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Abstract Water comprises an integral component of human life and its accessibility
is essential for all life in the entire planet. Due to climate changes and other man-
made activities, the world is facing shortage of drinking water. There are a number of
pollutants present in the water such as gases, chemicals and heavy metals. Therefore,
it is imperative to decontaminatewater for a healthy planet. There are numerous prob-
lems and challenges of wastewater treatment. For better ecological and health issues
somemeasures are required to take in advance to avert possible evil or to secure good
results. Metal-based nanomaterials have found exceptional use in the decontamina-
tion purpose due to their nature which arises from nanosize, such as better adsorption
and catalytic activity. Metal-based nanomaterials can productively remove different
contaminants from water and they have been effectively applied in decontamination
of water. Due to having larger surface area and having ability to work at low concen-
tration these metal-based nanomaterials are very efficient in wastewater treatment.
Nanoengineered nanoparticles impart a promising and effective treatment method
to wastewater and thus can be adapted simply. Modern techniques for treatment of
wastewater must be cost-effective and accessible for commercial use. In this chapter,
we outline the role ofmetal-based nanoparticles and nanocomposites applied inwater
decontamination.Moreover,we discuss the advantages, disadvantages, shortcomings
and future prospects associated with these nanomaterials.
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1 Introduction

Water is the basic component required for living being on earth. Safe and clean
water is vital for direct uses and improved and good health of people. Besides
water for drinking and other domestic uses, the second significant application of
water is irrigation. The productivity of agriculture largely depends on water and thus
indirectly affects food security of the population. There are other precious uses of
water apart from human direct consumption and food production.Water for washing,
cooking, sanitation and cleaning are essential preconditions for hygiene and health.
Hydropower generation and watering of livestock are other prolific applications.
Collectively, these principle applications of water infer that the abundance of water
in superior quality and smooth supply has a great influence on social development.
The change in climate conditions and increasing pollution are making water even
scarce, particularly in developing countries. Currently, FAO (Food and Agriculture
Organization) published that by 2025, fifty percent of the world will be living in
water-scarce area creating more demand to use wastewater directly or indirectly
(FAO, United Nations 2020). Table 1 presents types of water contaminants with
origins and their impacts on health and environment.

Water sources are diminishing gradually because of overuse and misuse. Most of
the normal sources of freshwater such as lakes, rivers, canals, reservoirs and rainwater
have been found to be pollutedwithmany types of precarious and poisonousmaterials
or organic waste from different industries, household waste or originated from the

Table 1 Types of water contaminants with origins and their impacts on human health and
environment

Water Contaminants Origin of Contaminants Impacts of contaminants

Sewage and contaminated
water [197]

Domestic wastewater Diarrhea, cholera, typhoid, etc.

Macroscopic pollutants [93] Marine debris Environmental pollution

Organic pollutants (Wang
et al. 2019)

Fungicides, detergents,
insecticides

Endangering aquatic life,
dysgenic

Radioactive contaminants
[24]

Different isotopic elements Carcinogenic, tooth decay,
damages bones and skin

Industrial contaminants
[131]

Municipal contaminants Induce air and water
Pollution

Pathogens [265] Germs Diarrhea, cholera, typhoid, etc.

Suspended solids and
sediments [206]

Land demolition, mining, land
cultivation, etc.

Endangering aquatic life such
as fishes, insects and affecting
fish spawning

Inorganic contaminants
[234]

Inorganic salts, Heavy metals,
Mineral acids, Trace elements

Damage to flora and fauna in
aquatic, public health issues

Agricultural contaminants
(Tang et al. 2016)

Chemicals used in farming Freshwater pollution
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various point [139, 165]. These contaminants are detrimental to the people and other
living beings and devastate the environment with permanent impacts [87, 204, 248].

Present wastewater control frameworks have generally been effectively examined
though there are plenty of impediments [42]. For example, there is wide interest in
developing advanced technologies to relieve toxicity and to ensure a secure living
environment for humans. In this condition, several methods have been utilized such
as chemical precipitation [112], electro-dialysis [83], reverse osmosis, ion exchange
[58], adsorption [103, 104, 119], solvent extraction [289] and ultrafiltration [6]. The
abovementioned technologies are expansive, inadequate and require a large amount
of chemicals. These conventional methods of water treatments are no longer produc-
tive to eliminate many of the contaminants found in water with a view to attain water
quality benchmarks. They regularly depend on a centralized framework, which the
distribution and discharge processes are not sustainable for present day’s require-
ments [191]. Upon this issue, nanotechnology could be used as an improved method
to treat wastewater due to the size of nanomaterials which have the bigger surface
area, high reactivity, fast kinetics; specificity to contaminants and, another advan-
tage is the cost of nanomaterials that are going to decrease [290]. It is assessed
that approximately 663 million people don’t have access to potable water, mainly in
developing countries (World Health Organization 2017). So, it becomes important to
ensure basic water treatment to these people, where water treatment often is not avail-
able. The removal of pollutants from contaminated water is essential to avoid harm
to public health and to the ecosystems [213]. On the aforementioned problems, the
present review pointed on the utilization of metal-based nanomaterials to upgrade the
standard of water with respect to the removal of metals, pathogens, salinity, oil and
discuss the antimicrobial activity and the possible risks that these nanomaterials can
affect the environment. Nanofiltration, nanoadsorbent, nano photocatalyst, disinfec-
tion and sensing with nanomaterials are the main techniques to treat wastewater by
nanotechnology. This chapter emphasizes the method in wastewater control system
with metal-based nanoparticle and attempts to point out the modern technology,
outlooks, advantages and disadvantages of this emerging field.

The developing field of nanotechnology offers potential advancements to decon-
taminatewaterwith cost-effective, improvedworking capability in removing contam-
inants and recycling capacity. Over the years, nanoparticles are effectively used in
several fields such as in medicinal science, photocatalysis, etc. Presently, as the
world confronting vital challenges of safe and clean water, scientists discovered
that nanomaterial is a way superior choice wastewater treatment since it has some
basic characteristics with greater surface area, nanosize, better reactivity [279], tough
mechanical criteria, good porousness, hydrophilicity, dispersity. Some organic and
inorganic contaminants, heavy metal like Hg, Cr, Pb, etc,. and numerous detrimental
pathogens are presented to be effectively removed by utilizing distinctive nano-
materials [64, 153, 265]. Currently, the wastewater decontamination processes are
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Fig. 1 Different categories of nanomaterials that are used for safe and sustainable water supply
(Reproduce with license from American Chemical Society, Copyright (2013))

progressing with the advancement occurring in nanomaterials such as nanoadsor-
bent, nano photocatalysts and some imprinted polymers. Moreover, we have recently
developed range of hybrid nanomaterials based on polymers-metal complexes, which
have potential applications in water treatment and pollutant removal [10, 115, 154–
160, 219]. In brief, the investigation on using nanomaterial in water treatment is
regarded to measure positive viewpoint [23, 160, 221]. Figure 1 presents several
types of nanomaterials applied in safe and sustainable water supply [191].

Nanomaterials are generally classified into different groups related to their
surface and physical characteristics. Nanomaterials include metallic nanoparticles
(Au & Ag nanoparticles), metal oxide nanoparticles (ZnO nanoparticles, Al2O3

nanoparticles, CeO2 nanoparticles and TiO2 nanoparticles), magnetic nanocom-
posites, nanocomposite with organic and inorganic supports, carbon nanoadsor-
bents, polymer nanoadsorbent. These nanomaterials are utilized as nanoadsorbent,
nanomembrane, nanocatalyst, disinfectant and nanosensor for wastewater treatment.
Thus, we have outlined the importance of metal-based nanomaterials for treating
wastewater to subdue the crises of fresh water problems in this chapter. A prospective
and substantial method with easy accessibility can be obtained by using metal-based
nanomaterials but a few flaws still require advanced consideration which is specif-
ically outlined in this chapter. Besides, we also point out the limits, benefits, draw-
backs and future prospects with relation to the metal-based nanoparticles. Moreover,
merits and demerits of the metal-based nanoparticles with their other diverse uses in
treatment of wastewater are shortly explained that can be beneficial to scientists for
designing new strategy.
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2 Categories of Metal-Based Nanoparticles in Water
Treatment

2.1 Nanoadsorbents

One of the important technologies to separate contaminants fromwater is the notable
adsorption method. Nanosorbents exhibit high and efficient adsorption capability
with extensive uses in decontamination and purification of wastewater. Here, the
nanoparticles absorb the contaminants in the water which can be separated from
water after reaching the equilibrium. The method of adsorption of contaminants
from wastewater is generally considered as a better process over other methods.
Adsorption technology of wastewater control systems is usually a better technique
over conventional methods. Due to its inexpensiveness, good performance, easy
operation, it has high ability to remediate wide variety of pollutants fromwater [123].
Nanosorbents possess great properties such as high sorption ability which gives the
nanosorbents more capability and more effectiveness for treating wastewater.

