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Metal Organic Frameworks to Remove
Arsenic Adsorption from Wastewater

Sruthi Rajasekaran, K. R. Sunaja Devi , D. Pinheiro, M. K. Mohan,
and P. Iyyappa Rajan

Abstract Water is an integral part of life on earth. Rapid industrialization, urban-
ization, and population explosion have all contributed to the pollution of ground
and surface water with, among other things, heavy metals. This has led to an acute
shortage of clean drinking water. Arsenic is one of the most toxic heavymetals found
in water, posing a serious threat to the environment, human beings, and aquatic
life. Over the years, a considerable amount of research has been directed toward
the elimination of arsenic from water via sustainable methodologies. Metal organic
frameworks are a class of materials possessing exceptional features like chemical
stability, high porosity, multiple functional groups, and large surface areas. These
properties can be effectively channelized tomakemetal organic frameworks excellent
adsorbents for the removal of arsenic from contaminated water and make it drink-
able. We have reviewed herein, the problems of heavy metal contamination, specif-
ically the different forms of arsenic that pollute water. The importance of metal
organic frameworks and the progress made in the synthesis of materials having a
metal oxide framework have been discussed. Significant properties like adsorption
and mechanistic aspects of adsorption through metal organic frameworks have been
described. Furthermore, the characterization of the electronic and geometric aspects
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of metal organic frameworks using density functional theory has been reviewed.
Insight into proper scaling up and development of metal organic frameworks for
practical applications have also been suggested.

Keywords Metal organic frameworks · Arsenic pollutants · Adsorption ·
Wastewater · Heavy Metals · Water contamination · Environmental chemistry

1 Introduction

The importance of water for human beings and indeed for life on earth cannot be
overstated. During the past decades, rapid industrialization and urbanization have
polluted our ecosystem, notably our water bodies. The above reasons, coupled with
the explosion in the human population have led to an increased demand for pure
drinking water. The wastewater discharged from industrial wastes often carries a
large concentration of heavy metals often as high as 24.2 ppb [39, 50, 83]. Several
methods, biological, chemical, and physical have been used for the remediation of
heavymetal pollution ofwater. However, many of these techniques release secondary
pollutants into water and are therefore not completely environment friendly [122].
Thus, there is a wide scope for identifying quick, cost-effective, and cleaner methods
to purify wastewater from heavymetals. This can contribute to a cleaner environment
and also help meet the demand for clean drinking water [31]. Of the several methods
employed for the remediation of pollutants, many are based on adsorption to achieve
the elimination of pollutants from the water bodies [84].

Adsorption is a process that is used for the removal of a substance from gaseous
or liquid solutions, where a solid is used as a medium for the removal [70]. The van
der Waals and electrostatic forces between the adsorbate molecule and adsorbent
surface are the prime drivers for the adsorption process [91]. The concentration of
adsorbent andpHplay a vital role in any adsorptionprocess.Adsorption is an effective
technique for the removal of arsenic (As) because of its excellent removal efficiency,
easy operation, and absence of sludge formation [41, 67]. Arsenate adsorption is
favored at low pH values, whereas arsenite requires higher pH conditions. The nature
of adsorbents is another crucial factor that determines the effectiveness of arsenic
removal through adsorption. Widely used sorbents are activated coal, red mud, coal,
fly ash, and metal organic frameworks.

Metal organic frameworks (MOFs) are materials, made up of porous coordination
polymers, with easily tailorable pore sizes and possessing large surface areas. The
pores in the constructed MOFs play a major role in their effectiveness in the target
application. Some of the highly porous MOFs, like other porous materials having
long-range order, exhibit excellent selectivity in adsorption. MOFs contain a metal
ion or cluster and an organic linker, which are well known for exhibiting exceptional
performances in diverse applications such as carbon dioxide capture, gas storage,
drug delivery, catalysis, and environmental protection [23, 32, 123]. MOFs have also
been [26] extensively used in the elimination of heavy metal ions from wastewater.
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Fig. 1 Removal of arsenic using metal organic framework through adsorption

Considerable efforts have gone into the design and preparation of MOFs with new
structures and functions besides exploring potential applications in areas like gas
adsorption or separation [60], sensors [60], drug delivery [55], magnetic materials
[18], and optical devices [30].

Gas separation is an important process in industries where microporous mate-
rials with high adsorption capacity and selectivity are required to achieve efficient
gas separation. Gases like propylene–propane mixture are used for gas separation
and consume 90% less energy compared with the distillation process [6, 60]. Scrub-
bing agents like calcium oxide and zeolites have also been used for applications
in sensing. Sensors have been developed by using MOFs KAUST-7 and KAUST-
8 coated with quartz crystal microbalance transducers, which have the ability to
detect sulfur dioxide gas at low concentrations. The structure–property relationship
in adsorbents can be tuned to detect and selectively capture toxic molecules [6, 100].
MOFs are also potential candidates in drug delivery as they can be engineered to
have key properties. UiO-66 is a good example of MOFs used in drug delivery and
anticancer treatment where metal clusters occupy the co-ordination sites of MOFs
[55].

MOFswith their high electric conductivity and excellentmagnetic ordering enable
novel functionalities in spintronic applications besides imparting ferromagnetic and
semiconducting properties to them [18]. In addition to the applications mentioned
above,MOFs have beenwidely used in the elimination of pollutants fromwastewater.
This review provides a detailed description of the removal of arsenic from polluted
as well as groundwater with the help ofMOFs andmodifiedMOFmaterials. Figure 1
depicts the graphical representation of adsorption for arsenic removal using MOFs.

2 Heavy Metals in Water and the Impact on Health

Heavy metals are inherent constituents of the lithosphere and are among the oldest
toxic substances known to humans [38]. They make up a major percentage of pollu-
tants in the effluents emerging from industries [89] and their presence imposes serious
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side effects on living organisms [38, 83, 107]. As per the Environmental Protection
Agency of US Federal Government, metals like beryllium, cadmium, chromium,
arsenic, and others are considered to be priority pollutants for their extensive usage,
toxicity, and contamination of water through sewage, sludge, pesticides, municipal
wastes, and industrial effluents. Some of them are carcinogenic and even fatal at high
concentrations.

During the past few decades, the enormous growth of chemical industries has led
to an increased amount of waste released into the environment and the subsequent
accumulation of heavy metals [85, 97]. Heavy metals like mercury, lead, cadmium,
molybdenum, arsenic, and thallium ions are the major culprits polluting drinking
water where the last two are the most toxic among them [87]. These heavy metals
enter the atmosphere and water mainly through volcanic activity, mining operations,
electroplating, plumbing fixtures, batteries, paint, oils, fertilizers, and nuclear power
plants. The existence of heavy metals in water leads to harmful effects on many
organs of the human body and causes diseases like cancer, infertility, arsenicosis,
paralysis, hair loss, andmutagenesis. The permitted limit of heavymetals in drinking
water ranges from 0.1 to 100 ppb depending on the metal [21, 33, 124]. Earlier,
adsorbents like zeolites, carbonaceous, and polymer-based chitosan were employed
for remediating water from heavy metals [97]. Carbon-based materials offer a lot of
scope as adsorbents for the removal of toxic metals from wastewater.

3 Arsenic as a Contaminant

Arsenic is a toxic metalloid and a carcinogen [80]. It is the 20th most abundant
element on earth and is found in seawater and the human body [104]. Arsenic
combines with oxygen, chlorine, and sulfur to form a variety of inorganic species.
The name ‘King of Poison’ is given to arsenic by World Health Organization [90].
Primarily, arsenic contamination is caused by the usage of phosphate fertilizers,
insecticides, smelting, and mining operations that release arsenic into groundwater
and soil leading to severe environmental issues [112]. Water contaminated with
arsenic poses a major threat to human health and aquatic organisms in numerous
regions of theworld [4].Both ground and surfacewater contain arsenic contamination
that in turn affects human health and aquatic organisms worldwide.

In natural water bodies, arsenic can exist in two forms, As(V) andAs(III) of which
the latter is more hazardous [77, 84]. Major biochemical processes will be hindered
when As(III) binds with thiol groups altering the immune system leading to various
gastrointestinal diseases [45]. Generally, As(V) does not bind to the sulfhydryl group
and is, therefore, less toxic [11]. Continuous exposure to arsenic leads to acute
diseases like skin lesions and cancer in addition to affecting the central nervous
system [77]. The toxin level for arsenic in potable water is 0.01mgL−1, but in some
cases, it can even go up to 0.1–2 mgL−1 in groundwater which can be very harmful
[9]. Oxidation, coagulation, and membrane filtration are some of the viable methods
that have been practiced to remove arsenic [104].
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Fig. 2 Population exposed to arsenic contamination in selected countries. The maximum affected
countries are India and China. Reprinted with the permission of Elsevier from [40]

The natural weathering processes like soil erosion and leaching largely contribute
to the accumulation of arsenic, and, because of its high mobility, re-enters the
water bodies to adversely impact soil fertility. It was reported that the concentra-
tion of arsenic is high in shallow groundwater, which affects millions of people
[35, 67]. Reverse osmosis plants were reportedly installed around various parts of
Argentina to remediate the high amounts of arsenic found in the groundwater for the
public’s drinking water [62]. Figure 2 gives the data for the presence of arsenic in
different countries, in which the worst affected countries are India and China. High
arsenic content is found in semi-arid regions, and the studies show that utilization of
more shallow water is the major cause of the problem. The regions that have high
arsenic concentrations contain oxidized groundwater leading to waterborne disease,
which, in turn, affects human life [40]. According to the World Health Organisation,
arsenic is a Class I carcinogenic. Thus, it is crucial to remove arsenic ions from the
environment using all possible methods.

4 Different Forms of Arsenic in Water

Water-soluble arsenic is predominantly found in the inorganic form in natural water
though it is not uncommon to find arsenic in the organic form. The chemical behavior,
distribution between organic and inorganic forms of arsenic as well as its diffusion
are all pH dependent and hence can vary with the pH of the water bodies [39,
80]. The neutral form (H3AsO3) of As(III), with higher toxicity, is generally seen
when the pH of the solution is less than 9. Arsenic species are also found in natural
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sources like rocks, volcanic activity, and produced during metallurgical operations
likemining, roasting, etc. [103]. The dissolution ofminerals, ores, soil, and sediments
enables arsenic to enter the water, leading to its greater concentration in ground-
water compared with surface water. Natural water contains both As(III) and As(V)
where As(III) is stable under reducing aqueous conditions, and As(V) is stable in
oxygenatedwater [56]. Figure 3 illustrates the different forms of arsenic inwater [37].
The various techniques employed for the identification of arsenic in water are induc-
tively coupled plasma spectrometry, atomic absorption spectroscopy, atomic emis-
sion spectrometry,mass spectroscopy, high-performance liquid chromatography, and
ion chromatography [37, 81].

Due to the acute shortage of drinking water worldwide, it is important that heavy
metals and trace elements be removed fromboth land and contaminatedwater bodies.
The raw materials used for preparing arsenic removing adsorbents are commonly
sourced from activated carbon, agricultural waste like rice husk, coconut shell,
potato peel, alumina, granular ferric hydroxide, zeolites, and synthetic resins [9,
56, 67]. Many industries still use methods such as precipitation, coagulation, ion
exchange, and flocculation for the removal of arsenic, and most of these techniques
are not successful in completely eliminating arsenic. Studies show that complexation
between hydroxyl iron oxides, As(III), and Sb(III) on the surface play a primary role
during adsorption [121]. The hydroxyl groups present on the surface of chitosan have
enabled the formation of hydrogen bonds, which felicitates the adsorption of As(III)
and Sb(III). Modification of chitosan with amino groups increases the surface groups
leading to more active sites and hence even better adsorption.

Fig. 3 Different forms of
arsenic species with methyl
and dimethyl groups are
attached to arsenate and
arsenite in water. Reprinted
with the permission of
Elsevier from [37]
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5 Conventional Strategies for the Removal of Arsenic

The composition and nature of arsenic found in contaminatedwater and the chemistry
behind it are key factors that govern the elimination of arsenic from water [94].
Most of the arsenic removal strategies are efficient if it remains predominantly non-
charged at pH less than 9.2 [70]. Most technologies adopt a two-step approach. The
first step involves oxidation, where arsenite is oxidized to arsenate, and the second
step involves the actual removal of arsenate [78]. The most important strategies for
the removal of arsenic include oxidation, coagulation–flocculation, and membrane
filtration technology.

The oxidation of As(III) to As(V) is a critical step in the remediation of arsenic
as most of the soluble arsenic under neutral pH exists in the arsenite form. Apart
from atmospheric oxygen, other chemicals and microorganisms are also employed
to oxidize arsenite in water [70]. Costa et al. performed a systematic process for
the elimination of arsenic with the help of UV-assisted catalytic H2O2 oxidation
followed by adsorption using ilmenite (FeTiO3) a natural photocatalyst [13]. The
coagulation–flocculation method is another widely used method for the elimination
of arsenic from water [70]. The negative charge of the colloids is reduced by the
positively charged coagulants.

Flocculation involves the inclusion of anionic flocculants to cause a link between
the larger particles formed, leading to the development of flocs. Here, aided by the
added chemicals, arsenic is converted into an insoluble solid, which later precipitates
as sediment [91]. The soluble arsenic species can sometimes be co-precipitated using
metal hydroxides, and the solid residue can then be separated either by filtration or
sedimentation. The usage of different coagulants like ferric chloride and alum showed
that the extent of arsenic removal depends considerably on the pH [68]. Ge J and
others studied the removal of arsenic fromwastewater by coagulation technology and
investigated the adsorption efficiency under different conditions such as the effects
of suspended solids in the mixed liquor, pH, and the effect of orthophosphate [27].

Membrane-based filtration is a widely used method for obtaining drinking water.
Membranes are fine pliable sheets made of synthetic materials and act as a barrier
preventing the impurities in water to pass through [70]. Generally, pressure-driven
membrane filtration can be categorized into two types, microfiltration and ultrafil-
tration which use low pressures whereas reverse osmosis and nanofiltration use high
pressures. For the removal of arsenic from polluted water using microfiltration, the
pore size of themembrane used is between 0.1 and 10μm.On the other hand, ultrafil-
tration is not an effective technique due to the larger size of themembrane pore. There-
fore, tomake themembrane filtration technique effective, surfactant-based separation
techniques such as micellar enhanced ultrafiltration can be employed. Similarly, both
nanofiltration and reverse osmosis are used for the removal of dissolved compounds
with molecular weights larger than 300 gmol−1. Thus, these two methods can be
effectively used to remediate the dissolved arsenic from water [93]. Yang X and
others reported the usage of ceramic filters modified by nano-CeO2 to remove As(V)
from water in remote areas in a cost-effective manner [118].
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6 Metal Organic Frameworks

Metal organic frameworks (MOFs) are a group of porous crystalline materials made
up of metal ions, clusters, and organic ligands. The pores in the MOFs play a vital
role in determining the properties of the structural framework. The size and shape
of the pores in MOFs can be adjusted by making changes in the ligands and metal
ions. [84]. Unlike other solids, MOFs maintain their structure and crystalline nature
upon expansion of the organic linkers and inorganic secondary building units, which
broadens the scope of their applications [25].

The frequently used metals for the synthesis of MOFs are Co(II), Ag(I), Cu(II),
Mg(II), Fe(III), Al(III), which result in different structural geometries such as trigonal
bipyramidal, pyramidal, hexagonal, tetrahedral, and octahedral. Organic linkers like
carbonates, sulphonates, amines, and phosphates are important components in the
synthesis of MOFs. The early MOFs synthesized were sensitive to water due to
the lability of the ligand–metal bond, and this aspect restricted the applications of
MOFs. Themost important property ofMOFs as adsorbents is the surface area, which
can range from 1000 to 10,000 m2g−1. MOFs, possessing desirable properties like
high surface area of upto 6000 m2g, porosity, tunable pore size, rigidity, structural
flexibility, and thermal stability without doubt, offer a lot of promise as a material
for efficient water treatment [110]. Figure 4 shows the schematic structure of MOF
[43].

Fig. 4 Structure of a metal
organic framework
comprising of organic
ligands, functional groups,
pore space, and metal ions.
Reprinted with the
permission of Elsevier from
[43]
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7 General Methods of Preparation of Metal Organic
Framework

Several techniques have been adopted for the synthesis of MOFs. For liquid-phase
syntheses, metal salts and ligand solutions are added separately to a reaction vial.
Besides the liquid phase, solid-phase synthetic methods too have been carried out.
Some of the methods are solvothermal [111], microwave [52], sonochemical [28],
slow evaporation [119], mechanochemical [98], and electrochemical methods [76].

Slow evaporation is a traditionalmethod used for the synthesis ofMOFs, which do
not require any external energy supply. In thismethod, the starting solution is concen-
trated, while the solvents are at room temperatures. However, this is a tedious and
time-consuming technique. Sometimes different combinations of solvents are also
used to increase the solubility and rate of the reaction [22, 86, 119]. In solvothermal
synthesis, the reactions are performed in closed vessels or Teflon-lined autoclaves
at temperatures beyond the boiling point of the solvent [111]. High boiling solvents
are usually used, and when solubility is a problem, the mixture of solvents is also
used. MOFs prepared by this method have been used for sensing, adsorption, and gas
separation processes [19, 71]. Microwave-assisted syntheses or microwave-assisted
solvothermal syntheses are rapid methods for the synthesis of MOF, which involves
microwave heating of a solution for a fixed time period [46, 52, 105].

Electrochemical synthesis is a viable method for the construction of large crys-
tals of MOF by varying pH under mild conditions [76]. It does not require metal
salts, which is a major advantage and is widely used in the industrial process. MOFs
generally synthesized via the above technique are Cu-BTC-MOF, Ni@C, IRMOF-3,
MIL-53(Al), andmany others [1, 114]. Synthesis of Cu-BTC-MOF carbon nanotube
was carried out via electrochemical method and has paved theway for non-enzymatic
determination of glucose [1]. Mechanochemical synthesis is a solvent-free method
for the synthesis of MOFs in which chemical reactions are performed using mechan-
ical force. It is efficiently used for the rapid synthesis of MOFs where a small
amount of solvent is mixed with a solid mixture. This is used for the construction of
bonds through a simple, economical, and environmentally friendlymechanochemical
method [64, 98].

Sonochemical synthesis is a method where chemical changes are brought
about by applying ultrasonic radiations [7, 28]. The sonochemical method can
generate a homogenous nucleation center in lesser time. Graphene nanosheet with
amine-functionalized Cu terephthalateMOF (Cu-BDC-NH2 @GO) was synthesized
through this technique and used for hydrogen adsorption studies [14].

8 Applications of Metal Organic Frameworks

The large surface area, porosity, unique functional group are some of the properties
of MOFs that have found use in applications like gas separation, storage, catalysis,
sensors, drug delivery, and water purification [3, 17, 44, 47, 54, 63, 66]. Figure 5



10 S. Rajasekaran et al.

Fig. 5 Important applications ofmetal organic framework such aswater purification, catalysts, drug
storage, sensing, gas storage, and separation of gases. Reprinted with the permission of Elsevier
from [16]

illustrates the various applications of MOFs in different areas [16]. MOFs have
excellent permeation and separation properties and are used for gas separation with
excellent results. The gases preferred are mixtures of CO2 or H2 and CO2 or N2.
Here CO2 is a good adsorbate that suppresses less adsorbing permeances of H2 or N2

[47]. The main gases used for storage applications byMOF are methane, natural gas,
biogas, and to a lesser extent NO and CO2. The high porosity of MOF materials is
the main advantage in methane storage through adsorption [3, 17]. Gas sensors are of
great interest, as the material can be used in the detection of toxic gases. ZIF-8 based
nanocomposite sensors show a good response to H2 with ZnO nanowire sensors [63].

MOFs, with their large surface area and high pore volume, have found extensive
application in drug delivery and health care. MOF-74 materials have been used as a
storage material and in the drug delivery of anticancer agents like methotrexate and
5-fluoroacil [3, 54]. Co-MOF-74 proved to be a good catalyst in the cycloaddition
of CO2 to styrene oxide under benign conditions without any deterioration in the
structural properties [3, 17]. NH2-MIL-53 cross-linked with PVDF membrane was
used for the purification ofH2 with excellent results with a huge potential in industrial
applications [66].
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9 Metal Organic Framework as an Adsorbent

Adsorption plays a major part in the elimination of contaminants from wastewater.
Arsenate species have highmobility inwater,which, in turn, affects nature and human
beings. The porous nature of MOFs result in large surface areas, enabling the mate-
rial’s capacity for adsorption [10]. The firstMOF (CoC6H3(COOH1/3)3(NC6H5)2.2/3
NC6H5) was reported in 1995 by Yaghi O. M et al. and was shown to have higher
surface areas compared with zeolites and carbonaceous materials [115]. Substantial
research has been carried out in the field of water purification to show that adsorption
is a favorable technique for the removal of pollutants from wastewater as it involves
a simple technology at low cost, requiring only adsorbents. For the arsenic removal,
natural adsorbents were used in the earlier days but when comparative studies were
conducted between natural and laboratory synthesized adsorbents, the laboratory
synthesized adsorbents were found to be significantly superior [67]. Nowadays,
MOFs are used extensively to treat contaminants from water through adsorption and
are effective in eliminating heavy metals [104].

MOFs are materials that are formed from the nodes through coordination bonds,
an area where several adsorption studies are carried out by researchers [48]. While
using the adsorption technique, it is difficult to separate the nanoparticles from water
post-treatment. This problem was overcome when composites of UiO-66 along with
activated carbon were used with excellent outcomes [95]. Several direct and indirect
factors play a part in arsenic elimination, and optimization of these factors can lead
us to excellent results in the treatment of arsenic. Da Pang and coworkers raised the
possibility of using cottonfiber decoratedwithMOFMIL-88A(Fe) for removing both
organic and inorganic arsenic pollutants fromwastewater [73].MIL-88A(Fe) synthe-
sized by post-synthetic method (MC-1) was coated onto the cotton fiber. Figure 6
shows the adsorption capacity of this MOF toward arsenite and arsenate species at
different pH conditions ranging from 4.0 to 12.0 in which the adsorption decreases
with an increase in pH [73]. Thus adsorption characteristics of arsenic solution are

Fig. 6 Metal organic frameworkMIL-88A(Fe) used for removingAs(V) andAs(III) under different
pH conditions. The maximum removal efficiency of 92.6% for both As(V) and As(III) was achieved
at pH 11. Reprinted with the permission of Elsevier from Pang et al. [73]
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greatly influenced by the pH as the surface properties and anionic species of the
adsorbent are dependent on it.

