is globally asymptotically stable).

Example: 1-D Differential Equation
Consider the following ordinary differential equation:

θ̇ = −θ.

We can easily show that the system is globally asymptotically stable since the
solution is θ [t] = C exp(−t) for some constant C, and θ [t] → 0 as t →∞.
Now, we want to prove this using Theorem 11.2 without ever solving the
differential equation. First, choose a Lyapunov function

V (z) = z
2

2
,

where z = θ [t]. We can easily show that V (z) is positive definite. Further-
more, we have

V̇ = zż = −(θ [t])2 < 0, ∀θ [t] �= 0.

Therefore, using Theorem 11.2 we can show that θ [t] converges to zero as
t →∞.

One of the beauties of Lyapunov stability analysis is that we do not need an
explicit knowledge of the loss landscape to prove convergence. Instead, we just need
to know the local dynamics along the solution path. To understand this claim, here
we apply Lyapunov analysis to the convergence analysis of our gradient descent
dynamics:

θ̇ [t] = − ∂

∂θ
(θ[t]) .

For the MSE loss, this leads to

θ̇[t] = −∂f θ [t](x)
∂θ

(
y − f θ[t](x)

)
. (11.20)
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Now let

e[t] := f θ [t](x)− y ,

and consider the following positive definite Lyapunov function

V (z) = 1

2
z�z,

where z = e[t]. Then, we have

V̇ (z) =
(
∂V

∂z

)�
ż = z�ż. (11.21)

Using the chain rule, we have

ż = ė[t] =
(
∂f

∂θ

)�
θ̇[t] = −K te[t],

where

K t = Kθ[t] :=
(
∂f θ

∂θ

)�
∂f θ

∂θ

∣∣∣∣∣
θ=θ[t]

(11.22)

is often called the neural tangent kernel (NTK) [130–132]. By plugging this into
(11.21), we have

V̇ = −ηe[t]�K te[t]. (11.23)

Accordingly, if the NTK is positive definite for all t , then V̇ (z) < 0. Therefore,
e[t] → 0 so that f (θ[t])→ y as t →∞. This proves the convergence of gradient
descent approach.

11.4.1 The Neural Tangent Kernel (NTK)

In the previous discussion we showed that the Lyapunov analysis only requires
a positive-definiteness of the NTK along the solution trajectory. While this is a
great advantage over PL-type analysis, which requires knowledge of the global loss
landscape, the NTK is a function of time, so it is important to obtain the conditions
for the positive-definiteness of NTK along the solution trajectory.

To understand this, here we are interested in deriving the explicit form of the
NTK to understand the convergence behavior of the gradient descent methods.
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Using the backpropagation in Chap. 6, we can obtain the weight update as follows:

∂f θ

∂VEC(W (l))
= ∂g

(l)
n

∂VEC(W (l))

∂o
(l)
n

∂g
(l)
n

∂g
(l+1)
n

∂o
(l)
n

· · · ∂o
(L)
n

∂g
(L)
n

= (o(l) ⊗ I d(l) )�
(l)
n W (l+1)��(l+1)

n W (l+2)� · · ·W (L)��(L)n .

Similarly, we have

∂f θ

∂b(l)
= ∂g

(l)
n

∂b(l)
∂o
(l)
n

∂g
(l)
n

∂g
(l+1)
n

∂o
(l)
n

· · · ∂o
(L)
n

∂g
(L)
n

= �(l)n W (l+1)��(l+1)
n W (l+2)� · · ·W (L)��(L)n .

Therefore, the NTK can be computed by

K
(L)
t :=

(
∂f θ

∂θ

)�
∂f θ

∂θ

∣∣∣∣∣
θ=θ [t]

=
L∑
l=1

(
∂f θ

∂VEC(W (l))

)�
∂f θ

∂VEC(W (l))
+
(
∂f θ

∂b(l)

)�
∂f θ

∂b(l)

=
L∑
l=1

(‖o(l)[t]‖2 + 1)M(l)[t],

where

M(l)[t] = �(L)W (L)[t] · · ·W (l+1)[t]�(l)�(l)W (l+1)�[t] · · ·W (L)�[t]�(L).
(11.24)

Therefore, the positive definiteness of the NTK comes from the properties of
M(l)[t]. In particular, if M(l)[t] is positive definite for any l, the resulting NTK
is positive definite. Moreover, the positive-definiteness of M(l)[t] can be readily
shown if the following sensitivity matrix is full row ranked:

S(l) := �(L)W (L)[t] · · ·W (l+1)[t]�(l).

11.4.2 NTK at Infinite Width Limit

Although we derived the explicit form of the NTK using backpropagation, still the
component matrix in (11.24) is difficult to analyze due to the stochastic nature of
the weights and ReLU activation patterns.
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To address this problem, the authors in [130] calculated the NTK at the infinite
width limit and showed that it satisfies the positive definiteness. Specifically, they
considered the following normalized form of the neural network update:

o(0)n = x, (11.25)

g(l) = 1√
d(l)

W (l)o(l−1)
n + βb(l−1), (11.26)

o(l) = σ (g(l)), (11.27)

for l = 1, · · · , L, and d(l) denotes the width of the l-th layer. Furthermore,
they considered what is sometimes called LeCun initialization, taking W(l)ij ∼
N
(

0, 1
d(l)

)
and b(l)j ∼ N(0, 1). Then, the following asymptotic form of the NTK

can be obtained.

Theorem 11.3 (Jacot et al. [130]) For a network of depthL at initialization, with a
Lipschitz nonlinearity σ , and in the limit as the layers width d(1) · · · , d(L−1)→∞,
the neural tangent kernel K(L) converges in probability to a deterministic limiting
kernel:

K(L)→ κ(L)∞ ⊗ I dL. (11.28)

Here, the scalar kernel κ(L)∞ : Rd(0)×d(0) �→ R is defined recursively by

κ(1)∞ (x, x′) =
1

d(0)
x�x′ + β2, (11.29)

κ(l+1)∞ (x, x′) = κ(l)∞ (x, x′)ν̇(l+1)(x, x′)+ ν(l+1)(x, x′), (11.30)

where

ν(l+1)(x, x′) = Eg
[
σ(g(x))σ (g(x′)

]+ β2, (11.31)

ν̇(l+1)(x, x′) = Eg
[
σ̇ (g(x))σ̇ (g(x′)

]
, (11.32)

where the expectation is with respect to a centered Gaussian process g of covariance
ν(l), and where σ̇ denotes the derivative of σ .

Note that the symptotic form of the NTK is positive definite since κ(L)∞ > 0.
Therefore, the gradient descent using the infinite width NTK converges to the global
minima. Again, we can clearly see the benefit of the over-parameterization in terms
of large network width.



240 11 Deep Learning Optimization

11.4.3 NTK for General Loss Function

Now, we are interested in extending the example above to the general loss function
with multiple training data sets. For a given training data set {xn}Nn=1, the gradient
dynamics in (11.7) can be extended to

θ̇ = −
N∑
n=1

∂
(f θ (xn))

∂θ
= −

N∑
n=1

∂f θ (xn)

∂θ

∂
(xn)

∂f θ (xn)
,

where 
(xn) := 
(f (xn)) with a slight abuse of notation. This leads to

ḟ θ (xm) =
(
∂f θ (xm)

∂θ

)�
θ̇

= −
N∑
n=1

(
∂f θ (xm)

∂θ

)�
∂f θ (xn)

∂θ

∂
(xn)

∂f θ (xn)

= −
N∑
n=1

K t (xm, xn)
∂
(xn)

∂f θ (xn)
,

where K t (xm, xn) denotes the (m, n)-th block NTK defined by

K t (xm, xn) :=
(
∂f θ (xm)

∂θ

)�
∂f θ (xn)

∂θ

∣∣∣∣∣
θ=θ[t]

.

Now, consider the following Lyapunov function candidate:

V (z) =
N∑
m=1


(f θ (xm)) =
N∑
m=1


(zm + f ∗m),

where

z =

⎡
⎢⎢⎢⎣

z1

z2
...

zN

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

f θ (x1)− f ∗(x1)

f θ (x2)− f ∗(x2)
...

f θ (xN)− f ∗(xN)

⎤
⎥⎥⎥⎦ ,



11.5 Exercises 241

and f ∗(xm) refers to f θ∗(xm) with θ∗ being the global minimizer. We further
assume that the loss function satisfies the property that

∀n, 
(f θ (xn)) > 0, if f θ (xn) �= f ∗n , 
(f n∗) = 0,

so that V (z) is a positive definite function. Under this assumption, we have

V̇ (z) =
N∑
m=1

(
∂
(f θ (xm))

∂zm

)�
żm =

N∑
m=1

(
∂
(xm)

∂f θ (xm)

)�
ḟ θ (xm)

∣∣∣∣∣
θ=θ [t]

= −
N∑
m=1

N∑
n=1

(
∂
(f θ (xm))

∂f θ (xm)

)�
K t (xm, xn)

∂
(f θ (xn))

∂f θ (xn)

∣∣∣∣∣
θ=θ [t]

= −e[t]�K[t]e[t],

where

e[t] =

⎡
⎢⎢⎣

∂
(f θ (x1))

∂f θ (x1)

...
∂
(f θ (xN))
∂f θ (xN)

⎤
⎥⎥⎦

θ=θ[t]

, K[t] =
⎡
⎢⎣

K t (x1, x1) · · · K t (x1, xN)
...

. . .
...

K t (xN, x1) · · · K t (xN, xN).

⎤
⎥⎦

Therefore, if the NTK K[t] is positive definite for all t , then Lyapunov stability
theory guarantees that the gradient dynamics converge to the global minima.

11.5 Exercises

1. Show that a smooth 
(θ) is invex if and only if every stationary point of 
(θ) is a
global minimum.

2. Show that a convex function is invex.
3. Let a > 0. Show that V (x, y) = x2 + 2y2 is a Lyapunov function for the system

ẋ = ay2 − x , ẏ = −y − ax2.

4. Show that V (x, y) = ln(1+ x2)+ y2 is a Lyapunov function for the system

ẋ = x(y − 1) , ẏ = − x2

1+ x2
.

5. Consider a two-layer fully connected network f� : R
2 → R

2 with ReLU
nonlinearity, as shown in Fig. 10.10.
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(a) Suppose the weight matrices and biases are given by

W (0) =
[

2 −1
1 1

]
, b(0) =

[
1
−1

]

W (1) =
[

1 2
−1 1

]
, b(1) =

[−9
−2

]
.

Given the corresponding input space partition in Fig. 10.11, compute the
neural tangent kernel for each partition. Are they positive definite?

(b) In problem (a), suppose that the second layer weight and bias are changed to

W (1) =
[

1 2
0 1

]
, b(1) =

[
0
1

]
.

Given the corresponding input space partition, compute the neural tangent
kernel for each partition. Are they positive definite?



Chapter 12
Generalization Capability of Deep
Learning

12.1 Introduction

One of the main reasons for the enormous success of deep neural networks is
their amazing ability to generalize, which seems mysterious from the perspective
of classic machine learning. In particular, the number of trainable parameters in
deep neural networks is often greater than the training data set, this situation
being notorious for overfitting from the point of view of classical statistical
learning theory. However, empirical results have shown that a deep neural network
generalizes well at the test phase, resulting in high performance for the unseen data.

This apparent contradiction has raised questions about the mathematical foun-
dations of machine learning and their relevance to practitioners. A number of
theoretical papers have been published to understand the intriguing generalization
phenomenon in deep learning models [147–153]. The simplest approach to studying
generalization in deep learning is to prove a generalization bound, which is typically
an upper limit for test error. A key component in these generalization bounds is the
notion of complexity measure: a quantity that monotonically relates to some aspect
of generalization. Unfortunately, it is difficult to find tight bounds for a deep neural
network that can explain the fascinating ability to generalize.

Recently, the authors in [154, 155] have delivered groundbreaking work that can
reconcile classical understanding and modern practice in a unified framework. The
so-called “double descent” curve extends the classical U-shaped bias-variance trade-
off curve by showing that increasing the model capacity beyond the interpolation
point leads to improved performance in the test phase. Particularly, the induced bias
by optimization algorithms such as the stochastic gradient descent (SGD) offers
simpler solutions that improve generalization in the over-parameterized regime.
This relationship between the algorithms and structure of machine learning models
describes the limits of classical analysis and has implications for the theory and
practice of machine learning.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
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This chapter also presents new results showing that a generalization bound
based on the robustness of the algorithm can be a promising tool to understand
the generalization ability of the ReLU network. In particular, we claim that it
can potentially offer a tight generalization bound that depends on the piecewise
linear nature of the deep neural network and the inductive bias of the optimization
algorithms.

12.2 Mathematical Preliminaries

Let Q be an arbitrary distribution over z := (x, y), where x ∈ X and y ∈ Y denote
the input and output of the learning algorithm, and Z := X×Y refer to the sample
space. Let F be a hypothesis class and let 
(f , z) be a loss function. For the case of
regression with MSE loss, the loss can be defined as


(f , z) = 1

2
‖y − f (x)‖2.

Over the choice of an i.i.d. training set S := {zn}Nn=1, which is sampled according
to Q, an algorithm A returns the estimated hypothesis

f S = A(S). (12.1)

For example, the estimated hypothesis from the popular empirical risk minimization
(ERM) principle [10] is given by

f ERM = arg min
f∈F

R̂N (f ), (12.2)

where the empirical risk R̂N (f ) is defined by

R̂N (f ) := 1

N

N∑
n=1


 (f , zn) , (12.3)

which is assumed to uniformly converge to the population (or expected) risk defined
by:

R(f ) = Ez∼Q
 (f , z) . (12.4)

If uniform convergence holds, then the empirical risk minimizer (ERM) is consis-
tent, that is, the population risk of the ERM converges to the optimal population
risk, and the problem is said to be learnable using the ERM [10].
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In fact, learning algorithms that satisfy such performance guarantees are called
the probably approximately correct (PAC) learning [156]. Formally, PAC learnabil-
ity is defined as follows.

Definition 12.1 (PAC Learnability [156]) A concept class C is PAC learnable if
there exist some algorithm A and a polynomial function poly(·) such that the
following holds. Pick any target concept c ∈ C. Pick any input distribution P
over X. Pick any ε, δ ∈ [0, 1]. Define S := {xn, c(xn)}Nn=1 where xn ∼ P are
i.i.d samples. Given N ≥ poly(1/ε, 1/δ, dim(X), size(c)), where dim(X), size(c)
denote the computational costs of representing inputs x ∈ X and target c, the
generalization error is bounded as

Px∼Q {AS(x) �= c(x)} ≤ ε, (12.5)

where AS denotes the learned hypothesis by the algorithm A using the training
data S.

The PAC learnability is closely related to the generalization bounds. More
specifically, the ERM could only be considered a solution to a machine learning
problem or PAC-learnable if the difference between the training error and the
generalization error, called the generalization gap, is small enough. This implies
that the following probability should be sufficiently small:

P

{
sup
f∈F
|R(f )− R̂N (f )| > ε

}
. (12.6)

Note that this is the worst-case probability, so even in the worst-case scenario, we
try to minimize the difference between the empirical risk and the expected risk.

A standard trick to bound the probability in (12.6) is based on concentration
inequalities. For example, Hoeffding’s inequality is useful.

