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Abstract Dye pollution is rising drastically due to massive use in different types
of industrial activities. Synthetic dye pollution is the major issue of the environment
at present due to their recalcitrant, toxic, carcinogenic and mutagenic behavior. Dye
pollution affects aquatic life by impairing the sunlight permeability and can damage
the aquatic ecosystem terribly. Therefore, treatment of dye-containing wastewater
is required. Bioremediation seems as safe and ecofriendly approach for wastewater
treatment. Fungi have massive dye decolorization potential and can be used for
treatment. Studies have reported many fungal species for decolorization of dye so,
for better understanding of their application in wastewater treatment process, the
involved mechanism in dye decolorization should be known. This review focused
on application process of fungi in dye decolorization, role of enzyme, protein, genes
and surface functional group in degradation and biosorption process. The toxicity
of fungal degraded dye end products is also reviewed in this chapter which is an
important aspect in fungal application for dye contaminated wastewater treatment.

Keywords Dye · Fungi · Enzyme · Fungal dye degradation · Degradation
mechanism · Toxicity

1 Introduction

Dyes have a great impact on aquatic life which are generated from different types of
industries such textile, paper and pulp, color and printing points, leather, paints, food
and cosmetic. On the basis of chemical structure of chromophore, there are almost 25
types of dye classes and over one thousand dyes are utilized in textile production for a
variety of color fabrics [2, 120]. Disposal of these effluents from industries containing
dye into the natural water bodies causes artistic damages and can influence the life
form by declining the light permeability that affects the photosynthetic activity and
availability of oxygen in the water bodies. Some of the dyes are also persistent and
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highly toxic to terrestrial as well as aquatic fauna of the environment [61]. Toxic,
mutagenic and carcinogenic features of the many dyes are widely reported in the
studies. It has been also found in the studies that exposure of some of the dye such
azo dyes, malachite green, congo red, etc., increase the chances of chromosomal
fractures, fertility loss, and can affect the respiratory enzymes in living organisms
[2, 33, 113].

Due to high dissolution of dyes into the water, the physicochemical methods are
less effective for their removal from the wastewater [123] andmany of the downsides
such as generation of huge quantity of toxic sludge, use of huge amount of chemical
and energy and requirement of skilled manpower are also coupled with these tech-
niques ([69, 61, 64–73, 101]). Microbes (fungi and bacteria) are used in microbial
bioremediation processes as an eco-friendly and sustainable way for management
of dye polluted wastewater. Many of the bacterial and fungal species have been
reported with the potential to degrade complex dye molecules in simpler non/less
toxic compounds or break down into carbon dioxide, water and others. They are also
serving as decomposer in ecosystem functioning as an essential biotic component of
the ecosystem that’s why their utilization in treatment of dye polluted wastewater is
more eco-friendly than known physicochemical techniques.

Fungi being an active agent of ecosystem as saprophytes produces many of the
enzymes for instance laccase, lignin peroxidase, manganese peroxidase, etc., which
can potentially catalyze various types of dye molecules (congo red, malachite green,
methylene blue, etc.). Jasinska et al. [61] investigated the malachite degradation
mechanism and potential of fungus Myrothecium roridum which produces laccase
for dye degradation. In another report, Aspergillus terreusGS28 degraded Congo red
and was found to extracellularly secrete laccase and manganese peroxidase [109].
Many of the review articles are available that deal with microbial bioremediation of
dye contaminated water and wastewater. There are several types of mechanisms that
have been explained in the literature for decolorization/degradation of synthetic dyes
by fungi. Therefore, in this review fungi application in themeadow of bioremediation
and fungal dye degradation/decolorization mechanisms are discussed. The toxicity
of fungal degraded various dye end products is also narrated.

2 Dye Pollution Sources and Impact

This era is dealing with the use of fashionable clothes, paper, cosmetic, etc., that
increases the heavy load on industrial activities for manufacturing of these products.
The production of varieties of colors in high quantity via natural processes is unable
to fill the demands of the presentwhich necessitate the alternativemethods to produce
varieties of color in huge amount that can fill the need of the present. In the chemical
synthesis of dye, varieties of color can be multiplied easily in huge amounts in very
short duration of time. The chemically synthesized dyes have high brightness and
binding capacity with substrate and are utilized in multiple industries for coloring
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purposes. Most of the dyes are exploited in the textile, carpet, paper and printing
industries for production of varieties of colored fibers and papers.

Due to huge application in industrial processes, dyes are produced in high amount
with the generated effluents and disposed-off into the fresh water bodies like rivers,
lakes and ponds without proper treatment. Synthetic dyes are exploited in diverse
industries like textile, carpet, printing, paper and pulp, cosmetic, paint, laundry and
leather are generated on large scale and due to their toxicity, they are related to
environmental degradation. Among the dyes, Azo dye is the class of dye which is
extensively being used. There are over 3,000 dyes belong to the class of azo dye [123]
and it is expected that roughly 280,000 tons of synthetic dye are released from textile
industries annually around the world [83, 144]. The chemical structures of some of
these synthetic dyes are presented inFig. 1.Based on their origin, dyes are categorized
in two types: Natural dyes and Synthetic dyes. Natural dyes have no significant

Fig. 1 Chemical structure of some synthetic dyes
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impact on the environment, while synthetic dye possesses great concern. Synthetic
dyes contains one or more than one chromophore such as acridine, anthraquinone,
Azo (-N=N-), diazonium, oxazin, nitro, thiazin, phthalocyanine and triarylmethane
which generate various color by absorbing the light in visible region (400–700 nm)
([31], [115]).