The removal efficiencies of As(III) were found to be considerably less under
acidic and mild alkaline conditions. But at higher alkaline conditions of around pH
11, the removal efficiency of MIL-88 A (Fe) was 92.6%. Furthermore, studies have
revealed that electrostatic forces are not major factors determining the adsorption
of MIL-88 (Fe). The key factor for treating wastewater and elimination of arsenic
from contaminated water can be explained via adsorption kinetics. The adsorption
kinetics and isotherm can be explained through pseudo-second-order kinetic model
and Langmuir isotherm model, respectively. The maximum adsorption capacities of
MIL-88A(Fe) toward As(III) and As(V) were 126.5 and 164.0 mgg−1, respectively.

The synthesis of ZIF-8 was done via solvothermal method at 25° C and used in the
elimination of arsenic from water [42]. The adsorbent here is ZIF-8 nanoparticles
and it has a surface area of 1063.5 m2g−1. The Langmuir model fits well for the
adsorption and the kineticswhich showed second order. TheLangmuirmodel showed
that the highest adsorption capabilities of As(III) and As(V) were found to be 49.9
mgg−1 and 60.03 mgg−1, respectively. The adsorptive capacities of MOF ZIF-8 at
low concentrations of arsenic and its removal efficiency were also determined. For
the ZIF-8, As(V) concentration decreases rapidly to 2.8 μgL−1 from 100 μgL−1 for
0.06 gL−1 of ZIF-8. From the initial concentration, 100μgL−1 As(III) concentration
can only be reduced to 73 μgL−1 even at a high dose of 0.2 gL−1. This MOF is
found to be stable at both neutral and basic conditions. While SO4

2− and NO3
− did

not exert a considerable influence on the adsorption, PO4
3− and CO3

− were found to
significantly inhibit the adsorption of arsenic species. Here, arsenic forms a complex
with hydroxyl group on the adsorbent (ZIF-8) leading to better removal of arsenic
through adsorption mechanism. Figure 7 explains the adsorption isotherm of As(III)
and As(V) using ZIF-8 [42].

Synthesis of MOF MIL-53(Fe) was carried out through solvothermal method at
room temperature [106].Kinetics and adsorption isotherm-based studieswere carried
out to evaluate the efficacy of MIL-53(Fe) to remove As(V). The capacity to adsorb
As(V) at different initial concentrations (5, 10, 15 mgL−1) was investigated. The
results showed an increase in the adsorption rate during the first 60 min attributed
to a large number of free adsorptive sites and high As(V) concentration gradient. At
higher concentrations, the equilibrium was achieved only after 90 to 120 min.

The pH is again the key factor in arsenic adsorption, andmaximumAs(V) removal
efficiency rate of 99% was achieved at a pH 5, which fell to 87% when the pH was
increased to 11. The best efficiency of MIL-53 (Fe) to adsorb As(V) was achieved at
pH less than 6.9, whereas in an aqueous solution, As(V) is dominated by H2AsO4

3−,
an anionic ligand that interacts with centered Fe3+ cations in the MIL-53 (Fe) frame-
work via Lewis acid–base interactions. Additionally, in aqueous solutions, electro-
static interactions take place between Fe3+ cation and H2AsO4

−. The above two
interactions combine to provide an improvement in the As(V) adsorption capacity
of MIL-53 (Fe). Here, the MOF showed an adsorption capacity of 21.27 mgg−1 on
As(V) in an aqueous solution compared with As(III).
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Fig. 7 Different sorbent dosages of ZIF-8 nanoparticles used for the removal of As(V) and As(III).
As(III) concentration decreases to a lower value at a high dosage of 0.2 gL−1 of ZIF-8, whereas
As(V) concentration decreases rapidly at a lower dosage of 0.05 gL−1 of ZIF-8. Reprinted with the
permission of Elsevier from [42]

Folens K and others used a selective MOF adsorbent Fe3O4@MIL-101, synthe-
sized via solvothermal technique for the elimination of arsenic species in water.
Here MIL-101(Cr) acts as a host for Fe3O4 nanoparticles [24]. The adsorbent used
is a hybrid nanomaterial of MIL-101, which shows great affinity toward both forms
of arsenic. In this study, the As(V) adsorption efficiency was 99 and 97.4% for
Fe3O4@MIL-101 and parent MOF, respectively. However, for As(III), the hybrid
MOF exhibited a good removal efficiency of 94.7% compared with the parent MOF
(22.8%). Adsorption capacities were found to be 121.5 for As(III) and 80.0 mgg−1

for As(V) at pH 7. Generally, water contains other ions like Ca2+, Mg2+, PO4
3−, etc.,

and there is a chance of interference from these ions during adsorption, resulting in
a decreased adsorption efficiency. However, these ions didn’t show any interference
to affect the removal efficiency and selectivity of arsenic for this hybrid MOF. This
study explains the use of MOFs as hosts to make hybrid material having a high
affinity for arsenic even when other ions in water bodies are present.

Fe-basedMOF (MOFMIL-88A) micro rods were synthesized hydrothermally by
Wu. H et al. and used it for the elimination of arsenic from water [113]. The arsenic
removal efficiency was found to be inversely related to the initial concentration of
the arsenic solution. The arsenic removal efficiency of MOF MIL-88A was studied
for different concentrations of As(V) and is shown in Fig. 8 [113]. A pH study
showed a maximum adsorption capacity of 145 mgg−1 at pH 5. The arsenic removal
ratio reaches 98.72 and 94.60% within 20 min at initial concentrations of 10 and 20
mgL−1, respectively, thus proving to be an excellent adsorbent at low concentrations
of arsenic. The results indicate that arsenic removal depends on pH. Lewis acid–base
interactions take place between cationic and anionic species, i.e. Fe3+ and H2AsO4−.
Here, under acidic pH, arsenic is present as an anionic species. The arsenic adsorption
capacity of MIL-88 A is high compared with other adsorbents due to the presence
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Fig. 8 Kinetic data for
arsenic removal using
various initial concentrations
of metal organic framework
MIL-88A. The maximum
removal efficiency of 98.72
and 94.60% is attained at 10
and 20 mgL−1, respectively.
Reprinted with the
permission of Springer
nature from Wu et al. [113]

of a large number of OH− groups on the MIL 88A surface which can exchange with
H2AsO4

− in aqueous solution. This is useful for ion transportation into its inner
regions leading to a greater ligand exchange between H2AsO4

− and OH− ions.
Arsenic removal from water was carried out using MOF-53(Al) synthesized by

microwave-assisted technique [57]. Batch-wise experiments for adsorption kinetics
studies exhibit an initial rate of 80% after 11 h when the pH was 6–9. MIL-53(Al)
shows a rise in the adsorption capacity of 90% at a pH of 8. According to Lang-
muir adsorption isotherm study, the removal capacity was 105.6 mgg−1. The pres-
ence of co-existing anions like Cl−, F−, NO3

−, and SO4
2− does not interfere in the

adsorption efficiency of MOF-53(Al). Meanwhile, the presence of PO4
3− showed a

lower adsorption capacity because of the competition with As(V) for binding on the
MOF. Huang Z et al. carried out arsenic elimination from water using regenerative
adsorbent Zn(II) imidazole framework (Zn-MOF) via solvothermal technique and
exhibited high performance and potential application in wastewater treatment, which
is shown in Fig. 9 [36]. Batch-wise experiments were carried for the elimination of
heavymetals at different pH (1–6). The removal rate of Zn-MOF for hazardous metal
ions is less at lower pH, and the maximum uptake was 718 mgg−1 for AsO4

3− (50
mgL−1). The thermodynamic studies showed that the reaction is endothermic and
can be reused for six cycles.

The hydrothermal technique was used to synthesize CoFe2O4 and
CoFe2O4@MIL-100(Fe), and the application of mesoporous hybrid nanoparti-
cles on arsenic removal was carried out. Here, simultaneous removal of inorganic
arsenate and arsenite was done [117]. Here, inorganic arsenic, helped by its
nanoscale and microporous character, shows a high adsorption capacity at a fast
rate on the prepared MOF. A higher adsorption capacity of 114.8 and 143.6
mgg−1 for As(V) and As(III), respectively, after 2 min was observed for an initial
concentration of 0.1 mgL−1. The model platform for As(V) and As(III) uptake by
UiO-66 derivative is interesting and provides an option to tune the properties of the
p-benzene dicarboxylate derivative.
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Fig. 9 Regeneration of the zinc metal organic framework adsorbent used in the removal of arsenic.
Zinc metal and an organic linker are heated at 110 °C for 18 h to form the framework. Reprinted
with the permission of ACS from [36]

MOF is synthesized by a post-synthetic method [2]. The results show that more
than 90% As(V) oxyanion from a 5 ppm solution was removed after 30 min with
the ratio of As(V): Zr6 as 0.29:1 and overall removal was evaluated after 3 h. For a
demonstration of As(III) uptake, neutral As(III) was captured using thiolated ligand
sites where acetic acid and hydrochloric acid were the modulators. The As(III)
uptake amount of 40 mgg−1 for 1:1 ratio of As(III) and Zr6 was twice that obtained
from AcOH-UiO-66(SH)2. These results indicate that UiO MOFs can selectively
capture neutral As(III) and anionic As(V) in which both recognition motifs can be
incorporated for dual purposes.

ZrMOF (UiO-66) synthesized by solvothermal procedure showed high efficiency
in removing arsenic by adsorption [34]. Here the As(V) and As(III) removal process
was performed batch-wise to study the kinetics of adsorption. The removal of arsenic
is an exothermic process as verified by chemisorption reactions. The effect of pH
and the presence of co-existing ions like CO3

2−, NO3
−, Br−, Cl− on arsenic removal

were studied. Better results were obtained at a pH of 9, and there was no remarkable
effect on adsorption due to co-existing ions. The adsorption capacity of the prepared
MOF was not affected even in the presence of co-existing anions. The BET surface
areas for UiO-66 and UiO-66-(NH2) were found to be 485.9 and 113.4 m2g−1,
respectively. The arsenic removal efficiency was 91.83% for UiO-66, which was
higher than UiO-66-NH2 (73.47%).
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A similar water-stable UiO-66MOFwas also designed byWan P and others using
phase inversion technique and studied for the arsenate removal in aqueous solution
with good results [108]. Zirconium MOF UiO-66 was synthesized by Wang C et al.
using a microwave-assisted method, and it showed excellent arsenic removal proper-
ties [109]. The As(V) removal was 303 mgg−1. Elsewhere, zirconium organic frame-
work was obtained from biomass-derived porous graphite nanocomposites carried
out by in situ method, which was also evaluated for the adsorption of arsenic from
water [72]. ZrCl4 was used for the synthesis of UiO-66, and the concentration of
both forms of arsenic was found reduced to less than 10 μg/L. Water stable Zr-MOF
66 nanoparticles were successfully prepared for the removal of trace quantities of
arsenate from wastewater [99]. TheMOFwas synthesized through solvothermal and
sonication methods from ZrCl4 solution.

MOF ZIF-L, a two-dimensional zeolitic imidazole framework, was synthesized at
room temperature through solvothermal process and used for the efficient removal of
arsenic and other hazardous wastes like dyes, aromatics, etc. [69]. Adsorption study
for arsenite included pH effect study, kinetics, and isotherms. The studies showed that
pH 10 gave the maximum adsorption capacity for arsenite (43.74 mgg−1) compared
with pH 8 (15.50mgg−1). AnotherMOF named as La-MOF 900 derived from porous
carbon and covered with La2O3 was synthesized via hydrothermal method [8]. The
efficiency of As(V) removal using this MOF was 87%.

The oxidation of arsenite species to arsenate was attributed to the presence of
porous carbon in La-MOF-900 while La2O3 components affected the removal of
As(V) through adsorption. A hydrothermal or pyrolysis method was employed to
synthesize a hollowsphere structured compositeNi/Ni@C400and achieved anAs(V)
removal of 454.9 mgg−1 [65] The synthesis of lanthanum-based MOFs was studied
by Prabhu and coworkers using solvothermal technique [79]. Different linkers like
La-benzoic acid, La benzene dicarboxylic acid, La benzene tricarboxylic acid were
used with La(NO3)2.6H20 at 120 °C for 24 h. The As(V) removal efficiency was
found to be 10 mgg−1.

Li Z et al. used acetate modified yttrium-based metal organic framework MOF-
76(Y) andMOF-76(Y) (Ac) and studied the adsorption behavior on arsenic [59]. The
synthesis was carried out through microwave-assisted method, and the adsorption
reaction was carried out at pH 10 using 1.12 mmol of MOF-76 (Y) (Ac) and 0.084 g
of MOF-76(Y) at 80 °C for 24 h. The removal rate of As(V) was found to be 201.46
mgg−1, and the results indicate the potential of MOF 76 (Y) (Ac) to remove highly
concentrated arsenic content from wastewater.

10 Mechanistic Insight on the Adsorption of Arsenic
by Metal Organic Framework

To have better clarity on the arsenic removal, it is important to have a good under-
standing of the nature of interactions taking place between arsenic and the adsorbent



Metal Organic Frameworks to Remove Arsenic … 17

[5, 102]. Generally, there are two processes that occur during adsorption, adsorption
on the surface, and adsorption inside the pores of the adsorbent. In porous materials,
both processes can take place whereas for crystalline adsorbents, adsorption on the
surface alone takes place [15, 20].

Adsorption of toxic elements onMOFs can occur either in themodified or unmod-
ified forms based on surface area and porosity. Physisorption and chemisorption
are both involved in the adsorption of toxic metals on MOFs. Figure 10 represents
the general mechanism of adsorption, which includes electrostatic and coordina-
tion interactions [82]. Generally, the mechanism for adsorption using MOFs can
be explained based on acid–base interaction, π–π interaction [61], ion exchange
[88], and coordination [12]. Previous literature shows that unmodified MOFs gener-
ally have a lower adsorption capacity compared with pristine or composite modified
MOFs. Different characteristics of MOFs are influenced by the adsorption capacity
of both adsorbent and adsorbate. Hence, the original mechanism for adsorption is
comparatively complex and differs for various adsorbents. Thus a molecular level
investigation is essential to understand the exact mechanism [82].

The adsorption mechanism is homogenous for CoFe2O4 and CoFe2O4@MIL-
100(Fe) toward both forms of arsenic [117]. The FTIR spectrum revealed the
stretching frequencies of Fe-O-As group. In thismechanism, themonodentate attach-
ment of the deprotonated As(V) and As(III) is explained using X-ray absorption
spectroscopy data. The –OH groups on the hybrid surface were exchanged by the

Fig. 10 The general mechanism for the adsorption process using metal organic framework. The
adsorption generally occurs through diffusion, chemical bonding, acid–base interaction, coordina-
tion interaction, electrostatic interaction, and van der Waals forces. Reprinted with the permission
of RSC Advances from [82]
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deprotonated inorganic arsenic species through an exchange of hydroxyl ions. The
distribution coefficient of inorganic arsenic species has a telling effect on the effi-
ciency and effectiveness of adsorption of inorganic arsenic. Equation (1–3) gives the
stepwise deprotonation of As(V).

H3AsO4 → H2AsO
−
4 + H+ (1)

H2AsO
−
4 → HAsO2−

4 + H+ (2)

HAsO2−
4 → HAsO3−

4 + H+ (3)

Through hydrothermal exchange with H2AsO4
− and HAsO4

2−, arsenate is more
to be adsorbed on hybrid. Since H3AsO3 is a tribasic weak acid, arsenite shows a
lower hydroxyl exchange capability than arsenate. A natural H3AsO3 was adsorbed
on the adsorbent via hydrogen bonding to give a structure where the surface of
CoFe2O4 was covered with hydroxyl groups. Changes were apparent in the surface
charge when different groups like –FeOH2

+, –FeOH to –Fe(OH)2− and even –
Fe(OH)32− were present with respect to change in pH. A sharp fall in the zeta
potential value of CoFe2O4@MIL-100(Fe) immediately after the adsorption of arse-
nate species is convincing evidence for strong specific adsorption and the formation
of inner complexes on the surface of the adsorbent. The mesoporous nature of the
hybrid adsorbent enables the adsorbed arsenite to penetrate deep into the pores, thus
increasing the efficiency of the MOF. Therefore, this hybrid adsorbent was used to
evaluate the amount of inorganic arsenic present in natural water sources. Figure 11
explains the mechanism of adsorption of As(III) on CoFe2O4@MIL-100(Fe) [117].

Audu and coworkers used Zr MOF (UiO-66) and its analogs to demonstrate a
capture-and-release mechanism where organic linkers were tuned to isolate heavy
metal ions. The metal cluster nodes were used to capture the anionic arsenate ions
whereas the organic linkers were functionalized to bind with the neutral arsenite
ions. The complementary action was, thus, used to remediate water from both types
of arsenic species [2]. The MOF was synthesized with hexazirconium oxo hydroxo
groups as cluster nodes, and the thiol groupswere the linkers. The high stability of this
MOF helps in its reusability and application in the removal of As(III) from anaerobic
groundwater stream. Themechanism proposes strong interactions between the nodes
of UiO-66 and [As(V)O4H3–n]n− oxyanion based on the strong coordination between
the Zr6O4(OH)4 cluster nodes and phosphonates/phosphates, which are isostructural
to arsenates and have similar Bronsted basicities.

Moreover, the incorporation of -SH group containing 1,4 benzene dicarboxylic
acid ligands (p-dithiol terepthalic acid) into UiO-66 enabled binding with the neutral
[AsIII(OH)3]n species, quite similar to the arsenophilicity exhibited by sulfur-bearing
enzymes and chelators with -SH groups. The efficiency of these paired binding
features is excellent when these sites are made easily accessible by either increasing
the pore size ofMOFor by decreasing the particle size ofMOFnanocrystal. Figure 12
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Fig. 11 The mechanism of the substitution of –OH group on CoFe2O4@MIL-100(Fe). A and B
show the arsenic species adsorbed on the hybridmetal organic frameworkwhere substitution of –OH
group has taken place by deprotonation of inorganic species. C shows the adsorption of H3AsO3
on the hybrid via hydrogen bonding to form a multilayer structure for As(III). Reprinted with the
permission of Springer nature from [117]

represents a schematic representation of anionic arsenate binding at the nodes and
neutral arsenite binding with the linkers [2]. The results show the binding of both
the arsenic species into Zr6(O)4(OH)4 to be reversible where it is designed as a
regenerable/reusable adsorbent for capturing pollutants or toxic agents in aqueous
condition.

Adsorption study of arsenic on Zr MOF shows that the bond between Zr and O
plays a major role in the arsenic removal fromwastewater. Spectroscopic studies like
X-ray absorption near edge structure (XANES) were used to establish the oxidation
state of arsenic anchored on UiO-66. The As K-edge XANES results indicate that
the As(III)-UiO-66 adsorption edge is same and in good agreement with arsenite
and arsenate spectra. The first As-O coordination was restored with oxygen atom in
both As(III)-UiO-66 and As(V)-UiO-66. The coordination shell of As(III)-UiO-66
in Zr-As is surrounded by Zr atoms with the coordination number of 1.61 confirming
the presence of bidentate binuclear complexes. On the other hand, As(V) predomi-
nantly forms monodentate mononuclear complexes, as supported by other studies.
In the present study, the As(V) adsorption takes place on zirconyl, whereas 9.10 Zr
atom donates As-Zr shell of As(V) UiO-66 at 2.95 Å. These data do not agree with
monodentate mononuclear complex at (3.5 Å). Therefore, the bidentatemononuclear
complexes are formed from the contribution of As-Zr. Figure 13 explains the binding
modes of arsenite (a) and arsenate (b) to the hexanuclear Zr cluster of UiO-66 [34].
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Fig. 12 The mechanism of arsenate and arsenite on modified metal organic framework coordinate
showing the anionic As(V) groups at nodes, and As(III) acting as a binding agent with the linker.
Reprinted with the permission of RSC Advances from [2]

Fig. 13 Binding modes of arsenite and arsenate species to the Zr cluster of UiO-66 showing (a)
the coordination of As-O restored with oxygen atoms and (b) As(V) predominantly forming a
monodentate mononuclear complex. Reprinted with the permission of Elsevier from [34]
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MOF ZIF-L is another promising and cost-effective adsorbent for the removal of
arsenite from wastewater [69]. In the proposed mechanism, arsenite adsorption on
ZIF-L involves a water-assisted breaking of a part of Zn-N in ZIF-L’s structure to
form activated hydroxyl Zn(Zn-OH) and protonated nitrogen atoms such asC= NH+

and C-NH2
+. These sites provide the positive charges to electrostatically attract the

negatively charged As(III) ions. In the presence of arsenite solution, ZIF-–L will
form Zn-O-As bonds, which is the main transition group for arsenite adsorption.
Thus, the proposed mechanism suggests that the arsenite adsorption on ZIF L occurs
both physically and chemically based on the hydroxyl substitution and electrostatic
interactions.

MOF UiO-66, which is stable in water, has been synthesized as an adsorbent for
removing arsenic from water [109]. The study reports the outstanding results as an
adsorbent for water remediation and also provides insight into the application of
MOFs. Fourier transform infrared spectroscopy analysis showed a significant shift
in the band at 813 cm−1 pertaining to the Zr-O-As group showing the binding of
arsenic on the adsorbent UiO-66. Another peak at 865 cm−1 and 660 cm−1 shows
As-O and As-OH bond confirming the presence of arsenic complexes inside the
UiO-66 framework aided by the formation of Zr-O-As coordination bond. In the
UiO-6 unit cell, there are two types of linkages, namely, Zr-O(μ3)Zr that connects
the Zr centers, and Zr-O-C that links Zr and benzene dicarboxylate. Studies reveal
that the hydroxyl groups on the surface of metal oxide are mainly responsible for
the adsorption of arsenic. Thus, the adsorption takes place primarily on the μ3-O
sites of UiO-66, especially the protonated oxygen connected to Zr in a unit of Zr6
cluster to attract equivalent arsenate species. The adsorption can also take place by
interchanging some benzene dicarboxylate ligands leading to an arsenic complex in
the framework. Methods such as reducing particle size and preparing hierarchically
ordered materials/core shells have been adopted to increase the adsorbent’s surface
area and thus its efficiency. Figure 14 gives an illustration of adsorption mechanism
of arsenate onto UiO-66 [109].