Nanoadsorbents have extraordinary ability for unique, more effective and quick
decontamination procedures with a view to separation of inorganic and organic
contaminants. Scientists are doing a great deal of work to prepare nanosorbents in a
bigger amount at commercial level as they are exceptionally uncommon in commer-
cial form. The field of nanotechnology is progressing by doing extensive research
in this area to resolve the issues in removing contaminant metals from water with a
view to find better nanoparticle combinations. In this method, titanium oxide, iron
oxide and aluminum oxide-based nanomaterials have shown promising characteris-
tics with cost-effectiveness and high adsorption property. Besides, nanoadsorbents
have high porousness and larger active surface area which make them capable of
removing different sizes of pollutants without discharging any toxic elements.

Adsorption method can be employed to extract the metal contaminants from
contaminated water of various sources. Pb, Hg, Cr, Cd, Co, Zn, As, Cu, Ni, etc.,
are the kind of major metal contaminants responsible for water pollution [105].
Current investigations reveal that the nanoparticles are highly efficient for compe-
tent removal of abovementioned metal contaminants from wastewater. Nowadays,
the nanomaterials of metals and metal oxides are widely utilized in decontamination
of water through adsorption process. Nanoadsorbents made from metal nanoparti-
cles are less expensive nanomaterials showing effective sorption quality. They are
frequently utilized for the treatment of water containing heavy metals. Among the
nanoadsorbents fabricated from metal nanoparticles, TiO2, Fe2O3, MnO2, MgO2

and Al2O3 are well investigated and were observed to remove the heavy metals from
wastewater very effectively. Metal oxide nanomaterials are regarded to be more
capable than the normal adsorbent due to their larger active surface area. There
are different points of interests related with metal oxide-based nanoadsorbents. The
simplicity of synthesis, lesser toxicity, higher active surface area for contact and
chemical stability impart the more distinctive properties to these metal oxides-based
nanoadsorbents and make them more lucrative than other adsorbents [199].
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Fig. 2 Magnatic nanoparticle permanently confined micelle arrays adsorbents for complex
emerging organic contaminants fromwastewater. Reproduce with license fromAmerican Chemical
Society, Copyright (2013)

The metal-based nanoadsorbents are prominent presently. Huang et al. showed
the significant interaction between magnetic nanoparticle permanently confined
micelle arrays (Mag-PCMAs) adsorbent and complex emerging organic contami-
nants (EOCs) which made magnetic nanoparticles efficient to be applied in complex
chemical environments, like wastewater treatment (Fig. 2) [100]. The nanocom-
posite of various materials such as silver/carbon, silver/polyalanine, carbon/titanium
oxide, etc., possessing tremendous significance with a view to remove the impact
of poisonous properties in the treatment process of wastewater. Metal/metal oxide
nanosorbents bear significant adsorption positions anddue to their large active surface
area they are the efficient materials for the contaminants by adsorbing methods.
Likely, organic contaminants and heavy metals from wastewater are effectively
removed by the polymeric nanoadsorbents [72]. For instance, with the help of
dendrimer-ultrafiltration systems, copper ions can be reduced [226]. They are easily
recovered at wide ranges of pH and exhibit biodegradability and non-toxicity. More-
over, dyes and other organic contaminants can be removedwith the efficiency of 99%
[182]. Zeolite is another vital nanoadsorbent where different nanomaterials such as
copper and silver ions could be implanted [76].

The magnetic nanosorbents have a significant and unique capacity in water treat-
ment to eliminate different organic contaminants from water. Nanoadsorbent for
magnetic separation with particular affinity to contaminants was synthesized through
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ligands coating with magnetic nanoparticles [183]. Individual or combined metals
can be utilized for the effluent treatment depending on the nature of pollutants. Iron
oxides can be simply prepared and modified as the availability of iron is high on
earth. The super magnetism and large surface to volume ratio of iron oxide give it
the rank of a very good adsorbent with lesser toxicity, chemical inertness. These
distinguished criteria of nanoadsorbents create a very fine option for the treatment
of wastewater. Magnetic nanosorbents are also conducive in treating wastewater
and are tested as very promising tools especially for organic contaminants elimina-
tion. Various procedures like cleaning agents, magnetic forces, ion exchangers are
applied to eliminate nanoparticles from the system to prevent unwanted pernicious-
ness. Recovered nanosorbents could be a better option for commercialization due to
their cost-effectiveness. The surface interaction of magnetic nanoparticles and their
aggregation can be restrained by using non-ionic, amphoteric, cationic or anionic
surfactants [84]. Different forms of iron oxides that have been studied greatly having
the capability to act as nanoadsorbents include maghemite (γ-Fe2O3), hematite (α-
Fe2O3) and magnetite (Fe2O3), goethite (α-FeOOH), Iron oxide (FexOy), etc. [17,
39]. The magnetic properties of Fe2O3 nano adsorbent cause the separation process
to be very simple from the dilute or even from viscous solutions. The removal of
heavy metals like Cr6+ and Pb2+ were carried out efficiently where the protonation
or deprotonation of magnetite surface hydroxyl group followed by water loss causes
Cr6+ and Pb2+ adsorption. Likewise, different types of nano-structured wastewater
metal adsorbents have been noted with various characteristics such as ZrO2, TiO2,
CuO, MgO, etc. [109, 241].

2.2 Nanomembranes

Membrane technology is one of the most substantial developed techniques in the
water treatment process. There is a broad range of newmembranematerials applied to
process water for reuse. For example, ceramic and polymericmembranes are familiar
in the water treatment process. Presently, the applications of membrane technology
are risingdue to development of thismethod that hasmade themmore accessible, flex-
ible and effective. Accordingly, the water treatment industry is witnessing a flourish
worldwide for all those factors. The membrane-based on nanofilter is the relatively
modern technology in the treatment of wastewater. Nanomembrane removes the ions
through ultrafiltration electrical effects following the reverse osmosis ion interaction
mechanism as well as combination of ions. Novel properties of nanomembrane make
it capable of selectively removing pollutants from the system. The improvement of
nanomembrane innovation in recent years makes it for multiple use such as in phar-
maceutical industry, demineralization in the dairy industry, bleaching in the textile
industry,metal recovery fromwastewater. Nanofiltrationmembrane is one of the suit-
able methods to treat organic and inorganic contaminants in surface water. Nanofil-
tration is more credible in treating surface water due to its low pressure activity as
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Fig. 3 Silver nanoparticles encapsulated ultrafiltrationmembranes forwater treatment. (Reproduce
with license from American Chemical Society, Copyright (2011))

surface water has low osmotic pressure [31]. Application of reverse osmosis methods
is a normal procedure to make the water drinkable by filtering process.

Nanometal-based membranes are utilized to eliminate industrial contaminants
from wastewater. The merits of nanometal membrane-based wastewater treat-
ment are its easy operation, greater efficacy and low space demands. Moreover,
by employing proper chemicals and nanoparticles the filtration capability can be
improved [297]. Nanomembranes can be prepared with diversified characteristics
of antimicrobial, anti-fouling, improved permeability, photocatalytic activity and
selectivity on the basis of applications [168]. Ultrafiltration membrane shows evalu-
ative treatment process in improved wastewater treatment. Figure 3 shows the ultra-
filtration membrane where silver nanoparticles are encased in positively charged
polyethyleneimine which provides an effective way of water treatment [150].