Theorem 12.1 (Hoeffding’s Inequality [157]) If x1, x2, · · · , xN are N i.i.d. sam-
ples of a random variable X distributed by P, and a ≤ xn ≤ b for every n, then for
a small positive nonzero value ε:

P

{∣∣∣∣∣E[X] −
1

N

N∑
n=1

xn

∣∣∣∣∣ > ε
}
≤ 2 exp

( −2Nε2

(b − a)2
)
. (12.7)



246 12 Generalization Capability of Deep Learning

Assuming that our loss is bounded between 0 and 1 using a 0/1 loss function
or by squashing any other loss between 0 and 1, (12.6) can be bounded as follows
using Hoeffding’s inequality:

P

{
sup
f∈F
|R(f )− R̂N (f )| > ε

}
= P

⎧⎨
⎩
⋃
f∈F
|R(f )− R̂N (f )| > ε

⎫⎬
⎭

(a)≤
∑
f∈F

P

{
|R(f )− R̂N (f )| > ε

}
(12.8)

= 2|F| exp(−2Nε2),

where |F| is the size of the hypothesis space and we use the union bound in (a) to
obtain the inequality. By denoting the right hand side of the above inequality by δ,
we can say that with probability at least 1− δ, we have

R(f ) ≤ R̂N (f )+
√

ln |F| + ln 2
δ

2N
. (12.9)

Indeed, (12.9) is one of the simplest forms of the generalization bound, but still
reveals the fundamental bias–variance trade-off in classical statistical learning
theory. For example, the ERM for a given function class F results in the minimum
empirical loss:

R̂N (f ERM) = min
f∈F

R̂N (f ), (12.10)

which goes to zero as the hypothesis class F becomes bigger. On the other hand, the
second term in (12.9) grows with increasing |F|. This trade-off in the generalization
bound with respect to the hypothesis class size |F| is illustrated in Fig. 12.1.

Although the expression in (12.9) looks very nice, it turns out that the bound is
very loose. This is due to the term |F| which originates from the union bound of all
elements in the hypothesis class F. In the following, we discuss some representative
classical approaches to obtain tighter generation bounds.

12.2.1 Vapnik–Chervonenkis (VC) Bounds

One of the key ideas of the work of Vapnik and Chervonenkis [10] is to replace
the union bound for all hypothesis class in (12.8) with the union bound of simpler
empirical distributions. This idea is historically important, so we will review it here.
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Fig. 12.1 Generation bound behavior according to the hypothesis class size |F|

More specifically, consider independent samples z′n := (x′n, y′n) for n =
1, · · · , N , which are often called “ghost” samples. The associated empirical risk
is given by

R̂′N(f ) =
1

N

N∑
n=1



(
f , z′n

)
. (12.11)

Then, we have the following symmetrization lemma.

Lemma 12.1 (Symmetrization[10]) For a given sample set S := {xn, yn}Nn=1 and
its ghost samples set S′ := {x′n, y′n}Nn=1 from a distribution Q and for any ε > 0
such that ε ≥ √2/N , we have

P

{
sup
f∈F
|R(f )− R̂N (f )| > ε

}
≤ 2P

{
sup
f∈F
|R̂′N(f )− R̂N (f )| >

ε

2

}
. (12.12)

Vapnik and Chervonenkis [10] used the symmetrization lemma to obtain a much
tighter generalization bound:

P

{
sup
f∈F
|R(f )− R̂N (f )| > ε

}
≤ 2P

{
sup

f∈FS,S′
|R̂′N(f )− R̂N (f )| >

ε

2

}

= 2P

⎧⎨
⎩
⋃

f∈FS,S′
|R̂′N(f )− R̂N (f )| > ε

⎫⎬
⎭
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≤ 2GF(2N) · P
{
|R̂′N(f )− R̂N (f )| > ε

}

≤ 2GF(2N) exp(−Nε2/8),

where the last inequality is obtained by Hoeffding’s inequality and FS,S′ denotes
the restriction of the hypothesis class to the empirical distribution for S,S′. Here,
GF(·) is called the growth function defined by

GF(2N) := |FS,S′ |, (12.13)

which represents the number of the most possible sets of dichotomies using the
hypothesis class F on any 2N points from S and S′.

The discovery of the growth function is one of the important contributions of
Vapnik and Chervonenkis [10]. This is closely related to the concept of shattering,
which is formally defined as follows.

Definition 12.2 (Shattering) We say F shatters S if |F| = 2|S|.

In fact, the growth function GF(N) is often called the shattering number: the
number of the most possible sets of dichotomies using the hypothesis class F on
any N points. Below, we show several facts for the growth function:

• By definition, the shattering number satisfies GF(N) ≤ 2N .
• When F is finite, we always have GF(N) = |F|.
• If GF(N) = 2N , then there is a set of N points such that the class of functions F

can generate any possible classification result on these points. Figure 12.2 shows
such a case where F is the class of linear classifiers.

Fig. 12.2 Most possible sets of dichotomies using linear classifier on any three points. The
resulting shattering number is GF(3) = 8
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Accordingly, we arrive at the following classical VC bound [10]:

Theorem 12.2 (VC Bound) For any δ > 0, with probability at least 1−δ, we have

R(f ) ≤ R̂N (f )+
√

8 lnGF(2N)+ 8 ln 2
δ

N
. (12.14)

Another important contribution of the work by Vapnik and Chervonenkis [10]
is that the growth function can be bounded by the so-called VC dimension, and
the number of data points for which we cannot get all possible dichotomies (=VC
dimension +1) is called the break point.

Definition 12.3 (VC Dimension) The VC dimension of a hypothesis class F is the
largest N = dVC(F) such that

GF(N) = 2N.

In other words, the VC dimension of a function class F is the cardinality of the
largest set that it can shatter.

This means that the VC dimension is a measure of the capacity (complexity,
expressiveness, richness, or flexibility) of a set of functions that can be learned from
a statistical binary classification algorithm. It is defined as the cardinality of the
largest number of points that the algorithm can classify with zero training error. In
the following, we show several examples where we can explicitly calculate the VC
dimensions.

Example: Half-Sided Interval
Consider any function of the form F = {f (x) = χ(x ≤ θ), θ ∈ R}. It
can shatter two points, but any three points cannot be shattered. Therefore,
dVC(F) = 2.

Example: Half Plane
Consider a hypothesis class F composed of half planes in R

d . It can shatter
d + 1 points, but any d + 2 points cannot be shattered. Therefore, dVC(F) =
d + 1.
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Example: Sinusoids
f is a single-parametric sine classifier, i.e, for a certain parameter θ , the
classifier fθ returns 1 if the input number x is larger than sin(θx) and 0
otherwise. The VC dimension of f is infinite, since it can shatter any finite
subset of the set {2−m | m ∈ N}.

Finally, we can derive the generalization bound using the VC dimension. For this,
the following lemma by Sauer is the key element.

Lemma 12.2 (Sauer’s Lemma[158]) Suppose that F has a finite VC dimension
dVC . Then

GF(n) ≤
dVC∑
i=1

(
n

i

)
(12.15)

and for all n ≥ dVC ,

GF(n) ≤
(
en

dVC

)dVC
. (12.16)

Corollary 12.1 (VC Bound Using VC Dimension) Let dVC ≥ N . Then, for any
δ > 0, with probability at least 1− δ, we have

R(f ) ≤ R̂N (f )+
√

8dVC ln 2eN
dVC
+ 8 ln 2

δ

N
. (12.17)

Proof This is a direct consequence of Theorem 12.2 and Lemma 12.2. ��
The VC dimension has been studied for deep neural networks to understand

their generalization behaviors [159]. Bartlett et al. [160] proves bounds on the VC
dimension of piece-wise linear networks with potential weight sharing. Although
this measure could be predictive when the architecture changes, which happens only
in depth and width hyperparameter types, the authors in [159] also found that it
is negatively correlated with the generalization gap, which contradicts the widely
known empirical observation that over-parametrization improves generalization in
deep learning [159].
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12.2.2 Rademacher Complexity Bounds

Another important classical approach for the generalization error bound is
Rademacher complexity [161]. To understand this concept, consider the following
toy example. Let S := {(xn, yn)}Nn=1 denote the training sample set, where
yn ∈ {−1, 1}. Then, the training error can be computed by

errN(f ) = 1

N

N∑
n=1

1 [f (xn) �= yn] , (12.18)

where 1[·] is an indicator function computed by

1 [f (xn) �= yn] =
{

1, {f (xn), yn} = {1,−1}, {−1, 1}
0, {f (xn), yn} = {1, 1}, {−1,−1} . (12.19)

Then, (12.18) can be equivalently represented by

errN(f ) = 1

N

N∑
n=1

1− ynf (xn)
2

= 1

2
− 1

N

N∑
i=1

ynf (xn)

︸ ︷︷ ︸
correlation

. (12.20)

Therefore, minimizing the training error is equivalent to maximizing the correlation.
Now, the core idea of the Rademacher complexity is to consider a game where a
player generates random targets {yn}Nn=1 and another player provides the hypothesis
that maximize the correlation:

sup
f∈F

1

N

N∑
n=1

ynf (xn). (12.21)

Note that the idea is closely related to the shattering in VC analysis. Specifically,
if the hypothesis class F shatters S = {xn, yn}Nn=1, then the correlation becomes
a maximum. However, in contrast to the VC analysis that considers the worst-
case scenario, Rademacher complexity analysis deals with average-case analysis.
Formally, we define the so-called Rademacher complexity [161].
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Definition 12.4 (Rademacher Complexity[161]) Let σ1 · · · , σN be independent
random variables P{σn = 1} = P{σ= − 1} = 1

2 . Then, the empirical Rademacher
complexity of F is defined by

RadN(F,S) = Eσ

[
sup
f∈F

1

N

N∑
n=1

σnf (xn)

]
, (12.22)

where σ = [σ1, · · · , σN ]�. In addition, the general notion of Rademacher
complexity is computed by

RadN(F) := ES [RadN(F,S)] . (12.23)

Another important advantage of Rademacher complexity is that it can be easily
generalized to the regression problem for the vector target. For example, (12.23) can
be generalized as follows:

RadN(F) = E

[
sup
f∈F

1

N

N∑
n=1

〈σ n,f (xn)〉
]
, (12.24)

where {σ n}Nn=1 refers to the independent random vectors. In the following, we pro-
vide some examples where the Rademacher complexity can be explicitly calculated.

Example: Minimum Rademacher Complexity
When the hypothesis class has one element, i.e. |F| = 1, we have

Rad(F) = E

[
sup
f∈F

1

N

N∑
n=1

σnf (xn)

]
= f (x1) · E

[
1

N

N∑
n=1

σn

]
= 0,

where the second equality comes from the fact that f (xn) = f (x1) for all n
when |F| = 1. The final equation comes from the definition of the random
variable σn.

Example: Maximum Rademacher Complexity
When |F| = 2N , we have

Rad(F) = E

[
sup
f∈F

1

N

N∑
n=1

σnf (xn)

]
= E

[
1

N

N∑
n=1

σ 2
n

]
= 1,

(continued)
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where the second equality comes from the fact that we can find a hypothesis
such that f (xn) = σn for all n. The final equation comes from the definition
of the random variable σn.

Although the Rademacher complexity was originally derived above for the
binary classifiers, it can also be used to evaluate the complexity of the regression.
The following example shows that a closed form Rademacher complexity can be
obtained for ridge regression.

Example: Ridge Regression
Let F be the class of linear predictors given by y = w�x with the restriction
of ‖w‖ ≤ W and ‖x‖ ≤ X. Then, we have

Rad(F,S) = Eσ

[
sup

w:‖w‖≤W
1

N

N∑
n=1

σnw
�xn

]

= 1

N
Eσ

[
sup

w:‖w‖≤W
w�
(
N∑
n=1

σnxn

)]

(a)= W
N

Eσ

∥∥∥∥∥
N∑
n=1

σnxn

∥∥∥∥∥
(b)≤ W
N

√√√√ N∑
n=1

Eσ‖σnxn‖2

= W
N

√√√√ N∑
n=1

‖xn‖2 ≤ WX√
N
,

where (a) comes from the definition of the l1 norm, and (b) comes from
Jensen’s inequality.

Using the Rademacher complexity, we can now derive a new type of generaliza-
tion bound. First, we need the following concentration inequality.

Lemma 12.3 (McDiarmid’s Inequality[161]) Let x1, · · · , xN be independent
random variables taking on values in a set X and let c1, · · · , cn be positive real
constants. If ϕ : XN �→ R satisfies

sup
x1,··· ,xN ,x′n∈A

|ϕ(x1, · · · , xn, · · · , xN)− ϕ(x1, · · · , x′n, · · · , xN)| ≤ cn,
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for 1 ≤ n ≤ N , then

P{|ϕ(x1, · · · , xN)− Eϕ(x1, · · · , xN)| ≥ ε} ≤ 2 exp

(
− 2ε2

∑N
n=1 c

2
n

)
. (12.25)

In particular, if ϕ(x1, · · · , xN) = ∑Nn=1 xn/N , the inequality (12.25) reduces to
Hoeffding’s inequality.

Using McDiarmid’s inequality and symmetrization using “ghost samples”, we
can obtain the following generalization bound.

Theorem 12.3 (Rademacher Bound) Let S := {xn, yn}Nn=1 denote the training
set and f (x) ∈ [a, b]. For any δ > 0, with probability at least 1− δ, we have

R(f ) ≤ R̂N (f )+ 2RadN(F)+ (b − a)
√

ln 1/δ

2N
, (12.26)

and

R(f ) ≤ R̂N (f )+ 2RadN(F,S)+ 3(b − a)
√

ln 2/δ

2N
. (12.27)

Unfortunately, many theoretical efforts using the Rademacher complexity to
understand the deep neural network were not successful [159], which often resulted
in a vacuous bound similar to the attempts using VC bounds. Therefore, the need to
obtain a tighter bound has been increasing.

12.2.3 PAC–Bayes Bounds

So far, we have discussed performance guarantees which hold whenever the training
and test data are drawn independently from an identical distribution. In fact,
learning algorithms that satisfy such performance guarantees are called the probably
approximately correct (PAC) learning [156]. It was shown that the concept class C
is PAC learnable if and only if the VC dimension of C is finite [162].

In addition to PAC learning, there is another important area of modern learning
theory—Bayesian inference. Bayesian inferences apply whenever the training and
test data are generated according to the specified prior. However, there is no
guarantee of an experimental environment in which training and test data are
generated according to a different probability distribution than the previous one. In
fact, much of modern learning theory can be broken down into Bayesian inference
and PAC learning. Both areas investigate learning algorithms that use training data
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as the input and generate a concept or model as the output, which can then be tested
on test data.

The difference between the two approaches can be seen as a trade-off between
generality and performance. We define an “experimental setting” as a probability
distribution over training and test data. A PAC performance guarantee applies to a
wide class of experimental settings. A Bayesian correctness theorem applies only
to experimental settings that match those previously used in the algorithm. In this
restricted class of settings, however, the Bayesian learning algorithm can be optimal
and generally outperforms the PAC learning algorithms.

The PAC–Bayesian theory combines Bayesian and frequentist approaches [163].
The PAC–Bayesian theory is based on a prior probability distribution concerning
the “situation” occurring in nature, and a “rule” expresses a learner’s preference for
some rules over others. There is no supposed relationship between the learner’s bias
for rules and the nature distribution. This differs from the Bayesian inference, where
the starting point is a common distribution of rules and situations, which induces a
conditional distribution of rules in certain situations.

Under this set-up, the following PAC–Bayes generalization bound can be
obtained.