A cost-effective adsorbent, Fe-Co-based MOF-74 was successfully produced via
solvothermal process and used for remediation of arsenic in water [96]. The hydroxyl
and metal–oxygen bonds play a major role in the adsorption process besides the
usual electrostatic interactions. Changes in the position and intensity of the peak
in the infra-red spectrum reveal the interactions between the arsenic species and the
functional groups on the adsorbent. The decrease in the intensity of the spectral peaks
shows the participation of the functional groups like C-O, C = O, M-OH, and M-O
in the MOF. After the adsorption of arsenic, a new peak appears around 800 cm−1

indicating As-O stretching vibration due to the surface adsorption of arsenic.
X-ray photoelectron spectroscopy studies carried out before and after adsorption

of the arsenic species helped to determine the surface composition and to understand
the mechanism of adsorption. The spectra reveal the binding energy of As(III) and
As(V) at 44.3 and 45.2 eV, respectively. After the uptake of arsenic, the peak ofC–OH
was absent due to the substitution of hydroxyl group with H2AsO3

− and H2AsO4
−.

The peaks of M-O and M-OH drastically increased from 18.9 to 34.9% and 13.3 to
33.1%, respectively, post-adsorption. A similar result was also seen for As(V). These
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Fig. 14 The mechanism proposed for the adsorption of arsenate onto UiO-66. The adsorption of
arsenate onto UiO-66 takes place through coordination at hydroxyl group and the organic linker
(benzene dicarboxylate). For clarity, H atoms are not shown in the cluster, and OOC is shown as a
part of the ligand that is bridged to another Zr6 cluster. Reprinted with the permission of Springer
nature from [109]

results explain the formation of a newly formed chemical bond between the metal
and oxygen, and the binding energies of both Fe and Co saw a shift after arsenic
adsorption due to the chemical interaction between cobalt, iron, and arsenic. Thus,
the key active sites likeC-OH,M-O, andM-OHare involved in the adsorption process
in Fe2Co MOF-74 making it an excellent adsorbent for the removal of arsenic ions
from water.

While the study of porous adsorbents to remove heavy metal contamination is of
great interest and significance, adsorbents capable of efficiently removing arsenic are
still scarce [120]. Crystalline Zn-MOF-74 has been effectively used for the removal
of arsenic. Extensive characterizations have revealed the adsorption of NaH2AsO4

andNaH2AsO3. The IR spectra show a stretching frequency ofAs-Obond for pristine
Zn-MOF-74 at 881 cm−1 and 883 cm−1 indicating the presence of both the adsorbed
As(V) and As(III) species. In the Zn-MOF-74 sample, ZnO bond shows a redshift
from 807 cm−1 to 811 cm−1 for As(V) adsorbed sample and 813 cm−1 for As(III)
adsorbed samples due to the presence of new coordination interactions such as Zn-
O-As. After loading arsenic, there is a slight shift in the XPS peak, and the binding
energies have decreased owing to the formation of Zn-O-As bond reverting to the
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original Zn-O-(H2O) bond. Therefore, the adsorption mechanism obtained by IR
and XPS studies reveals the Zn-O-As bond formation between the open metal sites
H2AsO4

− or H2AsO3
− paving a new mechanism for the removal of arsenic. Table 1

gives the details of the different methods adopted for the MOF synthesis and their
efficiency in arsenic removal.

11 Theoretical Study of Metal Organic Framework
and Adsorption

Density functional theory (DFT) is a handy tool to theoretically examine the elec-
tronic and geometric properties of a broad range of molecules and complexes [51].
However, theoretical investigations supporting the adsorption capabilities of MOFs
are notmany [29, 75]. Tarboush and co-workers performedadensity functional theory
study to verify the results obtained from the experiment and also to explain the mech-
anism of adsorption on the surface of metals [99]. The calculations were completed
by Plane-Wave self-consistent field code using Quantum Expresso Software package
for exchange co-relation energy with the PerdewBurke-Ernzerh of functional theory.
The lattice parameter was fixed at 1 × 1 × 1 supercell and Monkhorst pack k-point
grid was set at 1 × 1 × 4. Adsorption sites were investigated, and zinc atom was
determined to be the primary adsorption site, and the secondary adsorptionwas found
to be electrostatically bound to primary adsorbate. In order to optimize nuclear coor-
dinate, Broyden Fletcher Goldfarb Shanno algorithm was used. Crystal structure for
MOF Zn-74 was determined, and the binding energies were calculated using Eq. (4).

�E = EMOF - 74/A − (EMOF - 74 + EA) (4)

where EA and EMOF-74 are the energies of adsorbent and adsorbate, respectively, and
EMOF-74/A represents the energy of the system after adsorption. Density functional
theory calculations for primary and secondary adsorption energies were calculated,
and the presence of multiple layers of water surrounding the open metal sites by
the arsenate entity was established. MOF Zn-74 shows a possible application for
the purification of industrial wastewater containing arsenate species using the above
studies.

Li et al. have investigated the As (V) removal efficiency of zinc-metal organic
framework (Zn-MOF-74) from the aqueous medium [58]. The energy level diagram
obtained from the density functional theory studies clearly confirms the adsorption
of water and As(V) on Zn-MOF-74. The thermodynamic feasibility of adsorption
was well studied using density functional theory calculations. Various parameters
were optimized to support the high adsorption efficiency of the prepared system.
Normally adsorption is exothermic, but the thermodynamics of adsorption in this
particular study followed an endothermic pattern, which occurred mainly because
of the replacement of adsorbed water molecules in the pores of MOF by arsenate
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ions. The observed experimental results were well supported theoretically by density
functional theory calculations. Adsorption energies and geometry calculations too
were performed using density functional theory studies.

Shao P et al. reported enhanced adsorption of zirconia using theoretical study and
quantum calculation leading to a profound understanding of the structural features
and adsorption of As(III) or As(V) [92]. The defect densities of the synthesized
ZrO2 were analyzed using density functional theory calculations. This model was
constructed by tweaking the crystal structure and the lattice parameter of cubic ZrO2

is a = b = c = 5.07 Ao and α = β = γ = 90◦. Later the supercell with six
atomic layers was set at (1 × 2 × 3), which was separately constructed by vacuum
layer of 1.44 Ao. Spin polarization density functional theory studies were based
on generalized gradient approximation—Vosko, Wilk, and Nusair—Beckee Perdew
(GGA-VWN-BP), and adsorption energy (Ead) was calculated. Adsorption is spon-
taneous when Ead value is negative, and non-spontaneous when the Ead value is
positive. Figure 15 represents the density functional theory calculation of As(III)
adsorption [92]. A higher level of lattice defect is observed in UiO-66-SH-A with a
higher adsorption capacity, which is proven from theoretical results.

p-arsanilic acid is an organoarsenic pollutant comprising of both organic and
inorganic groups. An adsorbent with high adsorbing capacity is required to effect

Fig. 15 Density functional theory calculations on the adsorption of As(III) on the ZrO2 with
different lattice defects. The As(III) adsorption was carried out using three models, all of them
showing the adsorption of As(III) onto UiO-66. The binding and optimization take place on the
surface, and the adsorbed values are found to be decreasing with different lattice defects. Reprinted
with the permission of ACS from [92]
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the removal of p-arsanilic acid. Tian C and others synthesized an amine-modified
UiO-67 MOF in which the affinity for the material toward p-arsanilic acid was twice
that of pristine UiO-67 [101]. By using Vienna ab initio simulation package (VASP),
DFT calculations are carried out. Plane cut-off energy was set at 500 eV, which was
examined and found suitable for UiO 67.

The scalar relativistic effects were incorporated into the effective core potential
via explicit mass velocity and Darwin corrections. Hellmann–Feynman forces were
used for ion relaxation, which followed conjugate–gradient algorithm. Geometry
optimization was carried out until the total energy converged to within 1 × 10–4 eV
when the forceswere less than 0.02 eVA−1. Using the Poisson–Boltzmann, solvation
corrections were calculated and dielectric constant for water was ε = 78.4. The
binding energy of p-arsanilic acid with UiO-67 was calculated using Eq. (5).

Eads = Esc − E
′
sc (5)

where Eads is the energy of adsorption, Esc is the energy of the optimized binding
complex, and E

′
sc corresponds to the energy of the system when kept apart. The

density functional theory calculations showed excellent results in the adsorption of
p-arsanilic acid from water.

Density functional theory calculations were also used to study the binding mech-
anism of arsenate species with the MOFs and the exact nature of the interac-
tions between the adsorbent(UiO-66) and the arsenate species[108]. The structure
of the unit cell represents one cluster model with 12 coordinated zirconia nodes.
Energy calculation, structure of arsenatemolecules, and clustermodelwere upgraded
geometrically usinggeneralized gradient approximation. Itwas found that the adsorp-
tion occurs on solid or water interface. All forms of arsenic, viz., H3AsO4, H2AsO4

−,
HAsO4

2−, and AsO4
3− were placed in a cluster model to learn the structure of

complexes. The binding energy of each complex (Eb) is given by Eq. (6).

Eb = EUiO-66-As − (EUiO-66 + EAs) (6)

where EUiO-66-As is the total energy of adsorption complexes in equilibrium state,
EUiO-66 is the independent total energy of clustermodel of UiO-66 and EAs is the inde-
pendent energy of arsenate molecule. The adsorption process of arsenate molecule
with regard to UiO-66 sites shows a negative Eb value, which is an exothermic reac-
tion, and for arsenic uptake of oxygen in Zr-O-C, it is themost favored one.Moreover,
higher binding energy shows a large adsorption process. Density functional theory
simulation shows sorption can occur on various sites on UiO-66 with oxygen in
Zr-O-C, which is the most beneficial site for adsorption.

Adsorption of primary and secondarywater molecules of Zn-MOF-74was carried
out and their open site energieswere calculated to be−58kJmol−1 and−50kJmol−1.
The results obtained are in concurrence with the disclosed results [58]. Adsorptive
removal of As(V) using MOF BUC-17 was reported recently. The thermodynamic
parameters calculated unambiguously proved the spontaneous and exothermal nature
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of the adsorption process [74]. In general, density functional theory calculations are
mainly used to study adsorption phenomenon at the atomic level [116]. Density
functional theory calculations can be applied in the area of heavy metal using MOFs
for remediation process to understand the favorable adsorption sites for heavy metals
in the guest system and its most favorable configuration, exhibited by the guest
system, adsorption energetics, and binding energy calculations. Density functional
theory calculations are also useful in analyzing the pore size distribution of MOFs
[53].

12 Conclusion

Heavy metals like arsenic are perpetual contaminants with severe effects on human
health.According to theWorldHealthOrganization, arsenic contamination inwater is
a critical issue and can lead to various health problems at high concentrations.Arsenic
removal is a challenging task, and the problem has been addressed using multiple
techniques.While all methods have positive and negative aspects to them, adsorption
technology, with its many advantages, is a major tool for controlling arsenic pollu-
tion.MOF-basedmaterials, with their unique properties and large surface areas, show
excellent performance for the removal of arsenic from wastewater through adsorp-
tion. The scope of utilizing MOFs for the removal of arsenic from wastewater has
been substantially expanded due to the advancements made in the synthesis of novel
MOFs. This review provides an insight into the removal of arsenic from wastewater,
with different MOFs, thus alleviating, to some extent, the acute shortage of drinking
water.

Going forward, MOFs will become a targeted area of study for the elimination of
many hazardous substances such as arsenic and other heavy metals from contami-
nated water. The outstanding adsorptive capabilities of MOFs motivate the synthesis
and development of newer materials with wider applications. Computational evalu-
ation of MOFs is also being used nowadays to analyze and obtain the best results in
the discovery of thematerials for the elimination of heavymetals fromwater sources.
While iron and zirconium-based MOF adsorbents have been extensively examined
for the arsenic removal process, the years to comewill seemanymore novelmaterials
developed in the field of adsorption technology.
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Metal Organic Frameworks (MOFs)
as Formidable Candidate
for Pharmaceutical Wastewater
Treatment

Sadaf Ahmad, Bakar bin Khatab Abbasi, Muhammad Shahid Nazir,
and Mohd Azmuddin Abdullah

Abstract In recent years, the pharmaceutical field has significantly achieved
magnificent progress owing to the necessities of human health and life; however,
it also led to drastic environmental issues. The existence of pharmaceuticals in
water bodies, which could cause adverse effects on human beings and environment,
rose up distress worldwide. The pharmaceutical components found in water bodies
have mainly two origins: manufacturing procedures in pharmaceutical industry and
common usage of pharmaceutics. The essence of pharmaceutical wastewater (PWW)
is intricate, including large amount of organic matter, high salt, microbial toxicity,
and non-biodegradable. In sight of water scarcity means, it is essential to figure out
and expand techniques for pharmaceutics derived wastewater in water management.
Nevertheless, numerous treatment methods have been established to serve pharma-
ceutical wastewater including biological treatments, membrane technologies, hybrid
technologies, advancedoxidationprocesses, absorptionmethods, etc.Recently,metal
organic frameworks (MOFs), metallic ions clusters linked with organic bridging
linkers, have been utilized in number of uses such as storage, separation, sensing,
catalysis, adsorption, and many others. The viability of MOFs toward wastewater
treatment (WWT) for various pollutants is fundamentally because of the extreme
porosity, discrete pore structure, and superficial modification. This chapter high-
lights the origin and treatment of pharmaceutical wastewaters via the utilization of
MOFs and their hybrid systems. A brief perception of the future work in the field
has also been discussed.
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1 Introduction

1.1 Origin of Pharmaceutical Wastewater (PWW)

It has been reported that various types of wastewaters originating from different
industries and from domestic usage have been turned into severe danger to the life
of living organisms (plants, animals, and human beings) [25]. Different types of
wastewaters are presented in Fig. 1.

In recent times, the contaminated wastewaters generated in the pharmaceutical
industries have been transformed into one of the major evolving environmental
concerns. Commonly, pharmaceutics are produced with great stability to be opera-
tional in animals and humans. These are ordered into eight crews of beta-blockers,
anti-inflammatory medications, antibiotics, hormones, antiepileptic, lipid-lowering
mediators, anti-depressants, and centered on their healing applications [80].

The existence of pharmaceuticals and personal care products (PPCPs) was
earliest recognized in the Europe and United States in surface and wastewater
in the 1960s. Alarms about their budding harm were upraised in 1999 with the
problem enticing substantial attention when the existence of medicines in stream
was associated to feminization of fish existing waters of wastewater treatment plant

Fig. 1 Various types of wastewater. (Modified after [66])
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(WWTP) outlets [17]. Additionally, a public study has raised public awareness that
organic contaminants in wastewater, counting PPPCs, are existing in 80% of 139
US watercourses [35].

Owing to the fast expansion of the pharmacological chemical industries and the
extensive utilization of health care substances, in recent years, the pharmaceutical
manufacturing process has produced large amounts of toxic wastewater [56].

Pharmaceuticals come into the environment from thousands of distributed places.
Major causes of contamination comprise pharmaceutical areas, WWTPs, landfills,
hospices, and cemeteries [32, 45]. The most examined way for the entrance of phar-
maceutical products into the surroundings is through the municipal WWTP. Human
releases of unmodified or marginally altered Active pharmaceutical components
(APIs) combinedwith polar particles, for instance glucuronides pass inWWTPwhere
these components could be cut and leave the original API in the atmosphere [26].

1.2 Characteristics of Pharmaceutical Wastewater (PWW)

In contrast to domesticwastewater, PWWcharacteristically comprisesmore complex
constituents (counting pharmaceutical products and raw resources), greater COD,
dusky color, greater toxicity, and deprived biodegradability. PWW, chiefly chemical
pharmaceutical wastewater, has now converted into most hard-to-manage and risky
categories of wastewater [39]. Pharmaceutical wastewater possesses small amount of
biochemical oxygen demand (BOD) and greater concentration of chemical oxygen
demand (COD) in pharmaceutical wastewater [8].

The chief features of pharmaceuticalwastewater are: (i) greater quantity of organic
pollutants, greater amount variation and complex configuration; (ii) greater variance
in BOD/COD rate in wastewater; (iii) greater NH3-N amount and Chroma; and
(iv) large suspended solid amount and salinity [43]. Composition of pharmaceutical
wastewaters is presented in Table 1.

Table 1 Composition of pharmaceutical wastewater (PWW). Data from [9]

Constituent (mgL−1) Minimum–maximum quantity Average composition

BOD5 200–6000 2344

COD 375–32,500 8854

BOD5/COD (ratio) 0.1–0.6 0.32

TOC 860–4940 2467

TKN 165–770 383

TDS 675–9320 6.9

NH3-N 148–363 244

SO4
2− 890–1500 1260

Cl− 760–4200 2820
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Pharmaceutical trade industries generate a massive variety of constituents by
utilizing inorganic and organic combinations as raw sources thus increase in enor-
mous size of poisonous and multifaceted organic liquescent wastes contained greater
intensities ofmixed solids. Large and reduced powerwastewater creeks initiated from
industrial unit frequently comprises various kinds of contaminants, counting organic
combinations [13]. Furthermore, numerous kinds of wastewater feature from the
pharmaceutical industries vary critically,many categories of pharmaceutical wastew-
ater are resilient to biodegradation, have greater nitrogen in ammonia amounts, color
depth and toxicity; and are hard to handle [56].

Furthermore, the negative influence of some pharmaceutically active compounds
(PhACs), for example endocrine-disrupting substances (perhaps hormones), seda-
tives, antidepressants, anesthetics, illicit drugs or recreational substances, on aquatic
ecologies has been confirmed in laboratories and naturally. The matter that few of the
more tenacious and slowly decomposing components outreach the drinking water
source and are captivated by plants over irrigation has worsened this issue. These
PhACs, thus, give the impression in the human food chain, surprisingly yet their
quantity is low [28].

2 Methods for Pharmaceutical Wastewater Treatment
(PWWT)

Just like treatment to otherwastewaters, variousmethods are applied for the treatment
of pharmaceutical wastewaters, for instance biological treatment (BT), membrane
technologies (MTs), advancedoxidationprocess (AOPs), adsorptionmethods (AMs),
and hybrid systems (HSs). A summary of different types of treatment processes for
pharmaceutical wastewaters is presented in Table 2.

2.1 Biological Treatment (BT)

Traditionally, bio-based management approaches have been developed for the
management of PWW. These are sectioned into anaerobic and aerobic procedures.
Anaerobic systems comprise anaerobic sludge vessels, anaerobic membrane vessels,
and anaerobic sieves. Aerobic uses comprise sequence batch reactors, membrane
batch reactors, and activated sludge [18].

The wastewater features show an important part in the assortment of biological
methods. Active pharmaceutical ingredients (APIs), solvents, intermediary and raw
resources signify biologically refractory constituents, which influence the efficacy
of biological management systems [17].

In biologicalmethod,microorganisms cut downor transform the complex contam-
inants into lighter arrangements. In both circumstances, the degraded wastewaters
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Table 2 Briefing of diverse treatment means for pharmaceutical wastewater

Sr. number Treatment method Summary References

1 Biological Microorganisms cut down or transform the
complex contaminants/pharmaceuticals into
simpler arrangements

[51]

2 Membrane technology The solutions are sieved/filtered by adsorbing
pollutants/pharmaceuticals on the surface of
membrane

[18]

3 Advanced oxidation Chemical procedure breakdowns the chemical
construction of the pollutant constituents and
splits them into combinations with no
dangerous characteristics

[61]

4 Adsorption Surface protocol contracts mainly with the use
of surface forces. Pollutants/pharmaceuticals
are adsorbed on the surface of adsorbent

[5]

5 Hybrid systems Combination of two methods/processes for
elimination of pollutants/pharmaceuticals

[22]

and transformed into other product, the subsequent product ensures not to generate
secondary contamination. Furthermore, enquiry has been done around the globe for
the deprivation of pharmaceutical wastewater by the assistance of fungi, for instance,
Trametes sp. and Phanerochaete chrysosporium [51].

Moreover, the anaerobic ammonium oxidation (anammox) with abundant prof-
itable advantage and decent management result is an auspicious procedure to elimi-
nateN2 fromantibiotic-encompassingwastewater. The anammoxprocedure is a new-
fangled wastewater treatment expertise been swiftly industrialized recently. Until
2015, 114 whole-scale anammox sewage-managing plans were available around the
globe. The anammoxmethod depends on the distinct physical metabolic appliance of
anammox bacteria and changes ammonia (NH4

+) and nitrite (NO2
–) into N2 in anaer-

obic circumstances. Likened to outdated denitrification/nitrification procedures, no
necessities of aeration and external carbon origins create anammox procedure to
save functioning cost by greater than 60% and decreased energy ultimatum plus
greenhouse gas creation by greater than 25% [21].

In recent decades, numerous researchers have explored the efficiencyofmembrane
bioreactor (MBR) in the antibiotic pollution treatment that evidenced that MBR is
operational in handling antibiotic pollution [14].

2.2 Membrane Technologies (MTs)

Membrane technique is a different physical approach, in which the water is
sieved/filtered by adsorbing pollutants on the surface of membrane. Furthermore,
variable filtration properties (surface charge, hydrophobicity, and pore size), acquired
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Fig. 2 Sketch of membrane filtration for the exclusion of contaminants from pharmaceutical
wastewater. (Modified after [33])

from various membranes, decide the toxins to be detached [18]. General mechanism
of membrane filtration for pharmaceutical wastewater is presented in Fig. 2.

Moreover, numerousmembrane systems and uses have been investigated for APIs
removal at full scale and pilot scale, counting ultra-filtration [10], microfiltration
[73], nanofiltration [55], membrane distillation, reverse osmosis [16], membrane
bioreactors [40], electrodialysis reversal [23], and arrangements of membranes in
sequence [17].

2.3 Advanced Oxidation Processes (AOPs)

Oxidation mechanisms have been utilized predominantly to supplement the tradi-
tional schemes and to improve the management of rebellious organic contaminants.
Advanced oxidation processes (AOPs) are being considered more for wastewater
management because of their great efficacy. AOPs are among the chemical proce-
dures that breakdown the chemical construction of the pollutant constituents and split
them into combinations with no dangerous characteristics. In AOPs, decay ensue by
creating free radicals, for instance hydro-peroxyl (HO2

·), hydroxyl (OH·), sulfate
(SO4

·), and superoxide (O2
−·) that have greater oxidation charge. Furthermore, such

radicals are greatly oxidizing with a little life duration that fashioned in the vicinity,
correspondingly, rapidly outbreak the chemical composites in the wastewater and
end in their oxidation and then disintegration [61].