Multilayered inorganic—organic hybrid membranes using metallic molybdenum
disulfide (MoS2) as two-dimensional transitionmetal dichalcogenide nanosheets and
one-dimensional silk nanofibrils were utilized for water purification [295]. Because
of its possessing of negatively charged layers and interaction sites, the hybrid film
could adsorb metal ions and dyes from water (Fig. 4). The separation performance
can be tuned by changing the component ratios of these two nanomaterials. During
filtration, due to the reducing effect of the MoS2 nanosheets, precious metal ions
are reduced to their nanoparticle form without any further thermal or chemical treat-
ments. In addition to the one-step removal and recovery of metal ions, the hybrid
membranes exhibit excellent potential for the determination and removal of different
dyes from water.
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Fig. 4 Fabrication process of the mixed-dimensional MoS2 silk nanofibrils hybrid membrane and
the water purification mechanisms. a Scheme of the fabrication steps of the hybrid membrane. b
Mechanism for the removal of contaminants from water. (Reproduced with license from American
Chemical Society, Copyright (2020))

Nanofibers are one of the first species of membrane filters. They are porous and
have high surface area with high interlinkage and can be prepared by a simple elec-
trospun method. Nanofibers prepared by electrospinning with the combination of
high surface area nanomaterials have shown efficiency in adsorption of pollutants.
For instance, trace amounts of arsenite can be effectively removed by chitosan elec-
trospun nanofiber which is manufactured by crosslinking ammonia vapor with the
mixtures of Fe3+ and chitosan, poly (ethylene oxide) [152].

2.3 Nanophotocatalyst

Photocatalytic technologies have drawn most concentration for water pollution
management. Photocatalysis is observed as a more efficient method for the purifi-
cation of water purification which subdues the environmental pollution. The basic
fundamental of photocatalyst is that the catalyst oxidizes the pollutants in water by
utilizing radiation from sunlight. Metal oxide-based nanophotocatalysts are the vital
candidate for the rectification of environmental pollution through recent application
of it in water decontamination. In this method, electron-hole pairs are produced by
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irradiation of nanophotocatalyst. These photoelectrons create holes by jumping from
the valence band to the conduction band.

A good photocatalyst absorbs visible or near ultraviolet more efficiently. For
the prevention of the recombination of electron-hole pairs adequate electron vacant
states are required. Nanophotocatalysts should be biologically inactive and nonpoi-
sonousdue to their ongoing extensiveuses inmicrobiological and agricultural sectors.
Nano photocatalysts prepared from semiconductors of metal oxide like TiO2, WO3,
Zn2SnO4, ZnO have shown high efficiency in removing biological and chemical
contaminants [21]. Comprehensive studies in the past decades on uses of nanopho-
tocatalysts for the treatment of municipal water were reported in previous literature
[145, 214]. A great deal of research work was done to alleviate the detrimental
impact of chemical pollutants from wastewater by utilizing nanoparticles photocat-
alysts such as titanium oxide and zinc oxide [92]. Nanophotocatalysts of activated
carbon-supported nano-FeOOH (FeOOH/AC) were synthesized with the help of
air oxidation of ferrous hydroxide suspension method [288]. FeOOH/AC hetero-
geneous nanophotocatalyst owns remarkable adsorption capacity and the oxidation
of amaranth happens through the homogeneous and heterogeneous in bulk solution
and on catalyst/solution interface, respectively, because of releasing of iron from the
nano-FeOOH (Fig. 5).

Ternary oxide zinc stannate is drawing concentration from researchers as viable
photocatalyst [97, 195]. Due to improved photocatalytic activity and non-toxicity,
TiO2 nanophotocatalysts are observed to show the effective and prominent activi-
ties for photodegradation dyes from contaminated water. The demerits of TiO2 as

Fig. 5 Effective adsorptibility and Fenton oxidation with the combination heteroge-
neous/homogeneous process of amaranth utilizing supported nano-FeOOH. Reproduce with license
from American Chemical Society, Copyright (2012)
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Fig. 6 Reduced Graphene
Oxide/TiO2 for the Effective
Photocatalytic Oxidation of
Arsenite. Reproduce with
license from [163].
American Chemical Society,
Copyright (2014)

a photocatalysts is low quantum efficiency in visible regions, decreasing photo-
catalytic ability on account of wide band gap and quick recombination of charge
carriers. Several studies have been noted depicting the antimicrobial activity of TiO2

nanophotocatalysts against various waterborne pathogens including protozoans and
bacteria [86]. Photocatalytic activity of TiO2 has also been investigated utilizing
the TiO2 mediated photodegradation of Rhodamine B dye and bromoethane [111].
Cyanobacteria have an immense toxic effect on human health. Lawton et al. showed
themechanism of TiO2 mediatedmineralization of cyanobacterial hepatotoxin [124].
The reduced graphene oxide hybridized with TiO2 was prepared as a cost-effective
catalyst compared with Pt/TiO2 and found to show improved activity for the photo-
catalytic oxidation of As(III) [163]. The photocatalytic activity and arsenic oxidation
mechanism observed with reduced graphene oxide implanted TiO2 are almost the
same activities shown by Pt/TiO2 (Fig. 6). The nanocomposite of reduced graphene
oxide/TiO2 can be considered as a useful environmental photocatalyst for pretreating
the water polluted with As(III).

ZnO nanoparticles also displayed photocatalytic activity by creating hole-electron
pair [27]. ZnO-NPshaveprominent photocatalytic activity for eliminationof different
organic contaminants having their high binding energy and broad band energy,
powerful oxidation capability and high active surface area [256]. Silver nanopar-
ticles are noted to show antimicrobial activity against waterborne pathogens [71].
Mpenyana-Monyatsi fabricated Ag NPs coated filters and showed the efficiency of
the elimination of microbes from water with 100% effectivity [166]. Photocatalytic
degradation based on the heterogeneous semiconductors is one of the safest simple
and cost-effective techniques for dyes and organic compounds removal from water
polluted by industries and residences [68, 118, 152, 169]. Various metal oxides NPs
like ZnO, CuO and TiO2, etc., are being used for photodegradation of organic dyes
[232, 233, 239]. This process assists to remove contaminants such as pathogens,
organic dyes and micro pollutants, etc. [192, 273]. For instance, a hetero struc-
tured nanocomposite BiVO4/CH3COO was synthesized for the degradation of the
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organic contaminations from water by photocatalytic activity [293]. TiO2 effectively
eliminates toxic chemical tartrazine from water utilizing its photocatalytic activity
[82]. Polyaniline/ZnO nanocomposites show improved degrading capability toward
colored dye through producing enough electrons at the conduction band of zinc oxide
semiconductor [215]. Different nanocomposites of zinc oxide or the compounds of
zinc oxidewithmaterials have been observed to degrade the contaminants in wastew-
ater very effectively [198]. In a similar way, filtration technology could be developed
by integrating photocatalytic characteristics of a photocatalyst[138].

2.4 Disinfection

Nearly all of the sources of potable water have been observed to be polluted with
various poisonous materials and pathogenic microorganisms. The World Health
Organization (WHO) reported that approximately 12 million people die every year
fromwaterborne illness. 90% of all diseases resulting from impure water were found
in developing countries. The global disease infecting people with the use of impure
water is nearly 4 billion. The responsible microorganism in water which causes
diseases to people is known as pathogen. Different technologies are applied to treat
the pathogen in water. Deactivation of pathogens is generally known as disinfection.
Presently, the disinfection of drinking water is carried out by chemical or physical
method. Various techniques are used to disinfect water such as UV treatment, chlo-
rination and ozonation. The well-accepted method of disinfection by chlorination
has some limitations. The excess chlorine beyond the permissible level is toxic and
may be responsible for bladder or colorectal cancer. Chemical treatment of water
by antibacterial disinfectants like triclosan and triclocarban may cause hormone-
disrupting effects. In the presence of natural organic matter, ozone can form non-
halogenated organic disinfection by-products such as aldehydes, ketone, carboxylic
acids. The effect ofUV treatment is temporary andwater can be infected by pathogens
if the water is stored for a long time. These traditional water disinfection methods
have definite limitations to apply at large scale.

