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Abstract For centuries, dyes have been utilized in the tannery, textile, food, paper,
cosmetic, and plastic industries. As a consequence of the fast urbanization and indus-
trialization, the uncontrolled release of dyeing agents in the effluent is increasing.
Such a release causes toxicity andpollution to thewhole environment. These concerns
become more critical due to the biomagnification phenomenon through various
trophic levels resulting in severe toxicity in higher animals and plants including
aquatic flora and fauna. Mitigation of this nuisance can be achieved by the economic
application of biotechnology using safe biological agents to decolorize and degrade
the dye in water bodies.

In this chapter, we reviewed the toxicity and harmful effects of various dyes
along with different mechanisms and strategies of dye decolorization and degra-
dation by biological agents while giving ampule emphasis on the mesophilic type
bacteria. Further, the effect of different physicochemical parameters on dye removal
efficacy was explicitly discussed. Moreover, various techniques to investigate the
harmful toxic effects of the produced post degradation metabolites were also enlight-
ened. Thus, this present chapter will deliver a quintessential perception on the feasi-
bility of the bioremediation technique using mesophilic bacterial strains to treat dye
contaminated waste streams.
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1 Introduction

The rapid rate of industrialization, urbanization, and scientific developments has
accelerated the discharge of several unwanted pollutants in the biosphere beyond
safe permissible levels [55, 68, 90, 95]. Among these toxic chemicals, the dye is
a major visible contaminant whose presence is highly objectionable in the water
to be utilized for either domestic or industrial purposes [15, 36, 51]. The issue of
water pollution because of the discharge of untreated or partially treated dye polluted
effluent into natural aquatic bodies was initially observed in the nineteenth century
[44, 50, 51, 66]). Since the mid–nineteenth century, all colorants used for various
dyeing and printing purposes were of natural origin. Natural dyes were mostly safe
for the environment and degradable in nature as they are either plant-derived or
microorganism-derived. Sources of natural dyes include roots, bark, leaves, wood,
berries, lichens, shellfish, and fungi [50]. However, because of their low availability,
inefficient and expensive extraction process, there was an emerging requirement in
the nineteenth century for the manufacturing of a bulk quantity of cheap synthetic
pigments and dyes required in several textile industrial processes. As a consequence,
the synthetic dye industry evolved as a “frontier technology industry” of Victorian
times. English chemist, William Henry Perkin was acknowledged as the founder of
the first synthetic dye named as “Mauve” [16, 47]. Any dye molecule is comprised of
mainly two groups: (1) the chromophoric group, which is accountable for the visible
color and (2) the auxochrome group, responsible for the dye’s solubility in aqueous
phase and attraction towards the fiber materials.

Synthetic coloring agents are preferred over natural ones because of some
attributes including their higher stability toward detergent, surfactant, temperature,
microbial attack, and light, variation in color shades, firmness, easy and inexpen-
sive synthesis process [70]. Nowadays, synthetic colorants are extensively utilized
for leather dyeing, textile fiber dyeing, colored photography, food industry, paper
printing, and as additives in various petroleum-derived products. More than ten
thousand distinct pigments and dyes are being utilized in various industrial appli-
cations and their annual worldwide production is more than 0.7 MT [78]. Among
the total dye production, approximately 70% are produced in India, China, Taiwan,
Argentina, andKorea. In the complex industrialwaste streamhavingdifferent types of
colorants, dye wastes are predominantly found [2]. These dyes are generally carcino-
genic, teratogenic, andmutagenic in nature,whichmay induce chronic health hazards
to both organisms and human beings [80]. Henceforth, it is obligatory to separate
them from industrial wastewater before being discharged into terrestrial and aquatic
environments.

To address this intricate pollutant, various conventional physico-chemical treat-
ment methods are explored, which include flocculation, froth flotation, chem-
ical coagulation, irradiation, ozonation, precipitation, photooxidation, adsorption,
membrane filtration, ion exchange, and reverse osmosis [49, 87]. However, these
techniques become limited because of operational problems, cost-expensiveness,
and generation of a bulk quantity of secondary solid waste [49]. Moreover, due to the
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complex aromatic chemical structure, persistent, and recalcitrant nature, treatment of
dye contaminated effluent by conventional physico-chemical techniques is often not
so effective [56]. In this context, the biological treatment route for decolorization is a
promising, economic and environment-friendly alternative [5]. Several advantages of
bioremediation technology are low running cost, minimum operational difficulties,
on-site application, permanent waste elimination, minimum environmental impact,
and opportunity to be used in integration with other physico-chemical treatment
methods [10]. Through the biodegradation process, persistent pollutants are either
completely degraded or are transformed into less hazardous components. Biodegra-
dation involves the use of the biological agent for attaining at least one of the three
consequences which include (a) a small alteration in an organic molecule keeping
the primary chemical structure unchanged, (b) breaking of the multipart organic
molecules in such a manner that the resulted components can be reorganized for the
formulation of the initial molecule, and (c) complete mineralization.