Successfully, this skill has been employed for the pharmaceutical treatment. A
chemical mediator, for instance ozone, hydrogen peroxide, metal oxides, and transi-
tion metals, is obligatory for AOPs. Furthermore, an energy basis, for instance UV–
Vis radiation, gamma-energy, ultrasound, and electric current is obligatory. AOPs
are founded on free radicals creation, specifically radical of hydroxyl and enable the
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transformation of contaminants to low damaging and greater decomposable combi-
nations. AOPs often comprise ozonation combined with ultraviolet (UV) irradiation
and hydrogen peroxide. Moreover, Fenton and TiO2 photocatalysis have also been
utilized. Varied combinations of ozone, Fenton, hydrogen peroxide, and TiO2 in dark
and light have exposed a variety of appropriate treatment approaches depending on
the characteristics of the pharmaceuticals and financial deliberations [17].

Advanced oxidation process (AOP) is a better effectual management system for
antibiotics than other traditional procedures [50].

2.4 Adsorption Methods (AMs)

Adsorption is described as quantity of materials on the solid body’s surface. Adsorp-
tion is a surface protocol that contracts mainly with the use of surface forces.
Moreover, when a solution consisting absorbable solute (adsorbate) approaches into
contact with a compact-solid (adsorbent), with extremely porous surface assembly
intermolecular forces (liquid–solid) of attraction projects the solute to be concerted
at the surface of solid [5].

Adsorption is utilized as the uppermost class treatment technique for the elimi-
nation of mixed organic contaminants, for instance antibiotics from PWW [5]. The
major characteristics of the adsorbents are robust affinity and greater loading capa-
bility for antibiotics elimination [5]. Adsorbents as rice husks [5], spherical biochar
[71], nano-rod erdite particles (EPs) [62], Graphene [11], graphene oxide (GO) [7],
activated carbon (AC) [74], SiO2 nanoparticle [49], carbonnanotube (CNT) [3], paper
pulp-based adsorbents [54], chitosan, clays, zeolites [37], and low cost: animal waste
and agricultural waste [63]. Different adsorbents utilized for wastewater treatment
are shown in Fig. 3.

2.5 Hybrid Systems (HSs)

It has been witnessed that not any of the procedures could be utilized discretely in
wastewater management tenders with decent finances and greater grade of energy
competence. Furthermore, the data obligatory for the extensive strategy and imple-
mentation are conceivably deficient. Therefore, various hybrid systems have been
offered in order to treat wastewaters [22].

In this context, membrane bioreactors andmembrane filtrations, for instance nano
filtration and reverse osmosis have been integrated for the examination for pharma-
ceuticals elimination, in recent years [18]. Similarly, anaerobic membrane bioreactor
(AnMBR) as a potential substitute for activated sludge procedure has been exten-
sively utilized in management of pharmaceutical wastewater. The blend of conven-
tional anaerobic biological skill and advanced membrane technique expertise holds
the benefits of greater organic elimination, less energy ingestion, and biogas retrieval.
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Fig. 3 Different adsorbents utilized for the exclusion of pollutants from wastewaters. (Modified
after [65])

In unison, effectual parting of hydraulic retention time (HRT) and the sludge retention
time (SRT), less generation of bio-solids and greater permeate value are personified
in AnMBR owing to film segment [14].

In a study, the pharmaceutical treatment was evaluated by grouping of photocat-
alytic oxidation (PcO), electroFenton (EF), and electrocoagulation (EC) procedures.
Furthermore, the effect of procedure order and reaction duration, current concentra-
tion for EF and EC procedures utilizing iron plate electrodes and lastly photocatalytic
action of various catalysts for PcO procedure were inspected in order to remove total
organic carbon [8].

AOPs are frequently combined with other methods, for instance adsorption,
biodegradation, membrane technique, and electro-coagulation to beat the greater
price. AOPs have been utilized in the pretreatment phase to enhance the biodegrad-
ability and reduce the price in the improved combination for excessively polluted
pharmaceutical wastewaters [59]. Furthermore, hybrid-AOPs serve as greatly effec-
tual and influential management for whole antibiotics demineralization. Recently, a
report proposed a novel solution for degradation of antibiotics through three electro
catalytic-grounded devices that are electrochemical flotation procedures, electro-
chemical advanced oxidation, and electrochemical Fenton reagent, though producing
peroxide as intermediary. The systemswere successful to retrieve targeted antibiotic-
Rifampicin from pharmaceutical wastewater [50]. Similarly, pharmaceutical effluent
was treated by a hybrid procedure of adsorption and advanced oxidation. Initially, the
wastewater was reacted with ozone in the existence of H2O2. The effluent comprised
of antipsychotic, anti-cancer, anti-biotic, and anti-depressant drugs. Later, the before-
hand treated wastewater was transported via a chamber of grained activated carbon
(GAC) for additional lessening of the COD [59].
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According to the research and scientific approaches, the application of hybrid
methodologies has been promising for the effectual real pharmaceutical wastew-
ater treatment. Furthermore, different groupings of traditional wastewater treat-
ment procedures have been applied, for instance chemical and physical approaches
(advanced oxidation routes, chemical treatments, adsorption, filtration, and coagula-
tion) besides joined biological courses for the handling of pharmaceuticalwastewater.
Ultimately, all these systems have different COD elimination capacities, contingent
to the kind and organic capacity of the wastewater [13].

3 Metal Organic Frameworks (MOFs) for Pharmaceutical
Wastewater Treatment (PWWT)

Recently, vastly ordered structured, porous, and crystal-like metal organic frame-
work (MOF) has been acknowledged as a promising substitute to cover the practical
restrictions of traditional porous substances and nano-based substances for ecological
uses. Essentially, MOF is a ground-breaking group of hybrid substances comprised
of metal ions having definite coordination geometry with organic bridging linkers
[36], as shown in Fig. 4.

MOF structures could be designed realistically over superficial regulation on the
architecture and pores functionalization. Furthermore, the efficiency of MOFs in
manyapplications (counting catalysis, sensors, energy storage, drug transport system,
separation, gas storage, and nonlinear optics) has been largely documented. The tech-
nical evidences of MOFs have been reported excellently to deliver well information
on their scheme, production, and uses [36].

Additionally, their viability towastewater treatment (WWT) of numerous contam-
inants (perhaps heavy metallic ions, volatile organic compounds (VOCs), pesticides,
and other dangerous compounds) has been comprehensively assessed [36].

Fig. 4 General representation of assembly of Metal organic framework (MOF). (Modified after
[12])
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Fig. 5 Exploitation of Metal organic frameworks (MOFs) as adsorbents, in membrane filtration,
and in advanced oxidation processes to treat various pharmaceuticals. (Modified after [42])

Subsequently, the matrix, which comprises pharmaceutical pollutants are
universal aqueous solution, thus MOFs and their spin-offs water stability, counting
primeval MOFs, MOFs-based constituents (metal oxides, porous carbon, metal over
porous carbon, and porous over metal oxide carbon), MOFs composites, should be a
precedence for the positive applied use [27]. Figure 5 presents application of MOFs
for pharmaceutical wastewater treatment.

3.1 Metal Organic Frameworks (MOFs) as Adsorbents

Porous constituents, for instance activated carbons, zeolites, carbon nanotubes, and
mesoporous silica, have been utilized to eradicate organic impurities. Conversely, as
PPCPs bring developed more miscellaneous, fresh categories of porous constituents
with large surface area, ideal aperture dimensions, framework tuning, and control
over active parts are prerequisite for the effectual elimination of these contaminants.
As a result, MOFs are gifted constituents likened to traditional adsorbents [29].

Furthermore, adsorptive elimination by means of porous crystalline MOFs is an
extremely effectual approach to impound pollutants. Miscellaneous interfaces, for
instance p–p interactions, electrostatic interactions, hydrogen bonding, acid–base
interfaces, connections with metal knots, and hydrophobic interactions, have been
recommended between adsorbates and adsorbents. Various connections have been
recognized for the effectual PPCPs adsorption [29].

Recent researchdevelopments in the adsorptive eliminationofPPCPcontaminants
using MOFs. Numerous intermolecular interactions among MOFs and PPCPs could
upsurge the removal efficacy of PPCPs developments in the adsorptive elimination
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Fig. 6 Application of MOFs as adsorbents for different pharmaceutical eliminations. (Modified
after [27])

of PPCP contaminants usingMOFs. Conspicuously, multiple intermolecular interac-
tions among MOFs and PPCPs could upsurge the exclusion efficacy of PPCPs [29].
Utilization of MOFs as adsorbents for various pharmaceuticals is shown in Fig. 6.

In a study, for the foremost while, adsorption of the characteristic PPCPs through
MOFs, particularly MIL-100-Fe and MIL-101, has been evaluated to comprehend
the features of adsorption and opportunity of utilizing MOF-based adsorbents aimed
at elimination of PPCPs from polluted water. Successful adsorptive elimination of
clofibric acid and naproxen, two characteristic PPCPs, has been planned to utilize
MOFs. Furthermore, adsorption procedure might be elucidated with a humble elec-
trostatic interaction among MOFs and PPCPs. Finally, it could be advocated that
MOFs possessing greater porous nature and big pore aperture could be impending
adsorbents to eliminate injurious PPCPs in pollutedwater [24]. In alternative report, a
newMOF (Basolite A100) showed greater elimination competence to eliminate CBZ
(carbamazepine and salicylic acid) and ibuprofen than the market powder activated
carbon with kinetics of pseudo second order [30].

Furthermore, less cytotoxic UiO-66 (MOF) and NH2-UiO-66 (MOF) have been
stated as effectual adsorbent mediators. Methotrexate salt (MTX) was designated as
the prototypical drug that was adsorbed onto internal pores and networks of MOFs
through diffusion means. Finally, the results presented that UiO-66 possessed great
adsorbing capability and abundant attraction towards MTX [1]. Similarly, UiO-
66 MOFs have been prepared and used for the adsorption-based elimination of
diclofenac (DCF) from PWW. UiO-66-NH2 presented a greater adsorption ability as
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likened to UiO-66 (MOF), and the upsurge of activation temperature could enhance
the adsorption ability of UiO-66-NH2 for DCF. Furthermore, the adsorption proce-
dure of DCF through UiO-66-NH2(MOF) ought to be endothermic reaction and
conformed the kinetics of pseudo second order. Moreover, the adsorption capabili-
ties were 555 mg/g and 357 mg/g for MOFs-UiO-66-NH2 and UiO-66, respectively.
Ultimately, H-bonding and electrostatic interaction perhaps frolicked amajor part for
DCFadsorption.Hence, the synthesizedUiO-66 formedMOFs evidenced to be effec-
tual DCF elimination adsorbents fromwastewater [85]. Furthermore, the comprehen-
sive studies established that theUiO-66presentedgreat permeability and crystallinity.
The MOF has been examined for anti-inflammatory drug (non-steroidal) adsorption,
Ketorolac tromethamine (KTC), from thewastewater. Furthermore, it has been estab-
lished that the supreme adsorption ability of the Uio-66 (729.92mg g−1) was attained
in pH of three. The adsorption process tailed kinetic of pseudo second order with
monolayer adsorption. Ultimately, this study served as an effectual approach for
the elimination of KTC from wastewater and could endorse the perfect design of
progressive MOFs adsorbents for conservational remediation [69].

Furthermore, Zr4+-derived MOFs (imperfect MOF-808 and MOF-UiO-66) have
amazing adsorption aptitude to eliminate anti-inflammation drugs from wastew-
ater. Brilliant adsorption routines have been found for MOF-808 and UiO-66,
the adsorption abilities are the uppermost in a varied sequence of adsorptive
constituents hitherto stated, chiefly for UiO-66. Moreover, it has been explicated
that the cationic imperfect-coordinated zirconium in the group has great attraction
for the anionic pollutant, i.e., chemical adsorption, pharmaceutical, and that the
interface of adsorption amongst benzene ring in pharmaceutical and ligand of MOF
is included to improve the adsorption contacts (i.e., π–π interface). Particularly,
adsorption of indomethacin, ketoprofen, naproxen, ibuprofen, and furosemide by
MOFs; UiO-66 and MOF-808 and π–π interface and the synergetic influence of
chemical adsorption are exceptional, providing tremendously great sorption abilities
and binding energies [46].

Antibiotic remains in produced wastewater have appealed abundant courtesy for
their severe harmfulness to surroundings. In this aspect, a Zr-derivedMOF-PCN-777
has been produced as adsorbent to eliminate cephalexin fromwastewater. Credited to
synergistic influence of the coordination contact and electrostatic interface amongst
cephalexin and MOF framework, PCN-777 displayed a great adsorption capability
442.48 mg g−1. Furthermore, the adsorption progression charted pseudo-second-
order kinetics. Additionally, this MOF could be recycled through an easy technique.
Consequently, PCN-777 might have a gifted potential use in decontamination of
wastewater comprising trace antibiotics [81]. Furthermore, great effectual elimi-
nation of chloramphenicol (CAP) drug from pharmaceutical wastewater has been
observed through MOF-PCN-222. In this regard, PCN-222 revealed a big adsorp-
tion aptitude of 370 mg g−1 and more significantly, adsorption equilibrium could be
rapidly attained at simply 58 s. In addition, approximately 99% of CAP could be
detached from wastewater in less quantity (counting the concentrations present in
actual water). Additional exploration predicted that hydrogen bonding, electrostatic
force, and the distinct pore assembly of PCN-222 all exhibited significant impacts on
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Fig. 7 Different forces/interactions involved in adsorptionmechanismofMOFs for pharmaceutical
wastewater treatment. (Modified after [48])

the brilliant elimination of CAP [82]. Figure 7 shows the important forces or interac-
tions tangled in the adsorption mechanism of pharmaceuticals present in wastewater
on the surface of MOFs.

Therapeutic medications are vital and crucial part for life. Wide-reaching, antibi-
otics are extensively utilized for prophylactic and therapeutic in veterinary and
human medicine. Subsequently, they are obstinately unconfined into the atmo-
sphere as wastewater from hospital, industrial, and domestic wastes. Exploration has
demonstrated the release and existence of pharmacological medicines in wastewater
management plants, lakes, and rivers. An adsorbent MOF [Cu(Glu)2 (H2O2)]·H2O
has been manufactured by the action of glutamic acid and Cu2+. The prepared
MOF was examined for ciprofloxacin adsorption present in PWWT. The adsorp-
tion front data discovered the capacity to adsorb of the MOF [Cu(Glu)2(H2O)]·H2O
was found to be 61.35mg g1− for ciprofloxacinmedication. Furthermore, the adsorp-
tion of ciprofloxacin tailed a pseudo-second-order kinetics, suggesting the existence
of physical sorption. Consequently, the outcomes recommended the usage of MOF
[Cu(Glu)2(H2O)]·H2O by way of an adsorbent for ciprofloxacin elimination from
the wastewater [53].

TwoMOFs,MOF-(525 and 545), contained Zr-oxide groups and porphyrin places
in diverse structures have been utilized for adsorption-based elimination of the
largely utilized organic pollutant sulfamethoxazole (SMX) from wastewater. More-
over, both MOFs proved to be highly effectual for adsorption of sulfamethoxazole
showing supreme adsorption abilities of 690 and 585 mg g1− for MOF-545 and
525, correspondingly. Interestingly, the former rate is the uppermost adsorption
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capability testified up to now for adsorption of sulfamethoxazole particles on any
adsorbent. In addition, the adsorption of sulfamethoxazole led over a collection of
typical MOFs with dissimilar physicochemical characteristics and thorough anal-
ysis established that great adsorption capability of the porphyrin-based MOFs is
attained by hydrogen bonding amongst sulfamethoxazole particle and the nitrogen
spots of the porphyrin components in the MOFs, the great surface area, and π–π
interaction. Furthermore, the adsorbents were simply renewed by modest washing
by acetone and recyclable with more than 95% effectiveness during four-repeated
adsorption–desorption sequences [79].

Mounting organic pollutants, for instance endocrine disrupting compounds
(EDCs), have been turned into serious concern due to their presence in wastewaters.
The detailed arrangement of progressive treatments uniting multi-barrier treatment
schemes is desired to remove emerging pollutants, for instance EDCs. Remarkably,
numerous studies naked that innovative treatment constituents, for instance MOFs,
are more effective for the exclusion of minor quantities of EDCs in wastewater.
Furthermore, the technical virtues of MOF constituents have been greatly explored
to give logical statistics and consideration of their ultimate strategy and groundwork
course. Consequently, the green fabrication of MOFs that are water stable has been
established, with numerous remarkable uses, for instance adsorption and separation
[2].

Current research and growth exertions have shown evidence of concept elabora-
tions of the utilization of MOFs as water soluble, operational adsorbents in wastew-
aters. To enhance current development in MOF as adsorbent, frugally practicable
MOF adsorption procedures should be industrialized and tried on full scale [38].

3.2 Metal Organic Frameworks (MOFs) Catalyzed Advanced
Oxidation Processes (AOPs)

Advanced oxidation progressions and adsorption have pursued the utilization of
MOFs in water decontamination. Furthermore, numerous efforts have been done
on eliminating the pollutants of industries, and an extensive variety of catalytic
researches have lately been accomplished on the decontamination of water via
MOF-aided AOPs (Fenton-founded, photocatalysis, and SO4

•−centered oxidative
schemes). Particularly, two recommended main photocatalytic reactions are the
metal-oxo bunches excitation inMOFs and charge transfer in ligand-to-metal through
adsorbing photons in the presence of UV or/and normal light radiation [68].

Active and water-stable MOFs are significant resources for extenuation of water
toxins through catalysis. For instance, a very water-stable cobalt MOF, specifi-
cally bio-MOF-11-Co, has been utilized as a catalyst for effective peroxymonsulfate
activation in deprivation of sulfachloropyradazine and para-hydroxybenzoic acid.
Furthermore, bio-MOF-11-Co displayed prompt deprivation of both sulfachloropy-
radazine and para-hydroxybenzoic acid and could be recycledmany periods deprived
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of dropping the capacity. Consequently, the accessibility of electron opulent nucle-
obase adenine armored the kinetics of reaction via electron donation along with
atoms of cobalt inside the structure of bio-MOF-11-Co [4].

Recently, iron-derivedMOF that isMIL-88-A has been investigatedmainly due to
its facility to make active persulfate (PS) catalytically in an AOP for the deprivation
of naproxen (NPX) in wastewater. Outcomes displayed that (i) MIL-88-A served
as a decent PS activator while 65–70% NPX degradation was perceived, (ii) MIL-
88-A proved to be reusable for four consecutive rounds with noteworthy elimination
degree, (iii) phosphates posed no influence on the NPX degradation but, bicarbonates
showed a robust reticence, (iv) activation of PS and degradation of NPX found to be
best under acidic circumstances, and (v) PS produced SRs and HRs in the middle and
was exposed to be greater oxidant than hydrogen peroxide in the existence ofMIL-88-
A. Consequently, the system established that deprivation of NPX stood at the MIL-
88-A surface creating the heterogeneous catalysis AOP-grounded expertise fruitful
for the exclusion of pharmacological composites from wastewater [19]. General
representation of MOF catalyzed advanced oxidation process is presented in Fig. 8.

A distinctive iron-grounded MOF (namely MIL-100(Fe)) has been selected as
a specimen in the peroxydisulfate (PDS) activation for the elimination of antibi-
otic contaminants. Remarkably, an effect of auto-acceleration has been detected in
the mechanism of activating PDS with MIL-100(Fe) assisted by visible irradiation.
Comparatively, the decaying competence of sulfamethoxazole (SMX) attained in
the normal light aided activation of PDS by MIL-100(Fe) procedure was improved
by 5.6 and 2.1 terms to the procedures with photo-activated PDS unaccompanied
and iron-based MIL-100-activated peroxydisulfate single-handedly. Furthermore,
the photo-generated electrons in MIL-100(Fe) caused the reduction of fundamental
Fe3+ to Fe2+ that sequentially enhanced the activation of PDS competence in the
creation of O2

−· and ·OH radicals for the elimination of sulfamethoxazole [78]. On

Fig. 8 General
representation of Metal
organic framework catalyzed
advanced oxidation.
(Modified after [57])
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the other hand, a brilliant Fenton-like catalyst based on CUS-MIL-100(Fe) (MOF)
and MIL-100(Fe) (MOF) has been utilized for sulfamethazine (SMT) degradation.
Fascinatingly, the outcomes displayed that CUS-MIL-100(Fe) efficiently degraded
sulfamethazinehaving100%elimination competence in 180min. Furthermore,CUS-
MIL-100(Fe) demonstrated greater catalytic action likened toMIL-100(Fe) for decay
of SMT. Ultimately, the improved catalytic action could be credited to the integration
of Fe2+ and Fe3+ CUSs, the huge surface area and construction of mesoporous struc-
tures. Finally, CUS-MIL-100(Fe) showed decent constancy and recyclability [70].
Similarly, MIL-100(Fe) has also been utilized as an effective catalyst (photo-Fenton)
for eliminating a few PPCPs (ibuprofen, theophylline, in addition to bisphenol A)
in UV–Vis. Lately, research has validated the efficiency of MOF heterogeneous
catalysts meant for photo-Fenton elimination of PPCPs [44].

Furthermore, a trivalent Fe-tartaric acid MOF (T2-MOF) has been effectively
utilized as a catalyst for succinonitrile ozonation. Indeed, T2-MOF possesses clear
crystal features and even structure. Thus, T2-MOF unveiled robust catalytic effi-
ciency in succinonitrile ozonation. Furthermore, in the process, the retrieval rate
for COD of 100 mg/L succinonitrile extended 73.1% in just 180 min that was
67.3% greater than that found in the procedure deprived of catalyst. Finally, the
Fe2+ amount at different time intervals confirmed that the homogeneous catalysis
happened concurrently with heterogeneous catalysis [75].

Likened to conventional AOPs, methods in which MOFs are taking part display
tremendous efficiency in pharmaceuticals degradation. Thus, MOFs show a signifi-
cant part in the progress in AOPmethods, for instance Fenton photo-electro catalysis,
ozone oxidation and AOPs comprising sulfate radicals [84].

3.3 Metal Organic Frameworks (MOFs)-Hybrid Systems
(HSs)

Among different potential expenditures, MOFs and MOF-derived nanostructured
constituents are widely utilized to eliminate environmental pollutants, mainly PPCPs
from the wastewaters. The MOFs-derived nano-adsorbents have gained greater
interest because of their exclusive construction, physicochemical characteristics, and
great adsorptive presentation [64].