Accumulation of dyes into water bodies reduces the permeability of light and
affects the aquatic ecosystem drastically by reducing the photosynthetic process.
In addition, accumulated dye can also raise the chemical oxygen demand (COD)
along with biological oxygen demand (BOD) of fresh water body and generate a
noxious environment that turns into a degraded ecosystem [66, 105]. Synthetic dyes
are extremely toxic and can influence the growth and metabolic process of the living
creatures such asReactive brilliant red can cause disturbance in the function of human
serum albumin [80], disperse orange 1 can enhance the frequencies of micronuclei
in lymphocytes and HepG2 cells which cause DNA damage [103], orasol navy blue
2RB can increase frame shift mutation without metabolic activation [124]. Many of
the dyes have carcinogenic and mutagenic properties (Table 1). Dyes have tendency
to be recalcitrant in aerobic environment which leads to their accumulation in soil
and sediment at the physicochemical treatment location and also responsible for their
transport to municipal water supply system.

3 Why Fungi?

Fungi normally occur in almost all the environmental conditions either normal or
stressed situations such as drought, alkaline and acidic in the presence of contami-
nants (like heavy metal, pesticides and dye, etc.). The wastewater is accomplished
with multiple types of pollutants that may hamper the growth of bioremediators
but many of the fungal species exhibit tolerance toward different pollutants. Being
saprophytes they use andproduce numerous extracellular enzymes to degrade organic
substrate and utilize the degraded substrate as energy and nutrients source for their
growth and development. The extracellular release of cluster of enzymes associated
with the degradation of dye is the basic criteria to select them to treat wastewater
polluted with dyes. In addition, the application of growing form of fungi has self-
replenishment ability which promises no need for addition of consortium from time
to time and can be used continuously for a long time. From technical point of view,
fungi are easily separable from the treated wastewater if used in bioreactor, easy
to handle and use, can grow in low graded substrate and do not cause any type of
environmental damages after their disposal. There is no requirement of high energy,
chemicals and skilled manpower with the use of fungi for treatment perspective that
make it more sustainable and environmental friendly than other techniques.
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Table 1 Effect of dyes on living beings

Dye Toxicity References

Acid violet 7 Lipid peroxidation, Aberration in
chromosome

Ben Mansour et al. [84]

Disperse red-1 Functional change in human lymphocytes Chequer et al. [27]

Reactive black-5 Decline activity of urease cause
ammonification in arginine rate of
terrestrial ecosystem

Topac et al. [121]

Disperse blue-291 Mutagenic, cytotoxic and genotypic
effects

Tsuboy et al. [122]

Malachite green Carcinogenesis and Mutagenesis Jasińska et al. [61]

Congo red Carcinogen and Mutagen Asses et al. [9]

Mordent red-73 Lead to release of the toxic chromium
(IV) salt into the environment

Elmorsi et al. [39]

Disperse red-1 DNA damage caused which increase the
number of micronuclei in lymphocyte of
human being

Chequer et al. [27]

Disperse orange-1 Enhance the frequencies of micronuclei in
lymphocytes sand HepG2 cells which
cause DNA damage

Ferraz et al. [43]

Astrazon blue FGRL Alteration of few enzymatic activity and
increase in glutathione reductase

Gongord et al. [48]

Sudan I Liver and urinary bladder carcinogen in
mammals

Stiborová et al. [114]

Direct black 38 Urinary bladder cancer, Liver carcinogen Robens et al. [103]

Disperse red 13 DNA damage in human hepatoma cells Oliveira et al. [91]

Direct blue 6 Teratogenes is in rats during pregnancy IARC [57]

Direct red 28 Carcinogen Ding et al. [37]

Basic red 9 Bacterial DNA damage and hypertrophy
of thyroid in Mice

IARC [57]

Reactive orange 16 Mutagenic effect Novotný et al. [89]

Rodamine 6G Mutagenesis Nestmann et al. [88]

Acid blue 80 Incensement of apoptosis in epithelial
cells line RTL-W1

Bae and Freeman [10]

Benzopurpurine 4B Endocrine disrupting agents Bazin et al. [16]

Methyl orange Carcinogenic and mutagenic effect Purnomo et al. [98]

Methylene blue Increase chemical oxygen demand which
lead to death of aquatic organism

Rizqi and Purnomo [102]

Orasol navy blue 2RB Without metabolic activation increased
frame shift mutation

Venturini and Tamaro [124]

Disperse orange 37 Mutagenic response Lima et al. [34]
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4 Fungi and Dye Degradation