Theorem 12.4 (PAC–Bayes Generalization Bound) [163] Let Q be an arbitrary
distribution over z := (x, y) ∈ Z := X × Y. Let F be a hypothesis class and let

 be a loss function such that for all f and z we have 
(f , z) ∈ [0, 1]. Let P be a
prior distribution over F and let δ ∈ (0, 1). Then, with probability of at least 1− δ
over the choice of an i.i.d. training set S := {zn}Nn=1 sampled according to Q, for
all distributions Q over F (even such that depend on S), we have

Ef∼Q [R(f )] ≤ Ef∼Q
[
R̂N (f )

]
+
√
KL(Q||P)+ lnN/δ

2(N − 1)
, (12.28)

where

KL(Q||P) := Ef∼Q [lnQ(f )/P(f )] (12.29)

is the Kullback–Leibler divergence.

Recently, PAC–Bayes approaches have been studied extensively to explain
the generalization capability of neural networks [149, 153, 164]. According to a
recent large scale experiment to test the correlation of different measures with the
generalization of deep models [159], the authors confirmed the effectiveness of the
PAC–Bayesian bounds and corroborate them as a promising direction for cracking
the generalization puzzle. Another nice application of PAC–Bayes bounds is that it
provides a mean to find the optimal distribution Q∗ by minimizing the upper bounds.
This technique has been successfully used for the linear classifier design [164], etc.
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12.3 Reconciling the Generalization Gap
via Double Descent Model

Recall that the following error bound can be obtained for the ERM estimate in
(12.2):

R(f ∗ERM) ≤ R̂N (f
∗
ERM)︸ ︷︷ ︸

empirical risk (training error)

+ O
(√

c

N

)

︸ ︷︷ ︸
complexity penalty

, (12.30)

where O(·) denotes the “big O” notation and c refers to the model complexity such
as VC dimension, Rademacher complexity, etc.

In (12.30), with increasing hypothesis class size |F|, the empirical risk or
training error decreases, whereas the complexity penalty increases. The control of
the functional class capacity can be therefore done explicitly by choosing F (e.g.
selection of the neural network architecture). This is summarized in the classic U-
shaped risk curve, which is shown in Fig. 12.3a and was often used as a guide for
model selection. A widely accepted view from this curve is that a model with zero
training error is overfitted to the training data and will typically generalize poorly
[10]. Classical thinking therefore deals with the search for the “sweet spot” between
underfitting and overfitting.

Lately, this view has been challenged by empirical results that seem mysterious.
For example, in [165] the authors trained several standard architectures on a copy
of the data, with the true labels being replaced by random labels. Their central
finding can be summarized as follows: deep neural networks easily fit random labels.
More precisely, neural networks achieve zero training errors if they are trained on
a completely random labeling of the true data. While this observation is easy to
formulate, it has profound implications from a statistical learning perspective: the
effective capacity of neural networks is sufficient to store the entire data set. Despite
the high capacity of the functional classes and the almost perfect fit to training data,
these predictors often give very accurate predictions for new data in the test phase.

These observations rule out VC dimension, Rademacher complexity, etc. from
describing the generalization behavior. In particular, the Rademacher complexity
for the interpolation regime, which leads to a training error of 0, assumes the
maximum value of 1, as previously explained in an example. Therefore, the classic
generalization bounds are vacuous and cannot explain the amazing generalization
ability of the neural network.

The recent breakthrough in Belkin et al.’s “double descent” risk curve [154, 155]
reconciles the classic bias–variance trade-off with behaviors that have been observed
in over-parameterized regimes for a large number of machine learning models. In
particular, when the functional class capacity is below the “interpolation threshold”,
learned predictors show the classic U-shaped curve from Fig. 12.3a, where the
function class capacity is identified with the number of parameters needed to specify
a function within the class. The bottom of the U-shaped risk can be achieved at
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Fig. 12.3 Curves for training risk (dashed line) and test risk (solid line). (a) The classical U-
shaped risk curve arising from the bias–variance trade-off. (b) The double descent risk curve,
which incorporates the U-shaped risk curve (i.e., the “classical” regime) together with the observed
behavior from using high-capacity function classes (i.e., the “modern” interpolating regime),
separated by the interpolation threshold. The predictors to the right of the interpolation threshold
have zero training risk

the sweet spot which balances the fit to the training data and the susceptibility
to over-fitting. When we increase the function class capacity high enough by
increasing the size of the neural network architecture, the learned predictors achieve
(almost) perfect fits to the training data. Although the learned predictors obtained
at the interpolation threshold typically have high risk, increasing the function class
capacity beyond this point leads to decreasing risk, which typically falls below the
risk achieved at the sweet spot in the “classic” regime (see Fig. 12.3b).

In the following example we provide concrete and explicit evidence for the
double descent behavior in the context of simple linear regression models. The
analysis shows the transition from under- to over-parameterized regimes. It also
allows us to compare the risks at any point on the curve and explain how the risk in
the over-parameterized regime can be lower than any risk in the under-parameterized
regime.
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Example: Double Descent in Regression [155]
We consider the following linear regression problem:

y = x�β + ε, (12.31)

where β ∈ R
D and x and ε are a normal random vector and a variable, where

x ∼ N(0, ID) and ε ∼ N(0, σ 2). Given training data {xn, yn}Nn=1, we fit a
linear model to the data using only a subset T ⊂ [D] of cardinality of p,
where [D] := {0, · · · ,D}. Let X = [x1, · · · , xN ] ∈ R

D×N be the design
matrix, y = [y1, · · · , yN ]� be the vector of response. For a subset T , we use
βT to denote its |T |-dimensional subvector of entries from T ; we also use XT
to denote an N × p sub-matrix of X composed of columns in T . Then, the
risk of β̂, where β̂T = X

†
T y and β̂T c = 0, is given by

E

[
(y − x�β̂)2

]
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(‖βT c‖2 + σ 2)
(

1+ p
N−p−1

)
; if p ≤ N − 2

∞; if N − 1 ≤ p ≤ N + 1

‖βT ‖2
(

1− N
p

)

+(‖βT c‖2 + σ 2)
(

1+ N
p−N−1

)
; if p ≥ N + 2.

(12.32)

Proof Recall that x is assumed to be a Gaussian distribution with zero mean
and identity covariance, so that the mean squared prediction error can be
written as

E

[
(y − x�β̂)2

]
= E

[
(x�β + σε − x�β̂)2

]
= σ 2 + E‖β − β̂‖2

= σ 2 + ‖βT c‖2 + E‖βT − β̂T ‖2,

where β denotes the ground-truth regression parameter and we use the
independency of the test phase regressor x and the training phase design
matrix X. Our goal is now to derive the closed form expression for the second
term.
(Classical regime) For the given training data set, we have

β̂T = (XTX�T )−1XT y = (XTX�T )−1XTX�T βT + (XTX�T )−1XT η

= βT + (XTX�T )−1XT η,

(continued)
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where

η := y −X�T βT = ε +X�T cβT c .

By plugging this into the second term, we have

E‖βT − β̂T ‖2 = E

[
η�PR(XT )η

]
= Tr

(
E
[
PR(XT )

]
E

[
ηη�
])
.

In addition, we have

E

[
ηη�
]
= E

[
εε�
]
+ E

[
X�T cβT c

(
X�T cβT c

)�]

= (σ 2 + ‖βT c‖2)IN,

where R(XT ) denotes the range space of XT and PR(XT ) denotes the
projection to the range space of XT . Furthermore, PR(XT ) is Hotelling’s T-
squared distribution with parameter p and N − p + 1 so that

TrE
[
PR(XT )

] =
{

p
N−p−1 , if p ≤ N − 2

+∞, if p = N − 1
. (12.33)

Therefore, by putting them together we conclude the proof for the classical
regime.
(Modern interpolating regime) We consider p ≥ N . Then, we have

β̂T = X�T (XTX�T )−1y = X�T (XTX�T )−1X�T βT +X�T (XTX�T )−1η

= X�T (XTX�T )−1X�T βT +X�T (XTX�T )−1η

= PR(X�T )
βT +X�T (XTX�T )−1η,

where

η := y −X�T βT = ε +X�T cβT c .

Therefore,

E

[
‖βT − β̂T ‖2

]
= E

[
‖P⊥R(X�T )βT ‖

2
]
+ E

[
η�(XTX�T )−1η

]
.

(continued)
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Furthermore, we have

E

[
‖P⊥R(X�T )βT ‖

2
]
=
(

1− n
p

)
‖βT ‖2

E

[
η�(XTX�T )−1η

]
= Tr

(
E(XTX�T )−1

E

[
ηη�
])
,

where we use the independency between XT and XT c and ε for the second
equality. In addition, we have

E

[
ηη�
]
= E

[
εε�
]
+ E

[
X�T cβT c

(
X�T cβT c

)�]

= (σ 2 + ‖βT c‖2)IN.

Finally, the distribution of P := (XTX�T )−1 is inverse-Wishart with identity
scale matrix IN with p degrees of freedom. Accordingly, we have

Tr
(
E(XTX�T )−1

)
=
{

N
p−N−1 , if p ≥ N + 2

+∞, if p = N,N + 1
.

By putting them together, we have

E

[
(y − x�β̂)2

]
=
(

1− N
p

)
‖βT ‖2 + (σ 2 + ‖βT c‖2)

(
1+ N

p −N − 1

)
,

for p ≥ N and E

[
(y − x�β̂)2

]
= ∞ for p = N,N + 1. This concludes the

proof. ��

Figure 12.4 illustrates an example plot for the linear regression problem analyzed
above for a particular parameter set.

12.4 Inductive Bias of Optimization

All learned predictors to the right of the interpolation threshold fit perfectly with
the training data and have no empirical risk. Then, why should some—especially
those from larger functional classes—have a lower test risk than others so that
they generalize better? The answer is that the functional class capacity, such
as VC dimension, or Rademacher complexity, does not necessarily reflect the
inductive bias of the predictor appropriate for the problem at hand. Indeed, one
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Fig. 12.4 Plot of the risk in (12.32) as a function of p under the random selection of T . Here
‖β‖2 = 1, σ 2 = 1/25 and N = 40

of the underlying reasons for the appearance of the double descent model in the
previous linear regression problem is that we impose an inductive bias to choose the
minimum norm solution β̂T = XT (X

�
TXT )

−1y for the over-parameterized regime,
which leads to the smooth solution.

Among the various interpolation solutions, choosing the smooth or simple
function that perfectly fits the observed data is a form of Occam’s razor: the simplest
explanation compatible with the observations should be preferred. By considering
larger functional classes that contain more candidate predictors that are compatible
with the data, we can find interpolation functions that are “simpler”. Increasing
the functional class capacity thus improves the performance of classifiers. One
of the important advantages of choosing a simpler solution is that it is easy to
generalize by avoiding unnecessary glitches in the data. Increasing the functional
class capacity to the over-parameterized area thus improves the performance of the
resulting classifiers.

Then, one of the remaining questions is: what is the underlying mechanism by
which a trained network becomes smooth or simple? This is closely related to
the inductive bias (or implicit bias) of an optimization algorithm such as gradient
descent, stochastic gradient descent (SGD), etc. [166–171]. Indeed, this is an active
area of research. For example, the authors in [168] show that the gradient descent
for the linear classifier for specific loss function leads to the maximum margin SVM
classifier. Other researchers have shown that the gradient descent in deep neural
network training leads to a simple solution [169–171].

12.5 Generalization Bounds via Algorithm Robustness

Another important question is how we can quantify the inductive bias of the
algorithm in terms of a generalization error bound. In this section, we introduce
a notion of algorithmic robustness for quantifying the generalization error, which
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was originally proposed in [172], but has been largely neglected in deep learning
research. It turns out that the generalization bound based on algorithmic robustness
has all the ingredients to quantify the fascinating generalization behavior of the deep
neural network, so it can be a useful tool for studying generalization.

Recall that the underlying assumption for the classical generalization bounds is
the uniform convergence of empirical quantities to their mean [10], which provides
ways to bound the gap between the expected risk and the empirical risk by the
complexity of the hypothesis set. On the other hand, robustness requires that a
prediction rule has comparable performance if tested on a sample close to a training
sample. This is formally defined as follows.

Definition 12.5 (Algorithm Robustness [172]) Algorithm A is said to be
(K, ε(·))-robust for K ∈ N and ε(·) : Z �→ R, if Z := X × Y can be partitioned
intoK disjoint sets, denoted by {Ci}Ki=1 such that the following holds for all training
sets S ⊂ Z:

∀s ∈ S,∀z ∈ Z; if s, z ∈ Ci, then |
(AS, s)− 
(AS, z)| ≤ ε(S) (12.34)

for all i = 1, · · · ,K , where AS denotes the algorithm A trained with the data set S.

Then, we can obtain the generalization bound based on algorithmic robustness.
First, we need the following concentration inequality.

Lemma 12.4 (Breteganolle–Huber–Carol Inequality [173]) If the random vec-
tor (N1, · · · , Nk) is multinomially distributed with parametersN and (p1, · · · , pk),
then

P

{
k∑
i=1

|Ni −Npi | ≥ 2
√
Nλ

}
≤ 2k exp(−2λ2), λ > 0. (12.35)

Theorem 12.5 If a learning algorithm A is (K, ε(·))-robust, and the training
sample set S is generated by N i.i.d samples from the probability measure μ, then
for any δ > 0, with probability at least 1− δ we have

|R(AS)− R̂N (AS)| ≤ ε(S)+M
√

2K ln 2+ 2 ln(1/δ)

N
, (12.36)

where

M := max
z∈Z
|
(AS, z)|.
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Proof Let Ni be the set of indices of points of S that fall into the Ci . Note that
(|N1|, · · · , |NK |) is an i.i.d. multinomial random variable with parameters N and
(μ(Ci ), · · · , μ(CK)). Then, the following holds by Lemma 12.4.

P

{
K∑
i=1

∣∣∣∣
|Ni |
N
− μ(Ci )

∣∣∣∣ ≥ λ
}
≤ 2K exp

(
−Nλ

2

2

)
. (12.37)

Hence, the following holds with probability at least 1− δ,
K∑
i=1

∣∣∣∣
|Ni |
N
− μ(Ci )

∣∣∣∣ ≤
√

2K ln 2+ 2 ln(1/δ)

N
. (12.38)

The generalization error is then given by

|R(AS)− R̂N (AS)| ≤
∣∣∣∣∣
K∑
i=1

Ez∼μ
(AS, z|z ∈ Ci )μ(Ci)− 1

N

N∑
n=1


(AS, si )

∣∣∣∣∣

(a)≤
∣∣∣∣∣
K∑
i=1

Ez∼μ
(AS, z|z ∈ Ci )
|Ni |
N
− 1

N

N∑
n=1


(AS, si )

∣∣∣∣∣

+
∣∣∣∣∣
K∑
i=1

Ez∼μ
(AS, z|z ∈ Ci )μ(Ci)−
N∑
n=1

Ez∼μ
(AS, z|z ∈ Ci )
|Ni |
N

∣∣∣∣∣

(b)≤ 1

N

∣∣∣∣∣∣
K∑
i=1

∑
j∈Ni

max
z2∈Cj

|
(AS, sj )− 
(AS, z2)|
∣∣∣∣∣∣

+max
z∈Z
|
(AS, z)|

K∑
i=1

∣∣∣∣
|Ni |
N
− μ(Ci )

∣∣∣∣

(c)≤ ε(S)+M
K∑
i=1

∣∣∣∣
|Ni |
N
− μ(Ci )

∣∣∣∣

(d)≤ ε(S)+M
√

2K ln 2+ 2 ln(1/δ)

N
,

where (a), (b), and (c) are due to the triangle inequality, the definition of Ni , and the
definition of ε(S) andM , respectively. ��

Note that the definition of robustness requires that (12.34) holds for every training
sample. The parameters K and ε(·) quantify the robustness of an algorithm. Since
ε(·) is a function of training samples, an algorithm can have different robustness
properties for different training patterns. For example, a classification algorithm is
more robust to a training set with a larger margin. Since (12.34) includes both the
trained solution AS and the training set S, robustness is a property of the learning
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algorithm, rather than the property of the “effective hypothesis space”. This is why
the robustness-based generalization bound can account for the inductive bias from
the algorithm.