MOF-based hybrid systems and composites have been extensively applied in
the elimination of pharmaceuticals from wastewater. Different hybrids/composites
grounded onMOFs have been prepared and characterized for the successful elimina-
tion of pharmaceuticals. For instance, calcium alginate/MOF microsphere compos-
ites have been utilized for the levofloxacin (antibiotic) adsorption, from wastewater.
Interestingly, great adsorption ability of 86.43 mg g1− has been attained, which was
far larger than separate calcium alginate or UiO-66. Furthermore, the recyclability
experiment established greater than 70% adsorption of levofloxacin subsequently for
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five consecutive series [47]. Likewise, in another research, composite of chitosan-
sodium alginate derived aluminum-basedMOFhas been arrayed for the alleviation of
bisphenol A present in the wastewater. Tentative outcomes displayed greater adsorp-
tive presentation per Al-MOF/SA complements. Furthermore, principal processes
tangled in adsorption were cation–π interface,π–π stacking, and hydrogen bonding.
Finally, as-prepared blobs were renewed and reused with the preservation of greater
than 95% performance for adsorption next five constant bunch sequences [47].

A decent spongy metal organic framework composite has been produced
by joining MIL-101(Cr) to graphene oxide (GnO). In addition, MIL-101/GnO
composite’ porosity was amplified by putting together graphene oxide with theMIL–
101 equipped to a definite ratio. Furthermore, the MIL-101/GnO amalgams were
applied for adsorption of anti-inflammatory compounds, for instance ketoprofen
(KTP) and naproxen (NAP) from wastewater. Interestingly, MIL-101/GnO compos-
ites showed greatly enhanced adsorption headed for both KTP and NAP comparative
to virgin MIL-101 and market-activated carbon. Furthermore, MIL-101/GnO(3%)
possessed 1.4 and 2.1 times than those of original MIL-101 and market activated
carbon, respectively. In addition, the enriched adsorption efficiency for NAP had
been attributed to hydrogen bonding owing to the attendance of numerous functional
clusters in the composites. Moreover, MIL-101/GnO could be renewed deprived of
severe descent by ethanol wash and could be reprocessed for consecutive adsorption.
Consequently, the MIL-101/GnO composite had been recommended as an effectual
adsorbent to exclude anti-inflammatory compounds from wastewater [67].

With the intention of investigating the Excellency of MOF-composites for the
elimination of tetracycline present in pharmaceuticalwastewater, classicMOFs (ZIF-
67, ZIF-8, Fe-BTC, and HKUST-1) had been incorporated into economic matrix
of chitosan. Initially, composites blobs of metal oxide or metal hydroxide/chitosan
as of the metallic salt-based chitosan blend were employed as MOF predecessor
that provided even and firm MOF filling into chitosan. Among these, ZIF-8-based
chitosan showed decent adsorption efficiency for tetracycline antibiotic. Further-
more, the adsorption tailed pseudo-second-order kinetics and the supreme adsorption
capability could touch 495.04 mg g1−, which was greater than many of the MOF-
derived or regular polymer-derived adsorbents for tetracycline. Additionally, the
exclusion competence of ZIF-8-derived chitosan hybrid for tetracycline was found
to be greater than 90% even after 10 times adsorption–desorption rounds. Ultimately,
the adsorption procedure had π–π stacking, hydrogen bonding, and electrostatic
interface [81].Generally, in viewof the less reusability of fine adsorbents, an effectual
technique was required to construct fresh three-dimensional (3D) adsorbents. Hence,
by considering the benefit of the iron 3D framework and commendable adsorption
efficiency of the Fe-grounded MOF (Fe-MOF), a sequence of Fe-founded MOFs
(MIL-53(Fe), MIL-101(Fe), and MIL-100(Fe)) against the iron framework had been
investigated for the elimination of tetracycline (TC). Unsurprisingly, the Fe/MILs
exhibited the greater adsorption capability of powdered MILs(Fe), whereas tremen-
dous reprocessing presentation was successfully achieved. Furthermore, iron-based
MIL-100(Fe) unveiled the uppermost efficiency for tetracycline (TC), greater than
95% tetracycline might be detached at fifth cycle of adsorption. Moreover, protocol
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designated that the hydrogen bonding andπ–π connections flanked by TC, and iron-
based MIL-100(Fe) served an indispensable part in the mechanism of adsorption.
In addition, the adsorbent iron-derived MIL-100(Fe) was found to be water stable
with minor iron leakage in solution. Interestingly, even in real wastewater (pharma-
ceutical wastewater, river water, and tap water), great efficiency was exhibited by
the adsorbent Fe@MIL-100(Fe). Ultimately, this research delivered a newfangled
technique to make adsorbents of 3D MILs(Fe) for wastewater treatment [39].

Magnetic nanocomposites based on MOFs have grown interest due to their
simplistic construction, amendment, expedient retrieval, and eco-friendly. Further-
more, these also possess notable landscapes, for instance enormous surface area,
minor size, dispersion, and distinct adsorptive aptitude. Prominently, the solid–liquid
retrieval could be effortlessly comprehended utilizing an exterior magnetic source.
Subsequently, these nanocomposites based on MOFs could be regularly engaged as
magnetic adsorbents to efficiently detach and supplement an extensive collection of
minor components in conservational samples. Furthermore, the adsorption’s speci-
ficity and electivity of projected materials could be achieved by the amendment of
such MOF-magnetic nanoparticles [64]. General scheme of magnetic exclusion of
pharmaceuticals from wastewater is shown in Fig. 9.

A magnetic MOF Fe3O4@(Iron-(benzene-1,3,5-tricarboxylic acid) has been
made, evaluated as a magnetic adsorbent to serve in dispersive solid-phase extraction
(DSPE) of numerous extensively utilized blood phospholipid controllers (namely,
clofibrate, clofibric acid, bezafibrate, gemfibrozil, plus fenofibrate) present in
wastewaters. Furthermore, the highest absorption abilities were found to be 620.3mg
g1− for clofibric acid, 197 mg g1− for bezafibrate, 537.6 mg g1− for clofibrate,
223.2 mg g1− for fenofibrate, and 288.7 mg g1− for gemfibrozil. Endorsements
of the improved magnetic DSPE technique for investigation in sharp wastewater

Fig. 9 General representation of magnetic removal of pollutants fromwastewaters. (Modified after
[72])
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provided relative retrieval values equal to 70% (clofibrate) and between the array
of 80% and 100% for fenofibrate, gemfibrozil, clofibric acid, and bezafibrate [60].
In another approach, a magnetic copper-derived MOF Fe3O4/HKUST-1 had been
produced andutilized as an actual and reusable adsorbent for the elimination of antibi-
otics: ciprofloxacin (CIP) andnorfloxacin (NOR)present inwastewater. Furthermore,
Fe3O4/HKUST-1 possessed great adsorption degree, and it was observed that NOR
and CIP could be detached in 30 min. Additionally, the greatest adsorption abilities
of the aggregates toward NOR and CIP touched as tall as 513 mg/g and 538 mg/g,
respectively, far greater as compared with most of the stated adsorbents for these two
antibiotics. Furthermore, the magnetization saturation worth of composite was found
to be 44 emu/g that was enough for the parting of the adsorbent-Fe3O4@HKUST-1
from wastewater by the use of an outside magnetic arena. Furthermore, the prepared
magnetic hybrid displayed a decent recyclability with the capacity of adsorption less-
ening only a little after recycle for 10 cycles. Consequently, such outcomes desig-
nated that the Fe3O4@HKUST-1magnetic composites might be an auspicious adsor-
bent toward refinement of antibiotics from wastewater because of its great adsorp-
tion proficiency, debauched kinetics, calm separation from wastewater/water, and
outstanding reusability [77]. Moreover, MIL-53(Fe) MOF along with its magnetic
hybrid MIL-53(Fe)/Fe3O4 has been applied for the elimination of doxycycline from
wastewaters. It was found that under adjusted circumstances, the adsorption ability
of 322 mg g−1 was attained. Furthermore, the utilized adsorbent was effortlessly
parted from the water by putting on outside magnetic arena. The renewed adsorbent
reserved most of its original capability after six renewal periods [52].

Recently, MOF-derived hybrid systems have gained extensive attention due to
their double benefits. For example, MOFs have been united with ultrafiltration (UF)
to form hybrid systems (MOF-UF) for the treatment of selected pharmaceutically
active compounds (PhACs), counting α-ethinyl estradiol and ibuprofen. Owing to
the great porosity of MOFs, the hybrid systems exhibited enhanced capacity for
eliminating pollutants and decreasing entangling in UF-adsorbent hybrid modules.
Furthermore, the typical retaining rate of PhACs in (53.2%) MOF-based UF was
improved comparative to the (36.7%) UF only. Ultimately, the PhACs had been
successfully adsorbed onto the MOF surface because of their robust porous features.
Moreover, in comparison of MOF-based UF and activated carbon-based UF (AC-
UF) hybrid schemes, the typical retaining rates of PhACs for the PAC-UF came out
to be lesser than MOF-UF [34].

In contrast, MOFs-derived nanofiltration (NF) films have also been fabricated for
the effectual elimination of organic pollutants from wastewater. For instance, MOF-
UiO-66 derived widespread, efficient, and malleable nanofiltration (NF) membrane
had been investigated antibiotics parting. Initially, the substratum was built via two
periods; (i) graphene oxide (GO) sheets doping in solution of membrane casting
comprising polyacrylonitrile (PAN) thus founding 2D-3D linking pores by process
of phase inversion (GO@PAN) and (ii) dipping of the substrate of GO@PAN in
solution of dopamine for self-polymerization to chain macromolecules that acquired
good attuned and malleable substrate (PGP). Furthermore, the synthesized UiO-
66 was coated onto the substrate of PGP through vacuum-aided filtration. Owing
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Fig. 10 General representation of metal organic framework-based thin film composite membrane.
(Modified after [31])

to stability toward water, negative charge, and permeable structure of UiO-66, an
excellent filtration presentation of the thin film composite (TFC) membrane of UiO-
66/PGP was attained. Furthermore, the refusal rates for antibiotics (Oxytetracycline,
Ciprofloxacin, and Tetracycline hydrochloride) were found to be greater than 94%.
Consequently, the equipped UiO-66/PGP TFC membrane proved to be capable of
wastewater handling, purification, and separation, in numerous industrial and phar-
macological arenas [20]. General representation of MOF-based TFC membrane is
shown in Fig. 10.

As nanofiltration can serve as an expedient means to eliminate pharmaceuticals
in wastewater. The efficiency of the supremely utilized TFC layers, characteristi-
cally having a reedy polyamide-polymer (PA) cover, could be enhanced utilizing
thin film nanocomposite (TFN) films gained after the institution of filler inside the
PA layer. For instance, to regulate the filler incorporation, two types of MOF-based
PA bilayer TFC (BTFC) films, HKUST-1 (MOF)-based PA and ZIF-93-based PA
have been manufactured. Initially, the interfacial production was employed for the
fabrication of aMOFfilm, and then, synthesis of PAfilm through interfacial polymer-
ization. Furthermore, prepared BTFC films had been evaluated in the nanofiltration
of naproxen and diclofenac present in wastewater attaining a supreme rejection of
≥ 98% while HKUST-1 was applied. Consequently, the enhancements were linked
to the thickness of PA layer, membrane hydrophilicity, membrane roughness, and
MOF porosity [58].

Recently, MOF-based membranes have been utilized in extensive applications
because of their decent stability and greatly adaptable pore structure. Particularly,
both the great permeability and selectivity MOF have occasioned in the increasing
uses ofMOF-basedmembranes towardmembrane-dependent liquid segment parting,
specifically for management of wastewater and water renewal [39].
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4 Conclusion and Future Perspective

Earth waters are polluted by pharmaceutically active compounds (PhACs) that are
considered as prevalent pollutants. There is mounting proof that lingering phar-
maceuticals could consequence in adverse effects on non-targeted beings at low
concentration intensities. Hence, the operative management of chemical-derived
pharmaceutical wastewater is of pronounced importance to resolve water ecological
contamination.

Indeed, the distinguished residual drug amount in wastewater is inferior to other
contaminants, but the detrimental influences on aquatic creatures, environment, and
human life could be very imperative. Thus, employing appropriate treatment schemes
for pharmaceutical wastewater has lately grown interest by researchers/scientists. In
fact, there are numerous treatment procedures for industrial wastewater, for instance
chemical, biological, and physical procedures. The small quantity of BOD and large
COD in pharmaceutical wastewater pose an argument for biological treatment proce-
dures, as resistant chemical constituents in wastewater might extremely limit the
microbes’ activities. Hence, physical and chemical procedures apart from biological
methods are required to manage this type of wastewater.

Among the effective chemical and physical processes utilized in industrial
wastewater management: are efficiently eliminating stubborn pollutants from
wastewaters assisted with metal-organic frameworks (MOFs). Research reports have
proved that MOFs could eliminate the pharmaceutical pollutants from wastewater
using adsorption or/and as a catalyst in advanced oxidation processes. Furthermore,
the hybrid systems of MOFs have widened their potential to serve as a formidable
candidate in wastewater treatment generated by pharmaceutical industries. These
hybrid systems result in more efficiency as compared with individual MOFs.

Nevertheless, the elimination of PPCPS by means of MOFs is unfortunately in its
prompt phases. Hence, more research and attention is required in order to achieve
excellence in the utilization of MOF-based systems for the treatment of pharmaceu-
tical wastewaters, as these wastewaters have become one of the alarming concerns
of the environment.
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Performance of Metal-Based
Nanoparticles and Nanocomposites
for Water Decontamination

M. K. Mohammad Ziaul Hyder and Sajjad Husain Mir

Abstract Water comprises an integral component of human life and its accessibility
is essential for all life in the entire planet. Due to climate changes and other man-
made activities, the world is facing shortage of drinking water. There are a number of
pollutants present in the water such as gases, chemicals and heavy metals. Therefore,
it is imperative to decontaminatewater for a healthy planet. There are numerous prob-
lems and challenges of wastewater treatment. For better ecological and health issues
somemeasures are required to take in advance to avert possible evil or to secure good
results. Metal-based nanomaterials have found exceptional use in the decontamina-
tion purpose due to their nature which arises from nanosize, such as better adsorption
and catalytic activity. Metal-based nanomaterials can productively remove different
contaminants from water and they have been effectively applied in decontamination
of water. Due to having larger surface area and having ability to work at low concen-
tration these metal-based nanomaterials are very efficient in wastewater treatment.
Nanoengineered nanoparticles impart a promising and effective treatment method
to wastewater and thus can be adapted simply. Modern techniques for treatment of
wastewater must be cost-effective and accessible for commercial use. In this chapter,
we outline the role ofmetal-based nanoparticles and nanocomposites applied inwater
decontamination.Moreover,we discuss the advantages, disadvantages, shortcomings
and future prospects associated with these nanomaterials.
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1 Introduction

Water is the basic component required for living being on earth. Safe and clean
water is vital for direct uses and improved and good health of people. Besides
water for drinking and other domestic uses, the second significant application of
water is irrigation. The productivity of agriculture largely depends on water and thus
indirectly affects food security of the population. There are other precious uses of
water apart from human direct consumption and food production.Water for washing,
cooking, sanitation and cleaning are essential preconditions for hygiene and health.
Hydropower generation and watering of livestock are other prolific applications.
Collectively, these principle applications of water infer that the abundance of water
in superior quality and smooth supply has a great influence on social development.
The change in climate conditions and increasing pollution are making water even
scarce, particularly in developing countries. Currently, FAO (Food and Agriculture
Organization) published that by 2025, fifty percent of the world will be living in
water-scarce area creating more demand to use wastewater directly or indirectly
(FAO, United Nations 2020). Table 1 presents types of water contaminants with
origins and their impacts on health and environment.

Water sources are diminishing gradually because of overuse and misuse. Most of
the normal sources of freshwater such as lakes, rivers, canals, reservoirs and rainwater
have been found to be pollutedwithmany types of precarious and poisonousmaterials
or organic waste from different industries, household waste or originated from the

Table 1 Types of water contaminants with origins and their impacts on human health and
environment

Water Contaminants Origin of Contaminants Impacts of contaminants

Sewage and contaminated
water [197]

Domestic wastewater Diarrhea, cholera, typhoid, etc.

Macroscopic pollutants [93] Marine debris Environmental pollution

Organic pollutants (Wang
et al. 2019)

Fungicides, detergents,
insecticides

Endangering aquatic life,
dysgenic

Radioactive contaminants
[24]

Different isotopic elements Carcinogenic, tooth decay,
damages bones and skin

Industrial contaminants
[131]

Municipal contaminants Induce air and water
Pollution

Pathogens [265] Germs Diarrhea, cholera, typhoid, etc.

Suspended solids and
sediments [206]

Land demolition, mining, land
cultivation, etc.

Endangering aquatic life such
as fishes, insects and affecting
fish spawning

Inorganic contaminants
[234]

Inorganic salts, Heavy metals,
Mineral acids, Trace elements

Damage to flora and fauna in
aquatic, public health issues

Agricultural contaminants
(Tang et al. 2016)

Chemicals used in farming Freshwater pollution
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various point [139, 165]. These contaminants are detrimental to the people and other
living beings and devastate the environment with permanent impacts [87, 204, 248].

Present wastewater control frameworks have generally been effectively examined
though there are plenty of impediments [42]. For example, there is wide interest in
developing advanced technologies to relieve toxicity and to ensure a secure living
environment for humans. In this condition, several methods have been utilized such
as chemical precipitation [112], electro-dialysis [83], reverse osmosis, ion exchange
[58], adsorption [103, 104, 119], solvent extraction [289] and ultrafiltration [6]. The
abovementioned technologies are expansive, inadequate and require a large amount
of chemicals. These conventional methods of water treatments are no longer produc-
tive to eliminate many of the contaminants found in water with a view to attain water
quality benchmarks. They regularly depend on a centralized framework, which the
distribution and discharge processes are not sustainable for present day’s require-
ments [191]. Upon this issue, nanotechnology could be used as an improved method
to treat wastewater due to the size of nanomaterials which have the bigger surface
area, high reactivity, fast kinetics; specificity to contaminants and, another advan-
tage is the cost of nanomaterials that are going to decrease [290]. It is assessed
that approximately 663 million people don’t have access to potable water, mainly in
developing countries (World Health Organization 2017). So, it becomes important to
ensure basic water treatment to these people, where water treatment often is not avail-
able. The removal of pollutants from contaminated water is essential to avoid harm
to public health and to the ecosystems [213]. On the aforementioned problems, the
present review pointed on the utilization of metal-based nanomaterials to upgrade the
standard of water with respect to the removal of metals, pathogens, salinity, oil and
discuss the antimicrobial activity and the possible risks that these nanomaterials can
affect the environment. Nanofiltration, nanoadsorbent, nano photocatalyst, disinfec-
tion and sensing with nanomaterials are the main techniques to treat wastewater by
nanotechnology. This chapter emphasizes the method in wastewater control system
with metal-based nanoparticle and attempts to point out the modern technology,
outlooks, advantages and disadvantages of this emerging field.

The developing field of nanotechnology offers potential advancements to decon-
taminatewaterwith cost-effective, improvedworking capability in removing contam-
inants and recycling capacity. Over the years, nanoparticles are effectively used in
several fields such as in medicinal science, photocatalysis, etc. Presently, as the
world confronting vital challenges of safe and clean water, scientists discovered
that nanomaterial is a way superior choice wastewater treatment since it has some
basic characteristics with greater surface area, nanosize, better reactivity [279], tough
mechanical criteria, good porousness, hydrophilicity, dispersity. Some organic and
inorganic contaminants, heavy metal like Hg, Cr, Pb, etc,. and numerous detrimental
pathogens are presented to be effectively removed by utilizing distinctive nano-
materials [64, 153, 265]. Currently, the wastewater decontamination processes are
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Fig. 1 Different categories of nanomaterials that are used for safe and sustainable water supply
(Reproduce with license from American Chemical Society, Copyright (2013))

progressing with the advancement occurring in nanomaterials such as nanoadsor-
bent, nano photocatalysts and some imprinted polymers. Moreover, we have recently
developed range of hybrid nanomaterials based on polymers-metal complexes, which
have potential applications in water treatment and pollutant removal [10, 115, 154–
160, 219]. In brief, the investigation on using nanomaterial in water treatment is
regarded to measure positive viewpoint [23, 160, 221]. Figure 1 presents several
types of nanomaterials applied in safe and sustainable water supply [191].

Nanomaterials are generally classified into different groups related to their
surface and physical characteristics. Nanomaterials include metallic nanoparticles
(Au & Ag nanoparticles), metal oxide nanoparticles (ZnO nanoparticles, Al2O3

nanoparticles, CeO2 nanoparticles and TiO2 nanoparticles), magnetic nanocom-
posites, nanocomposite with organic and inorganic supports, carbon nanoadsor-
bents, polymer nanoadsorbent. These nanomaterials are utilized as nanoadsorbent,
nanomembrane, nanocatalyst, disinfectant and nanosensor for wastewater treatment.
Thus, we have outlined the importance of metal-based nanomaterials for treating
wastewater to subdue the crises of fresh water problems in this chapter. A prospective
and substantial method with easy accessibility can be obtained by using metal-based
nanomaterials but a few flaws still require advanced consideration which is specif-
ically outlined in this chapter. Besides, we also point out the limits, benefits, draw-
backs and future prospects with relation to the metal-based nanoparticles. Moreover,
merits and demerits of the metal-based nanoparticles with their other diverse uses in
treatment of wastewater are shortly explained that can be beneficial to scientists for
designing new strategy.
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2 Categories of Metal-Based Nanoparticles in Water
Treatment

2.1 Nanoadsorbents

One of the important technologies to separate contaminants fromwater is the notable
adsorption method. Nanosorbents exhibit high and efficient adsorption capability
with extensive uses in decontamination and purification of wastewater. Here, the
nanoparticles absorb the contaminants in the water which can be separated from
water after reaching the equilibrium. The method of adsorption of contaminants
from wastewater is generally considered as a better process over other methods.
Adsorption technology of wastewater control systems is usually a better technique
over conventional methods. Due to its inexpensiveness, good performance, easy
operation, it has high ability to remediate wide variety of pollutants fromwater [123].
Nanosorbents possess great properties such as high sorption ability which gives the
nanosorbents more capability and more effectiveness for treating wastewater.