Over the last decade, numerous bacteria, yeasts, fungi, algae, and actinomycetes
have been explored to bioremediate the hazardous dyes [75, 76]. Among these
microorganisms, mesophilic bacteria are mostly used as the biological agent for
biodegradationof dyes, because of their comparatively rapidmultiplication rate under
anaerobic, aerobic, facultative environmental conditions [18, 100]. The bioremedi-
ation of dyeing agents using mesophilic bacterial strains will be comprehensively
reviewed in the current manuscript concerning the mechanism of biodegradation and
parametric influence.

2 Types of Synthetic Dyes in Effluents

Dyes are usually categorized depending on their chemical moieties and applica-
tions. Basically, dyeing agents are comprised of two prime units (a) chromophores,
which are responsible for giving the specific color to any dye, and (b) auxochromes,
which complement the chromophores through intensification of color helping the
water-soluble dye molecules. These chromophores are various functional groups
such as carbonyl, azo, aril methane, methine, anthraquinone, nitro, etc. Moreover,
auxochromes are a group of atoms that do not have the ability to provide any color,
but when are present in addition to the chromophores as substituents, they either alter
or intensify the color of the chromophores. Some commonly utilized auxochromes
are sulfonate, amine, carboxyl, aldehyde, hydroxyl, and methyl mercaptan [28, 73,
89]. The dyes’ classification depending on chemical structure and applications is
highlighted in Table 1.
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Table 1 Categorical classification of dyes on the basis of chemical structure, dyeing process, and
applications

Type Structural unit Characteristics Applications Examples

Acid dyes Azo, nitro, nitroso,
triphenylmethane,
anthraquinone,
xanthene, and
azine

Anionic; aqueous
soluble

Dyeing of nylon,
wool, modified
acrylics, silk,
leather, paper
printing, inkjet
printing, cosmetics
manufacturing,
food industry, etc.

Methyl
orange, methyl
red,
congo red, orange
II, orange I

Azo dyes Azo Insoluble dyes are
synthesized in situ
in the fiber through
treatment with both
diazoic and
coupling
components

Used for dyeing
polyester, rayon,
cellulose acetate,
and cotton

Butter yellow,
Disperse orange
1, aniline yellow

Basic dyes Acridine,
diazahemicyanine,
cyanine,
diphenylmethane,
hemicyanine,
thiazine,
triarylmethane,
oxazine, and
xanthene

Cationic; water
soluble

Coloring of paper,
acrylic fiber, and
medicine

Amine yellow,
malachite green,
butter yellow,
methylene blue

Direct dyes Phthalocyanine,
polyazo, oxazine,
stilbene,

Dyeing is
performed at mild
alkaline bath by
adding sodium
salts

Coloring of cotton,
silk, rayon, wool,
nylon, leather,
paper. Also applied
for biological
staining and pH
indicators

Direct black,
congo red, violet
51

Disperse
dyes

Azo, nitro, styryl,
benzodifuranone,
and
anthraquinone

Non-ionic;
water-insoluble

Dyeing
hydrophobic fibers,
polyester, nylon,
cellulose acetate,
synthetic
polyamide,
polyacrylonitriles
fibers

Celliton fast pink
B, disperse blue
3, violet 1

Mordant
dyes

Azo and
anthraquinone

A mordant is
required

Applied for the
appearance of
black or navy
shades in silks and
wool

Alizarin

(continued)
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Table 1 (continued)

Type Structural unit Characteristics Applications Examples

Reactive
dyes

Anthraquinone,
azo,
phthalocyanine,
triarylmethane,
oxazine, formazan

A chromophore is
utilized for directly
reacting with
fiber substrate

Coloring of cotton,
wool, silk, nylon,
cellulose fibers at
ambient pH and
temperature in
home or art studio