Disposal of inadequately treated dyes containing wastewater generated from indus-
trial activities causes high pollution load on natural water body that affect the
ecosystem functioning and results into degraded ecosystem by various ways. Dyes
have been reported to cause various types of abnormalities in human beings as well
as environment. Due to dye’s toxicity, carcinogenic and mutagenic characteristics
their removal from wastewater is necessary. Many attempts have been made by the
researchers for dye decolorization/removal from polluted water. Biological method
is more appropriate and significant than other known methods due to their applica-
bility and environmental friendliness. In this regards many of the fungal species have
been explored to remove different types of pollutants including synthetic dyes. Fungi
exhibit several types of enzymes that have the degradation potential of synthetic dyes
and other organic contaminants. In addition, fungal cell is made up of lipid, protein
and carbohydrates that provide attractive characteristics to its cell surface that is
biosorption features.Adsorptive characteristics of fungi give a unique feature to it and
increase its potential for removal and degradation of pollutants. The fungi that have
been reported to decolorize different types of dyes belong to the class ascomycetes,
basidiomycetes andduteromycetes especiallywhite rot-ligninolytic fungiwhich have
high potential to produce various enzymes including laccase, manganese peroxidase
and lignin peroxidase. These enzymes play crucial function as a biocatalyst in the
dye degradation process.

There are numerous reports available in public domain on degradation of synthetic
dyes by diverse types of fungal species (Table 2) ([8, 93, 58, 106, 81, 104]).
Aspergillus, Trichderma, Phanerochaete and Pleurotus species are widely studied
in the degradation of various class of synthetic dyes including direct, disperse, azo
and anthraqinone ([106, 109], [129, 44, 17, 82, 130]). Themechanisms engaged in the
decolorization of dye molecules by fungi are degradation and adsorption (biosorp-
tion) [6, 9, 19, 109]. In the biological management of dyes containing water, fungi
can be applied in various ways which are as follows:

4.1 Use of Growing Culture

This is a very common method for use of fungi in the degradation/decolorization
of dye and mostly performed in batch study. In this method, fungi growth and
dye decolorization has simultaneously happened where degradation is performed
by releasing extracellular enzymes and some amount of dye is also adsorbed on the
surface of fungi that enhance the decolorization performance of fungi. In an inves-
tigation, Aspergillus terreus GS28 was utilized for direct blue-1 decolorization in
liquid culture. Almost 99.2% dye decolorization was recorded under the optimized
condition at 7th day of incubation while decolorization happened via sorption and
degradation. Sorption was driven by surface functional group and degradation was
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performed by manganese peroxidase and lignin peroxidase [109]. Similarly, brilliant
green decolorization performance of three fungal species Pleurotus forida, Pleurotus
eryngii and Pleurotus sajor-caju was reported by Naraian et al. (2018). The decol-
orization efficiency for brilliant green was 99, 91, 87% by P. forida, P. eryngii and P.
sajorcaju, respectively. There are several other fungal species also have been reported
for the degradation/decolorization of different type of dyes [19, 22, 25, 76, 116].

4.2 Use of Immobilized Fungi

In the immobilized form of fungi, mostly fungus inoculums are immobilized on
the surface of any solid medium [74, 68]. This process is basically applied when
fungi are used in bioreactor for decolorization of dyes. Immobilization of fungus on
solid surface also enhanced the applicability of fungi and can be used in continuous
treatment of dye-containing wastewater for a long time without making more effort.
Sometimes it is also known as solid–liquid-phase decolorization. Andleeb et al.
[7] examined the Drimarene blue K2RL dye biodegradation potential of Aspergillus
flavus SA2 in immobilized form in lab-scale fluidized bed reactor (FBR). The fungus
was immobilized on sand with size of 0.2 mm and investigated for biodegradation. In
the FBR, Aspergillus flavus SA2 was able to remove 71.3% of color from the simu-
lated textile water by biodegradation and bio-decolorization mechanisms including
85.57% and 84.70% removal of BOD and COD, respectively. Recently, in an investi-
gation, Alam et al. [5] immobilized the fungus Trametes hirsutaD7 in light expanded
clay aggregate and utilized for decolorization of acid blue 129, reactive blue 4 and
remazol brilliant blue R (RBBR). The immobilized Trametes hirsuta D7 showed
high degradation performance for the acid blue 129, RBBR and reactive blue 4
with decolorization performance of 96%, 95% and 90%, respectively. These studies
showed that fungi can give more effective results in the degradation/decolorization
of dye when applied in immobilized form. Some other studies were also investigated
on synthetic dye decolorization/degradation performance of various fungi as well
fungal-originated enzymes such as MnP, laccase and LiP ([3, 35, 118, 125]).

