
Searchable Encryption System for Big Data
Storage

Yuxiang Chen1,2,3(B) , Yao Hao1,2, Zhongqiang Yi1,2, Kaijun Wu1,2, Qi Zhao1,2,
and Xue Wang1,2

1 Science and Technology on Communication Security Laboratory, Chengdu 610041, China
2 No. 30 Inst, China Electronics Technology Group Corporation, Chengdu 610041, China

3 School of Computer Science and Engineering, University of Electronic Science
and Technology of China, Chengdu 611731, China

Abstract. Big data cloud platforms provide users with on-demand configurable
computing, storage resources to users, thus involving a large amount of user data.
However, most of the data is processed and stored in plaintext, resulting in data
leakage. At the same time, simple encrypted storage ensures the confidentiality of
the cloud data, but has the following problems: if the encrypted data is downloaded
to the client and then decrypted, the search efficiency will be low. If the encrypted
data is decrypted and searched on the server side, the security will be reduced.
Data availability is finally reduced, and indiscriminate protection measures make
the risk of data leakage uncontrollable. To solve the problems, based on searchable
encryption and key derivation, a cipher search system is designed in this paper
considering both data security and availability, and the use of a search encryption
algorithm that supports dynamic update is listed. Moreover, the system structure
has the advantage of adapting different searchable encryption algorithm. In par-
ticular, a user-centered key derivation mechanism is designed to realize file-level
fine-grained encryption. Finally, extensive experiment and analysis show that the
scheme greatly improves the data security of big data platform.

Keywords: Big data platform · Searchable encryption · Fine-grained · Secure
storage

1 Introduction

Currently, big data storage platforms store user’s data in plain text, which brings the risk
of data leakage, and it is difficult for users to protect their stored data from being stolen.
At the same time encrypted data storage faces the following problems: if the encrypted
data is downloaded to the user’s terminal and then decrypted and searched, the search
efficiency will be inefficient. Decrypting and searching the encrypted data on the server
will reduce the security [1–4].

At the same time, when the distributed file system is applied to provide storage
services for users, users usually upload and store plaintext data directly, and it is difficult
for users to control whether their stored data is leaked or stolen. In addition, the file

© Springer Nature Singapore Pte Ltd. 2021
J. Zeng et al. (Eds.): ICPCSEE 2021, CCIS 1452, pp. 139–150, 2021.
https://doi.org/10.1007/978-981-16-5943-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-5943-0_12&domain=pdf
http://orcid.org/0000-0002-9963-9554
https://doi.org/10.1007/978-981-16-5943-0_12

140 Y. Chen et al.

storage service provider may monitor and analyze the user’s file retrieval behavior,
perform correlation analysis on the user’s file content through the keywords retrieved
by the user, and then focus on cracking and stealing user’s data [5–9]. Besides, users
store plaintext data in third-party organizations, losing the initiative to control data and
failing to know whether their data has been stolen or leaked [10–13].

For example, in June 2017, the analysis report of the Shodan Internet device search
engine showed that the Hadoop server was exposed due to insecure configuration and
plaintext storage. It involves nearly 4500 servers using the Hadoop Distributed File
System (HDFS), with a data volume of up to 5120 TB. The requirements corresponding
to the above risks are:

1. File system data encryption protection.
2. The data of the file system can realize the search query of the ciphertext to obtain

the corresponding file content.

A feasible solusion is to use the ciphertext computing algorithm such as searchable
encryption, homomorphic encryption, etc. They can efficiently perform retrieval opera-
tions in ciphertext and also have diverse scenarios, such as medical data, financial data
and government data, etc. [13–16].

In response to the above risks and requirements, we developed our system based on
searchable encryption algorithm and hierarchical keymanagement to realize three major
functions, includingdata encryptionprotection, encrypted searchof encrypteddata on the
storages side, and data security sharing. By classifying users, distributing corresponding
master keys, the keys of file contents are derived from users’ master keys and file unique
identifiers. Hierarchical and fine-grained control is realized through hierarchical keys,
thus, users of corresponding levels can complete file encryption, upload and sharing only
by holding encryption keys of corresponding levels, which is simple and convenient.