Reactive red 120,
reactive green 19,
reactive violet 2,
brilliant blue

Sulfur dyes Sodium sulphide,
disulfide

Treatment of the
fibers in a solution
comprised of
sulfide
compounds and
organic compounds

Cost inexpensive
and are generally
utilized for dyeing
cotton to bring
dark shades

Sulfur green 12,
sulfur brown 12,
sulfur black 1

Vat Indigoids,
anthraquinone

Insoluble in nature.
It gets reduced in
alkaline
environment to
produce aqueous
soluble metal salts.
These salts will
subsequently bind
to the textile fiber.
Further, on
oxidation, they will
reform to the initial
insoluble dye

Used to bring
indigo color

Tyrian
purple, indigo
blue, indigo
white,
bezanthrone

3 Toxicity and Harmful Effects of Dyes

Discharge of bulk quantities of synthetic dyes in the effluent can cause severe toxicity
and aesthetic nuisance, which are the prime environmental concerns [78]. Improper
release of dyes enhances the biochemical oxygen demand (BOD) of the aqueous
system and limits the penetration of sunlight through the water surface that reduces
the photosynthetic activity followed by inhibition to the proper growth of photoau-
totrophic organisms. Again, the color of the effluent is inconvenient to the aquatic
organisms, retarding the oxygenation of the water. Moreover, the acute toxicity
imparted by these colored effluents completely disturbs the ecological balance of
the fauna and flora in aquatic bodies [94].

Synthetic dyes aremostly organic aromatic compounds, containing different func-
tional groups and heavy metals. Apart from imparting toxic effects, these dyes are
also mutagenic, carcinogenic, and teratogenic (because of which normal embryonic
development is disrupted) to the aquatic lives [1, 65]. The azo dyes embodied with
the substituent aromatic amines can cause a higher risk of chemosis, bladder cancer,
contact dermatitis, skin irritation, vomiting gastritis, vertigo, hypertension, perma-
nent blindness, exophthalmos, lacrimation, rhabdomyolysis, acute tubular necrosis
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supervene, respiratory distress [62]. Basic dyes are potent clastogens, which can
cause mutations, tumor growth, allergy, skin allergy, dermatitis, and also cancer
[79]. Cationic dyes may also induce a heart attack, shock, cyanosis, jaundice, tissue
necrosis, quadriplegia in human beings [60]. Moreover, heavy metals in the dye
can induce chronic toxicity, resulting in kidney failure, ulceration of the mucous
membranes and skin, etc. Thus, untreated or improperly treated dye polluted effluent
can introduce extreme environmental and health complications once consumed
through different food chains.

4 Mechanisms of Dye Biodegradation by Biological System

The major mechanisms of dye decolorization from effluent through bioremediation
route are (a) microbial biomass mediated adsorption (biosorption) and (b) inherent
microbial enzyme system-mediated biodegradation [43]. In the case of the firstmech-
anism, the adsorption of dyes can be done by either growing livemicrobial population
or by the dead microbial cells. Adsorption of dye using biomass primarily occurs by
ion exchange technique between the cell surface and the dye molecule [32, 64, 69].
When the effluent is carrying a relatively high amount of toxic pollutants or the envi-
ronmental conditions are not promising or for proper cellular growth of microbes
then the living microbial cells may not be much effective for dye degradation by
using their inherent enzyme system. In such scenario, previously cultured micro-
bial biomass can be applied to adsorb the dye by biosorption mechanism. On the
contrary, the second mechanism involving biodegradation of recalcitrant dyes relies
on the biotransformation enzymes present in various microbes, which are greatly
dependent on the adaptability of microbes with the toxicity of the effluent.

Microbes such as, bacteria, fungi, and algae have a cellulosic cellwall that provides
binding sites like carboxyl and hydroxyl groups essential for biosorption of dyes [93].
The dye molecules remain intact during biosorption, while during biodegradation,
the primary dye structure is fragmented with the reacting enzymes, often achieving
complete mineralization [71, 97]. Biosorption of dyes cannot eliminate the predica-
ment because the dye remains adsorbed into the microbial biomass matrix. Hence-
forth, biosorption is specifically beneficial for such cases where dye biorecovery is
a paramount concern. However, a combination of these two techniques (biomass-
mediated biosorption and enzymes mediated biodegradation) is often appropriate to
handle bulk quantities of dye-polluted industrial waste streams. Methods of bacte-
rial dye biodegradation are schematically represented in Fig. 1. Extensive diversity
of microorganisms which includes bacteria, algae, fungi, and yeasts are potent of
biodegrading/decolorizing different dyeing agents. The isolation of new compelling
microbial pure strains and understanding their dye degradation mechanism is an
emerging biological research field for dye-containing effluent treatment [13].