4.3 Use of Fungal Extract Containing Enzymes

The ligninolytic white-rot fungi are reported to generate diverse types of enzyme
having the potential for degradation/decolorization of dyes. These enzymes are LiP,
MnP and laccase which have been extensively reported in the studies. In an investiga-
tion, Phanerochaete chrysosporium CDBB 686 extract containing MnP, LiP, laccase
obtained from fermentation of corncob was used for the decolorization of congo red,
poly R-478 and methyl red. Fungal extract successfully decolorized Congo red, Poly
R-478 and methyl red with decolorization efficiency of 41.8%, 56.8% and 69.7%,
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respectively [111]. Akpinar and Urek [4] investigated the laccase production capa-
bility ofPleurotus eryngii by using solid-state bioprocess utilizing Peachwaste of the
fruit juice industry. The obtained laccase containing extract of P. eryngii was inves-
tigated for methyl orange degradation and reported 43% decolorization efficiency.
Many other similar reports are also available on the dye decolorization performance
of fungal extract ([30, 62, 78 87]).

4.4 Use of Isolated Enzymes from Fungi

The enzymes MnP, LiP and laccase are isolated in the different studies from liquid
culture of different types of fungi and were employed in decolorization/degradation
of dyes and various other organic pollutants. Bouacem et al. [19] isolated two perox-
idases (LiP BA45 andMnP BA30) from the fungus Bjerkandera adusta strain CX-9.
Both enzymes LiP BA45 and MnP BA30 were monomer with molecular mass of
30.12 and 45.22 kDa and highly active at pH 3.0 and 70 °C, pH 4.0 and 50 °C, respec-
tively. Both enzymes were analyzed for decolorization of synthetic dyes remazol
brilliant violet 5R, acid blue 158, cibacet brilliant blue BG, reactive dye remazol,
brilliant blue reactive, polymeric dye R, methyl green and indigo carmine signifi-
cantly decolorizes, while MnP BA30 enzymes was highly effective than LiP BA45
in synthetic dye decolorization performance. Similarly, Chairin et al. [24] purified
laccase from liquid culture of Trametes polyzonaWR710-1, a white rot fungus. Puri-
fied laccase was exploited for decolorization of synthetic dyes namely bromophenol
blue, acridine orange, remazol brilliant blue R, relative black 5, methyl orange and
congo red. Purified laccase showed high efficiency in the decolorization of selected
dye and addition of 0.2 M 1-hydroxybenzotriazole (redox mediator) improved the
efficiency of dye decolorization of fungal laccase.

5 Role of Enzymes

5.1 Laccase (E.C.1.10.3.2, p-benzenediol)

Laccase is an important enzyme that can catalyze many types of aromatic hydrocar-
bons such as phenolic compounds via oxidation–reduction mechanism and belong
to the group oxidoreductive enzymes [26]. It can be found in bacteria, fungi as well
as in plants too. Fungal laccase is broadly distributed in the species of the class
Basidiomycetes, Ascomycetes, and Deuteromycetes and in white-rot fungal species,
it played role in lignin degradation [58, 61, 93, 109]. Laccase molecule typically has
four atoms of copper (Cu) and some time its structure also comprises three Cu atoms
with a molecular mass of 50–100 kDa [51].
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During dye degradation by fungi, the role of laccase is extensively reported in the
studies. Laccase potentially contributed in the degradation of direct blue 1, malachite
green, congo red when the fungus Myrothecium roridum and Aspergillus terreus
were used [61, 109]. Abd El-Rahim et al. [1] investigated 17 fungal strains of the
genus Aspergillus and Lichtheimia for the degradation of 20 dye viz. janus green
B, direct blue 71, reactive orange, evans blue, fast green, crystal violet, methyl red,
tartrazine, naphthol blue black, alura redAC, reactive blue 4, pararosaniline, safranin,
alizarin yellow R, trypan blue, ponceau S, cibacron brilliant red 3B-A, brilliant
green, direct violet 51 and direct red 80. After a critical evaluation, they found that
the fungus A. niger, A. terreus, A. oryzae, A. fumigatus showed laccase activity
in the degradation of direct violet while absent in the degradation of methyl red.
Akpinar and Urek [4] employed Peach waste generated from fruit juice industry
for fungal laccase production by Pleurotus eryngii and successfully used in methyl
orange, reactive black, tartrazine and reactive red 2 dyes degradation. In another
study, significant role of laccase was recorded in degradation of solar brilliant red
80 by Schizophyllum commune. These studies suggested the magnitude of laccase in
the decolorization/degradation of dyes [8].