To sum up, our system can realize ciphertext storage, cipher retrieval and file access
control based on user identity level and master key, effectively solve the content security
problem of traditional distributed file system, and prevent file content leakage caused by
malicious administrators and network attacks.

The rest of the paper is organized as follows: In Sect. 2, we first familiarize with
the scheme’s functional interaction model and system architecture. In Sect. 3, we list
the usage of our algorithm and deployment of our system. Section 4 present the system
analysis and feasibility. Section 5 concludes the paper.

2 Functional Interaction Model and System Architecture

2.1 Functional Interaction Model

Distributed file system supporting searchable encryption technology mainly provides
users with file secure search and storage, Fig. 1 shows the functional model of distributed
file system supporting searchable encryption technology proposed for this project. The
core parts of functional interaction model mainly includes 3 parts: file data encryption
protection, ciphertext search, download and decryption of the file data at the storage end
and file secure sharing.

Searchable Encryption System for Big Data Storage 141

1. Data encryption protection: File data encryption protectionmeans that users generate
the encryption keys of files based on file meta data and their own master keys,
then encrypt files, generate indexes and encrypt them at the same time, then upload
ciphertext files and cipher text index to the cloud server.

2. Ciphertext search: Cipher search of encrypted file data at the storage end means that
users generate ciphertext retrieval key value through data keywords and keys, then
send the key value to the server, search the ciphertext index of the file through the
retrieval algorithm to obtain the corresponding file, finally download and decrypt the
retrieved file to obtain the plain text.

3. Data secure sharing: Security sharing of file datameans that user A can directly share
file ciphertext to user B by sharing the derived key and index, and user B updates
its own ciphertext retrieval set, as long as user B’s security level meets the security
level of the file, the file can be obtained through ciphertext retrieval, download and
decryption of file data.

Fig. 1. Functional interaction model.

2.2 System Architecture

As is shown in Fig. 2, our system architecture mainly includes cipher search system
client, cipher search service subsystem, key management subsystem and the existed big
data platform it relies on (take HDFS as an example in the figure).

• The cipher search client uploads and downloads files to the HDFS storage system,
performs encryption and decryption operations in the background of the client during
uploading and downloading. When the client uploads the ciphertext file to the HDFS
storage system, it also establishes a cipher keyword index list in the cipher search
service subsystem for locating the ciphertext file.
When the client initiates the sharing operation, it distributes the file key to the shared
user’s client through secure channel and notifies the shared user’s client. After the

142 Y. Chen et al.

Local�key�
management

Crypto-
Algorithm�

Upload�and�
download

User�
authentication

Root�key�
management�

module

Search�key�
management�

module

File�key�
management

Key
management

subsystem

Cipher search client

HDFS distributed storage

Encrypted�index�
match�module

Dynamic�encrypted�
index�module

Data�storage�
node

Data�storage�
node

Data�storage�
node

Meta�data�manage�
node

Encrypted data search service subsystem

File�searchFile�sharing

Architecture of encrypted storage and search system for big data

Key�secure�
storage�module

Fig. 2. System architecture.

shared user’s client receives the notification, its client background updates the shared
ciphertext keyword index list to the search service subsystem to confirm sharing.

• The cipher search service subsystem obtain the search key from the key management
subsystem, and establishes a ciphertext keyword index list for the user of the client
when the client initiates uploading, receiving and sharing operations. It also provides
storage, update and query of the index list.

• The key management subsystem provides file encryption keys for the clients when
they performupload and download operations, provides file encryption keys for shared
user clients when sharing, provides search keys for clients when searching. At the
same time, key management system provides search keys for search service system
to establish, update and search the cipher keyword index.