In the case of enzymes mediated biodegradation, the oxidoreductive enzymes
(reductive and oxidative) can generate reactive free radicals which can introduce
complex sequences of cleavage reactions. These enzymes are most effective, where
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Figure. 1 Methods of bacterial dye biodegradation

the presence of the target pollutant is maximum in terms of concentration compared
to other competitive pollutants [67]. Several oxidoreductive enzymes have been used
by the bacteria to decolorize and biodegrade dye molecules [76]. Azoreductase is
one of the prevalent reductive enzymes responsible for dye degradation. Similarly,
oxidative enzymes participating in dye biodegradation are tyrosinase, peroxidases,
and laccases [25, 42]. Azoreductases are responsible for carrying out the reduction
reaction of the chromophoric linkage (–N = N–) present in azo dyes which helps to
undertake the biodegradation of the dye and the formation of monochrome solutions
as highlighted in Fig. 2 [41].

The intermediate metabolites are also degraded further aerobically or anaero-
bically [62]. Another enzyme named riboflavin reductase has been found to have
the capacity to degrade the dyes by reducing various flavins [26, 76, 77]. The
enzyme laccases (phenol oxidase) is responsible for the cleavage of the O–O bond
of dioxygen to water. Peroxidases are heme-containing proteins capable of redox
conversion processes, highly effective in degrading anthraquinone, a redox synthetic
dye. Tyrosinase (monophenol monooxygenase) has the capability to degrade phenol
group by oxidation using molecular oxygen as oxidant [33]. Monophenols are first
converted to o-diphenols by hydroxylation and then o-diphenols are further oxidized
to o-quinones (as shown in Fig. 3). However, themajor concern here is the o-quinone,
which can inhibit tyrosinase activity and regulates the reaction [76].

5 Role of Mesophilic Bacteria in Dye Biodegradation

The studies on dye biodegradation are mainly focused on bacteria because they are
found to be more efficient and effective than other groups of microorganisms [45].



74 S. Bhattacharya et al.

Figure. 2 Bacterial enzymatic actions for azo dye degradation. Adopted from [82] under Creative
Commons Attribution License permitting unrestricted use and distribution

Figure. 3 Mechanism of tyrosinase activity to degrade monophenolic compounds

In comparison to the conventional chemical methods, bioremediation of dyes by
bacteria is a much more environment-friendly and cost-inexpensive technique [57].
Bacteria perform the degradation of dyemolecules after cleaving them into fragments
with various enzymes and thus achieving complete mineralization by producing
CO2, H2O, biomass along with other inorganics [48]. Bacterial species of Sphin-
gomonas xenophaga, Flexibacter filiformis, Agrobacterium tumefaciens, Alcaligenes
faecalis, Ralstonia eutropha, Proteus mirabilis, Hydrogenophaga palleronii, Pseu-
domonas aeruginosa, Escherichia coli, Lactobacillus plantarum, Bacillus subtilis,
Rhodococcus erythropolis, Bacillus licheniformis, and Serratia marcescens were
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found capable to reduce azo dyes. The majorities of these species is mesophilic type
bacteria and grow best in a moderate temperature ranging from 20 to 45 °C.

It was previously observed that the mesophilic bacterial strain Pseudomonas
aeruginosa was competent enough to biodegrade the Direct Orange 39 dye at a
concentration of 1,000 ppm/day [84]. Thermomonospora sp. and Streptomyces sp.
were able to decolorize Poly B-411, Poly R-478, and Remazol Brilliant Blue R dyes
(anthraquinonic). The Streptomyces sp. was also found promising in degradation
of benzene derivatives by catabolic pathways. Several Streptomycetes species can
also decolorize dyes such asOrange I, 3-methoxy-4-hydroxy-azobenzene-4′-sulfonic
acid, and 4 (3-methoxy-4-hydroxy-phenylazo)-azobenzene-3,4′-disulfonic acid [98].
Eskandari et al. [18] showed that microbial consortia consisting of mesophilic bacte-
rial genera such as Pseudoarthrobacter, Gordonia, Stenotrophomonas, and Sphin-
gomonas were effective in biodegradation of Reactive Black-5 azo dye [18]. Again,
[14] revealed that the yhdA gene of Bacillus subtilis can encode an oxidoreductase
dependent on flavinmononucleotide, which can induce cleavage of the –N=N− bond
present in the azo dyes with the aid of NADPH [14]. Highly promising decolorization
efficiency of 96.9–99.5% for Congo red (CR)was achieved byVitreoscilla sp., Acine-
tobacter lwoffii, Pseudomonas fluorescens, Escherichia coli, Bacillus thuringiensis,
Enterobacter asburiae Enterobacter. Ludwigii, and Enterobacter asburiae [31].