For example, for the case of a single-layer ReLU neural network f� : R2 → R
2

with the following weight matrix and bias:

W(0) =
[

2 −1
1 1

]
, b(0) =

[
1
−1

]

the corresponding neural network output is given by

o(1) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[0, 0]�, 2x − y + 1 < 0, x + y − 1 < 0,

[2x − y + 1, 0]�, 2x − y + 1 ≥ 0, x + y − 1 < 0,

[0, x + y − 1]�, 2x − y + 1 < 0, x + y − 1 ≥ 0,

[2x − y + 1, x + y − 1]�, 2x − y + 1 ≥ 0, x + y − 1 ≥ 0.

Here, the number of partitions is K = 4.
On the other hand, consider a two-layer ReLU network with the weight matrices

and biases given by

W(0) =
[

2 −1
1 1

]
, b(0) =

[
1
−1

]
,

W(1) =
[

1 2
0 1

]
, b(1) =

[
0
1

]
.

The corresponding neural network output is given by

o(2) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[0, 1]�, 2x − y + 1 < 0, x + y − 1 < 0,

[2x − y + 1, 1]�, 2x − y + 1 ≥ 0, x + y − 1 < 0,

[2x + 2y − 2, x + y]�, 2x − y + 1 < 0, x + y − 1 ≥ 0,

[4x + y − 1, x + y]�, 2x − y + 1 ≥ 0, x + y − 1 ≥ 0.

Therefore, in spite of the twice larger parameter sizes, the number of partitions is
K = 4, which is the same as the single-layer neural network. Therefore, in terms
of the generalization bounds, the two algorithms have same upper bound up to the
parameter ε(S). This example clearly confirms that generalization is a property of
the learning algorithm, rather than the property of the effective hypothesis space or
the number of parameters.
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12.6 Exercises

1. Compute the VC dimension of the following function classes:

(a) Interval [a, b].
(b) Disc in R

2.
(c) Half space in R

d .
(d) Axis-aligned rectangles.

2. Show that the classifier fθ that returns 1 if the input number x is larger than
sin(θx) and 0 otherwise can shatter any finite subset of the set {2−m | m ∈ N}.

3. Prove the following properties of Rademacher complexity:

(a) (Monotonicity) If F ⊂ G, then RadN(F) ≤ RadN(G).
(b) (Convex hull) Let conv(F) be the convex hull of F. Then RadN(F) =

RadN(conv(F)).
(c) (Scale and shift) For any function class F and c, d ∈ R. RadN(cF + d) =
|c|RadN(F).

(d) (Lipschitz composition) If φ is an L-Lipschitz function, then RadN(φ ·F) ≤
L · RadN(F).

4. Let F be the class of linear predictors given by y = w�x with the restriction of
‖w‖1 ≤ W1 and ‖x‖∞ ≤ X∞ for x ∈ R

d . Then, show that

RadN(F) ≤ W1X∞
√

2 ln(d)√
N

.

5. Let A be a set of N vectors in R
m, and let ā be the mean of the vectors in A.

Then:

RadN(A) ≤ max
a∈A ‖a − ā‖2 ·

√
2 logN

m
.

In particular, if A is a set of binary vectors,

RadN(A) ≤
√

2 logN

m
.

6. For a metric space S, ρ and T ⊂ S we say that T̂ ⊂ S is an ε-cover of T, if
∀t ∈ T, there exists t ′ ∈ T such that ρ(t, t ′) ≤ ε. The ε-covering number of T is
defined by

N(ε,T, ρ) = min{|T′| : T′ is an ε-cover of T}.
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If Z is compact w.r.t. metric ρ, 
(AS, ·) is Lipschitz continuous with
Lipschitz constant c(S), i.e.,

|
(AS, z1)− 
(AS, z2)| ≤ c(S)ρ(z1, z2), ∀z1, z2 ∈ Z,

then show that A is (K, ε(S))-robust, where

K = N(γ/2,Z, ρ), ε(S) = c(S)γ

for γ > 0.



Chapter 13
Generative Models and Unsupervised
Learning

13.1 Introduction

The last part of our voyage toward the understanding of the geometry of deep learn-
ing concerns perhaps the most exciting aspect of deep learning—generative models.
Generative models cover a large spectrum of research activities, which include the
variational autoencoder (VAE) [174, 175], generative adversarial network (GAN)
[88, 176, 177], normalizing flow [178–181], optimal transport (OT) [182–184], etc.
This field has evolved very quickly, and at any machine learning conference like
NeurIPS, CVPR, ICML, ICLR, etc., you may have seen exciting new developments
that far surpass existing approaches. In fact, this may be one of the excuses why the
writing of this chapter has been deferred till the last minute, since there could be
new updates during the writing.

For example, Fig. 13.1 shows the examples of fake human faces generated by
various generative models starting from the GAN[88] in 2014 to styleGAN[89]
in 2018. You may be amazed to see how the images become so realistic with so
much detail within such a short time period. In fact, this may be another reason why
DeepFake by generative models has become a societal problem in the modern deep
learning era.

Besides creating fake faces, another reason that a generative model is so
important is that it is a systematic means of designing unsupervised learning
algorithms. For example, in Yann LeCun’s famous cake analogy at NeurIPS 2016,
he emphasized the importance of unsupervised learning by saying “If intelligence
is a cake, the bulk of the cake is unsupervised learning, the icing on the cake is
supervised learning, and the cherry on the cake is reinforcement learning (RL).”
Referring to the GAN, Yann LeCun said that it was “the most interesting idea in the
last 10 years in machine learning,” and predicted that it may become one of the most
important engines for modern unsupervised learning.

Despite their popularities, one of the reasons generative models are difficult to
understand is that there are so many variations, such as the VAE [174], β-VAE [175],
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Fig. 13.1 Four years of face generation using generative models

Fig. 13.2 Geometry of generative models

GAN [88], f -GAN [176], W-GAN [177], normalizing flow [178–180], GLOW
[181], optimal transport [182–184], cycleGAN [185], W-GAN [177], starGAN [87],
CollaGAN [186], to name just a few. Moreover, the modern deep generative models,
in particular GANs, have been characterized by the public media as magical black
boxes which can generate anything from nothing. Therefore, one of the main goals
of this chapter is to demystify the public belief of generative models by providing a
coherent geometric picture of generative models.

Specifically, our unified geometric view starts from Fig. 13.2. Here, the ambient
image space is X, where we can take samples with the real data distribution μ.
If the latent space is Z, the generator G can be treated as a mapping from the
latent space to the ambient space, G : Z �→ X, often realized by a deep network
with parameter θ , i.e. G := Gθ . Let ζ be a fixed distribution on the latent space,
such as uniform or Gaussian distribution. The generator Gθ pushes forward ζ to a
distribution μθ = Gθ#ζ in the ambient space X (don’t worry about the term “push-
forward” at this point, as it will be explained later). Then, the goal of the generative
model training is to make μθ as close as possible to the real data distribution μ.
Additionally, for the case of autoencoding generative model, the generator works as
a decoder, and there exists an additional encoder. More specifically, an encoder F
maps from the sample space to the latent space F : X �→ Z, parameterized by φ,
i.e. F = Fφ so that the encoder pushes forward μ to a distribution ζφ = Fφ#μ in the
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latent space. Accordingly, the additional constraint is again to minimize the distance
between ζφ and ζ .

Using this unified geometric model, we can show that various types of generative
models such as VAE, β-VAE, GAN, OT, normalizing flow, etc. only differ in their
choices of distances between μθ and μ or between ζφ and ζ , and how to train the
generator and encoder to minimize the distances.

Therefore, this chapter is structured somewhat differently from the conventional
approaches to describing generative models. Rather than directly diving into specific
details of each generative model, here we try to first provide a unified theoretical
view, and then derive each generative model as a special case. Specifically, we
first provide a brief review of probability theory, statistical distances, and optimal
transport theory [182, 184]. Using these tools, we discuss in detail how each specific
algorithm can be derived by simply changing the choice of statistical distance.

13.2 Mathematical Preliminaries

In this section, we assume that the readers are familiar with basic probability and
measure theory [2]. For more background on the formal definition of probability
space and related terms from the measure theory, see Chap. 1.

Definition 13.1 (Push-Forward of a Measure) Let (X,F, μ) be a probability
space, let Y be a set, and let f : X �→ Y be a function. The push-forward of μ
by f is the probability measure ν : f (F) �→ [0, 1] defined by

ν(S) = μ(f−1(S)), (13.1)

which is often denoted by ν = f#μ.

As an important example, a random variable X : � �→ M from a set of possible
outcomes � to a measurable space M can be regarded as a push-forward of a
measure. More specifically, on a probability space (�,F, μ), a probability measure
ν that a random variable X takes on a set S ⊂ M is written as

ν(S) := ν({X ∈ S})
= μ ({ω ∈ � | X(ω) ∈ S})
= μ(X−1(S)). (13.2)

Accordingly, we can regard the random variable X as pushing forward the measure
μ on � to a measure ν on R.
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Example (Push-Forward Measure)
Consider Example 1.4. We now introduce a real-valued random variable:

X(ω) =
⎧⎨
⎩

1, if ω = H,

0, if ω = T.

Then, the push-forward measureQ = X#P is given by

Q(∅) = 0, Q({1}) = 0.5, Q({0}) = 0.5, Q({0, 1}) = 1.

We now define the Radon–Nikodym derivative, which is a mathematical tool
to derive the probability density function (pdf) for the continuous domain, or
probability mass function (pmf) for the discrete domain in a rigorous setting. This
is also important in deriving the statistical distances, in particular, the divergences.
For this, we need to understand the concept of an absolutely continuous measure.

Definition 13.2 (Absolutely Continuous Measure) If μ and ν are two measures
on any event set F of �, we say that ν is absolutely continuous with respect to μ, or
ν � μ, if for every measurable set A, μ(A) = 0 implies ν(A) = 0.

Figure 13.3a shows the case that ν is not absolutely continuous with respect
to μ, whereas Fig. 13.3b corresponds to a case where ν � μ. Beside being
a prerequisite for the existence of a Radon–Nikodym derivative, the absolute
continuity is important since it validates whether the use of a particular divergence
is appropriate in designing a specific generative model.

Theorem 13.1 (Radon–Nikodym Theorem) Let λ and ν be two measures on any
event set F of �. If λ � ν, then there exists a non-negative function g on � such
that

λ(A) =
∫
A

dλ =
∫
A

gdν, A ∈ F. (13.3)

The function g is called the Radon–Nikodym derivative or density of λ w.r.t. ν and
is denoted by dλ/dν. One of the popular Radon–Nikodym derivatives in probability

Fig. 13.3 (a) ν is not absolute continuous w.r.t. μ. (b) ν � μ
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theory is the probability density function (pdf) or probability mass function (pmf)
as discussed below. The Radon–Nikodym derivative is also a key to defining an
f -divergence as a statistical distance measure.

Example (Radon–Nikodym Derivative for Discrete Probability Measure)
Let a1 < a2 < · · · be a sequence of real numbers and let pn, n = 1, 2, · · · ,
be a sequence of positive numbers such that

∑∞
n=1 pn = 1. Then,

F(x) =
{∑n

i=1 pi, an ≤ x < an+1

0, −∞ < x < a1
. (13.4)

This is often called the discrete cumulative distribution function (cdf), and for
this discrete case, it increases stepwise. Then, the corresponding probability
measure is

P(A) =
∑
i:ai∈A

pi. (13.5)

Let ν be the counting measure. Then,

P(A) =
∫
A

f dν =
∑
ai∈A

f (ai). (13.6)

By inspection of (13.5) and (13.6), we can see that the Radon–Nikodym
derivative is given by

f (ai) = pi, i = 1, 2, · · · , (13.7)

which is often called the probability mass function (pmf).

Example (Radon–Nikodym Derivative for Continuous Probability Mea-
sure)
Recall that the continuous domain cumulative distribution function (cdf) F is
given by

F(x) =
∫ x
−∞
f (y)dy, x ∈ R, (13.8)

(continued)
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where f (y) is the probability density function (pdf). Then, the corresponding
probability belonging to an interval A can be computed by

P(A) =
∫
A

f (y)dy (13.9)

for any interval A. Therefore, we can easily see that the pdf f is the Radon–
Nikodym derivative with respect to the Lebesgue measure.

Although the Radon–Nikodym derivative is used to derive the pdf and pmf, it
is a more general concept often used for any integral operation with respect to a
measure. The following proposition is quite helpful for evaluating integrals with
respect to a push-forward measure.

Proposition 13.1 (Change-of-Variable Formula) Let (X,F, μ) be a probability
space, and let f : X �→ Y be a function, such that a push-forward measure ν is
defined by ν = f#μ. Then, we have

∫
Y
gdν =

∫
X
g ◦ f dμ, (13.10)

where ◦ denotes the function composition.

13.3 Statistical Distances

As discussed before, the distance in the probability space is one of the key concepts
for understanding the generative models. In statistics, a statistical distance quantifies
the distance between two statistical objects, which can be two random variables, or
two probability distributions or samples. The distance can be between an individual
sample point and a population or a wider sample of points.

13.3.1 f -Divergence

Defining a metric in the probability space is often complicated, if not impossible.
Therefore, relaxed forms of the metric are often used. For example, the statistical
distances that satisfy 1) and 2) of Definition 1.1 are referred to as divergences, and
are quite often used in statistics and machine learning. One of the most widely
used forms of divergence in machine learning is f -divergence, which is defined
as follows.



13.3 Statistical Distances 273

Definition 13.3 (f -Divergence) Let μ and ν are two probability distributions over
a space � such that μ � ν. Then, for a convex function f such that f (1) = 0, the
f -divergence of μ from ν is defined as

Df (μ||ν) :=
∫
�

f

(
dμ

dν

)
dν, (13.11)

where dμ/dν is the Radon–Nikodym derivative w.r.t ν. If μ � ξ and ν � ξ for a
common measure ξ on�, then their probability densities p and q satisfy dμ = pdξ
and dν = qdξ . In this case the f -divergence can be written as

Df (P ||Q) :=
∫
�

f

(
p(x)

q(x)

)
q(x)dξ(x). (13.12)

One thing which is very important and should be treated carefully is the condition
μ� ν. For example, if μ is the measure of the original data and ν is the distribution
for the generated data, their absolute continuity w.r.t each other should be checked
first to choose a right form of divergence.

For the discrete case, when Q(x) and P(x) become the respective probability
mass functions, then the f -divergence can be written as

Df (P ||Q) :=
∑
x

Q(x)f

(
P(x)

Q(x)

)
. (13.13)

Depending on the choice of the convex function f , we can obtain various special
cases. Some of the representative special cases are as follows.

13.3.1.1 Kullback–Leibler (KL) Divergence

The corresponding generator f is given by

f (t) = t log t.

In the discrete case, KL divergence can be represented by

DKL(P ||Q) =
∑
x

Q(x)
P (x)

Q(x)
log
P(x)

Q(x)

=
∑
x

P (x) log
P(x)

Q(x)

= −
∑
x

(P (x) logQ(x)− P(x) logP(x))

= H(P,Q)−H(P ), (13.14)
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where H(P,Q) is the cross entropy of P andQ, and H(P ) is the entropy of P :

H(P ) = −
∑
x

P (x) logP(x), (13.15)

H(P,Q) = −
∑
x

P (x) logQ(x). (13.16)

Therefore, KL divergence is often called the relative entropy.