Nanotechnology in water purification shows huge potential to decontaminate
water [20, 22, 22]. This is a viable way to remove the pathogens from wastewater. In
the present condition, nanomaterials can be utilized to eliminate microbes more effi-
ciently. The nanomaterials accommodate different processes to kill the organisms.
These nanomaterials may connect the organisms specifically through hindering the
electron transfer to transmembrane, destroying cell enclosure or by producing reac-
tive oxygen species they can damage cell walls [129]. Various nanoparticles with
antimicrobial inherent were reported with action against organisms [129, 246]. A
biomass-based renewable film with good mechanical strength and porous network
structure was facilely fabricated via Fe (III) crosslinking inducedwith collagen fibers
and gallic acid-protected silver nanoparticles self-assembly (Fig. 7) [132]. This film
exhibited both excellent bacterial anti-adhesive and bactericidal activities, which
effectively prevented biofouling during the filtration process, due to the anionic
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Fig. 7 Point-of-use water disinfection by a cost-effective porous renewable film incorporated with
silver nanoparticle. Reproduce with license from American Chemical Society, Copyright (2020)

gallic acid-protected silver nanoparticles. As bactericidal filter driven by gravity, 1
L natural water sample was treated by the film in 20 min, and the water quality is
in full compliance with the drinking water guidelines of WHO, demonstrating the
potential application of the proposed filter in point-of-use water disinfection.

TiO2 produces hydroxyl free radicals and forms peroxide with photocatalytic
activity which is responsible for antimicrobial properties of its [129]. TiO2 with the
incorporation of other nanomaterials displays enhanced antimicrobial photocatalytic
properties [47, 110]. The nanoparticles of zinc oxide exhibit notable antimicrobial
properties against waterborne pathogens, and hence they are utilized to purify the
wastewater [51]. Salemet al.made a comparison of the antimicrobial properties ofAg
nanoparticles and Zn nanoparticles toward V. cholerae and enterotoxin E. coli [56].
Iron nanoparticles also exhibit antimicrobial activities by eliminating Entamoeba
histolytica cysts from water [231]. For centuries, silver has been considered a well-
known antibacterial material. The release of silver ions efficiently destroys the cell
envelope and retards theDNAreplication [191].Nanofiltration techniques are another
method to remove the microbes by filtration [218].

As waterborne disease causes serious health effects to humans, the disinfection
technology is drawing more attention recently. Titanium dioxide with its environ-
mental friendliness behavior was exhibited to be prepared as antimicrobial agents
in more recent studies. The investigations showed that TiO2 improves the capa-
bility of disinfection through the deactivation organisms such as Escherichia coli,
Staphylococcus Aureus, etc. Nano-WO3 synthesized by sol–gel method displayed
enhanced capability for the disinfection of E.coli in water [79]. Copper displays high
antimicrobial activity with attractive cost and low toxicity. Moreover, it has been
reported that Cu2O showed more activity toward bacteria than silver and CuO [251].
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Deng et al. reported that copper graphene sponge can be used for water purifica-
tion more efficiently through inactivation of bacteria [48]. Bactericidal activity of
gold nanoparticles is scarcely reported for gram-negative or gram-positive bacteria
[13, 106]. Contrarily, gold NPs display fungicidal activity [7, 106]. Platinum NPs
can destroy cell walls and can release cytosolic proteins bacteria and fungi [16].
PalladiumNPs show better antimicrobial activity toward gram-positive bacteria than
gram-negative bacteria, and exhibit size-dependent antimicrobial properties [2].

2.5 Sensing

The detection of pathogens is essential because of their precarious impact on human
health. The traditional sensing methods are steady and incapable of monitoring
the existence of harmful viruses and pathogens such as helicobacter, legionella,
norwalk viruses, echoviruses, hepatitis A. Most of these microbes are biological
operant in the rise of contamination in drinking water. Water sterilization process
depends on pathogen recognition. There is great progress in research to develop
nanomaterial-enabled nanosensors. Present studies are concentrating on the improve-
ment of three principal parts of nanosensor: (i) nanomaterials (ii) recognition mate-
rials and iii) signal transduction mechanism. The recognition materials selectively
interact with pathogens. Rapid feedback and selectivity are obtained by using nano-
materials. Nanomaterials intensify the detection speed and sensing capability to
perform multiple target identification with their novel optical, electrochemical and
magnetic characteristics. Nanosensors may be used for the detection of biomolecules
cells.

A numerous research has been done on the appropriate design and application
of nanosensors [19, 35, 60, 61, 73, 172, 271]. These nanosensors can be utilized
in the central distribution system, at the location of point-of-use or in the water
treatment plant. The monitoring of sensing may be online to determine the quality
of water during flow through or may be offline by collecting water samples at
different points. Nanosensors aremore capable than traditional water quality sensors.
Nanosensor rapidly and reversibly measures the analyte whereas nanoprobe selec-
tively determines pathogens with great sensing capability in an irreversible way.
[207].

Awide variety of nanosensorswas reported to show the capability of identification
of pathogens, toxin and pH inwater [35, 66, 207, 266, 268].Apercolationmethodwas
reported to inactivate pathogens through silver nanoparticles containing paper sheets.
Here, on blotting paper sheets of cellulose fibers, silver nanoparticles were accumu-
lated [46] (Fig. 8). The silver nanoparticles sheets showed remarkable antimicrobial
properties toward enterococcus faecalis and Escherichia coli with high reducing
ability. This outcome of deactivation of pathogens through silver nanoparticle sheets
is encouraging enough to utilize it in emergency water treatment.

A direct intrinsic signal from the analyte can be acquired by nanosensor
or by employing high quality recognition elements that are bound to analyte.
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Fig. 8 Blotting paper implanted with Ag nanoparticles for point-of-use treatment of water.
Reproduced with license from American Chemical Society, Copyright (2011)

Figure 9 depicts the sensing of environmental analytes by nanosensor architec-
tures. A simple approach to effective detection of bacteria S. aureus through surface-
enhancedRaman-scatteringwith the synthesized gold-coatedmagnetic nanoparticles
core/shell nanocomposites [272].

Ng et al. reported the recent development of fluorescent nanosensors such as
metal nanoparticles [174]. Strong electromagnetic field is generated on the nanopar-
ticle surface when silver or gold nanosensors are excited by light [278]. Magnetic
nanomaterials are capable of identifying magnetically isolated analytes as they are
highly responsive to external magnetic fields [122]. The detection of influenza
A and Mycobacterium was carried out through changing the electrical resistance
of magnetic nanoparticle-labeled analytes by magnetoresistance sensors [121].
Quantum dots are promising as fluorescent nanosensors which have larger band
gaps and narrow fluorescent spectra have been detected through one excitation light
source [268]. The Internet of things can be connected to the system of nanosensors
used in distribution systems to ensure quality, stability and degrability of nanosensors
[151].
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Fig. 9 Schematic illustration of the operating procedures for bacteria detection via a surface-
enhancedRaman-Scatteringmethod. Reprinted fromwith license fromAmericanChemical Society,
Copyright (2016)

3 Metal and Metal Oxide Nanoparticles Used in Water
Treatment

3.1 Metal Nanoparticles

Nanometals can be used in water purification with high efficiency. There are various
forms of nanometals utilized in wastewater treatment for instance nanostructures,
cationic forms and inert or active substances supported form. Silver nanoparticles
have been reported to be applied to adsorb Cr(II) and Pb(II) as suspended free
nanoparticles in the system [12]. Copper nanoparticles were used as antibiofouling,
antioxidant and antibacterial agents for wastewater treatment [36]. Those nanoparti-
cles showed efficiency in inactivation of pathogens, inhibition of lipid oxidation and
biofilm formation and scavenging free radicals. Citrate-supported silver nanopar-
ticles were used for degradation of organic pesticides chlorpyrifos [30] (Fig. 10).
Octahedral palladium nanoparticles were used for reduction of bromate in municipal
water treatment [276]. The supported nano metals have various advantages. Support
helps to prevent aggregation of nanoparticles and separate nanoparticles from water
after treatment which may be responsible for self toxicity [30, 276]. For synthesis
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Fig. 10 Representation of degradation of chlorpyrifos on silver nanoparticles. Reprinted with
license from American Chemical Society, Copyright (2012)

and stabilization of nano metals, different chemicals are utilized. For instance, to get
the reductive and stabilized form of silver nanoparticles, chitosan and polyethylene
glycol are used in synthesis [269]. The easiest approach to eliminate harmful contam-
inants from water is various physicochemical processes such as adsorption, filtration
or cuagulation. For instance, silver and iron nanoparticles effectively remove Pb(II),
Cr(II) and Cr(VI) ions from aqueous solutions by the physicochemical technique
[148].