3 Main Cryptographic Algorithm

3.1 Key Management Algorithm

Suppose SKE = (Setup, Enc, Dec) is a secure traditional symmetric encryption algo-
rithm, Hash:{0, 1}∗ → {0, 1}∗ is an anti-collision hash function, key management
scheme includes following steps:

1. System boot: Key management center initiate, generate system public parameter
Param and master key MK.

Searchable Encryption System for Big Data Storage 143

2. User register: User Ui use his identity and attributions to initiate registration, key
management centre compute user’s root key RK from its master key MK (using IBE
scheme to generate secret key), then issue a certificate PK for user as the public key
corresponding to RK. Meanwhile, issue hierarchical key LKu to users according to
their secure level, of which LKu ∈ {LK1,LK2,LK3}. Hierarchical keys are divided
into several levels, users of same level have the same classification key, let 1st
level key be LKu, which is a pseudo-random number generated by using pseudo-
random function Rand. The 2nd level key is LK2 =Hash(LK1|2), 3rd level key is
LK3 =Hash(LK2|3), of which | means string concatenation.

3. Encryption key derivation, encryption and management algorithm: A file may have
different security levels, in order to improve security levels, users have to encrypt
different levels of files with different keys.

A user first generates a file key FK (where FK =Hash(RK |Filename|LKu)) by using
his root key RK, filename and file security level, of which LKu corresponds to user’s
authorization file security level. Besides, the user randomly choose a string nonce to
compute secret key SK for searchable encryption, of which SK=Hash(RK|nonce). The
user can use SK to compute cipher index of the file, which is used to identify the owner
of the file and facilitate the query operation of other users.

Finally, the user set a password to encrypt the file key FK (that is,CK = Encrypt(FK,
hash(password))).

3.2 File Classification Encryption/Decryption Algorithm

For file encryption, we adopt the method of digital envelope, that is, use symmetric
encryption algorithm to encrypt the file, use searchable encryption to generate the cipher
index of the file, finally encrypt the file key. Further, we adopt national algorithmofChina
SM2 in the encryption/decryption procedure.

For example, when it comes to a file with security level A, the user first calculates
its file key by using steps in key derivation, that is, FKAu = Hash(RK |filename|LKu).
Then use file key to FK = FKAu to encrypt file A to get its ciphertext CF . (CF =
Enc(FileA,FKAu)).

Finally, the user use his password key K to encrypt file key, get CK = Enc(FKAu),
stores the final cipher result C = (CF ,CK).

When it comes to decryption, user first decrypt file keyFK = FKAu = Dec(CK ,K),
of which K = hash(password). Then restore his original file key FKAu according to his
authorization. Finally, restore the file by computing File = Dec(CF ,FKAu).

3.3 Symmetric Searchable Encryption Algorithm

Suppose user has file collection D = (d1, d2, ..., dn) corresponding unique identifiers
(d1, ...dn), all of them has keywords collection W = (w1,w2, ...,wn), suppose SKE1
and SKE2 are two traditional secure symmetric encryption algorithms, f : {0, 1}k ×
{0, 1}l → {0, 1}k+log2s is a pseudo-random function. π : {0, 1}k ×{0, 1}l → {0, 1}l and
ψ : {0, 1}k × {0, 1}log2s → {0, 1}log2s are two pseudorandom permutation functions.
The main steps listed as follows:

144 Y. Chen et al.

1. Key generation: generate random keyK1,K2,K3, separately used for pseudorandom
permutation function ψ , pseudorandom function f and pseudorandom permutation
function π, generate key K4 for SKE2.

2. Keywordmatching: scan the file collection to get corresponding keywords collection
δ(D), for each w ∈ δ(D), there exist a document subset D(w) corresponding to this
keyword, of which D(w) ⊆ D, we set a global counter ctr = 1 in the traversal.