Nanoadsorbents have extraordinary ability for unique, more effective and quick
decontamination procedures with a view to separation of inorganic and organic
contaminants. Scientists are doing a great deal of work to prepare nanosorbents in a
bigger amount at commercial level as they are exceptionally uncommon in commer-
cial form. The field of nanotechnology is progressing by doing extensive research
in this area to resolve the issues in removing contaminant metals from water with a
view to find better nanoparticle combinations. In this method, titanium oxide, iron
oxide and aluminum oxide-based nanomaterials have shown promising characteris-
tics with cost-effectiveness and high adsorption property. Besides, nanoadsorbents
have high porousness and larger active surface area which make them capable of
removing different sizes of pollutants without discharging any toxic elements.

Adsorption method can be employed to extract the metal contaminants from
contaminated water of various sources. Pb, Hg, Cr, Cd, Co, Zn, As, Cu, Ni, etc.,
are the kind of major metal contaminants responsible for water pollution [105].
Current investigations reveal that the nanoparticles are highly efficient for compe-
tent removal of abovementioned metal contaminants from wastewater. Nowadays,
the nanomaterials of metals and metal oxides are widely utilized in decontamination
of water through adsorption process. Nanoadsorbents made from metal nanoparti-
cles are less expensive nanomaterials showing effective sorption quality. They are
frequently utilized for the treatment of water containing heavy metals. Among the
nanoadsorbents fabricated from metal nanoparticles, TiO2, Fe2O3, MnO2, MgO2

and Al2O3 are well investigated and were observed to remove the heavy metals from
wastewater very effectively. Metal oxide nanomaterials are regarded to be more
capable than the normal adsorbent due to their larger active surface area. There
are different points of interests related with metal oxide-based nanoadsorbents. The
simplicity of synthesis, lesser toxicity, higher active surface area for contact and
chemical stability impart the more distinctive properties to these metal oxides-based
nanoadsorbents and make them more lucrative than other adsorbents [199].
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Fig. 2 Magnatic nanoparticle permanently confined micelle arrays adsorbents for complex
emerging organic contaminants fromwastewater. Reproduce with license fromAmerican Chemical
Society, Copyright (2013)

The metal-based nanoadsorbents are prominent presently. Huang et al. showed
the significant interaction between magnetic nanoparticle permanently confined
micelle arrays (Mag-PCMAs) adsorbent and complex emerging organic contami-
nants (EOCs) which made magnetic nanoparticles efficient to be applied in complex
chemical environments, like wastewater treatment (Fig. 2) [100]. The nanocom-
posite of various materials such as silver/carbon, silver/polyalanine, carbon/titanium
oxide, etc., possessing tremendous significance with a view to remove the impact
of poisonous properties in the treatment process of wastewater. Metal/metal oxide
nanosorbents bear significant adsorption positions anddue to their large active surface
area they are the efficient materials for the contaminants by adsorbing methods.
Likely, organic contaminants and heavy metals from wastewater are effectively
removed by the polymeric nanoadsorbents [72]. For instance, with the help of
dendrimer-ultrafiltration systems, copper ions can be reduced [226]. They are easily
recovered at wide ranges of pH and exhibit biodegradability and non-toxicity. More-
over, dyes and other organic contaminants can be removedwith the efficiency of 99%
[182]. Zeolite is another vital nanoadsorbent where different nanomaterials such as
copper and silver ions could be implanted [76].

The magnetic nanosorbents have a significant and unique capacity in water treat-
ment to eliminate different organic contaminants from water. Nanoadsorbent for
magnetic separation with particular affinity to contaminants was synthesized through
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ligands coating with magnetic nanoparticles [183]. Individual or combined metals
can be utilized for the effluent treatment depending on the nature of pollutants. Iron
oxides can be simply prepared and modified as the availability of iron is high on
earth. The super magnetism and large surface to volume ratio of iron oxide give it
the rank of a very good adsorbent with lesser toxicity, chemical inertness. These
distinguished criteria of nanoadsorbents create a very fine option for the treatment
of wastewater. Magnetic nanosorbents are also conducive in treating wastewater
and are tested as very promising tools especially for organic contaminants elimina-
tion. Various procedures like cleaning agents, magnetic forces, ion exchangers are
applied to eliminate nanoparticles from the system to prevent unwanted pernicious-
ness. Recovered nanosorbents could be a better option for commercialization due to
their cost-effectiveness. The surface interaction of magnetic nanoparticles and their
aggregation can be restrained by using non-ionic, amphoteric, cationic or anionic
surfactants [84]. Different forms of iron oxides that have been studied greatly having
the capability to act as nanoadsorbents include maghemite (γ-Fe2O3), hematite (α-
Fe2O3) and magnetite (Fe2O3), goethite (α-FeOOH), Iron oxide (FexOy), etc. [17,
39]. The magnetic properties of Fe2O3 nano adsorbent cause the separation process
to be very simple from the dilute or even from viscous solutions. The removal of
heavy metals like Cr6+ and Pb2+ were carried out efficiently where the protonation
or deprotonation of magnetite surface hydroxyl group followed by water loss causes
Cr6+ and Pb2+ adsorption. Likewise, different types of nano-structured wastewater
metal adsorbents have been noted with various characteristics such as ZrO2, TiO2,
CuO, MgO, etc. [109, 241].

2.2 Nanomembranes

Membrane technology is one of the most substantial developed techniques in the
water treatment process. There is a broad range of newmembranematerials applied to
process water for reuse. For example, ceramic and polymericmembranes are familiar
in the water treatment process. Presently, the applications of membrane technology
are risingdue to development of thismethod that hasmade themmore accessible, flex-
ible and effective. Accordingly, the water treatment industry is witnessing a flourish
worldwide for all those factors. The membrane-based on nanofilter is the relatively
modern technology in the treatment of wastewater. Nanomembrane removes the ions
through ultrafiltration electrical effects following the reverse osmosis ion interaction
mechanism as well as combination of ions. Novel properties of nanomembrane make
it capable of selectively removing pollutants from the system. The improvement of
nanomembrane innovation in recent years makes it for multiple use such as in phar-
maceutical industry, demineralization in the dairy industry, bleaching in the textile
industry,metal recovery fromwastewater. Nanofiltrationmembrane is one of the suit-
able methods to treat organic and inorganic contaminants in surface water. Nanofil-
tration is more credible in treating surface water due to its low pressure activity as
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Fig. 3 Silver nanoparticles encapsulated ultrafiltrationmembranes forwater treatment. (Reproduce
with license from American Chemical Society, Copyright (2011))

surface water has low osmotic pressure [31]. Application of reverse osmosis methods
is a normal procedure to make the water drinkable by filtering process.

Nanometal-based membranes are utilized to eliminate industrial contaminants
from wastewater. The merits of nanometal membrane-based wastewater treat-
ment are its easy operation, greater efficacy and low space demands. Moreover,
by employing proper chemicals and nanoparticles the filtration capability can be
improved [297]. Nanomembranes can be prepared with diversified characteristics
of antimicrobial, anti-fouling, improved permeability, photocatalytic activity and
selectivity on the basis of applications [168]. Ultrafiltration membrane shows evalu-
ative treatment process in improved wastewater treatment. Figure 3 shows the ultra-
filtration membrane where silver nanoparticles are encased in positively charged
polyethyleneimine which provides an effective way of water treatment [150].

Multilayered inorganic—organic hybrid membranes using metallic molybdenum
disulfide (MoS2) as two-dimensional transitionmetal dichalcogenide nanosheets and
one-dimensional silk nanofibrils were utilized for water purification [295]. Because
of its possessing of negatively charged layers and interaction sites, the hybrid film
could adsorb metal ions and dyes from water (Fig. 4). The separation performance
can be tuned by changing the component ratios of these two nanomaterials. During
filtration, due to the reducing effect of the MoS2 nanosheets, precious metal ions
are reduced to their nanoparticle form without any further thermal or chemical treat-
ments. In addition to the one-step removal and recovery of metal ions, the hybrid
membranes exhibit excellent potential for the determination and removal of different
dyes from water.
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Fig. 4 Fabrication process of the mixed-dimensional MoS2 silk nanofibrils hybrid membrane and
the water purification mechanisms. a Scheme of the fabrication steps of the hybrid membrane. b
Mechanism for the removal of contaminants from water. (Reproduced with license from American
Chemical Society, Copyright (2020))

Nanofibers are one of the first species of membrane filters. They are porous and
have high surface area with high interlinkage and can be prepared by a simple elec-
trospun method. Nanofibers prepared by electrospinning with the combination of
high surface area nanomaterials have shown efficiency in adsorption of pollutants.
For instance, trace amounts of arsenite can be effectively removed by chitosan elec-
trospun nanofiber which is manufactured by crosslinking ammonia vapor with the
mixtures of Fe3+ and chitosan, poly (ethylene oxide) [152].

2.3 Nanophotocatalyst

Photocatalytic technologies have drawn most concentration for water pollution
management. Photocatalysis is observed as a more efficient method for the purifi-
cation of water purification which subdues the environmental pollution. The basic
fundamental of photocatalyst is that the catalyst oxidizes the pollutants in water by
utilizing radiation from sunlight. Metal oxide-based nanophotocatalysts are the vital
candidate for the rectification of environmental pollution through recent application
of it in water decontamination. In this method, electron-hole pairs are produced by
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irradiation of nanophotocatalyst. These photoelectrons create holes by jumping from
the valence band to the conduction band.

A good photocatalyst absorbs visible or near ultraviolet more efficiently. For
the prevention of the recombination of electron-hole pairs adequate electron vacant
states are required. Nanophotocatalysts should be biologically inactive and nonpoi-
sonousdue to their ongoing extensiveuses inmicrobiological and agricultural sectors.
Nano photocatalysts prepared from semiconductors of metal oxide like TiO2, WO3,
Zn2SnO4, ZnO have shown high efficiency in removing biological and chemical
contaminants [21]. Comprehensive studies in the past decades on uses of nanopho-
tocatalysts for the treatment of municipal water were reported in previous literature
[145, 214]. A great deal of research work was done to alleviate the detrimental
impact of chemical pollutants from wastewater by utilizing nanoparticles photocat-
alysts such as titanium oxide and zinc oxide [92]. Nanophotocatalysts of activated
carbon-supported nano-FeOOH (FeOOH/AC) were synthesized with the help of
air oxidation of ferrous hydroxide suspension method [288]. FeOOH/AC hetero-
geneous nanophotocatalyst owns remarkable adsorption capacity and the oxidation
of amaranth happens through the homogeneous and heterogeneous in bulk solution
and on catalyst/solution interface, respectively, because of releasing of iron from the
nano-FeOOH (Fig. 5).

Ternary oxide zinc stannate is drawing concentration from researchers as viable
photocatalyst [97, 195]. Due to improved photocatalytic activity and non-toxicity,
TiO2 nanophotocatalysts are observed to show the effective and prominent activi-
ties for photodegradation dyes from contaminated water. The demerits of TiO2 as

Fig. 5 Effective adsorptibility and Fenton oxidation with the combination heteroge-
neous/homogeneous process of amaranth utilizing supported nano-FeOOH. Reproduce with license
from American Chemical Society, Copyright (2012)
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Fig. 6 Reduced Graphene
Oxide/TiO2 for the Effective
Photocatalytic Oxidation of
Arsenite. Reproduce with
license from [163].
American Chemical Society,
Copyright (2014)

a photocatalysts is low quantum efficiency in visible regions, decreasing photo-
catalytic ability on account of wide band gap and quick recombination of charge
carriers. Several studies have been noted depicting the antimicrobial activity of TiO2

nanophotocatalysts against various waterborne pathogens including protozoans and
bacteria [86]. Photocatalytic activity of TiO2 has also been investigated utilizing
the TiO2 mediated photodegradation of Rhodamine B dye and bromoethane [111].
Cyanobacteria have an immense toxic effect on human health. Lawton et al. showed
themechanism of TiO2 mediatedmineralization of cyanobacterial hepatotoxin [124].
The reduced graphene oxide hybridized with TiO2 was prepared as a cost-effective
catalyst compared with Pt/TiO2 and found to show improved activity for the photo-
catalytic oxidation of As(III) [163]. The photocatalytic activity and arsenic oxidation
mechanism observed with reduced graphene oxide implanted TiO2 are almost the
same activities shown by Pt/TiO2 (Fig. 6). The nanocomposite of reduced graphene
oxide/TiO2 can be considered as a useful environmental photocatalyst for pretreating
the water polluted with As(III).

ZnO nanoparticles also displayed photocatalytic activity by creating hole-electron
pair [27]. ZnO-NPshaveprominent photocatalytic activity for eliminationof different
organic contaminants having their high binding energy and broad band energy,
powerful oxidation capability and high active surface area [256]. Silver nanopar-
ticles are noted to show antimicrobial activity against waterborne pathogens [71].
Mpenyana-Monyatsi fabricated Ag NPs coated filters and showed the efficiency of
the elimination of microbes from water with 100% effectivity [166]. Photocatalytic
degradation based on the heterogeneous semiconductors is one of the safest simple
and cost-effective techniques for dyes and organic compounds removal from water
polluted by industries and residences [68, 118, 152, 169]. Various metal oxides NPs
like ZnO, CuO and TiO2, etc., are being used for photodegradation of organic dyes
[232, 233, 239]. This process assists to remove contaminants such as pathogens,
organic dyes and micro pollutants, etc. [192, 273]. For instance, a hetero struc-
tured nanocomposite BiVO4/CH3COO was synthesized for the degradation of the
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organic contaminations from water by photocatalytic activity [293]. TiO2 effectively
eliminates toxic chemical tartrazine from water utilizing its photocatalytic activity
[82]. Polyaniline/ZnO nanocomposites show improved degrading capability toward
colored dye through producing enough electrons at the conduction band of zinc oxide
semiconductor [215]. Different nanocomposites of zinc oxide or the compounds of
zinc oxidewithmaterials have been observed to degrade the contaminants in wastew-
ater very effectively [198]. In a similar way, filtration technology could be developed
by integrating photocatalytic characteristics of a photocatalyst[138].

2.4 Disinfection

Nearly all of the sources of potable water have been observed to be polluted with
various poisonous materials and pathogenic microorganisms. The World Health
Organization (WHO) reported that approximately 12 million people die every year
fromwaterborne illness. 90% of all diseases resulting from impure water were found
in developing countries. The global disease infecting people with the use of impure
water is nearly 4 billion. The responsible microorganism in water which causes
diseases to people is known as pathogen. Different technologies are applied to treat
the pathogen in water. Deactivation of pathogens is generally known as disinfection.
Presently, the disinfection of drinking water is carried out by chemical or physical
method. Various techniques are used to disinfect water such as UV treatment, chlo-
rination and ozonation. The well-accepted method of disinfection by chlorination
has some limitations. The excess chlorine beyond the permissible level is toxic and
may be responsible for bladder or colorectal cancer. Chemical treatment of water
by antibacterial disinfectants like triclosan and triclocarban may cause hormone-
disrupting effects. In the presence of natural organic matter, ozone can form non-
halogenated organic disinfection by-products such as aldehydes, ketone, carboxylic
acids. The effect ofUV treatment is temporary andwater can be infected by pathogens
if the water is stored for a long time. These traditional water disinfection methods
have definite limitations to apply at large scale.

Nanotechnology in water purification shows huge potential to decontaminate
water [20, 22, 22]. This is a viable way to remove the pathogens from wastewater. In
the present condition, nanomaterials can be utilized to eliminate microbes more effi-
ciently. The nanomaterials accommodate different processes to kill the organisms.
These nanomaterials may connect the organisms specifically through hindering the
electron transfer to transmembrane, destroying cell enclosure or by producing reac-
tive oxygen species they can damage cell walls [129]. Various nanoparticles with
antimicrobial inherent were reported with action against organisms [129, 246]. A
biomass-based renewable film with good mechanical strength and porous network
structure was facilely fabricated via Fe (III) crosslinking inducedwith collagen fibers
and gallic acid-protected silver nanoparticles self-assembly (Fig. 7) [132]. This film
exhibited both excellent bacterial anti-adhesive and bactericidal activities, which
effectively prevented biofouling during the filtration process, due to the anionic
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Fig. 7 Point-of-use water disinfection by a cost-effective porous renewable film incorporated with
silver nanoparticle. Reproduce with license from American Chemical Society, Copyright (2020)

gallic acid-protected silver nanoparticles. As bactericidal filter driven by gravity, 1
L natural water sample was treated by the film in 20 min, and the water quality is
in full compliance with the drinking water guidelines of WHO, demonstrating the
potential application of the proposed filter in point-of-use water disinfection.

TiO2 produces hydroxyl free radicals and forms peroxide with photocatalytic
activity which is responsible for antimicrobial properties of its [129]. TiO2 with the
incorporation of other nanomaterials displays enhanced antimicrobial photocatalytic
properties [47, 110]. The nanoparticles of zinc oxide exhibit notable antimicrobial
properties against waterborne pathogens, and hence they are utilized to purify the
wastewater [51]. Salemet al.made a comparison of the antimicrobial properties ofAg
nanoparticles and Zn nanoparticles toward V. cholerae and enterotoxin E. coli [56].
Iron nanoparticles also exhibit antimicrobial activities by eliminating Entamoeba
histolytica cysts from water [231]. For centuries, silver has been considered a well-
known antibacterial material. The release of silver ions efficiently destroys the cell
envelope and retards theDNAreplication [191].Nanofiltration techniques are another
method to remove the microbes by filtration [218].

As waterborne disease causes serious health effects to humans, the disinfection
technology is drawing more attention recently. Titanium dioxide with its environ-
mental friendliness behavior was exhibited to be prepared as antimicrobial agents
in more recent studies. The investigations showed that TiO2 improves the capa-
bility of disinfection through the deactivation organisms such as Escherichia coli,
Staphylococcus Aureus, etc. Nano-WO3 synthesized by sol–gel method displayed
enhanced capability for the disinfection of E.coli in water [79]. Copper displays high
antimicrobial activity with attractive cost and low toxicity. Moreover, it has been
reported that Cu2O showed more activity toward bacteria than silver and CuO [251].



78 M. K. M. Z. Hyder and S. H. Mir

Deng et al. reported that copper graphene sponge can be used for water purifica-
tion more efficiently through inactivation of bacteria [48]. Bactericidal activity of
gold nanoparticles is scarcely reported for gram-negative or gram-positive bacteria
[13, 106]. Contrarily, gold NPs display fungicidal activity [7, 106]. Platinum NPs
can destroy cell walls and can release cytosolic proteins bacteria and fungi [16].
PalladiumNPs show better antimicrobial activity toward gram-positive bacteria than
gram-negative bacteria, and exhibit size-dependent antimicrobial properties [2].

2.5 Sensing

The detection of pathogens is essential because of their precarious impact on human
health. The traditional sensing methods are steady and incapable of monitoring
the existence of harmful viruses and pathogens such as helicobacter, legionella,
norwalk viruses, echoviruses, hepatitis A. Most of these microbes are biological
operant in the rise of contamination in drinking water. Water sterilization process
depends on pathogen recognition. There is great progress in research to develop
nanomaterial-enabled nanosensors. Present studies are concentrating on the improve-
ment of three principal parts of nanosensor: (i) nanomaterials (ii) recognition mate-
rials and iii) signal transduction mechanism. The recognition materials selectively
interact with pathogens. Rapid feedback and selectivity are obtained by using nano-
materials. Nanomaterials intensify the detection speed and sensing capability to
perform multiple target identification with their novel optical, electrochemical and
magnetic characteristics. Nanosensors may be used for the detection of biomolecules
cells.

A numerous research has been done on the appropriate design and application
of nanosensors [19, 35, 60, 61, 73, 172, 271]. These nanosensors can be utilized
in the central distribution system, at the location of point-of-use or in the water
treatment plant. The monitoring of sensing may be online to determine the quality
of water during flow through or may be offline by collecting water samples at
different points. Nanosensors aremore capable than traditional water quality sensors.
Nanosensor rapidly and reversibly measures the analyte whereas nanoprobe selec-
tively determines pathogens with great sensing capability in an irreversible way.
[207].

Awide variety of nanosensorswas reported to show the capability of identification
of pathogens, toxin and pH inwater [35, 66, 207, 266, 268].Apercolationmethodwas
reported to inactivate pathogens through silver nanoparticles containing paper sheets.
Here, on blotting paper sheets of cellulose fibers, silver nanoparticles were accumu-
lated [46] (Fig. 8). The silver nanoparticles sheets showed remarkable antimicrobial
properties toward enterococcus faecalis and Escherichia coli with high reducing
ability. This outcome of deactivation of pathogens through silver nanoparticle sheets
is encouraging enough to utilize it in emergency water treatment.

A direct intrinsic signal from the analyte can be acquired by nanosensor
or by employing high quality recognition elements that are bound to analyte.
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Fig. 8 Blotting paper implanted with Ag nanoparticles for point-of-use treatment of water.
Reproduced with license from American Chemical Society, Copyright (2011)

Figure 9 depicts the sensing of environmental analytes by nanosensor architec-
tures. A simple approach to effective detection of bacteria S. aureus through surface-
enhancedRaman-scatteringwith the synthesized gold-coatedmagnetic nanoparticles
core/shell nanocomposites [272].

Ng et al. reported the recent development of fluorescent nanosensors such as
metal nanoparticles [174]. Strong electromagnetic field is generated on the nanopar-
ticle surface when silver or gold nanosensors are excited by light [278]. Magnetic
nanomaterials are capable of identifying magnetically isolated analytes as they are
highly responsive to external magnetic fields [122]. The detection of influenza
A and Mycobacterium was carried out through changing the electrical resistance
of magnetic nanoparticle-labeled analytes by magnetoresistance sensors [121].
Quantum dots are promising as fluorescent nanosensors which have larger band
gaps and narrow fluorescent spectra have been detected through one excitation light
source [268]. The Internet of things can be connected to the system of nanosensors
used in distribution systems to ensure quality, stability and degrability of nanosensors
[151].
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Fig. 9 Schematic illustration of the operating procedures for bacteria detection via a surface-
enhancedRaman-Scatteringmethod. Reprinted fromwith license fromAmericanChemical Society,
Copyright (2016)

3 Metal and Metal Oxide Nanoparticles Used in Water
Treatment

3.1 Metal Nanoparticles

Nanometals can be used in water purification with high efficiency. There are various
forms of nanometals utilized in wastewater treatment for instance nanostructures,
cationic forms and inert or active substances supported form. Silver nanoparticles
have been reported to be applied to adsorb Cr(II) and Pb(II) as suspended free
nanoparticles in the system [12]. Copper nanoparticles were used as antibiofouling,
antioxidant and antibacterial agents for wastewater treatment [36]. Those nanoparti-
cles showed efficiency in inactivation of pathogens, inhibition of lipid oxidation and
biofilm formation and scavenging free radicals. Citrate-supported silver nanopar-
ticles were used for degradation of organic pesticides chlorpyrifos [30] (Fig. 10).
Octahedral palladium nanoparticles were used for reduction of bromate in municipal
water treatment [276]. The supported nano metals have various advantages. Support
helps to prevent aggregation of nanoparticles and separate nanoparticles from water
after treatment which may be responsible for self toxicity [30, 276]. For synthesis
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Fig. 10 Representation of degradation of chlorpyrifos on silver nanoparticles. Reprinted with
license from American Chemical Society, Copyright (2012)

and stabilization of nano metals, different chemicals are utilized. For instance, to get
the reductive and stabilized form of silver nanoparticles, chitosan and polyethylene
glycol are used in synthesis [269]. The easiest approach to eliminate harmful contam-
inants from water is various physicochemical processes such as adsorption, filtration
or cuagulation. For instance, silver and iron nanoparticles effectively remove Pb(II),
Cr(II) and Cr(VI) ions from aqueous solutions by the physicochemical technique
[148].