Ag nanoparticles can effectively remove Hg(III) from aqueous solution [63, 164].
Ag nanoparticles display improved activity due to their decreasing reduction poten-
tial with the decrease of particle size [188]. Au nanoparticles with aluminum support
could be applied to removeHg(II) effectively fromwastewater. Jiménez et al. reported
citrate-coated Au nanoparticles for treating Hg(II) in water [178]. Here, Hg (II) was
converted to Hg (0) by weak citrated ions reducing agent without application of
NaBH4. The concentration of Hg(II) was reported to decrease from 65 to 5 ppb
(Fig. 11). Other noble metal nanoparticles like palladium and ruthenium nanopar-
ticles exhibit effective antimicrobial agents for gram-positive bacteria and display
size-dependent antimicrobial activity [2].
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Fig. 11 Hg(II) removal from river water by citrate coated Au nanoparticles. a Precipitation image
after treatment of Hg(II) with Au nanoparticles (efficiency 40%) b Zoomed image of precipitation
taken with optical microscope. Reprinted from with license from American Chemical Society,
Copyright (2012)

3.2 Zero-Valent Metal Nanoparticles

Wastewater treatment process is greatly advanced through using zero-valent metal
nanoparticles. They were found to show excellent antimicrobial ability, degrada-
tion ability as well as high removal ability of heavy metal from wastewater. Zero-
valent iron was well studied for the elimination of heavy metals and for deactivating
pathogens from wastewater. Zero-valent iron (nZVI) nanoparticles consist of Fe (0)
and Fe2O3 coating [177]. It is applied widely to treat heavy metals like Cr (VI),
Hg (II), Cu (II), Ni (II), etc. [133, 222]. Principally, Fe (0) produces the reduction
ability whereas the Fe2O3 coating creates the active position to attract heavy metals
through electrostatic attraction.Moreover, the shape of nZVI could be easilymanage-
able and huge reactive sites could be created on the surface of nZVI [43]. The high
reducing ability and high active surface area impart the nZVI higher performance for
the removal of heavy metals from contaminated water [98]. Furthermore, nZVI has
been displayed to have a promising bactericidal effect and toxicity toward pathogens
[49, 125].

The high efficiency and versatility of nZVI have made it perfect technology for
practical utilization in wastewater treatment. Nano zero-valent iron can also be
applied for improving the quality of groundwater contaminated with perchlorates
and chlorinated hydrocarbons. nZVI is more reactive than conventional iron because
of its high active surface. On the other hand, the lifetime of nZVI is very low due to
its high reactivity characteristic. As a result, more research on surface modification
of nZVI is necessary to make it stable [15, 94]. Zhang et al. deposited synthesized
nZVI particles on the surface of biomass activated carbon and applied to remove 98%
methyl orange from water [287]. nZVI has been efficiently used to treat the wastew-
ater and groundwater with arsenic [173], chlorinated hydrocarbons [53, 247], heavy
metals [190, 292], nitroaromatic [285], phenol [220], heavymetals [190, 292], nitrate
[102], dyes [229] and phenol [220].
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Application of nZVI for the treatment of wastewater has some drawbacks because
of its instability, quick aggregating and problematic separation process. To resolve
these disadvantages, nZVI could be supported by zeolite, bentonite, resin, etc. Depo-
sition of nZVI nanoparticles on supporting materials for the elimination of contam-
inants makes the procedure easy and also enhances the reduction ability. The reac-
tivity of ZVI could be improved by depositing a thin film of any other metals like
Ni, Pt, or Pd on iron as principal metal which could efficiently remove chlorinated
hydrocarbons from wastewater. For instance, Xu et al. synthesized novel Ni–Fe
bimetal for effective removal of 4-chlorophenol with enhanced catalytic hydrogena-
tion [280]. Another Pd/Fe bimetallic system shows very effective removal of tetra-
bromobisphenol A, 2,4-dichlorophenol and polychlorinated biphenyls and displays
better dechlorination that than normal nZVI [98]. In addition, deposition of Pd on
nZVI decreases the release of toxic intermediate on nZVI’s surface [40]. The translo-
cations and transformations of contaminants such as arsenic species at and within
the nZVI particle are distinctly depicted in Fig. 12 [283].

Despite a lot of research on decontamination of wastewater by nZVI, zero-valent
zinc (nZVZ) has been found as an alternative. nZVZ nanoparticles were shown to
degrade dioxin excellently [29]. The reducing ability of Zn is higher than Fe. Thus
it is clear that the power of contaminant degradation of nZVZ particles will be
higher than nZVI particles. It is reported that degradation of CCl4 happened more
quickly by nZVZ compared to nZVI [261]. Moreover, an investigation was done
for the comparison of degradation ability toward halogenated hydrocarbons in water
with nZVI, nZVZ, nano zero-valent aluminum (nZVAl), nano zero-valent nickel
(nZVN) nanoparticles. The study showed that only nZVZ was capable of degrading
octachlorodibenzo-p-dioxin effectively into less chlorine concentrated materials

Fig. 12 The translocations and transformations of contaminants such as arsenic species at and
within the nZVI particle. Reprinted with permission from American Chemical Society, Copyright
(2012)
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[29]. Though nZVZ efficiently degrades halogenated hydrocarbons, treatment of
other contaminants with nZVZ was not reported a lot yet [261].

3.3 Iron Oxides Nanoparticles

The use of iron oxide nanoparticles inwastewater treatment is remarkably increasing.
There has been rising attention on the application of iron oxide-based nanoparticles
for the removal of heavy metals and remediation of wastewater in recent years [11,
212]. Due to the higher abundance of iron on earth and simple synthesis method of
iron oxide-based nanoparticles, extensive research has been done on it. The challenge
of using nanoparticles inwater treatment is their recovery and separation from treated
water. But, with the help of external magnetic fields, most of the iron nanoparticles
can be separated. As a result, iron oxide nanoparticles could be efficiently employed
to remove heavymetal from contaminatedwater and could thus be separated success-
fully from the systems [127, 175, 257]. Goethite (α-FeOOH) is studied a lot where
it is manifested that they are competitive adsorbent of heavy metals owing to their
cost-effectiveness, good adsorption capability and environmental friendliness [149].
Goethite was reported to be synthesized from ferrous and ferric salts to remove
uranium from water [250].

Nanoscale α-FeOOH shows photocatalytic activity and good adsorption quality
toward heavy metals [39]. For the present, nanoscale α-FeOOH has shown high
adsorption capability toward heavy metals [70, 128]. The most stable and corrosion
resistance form of iron oxide is hematite (α-Fe2O3) [255]. Hematite nanoparticles
have been shown very effective to adsorb heavy metals such as Cr (VI) [3, 7, 50].
The high adsorption capacity of nanoscale α-Fe2O3 toward heavy metals has been
reported [228].Very recent, superparamagneticα-Fe2O3 nanoparticleswere prepared
and shown 100% removal efficiency of Mg (II), Al (III), and Mn (II) and 80% of
Ni (II) and Zn (II) from acid mine drainage [113]. It proves α-Fe2O as an excellent
nanoparticle to treat wastewater for its low toxicity, high stability and high adsorption
capability.