The mechanisms of laccase in the demolition/degradation of aromatic hydro-
carbon (phenolic compounds) are variously suggested by the researchers. It oxidizes
phenolic group to phenoxy radical via eliminating hydrogen (H) atom from the
OH (hydroxyl) group [11]. Laccase show soaring affinity toward molecular oxygen
and as proposed by Burke and Cairney [21] it reacts with type-1-copper reduction
by the precursor, transfers electron as of type-1-Cu to type-2-Cu as well as Type-
3-Cu in a trinuclear bunch, and reduction of molecular oxygen on type-2-Cu and
Type-3-Cu sites. This similar pathway was proposed for the degradation of acid
red 97 by fungal laccase isolated from Peroneutypa scoparia where hydrogen of
phenyl group is broken by laccase and converted into phenoxy radical, subsequently
it reacts with OH and breaks the azo bond (-N=N-) of acid red 97 and forms naph-
thalene 1,2 diene and benzenes sulfonic acid as end products [93]. Iark et al. [58] also
reported successful degradation of congo red dye by the laccase produced by fungus
Oudemansiella canarii. In mass spectrometry and Fourier transform infrared spec-
troscopy (FTIR) they found four types of compound as end products of congo red but
no any dye degradative clear path was suggested. Shanmugam et al. [106] utilizes
Trichoderma asperellum laccase for degradation of malachite green (MG). They
suggested that the MG degradation happened by hydroxylation of central carbon
by laccase and form Michler’s ketone that further catalyzed into benzaldehyde and
4-aminobenzophenone as end products via some intermediates compound formation
with laccase-oxidative cleavage and mediated deamination mechanisms. So, fungal
laccase may react differentially to degrade the dyes and produced various kinds of
less/non-toxic end products and has crucial role in fungal dye degradation.
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5.2 Manganese Peroxidase (EC 1.11.1.13)

Manganese peroxidase (MnP), a ligninolytic enzyme first noticed in Phanerochaete
chrysosporium in 1983,Mn2+ was used as substrate and oxidizes intoMn3+ [52]. The
chelators stabilized to oxidizedMn3+ which is turn as very active lowmolecular mass
and diffusible oxidoreductive intermediary. It attacks nonspecifically on hydrocarbon
molecules. MnP can oxide different types of organic compounds as well recalcitrant
xenobiotic organic pollutants such dyes, nitroaminotaluene, phenol derivates, etc.,
and can also depolymerize lignin into their simpler form [128]. In fungal dye degra-
dation, its enhanced activity has been reported inmany studies.MnP involved inMG,
congo red, indigo carmine and reactive red 120 degradation by fungusMyrothecium
roridum, Aspergillus terreus and Phanerochaete chrysosporium, P. sordida strain
YK-624, respectively ([49, 61, 104, 81]).

MnP is highly reactive agent that can catalyze dye via oxidoreductase mechanism
and diminish the dye toxicity potential. In an investigation, Jasinska et al. [61] used
the crude MnP produced by fungus Phanerochaete chrysosporium in decoloriza-
tion of indigo carmine which successfully reduces indigo carmine up to 90% within
6 h. After decolorization assay, they investigated the MnP degraded end products of
indigo carmine. Isatin was found as end product of indigo carmine in gas chromatog-
raphymass spectroscopic (GCMS) analysis. They suggested thatMn3+ first attack on
indigo carmine remove SO2

2− then react with NH group of the ring to form interme-
diate compounds that react with H2O and separated into isatin, end product of indigo
carmine catalyzed by MnP. In another study, cDNA encoding MnP of P. chrysospo-
rium was expressed in Pichia pastoris for MnP production. The produced MnP was
utilized for degradation of MG. Where MnP mediated hydroxyl react with central
carbon tomineralizeMG into its N, N-dimethylaniline (N,Ndimethyl-benzenamine),
4-dimethylamino-benzophenone hydrate and methylbenzaldehyde compounds as its
MnP catalyzed end products [104]. Fungal MnP have crucial role in degradation of
dye.

5.3 Lignin Peroxidase (EC 1.11.1.14)

Major sources of lignin peroxidase are the white-rot basidiomycetes. Lignin peroxi-
dase (LiP) is also called ligninase or diaryl propane peroxidase [18]. It is a globular
glycoprotein extracellularly released by producers such asPhanerochaete chrysospo-
rium as a secondary enzyme [42] and contains just about 343 amino acids having
molecular size of 38–42 kDa [28, 60, 107]. Structurally, LiP is monomer of hemo-
protein with a size of around 40 × 40 × 50 Å [95] and its folding motif have
8-alpha major and 8 minor helices and antiparallel short 3 beta-sheets [29, 40]. Its
isoelectric point is in between 3.0 to 4.7 and is highly active at lower pH around
3.0 [46]. Its production can be affected by change in the ratio of source of carbon
(C) and nitrogen (N) in the growth medium [54]. Its four disulfide bond upholds its
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overall structure and two Ca-binding sites may provide active site for reactivity of
LiP toward substrates (lignin) [97]. Many of the species of fungi reported to produce
LiP but strainP. chrysosporium contain multiple LiP-encoding gene and produce LiP
extracellularly as abundant isozyme (H10, H8, H7, H6, H2 and H1) [42, 119]. LiP
can catalyze both phenolic along with non-phenolic aromatic unit of lignin either
in the existence or nonexistence of mediators which is ended by Trp171 residue
through long-range electron transfer that is linked with the heme group [85, 96]. LiP
is noticed in many studies for its role in degradation of synthetic dyes like Azo group
of dye by fungi [61, 109]. LiP producing fungal species generally belong to the class
ascomycetes and basidiomycetes and white-rot ligninolytic fungi [28, 61, 107].