13.3.1.2 Jensen–Shannon (JS) Divergence

This corresponds to a special case of f -divergence with the generator

f (t) = (t + 1) log

(
2

t + 1

)
+ t log t.

Using this, we can show that JS divergence is closely related to the KL divergence
as:

DJS(P ||Q) = 1

2
DKL(P ||M)+ 1

2
DKL(Q||M), (13.17)

whereM = (P +Q)/2.
Note that JS divergence has important advantages over KL divergence. Since

M = (P + Q)/2, we can always guarantee P � M and Q � M . Therefore,
the Radon–Nikodym derivative dP/dM and dQ/dM are always well-defined and
the f -divergence in (13.11) can be obtained. On the other hand, to use the KL
divergence DKL(P ||Q) or DKL(Q||P), we should have P � Q or Q � P

respectively, which is difficult to know a prior in practice.
The generators for other forms of f -divergence are defined in Table 13.1. Later,

we will show that various types of GAN architecture emerge depending on the
choice of the generator.

13.3.2 Wasserstein Metric

Unlike the f -divergence, the Wasserstein metric is a metric that satisfies all four
properties of a metric in Definition 1.1. Therefore, this becomes a powerful way of
measuring distance in the probability space. For example, to define an f -divergence,
we should always check the absolute continuity w.r.t. each other, which is difficult
in practice. In the Wasserstein metric, such hassles are no longer necessary.

Let (M, d) be a metric space with a metric d. For p ≥ 1, let Pp(M) denote the
collection of all probability measures μ onM with a finite p-th moment. Then, the
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p-th Wasserstein distance between two probability measures μ and ν in Pp(M) is
defined as

Wp(μ, ν) :=
(

inf
π∈ (μ,ν)

∫
M×M

d(x, y)pdπ(x, y)

)1/p

(13.18)

=
(

inf
π∈ (μ,ν)Eπ

[
d(X, Y )p

])1/p

, (13.19)

where  (μ, ν) denotes the collection of all measures onM ×M with marginals μ
and ν on the first and second factors respectively, and X, Y are the random vectors
with the joint distribution π , and Eπ [·, ·] is the expectation with respect to the joint
measure π defined by

Eπ [f (X, Y )] =
∫
M×M

f (x, y)dπ(x, y). (13.20)

When p = 1, this is often called the “earth-mover distance” or Wasserstein-1 metric.
In the following, we provide some examples where the closed form solution for the
Wasserstein distance in (13.18) can be obtained.

Example: 1-D Cases
Let μ and ν denote the 1-D probability measure with the cumulative
distribution functions, F and G, respectively. Then, we have

Wp(μ, ν) =
(∫ 1

0
|F−1(z)−G−1(z)|pdz

) 1
p

. (13.21)

Example: Normal Distribution
If μ ∼ N(m1, �1) and ν ∼ N(m2, �2) are two normal distributions. Then,
we have

W2(μ, ν) = ‖m1 −m2‖2 + B2(�1, �2), (13.22)

where

B2(�1, �2) = Tr(�1)+ Tr(�2)− 2Tr

[(
�

1/2
1 �2�

1/2
1

)1/2
]
, (13.23)

where Tr(·) denotes the matrix trace.
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In general, a direct computation of the distance in (13.18) is often difficult. The
following section shows that there exists a more manageable way of computing the
Wasserstein metric through the dual formulation. In fact, this leads to the theory of
optimal transport [182, 184].

13.4 Optimal Transport

13.4.1 Monge’s Original Formulation

Optimal transport provides a mathematical means to operate between two probabil-
ity measures [182, 184]. Formally, we say that T : X �→ Y transports a probability
measure μ ∈ P(X) to another measure ν ∈ P(Y), if

ν(B) = μ
(
T −1(B)

)
, for all ν-measurable sets B, (13.24)

which is simply the push-forward of the measure, i.e., ν = T#μ. See Fig. 13.4 for
an example of an optimal transport.

Suppose there is a cost function c : X×Y→ R∪{∞} such that c(x, y) represents
the cost of moving one unit of mass from x ∈ X to y ∈ Y. Monge’s original OT
problem [182, 184] is then to find a transport map T that transports μ to ν at the
minimum total transportation cost:

min
T

M(T ) := ∫X c(x, T (x))dμ(x) (13.25)

subject to ν = T#μ.

The nonlinear push-forward constraint ν = T#μ is difficult to handle and sometimes
leads to a void T due to assignment of indivisible mass [182, 184].

In the following, we provide some examples where the closed form solution for
the optimal transport map can be obtained.

Fig. 13.4 Optimal transport
from a distribution (measure)
μ to another measure ν
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Example: 1-D Cases
Using the change of variable x = F−1(z), the Wasserstein-pmetric in (13.21)
can be represented by:

Wp(μ, ν) =
(∫ 1

0
|F−1(z)−G−1(z)|pdz

) 1
p

=
(∫

R

|x −G−1(F (x))|pdF (x)
) 1
p

. (13.26)

Therefore, for the given transport cost c(x, y) = |x − y|p, we can see that
Monge’s optimal transport map is given by

T (x) = G−1(F (x)).

Example: Normal Distribution
If μ ∼ N(m1, �1) and ν ∼ N(m2, �2) are two normal distributions. Then,
the optimal transport map T#μ = ν is given by

T : x �→ m2 + A(x −m1), (13.27)

where

A = �−1/2
1

(
�

1/2
1 �2�

1/2
1

)1/2
�
−1/2
1 . (13.28)

In particular, if �1 = σ1I and �2 = σ2I , then the optimal transport map is
given by

T : x �→ m2 + σ2

σ1
(x −m1). (13.29)

13.4.2 Kantorovich Formulation

Kantorovich relaxed the original OT by considering probabilistic transport that
allows mass splitting from a source toward several targets [182, 184]. Specifically,
Kantorovich introduced a joint measure π ∈ P(X × Y) such that the original
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problem can be relaxed as

min
π

∫
X×Y c(x, y)dπ(x, y) (13.30)

subject to π(A×Y) = μ(A), π(X× B) = ν(B)

for all measurable sets A ∈ X and B ∈ Y. Here, the last two constraints come from
the observation that the total amount of mass removed from any measurable set has
to be equal to the marginal distributions [182, 184].

Another important advantage of the Kantorovich formulation is the dual formu-
lation, as stated in the following theorem:

Theorem 13.2 (Kantorovich Duality Theorem) [182, Theorem 5.10, pp.57–59]
Let (X, μ) and (Y, ν) be two probability spaces and let c : X × Y → R be a
continuous cost function, such that |c(x, y)| ≤ cX(x)+ cY(y) for some cX ∈ L1(μ)

and cY ∈ L1(ν), where L1(μ) denotes a Lebesgue space with an integral function
with the measure μ. Then, there is a duality:

min
π∈ (μ,ν)

∫
X×Y

c(x, y)dπ(x, y)

= sup
ϕ∈L1(μ)

{ ∫
X
ϕ(x)dμ(x)+

∫
Y
ϕc(y)dν(y)

}
(13.31)

= sup
ψ∈L1(μ)

{ ∫
X
ψc(x)dμ(x)+

∫
Y
ψ(y)dν(y)

}
, (13.32)

where

 (μ, ν) := {π | π(A×Y) = μ(A), π(X× B) = ν(B)}, (13.33)

and the above maximum is taken over the so-called Kantorovich potentials ϕ and
ψ , whose c-transforms are defined as

ϕc(y) := inf
x
{c(x, y)− ϕ(x)}, (13.34)

ψc(x) := inf
y
{c(x, y)− ψ(y)}. (13.35)

In the Kantorovich dual formulation, the computation of the c-transform ϕc is
important. In the following, we show several important examples.
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Example: The Case c(x, y) = ‖x − y‖
For any 1-Lipschitz function ϕ, if c(x, y) = ‖x− y‖, then we have ϕc = −ϕ.

Proof From the definition of a c-transform:

ϕc(y) = inf
x
{‖x − y‖ − ϕ(x)} ≤ −ϕ(y),

where the last inequality comes by taking x = y. In addition,

ϕc(y) = inf
x
{‖x − y‖ − ϕ(x)} ≥ inf

x
{‖x − y‖ − ‖x − y‖ − ϕ(y)} = −ϕ(y)

by making use of the 1-Lipschitz behavior of ϕ. Therefore, ϕc = −ϕ. ��

Example: The Case c(x, y) = 1
2‖x − y‖2

For a given transportation cost c(x, y) = 1
2‖x − y‖2, we have

ϕc(x) = x
2

2
−
(
x2

2
− ϕ(x)

)∗
,

where (·)∗ denotes the convex conjugate.

Proof From the definition of c-transform, we have

ϕc(y) = inf
x

1

2
‖x − y‖2 − ϕ(x) = inf

x

x2

2
+ y

2

2
− 〈x, y〉 − ϕ(x),

which leads to

y2

2
− ϕc(y) = sup

x
〈x, y〉 −

(
x2

2
− ϕ(x)

)
=
(
y2

2
− ϕ(y)

)∗
.

Therefore, we have

ϕc(x) = x
2

2
−
(
x2

2
− ϕ(x)

)∗
.

��
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In particular, when c(x, y) = ‖x − y‖, we can reduce possible candidates of
ϕ to 1-Lipschitz functions so that we can simplify ϕc to −ϕ [182]. Using this, the
Wasserstein-1 norm can be represented by

W1(μ, ν) := min
π∈ (μ,ν)

∫
X×X
||x − y||dπ(x, y) (13.36)

= sup
ϕ∈Lip1(X)

{ ∫
X
ϕ(x)dμ(x)−

∫
X
ϕ(y)dν(y)

}
, (13.37)

where Lip1(X) = {ϕ ∈ L1(μ) : |ϕ(x)−ϕ(y)| ≤ ||x−y||}. Compared to the primal
form (13.36) which requires the integration with respect to the joint measures,
the dual formulation in (13.37) just requires marginals μ and ν, which make the
computation much more tractable. This is why the dual form is more widely used in
generative models.

13.4.3 Entropy Regularization

Another way to address optimal transport problems in a computationally feasible
way is by using the so-called Sinkhorn distance [183]. Rather than solving the
dual problem, the main idea is to use entropy regularization with respect to the
joint distribution π so that the optimal transport map can be found by solving
a regularized primal problem. As the paper title indicates (“Sinkhorn distances:
Lightspeed Computation of Optimal Transport”) [183], the introduction of the
entropy regularization leads to a computationally efficient optimization problem.

Although the original formulation is for the discrete measure, here we provide
a continuous formulation of the Sinkhorn distances to use the similar notation
as before. More specifically, the continuous-domain entropy regularized optimal
transport is formulated by [187]

inf
π∈ (μ,ν),π>0

∫
X×Y

c(x, y)dπ(x, y)+ γ
∫
X×Y

π(x, y)(logπ(x, y)− 1)d(x, y),

(13.38)

where  (μ, ν) denotes the set of joint distributions whose marginal distributions
are μ(x) and ν(y), respectively. Then, the following proposition shows that the
associate dual problem has very interesting formulation.

Proposition 13.2 The dual of the primal problem in (13.38) is given by

sup
φ,ϕ

∫
X
φ(x)dμ(x)+

∫
Y
ϕ(y)dν(y)− γ

∫
X×Y

exp

(−c(x, y)+ φ(x)+ ϕ(y)
γ

.

)
d(x, y).

(13.39)



282 13 Generative Models and Unsupervised Learning

Proof Using the convex conjugate formulation in Chap. 1, we know that ex is the
convex conjugate of x log x − x for x > 0. Accordingly, we have

sup
φ,ϕ

∫
X
φdμ+

∫
Y
ϕdν − γ

∫
X×Y

exp

(−c + φ + ϕ
γ

)
d(x, y)

= sup
φ,ϕ

∫
X
φdμ+

∫
Y
ϕdν +

∫
X×Y

inf
π>0

dπ(c − φ − ϕ)+ γ (π logπ − π)d(x, y)

= inf
π>0

∫
X×Y

cπ + γπ(logπ − 1)d(x, y)

+ inf
π>0

sup
φ,ϕ

∫
X
φdμ−

∫
X×Y

φdπ +
∫
Y
ϕdμ−

∫
X×Y

ϕdπ.

Under the constraint that π ∈  (μ, ν), the last four terms vanish. Therefore, we
have

sup
φ,ϕ

∫
X
φ(x)dμ(x)+

∫
Y
ϕ(y)dν(y)− γ

∫
X×Y

exp

(−c(x, y)+ φ(x)+ ϕ(y)
γ

)
d(x, y)

= inf
π∈ (μ,ν),π>0

∫
X×Y

c(x, y)dπ(x, y)+ γ
∫
X×Y

π(x, y)(logπ(x, y)− 1)d(x, y).

This concludes the proof. ��
The Sinkhorn distance formulation can then be obtained by the change of

variables for the dual problem (13.39). Specifically, for φ, ϕ > 0, consider the
following change of variables:

α(x) = e φ(x)γ , β(y) = e ϕ(x)γ , (13.40)

which leads to

sup
α,β

γ

∫
X

logα(x)dμ(x)+ γ
∫
Y

logβ(y)dν(y)− γ
∫
X×Y

α(x) exp

(
− c(x, y)

γ

)
β(y)d(x, y).

(13.41)

Using the variational calculus, for a given perturbation α→ α+ εδα, the first-order
variation is given by

∫
X

δα(x)

α(x)

dμ(x)

dx
dx −

∫
X
δα(x)

∫
Y

exp

(
−c(x, y)

γ

)
β(y)dydx (13.42)

=
∫
X
δα(x)

(
1

α(x)

dμ

dx
(x)−

∫
Y

exp

(
−c(x, y)

γ

)
β(y)dy

)
dx = 0. (13.43)
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Thus, we have

α(x) =
dμ
dx
(x)

∫
Y exp

(
− c(x,y)

γ

)
β(y)dy

. (13.44)

Similarly, we have

β(y) =
dν
dy
(y)

∫
X exp

(
− c(x,y)

γ

)
α(x)dx

. (13.45)

In fact, the update rule (13.44) and (13.45) are the main iterations for Sinkhorn’s
fixed point iteration [183].

13.5 Generative Adversarial Networks

With the mathematical backgrounds set, we are now ready to discuss specific forms
of the generative models, and explain how they can be derived in a unified theoretical
framework. In this section, we will mainly describe the decoder-type generative
models, which we simply call generative models. Later, we will explain how this
analysis can be extended to the autoencoder-type generative models.

13.5.1 Earliest Form of GAN

The original form of generative adversarial network (GAN) [88] was inspired by the
success of discriminative models for classification. In particular, Goodfellow et al.
[88] formulated generative model training as a minimax game between a generative
network (generator) that maps a random latent vector into the data in the ambient
space, and a discriminative network trying to distinguish the generated samples from
real samples. Surprisingly, this minimax formation of a deep generative model can
transfer the success of deep discriminative models to generative models, resulting in
significant improvement in generative model performance [88]. In fact, the success
of GANs has generated significant interest in the generative model in general, which
has been followed by many breakthrough ideas.