Maghemite (γ-Fe2O3) nanoparticles have been widely studied to remove heavy
metals fromwastewater [59]. There are many advantages to utilize γ-Fe2O3 nanopar-
ticles in wastewater treatment. γ-Fe2O3 nanoparticles have a high active surface and
high adsorption capacity toward heavy metal and it can be separated from the system
just by applying an external magnetic field. Furthermore, the preparation of γ-Fe2O3

nanoparticles is easy and they behave environmentally [263]. γ-Fe2O3 nanoparti-
cles of particle size 14 nm synthesized by single-step method were applied to heavy
metals from wastewater [9]. Superparamagnetic γ-Fe2O3 nanoparticles with tunable
morphology were prepared by utilizing a flame spray pyrolysis approach and applied
to remove Cu(II) and Pb(II) from wastewater [200]. Magnetite-based nanoparticles
are extensively applied as nanoadsorbent because of their simple preparation, easy
use, cost-effectiveness, friendly behavior to the environment and easy separation
from systems [146, 223, 277]. Fe3O4 nanoparticles are generally altered on surface
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by –SH [179], –NH2 [258], –COOH [227]. Pan et al. studied adsorption of Cr(IV)
on engineered iron oxide nanoparticles [180] (Fig. 13). Damino activated Fe3O4

nanoparticles were prepared through utilizing one-pot synthesis method and applied
to test the adsorption capacity toward Cr (VI) and Ni (II) [176].

Core–shell structure of Fe3O4 nanoparticles have been prepared by utilizing
various coating materials such as sodium dodecyl sulfate [4], tannic acid [18], silica
[141], oleate [143], p-nitro aniline [140], polyethylene glycol [210], chitosan[194],
etc., and used for the treatment of heavy metals in wastewater. For instance, a core–
shell structure magnetite NPs was prepared by spraying the polymer of organo
disulfifide polymer onto the –NH2 activated Fe3O4 nanoparticles and exhibited
efficient adsorption capacity toward heavy metals in a high concentration solution
[99]. Figure 14 represents the core–shell structure of amphiphilic polyisopreneblock-

Fig. 13 Cr(VI) Adsorption on engineered iron oxide nanoparticles. Reprinted with license from
American Chemical Society, Copyright (2019)

Fig. 14 Encapsulation of single or multiple nanoparticles by polyisopreneblock-poly(ethylene
glycol) diblock copolymer. Reprinted with license from American Chemical Society, Copyright
(2014)
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poly(ethylene glycol) (PI-b-PEG) copolymer which encaged the Fe3O4 nanoparti-
cles [217]. These core–shell structure magnetite nanoparticles were found to remove
heavy metal with high efficiency and were easily separated from wastewater.

3.4 Titanium Oxide Nanoparticles

Titanium dioxide (TiO2) nanoparticles with high chemical stability, lower toxicity
and low cost are employed as competitive materials in disinfection and decontamina-
tion of wastewater. Thus, TiO2 nanoparticles have drawn more concentration among
researchers because of their extensive properties [117, 170, 216, 259]. TiO2 nanopar-
ticles do not change for a long time during degradation of pathogens and organic
compounds. TiO2 nanoparticles were widely investigated on degradation of organic
contaminants with high effectiveness [14]. It was also represented with the effective
removal of heavy metals from contaminated water [235]. Nanowires with diameter
of 30–50 nm were synthesized from TiO2 and were applied to eliminate Cu (II),
Pb (II), Fe (III), Zn (II) and Cd (II) from contaminated water with high efficiency
[286]. Iron-doped TiO2 nanoparticles were prepared and utilized to remove arsenic
with higher effectiveness than pure TiO2 nanoparticles [171]. TiO2 NPs coating
with starch- were synthesized to eliminate 90% of Ni (II), Cd (II), Pb (II), Co (II)
and Cu (II) from tap-water [25]. Microwave-synthesized TiO2-chitosan nanoparti-
cles were synthesized and were used for the removal of heavy metals applying the
microwave-enforced sorption approach. This approachwas observed as environmen-
tally friendly and fast removal efficiency. TiO2 nanoparticles displayed promising
adsorption capacity toward organic and inorganic contaminants [252]. TiO2, the
semiconductor photocatalyst exhibits a variety in the case ofmineralization or decon-
tamination of harmful substance in water [253]. It is evident that TiO2 nanoparticles
in anatase phase possess strong catalytic activities for having high active surface
and redox properties. Magnetic TiO2 nanoparticles were prepared for the treatment
of wastewater and this nanowire could easily be separated from the system with
external magnetic fields showing suitability to commercial applications [147]. The
demerits of TiO2 nanoparticles are complex production processes and difficulty in
removal from the system after use [137]. It is generally not easy to separate TiO2

nanoparticles NPs when it is used to treat a slurry suspension of contaminated water
[54].

3.5 Other Metal Oxide Nanoparticles

ZnOnanoparticles have comeout as a promisingmaterial in decontamination ofwater
because of their distinctive characteristicswith large band gap in the near-UV electro-
magnetic spectrum spectral, powerful oxidation capability, enhanced photocatalytic
ability [38, 201]. Moreover, having the almost identical band energy gap, the ZnO
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nanoparticles show similar photocatalytic activity as displayed by TiO2 nanoparti-
cles. Besides, ZnO nanoparticles are advantageous in the case of cost-effectiveness
compared to TiO2 nanoparticles [45]. ZnO nanoparticles posses the higher adsorp-
tion capability of light from the electromagnetic spectrum in a wide range in compar-
ison with some other metal oxides nanoparticles [26]. Rapid reunification of photo-
generated charges causes low photocatalytic efficiency of ZnO nanoparticles [78].
Photocatalytic efficiency of ZnO nanoparticles could be enhanced by doping metal.
Different kinds of dopantsmainly ofmetals such as inner transition elements dopants,
codopants, anionic or cationic dopants, etc., were utilized for improving the photocat-
alytic efficiency of ZnO nanoparticles [126]. ZnO nanoparticles could be employed
as a good nanoadsorbent for its non-toxicity, well antimicrobial activity, chem-
ical, thermal and mechanical stability and overall efficient adsorption quality. ZnO
nanoparticles exhibit higher adsorption efficiency toward heavy metals than TiO2

nanoparticles [193]. ZnO nanoparticles were reported to show enhanced sorption
capacity toward inorganic and organic contaminants [41]. ZnO nanoparticles have
significant photocatalytic potential for exclusion of various organic compounds and
contaminants due to their wide band gap energy, i.e., 3.37 eV, high exciton binding
energy, i.e., 60 meV, strong oxidation ability and larger surface to volume ratio [240].

Manganese oxides (MnO2) nanoparticles have been reported to show good sorp-
tion performance toward metal ions [167]. It has also been noted that MnO2 nanopar-
ticles and hydrous manganese oxide showed good removal efficiency of heavy
metals from wastewater [134]. MnO2/gelatin was prepared to remove Cd (II) and
Pb (II) from wastewater through adsorption [274]. Guo et al. reported the effective
removal of arsenite fromwater with synthesized paper-like, free-standing membrane
of Mn3O4/CeO2 hybrid nanotubes (Fig. 15) [81]. MnO2 nanoparticles were noted to
adsorb Tl (I) in wastewater [101]. MnO2 nanoparticles were reported to show high
capability to remove Cu(II), Hg(II), Pb(II), U, Cd(II), etc., from wastewater [1, 116,
130]. HMO is reported to exhibit advantageous characteristic in adsorption of heavy
metals because of its porosity, ample active sites and high surface area [62].

Recently, hydrousmanganese oxide-biochar nanocompositeswere synthesized by
implanting the hydrous manganese oxide nanoparticles into the biochar [270]. This
composite material was applied to remove Pb (II) and Cd (II) in a broad pH range
with high efficiency. Hence, hydrous manganese oxide-biochar could be a thriving
candidate for the removal of heavy metals from contaminated water.