In an investigation, the combined activity of LiP, MnP and laccase was reported
in direct blue-1 degradation by A. terreus GS28. The direct blue-1 was mineral-
ized into three types of compound namely 4,5-Diazotricyclo[4.3.0.0(3,7)non-4-in-2-
one], 1,2-benzene dicarboxylic acid,3-nitro and phenol,2,6-bis(1,1-Diemethylethyl)
[109]. Oliveira et al. [90] investigated the LiP production capacity of Ganoderma
lucidum (GRM117) and Pleurotus ostreatus (PLO9). Obtained crude LiP was immo-
bilized on carbon nano-tubes and successfully demonstrated as a biocatalyst for
decolorization of RBBR. Jadhav et al. [59] also reported the participation of LiP in
biotransformation of direct blue GLL into 3-(naphthalene-1-ylazo)-naphthlene-1, 5
disulfonic acid. Disperse yellow 3 degradation was investigated in a study by Phane-
rochaete chrysosporium. LiP, horseradish peroxidase andMnPwas involved in degra-
dation of disperse yellow3 and itwas converted into 4-methyl-1,2-benzoquinone (III)
or 1,2-naphthoquinone (VI) and 4-acetamidophenyldiazene that after oxidation reac-
tion converted to acetanilide as major product [112]. The combined action of LiP,
MnP and laccase was also reported in the Scarlet RR degradation by Peyronellaea
prosopidis [13].

5.4 Other Enzymes

Except Lip, MnP and Laccase many other enzymes have also been found for their
active participation in degradation/decolorization of many dyes. These enzymes
mostly belong to oxydoreductase enzymes group. Spadaro and Renganathan [112]
reported that horseradish peroxidase accompanied the catalysis of disperse Yellow
3 into the acetanilide with MnP and LiP in P. chrysosporium. In Diutina rugosa
the activity of NADH-DCIP (dichlorophenol indophenols) reductase was reported to
involve in asymmetric cleavage and reduction of indigo dye escortedwith laccase and
LiP [14]. NADH-DCIP-mediated asymmetric cleavage, desulfonation and dehydrox-
ylation of AR-88 were found in Achaetomium strumarium. In GCMS investigation,
sodium naphthalene-1-sulfonate, naphthalen-2-ol, and 1,4-dihydronaphthalene were
analyzed as intermediate products after action of fungalNADH-DCIP [12]. Enhanced
NADH-DCIP activity was reported in Pichia occidentalis G1 in the degradation of
acid red B [110]. In an investigation dye-decolorizing (DyP type) peroxidase enzyme
was reported in Geotrichum candidum. DyP type enzyme vigorously associated in
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trypan blue, methyl orange, eriochrome black t, and congo red dyes degradation that
belong to the group of azo dye. Its molecular mass was 63 kDa and was highly active
at pH 6.0 and 35 °C in degradation of methyl orange [100]. Si et al. [108] investigated
the dye decolorization ability of a white rot fungus Trametes pubescens Cui 7571 for
congo red and successful decolorization was recorded. In the congo red decoloriza-
tion, tyrosinase enzyme participated in the dye degradation including laccase, MnP
and LiP and four by-products of dye namely naphthalene amine, naphthalene diazo-
nium, biphenyl and biphenyl amine were found as final dye degraded metabolites.
Bilirubin oxidase (BOX) is another oxidoreductase reported in degradation of RBBR
by Myrothecium sp. IMER1, a non-ligninolytic fungus. BOX enzyme has also the
potential to degrade congo red and indigo carmine under in vitro condition [131].
Cytochrome P-450 is another factor that holds big and various number of enzymes
participated in dye biodegradation. Its role inMGdecolorization byCunninghamella
elegans ATCC 36,112 was reported by Cha et al. [23] which reduces the MG into
leucomalachite green by the action of cytochrome P-450 monooxygenases.

5.5 Role of Other Bioactive Compounds

Synthetic dyes degradation by fungi is mainly driven by oxidoreductase including
laccase, MnP and LiP. But several reports have suggested the role of other bioactive
molecules’ low-molecular weight factors in the degradation of dye. In an inves-
tigation, Jasinska et al. [61] studied the malachite green decolorization potential
of Myrothecium roridum IM 6482. They found that laccase participated in mala-
chite green degradation but other active factor was also involved in degradation
process. To analyze active factors, heat inactivation with adding sodium azide was
done to neutralize the laccase activity and obtained non-enzymatic liquid coating
low-molecular masses (less than 3 kDa) were used for the malachite green (MG)
degradation. Non-enzymatic liquid also showed the decolorization potential of MG
with efficiency of 8 to 11%. This might be due to the Fenton-like reaction driven by
peroxides, which have been proven to oxidize chemical structure through oxidation
by hydroxyl radical. To confirm this hypothesis, they conducted the decolorization
experiment with catalase, thiourea, superoxide dismutase (SOD) (scavengers of reac-
tive oxygen species, ROS) and did not found significant change in MG decoloriza-
tion, confirming the presence of low-molecular-mass-factor. Fenton-like reaction, a
non-enzymatic mechanism for the decolorization of dye has been also proposed by
several workers [47, 64, 86]. In another investigation, Hu et al. [53] purified the low-
molecular weight peptide from the culture of Phanerochaete chrysosporium that has
the phenol peroxidase activity (Pc Factor). The molecular weight of Pc factor was
600 Da with high thermostability and similar to the observation of Jasinska et al.
[61].
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5.6 Role of Gene