Ag nanoparticles can effectively remove Hg(III) from aqueous solution [63, 164].
Ag nanoparticles display improved activity due to their decreasing reduction poten-
tial with the decrease of particle size [188]. Au nanoparticles with aluminum support
could be applied to removeHg(II) effectively fromwastewater. Jiménez et al. reported
citrate-coated Au nanoparticles for treating Hg(II) in water [178]. Here, Hg (II) was
converted to Hg (0) by weak citrated ions reducing agent without application of
NaBH4. The concentration of Hg(II) was reported to decrease from 65 to 5 ppb
(Fig. 11). Other noble metal nanoparticles like palladium and ruthenium nanopar-
ticles exhibit effective antimicrobial agents for gram-positive bacteria and display
size-dependent antimicrobial activity [2].
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Fig. 11 Hg(II) removal from river water by citrate coated Au nanoparticles. a Precipitation image
after treatment of Hg(II) with Au nanoparticles (efficiency 40%) b Zoomed image of precipitation
taken with optical microscope. Reprinted from with license from American Chemical Society,
Copyright (2012)

3.2 Zero-Valent Metal Nanoparticles

Wastewater treatment process is greatly advanced through using zero-valent metal
nanoparticles. They were found to show excellent antimicrobial ability, degrada-
tion ability as well as high removal ability of heavy metal from wastewater. Zero-
valent iron was well studied for the elimination of heavy metals and for deactivating
pathogens from wastewater. Zero-valent iron (nZVI) nanoparticles consist of Fe (0)
and Fe2O3 coating [177]. It is applied widely to treat heavy metals like Cr (VI),
Hg (II), Cu (II), Ni (II), etc. [133, 222]. Principally, Fe (0) produces the reduction
ability whereas the Fe2O3 coating creates the active position to attract heavy metals
through electrostatic attraction.Moreover, the shape of nZVI could be easilymanage-
able and huge reactive sites could be created on the surface of nZVI [43]. The high
reducing ability and high active surface area impart the nZVI higher performance for
the removal of heavy metals from contaminated water [98]. Furthermore, nZVI has
been displayed to have a promising bactericidal effect and toxicity toward pathogens
[49, 125].

The high efficiency and versatility of nZVI have made it perfect technology for
practical utilization in wastewater treatment. Nano zero-valent iron can also be
applied for improving the quality of groundwater contaminated with perchlorates
and chlorinated hydrocarbons. nZVI is more reactive than conventional iron because
of its high active surface. On the other hand, the lifetime of nZVI is very low due to
its high reactivity characteristic. As a result, more research on surface modification
of nZVI is necessary to make it stable [15, 94]. Zhang et al. deposited synthesized
nZVI particles on the surface of biomass activated carbon and applied to remove 98%
methyl orange from water [287]. nZVI has been efficiently used to treat the wastew-
ater and groundwater with arsenic [173], chlorinated hydrocarbons [53, 247], heavy
metals [190, 292], nitroaromatic [285], phenol [220], heavymetals [190, 292], nitrate
[102], dyes [229] and phenol [220].
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Application of nZVI for the treatment of wastewater has some drawbacks because
of its instability, quick aggregating and problematic separation process. To resolve
these disadvantages, nZVI could be supported by zeolite, bentonite, resin, etc. Depo-
sition of nZVI nanoparticles on supporting materials for the elimination of contam-
inants makes the procedure easy and also enhances the reduction ability. The reac-
tivity of ZVI could be improved by depositing a thin film of any other metals like
Ni, Pt, or Pd on iron as principal metal which could efficiently remove chlorinated
hydrocarbons from wastewater. For instance, Xu et al. synthesized novel Ni–Fe
bimetal for effective removal of 4-chlorophenol with enhanced catalytic hydrogena-
tion [280]. Another Pd/Fe bimetallic system shows very effective removal of tetra-
bromobisphenol A, 2,4-dichlorophenol and polychlorinated biphenyls and displays
better dechlorination that than normal nZVI [98]. In addition, deposition of Pd on
nZVI decreases the release of toxic intermediate on nZVI’s surface [40]. The translo-
cations and transformations of contaminants such as arsenic species at and within
the nZVI particle are distinctly depicted in Fig. 12 [283].

Despite a lot of research on decontamination of wastewater by nZVI, zero-valent
zinc (nZVZ) has been found as an alternative. nZVZ nanoparticles were shown to
degrade dioxin excellently [29]. The reducing ability of Zn is higher than Fe. Thus
it is clear that the power of contaminant degradation of nZVZ particles will be
higher than nZVI particles. It is reported that degradation of CCl4 happened more
quickly by nZVZ compared to nZVI [261]. Moreover, an investigation was done
for the comparison of degradation ability toward halogenated hydrocarbons in water
with nZVI, nZVZ, nano zero-valent aluminum (nZVAl), nano zero-valent nickel
(nZVN) nanoparticles. The study showed that only nZVZ was capable of degrading
octachlorodibenzo-p-dioxin effectively into less chlorine concentrated materials

Fig. 12 The translocations and transformations of contaminants such as arsenic species at and
within the nZVI particle. Reprinted with permission from American Chemical Society, Copyright
(2012)
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[29]. Though nZVZ efficiently degrades halogenated hydrocarbons, treatment of
other contaminants with nZVZ was not reported a lot yet [261].

3.3 Iron Oxides Nanoparticles

The use of iron oxide nanoparticles inwastewater treatment is remarkably increasing.
There has been rising attention on the application of iron oxide-based nanoparticles
for the removal of heavy metals and remediation of wastewater in recent years [11,
212]. Due to the higher abundance of iron on earth and simple synthesis method of
iron oxide-based nanoparticles, extensive research has been done on it. The challenge
of using nanoparticles inwater treatment is their recovery and separation from treated
water. But, with the help of external magnetic fields, most of the iron nanoparticles
can be separated. As a result, iron oxide nanoparticles could be efficiently employed
to remove heavymetal from contaminatedwater and could thus be separated success-
fully from the systems [127, 175, 257]. Goethite (α-FeOOH) is studied a lot where
it is manifested that they are competitive adsorbent of heavy metals owing to their
cost-effectiveness, good adsorption capability and environmental friendliness [149].
Goethite was reported to be synthesized from ferrous and ferric salts to remove
uranium from water [250].

Nanoscale α-FeOOH shows photocatalytic activity and good adsorption quality
toward heavy metals [39]. For the present, nanoscale α-FeOOH has shown high
adsorption capability toward heavy metals [70, 128]. The most stable and corrosion
resistance form of iron oxide is hematite (α-Fe2O3) [255]. Hematite nanoparticles
have been shown very effective to adsorb heavy metals such as Cr (VI) [3, 7, 50].
The high adsorption capacity of nanoscale α-Fe2O3 toward heavy metals has been
reported [228].Very recent, superparamagneticα-Fe2O3 nanoparticleswere prepared
and shown 100% removal efficiency of Mg (II), Al (III), and Mn (II) and 80% of
Ni (II) and Zn (II) from acid mine drainage [113]. It proves α-Fe2O as an excellent
nanoparticle to treat wastewater for its low toxicity, high stability and high adsorption
capability.

Maghemite (γ-Fe2O3) nanoparticles have been widely studied to remove heavy
metals fromwastewater [59]. There are many advantages to utilize γ-Fe2O3 nanopar-
ticles in wastewater treatment. γ-Fe2O3 nanoparticles have a high active surface and
high adsorption capacity toward heavy metal and it can be separated from the system
just by applying an external magnetic field. Furthermore, the preparation of γ-Fe2O3

nanoparticles is easy and they behave environmentally [263]. γ-Fe2O3 nanoparti-
cles of particle size 14 nm synthesized by single-step method were applied to heavy
metals from wastewater [9]. Superparamagnetic γ-Fe2O3 nanoparticles with tunable
morphology were prepared by utilizing a flame spray pyrolysis approach and applied
to remove Cu(II) and Pb(II) from wastewater [200]. Magnetite-based nanoparticles
are extensively applied as nanoadsorbent because of their simple preparation, easy
use, cost-effectiveness, friendly behavior to the environment and easy separation
from systems [146, 223, 277]. Fe3O4 nanoparticles are generally altered on surface
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by –SH [179], –NH2 [258], –COOH [227]. Pan et al. studied adsorption of Cr(IV)
on engineered iron oxide nanoparticles [180] (Fig. 13). Damino activated Fe3O4

nanoparticles were prepared through utilizing one-pot synthesis method and applied
to test the adsorption capacity toward Cr (VI) and Ni (II) [176].

Core–shell structure of Fe3O4 nanoparticles have been prepared by utilizing
various coating materials such as sodium dodecyl sulfate [4], tannic acid [18], silica
[141], oleate [143], p-nitro aniline [140], polyethylene glycol [210], chitosan[194],
etc., and used for the treatment of heavy metals in wastewater. For instance, a core–
shell structure magnetite NPs was prepared by spraying the polymer of organo
disulfifide polymer onto the –NH2 activated Fe3O4 nanoparticles and exhibited
efficient adsorption capacity toward heavy metals in a high concentration solution
[99]. Figure 14 represents the core–shell structure of amphiphilic polyisopreneblock-

Fig. 13 Cr(VI) Adsorption on engineered iron oxide nanoparticles. Reprinted with license from
American Chemical Society, Copyright (2019)

Fig. 14 Encapsulation of single or multiple nanoparticles by polyisopreneblock-poly(ethylene
glycol) diblock copolymer. Reprinted with license from American Chemical Society, Copyright
(2014)
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poly(ethylene glycol) (PI-b-PEG) copolymer which encaged the Fe3O4 nanoparti-
cles [217]. These core–shell structure magnetite nanoparticles were found to remove
heavy metal with high efficiency and were easily separated from wastewater.

3.4 Titanium Oxide Nanoparticles

Titanium dioxide (TiO2) nanoparticles with high chemical stability, lower toxicity
and low cost are employed as competitive materials in disinfection and decontamina-
tion of wastewater. Thus, TiO2 nanoparticles have drawn more concentration among
researchers because of their extensive properties [117, 170, 216, 259]. TiO2 nanopar-
ticles do not change for a long time during degradation of pathogens and organic
compounds. TiO2 nanoparticles were widely investigated on degradation of organic
contaminants with high effectiveness [14]. It was also represented with the effective
removal of heavy metals from contaminated water [235]. Nanowires with diameter
of 30–50 nm were synthesized from TiO2 and were applied to eliminate Cu (II),
Pb (II), Fe (III), Zn (II) and Cd (II) from contaminated water with high efficiency
[286]. Iron-doped TiO2 nanoparticles were prepared and utilized to remove arsenic
with higher effectiveness than pure TiO2 nanoparticles [171]. TiO2 NPs coating
with starch- were synthesized to eliminate 90% of Ni (II), Cd (II), Pb (II), Co (II)
and Cu (II) from tap-water [25]. Microwave-synthesized TiO2-chitosan nanoparti-
cles were synthesized and were used for the removal of heavy metals applying the
microwave-enforced sorption approach. This approachwas observed as environmen-
tally friendly and fast removal efficiency. TiO2 nanoparticles displayed promising
adsorption capacity toward organic and inorganic contaminants [252]. TiO2, the
semiconductor photocatalyst exhibits a variety in the case ofmineralization or decon-
tamination of harmful substance in water [253]. It is evident that TiO2 nanoparticles
in anatase phase possess strong catalytic activities for having high active surface
and redox properties. Magnetic TiO2 nanoparticles were prepared for the treatment
of wastewater and this nanowire could easily be separated from the system with
external magnetic fields showing suitability to commercial applications [147]. The
demerits of TiO2 nanoparticles are complex production processes and difficulty in
removal from the system after use [137]. It is generally not easy to separate TiO2

nanoparticles NPs when it is used to treat a slurry suspension of contaminated water
[54].

3.5 Other Metal Oxide Nanoparticles

ZnOnanoparticles have comeout as a promisingmaterial in decontamination ofwater
because of their distinctive characteristicswith large band gap in the near-UV electro-
magnetic spectrum spectral, powerful oxidation capability, enhanced photocatalytic
ability [38, 201]. Moreover, having the almost identical band energy gap, the ZnO
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nanoparticles show similar photocatalytic activity as displayed by TiO2 nanoparti-
cles. Besides, ZnO nanoparticles are advantageous in the case of cost-effectiveness
compared to TiO2 nanoparticles [45]. ZnO nanoparticles posses the higher adsorp-
tion capability of light from the electromagnetic spectrum in a wide range in compar-
ison with some other metal oxides nanoparticles [26]. Rapid reunification of photo-
generated charges causes low photocatalytic efficiency of ZnO nanoparticles [78].
Photocatalytic efficiency of ZnO nanoparticles could be enhanced by doping metal.
Different kinds of dopantsmainly ofmetals such as inner transition elements dopants,
codopants, anionic or cationic dopants, etc., were utilized for improving the photocat-
alytic efficiency of ZnO nanoparticles [126]. ZnO nanoparticles could be employed
as a good nanoadsorbent for its non-toxicity, well antimicrobial activity, chem-
ical, thermal and mechanical stability and overall efficient adsorption quality. ZnO
nanoparticles exhibit higher adsorption efficiency toward heavy metals than TiO2

nanoparticles [193]. ZnO nanoparticles were reported to show enhanced sorption
capacity toward inorganic and organic contaminants [41]. ZnO nanoparticles have
significant photocatalytic potential for exclusion of various organic compounds and
contaminants due to their wide band gap energy, i.e., 3.37 eV, high exciton binding
energy, i.e., 60 meV, strong oxidation ability and larger surface to volume ratio [240].

Manganese oxides (MnO2) nanoparticles have been reported to show good sorp-
tion performance toward metal ions [167]. It has also been noted that MnO2 nanopar-
ticles and hydrous manganese oxide showed good removal efficiency of heavy
metals from wastewater [134]. MnO2/gelatin was prepared to remove Cd (II) and
Pb (II) from wastewater through adsorption [274]. Guo et al. reported the effective
removal of arsenite fromwater with synthesized paper-like, free-standing membrane
of Mn3O4/CeO2 hybrid nanotubes (Fig. 15) [81]. MnO2 nanoparticles were noted to
adsorb Tl (I) in wastewater [101]. MnO2 nanoparticles were reported to show high
capability to remove Cu(II), Hg(II), Pb(II), U, Cd(II), etc., from wastewater [1, 116,
130]. HMO is reported to exhibit advantageous characteristic in adsorption of heavy
metals because of its porosity, ample active sites and high surface area [62].

Recently, hydrousmanganese oxide-biochar nanocompositeswere synthesized by
implanting the hydrous manganese oxide nanoparticles into the biochar [270]. This
composite material was applied to remove Pb (II) and Cd (II) in a broad pH range
with high efficiency. Hence, hydrous manganese oxide-biochar could be a thriving
candidate for the removal of heavy metals from contaminated water.

Aluminum oxides (Al2O3)-based nanoparticles are extensively utilized as adsor-
bent for removal of heavy metals. The major advantages of Al2O3 nanoparticles are
low preparation cost and efficient decontamination capability [75, 187]. γ-Al2O3

nanoparticles were prepared through a sol–gel process and showed the removal
capacity of 97% for Pb (II) and 87% for Cd (II) [254]. The effect of phosphate,
humic acid and citrate on Al2O3 nanoparticles’ adsorption behavior toward Cd (II)
and Zn (II) has also been investigated and phosphate and humic acid were observed
to show improved adsorption capacity toward Cd (II) and Zn (II) while citrate could
reduce the capacity of adsorption toward Zn (II) [244]. Beside the abovementioned
heavy metals, Al2O3 nanoparticles exhibit efficient removal capabilities toward Hg
(II), As (III), Cu (II), Ni (II), Cr (VI), etc. [144, 181, 230, 275].
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Fig. 15 Removal of arsenite from water by paper-like membrane of Mn3O4/CeO2 Hybrid
Nanotubes. Reprinted with license from American Chemical Society, Copyright (2015)

Magnesium oxide (MgO) nanoparticles are promising sorption materials for
the removal of heavy metals due to their abundance, non-toxicity, environmental
friendliness and overall cost-effectiveness. It was reported that MgO nanoparti-
cles effectively remove Pb (II), Cd (II) and Escherichia coli from wastewater
[34]. Furthermore, MgO nanoparticles showed extraordinary antibacterial proper-
ties toward gram-positive and gram-negative bacteria [245]. In another investigation,
mesoporous MgO nanosheets were synthesized and were displayed to be excellently
removed 1684.25 mg·g−1 Ni (II) from aqueous solution [67]. MgO nanoparticles
were synthesized through the incineration process and were found to remove 96%
Cu(II) from 10 ppm aqueous copper solution with high adsorption capability.

Cerium oxide (CeO2) nanoparticles are non-toxic substances which have been
utilized as photocatalysis and sensing [264], water treatment, etc. [203]. CeO2

nanoparticles exhibit superior performance in heavy metal removals due to their
active surface area, stability, selectivity and dispersion behavior. The sorption criteria
of CeO2 nanoparticles were investigated for the removal of Cr (VI) from aqueous
solution [202]. The maximum adsorption capacity for Cr (VI) was reported as
121.95mg·g−1. CeO2 nanoparticles were reported to be prepared andwere applied to
remove As (V) and As (III) from aqueous solution [162]. The adsorption efficiency
toward these two ions were observed as 36.8 and 71.9 mg·g−1, respectively,

Zirconium oxides (ZrO) nanoparticles are excellent metallic oxide adsorbent for
the treatment of wastewater containing heavy metals. The merit of ZrO nanoparti-
cles is the abundance of functional hydroxyl groups and high active surface areas.
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Furthermore, ZrO nanoparticles have the chemical stability and show extraordinary
sorption capability toward Pb (II), Zn (II) and Cd (II) [108]. A novel e ZrO2/B2O3

nanocomposites were reported to be synthesized and were used to remove Cu (II),
Co (II) and Cd (II) [282]. The removal efficiency for Cu (II), Co (II) and Cd (II) were
found as 46.5, 32.2 and 109.9 mg·g−1, respectively. Polystyrene-supported Zr(OH)4
nanoparticles were fabricated and were applied to remove Cd (II) from aqueous solu-
tion in varying pH [291]. The experimental outcome manifested that Cd (II) could
be removed effectively in a wide pH range.

4 Nanocomposite in Water Treatment

Applications of nanoparticles in wastewater treatment have some issues regarding
aggregation, intensive pressure drop during flow process, difficulties in separation
from systems [95]. Though the types of metal nanoparticles discussed above have
their own merits, they have often some problems in practical applications. For
instance, nZVI aggregate and oxidized rapidly. TiO2 nanoparticles and ZnO nanopar-
ticles absorb electromagnetic spectrum only in the UV region because of their wide
band gap. Carbon nanotube has difficulty in uniform suspension in various solvents
and nZVI are easily oxidizable [89]. In order to overcome these problems, a general
approach is adopted by synthesizing hybrid nanocomposites for wastewater treat-
ment. For these reasons, the preparation of different nanocomposites has been gaining
much attention to the researchers. Qian et al. briefly review the nanocomposite used
in water treatment [189]. Figure 16 presents the nanoconfinement mediated water
treatment by nanocomposite.

Fig. 16 Nanoconfinement mediated water treatment with nanocomposite. Reprinted with license
from American Chemical Society, Copyright (2020)
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Accordingly, many investigations have been done to fabricate useful nanocom-
posite forwastewater treatment throughout theworld. For instance, a novel nanocom-
posite material was synthesized using nano zero-valent iron and carbon nanotubes
where chemical deposition of nano zero-valent ironwas done on the surface of carbon
nanotubes. This nanocomposite adsorbent showed efficient capability to remove
nitrate fromwater and it can easily be separated from the system by externalmagnetic
fields [85]. Nanofiltration membranes of thin film nanocomposite have been synthe-
sized through in situ implantation ofTiO2 nanoparticles on a polyimide supportwhere
TiO2 nanoparticles were functionalized with both amine and chloride compounds to
improve its compatibility. Nanofiltration membranes thus prepared displayed effec-
tive dye degradation and methanol flux [185]. Perfect nanocomposites for practical
uses should be reactive as nanomaterials and continuous [260]. The more important
thing is that treatment of wastewater requires non-toxic, cost-effective and log-time
stable nanocomposites. To find suitable nanocomposites, further research in this field
is still under way. In this section, various types of nanocomposite synthesized and
applied for water treatment have been extensively discussed.