3. Construction of file index array A: for 1 ≤ i ≤ |δ(D)|, construct linked list Li
corresponding to i-th keyword. Each Li’s nodes (expressed as Ni,j) order is random
and the length |D(w)| may be different. Suppose id(Di,j) is j-th unique identifier
inD(w), generate each node Ni,j≤id(Di,j)||Ki,j||ψK1(ctr + 1) >, encrypt node Ni,j

with key andwrite the cipher in positionψK1(ctr), ofwhichKi,j is used for encrypting
next node Ni,j+1 while ψK1(ctr + 1) is the pointer of next node. Every time the
encryption storage cycle is completed, the counter is incremented by 1 (ctr + +).
In addition, the pointer and key of the last node in the linked list are empty, that is,
Ni,|D(wi)|≤id(Di,|D(wi)|)||0k ||NULL >.
Let s′ = ∑

wi∈δ(D) |D(wi)| $, it means adding up the number of documents to which
each keyword belongs. if s′ < s, fill the remaining positions with random strings, s
is the upper limit of array A’s element capacity.

4. Construction of head node index T : the size of T is {0, 1}l × {0, 1}k+log2s × ||),
|�| is the total number of dictionary set keywords. For all the wi ∈ δ(D), set the
index entry of the first node as T [πK3(wi)] = (addrA(Ni,1)||Ki,0)⊕ fK2(wi). Fill the
remaining items |�| − |δ(D)| with random numbers.

5. Encrypt original data: for each document d ∈ D, compute c ← SKE2.Enc(K4, d),
get the final result I = (A,T),C = (c1, ..., cn).

6. Generate query token: compute t = (πK3(w), fK2(w)) and send it to cloud server.
7. Cloud search: Parse the query token t as (γ, η), where γ = πK3(wi), η = fK2(wi), find

out if there is a result θ at position γ in the head node index T (that is, θ ← T (γ)).
If θ exists, then compute:

θ+η

=(addrA(Ni,1)||Ki,0) ⊕ fK2(wi) ⊕ fK2(wi)

=(addrA(Ni,1)||Ki,0) (1)

Use key K ′ to decrypt the node in position addrA(Ni,1), finally output all the
identifiers in list Li one by one.

8. For each encrypted document, compute d ← SKE2.Dec(K4, c), of which K4 is
derived as is shown in file classification encryption/decryption algorithm.

3.4 Dynamic Update of Cipher Index

Due to the cipher state exposed to cloud, dynamic update has become an extremely
important issue, which is related to security.

When user uploads a new file dk , which includes keyword wn and wm, of which wn

is a keyword that has been established in the cloud’s ciphertext index, while wm is a new
keyword that hasn’t been established.

Searchable Encryption System for Big Data Storage 145

• For wn, user has already constructed head node in the cipher index server, that is,
T [πK3(wn)] = (addrA(Nn,1)||Kn,0)⊕ fK2(wn), the file uploading process is equivalent
to resubmitting the trapdoor ofwn, which means that the server need to parse out all
the identifiers containingwn.

The original linked list is:

Ln = Nn,1|| . . . ||Nn,j−1||Nn,j||Nn,j+1|| . . . ||Nn,|D(wn)| (2)

whereNn,j≤id(Dn,j)||Kn,j||ψK1(ctr+1) >,Nn,|D(wn)|≤id(Dn,|D(wn)|)||0k ||NULL) >

The server will reconstruct the linked list Ln after parses out all the identifiers, that is
reconstruct the tail node and attach a new node, which has the minimum computational
overhead.

Generate random key K
′
n,|D(wn)|, then use it to encrypt the new tail node Nn,|D(wn)|+1

through symmetric encryption algorithm SKE1. The tail nodeNn,|D(wn)| of original linked
list Ln is updated to

N
′
n,|D(wn)|≤id(Dn,|D(wn)|||K

′
n,|D(wn)|||ψK1(ctr|Nij | + 1)) >

and then attach a new node Nn,|D(wn)|+1≤id(Dn,|D(wn)|+1)||0k ||NULL >, of which
id(Dn,|D(wn)|+1) = id(dk), at this time the new linked list is:

L
′
n = Nn,1|| . . . ||Nn,j−1||Nn,j||Nn,j+1|| . . . ||Nn,|D(wn)|−1||N ′

n,|D(wn)|||Nn,|D(wn)|+1 (3)

So when the client updates the server array, it only needs to submit the server:

A
[
ψK1

(
ctr|D(wn)|

)] ← SKE1.Enc(Kn,|D(wn)|−1,N
′
n,|D(wn)|) (4)

A
[
ψK1

(
ctr|Nij | + 1

)] ← SKE1.Enc(K
′
n,|D(wn)|,Nn,|D(wn)|+1) (5)

Equation (4) overwrite the encrypted node in the original position with the new node.
Equation (5) overwrite the random string of position A

[
ψK1

(
ctr|D(wn)|

)]
with the new

tail node.