Exploration of molecular mechanism associated with dye degradation by fungi is
a crucial step for better understanding of fungal application in the field of biore-
mediation and has great scientific interest. Gene expressions have important role
in metabolic process of the fungi which establishes the growth and development in
addition to tolerance toward toxic dye under contaminated environment as well as
dyes degradation by regulating multiple types of enzymes activity. Various stres-
sors (such as dyes) can induce set of the gene in the organism in turn to connect
the metabolic process with dye tolerance and degradation. There are two groups of
genes expression are found in stressed conditions: regulatory gene and functional
gene. Regulatory group of genes encodes various types of transcriptional genes while
functional group of genes encode various types of compound and enzymes that are
helpful in tolerance and degradation of dye and other toxic organic and inorganic
compounds [68].

In an investigation, laccase-producingGanoderma lucidummolecularly analyzed
and showed 15 types of laccase isoenzyme genes. Out of them, Glac1 was highly
involved in laccase production for RBBR degradation [99]. Similarly, Değerli et al.
[36] found up and down-regulation of 10 laccase-producing genes in lichen-forming
fungi thatwere capable to degradeRBBRdye. Inmid of this, lac8 genewas highly up-
regulated andpossibly associatedwith enhanceddye degradation.A laccase encoding
lac-T gene was highly up-regulated in Trametes hirsuta at the time of textile effluent
decolorization and during the decolorization process significant increase in laccase
activity was recorded [117]. Laccase encoding gene: lacI in Pichia pastoris, Lac1
and Lac2 in Trametes hirsuta MX2 and lac48424-1 in Trametes sp. 48,424 overex-
pression was reported in the studies in the presence of dyes such as crystal violet,
malachite green, methyl orange, bromophenol blue, RBBR, acid red 1 and neutral
red ([41, 55, 45]). In an exploration, Lee et al. [79] conducted RBBR degradation
experiment using Phlebia brevispora. They found manganese peroxidase was stim-
ulated in addition to laccase enzymes in the degradation of RBBR and GeneFishing
technology confirmed the differential expression of two genes that possibly involved
in the enzymes’ regulation. In another study, halotolerant Pichia occidentalis A2
showed enhanced degradation of acid red B under Static Magnetic Field (SMF) of
206.3 mT. In transcriptomic investigation, it was found that 145 genes were up-
regulated and 22 genes were down-regulated under these conditions that might be
encoded by the enzymes or other functional proteins [127]. Conversely, Huy et al.
[56] reported that synthetic dye can directly suppress the expression level of gene
Lacc110 in Fusarium solani HUIB02 while induces the Lacc42 expression level.
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5.7 Role of Surface Functional Group in Dye Decolorization

Fungal cell wall ismainlymade up of lipid, protein and carbohydrates that carrymany
types of surface functional group including –COOH, C=C, C=O,O–H,N–H andC-H
[68, 75]. The surface functional groups do not participate in dye degradation but can
increase the decolorization efficiency of fungi by adsorbing the dye molecules on the
mycelia surface of fungi. Singh and Dwivedi [109] reported that almost 34.4% of
total 98.2% decolorization of direct blue-1 dye happened via biosorption process by
fungus A. terreus GS28 which showed that adsorption of dye on mycelia surface has
crucial role in decolorization of dye by fungi. Further, in Fourier transform infrared
spectroscopic investigation they found that O–H and C=C are involved in direct
blue-1 adsorption via hydrogen bond and π-π interaction. Chakraborty et al. (2013
observed that morphology of Alternaria alternata CMERI F6 was more amorphous
after decolorization of Congo red than control in scanning electron microscopic
observation. Due to high amorphousness, the peak of x-ray diffraction analysis at 2
degree values of 28° was reduced which confirms the role of adsorption in congo red
decolorization. In onemore investigation,Asses et al. [9] examined the decolorization
of congo red by fungus Aspergillus niger and they also found that surface adsorp-
tion of dye molecules occurred in decolorization of Congo red that was confirmed
from changes FTIR spectra. Similar observations are reported in various studies in
decolorization of synthetic dye by fungi [6, 62, 63, 65].

6 Fungal Genetic Engineering and Their Role in Dye
Degradation

This era is dealing with heavy pollution load and the available tools and remediating
agents are not sufficient to remove these pollutants. The bioremediation agents are
considered as more environmental-friendly and sustainable to remove and degrade
the pollutants from contaminated site. At present, several types of bioremediation
agents including microorganisms and plants have been explored that can effectively
degrade/remove the pollutants from the contaminated sites. These remediators cannot
be used in every type of environment due to the fact that in the open environment there
are multiple factors such as pH, temperature, presence of other contaminants that can
affect the growth, development and pollutant removal/degradation efficiency of these
bio-agents. Through the genetic engineering, functional genes of one organism that
responsible for degradation and removal of pollutants can be expressed into another
desired organism that contains pleasing features for its applicability in on-site or engi-
neered systems. This approach can also enhance the applicability of fungi in the field
of dyes degradation/decolorization. Many of the reports are available on the genetic
engineering for fungi that showed enhanced dye degradation characteristic after gene
manipulation ([32, 38, 129, 17, 82, 130]). In a recent study, through genetic engi-
neering, Ður -dić et al. [38] inserted LiP gene in pCTCON2 vector to find a saturation
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Fig. 2 The schematic diagram represents the genetic engineering process for obtaining genetically
modified species for better productivity and performance of fungi