Before we explain the geometric structure of the GAN and its variants from a
unified framework, we briefly present the original explanation of the GAN, since it
is more intuitive to the general public. Let X and Z denote the ambient and latent
space equipped with the measure μ and ζ , respectively (recall the geometric picture
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in Fig. 13.2). Then, the original form of the GAN solves the following minimax
game:

min
G

max
D

GAN(D,G), (13.46)

where


GAN(D,G) := Eμ

[
logD(x)

]+ Eζ

[
log(1−D(G(z))] ,

where D(x) is the discriminator that takes as input a sample and outputs a scalar
between [0, 1], G(z) is the generator that maps a latent vector z to the ambient
space vector, and

Eμ

[
logD(x)

] =
∫
X

logD(x)dμ(x),

Eζ

[
log(1−D(G(z)))] =

∫
Z

log(1−D(G(z)))dζ(z).

The meaning of (13.46) is that the generator tries to fool the discriminator, while
the discriminator wants to maximize the differentiation power between the true
and generated samples. In GANs, the discriminator and generator are usually
implemented as deep networks which are parameterized by network parameters φ
and θ , i.e. D(x) := Dφ(x),G(z) := Gθ(z). Therefore, (13.46) can be formulated
as a minmax problem with respect to θ and φ.

Figure 13.5 illustrates some of the samples generated by GANs from this minmax
optimization that appeared in their original paper [88]. By current standards, the
results look very poor, but when these were published in 2014, they shocked
the world and were considered state-of-the art. We can again see the light-speed
progress of generative model technology.

Since it was first published, one of the puzzling questions about GANs is the
mathematical origin of the minmax problems, and why it is important. In fact, the
pursuit of understanding such questions has been very rewarding, and has led to the
discovery of numerous key results that are essential toward the understanding of the
geometric structure of GANs.

Among them, two most notable results are the f -GAN [176] and Wasserstein
GAN (W-GAN) [177], which will be reviewed in the following sections. These
works reveal that the GAN indeed originates from minimizing statistical distances
using dual formulation. These two methods differ only in their choices of statistical
distances and associated dual formulations.
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Fig. 13.5 Examples of GAN-generated samples in [88]. The rightmost columns show the nearest
training example of the neighboring sample, in order to demonstrate that the model has not
memorized the training set. These images show actual samples from the model distributions,
not conditional means given samples of hidden units. (a) TFD, (b) MNIST, (c) CIFAR-10 (fully
connected model), (d) CIFAR-10

13.5.2 f -GAN

The f -GAN [176] was perhaps one of the most important theoretical results in the
early history of GANs, and clearly demonstrates the importance of the statistical
distances and dual formulation. As the name suggests, the f -GAN starts with f -
divergence.

Recall that f -divergence is defined by

Df (μ||ν) =
∫
�

f

(
dμ

dν

)
dν (13.47)

if μ � ν. The main idea of the f -GAN (which includes the original GAN) is to
use f -divergence as a statistical distance between the real data distribution X with
the measure μ and the synthesized data distribution in the ambient space X with the
measure ν := μθ so that the probability measure ν gets closer to μ (see Fig. 13.2,
where μθ is now considered as ν for notational simplicity). The key observation
is that instead of directly minimizing the f -divergence, something very interesting
emerges if we formulate its dual problems. More specifically, the author exploits the
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following dual formulation of the f -divergence [176], whose proof is repeated here
for educational purposes. Recall the following definition of a convex conjugate (for
more detail, see Chap. 1):

Definition 13.4 ([6]) For a given function f : I �→ R, its convex conjugate is
defined by

f ∗(u) = sup
τ∈I
{uτ − f (τ)}. (13.48)

If f is a convex function, the convex conjugate of its convex conjugate is the
function itself, i.e.

f (u) = f ∗∗(u) = sup
τ∈I∗
{uτ − f ∗(τ )}, (13.49)

if f ∗ : I ∗ �→ R. This is the property we need in the following lemma.

Lemma 13.1 ([176]) Let μ � ν. Then, for any class of functions τ mapping from
X to R, we have the lower bound

Df (μ||ν) ≥ sup
τ∈I∗

∫
X
τ(x)dμ(x)−

∫
X
f ∗(τ (x))dν(x), (13.50)

where f ∗ : I ∗ �→ R is the convex conjugate of f .

Proof The proof is a simple consequence of the convex conjugate. More specifi-
cally, we have

Df (μ||ν) =
∫
X
f

(
dμ

dν

)
dν

=
∫
X

sup
τ∈I∗

{
τ
dμ

dν
− f ∗(τ )

}
dν

≥ sup
τ∈I∗

∫
X

{
τ
dμ

dν
− f ∗(τ )

}
dν

= sup
τ∈I∗

∫
X
τdμ− f ∗(τ )dν

= sup
τ∈I∗

∫
X
τ(x)dμ(x)−

∫
X
f ∗(τ (x))dν(x).

��
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The lower bound in (13.50) is tight and can be achieved at

τ = f ′
(
dμ

dν

)
= f ′

(
p(x)

q(x)

)
, (13.51)

where the last equality holds when dμ = pdξ and dν = qdξ for common measure
ξ [176].

While the lower bound in (13.50) is intuitive, one of the complications in the
derivation of the f -GAN is that the function τ should be within the domain of f ∗,
i.e. τ ∈ I ∗. To address this, the authors in [176] proposed the following trick:

τ(x) = gf (V (x)), (13.52)

where V : X �→ R without any constraint on the output range, and gf : R �→ I ∗
is an output activation function that maps the output to the domain of f ∗. Then, the
f -GAN can be formulated as follows:

min
G

max
gf

fGAN(G, gf ), (13.53)

where


fGAN(G, gf ) := Eμ

[
gf (V (x))

]− Eζ

[
f ∗(gf (V (G(z))))

]
.

For example, if we choose

f (t) = −(t + 1) log(t + 1)+ t log t,

then its convex conjugate is given by

f ∗(u) = sup
t∈R+
{ut + (t + 1) log(t + 1)− t log t}

= − log(1− eu).

The domain of the conjugate function f ∗ should be R− in order to make the 1−eu >
0. One of the functions gf to allow this is given by

gf (V ) = log

(
1

1+ e−V
)
= log Sig(V ),

where Sig(·) is the sigmoid function. Accordingly, we have

f ∗(gf (V )) = − log
(

1− elog Sig(V )
)
= − log(1− Sig(V )).
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Therefore, if we use a discriminator with the sigmoid being the last layer we have
D(x) = Sig(V (x)) and this leads to the following f -GAN cost function:

sup
τ∈I∗

∫
X
τ(x)dμ(x)−

∫
X
f ∗(τ (x))dν(x)

= sup
gf ,V

∫
X
gf (V (x))dμ(x)−

∫
X
f ∗(gf (V (x)))dν(x)

= sup
D

∫
X

logD(x)dμ(x)+
∫
X

log(1−D(x))dν(x).

Finally, the measure ν is for the samples from latent space Z with the measure ζ
by generator G(z), z ∈ Z, so ν is the push-forward measure G#ζ (see Fig. 13.2).
Using the change-of-variable formula in Proposition 13.1, the final loss function is
given by


(D,G) := sup
D

∫
X

logD(x)dμ(x)

+
∫
Z

log(1−D(G(z)))dζ(x).

This is equivalent to the original GAN cost function.
By changing the generator f , we can now obtain various types of GAN variants.

Table 13.1 summarizes various forms of the f -GAN.

13.5.3 Wasserstein GAN (W-GAN)

Note that the f -GAN interprets the GAN training as a statistical distance mini-
mization in the form of dual formulation. However, its main limitation is that the
f -divergence is not a metric, limiting the fundamental performance.

A similar minimization idea is employed for the Wasserstein GAN, but now with
a real metric in probability space. More specifically, the W-GAN minimizes the
following Wasserstein-1 norm:

W1(P,Q) := min
π∈ (μ,ν)

∫
X×X
||x − x′||dπ(x, x′), (13.54)

where X is the ambient space, μ and ν are measures for the real data and generated
data, respectively, and π(x, x′) is the joint distribution with the marginals μ and ν,
respectively (recall the definition of  (μ, ν) in (13.33)).
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Similar to the f -GAN, rather than solving the complicated primal problem, a
dual problem is solved. Recall that the Kantorivich dual formulation leads to the
following dual formulation of the Wasserstein 1-norm:

W1(μ, ν) = sup
ϕ∈Lip1(X)

{ ∫
X
ϕ(x)dμ(x)−

∫
X
ϕ(x′)dν(x′)

}
, (13.55)

where Lip1(X) denotes the 1-Lipschitz function space with domain X. Again, the
measure ν is for the generated samples from latent space Z with the measure ζ
by generator G(z), z ∈ Z, so ν can be considered as the push-forward measure
ν = G#μ. Using the change-of-variable formula in Proposition 13.1, the final loss
function is given by

W1(μ, ν) = sup
ϕ∈Lip1(X)

{ ∫
X
ϕ(x)dμ(x)−

∫
Z
ϕ(G(z))dζ(z)

}
. (13.56)

Therefore, the Wasserstein 1-norm minimization problem can be equivalently
represented by the following minmax formulation:

min
ν
W1(μ, ν)

= min
G

max
ϕ∈Lip1(X)

{ ∫
X
ϕ(x)dμ(x)−

∫
Z
ϕ(G(z))dζ(z)

}
,

where G(z) is called the generator, and the Kantorovich potential ϕ is called the
discriminator.

Therefore, imposing a1-Lipschitz condition on the discriminator is necessary in
the W-GAN [177]. There are many approaches to address this. For example, in the
original W-GAN paper [177], weight clipping was used to impose a 1-Lipschitz
condition. Another method is to use spectral normalization [188], which utilizes the
power iteration method to impose a constraint on the largest singular value of the
weight matrix in each layer. Yet another popular method is the W-GAN with the
gradient penalty (WGAN-GP), where the gradient of the Kantorovich potential is
constrained to be 1 [189]. Specifically, the following modified loss function is used
for the minmax problem:


W−GAN(G;ϕ) (13.57)

=
(∫

X
ϕ(x)dμ(x)−

∫
Z
ϕ(G(z))dζ(z)

)

− η
∫
X
(‖∇x̃ϕ(x)‖2 − 1)2dμ(x),
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where η > 0 is the regularization parameter to impose a 1-Lipschitz property on the
discriminators, and x̃ = αx + (1− α)G(z) with α being random variables from the
uniform distribution between [0, 1] [189].

13.5.4 StyleGAN

As mentioned before, one of the most exciting developments in CVPR 2019 was
the introduction of novel generative adversarial network (GAN) called StyleGAN
by Nvidia [89], which can produce very realistic high-resolution images.

Aside from various sophisticated tricks, StyleGAN also introduced impor-
tant innovations from a theoretical perspective. For example, one of the main
breakthroughs of styleGAN comes from AdaIN. The neural network in Fig. 13.6
generates the latent codes that are used as style image feature vectors. Then,

Fig. 13.6 Architecture of StyleGAN
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the AdaIN layer combines the style features and the content features together to
generate more realistic features at each resolution.

Yet another breakthrough idea is that SytleGAN introduces noise into each layer
to create stochastic variation, as shown in Fig. 13.6. Recall that most of the GANs
starts with the simple latent vector z in the latent space as an input to the generator.
On the other hand, the noise at each layer of StyleGAN can be considered as a more
complicated latent space, so that a mapping from a more complicated input latent
space to the data domain produces more realistic images. In fact, by introducing a
more complicated latent space, styleGAN enables local changes in the pixel level
and targets stochastic variation in generating local variants of features.

13.6 Autoencoder-Type Generative Models

Although we have already discussed the generative model such as the GAN, his-
torically the autoencoder-type generative model precedes the GAN-type models. In
fact, the autoencoder-type generative model goes back to the denoising autoencoder
[190], which is a deterministic form of encoder–decoder networks.

The real generative autoencoder model in fact originates from the variational
autoencoder (VAE) [174], which enables the generation of the target samples by
changing latent variables using random samples. Another breakthrough in the VAE
comes from the normalizing flow [178–181], which significantly improves the
quality of generated samples by allowing invertible mapping. In this section, we
review the two ideas in a unified geometric framework. To do this, we first explain
the important concept in variational inference—the evidence lower bound (ELBO)
or the variational lower bound [191].

13.6.1 ELBO

In variational inference such as VAE, our model distribution pθ(x) is obtained
by combining a simple distribution p(z) with a family of conditional distributions
pθ(x|z), so that our objective is written as

logpθ(x) = log

(∫
pθ(x, z)dz

)

= log

(∫
pθ(x|z)p(z)dz

)
. (13.58)

Here, the goal is to find the parameter θ to maximize the loglikelihood using the
given data set x ∈ X.
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Although p(z) and pθ(x|z) will generally be simple by choice, it may be
impossible to compute logpθ(x) analytically due to the need to solve the integral
inside the logarithm. A trick to address this problem is to introduce a distribution
qφ(z|x) parameterized by φ and conditioned on x such that

logpθ(x) = log

(∫
pθ(x|z) p(z)

qφ(z|x)qφ(z|x)dz
)

≥
∫

log

(
pθ(x|z) p(z)

qφ(z|x)
)
qφ(z|x)dz,

where we use Jensen’s inequality [192]. Accordingly, we have

logpθ(x) ≥
∫

logpθ(x|z)qφ(z|x)dz−
∫

log

(
qφ(z|x)
p(z)

)
qφ(z|x)dz

=
∫

logpθ(x|z)qφ(z|x)dz−DKL(qφ(z|x)||p(z)),

which is often called the evidence lower bound (ELBO) or the variational lower
bound [191].

Since the choice of posterior qφ(z|x) could be arbitrary, the goal of the variational
inference is to find qφ to maximize the ELBO, or, equivalently, minimize the
following loss function:


ELBO(x; θ, φ) := −
∫

logpθ(x|z)qφ(z|x)dz+DKL(qφ(z|x)||p(z)),
(13.59)

where the first term is the likelihood term and the second KL term can be interpreted
as the penalty term. Then, variational inference tries to find θ and φ to minimize the
loss for a given x, or average loss for all x.

13.6.2 Variational Autoencoder (VAE)

Using the ELBO, we are now ready to derive the VAE. However, our derivation is
somewhat different from the original derivation of the VAE [174], since the original
derivation makes it difficult to show the link to normalizing flow [178–181]. The
following derivation originates from the f -VAE [193].

Specifically, among the various choices of qφ(z|x) for the ELBO, we choose the
following form:

qφ(z|x) =
∫
δ(z− Fxφ (u))r(u)du, (13.60)
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Fig. 13.7 Variational
autoencoder architecture: (a)
general form, (b) original
VAE, and (c) invertible flow

where r(u) is the standard Gaussian, and Fxφ (u) is the encoder function for a given
x which has another noisy input u. See Fig. 13.7a for the concept of the encoder
Fxφ (u). For the given encoder function, we have the following key result for the
ELBO loss.

Proposition 13.3 For the given encoder in (13.60), the ELBO loss in (13.59) can
be represented by


ELBO(x; θ, φ) := −
∫

logpθ(x|Fxφ (u))r(u)du

+
∫

log

(
r(u)

p(F xφ (u))

)
r(u)du

−
∫

log

∣∣∣∣∣det

(
∂F xφ (u)

∂u

)∣∣∣∣∣ r(u)du. (13.61)

Proof Let us start with the ELBO:


ELBO(x; θ, φ) :=
∫

log

(
pθ(x|z) p(z)

qφ(z|x)
)
qφ(z|x)dz,
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which can be represented by


ELBO(x, φ) :=
∫ (

log (pθ (x|z)p(z))− log qφ(z|x)
)
qφ(z|x)dz. (13.62)

Using the encoder representation in (13.60), the first term of (13.62) becomes

∫ ∫
log (pθ (x|z)p(z)) δ(z− Fxφ (u))r(u)dudz

=
∫

log
(
pθ(x|Fxφ (u))p(F xφ (u))

)
r(u)du

=
∫

logpθ(x|Fxφ (u))r(u)du+
∫

logp(Fxφ (u))r(u)du.