• For wm, the user has not established the cipher index of wm before, thus need to
construct new linked list Lm, at this time, the linked list only needs to construct one
node Nm,1≤id(Dm,1)||0k ||NULL >, where id

(
Dm,1

) = id
(
Dn,|D(wn)|+1

) = id(dk),
that is, the same identifier corresponds to different keywords.

Under this condition, the head node cipher index needs to be newly
constructed:T

[
πK3(wm)

] = (addrA(Nm,1)||Km,0) ⊕ fK2(wm), the node storage position
is calculated by client:addrA

(
Nm,1

) = ψK1(ctr|Nij | + 1), of which ctr|Nij | is the number
of filled nodes in array A, besides, the remaining s − s′ positions still fill with random
strings, s′ = ctr|Nij |.

So when the client updates keyword wm in the server array, it only needs to submit
the server:

A
[
ψK1

(
ctr|Nij | + 1

)] ← SKE1.Enc(Km,0,Nm,1) (6)

146 Y. Chen et al.

T
[
πK3(wm)

] ← (addrA(Nm,1)||Km,0) ⊕ fK2(wm) (7)

File content encryption only needs to refer to step 5) in Sect. 3.
From the new uploaded items in index update Eq. (4), (5), (6), (7), we can see

that every time a new document with k keywords is uploaded, whether it is an existing
keyword or a new keyword, it is equivalent to the client re-executing the search process
for each keyword, and updating the trapdoor of the keywords at 2k index positions in
array A, without downloading the whole cipher index I = (A,T) locally and updating
it totally, thus reducing the computational overhead and bandwidth consumption of
ciphertext update.

4 Deployment and System Test

4.1 Deployment

Figure 3 shows the application deployment and network connectivity of different mod-
ules of searchable encryption system. The client software is deployed on the user side,
which provides encryption and decryption of user files, file indexes and search requests,
sends encrypted ciphertext files to the distributed storage system, and sends encrypted
search requests to the cipher search service subsystem.

Service side is constructed based on existed big data platform(take HDFS as an
example), so users need to provide HDFS storage system and read-write interface for
clients to call. Clients directly store ciphertext files in HDFS, and locate ciphertext files
stored inHDFSbased on ciphertext keyword index list stored in cipher search subsystem.

Cipher search service subsystem is deployed on a separate server, which is thought
to be “honest but curious”. It establishes a ciphertext keyword index list for locating
ciphertext files stored in HDFS. It responds to the client search request, searches the
ciphertext fole location and returns it to the client.

The key management subsystem provides search keys and file encryption keys for
client and provides search keys for search service subsystem.

4.2 System Test

Based on the deployment, we can further construct the environment. We adopted
Huawei’s big data platform FusionInsight HDFS system, which is mainly used to store
encrypted files and cipher index uploaded by users. The performance indexes of the test
equipment are shown in Table 1.

Test of Encryption
In terms of encryption efficiency, we perform 10 encryption tests on files of 100 Mb
size, record the time consumption of each file encryption and calculate the average time
consumption. As is Shown in Fig. 4. We can see that the encryption efficiency is close
to 300 Mbps.

Searchable Encryption System for Big Data Storage 147

Encrypted data search service subsystem
so ware module

Key management subsystem

Encrypted data
search client

Encrypted data
search client

HDFS distributed file
system

Name
Node

Data
Node

Data
Node

Data
Node

Encrypted data
search client

Encrypted fileclient

Fig. 3. Deployment of cipher search system.