Aluminum oxides (Al2O3)-based nanoparticles are extensively utilized as adsor-
bent for removal of heavy metals. The major advantages of Al2O3 nanoparticles are
low preparation cost and efficient decontamination capability [75, 187]. γ-Al2O3

nanoparticles were prepared through a sol–gel process and showed the removal
capacity of 97% for Pb (II) and 87% for Cd (II) [254]. The effect of phosphate,
humic acid and citrate on Al2O3 nanoparticles’ adsorption behavior toward Cd (II)
and Zn (II) has also been investigated and phosphate and humic acid were observed
to show improved adsorption capacity toward Cd (II) and Zn (II) while citrate could
reduce the capacity of adsorption toward Zn (II) [244]. Beside the abovementioned
heavy metals, Al2O3 nanoparticles exhibit efficient removal capabilities toward Hg
(II), As (III), Cu (II), Ni (II), Cr (VI), etc. [144, 181, 230, 275].
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Fig. 15 Removal of arsenite from water by paper-like membrane of Mn3O4/CeO2 Hybrid
Nanotubes. Reprinted with license from American Chemical Society, Copyright (2015)

Magnesium oxide (MgO) nanoparticles are promising sorption materials for
the removal of heavy metals due to their abundance, non-toxicity, environmental
friendliness and overall cost-effectiveness. It was reported that MgO nanoparti-
cles effectively remove Pb (II), Cd (II) and Escherichia coli from wastewater
[34]. Furthermore, MgO nanoparticles showed extraordinary antibacterial proper-
ties toward gram-positive and gram-negative bacteria [245]. In another investigation,
mesoporous MgO nanosheets were synthesized and were displayed to be excellently
removed 1684.25 mg·g−1 Ni (II) from aqueous solution [67]. MgO nanoparticles
were synthesized through the incineration process and were found to remove 96%
Cu(II) from 10 ppm aqueous copper solution with high adsorption capability.

Cerium oxide (CeO2) nanoparticles are non-toxic substances which have been
utilized as photocatalysis and sensing [264], water treatment, etc. [203]. CeO2

nanoparticles exhibit superior performance in heavy metal removals due to their
active surface area, stability, selectivity and dispersion behavior. The sorption criteria
of CeO2 nanoparticles were investigated for the removal of Cr (VI) from aqueous
solution [202]. The maximum adsorption capacity for Cr (VI) was reported as
121.95mg·g−1. CeO2 nanoparticles were reported to be prepared andwere applied to
remove As (V) and As (III) from aqueous solution [162]. The adsorption efficiency
toward these two ions were observed as 36.8 and 71.9 mg·g−1, respectively,

Zirconium oxides (ZrO) nanoparticles are excellent metallic oxide adsorbent for
the treatment of wastewater containing heavy metals. The merit of ZrO nanoparti-
cles is the abundance of functional hydroxyl groups and high active surface areas.
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Furthermore, ZrO nanoparticles have the chemical stability and show extraordinary
sorption capability toward Pb (II), Zn (II) and Cd (II) [108]. A novel e ZrO2/B2O3

nanocomposites were reported to be synthesized and were used to remove Cu (II),
Co (II) and Cd (II) [282]. The removal efficiency for Cu (II), Co (II) and Cd (II) were
found as 46.5, 32.2 and 109.9 mg·g−1, respectively. Polystyrene-supported Zr(OH)4
nanoparticles were fabricated and were applied to remove Cd (II) from aqueous solu-
tion in varying pH [291]. The experimental outcome manifested that Cd (II) could
be removed effectively in a wide pH range.

4 Nanocomposite in Water Treatment

Applications of nanoparticles in wastewater treatment have some issues regarding
aggregation, intensive pressure drop during flow process, difficulties in separation
from systems [95]. Though the types of metal nanoparticles discussed above have
their own merits, they have often some problems in practical applications. For
instance, nZVI aggregate and oxidized rapidly. TiO2 nanoparticles and ZnO nanopar-
ticles absorb electromagnetic spectrum only in the UV region because of their wide
band gap. Carbon nanotube has difficulty in uniform suspension in various solvents
and nZVI are easily oxidizable [89]. In order to overcome these problems, a general
approach is adopted by synthesizing hybrid nanocomposites for wastewater treat-
ment. For these reasons, the preparation of different nanocomposites has been gaining
much attention to the researchers. Qian et al. briefly review the nanocomposite used
in water treatment [189]. Figure 16 presents the nanoconfinement mediated water
treatment by nanocomposite.

Fig. 16 Nanoconfinement mediated water treatment with nanocomposite. Reprinted with license
from American Chemical Society, Copyright (2020)
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Accordingly, many investigations have been done to fabricate useful nanocom-
posite forwastewater treatment throughout theworld. For instance, a novel nanocom-
posite material was synthesized using nano zero-valent iron and carbon nanotubes
where chemical deposition of nano zero-valent ironwas done on the surface of carbon
nanotubes. This nanocomposite adsorbent showed efficient capability to remove
nitrate fromwater and it can easily be separated from the system by externalmagnetic
fields [85]. Nanofiltration membranes of thin film nanocomposite have been synthe-
sized through in situ implantation ofTiO2 nanoparticles on a polyimide supportwhere
TiO2 nanoparticles were functionalized with both amine and chloride compounds to
improve its compatibility. Nanofiltration membranes thus prepared displayed effec-
tive dye degradation and methanol flux [185]. Perfect nanocomposites for practical
uses should be reactive as nanomaterials and continuous [260]. The more important
thing is that treatment of wastewater requires non-toxic, cost-effective and log-time
stable nanocomposites. To find suitable nanocomposites, further research in this field
is still under way. In this section, various types of nanocomposite synthesized and
applied for water treatment have been extensively discussed.

4.1 Nanocomposites with Inorganic Support

Nanocomposites arematerials ofmultiple substanceswhere one of thematerialsmust
be nanostructured. The combination of materials during preparation of nanocompos-
ites offers suitable characteristics to it for the practical application in water treatment.
Combination of TiO2 and SiO2 for the preparation of nanocomposites offers advan-
tages of both materials by adsorbing virus on SiO2 and showing enhanced antimi-
crobial activity with TiO2 [107]. Ag2S@Ag nanocomposite was fabricated which
displayed enhanced sorption capability toward methyl orange and methyl blue in
contaminated water [211]. In a review, Yin and Deng discussed about different
nanocomposites with polymer-matrix for wastewater treatment [284]. Nanofiber
membranes synthesized from polymer and metal or metal oxide nanoparticles were
reported to show improved adsorption quality to heavy metals and enhanced antimi-
crobial activity. For example, Polyaniline/FeO composite nanofibers were reported
for effective removal of carcinogenic arsenic from the water [28]. Similarly, from
drinkingwater, the arsenicwas effectively eliminated using bio-nanocomposite beads
fabricated fromchitosan goethite [91].Many investigations on the use of hybrid nano-
materials for the removal of heavy metal from contaminated water were reported.
As nanoadsorbent, the discarded parts of Zn-Mn dry batteries have been utilized to
removeAs,Cd andPb [262]. Seleniumnanoparticles containing polyurethane sponge
have been reported for the efficient removal of Hg (II) from very rapidly because of
the better affinity of selenium toward mercury [8]. Novel Fe3O4@diaminophenol-
formaldehyde core–shell ferromagnetic nanorods for the elimination of Pb(II) from
water was noted [267]. The nanorods displayed magnificent recovery time (25 s)
due to the ferromagnetic properties with a high saturation magnetization value of
the nanorod and hence possess better reusability among reported materials. So, the
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Fig. 17 Polymer composite of Fe3O4@diaminophenol-formaldehyde core–shell ferromagnetic
nanorods based on core–shell ferromagnetic nanorod for the rapid removal of Pb(II). Reprinted
with license from American Chemical Society, Copyright (2015)

Fe3O4@diaminophenol-formaldehyde core–shell ferromagnetic nanorods can act as
good recyclable adsorbent alternatives to commonly utilized adsorbing materials
for the fast removal of heavy metals from aqueous solutions (Fig. 17). Bentonite is
excellent competitivematerial for the treatment of concentrated heavymetal contam-
ination [52]. nZVI were found to be used with bentonite and applied for the removal
of heavy metals [5].