Similarly, the second term of (13.62) becomes

∫ ∫
log

(∫
δ(z− Fxφ (u′))r(u′)du′

)
δ(z− Fxφ (u))r(u)dudz

=
∫

log

(∫
δ(F xφ (u)− Fxφ (u′))r(u′)du′

)
r(u)du.

Now, using the following change of variables:

v = Fxφ (u′), u′ = Hx(v),

the corresponding Jacobian determinant is given by

det

(
du′

dv

)
= 1

det
(
dv
du′
) = 1

det

(
∂Fxφ (u

′)
∂u′

) .

Then, we have

∫
log

(∫
δ(F xφ (u)− Fxφ (u′))r(u′)du′

)
r(u)du

=
∫

log

⎛
⎜⎜⎝
∫
δ(F xφ (u)− v)

r(Hx(v))∣∣∣∣det

(
∂Fxφ (u

′)
∂u′

)∣∣∣∣
dv

⎞
⎟⎟⎠ r(u)du
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=
∫

log

⎛
⎜⎜⎜⎜⎝

r(Hx(F
x
φ (u)))∣∣∣∣det

(
∂Fxφ (u

′)
∂u′

)∣∣∣∣
v=Fxφ (u)

⎞
⎟⎟⎟⎟⎠
r(u)du

=
∫

log r(u)r(u)du−
∫

log

∣∣∣∣∣det

(
∂F xφ (u)

∂u

)∣∣∣∣∣ r(u)du.

By collecting terms together, we have


ELBO(x, φ) := −
∫

logpθ(x|Fxφ (u))r(u)du

+
∫

log

(
r(u)

p(F xφ (u))

)
r(u)du

−
∫

log

∣∣∣∣∣det

(
∂F xφ (u)

∂u

)∣∣∣∣∣ r(u)du.

This concludes the proof. ��
Proposition 13.3 is a universal result that can be applied to the VAE, normalizing

flow, etc. Major differences between them come from the choice of the encoder
Fxφ (u). In particular, for the case of the VAE [174], the following form of the encoder
function Fxφ (u) is used:

z = Fxφ (u) = μφ(x)+ σφ(x)& u, u ∼ N(0, Id), (13.63)

where Id is the d × d identity matrix and d is the dimension of the latent space.
This was referred to as the reparameterization trick in the original VAE paper [174].
Under this choice, the second term in (13.61) becomes

∫
log

(
r(u)

p(F xφ (u))

)
r(u)du

=−
∫

1

2
‖u‖2r(u)du+

∫
1

2
‖μ(x)+ σ(x)& u‖2r(u)du

=1

2

d∑
i=1

(σ 2
i (x)+ μ2

i (x)− 1), (13.64)
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whereas the third term becomes

−
∫

log

∣∣∣∣∣det

(
∂F xφ (u)

∂u

)∣∣∣∣∣ r(u)du = −
1

2

d∑
i=1

log σ 2
i (x). (13.65)

Finally, the first term in (13.61) is the likelihood term, which can be represented as
follows by assuming the Gaussian distribution:

−
∫

logpθ(x|Fxφ (u))r(u)du

=
∫

1

2
‖x −Gθ(F xφ (u))‖2r(u)du

= 1

2

∫
‖x −Gθ(μφ(x)+ σφ(x)& u)‖2r(u)du. (13.66)

Therefore, the encoder and decoder parameter optimization problem for the VAE
can be obtained as follows:

min
θ,φ

VAE(θ, φ),

where


VAE(θ, φ) = 1

2

∫
X

∫
‖x −Gθ(μφ(x)+ σφ(x)& u)‖2r(u)dudμ(x)

+ 1

2

d∑
i=1

∫
X
(σ 2
i (x)+ μ2

i (x)− log σ 2
i (x)− 1)dμ(x). (13.67)

Once the neural network is trained, one of the very important advantages of the
VAE is that we can simply control the decoder output by changing the random
samples. More specifically, the decoder output is now given by

x̂(u) = Gθ(μφ(x)+ σφ(x)& u), (13.68)

which has an explicit dependency on the random variable u. Therefore, for a given
x, we can change the output by drawing sample u.

13.6.3 β-VAE

By inspection of VAE loss in (13.67), we can easily see that the first term represents
the distance between the generated samples and the real ones, whereas the second
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term is the KL distance between the real latent space measure and posterior
distribution. Therefore, VAE loss is a measure of the distances that considers both
latent space and the ambient space between real and generated samples.

In fact, this observation nicely fits into our geometric view of the autoencoder
illustrated in Fig. 13.2. Here, the ambient image space is X, the real data distribution
is μ, whereas the autoencoder output data distribution is μθ . The latent space is
Z. In the autoencoder, the generator Gθ corresponds to the decoder, which is a
mapping from the latent space to the sample space, Gθ : Z �→ X, realized by a
deep network. Then, the goal of the decoder training is to make the push-forward
measureμθ = Gθ#ζ as close as possible to the real data distributionμ. Additionally,
an encoder Fφ maps from the real data in X to the latent space Fφ : X �→ Z so that
the encoder pushes forward the measure μ to a distribution ζφ = F#μ in the latent
space. Therefore, the VAE design problem can be formulated by minimizing the
sum of the both distances, which are measured by average sample distance and KL
distance, respectively.

Rather than giving uniform weights for both distances, β-VAE [175] relaxes
this constraint of the VAE. Following the same incentive in the VAE, we want
to maximize the probability of generating real data, while keeping the distance
between the real and estimated posterior distributions small (say, under a small
constant). This leads to the following β-VAE cost function:


β−VAE(θ, φ) (13.69)

=1

2

∫
X

∫
‖x −Gθ(μφ(x)+ σφ(x)& u)‖2r(u)dudμ(x)

+ β
2

d∑
i=1

∫
X
(σ 2
i (x)+ μ2

i (x)− log σ 2
i (x)− 1)dμ(x),

where β now controls the importance of the distance measure in the latent space.
When β = 1, it is the same as the VAE. When β > 1, it applies a stronger constraint
on the latent space.

As a higher β imposes more constraint on the latent space, it turns out that the
latent space is more interpretable and controllable, which is known as the disen-
tanglement. More specifically, if each variable in the inferred latent representation
z is only sensitive to one single generative factor and relatively invariant to other
factors, we will say this representation is disentangled or factorized. One benefit
that often comes with disentangled representation is good interpretability and easy
generalization to a variety of tasks. For some conditionally independent generative
factors, keeping them disentangled is the most efficient representation, and β-
VAE provides more disentangled representation. For example, the generated faces
from the original VAE have various directions, whereas they are toward specific
directions in the β-VAE, implying that factors for the face directions is successfully
disentangled [175].
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Fig. 13.8 Concept of normalizing flow

13.6.4 Normalizing Flow, Invertible Flow

The normalizing flow (NF) [178–181] is a modern way of overcoming the limitation
of VAE. As shown in Fig. 13.8, normalizing flow transforms a simple distribution
into a complex one by applying a sequence of invertible transformation functions.
Flowing through a chain of transformations, we repeatedly substitute the variable
for the new one according to the change-of-variables theorem and eventually obtain
a probability distribution of the final target variable. Such a sequence of invertible
transformations is the origin of the name “normalizing flow” [179].

The derivation of the cost function for a normalizing flow also starts with the
same ELBO and encoder model in (13.60). However, the normalizing flow chooses
a different encoder function:

z = Fxφ (u) = Fφ(σu+ x), (13.70)

where Fφ is an invertible function. Here, the invertibility is the key component,
so the algorithm is often called the invertible flow. Specifically, if we choose the
decoder as the inverse of the encoder function, i.e. Gθ = F−1

φ , a very interesting
phenomenon happens. More specifically, the first term in (13.61) can be simplified
as follows:

−
∫

logpθ(x|Fxφ (u))r(u)du

= 1

2

∫
‖x −Gθ(F xφ (u))‖2r(u)du

= 1

2

∫
‖x −Gθ(Fφ(σu+ x))‖2r(u)du

= 1

2

∫
‖σu‖2r(u)du = σ

2

2
,
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which becomes a constant. Therefore, it is no longer necessary to consider the
decoder part in the parameter estimation. Accordingly, aside from the constant term,
the ELBO loss in (13.61) can be simplified as


f low(x, φ) =−
∫

log
(
p(Fxφ (u))

)
r(u)du

−
∫

log

∣∣∣∣∣det

(
∂F xφ (u)

∂u

)∣∣∣∣∣ r(u)du, (13.71)

where we have also removed the
∫

log r(u)r(u)du term since this is also a constant.
For the Gaussian assumption for p(z), (13.71) can be further simplified as


f low(x, φ) =1

2

∫
‖Fφ(σu+ x)‖2r(u)du

−
∫

log

∣∣∣∣det

(
∂Fφ(σu+ x)

∂u

)∣∣∣∣ r(u)du. (13.72)

Now the main technical difficulty of NF arises from the last term, which involves
a complicated determinant calculation for a huge matrix. As discussed before, NF
mainly focuses on the encoder function Fφ (and, likewise, the decoder G), which is
composed of a sequence of transformations:

Fφ(u) = (hK ◦ hK−1 ◦ · · · ◦ h1)(u), (13.73)

Using the change-of-variable formula,

∂Fφ(u)

∂u
= hK

∂hK−1
· · · h2

∂h1

h1

∂u
, (13.74)

we have

log

∣∣∣∣det

(
∂Fφ(u)

∂u

)∣∣∣∣ =
K∑
i=1

log

∣∣∣∣det

(
∂hi

∂hi−1

)∣∣∣∣ , (13.75)

where h0 = u. Therefore, most of the current research efforts for NF have focused
on how to design an invertible block such that the determinant calculation is simple.
Now, we review a few representative techniques.

NICE (nonlinear independent component estimation) [178] is based on learning
a non-linear bijective transformation between the data space and a latent space. The
architecture is composed of a series of blocks defined as follows, where x1 and x2
are a partition of the input in each layer, and y1 and y2 are partitions of the output.
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Then, the NICE update is given by

y1 = x1,

y2 = x2 + F(x1), (13.76)

where F(·) is a neural network. Then, the block inversion can be readily done by

x1 = y1,

x2 = y2 − F(y1). (13.77)

Furthermore, it is easy to see that its Jacobian has a unit determinant and the cost
function in (13.72) and its gradient can be tractably computed.

However, this architecture imposes some constraints on the functions the network
can represent; for instance, it can only represent volume-preserving mappings.
Follow-up work [180] addressed this limitation by introducing a new reversible
transformation. More specifically, they extend the space of such models using
real-valued non-volume-preserving (real NVP) transformations using the following
operation [180]:

y1 = x1,

y2 = x2 & exp(s(x1))+ t (x1), (13.78)

where s denotes point-wise scaling, t is referred to as a translation network, and& is
the element-wise multiplication. Then, the corresponding Jacobian matrix is given
by

∂y

∂x
=
[
Id 0
∂y2
∂x1

diag(exp(s(x1)))

]
. (13.79)

Given the observation that this Jacobian is triangular, we can efficiently compute
its determinant as

det

(
∂y

∂x

)
= exp

⎛
⎝∑

j

s(x1[j ])
⎞
⎠ , (13.80)

where x1[j ] denotes the j -th element of x1. The inverse of the transform can also
be easily implemented by

x1 = y1,

x2 = (y2 − t (y1))& exp(−s(y1)). (13.81)

The corresponding block architecture is illustrated in Fig. 13.9.
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Fig. 13.9 Forward and inverse architecture of a building block in real NVP transform [180]. (a)
Forward propagation. (b) Inverse propagation

Fig. 13.10 Example of normalizing flow using GLOW [181]. Figure courtesy of https://openai.
com/blog/glow/

Due to the successive applications of transforms, one of the important advantages
of NF is the gradual changes of the distribution. Figure 13.10 shows examples using
GLOW—the generative flow using 1× 1 invertible convolution [181]. As the name
indicates, GLOW has additional 1× 1 invertible convolution blocks to increase the
expressiveness of the network.

13.7 Unsupervised Learning via Image Translation

So far, we have discussed generative models that generate samples from noise.
Generative models are also useful to convert one distribution to another. This is
why generative models become the main workhorse for unsupervised learning tasks.

https://openai.
com/blog/glow/
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Among the various unsupervised learning tasks, in this section we are mainly
focusing on image translation, which is a very active area of research.

13.7.1 Pix2pix

Pix2pix [194] was presented in 2016 by researchers from Berkeley in their work
“Image-to-Image Translation with Conditional Adversarial Networks.” This is not
unsupervised learning per se, as it requires matched data sets, but it opens a new era
of image translation, so we review this here.

Most of the problems in image processing and computer vision can be posed
as “translating” an input image into a corresponding output image. For example, a
scene may be rendered as an RGB image, a gradient field, an edge map, a semantic
label map, etc. In analogy to automatic language translation, we define automatic
image-to-image translation as the task of translating one possible representation of
a scene into another, given a large amount of training data.

Pix2pix uses a generative adversarial network (GAN) [88] to learn a function
to map from an input image to an output image. The network is made up of two
main pieces, the generator, and the discriminator. The generator transforms the input
image to get the output image. The discriminator measures the similarity of the
generated image to the target image from the data set, and tries to guess if this was
produced by the generator.

For example, in Fig. 13.11, the generator produces a photo-realistic shoe image
from a sketch, and the discriminator tries to differentiate whether the generated
images are the real photo from the sketch or the fake one.

The nice thing about pix2pix is that it is generic and does not require the user to
define any relationship between the two types of images. It makes no assumptions
about the relationship and instead learns the objective during training, by comparing
the defined inputs and outputs during training and inferring the objective. This
makes pix2pix highly adaptable to a wide variety of situations, including ones where
it is not easy to verbally or explicitly define the task we want to model.

Fig. 13.11 Discriminator concept in pix2pix
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That said, one downside of pix2pix is that it requires paired data sets to learn
their relationship, and these are often difficult to obtain in practice. This issue is
largely addressed by cycleGAN [185], which is the topic of the following section.

13.7.2 CycleGAN

Image-to-image translation is an important task in computer vision and graphics
problems. Examples include:

• Translating summer landscapes to winter landscapes (or the reverse).
• Translating paintings to photographs (or the reverse).
• Translating horses to zebras (or the reverse).

As discussed before, pix2pix [194] is designed for such tasks, but it requires
paired examples, specifically, a large data set of many examples of input images
in the domain X (e.g. sketches of shoes) and the same images with the desired
modification that can be used as the expected output images in Y (e.g. photos of
shoes) (see the left column of Fig. 13.12). The requirement for a paired training data
set is a limitation. These data sets are challenging and are even impossible to collect,
e.g. photos of zebras and horses with exactly the same poses, size, etc.

Rather the unpaired situation in Fig. 13.12 is more realistic, where the collection
of the images in X (for example, photos) and the unpaired collection of images
in Y (for example, Monet’s paintings) are available. Then, the goal of the image
translation is to convert the distribution in X and Y and vice versa. In fact, the
cycleGAN by Zhu et al. [185] demonstrated that such unpaired image translation is
indeed possible.

The cycleGAN problem nicely fits into our geometric view of the autoencoder in
Fig. 13.2, which is redrawn in Fig. 13.13 using a domain Y. Accordingly, optimal
transport (OT) [182, 184] provides a rigorous mathematical tool to understand the
geometry of unsupervised learning by cycleGAN.