Table 1. System configuration and experimental environment.

Hardware requirements Operating system Usage

2 servers, 8 core, Intel-i7, 32 GB
memory

Ubuntu 16.04 Deployment of cipher search and
key management software

Desktops ≥1, Intel-i7, 16 GB
memory

win7/win10 Deployment of client software

Servers ≥3, Intel-i7, 8 core, 32 GB
memory

Ubuntu 16.04 Deployment of HDFS

Test of Efficiency
When it comes to search efficiency, considering the index size of keywords is much
smallerthat the size of file. We constructed an index of 100 Mb size for retrieval tests,
recorded time consumption of search efficiency, and calculated the average time con-
sumption. As is shown in Fig. 5. We can see that the search efficiency is more than
4000 Mbps, All in all, whether it is encryption or search efficiency, even if the network
transmission delay is included, the efficiency will be on the order of milliseconds, which
will not affect user experience and gives consideration to security and availability.

148 Y. Chen et al.

Fig. 4. Encryption efficiency of the system.

Fig. 5. Search efficiency of the system.

4.3 Advantage Analysis

Our system supports the storage of ciphertext data and the direct query of the stored
ciphertext data. In the query process, the storage end can not know what the user’s query
content is, nor can it know the user’s file data.

The system supports the data owner to actively share the ciphertext data stored by
himself with other users. In the process of sharing, the storage side cannot know the
sharing behavior of users, nor can it know the plaintext of sharex file data. Meanwhile,
encrypting the search request ensures that the server can’t perform correlation analysis
on the user’s search behavior.

Searchable Encryption System for Big Data Storage 149

Users can completely control their own data through private keys and the storage
end cannot know, steal or disclose users’ plaintext data.

The cipher search system is loosely coupled with the big data platform, which means
it can be deployed quickly only by providing the file data read-write interface of the big
data platform, which is more practicability than other solutions.

5 Conclusion

In this paper, we have proposed a cipher search system for big data platform on the basis
of searchable encryption algorithm. Especially, we have constructed a scheme.

that takes into account both the security and efficient use of the data. Meanwhile,
we designed user-centric key management and file level fine-grained encryption and
decryption, effectively preventing the risk of data leakage from getting out of control,
which greatly improve the security of encrypted data storage and utilization. In the future
work, we will further extend data protection to other ciphertext calculate algorithms. For
instance, we will perform fully homomorphic encryption, order-preserving encryption
and secure multi-Party computation in a big data fashion.

Acknowledgements. This work is supported by the Sichuan Science and Technology Program
(2021JDRC0077), the Sichuan Province’s Key Research and Development Plan.

“DistributedSecure StorageTechnology forMassiveSensitiveData”Project (2020YFG0298),
and Applied Basic Research Project of Sichuan Province (No. 2018JY0370).

References

1. Li, H., Yang, Y., Dai, Y., Yu, S., Xiang, Y.: Achieving secure and efficient dynamic searchable
symmetric encryption over medical cloud data. IEEE Trans. Cloud Comput. 8(2), 484–494
(2020). https://doi.org/10.1109/TCC.2017.2769645

2. He, K., Chen, J., Zhou, Q., Du, R., Xiang, Y.: Secure dynamic searchable symmetric encryp-
tionwith constant client storage cost. IEEETrans. Inf. Forensics Secur. 16, 1538–1549 (2021).
https://doi.org/10.1109/TIFS.2020.3033412

3. Shen, J., Wang, C., Wang, A., Ji, S., Zhang, Y.: A searchable and verifiable data protection
scheme for scholarly big data. IEEE Trans. Emerg. Topics Comput. 9(1), 216–225 (2021).
https://doi.org/10.1109/TETC.2018.2830368

4. Chen, G., et al.: Differentially private access patterns for searchable symmetric encryption.
In: IEEE Conference on Computer Communications, Honolulu, USA, pp. 810–818 (2018)