Xenophilus azovorans, Staphylococcus aureus, Acinetobacter calcoaceticus,
Bacillus sp. OY1-2, Escherichia coli, Enterococcus faecalis, Pigmentiphaga kullae
K24, and Rhodobacter sphaeroides were extensively explored for having azoreduc-
tase enzymes to carry out the biodegradation of azo dyes [9, 88]. Galactomyces
geotrichum MTCC 1360, Proteus vulgaris, Micrococcus glutamicus, and Bacillus
sp. have expressed riboflavin reductase activity for the degradation of Reactive Green
19A, Brilliant BlueG,NavyBlueGL,Mordant Yellow 10, and Scarlet R dye [20, 37].
Bacillus sp. and Acinetobacter calcoaceticus expressed Lignin peroxidase activity.
The phenol oxidase activity was found inMicrococcus glutamicus andPseudomonas
desmolyticum. Tyrosinase activity was observed in P. desmolyticum against Direct
Blue-6 dye [39].

6 Strategies of Bacterial Dye Degradation

Effluents containing a cluster of structurally complex dyes are toxic for most
aquatic organisms (flora and fauna) when discharged into the aquatic bodies mani-
festing anoxic conditions by reducing the dissolved oxygen concentrations. Several
mesophilic bacteria species like Aeromonas hydrophila, Bacillus cereus, Proteus
mirabilis, Bacillus subtilis, Pseudomonas sp., and Pseudomonas luteola have show-
cased promising dye degradation efficacy as a single strain [38]. However, it is often
tough to accomplish complete decolorization with a pure bacterial culture. Owing to
the cooperative approach of the mixed bacterial cultures (consortium), an enhanced
decolorization effect is often observed showing better result than single strains in
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decolorization and biodegradation of dyes [81]. However, it is difficult to inter-
pret the results of mesophilic consortium-based dye degradation because the mixed
bacterial cultures do not bestow the meticulous understanding of the dye metabolism
mechanisms and the experimental findings are often obscure to reproduce.

Itwas observed that the biodegradation rate of amesophilic bacterial consortium is
generally superior to a single bacterial strain due to versatile enzymes from multiple
bacterial strains that can attack the target dyemolecules at distinct positions or linkage
[29]. Moreover, the co-existing strains are often utilizing the metabolites produced
by the decomposition of the dye molecules and achieve complete mineralization
[22, 76]. However, isolation of new adaptable and formidable pure bacterial strains
with multiple dye degradation capability from the wastewater and environment is
very crucial for achieving greater biodegradation efficiency. It is an exciting research
opportunity for future industrial effluent treatment but it takes a prolonged time and
hard labor to isolate such pure cultures from textile wastewater.

Nowadays utilization of bacterial biofilms for effluent treatment is popular.
Biofilms are substantially organized surface-associated microbial cells that can be
comprised of both single andmultiple species of bacteria. The association of the cells
is mainly attributed to their self-produced extracellular polymeric substances rich in
cellulose, lipids, and polysaccharides [21, 30, 59]. Biofilms are highly resistant to
various environmental stress factors, including an extremely elevated concentration
of toxic contaminants, temperature, pH, and salinity than their planktonic single-
cell counterparts [21, 30]. Hence, dye degradation using biofilm-producing bacteria
such as Bacillus subtilis, Pseudomonas fluorescens, Acinetobacter lwoffii, Bacillus
thuringiensis, Enterobacter asburiae are a very lucrative technique for dye polluted
industrial effluent treatment [31, 54].