Fig. 13.12 Paired vs. unpaired image translation
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Fig. 13.13 Geometric view of CycleGAN-based unsupervised learning

Here, the target image space X is equipped with a probability measureμ, whereas
the original image space Y has a probability measure ν. Since there are no paired
data, the goal of unsupervised learning is to match the probability distributions
rather than each individual sample. This can be done by finding transportation
maps that transport the measure μ to ν, and vice versa. More specifically, the
transportation from a measure space (Y, ν) to another measure space (X, μ) is done
by a generator Gθ : Y �→ X, realized by a deep network parameterized with θ .
Then, the generator Gθ “pushes forward” the measure ν in Y to a measure μθ
in the target space X [182, 184]. Similarly, the transport from (X, μ) to (Y, ν)
is performed by another neural network generator Fφ , so that the generator Fφ
pushes forward the measure μ in X to νφ in the original space Y. Then, the
optimal transport map for unsupervised learning can be achieved by minimizing
the statistical distances dist(μθ , μ) between μ and μθ , and dist(νφ, ν) between ν
and νφ , and our proposal is to use the Wasserstein-1 metric as a means to measure
the statistical distance.

More specifically, for the choice of a metric d(x, x′) = ‖x − x′‖ in X, the
Wasserstein-1 metric between μ and μθ can be computed by Villani [182], Peyré et
al. [184]

W1(μ,μθ ) = inf
π∈ (μ,ν)

∫
X×Y
‖x −Gθ(y)‖dπ(x, y). (13.82)

Similarly, the Wasserstein-1 distance between ν and νφ is given by

W1(ν, νφ) = inf
π∈ (μ,ν)

∫
X×Y
‖Fφ(x)− y‖dπ(x, y). (13.83)
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Rather than minimizing (13.82) and (13.83) separately with distinct joint distribu-
tions, a better way of finding the transportation map is to minimize them together
with the same joint distribution π :

inf
π∈ (μ,ν)

∫
X×Y
‖x −Gθ(y)‖ + ‖Fφ(x)− y‖dπ(x, y). (13.84)

One of the most important contributions of [195] is to show that the primal
formulation of the unsupervised learning in (13.84) can be represented by a dual
formulation:

min
φ,θ

max
ψ,ϕ


cycleGAN(θ, φ;ψ, ϕ), (13.85)

where


cycleGAN(θ, φ;ψ, ϕ) := λ
cycle(θ, φ)+ 
Disc(θ, φ;ψ, ϕ), (13.86)

where λ > 0 is the hyper-parameter, and the cycle-consistency term is given by


cycle(θ, φ) =
∫
X
‖x −Gθ(Fφ(x))‖dμ(x)

+
∫
Y
‖y − Fφ(Gθ(y))‖dν(y),

whereas the second term is


Disc(θ, φ;ψ, ϕ) =max
ϕ

∫
X
ϕ(x)dμ(x)−

∫
Y
ϕ(Gθ(y))dν(y)

+max
ψ

∫
Y
ψ(y)dν(y)−

∫
X
ψ(Fφ(x))dμ(x). (13.87)

Here, ϕ,ψ are often called Kantorovich potentials and satisfy the 1-Lipschitz
condition (i.e.

|ϕ(x)− ϕ(x′)| ≤ ‖x − x′‖, ∀x, x′ ∈ X,

|ψ(y)− ψ(y′)| ≤ ‖y − y′‖, ∀y, y′ ∈ Y.

In the machine learning context, the 1-Lipschitz potentials ϕ and ψ correspond to
the Wasserstein-GAN (W-GAN) discriminators [177]. Specifically, ϕ corresponds
to a discriminator to differentiate fake samples in real and generated images in
X, whereas ψ is a discriminator to tell the fake and real samples in the domain
Y. Moreover, the cycle-consistency term 
cycle works to impose the one-to-one
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Fig. 13.14 CycleGAN network architecture

Fig. 13.15 Unsupervised style transfer in paintings

correspondence between the original and target domain, removing the mode-
collapsing behaviors of GANs. The corresponding network architecture can be
represented in Fig. 13.14. Specifically, ϕ tries to find the difference between the
true image x and the generated image Gθ(y), whereas ψ attempts to find the
fake measurement data that are generated by the synthetic measurement procedure
Fφ(x). In fact, this formulation is equivalent to the cycleGAN formulation [185]
except for the use of 1-Lipschitz discriminators.

CycleGAN has been very successful for various unsupervised learning tasks.
Figure 13.15 shows the examples of unsupervised style transfers between two
different styles of paintings.

13.7.3 StarGAN

In Fig. 13.15, one downside of cycleGAN is that we need to train separate generators
for each pair of domains. For example, if there are N different styles in the
paintings, there should be N(N − 1) distinct generators to translate the images (see
Fig. 13.16a).
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Fig. 13.16 Multi-domain translation: (a) cycleGAN, and (b) starGAN

To overcome the limitations of the scalability of cycleGAN, starGAN was
proposed [87]. Specifically, as shown in Fig. 13.16b, one generator is trained such
that it can translate into multiple domains by adding a mask vector that represents
a target domain. This mask vector is augmented along the channel direction using
one-hot vector encoding.

Given training data from two different domains, these models learn to translate
images from one domain to the other. For example, changing the hair color
(attribute) of a person from black (attribute value) to blond (attribute value). We
denote a domain as a set of images sharing the same attribute value. People with
black hair compose one domain and people with blond hair compose another
domain. Here, the discriminator has two things to do. It should be able to identify
whether an image is fake or not. With the help of an auxiliary classifier, the
discriminator can also predict the domain of the image given as input to the
discriminator (see Fig. 13.17).

With the auxiliary classifier, the discriminator learns the mapping of the original
image and its corresponding domain from the data set. When the generator generates
a new image conditioned on a target domain c (say blond hair), the discriminator
can predict the generated image’s domain so G will generate new images till the
discriminator can predict it as target domain c (blond hair). Figure 13.18 shows
such an example of multi-domain translation using a single starGAN generator.

13.7.4 Collaborative GAN

In many applications requiring multiple inputs to obtain the desired output, if any of
the input data is missing, it often introduces large amounts of bias. Although many
techniques have been developed for imputing missing data, image imputation is still
difficult due to the complicated nature of natural images. To address this problem, a
novel framework collaborative GAN (CollaGAN) [186] was proposed.
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Fig. 13.18 Examples of multi-domain translation using a single StarGAN generator

Specifically, CollaGAN converts an image imputation problem to a multi-
domain images-to-image translation task so that a single generator and discriminator
network can successfully estimate the missing data using the remaining clean data
set. More specifically, CycleGAN and StarGAN are interested in transferring one
image to another, as shown in Fig. 13.19a,b without considering the remaining
domain data set. However, in image imputation problems, the missing data occurs
infrequently, and the goal is to estimate the missing data by utilizing the other clean
data set. Therefore, an image imputation problem can be correctly described as in
Fig. 13.19c, where one generator can estimate the missing data using the remaining
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Fig. 13.19 Comparison with various multi-domain translation architecture. (a) Cross-domain
models. (b) StarGAN. (c) Collaborative GAN

Fig. 13.20 CollaGAN generator and discriminator architecture

clean data set. Since the missing data domain is not difficult to estimate a priori, the
imputation algorithm should be designed such that one algorithm can estimate the
missing data in any domain by exploiting the data for the rest of the domains.

Due to the specific applications, CollaGAN is not an unsupervised learning
method. However, one of the key concepts in CollaGAN is the cycle consistency
for multiple inputs, which is useful for other applications. Specifically, since the
inputs are multiple images, the cycle loss should be redefined. In particular, for the
N -domain data, from a generated output, we should be able to generate N − 1 new
combinations as the other inputs for the backward flow of the generator (Fig. 13.20
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Fig. 13.21 Missing image imputation results from CollaGAN

middle). For example, whenN = 4, there are three combinations of multi-input and
single-output so that we can reconstruct the three images of original domains using
backward flow of the generator. In regard to the discriminator, the discriminator
should have a classifier header as well as the discriminator part similar to that of
StarGAN.

Figure 13.21 shows an example of missing domain imputation, where CollaGAN
produces very realistic images.

13.8 Summary and Outlook

So far we have discussed exciting field of deep learning—generative models. This
is nonetheless an inclusive review, as there are so many exciting other algorithms.
Here, the main emphasis is to provide a unified mathematical view to understand
the various algorithms. As emphasized in the chapter, this field is important not only
due to the fancy applications, but also from firm mathematical backgrounds that are
grounded. As Yann LeCun said, unsupervised learning is the core of deep learning,
so there will be many exciting new applications and opportunities for developing
new theory, so young researchers are invited to participate in this exciting field.

13.9 Exercises

1. Show the following equality:

DJS(P ||Q) = 1

2
DKL(P ||M)+ 1

2
DKL(Q||M), (13.88)

whereM = (P +Q)/2.
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2. Show that for JS divergence, absolute continuity is not necessary.
3. For the following generator function f (u), derive (1) the f -divergence form,

and (2) the f -GAN formulation from the definition of f -divergence using
convex dual.

(a) f (u) = (u+ 1) log 2
u+1 + u log u.

(b) f (u) = u log u.
(c) f (u) = (u− 1)2.

4. Let μ and ν denote 1-D probability measures with the cumulative distribution
functions F andG, respectively. Show that the Wasserstein-p distance between
μ and ν is given by (13.21).

5. Prove Eq. (13.22).
6. Prove Eq. (13.26).
7. Derive the optimal transport map T in (13.27) between two Gaussian distribu-

tions.
8. Show that the AdaIN can be interpreted as the optimal transport between two

i.i.d. Gaussian distributions.
9. Let the transport cost c(x, y) : X×Y→ R∪{∞} be given by c(x, y) = h(x−y)

with h strictly convex.

(a) Show that there exists a Kantorovich potential ϕ such that the optimal
transport plan T that transports the measure μ in X to ν in Y can be
represented as

T (x) = x − (∇h)−1∇ϕ(x). (13.89)

where (∇h)−1 denotes the inverse function of ∇h.
(b) As a special case, if h(x−y) = 1

2‖x−y‖2, show that the optimal transport
map can be represented by

y = T (x) = ∇u(x),

where u(x) := x2/2− ϕ(x) is convex for some function ϕ(x).

10. Prove (13.64).
11. Prove (13.66).
12. For the given reparametrization trick in the VAE

z = Fxφ (u) = μφ(x)+ σφ(x)& u, u ∼ N(0, Id), (13.90)



13.9 Exercises 313

where x ∈ R
n, z, u ∈ R

d and μφ(·), σφ(·) : Rn �→ R
d and & is the element-

wise multiplication, show the following equality:

−
∫

log

∣∣∣∣∣det

(
∂F xφ (u)

∂u

)∣∣∣∣∣ r(u)du = −
1

2

d∑
i=1

log σ 2
i (x),

where r(u) is the probability density function.
13. What are the advantages and disadvantages of the β-VAE over the VAE?
14. Consider the NICE update for the normalizing flow given by

y1 = x1, y2 = x2 + F(y1). (13.91)

(a) Why does the Jacobian term become the identity? Please derive explicitly.
(b) Suppose we are interested in a more expressive network given by

y1 = x1 + G(x2), y2 = x2 + F(y1) (13.92)

for some function G. What is the inverse operation? How can you make the
corresponding normalizing flow cost function simple in terms of Jacobian
calculation? You may want to split the update into two steps to simplify the
derivation.
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Summary and Outlook

With the tremendous success of deep learning in recent years, the field of data
science has undergone unprecedented changes that can be considered a “revolution”.
Despite the great successes of deep learning in various areas, there is a tremendous
lack of rigorous mathematical foundations which enable us to understand why deep
learning methods perform well. In fact, the recent development of deep learning
is largely empirical, and the theory that explains the success remains seriously
behind. For this reason, until recently, deep learning was viewed as pseudoscience
by rigorous scientists, including mathematicians.

In fact, the success of deep learning appears very mysterious. Although sophis-
ticated network architectures have been proposed by many researchers in recent
years, the basic building blocks of deep neural networks are the convolution, pooling
and nonlinearity, which from a mathematical point of view are regarded as very
primitive tools from the “Stone Age”. However, one of the most mysterious aspects
of deep learning is that the cascaded connection of these “Stone Age” tools results
in superior performance that far exceeds the sophisticated mathematical tools.
Nowadays, in order to develop high-performance data processing algorithms, we
do not have to hire highly educated doctoral students or postdocs, but only give
TensorFlow and many training data to undergraduate students. Does it mean a dark
age of mathematics? Then, what is the role of the mathematicians in this data-driven
world?

A popular explanation for the success of deep neural networks is that the neural
network was developed by mimicking the human brain and is therefore destined
for success. In fact, as discussed in Chap. 5, one of the most famous numerical
experiments is the emergence of the hierarchical features from a deep neural
network when it is trained to classify human faces. Interestingly, this phenomenon
is similarly observed in human brains, where hierarchical features of the objects
emerge during visual information processing. Based on these numerical observa-
tions, some of the artificial neural network “hardliners” even claim that instead
of mathematics we need to investigate the biology of the brain to design more
sophisticated artificial neural networks and to understand the working principle of
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artificial neural networks. However, when neuroscientists (especially computational
neuroscientists) were asked why the brain extracts such hierarchical features, it was
surprising to find out that they usually rely on numerical simulations with artificial
neural networks to explain how hierarchical properties arise in the brain. From a
mathematical point of view, this is a typical example of “circular proof”, an apparent
logical fallacy.

Then, how can we fill in the gap between empirical success and the lack of
the theory? In fact, one of the lessons we learn from the history of science is
that the gap between the empirical observation and the lack of theory is not
the limiting factor, but suggests the birth of a new science. For example, during
the “golden age of physics” in the early twentieth century, some of the most
exciting empirical discoveries in physics were quantum phenomena. Experimental
physicists discovered many exotic quantum phenomena that could not be explained
by either Newtonian or relativistic physics. In fact, there was a serious lag in
the theoretical physics that could explain newly discovered quantum phenomena.
Mathematical models were further developed, questioned, and refuted by the
empirical observations. Even the greatest Albert Einstein said that he could not
believe quantum physics since “God does not play dice with the universe.” During
these intense intellectual efforts to explain the seemingly unexplainable empirical
observations, the new theory of quantum mechanics was rigorously formed, which
led to numerous Nobel laureates; and new mathematics such as functional analysis,
harmonic analysis, etc., has become mainstream in the modern mathematics. In
fact, these efforts by scientists completely changed the landscape of physics and
mathematics.

Similarly, now there is a great need to develop mathematical theories to explain
the enormous empirical success of deep neural networks. In fact, computer scientists
and engineers who work on the implementation are like the experimental physicists
who give endless inspiration, and the mathematicians and signal processors are like
theoretical physicists who try to find the unified mathematical theory to explain
the empirical discoveries. Therefore, contrary to the false belief that we are in the
dark age of mathematics, we are now actually living in the “golden age”, ready to
discover the beautiful mathematical theory of deep learning that can completely
change the field of mathematics. Therefore, this book has aimed to explore the
mathematical theory of deep learning to crack open the black box of deep learning
and open a new age of mathematics.

The field of deep learning is interdisciplinary in nature, and includes mathemat-
ics, data science, physics, biology, medicine, etc. Therefore, collaborative research
efforts between mathematics and other fields are crucial. This is because empirical
results not only give the inspiration for the mathematical theory, but provide a
means to verify whether a mathematical theory is correct. Therefore, although this
book primarily focuses on discovering the fundamental mathematical principles
of deep learning, it is hoped that it will play an instrumental role promoting the
basic sciences in physics, biology, chemistry, geophysics, etc. using deep learning,
and enable readers to be inspired by new empirical problems to obtain better
mathematical models.
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