5. Song, Q., et al.: SAP-SSE: protecting search patterns and access patterns in searchable sym-
metric encryption. IEEE Trans. Inf. Forensics Secur. 16, 1795–1809 (2021). https://doi.org/
10.1109/TIFS.2020.3042058

6. Mishra, P., et al.: Oblix: an efficient oblivious search index. In: IEEE Symposium on Security
and Privacy San Francisco, USA, pp. 279–296 (2018)

7. Liu, X., Yang, G., Mu, Y., Deng, R.H.: Multi-user verifiable searchable symmetric encryption
for cloud storage. IEEE Trans. Dependable Secure Comput. 17(6), 1322–1332 (2020). https://
doi.org/10.1109/TDSC.2018.2876831

8. Wang, Y., et al.: Towards multi-user searchable encryption supporting Boolean query and fast
decryption. J. Univ. Comput. Sci. 25(3), 222–244 (2019)

https://doi.org/10.1109/TCC.2017.2769645
https://doi.org/10.1109/TIFS.2020.3033412
https://doi.org/10.1109/TETC.2018.2830368
https://doi.org/10.1109/TIFS.2020.3042058
https://doi.org/10.1109/TDSC.2018.2876831

150 Y. Chen et al.

9. Pang, H., Zhang, J., Mouratidis, K.: Scalable verification for outsourced dynamic databases.
VLDB Endowment 2(1), 802–813 (2019)

10. Belguith, S., et al.: Phoabe: securely outsourcing multi-authority attribute based encryption
with policy hidden for cloud assisted IOT. Comput. Netw. 133, 141–156 (2018)

11. Liu, X., et al.: Privacy-preserving multi-keyword searchable encryption for distributed sys-
tems. IEEE Trans. Parallel Distrib. Syst. 32(3), 561–574 (2021). https://doi.org/10.1109/
TPDS.2020.3027003

12. Zhang, K., et al.: Lightweight searchable encryption protocol for industrial Internet of Things.
IEEETrans. Industr. Inf. 17(6), 4248–4259 (2021). https://doi.org/10.1109/TII.2020.3014168

13. Ge, X., et al.: Towards achieving keyword search over dynamic encrypted cloud data with
symmetric-key based verification. IEEE Trans. Dependable Secure Comput. 18(1), 490–504
(2021). https://doi.org/10.1109/TDSC.2019.2896258

14. Wang, H., et al.: Encrypted data retrieval and sharing scheme in space-air-ground integrated
vehicular networks. IEEE Internet of Things J. https://doi.org/10.1109/JIOT.2021.3062626

15. Sultan, N.H., Laurent, M., Varadharajan, V.: Securing organization’s data: a role-based autho-
rized keyword search scheme with efficient decryption. IEEE Trans. Cloud Comput. https://
doi.org/10.1109/TCC.2021.3071304

16. Mante, R.V., Bajad, N.R.: A study of searchable and auditable attribute based encryption in
cloud. In: 2020 5th International Conference on Communication and Electronics Systems
(ICCES), pp. 1411–1415 (2020). https://doi.org/10.1109/ICCES48766.2020.9137860

https://doi.org/10.1109/TPDS.2020.3027003
https://doi.org/10.1109/TII.2020.3014168
https://doi.org/10.1109/TDSC.2019.2896258
https://doi.org/10.1109/JIOT.2021.3062626
https://doi.org/10.1109/TCC.2021.3071304
https://doi.org/10.1109/ICCES48766.2020.9137860

	Searchable Encryption System for Big Data Storage
	1 Introduction
	2 Functional Interaction Model and System Architecture
	2.1 Functional Interaction Model
	2.2 System Architecture

	3 Main Cryptographic Algorithm
	3.1 Key Management Algorithm
	3.2 File Classification Encryption/Decryption Algorithm
	3.3 Symmetric Searchable Encryption Algorithm
	3.4 Dynamic Update of Cipher Index

	4 Deployment and System Test
	4.1 Deployment
	4.2 System Test
	4.3 Advantage Analysis

	5 Conclusion
	References