Numerous researches have revealed that a combination of an aerobic and an anaer-
obic system is a particularly reasonable approach for dye biodegradation [53]. It was
found that the aerobic process with agitation is appropriate for bacterial growth but
maximum dye decolorization/degradation is achieved in an anaerobic system [3,
89]. Under aerobic conditions, most mesophilic bacterial species are not compe-
tent to utilize the dye as a sole source of carbon. These bacteria generally require a
secondary carbon source for growth and survival. Aerobic bacteria have oxidoreduc-
tive enzymes that can disrupt the dye molecules asymmetrically or symmetrically
by deamination, desulfonation, and hydroxylation process. However, the enzyme
azoreductase has shown proficiency at anaerobic environment. Anaerobic degrada-
tion of different azo bonded colorants achievedwith facultative anaerobic and aerobic
microbes were narrated in several previous studies [19, 23, 58, 61, 99]. Most of these
microbial cultures are capable of growing in aerobic atmosphere although the degra-
dation process was accomplished only under complete anaerobic environment [38].
Adequate decolorization and removal of the recalcitrant dyes can be accomplished
in the anaerobic stage and the remaining auxiliary substrates may be mineralized
in a subsequent aerobic step. Thus, the integrated approach involving anaerobic
and subsequent aerobic treatment is predominantly proposed for degradation of dye
polluted effluents [83]. In combination treatment process color removal efficiency
varies from 75 to 96% [63].
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Utilization of anoxic conditions, where the concentration of dissolved oxygen is
lower than 0.5 ppm has also been found promising for the effective decolorization
of several colorants using both facultative anaerobic and aerobic bacteria. However,
this process requires other complex nutrient sources, which amplify the operating
cost [76]. Several types of bioreactor (batch and continuous mode) configurations
have been used for anaerobic systems using single/mixed bacterial species for dye-
containing effluent treatment [86]. These include upflow anaerobic baffled reac-
tors, anaerobic sludge blanket, trickle-bed reactor, rotating biological contactors,
and activated sludge process [6, 73].

7 Parametric Influence on the Dye Biodegradation

Several environmental and operational parameters, including dye concentration, the
structure of dye, pH, temperature, supplementation of different nitrogen and carbon
sources, oxygen, level of agitation, greatly influence the dye biodegradation perfor-
mance. For making the treatment process highly efficient, rapid and practically
feasible, prior optimization of each parameter for the bacterial remediation of dye is
necessary.

7.1 Effect of Dye Concentration

The dye degradation rate progressively declines with the enhancement in the dye
concentration probably because of the toxic effect of hazardous dyes to microbes
or/and deficient dye to microbial cells ratio, along with the obstruction of the enzyme
(azoreductase) at its active site by dye molecules [91, 92, 24]. Though, the toxicity to
microorganisms is primarily related to the concentration of dye and the type of dye.
Reactive and metal-complex dyes (such as Acid Black 172, Irgalan Black RBLN,
Irgalan Blue 3GL, Irgalan Grey GLN) are found to exhibit exaggerated toxicity on
bacterial bioremediation process [17, 52, 53].

7.2 Effect of Dye Structure

Dye possessing a simple chemical structure and less molecular weight exhibits
a higher decolorization rate. Moreover, the characteristics of substituents on the
aromatic ring present in the dye molecules have portrayed a significant impact on the
oxidation phenomenon. For instance, with the presence of electron-giving methoxy
and methyl substituents, the enzyme-mediated biodegradation of dyes is facilitated.
On the contrary, the presence of electron-receiver substituents (–SO3H, –SO2NH2,
fluoro, chloro, nitro) at the phenyl ring’s para position with reference to azo bondwill
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restrict oxidation process and reduce the dye removal rate [34, 85]. Moreover, the
susceptibility of azo bond for degradation is promoted if the substituent is present
at the para position of the phenyl ring compared to the ortho and meta positions
[34]. Additionally, in case of monoazo dyes, the dye degradation rate is faster than
diazo and triazo dyes [35]. Metal-ion-containing dyes may impose intricacy in the
biodegradation process, and eventually lowers the degradation efficacy [11].

7.3 Influence of Nitrogen and Carbon Sources

The dyes remainmostly inadequate in nitrogen and carbon sources, because of which
dye biodegradation without additional supplement of these nitrogen and carbon
sources is challenging. Single bacterium as well as consortium generally demands
either or both carbohydrates and multipart organic sources (yeast extract, peptone)
for effective degradation [45, 72]. Since among different carbon sources, glucose
is readily available and highly effective for microbial metabolism, its inclusion
enhances the efficiency of biodegradation [4]. Peptone, yeast extract, and urea are
good nitrogen sources from organic origin that can be supplemented to restore the
NADH, that plays the role of an electron donator to undertake the reduction of dyes
using microbial agents, and thereby higher dye degradation can be achieved [12].