4.2 Nanocomposites with Organic Supports

Organic polymer has numerous excellent properties with extraordinary mechan-
ical strength, simple regeneration, easy degradability and modifiable functional
group which enable it a promising candidate for being the host of nanocomposites
[296]. Generally, there are two types of polymer-supported nanocomposite namely
biopolymer-supported nanocomposites and synthetic organic polymer-supported
nanocomposites [136]. The common example of the synthetic organic polymer used
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to support materials for preparing nanocomposites is polyaniline, polystyrene, etc.
[196]. For instance, polypyrrole-polyaniline/Fe3O4 magnetic nanocomposites were
synthesized and were reported to remove 100% of Pb (II) from 20 ppm aqueous solu-
tion [5]. Beside the synthetic organic polymers, natural polymers such as chitosan,
cellulose, alginate, etc., were also applied as host materials for nanocomposites. The
most abundant natural polymer cellulose has ample coordination sites forwhichmake
it amazingmaterials for adsorbent and support for nanoadsorbent [34].Nanocellulose
-Ag nanoparticles embedded pebbles-based nanocompositewas prepared and used to
remove heavymetals, microorganisms and dyes fromwastewater. Complete removal
of Pb (II), 98% removal of Cr (III) and 99% disinfection capability toward microbial
agents were displayed by Nanocellulose-Ag nanoparticles embedded pebbles-based
nanocomposite [249].

Chitosan is another starting material for fabrication of promising adsorbent
for metal contaminants because of the presence of amino and hydroxyl groups.
ZnO/chitosan nanocomposite with low cost and lesser toxicity were fabricated and
applied to remove Pb (II), Cd (II) and Cu (II) from aqueous solution [208]. The exper-
imental result manifested the efficient sorption capability towards Cd (II), Pb (II) and
Cu (II) and the recurring usable capacity of nanocomposites. A review on nanocom-
posites blend of functional polymers for the removal of metals from water with their
preparationmethod, toxicity, separability and interactivity between nanoparticles and
polymer were reported [135]. In another investigation, nanocomposite of hydrous
Zr(IV) oxide was fabricated with the combination of a cation exchange resin and
hydrous Zr (IV) oxide [96]. The investigated result showed remarkable adsorption
capacity of nanocomposite of hydrous Zr(IV) oxide toward Cd (II) and Pb (II) in a
column adsorption process. The cyclic column method displayed that the nanocom-
posites could be applied to practical acid mine wastewater time and again without
loss of any capacity.

4.3 Magnetic Nanocomposites

Magnetic nanocomposites are promising candidates for the removal and degrada-
tion of contaminants from the polluted systems. The extensive studies of the toxi-
city of magnetic nanomaterials within or outside of an entire living organism have
already been carried out. Hence, the abundant information on the toxicity ofmagnetic
nanoparticles assists improved use of magnetic nanocomposites with less toxicity for
treatment of contaminated water. However, there are a limited number of available
magnetic nanoparticles such as Fe2O3, Fe3O4, nZVI, Co3O4 and NiO nanoparticles,
etc. These are not enough for fabrication of magnetic nanocomposites to apply in
the decontamination of water. There are also some issues to use magnetic nanocom-
posite for commercial purposes. First of all, the magnetic nanocomposite should be
cost-effective to the practical application in the environment field. Otherwise, it will
not be sustainable for common application for water treatment. Second, the prop-
erties of magnetic nanocomposite are essentially needed to improve for avoiding
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aggregation. The aggregation of the magnetic NPs and composite materials will
hinder reusable capacity of the nanocomposite in the practical environmental reme-
diation field. Finally, hazardness to the environment with application of magnetic
nanocomposites in wastewater treatment should be minimized.

Studies on the toxicity ofmagnetic nanocomposites are just at the beginning stage.
More research about the toxicity of the magnetic nanocomposites is necessary for the
improvement of technology based on magnetic nanocomposite for water purifica-
tion. Magnetic nanocomposites could be fabricated through surface modification of
magnetic nanoparticles by different functional groups, combiningmagnetic nanopar-
ticles with other organic or inorganic compounds like polyethylenimine, polyrho-
danine, humic acid, MnO2, etc. [116, 136, 161, 238]. Magnetic nanocomposites
were synthesized through spraying the magnetic nanoparticles on graphene oxide or
carbon nanotubes [57]. A core–shell Fe3O4@SiO2 novel magnetic nanocomposite
was synthesized and showed high removal ability toward Pb (II) and methylene blue.
[99]. Fe@MgO nanocomposite was synthesized with the combination of nZVIMgO
[74]. The advantage of strong magnetism of nZVI and efficient adsorption capability
of MgO made it superior material for the effective removal of Pb (II) and methyl
orange from wastewater. It is proven that magnetic nanocomposites have a high
ability to remove heavy metal and to degrade the organic and inorganic pollutant
from contaminated water with some limitations.

5 Conclusion and Perspective

Clean water is the key requirement to human health. The world is confronting crit-
ical challenges to meet the increasing demands of clean water as the sources of
freshwater are declining due to climate change, population growth, increasing food
production, increasing competition for freshwater resources in someareas, etc.More-
over, fresh water is polluted by agricultural contaminants, industrial contaminants,
sewage contaminants, radioactive contaminants, microbes, organic and inorganic
pollutants. There are several traditional ways for the treatment of wastewater. But
nanomaterials have a number of important physicochemical properties that enable
them especially attractive as a decontaminator wastewater. Nanomaterials can be
modified by different functional materials to enhance their attraction toward contam-
inants. It is proved that they have the higher ability to remove organic and inorganic
pollutants, toxicmetal and radionuclides from aqueous solutions. Nanomaterials also
give outstanding possibilities for the improvement ofwater purification systemsmore
efficiently due to their high active surface areas and their size-dependent catalytic,
optical and electronic characteristics. Nanomaterials are also being applied as active
antimicrobial agents to treat pathogens containing water. Nanomaterials are widely
applied to remove heavy metals from wastewater or aqueous solution of metal ions
due to their excellent adsorption capabilities toward heavy metals.
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In this chapter,metal-based nanomaterials are used in decontamination ofwastew-
ater which are fabricated from metal and metal oxide nanoparticles such as zero-
valent nanoparticles (Fe, Zn, etc.), noble and transition metal nanoparticles (Fe, Cu,
Ag, Au, Pd, etc.), metal oxide nanoparticles (iron oxide, titania, zinc oxide, magne-
siumoxide aluminumoxide, etc.) and overall nanocomposites ofmetal ormetal oxide
were discussed in detail.With the recent progress inwastewater treatment technology,
nanomaterials-based water treatment methods are considered as extensive promising
technology for wastewater decontamination. However, further investigations are still
required to solve the issues regarding practical use of nanomaterials.

The drawback of existing nanomaterials will be required to be resolved for better
application of these nanomaterials in water decontamination. First, most of the nano-
materials are not stable and easily aggregate. Moreover, it is generally troublesome
to separate the nanoparticle from the system after the treatment process due to their
nanosize. The development of nanocomposite materials could be an effective tool
to solve this separation problem issue. Furthermore, to devise the facile synthesis
procedure, to acquire long-time stability and to solve some other problems regarding
nanocomposites, it requires more study in this area. Second, the commercial nano-
materials for heavy metal removal are scarce and more research is needed to obtain
nanomaterials for commercial use. Finally, the effect and toxicity to the environment
and human health due to extensive use of nanomaterials should be paid attention.
There has been some research concentrated on the biological behavior and toxi-
city of nanoparticles toward human health [70, 114, 128, 225, 290]. The standard
assessments of the toxicity of nanomaterials are quite inadequate at present. It is
noticed from the previous study that most of the nanomaterials are observed as toxic
substances after a certain level [32, 205]. Therefore, extensive study on the toxicity
of nanomaterials is essential to ensure the safety for practical application.

The introduction of nanomaterials in the water treatment process is becoming
a thriving tool. Moreover, the removal efficiency of contaminants with the above-
mentioned nanomaterials is mostly studied in laboratory scale. More data of their
application in practical wastewater treatment are inadequate and are badly needed.
Present nanotechnology approaches for wastewater treatment seem promising. But,
more extensive investigation is necessary to prove their safety in practical use. The
metal-based nanomaterials should be low cost and superior to the traditional tech-
nologies that are applied for the water treatments. It is not easy to figure out the
capabilities of different nanomaterials in practical applications and it requires more
investigation to find out improved nanomaterials for the real application toward
wastewater decontamination. Hence, the assessment of metal-based nanomaterials
on the basis of performance in decontamination of wastewater should be perfected
in the future. We visualize that metal-based nanomaterials will become excellent
candidates for industrial and public water purification systems as more development
is done through cost-effective synthesis and utilizing the environmentally acceptable
functional materials.
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