mutagenesis library. Further LiP variants genes and wild type gene were expressed
in S. cerevisiae EBY100 and were used for degradation of structurally different azo
dyes (Amido black 10B, Evans blue and Guinea green). The mutant ML3 and ML8
showed high catalytic activity toward Evans blue, ML2 and ML6 toward amido
black 10B and ML3 and ML5 can catalyze Guinea green. In another investigation
Pleos-dyp1 gene of the fungus Pleurotus ostreatus that capable to degrade Acetyl
Yellow G (AYG), RBBR and Acid Blue 129 (AB129) was successfully expressed
in Trichoderma atroviride. Successfully genetically manipulated T. atroviride can
degrade mono and di-azo dye, anthracenedione and anthraquinone dyes with its
extracellularly produced DyP1 (dye-decolorizing peroxidase) activity. However, the
recombinant T. atroviride was able to degrade AYG and AB129 at significant level
[32]. In a study, Xu et al. [129] used cDNA library of 1092 bp full length from
Manganese peroxidase producing fungusGanoderma lucidum strain that designated
asGluMnP1 to construct eukaryotic expression vector pAO815::GlMnP. The vector
pAO815::GlMnP was successfully transferred in Pichia pastoris SMD116. The
recombinant Pichia pastoris SMD116 was capable to decolorize four dyes namely
drimaren red K-4Bl, drimaren blue CL-BR, disperse navy blue HGL and drimaren
yellowX8GN and phenol. Similarly,mnp3 gene responsible forMnP production was
cloned from Cerrena unicolor BBP6 and functionally expressed in Pichia pastoris.
The resulting recombinant has great potential in decolorization of RBBR, methyl
orange, bromophenol blue, crystal violet and brilliant blue R and two polyaromatic
hydrocarbons (phenanthrene and fluorene) [130] (Fig. 2).

7 Toxicity of Fungal Degraded Products

Synthetic dyes have some level of toxicity to different types of organisms that can
affect the normal physiological and metabolic process of the organism. As discussed
above, fungi have huge potential for their application in bioremediation of dye
contaminated wastewater and fungi can degrade the dye molecules into their smaller
or constituents units. Mostly, these fungal degraded end products were less toxic
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than parent dye molecules (Table 3). In a study, Assess et al. [9] conducted an exper-
iment using Aspergillus niger for the degradation of congo red dye. Congo red was
degraded into naphthalene sulfonate and cycloheptadienylium and in the phytotox-
icity assessment Zea maize and Solanum leucopersicum showed higher germinate
rate and shoot and root growth in fungal treated dye solution as compared to Congo
red dye solution. In another study, Trichoderma tomentosum degraded Acid Red
3R into 4-aminonapthalene-1-sulfonic acid, 8-amino-7-hydroxynapthelene-1 and 3-
disulfonic acid. Further, the toxicity assessment of fungal treated dye solution showed
less toxicity on the germination rate and growth of Glycine max and Adenanthera
microsperma as compared to pure acid red 3R solution. Conversely, some studies
were also reported that fugal treated some dye solution may more toxic than their
parent dye molecule. In an investigation, Almeida and Corso [6] tested the procion
red MX-5B dye degradation ability of Aspergillus terreus. In the end-product anal-
ysis, primary and secondary amines were found as fungal degraded metabolites of
procion red MX-5B. In the toxicity analysis, fungal treated dye solution showed
10-folds increase in toxicity toward shoot and root growth of Lactuca sativa while
cause 100% death of Artemia salina larvae as compared to parent dye solution.
Therefore, the toxicity test should be taken into consideration after treatment of dye
contaminated water which can reduce the environmental risk.

8 Conclusion

Fungi have enormous potential for their application in bioremediation of wastewater.
This chapter discussed the application of fungi in dye decolorization process and the
role of cell surface functional groups, enzyme, proteins and genes in decoloriza-
tion process. Fungi in the decolorization of dye use biosorption and biodegradation
mechanism. On the surface of fungi, many types of functional groups are present
that are associated with biosorption of dye molecules. While, MnP, LiP and laccase
extracellularly secreted by fungi that play crucial role in dye degradation. Some
other enzymes including DCIP reductase, Azo-reductase and Bilirubin oxidase have
also been reported for their role in dye degradation. Several studies have suggested
that these enzymes are expressed by functional group of genes that play important
role in dye degradation. Transgenic fungi have shown enhanced dye degradation
potential that provide a new aspect in the field of dye decolorization by fungi and is
needed more research. Genetically modified microorganisms are expected to have
huge potential for future application.
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