7.4 Effect of pH

The pH level controls the transport of dyemolecules across themembrane ofmicroor-
ganisms’ cells. This is contemplated as the rate-controlling step of the degradation
process [7]. Microbial dye degradation rate is greater at optimized pH and follows
a declining trend at extreme alkaline or acidic pH 6–10 pH is optimum for bacterial
decolorization of dye [27, 46]. However, as most of the textile industrial processes
are undertaken at alkaline (high pH) conditions, the sustainability or tolerance of
mesophilic bacterial strains to high pH condition is recommended markedly.

7.5 Effect of Temperature

Temperature is another vital parameter for any processes related to microbial vitality
[8], including the remediation of dye polluted wastewater by mesophiles. Studies
related to microbial decolorization reported that the decolorization rate enhances
up to a certain optimum temperature range (25–40 °C). However, enhancing the
temperature beyond the optimumvaluewill drastically reduce the dye biodegradation
rate. This is probably attributed to the denaturation of azoreductase enzyme or the
damage of cellular integrity at extreme temperatures. In case of dye degradation at



Bioremediation of Dye Using Mesophilic Bacteria: Mechanism … 79

extremely high temperature, utilization of thermophilic bacterial strains shows better
performances compared to the mesophilic ones [74, 75].

7.6 Impact of Oxygen and Shaking

Thedegradationof dyeswasmore proficient under strict anaerobic conditions, though
it can also be performed in semi-anaerobic environment [96]. When dye degrada-
tion process is operated at anaerobic conditions, activities of reductive enzyme are
higher, which facilitates to break the complex dye structures. Dissolved oxygen
acts as an inhibiting agent to the reduction process of dye. This inhibition effect
of oxygen can be indirectly validated by comparing the efficacy of decolorization
process performed under shaking and static environment [40]. Inefficient decoloriza-
tion and degradation were evidenced at shaking/agitated environment, as improved
oxygenationwas provided through shaking. This indirectlymanifests that the oxygen
imposes inhibition effect to microbial-induced degradation mechanism.

8 Toxicity of Dye Degradation Products

In some particular cases, the degraded products of dyes are found hazardous, muta-
genic, and carcinogenic type. The anaerobic bacterial population present in the lower
gastrointestinal tract of mammals can reduce the ingested dye molecules. In the
intestinal tract, the reduction of azo dyes by anaerobic bacteria can generate acyloxy
amines as a dye degradation product, which is carcinogenic and often leads to bladder
cancer. The acyloxy amines are converted to carbonium and nitrenium ions that
can attach with RNA and DNA of somatic cells provoking the mutations to form
malignant tumors [47]. Several other moieties like benzidine, 1-amino-2-naphthol,
o-tolidine, and 1, 4-phenylenediamine are also harmful [43]. Similar compounds
may be generated during dye-contaminated effluent treatment and may cause toxic
health hazards to both plants and animals. Hence, it is advisable to inspect various
toxicity levels (Fig. 4) of the degraded dye products after bioremediation and before
effluent discharge.

9 Future Prospective

Accumulation of dye in wastewater creates environmental pollution and health-
related problems to plants and animal kingdom present in the biosphere. Biodegra-
dation of dyes present in effluents using diverse group of mesophilic bacterial strains
has evolved as a promising strategy. As environmental policies are becoming strin-
gent by the regulating authorities, a compelling requirement to develop ecofriendly,
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Figure. 4 Various types of toxicity assessment methods for the degraded dye products

cost-effective, and technically efficient treatment methods is paramount. Bioreme-
diation using single and mixed bacterial consortium are environmentally benign and
cost-effective strategy for the decolorization of effluents discharged by industrial
facilities.

Further improvement of the degradation potential of mesophilic bacteria may
be achieved through divulging them gradually to elevated concentration of dyeing
agents, where they will adapt and evolve. Also, genetic modification of mesophilic
bacteria is another interesting tool for improving the dye degradation potential.
Hence, research on the regulation of genes and proteins present in various bacteria and
the critical analysis of their effectsmay be further explored for selecting themicrobial
agent with greater biodegradation proficiencies. Presently, many esteemed labora-
tories worldwide including sophisticated laboratories in developing countries like
India are actively involved in the progressive research for better dye biodegradation
using various mesophilic bacterial strains.
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