4.1 Nanocomposites with Inorganic Support

Nanocomposites arematerials ofmultiple substanceswhere one of thematerialsmust
be nanostructured. The combination of materials during preparation of nanocompos-
ites offers suitable characteristics to it for the practical application in water treatment.
Combination of TiO2 and SiO2 for the preparation of nanocomposites offers advan-
tages of both materials by adsorbing virus on SiO2 and showing enhanced antimi-
crobial activity with TiO2 [107]. Ag2S@Ag nanocomposite was fabricated which
displayed enhanced sorption capability toward methyl orange and methyl blue in
contaminated water [211]. In a review, Yin and Deng discussed about different
nanocomposites with polymer-matrix for wastewater treatment [284]. Nanofiber
membranes synthesized from polymer and metal or metal oxide nanoparticles were
reported to show improved adsorption quality to heavy metals and enhanced antimi-
crobial activity. For example, Polyaniline/FeO composite nanofibers were reported
for effective removal of carcinogenic arsenic from the water [28]. Similarly, from
drinkingwater, the arsenicwas effectively eliminated using bio-nanocomposite beads
fabricated fromchitosan goethite [91].Many investigations on the use of hybrid nano-
materials for the removal of heavy metal from contaminated water were reported.
As nanoadsorbent, the discarded parts of Zn-Mn dry batteries have been utilized to
removeAs,Cd andPb [262]. Seleniumnanoparticles containing polyurethane sponge
have been reported for the efficient removal of Hg (II) from very rapidly because of
the better affinity of selenium toward mercury [8]. Novel Fe3O4@diaminophenol-
formaldehyde core–shell ferromagnetic nanorods for the elimination of Pb(II) from
water was noted [267]. The nanorods displayed magnificent recovery time (25 s)
due to the ferromagnetic properties with a high saturation magnetization value of
the nanorod and hence possess better reusability among reported materials. So, the
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Fig. 17 Polymer composite of Fe3O4@diaminophenol-formaldehyde core–shell ferromagnetic
nanorods based on core–shell ferromagnetic nanorod for the rapid removal of Pb(II). Reprinted
with license from American Chemical Society, Copyright (2015)

Fe3O4@diaminophenol-formaldehyde core–shell ferromagnetic nanorods can act as
good recyclable adsorbent alternatives to commonly utilized adsorbing materials
for the fast removal of heavy metals from aqueous solutions (Fig. 17). Bentonite is
excellent competitivematerial for the treatment of concentrated heavymetal contam-
ination [52]. nZVI were found to be used with bentonite and applied for the removal
of heavy metals [5].

4.2 Nanocomposites with Organic Supports

Organic polymer has numerous excellent properties with extraordinary mechan-
ical strength, simple regeneration, easy degradability and modifiable functional
group which enable it a promising candidate for being the host of nanocomposites
[296]. Generally, there are two types of polymer-supported nanocomposite namely
biopolymer-supported nanocomposites and synthetic organic polymer-supported
nanocomposites [136]. The common example of the synthetic organic polymer used
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to support materials for preparing nanocomposites is polyaniline, polystyrene, etc.
[196]. For instance, polypyrrole-polyaniline/Fe3O4 magnetic nanocomposites were
synthesized and were reported to remove 100% of Pb (II) from 20 ppm aqueous solu-
tion [5]. Beside the synthetic organic polymers, natural polymers such as chitosan,
cellulose, alginate, etc., were also applied as host materials for nanocomposites. The
most abundant natural polymer cellulose has ample coordination sites forwhichmake
it amazingmaterials for adsorbent and support for nanoadsorbent [34].Nanocellulose
-Ag nanoparticles embedded pebbles-based nanocompositewas prepared and used to
remove heavymetals, microorganisms and dyes fromwastewater. Complete removal
of Pb (II), 98% removal of Cr (III) and 99% disinfection capability toward microbial
agents were displayed by Nanocellulose-Ag nanoparticles embedded pebbles-based
nanocomposite [249].

Chitosan is another starting material for fabrication of promising adsorbent
for metal contaminants because of the presence of amino and hydroxyl groups.
ZnO/chitosan nanocomposite with low cost and lesser toxicity were fabricated and
applied to remove Pb (II), Cd (II) and Cu (II) from aqueous solution [208]. The exper-
imental result manifested the efficient sorption capability towards Cd (II), Pb (II) and
Cu (II) and the recurring usable capacity of nanocomposites. A review on nanocom-
posites blend of functional polymers for the removal of metals from water with their
preparationmethod, toxicity, separability and interactivity between nanoparticles and
polymer were reported [135]. In another investigation, nanocomposite of hydrous
Zr(IV) oxide was fabricated with the combination of a cation exchange resin and
hydrous Zr (IV) oxide [96]. The investigated result showed remarkable adsorption
capacity of nanocomposite of hydrous Zr(IV) oxide toward Cd (II) and Pb (II) in a
column adsorption process. The cyclic column method displayed that the nanocom-
posites could be applied to practical acid mine wastewater time and again without
loss of any capacity.

4.3 Magnetic Nanocomposites

Magnetic nanocomposites are promising candidates for the removal and degrada-
tion of contaminants from the polluted systems. The extensive studies of the toxi-
city of magnetic nanomaterials within or outside of an entire living organism have
already been carried out. Hence, the abundant information on the toxicity ofmagnetic
nanoparticles assists improved use of magnetic nanocomposites with less toxicity for
treatment of contaminated water. However, there are a limited number of available
magnetic nanoparticles such as Fe2O3, Fe3O4, nZVI, Co3O4 and NiO nanoparticles,
etc. These are not enough for fabrication of magnetic nanocomposites to apply in
the decontamination of water. There are also some issues to use magnetic nanocom-
posite for commercial purposes. First of all, the magnetic nanocomposite should be
cost-effective to the practical application in the environment field. Otherwise, it will
not be sustainable for common application for water treatment. Second, the prop-
erties of magnetic nanocomposite are essentially needed to improve for avoiding
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aggregation. The aggregation of the magnetic NPs and composite materials will
hinder reusable capacity of the nanocomposite in the practical environmental reme-
diation field. Finally, hazardness to the environment with application of magnetic
nanocomposites in wastewater treatment should be minimized.

Studies on the toxicity ofmagnetic nanocomposites are just at the beginning stage.
More research about the toxicity of the magnetic nanocomposites is necessary for the
improvement of technology based on magnetic nanocomposite for water purifica-
tion. Magnetic nanocomposites could be fabricated through surface modification of
magnetic nanoparticles by different functional groups, combiningmagnetic nanopar-
ticles with other organic or inorganic compounds like polyethylenimine, polyrho-
danine, humic acid, MnO2, etc. [116, 136, 161, 238]. Magnetic nanocomposites
were synthesized through spraying the magnetic nanoparticles on graphene oxide or
carbon nanotubes [57]. A core–shell Fe3O4@SiO2 novel magnetic nanocomposite
was synthesized and showed high removal ability toward Pb (II) and methylene blue.
[99]. Fe@MgO nanocomposite was synthesized with the combination of nZVIMgO
[74]. The advantage of strong magnetism of nZVI and efficient adsorption capability
of MgO made it superior material for the effective removal of Pb (II) and methyl
orange from wastewater. It is proven that magnetic nanocomposites have a high
ability to remove heavy metal and to degrade the organic and inorganic pollutant
from contaminated water with some limitations.

5 Conclusion and Perspective

Clean water is the key requirement to human health. The world is confronting crit-
ical challenges to meet the increasing demands of clean water as the sources of
freshwater are declining due to climate change, population growth, increasing food
production, increasing competition for freshwater resources in someareas, etc.More-
over, fresh water is polluted by agricultural contaminants, industrial contaminants,
sewage contaminants, radioactive contaminants, microbes, organic and inorganic
pollutants. There are several traditional ways for the treatment of wastewater. But
nanomaterials have a number of important physicochemical properties that enable
them especially attractive as a decontaminator wastewater. Nanomaterials can be
modified by different functional materials to enhance their attraction toward contam-
inants. It is proved that they have the higher ability to remove organic and inorganic
pollutants, toxicmetal and radionuclides from aqueous solutions. Nanomaterials also
give outstanding possibilities for the improvement ofwater purification systemsmore
efficiently due to their high active surface areas and their size-dependent catalytic,
optical and electronic characteristics. Nanomaterials are also being applied as active
antimicrobial agents to treat pathogens containing water. Nanomaterials are widely
applied to remove heavy metals from wastewater or aqueous solution of metal ions
due to their excellent adsorption capabilities toward heavy metals.
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In this chapter,metal-based nanomaterials are used in decontamination ofwastew-
ater which are fabricated from metal and metal oxide nanoparticles such as zero-
valent nanoparticles (Fe, Zn, etc.), noble and transition metal nanoparticles (Fe, Cu,
Ag, Au, Pd, etc.), metal oxide nanoparticles (iron oxide, titania, zinc oxide, magne-
siumoxide aluminumoxide, etc.) and overall nanocomposites ofmetal ormetal oxide
were discussed in detail.With the recent progress inwastewater treatment technology,
nanomaterials-based water treatment methods are considered as extensive promising
technology for wastewater decontamination. However, further investigations are still
required to solve the issues regarding practical use of nanomaterials.

The drawback of existing nanomaterials will be required to be resolved for better
application of these nanomaterials in water decontamination. First, most of the nano-
materials are not stable and easily aggregate. Moreover, it is generally troublesome
to separate the nanoparticle from the system after the treatment process due to their
nanosize. The development of nanocomposite materials could be an effective tool
to solve this separation problem issue. Furthermore, to devise the facile synthesis
procedure, to acquire long-time stability and to solve some other problems regarding
nanocomposites, it requires more study in this area. Second, the commercial nano-
materials for heavy metal removal are scarce and more research is needed to obtain
nanomaterials for commercial use. Finally, the effect and toxicity to the environment
and human health due to extensive use of nanomaterials should be paid attention.
There has been some research concentrated on the biological behavior and toxi-
city of nanoparticles toward human health [70, 114, 128, 225, 290]. The standard
assessments of the toxicity of nanomaterials are quite inadequate at present. It is
noticed from the previous study that most of the nanomaterials are observed as toxic
substances after a certain level [32, 205]. Therefore, extensive study on the toxicity
of nanomaterials is essential to ensure the safety for practical application.

The introduction of nanomaterials in the water treatment process is becoming
a thriving tool. Moreover, the removal efficiency of contaminants with the above-
mentioned nanomaterials is mostly studied in laboratory scale. More data of their
application in practical wastewater treatment are inadequate and are badly needed.
Present nanotechnology approaches for wastewater treatment seem promising. But,
more extensive investigation is necessary to prove their safety in practical use. The
metal-based nanomaterials should be low cost and superior to the traditional tech-
nologies that are applied for the water treatments. It is not easy to figure out the
capabilities of different nanomaterials in practical applications and it requires more
investigation to find out improved nanomaterials for the real application toward
wastewater decontamination. Hence, the assessment of metal-based nanomaterials
on the basis of performance in decontamination of wastewater should be perfected
in the future. We visualize that metal-based nanomaterials will become excellent
candidates for industrial and public water purification systems as more development
is done through cost-effective synthesis and utilizing the environmentally acceptable
functional materials.
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Water Purification by Carbon Quantum
Dots

Karthiyayini Sridharan, Vijaya Ilango, and R. Sugaraj Samuel

Abstract Sustainable, sufficient and pure water is vital on earth at present. Of all
processes used to purify water, nanotechnology plays an important role. Nanomate-
rials are available in all stages like membranes in filtration, adsorbents of pollutants,
photocatalysts for degradation and for detection of pollutants in water purification.
Carbon quantum dots (CQDs), an accidentally invented nanomaterial, like in many
applications have supported in water purification in all stages. Hence, it is intended
for a mini-review for the water purification techniques with carbon quantum dots
(CQDs). The chapter consists of three parts. Many nanotechnological methods are
employed in water purification. Among them, nanomembranes play a dominant role
in detection, nanofiltration and degradation in water purification. Next, nanomate-
rials as adsorbents, sensors and photocatalytic activity for water remediation are
being investigated largely. Hence, they are discussed in the first part. In the second
part, the features of CQDs are considered for its versatile applications. The easy
and low-cost preparation of CDQs from easily available materials are investigated
from the research published articles. In the third part, an attempt is made to collec-
tively analyze the CQDs contributions as membranes in water purification, to detect
the presence of organic, inorganic and dye contamination from water is reviewed.
Further, the removal of the harmful and or toxic elements from polluted and impure
water is discussed from various research groups.

1 Introduction

Water is essential for every living being. Earth and human body are made up of
almost 70% of water. Yet only 2.5% of freshwater is available. Out of which only
0.007% is accessible although there are many sources of water like spring, rivers,
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etc., being periodically filled by rain. Therewill be no life if there is nowater on earth.
Thus, the present challenge is to “Ensure availability and sustainable management of
water and sanitation for all”. Traditional water purification methods include boiling,
filtration, sedimentation and solar radiation. They may be cheap and feasible for
rural area, but at present a safe, convenient and more sustainable methods are essen-
tial. Hence, nanotechnology is used for sustainable methods for water purification.
Nanotechnology can solve the technical challenge faced in almost all the methods
of purification of water. The advantages being its size and properties therefrom. For
example, titanium oxide is a more effective catalyst in nanoscale than as microscale.
It is used to degrade organic pollutants, for example, in water treatment. However, in
some cases, manufactured nanoparticle’s small size may become more toxic than the
normal material. Another notable factor is removal of water contaminants including
arsenic, viruses, bacteria, pesticides, mercury, salt pose, etc.

The goal of Nanotechnology in water is to increase the water availability, to
be delivered effectively at the required destination and to employ the required
implementation to ensure its sustained availability for our future generation.

First a detailed analysis must be continuously collected about the following:

1. Water sources
2. Pollutants
3. Purification techniques

Surface water like river, lake or freshwater marsh; Under river flow, that flows
through rocks and sediments under the ground, Groundwater which is a fresh water
source available at pore spaces between the soil and rocks, Frozen water like icebergs
and glaciers, Desalination which is fresh water converted from these a water are the
main sources of water available [https://en.wikipedia.org/wiki/Water_purification].

In broad sense, inorganic, organic and biological water contaminants that are
harmful for living beings and environment are the pollutants. The toxic and/or
harmful metal ions like arsenic, mercury, lead, cadmium, chromium, zinc, nickel,
copper, nitrates, sulfates, phosphates, fluorides, chlorides, selenides, chromates,
oxalates, etc., are some pollutants that change the taste and color of water. Organic
andpharmaceutical pollutants such as pesticides, fertilizers, radioactivewaste, hydro-
carbons, plasticizers, biphenyls, phenols, detergents, oils, greases are also beyond
consumable or usable limit in water. Biological water contaminants like bacteria,
viruses and parasites that cause water-borne diseases must be destroyed before water
consumption [10].

Water purification is generally accomplished by a few successive stages consisting
of chemical coagulation, flocculation, sedimentation, filtration and disinfection.
Selection of themethods to be used for water remediation will depend on the contam-
ination and the application of the remediated water. Further, a cheaper and effective
combination of the processes is essential and is the ultimate requirement. There
are many water purification techniques by nanotechnology at various processes.
Nanotechnology offers nanomaterials synthesized with desirable properties for the

https://en.wikipedia.org/wiki/Water_purification
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necessary treatment like nanofiltrations and membranes, nanoadsorbents, nanocat-
alysts, disinfection and microbial control for removing the organic and inorganic
contaminants and bacteria.

The engineered nanomaterials are customized with certain properties like high
specific area, pore sizes to suit hydrophilic, and hydrophobic interactions in
nanomembranes and nanoadsorbents useful in filtration and adsorption techniques.
Nanomaterial compositeswith specific functional groups for selective adsorption and
interaction with bacteria or other organic or inorganic pollutants. Thus, Nanotech-
nology is employed for an efficient and economic method for water purification [41].

2 Nanotechnology for Water Purification

The basicmethods like boiling, filtration, distillation, chlorination, sedimentation and
oxidation were commonly used for water purification for the removal of physical,
biological and chemical pollutants. For efficiency and sustainability, nanomaterials
and nanotechnology are preferred for water treatment processes.

Water is purified by successive processes so that in each stage some selec-
tive pollutants are removed by their respective purification method by filtration,
adsorption etc. It is reported [19] that the processes like coagulation/flocculation,
precipitation, biodegradation, filtration (sand) and adsorption using activated carbon
are conventional methods adopted. The established recovery processes are solvent
extraction then evaporation followed by oxidation and electrochemical treatment
then membrane separation, membrane bioreactors, ion-exchange and incineration
are categorized as. Further, the new emerging processes are advanced oxidation,
adsorption onto, nonconventional solids, biosorption, biomass and nanofiltration.

Thus, a combination of physical, chemical and biological processes are being
incorporated in complete removal of pollutants for safe water to be available for
living beings.

Themajor nanotechnologymethods for water purification are remediation, desali-
nation, filtration, purification, etc. The advantages for using nanomaterials are their
surface area, compact volume, strength, stability and durability due to their structure
and the volume to surface area ratio. Also, their chemical and biological reactions
with the pollutants.

The property of nanomaterials being chemically inert and versatile hydrophilic
surface chemistry are suitable for the removal of bacterial pollutants from polluted
water. Metal ions such as Cu2+, Fe2+, etc., sulfates, fluorides and organic pollutants
are removed by some biobased membranes.

Nanofilter membranes are also found to have good adsorption capacity. The
membranes are doped with functionalized groups, say, negatively charged anionic
groupwhich are used for the adsorption of the positively charged pollutants. They are
also utilized as anti-fouling agent, for removal of salt ions, dechlorination of water
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Fig. 1 Nanotechnology for
water purifications

and removal of dyes from the pollutedwater. [Nanotechnology for water purification-
wikipedia, en.wikipedia.org]. Thus, the major areas of nanotechnology considered
for water purifications is given in Fig. 1.

2.1 Nanomembranes for Water Purification

Filtration implies the removal of unwanted constituents by the passage of untreated
water through a porous barrier. After the pretreatment stage the suspended solid is
removed. Coagulation and flocculation are then done where the dissolved impu-
rities are precipitated through sedimentation. Filtration is done to remove the
suspended particles if present from the water. In the conventional water treatment,
the dissolved salts like soluble inorganic and organic substances cannot be removed.
Hence, nanotechnology is considered for the water treatment. Thus nanomembranes,
nanoporous polymers, etc., are used for water remediation. Further, desalination is
being considered under filtration method [68].

Nanofiltration membrane process is used on surface water and fresh ground-
water, softening purposes and removal of disinfection byproduct precursors such
as natural organic matter and synthetic organic matter. There are different kinds of
membranes such as microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) and
reverse osmosis (RO) membranes that are categorized according to their pore size.
Selectedmolecular organics and salts are detained depending onpore size distribution
and complex separation mechanism. Thus, nanofiltration membranes first blocks the
pollutants based on their size. Membrane must offer high selectivity along with high
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permeability. Membrane fouling must be greatly reduced as they will cause severe
flux loss due to the blockades in the membranes. This also shortens the lifespan of
the membrane [96].

Generally, nanomembrane consists ofmany layerswhich also includes a fewnano-
materials for the filtration of specific pollutants. Usually, polymers like fluoropoly-
mers, amphiphilic polymers, nanoporous ceramic membrane, carbonized nanoma-
terials, etc., are utilized. Mainly the organic pollutants, inorganic pollutants and
pathogens from viruses and bacteria are either filtered or adsorbed selectively
by customized nanomembranes [5]. Antifouling properties are developed on the
membranes generally by surface modification. One of the modifications is thin film
coating on the membrane surface. The other one is by grafting of polymer materials
on themembrane surface. Both thesemethods are to stop the interactions between the
foulant and membrane. The membrane surface must be nonporous, smooth to stop
the foulant entrance into the membrane and avoid internal fouling. The membrane
surface is charged by some dopants to repel the foulants by electrostatic interactions
[57]. Nanocomposite membranes are made from specific structured nanomaterials.
They are found to have higher hydrophilicity, thermal stability and increased water
permeability. It is mostly used for Reverse osmosis and removal of micropollutants.

Highly porous nanocarbon membranes are found to sustain high salinity,
hydrophobicity and can withstand high pressure and vacuum. Homogeneous
nanoporosity is found in certain self-assembled membranes for ultra-filtrations.
Aquaporins membranes are noted highly selective to reject specific ionic molecules
under certain conditions [69]. Nanofiltration consumes less energy and the water
productivity is more with high salt rejection. Hence, it is reported that nanofiltration
plant is more economical and efficient for desalination of water [88]. Some nanos-
tructured materials are used polymeric and ceramic membranes to enhance their
properties for efficient water treatment. Zeolitic nanoparticle on ceramic, isoporous
block copolymer and hybrid inorganic–organic nanocomposite membranes are a few
examples mentioned [80].

2.2 Adsorption of Pollutants by Nanotechnology

Certain nanomaterials can attract particular substances on to the molecules on their
surface that are at close contact with them are known as nanoadsorbents [28]. High
adsorption of organic and inorganic pollutants like heavy metals and micropollutants
are noticed in these nanoadsorbents. There are nanoadsorbents based on carbon,
metal, polymer and zeolites used as adsorbents for selective pollutants. Generally,
these nanoadsorbents are more efficient and faster in adsorption process. Therefore,
they are used for contaminated or polluted water treatment.

Adsorption is another well-known technique for water remediation. Nano-
materials are also considered as good adsorbent in treating wastewater.
For example, catalytic, absorptive, catalytic membrane, bioactive nanoparti-
cles, biomimetic membrane, polymeric and nanocomposite membrane, thin-film
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composite membrane, etc. are some of the applications where they are used. Carbon
nanotubes (CNTs) are used as absorbent for several organic chemicals. Carboxylic,
hydroxyl and amide functional groups of Organic compounds which form hydrogen
bond with the graphitic CNT surface also donate electrons. Ferrous oxide, TiO2 and
Al2O3 are some nanoscale metal oxides which are effective, low-cost adsorbents for
heavy metals and radionuclides. Dendrimers (polymeric nanomaterials) are adsor-
bents used for removal of organics and heavy metals. Powder, beads, or porous
granules are various forms of nanoadsorbents available for water treatment [30].
Commercial activated carbon is available as adsorbents. Because of their structural
properties with large surface area and porosity, they are generally good adsorbents
of organic pollutants and pesticides, aromatic and phenolic derivatives, metals ions
like iron, manganese, nitrate and dye molecules that produce different taste or smell
in water. They also retain toxic organic materials and cause degradation of bacteria
from the adsorbed materials.

Activated carbons being expensive, they are being replaced by CQDs and their
composites [10]. Natural adsorbents such as sawdust, wood, etc., are available for
water treatment. Several materials are customized to develop a particular structure
and properties for selective adsorbents. Materials like zeolites are produced specif-
ically as adsorbents. Adsorbents that are good in interaction with bioorganisms are
manufactured for the adsorption of chitosan, fungi or bacterial biomass.

The removal of pollutants from wastewaters by a variety of conventional and
nonconventional adsorbents are done by variousmechanisms. Researchers have clas-
sified the mechanisms of adsorption as physisorption, chemisorption, ion exchange
and precipitation. Physisorption is the process where an adsorbate bound to the
surface by weak van der Waals forces before being removed from the wastewater.
Chemisorption is the process where an adsorbate is tethered through either covalent
bonding or due to electrostatic attraction.

Organic resins, activated alumina, zeolites and sand are a few of the adsorbents
equally competent as commercial activated carbon. There are innumerable noncon-
ventional efficient adsorbents available. To list, agricultural solid waste, industrial
by-products such as red mud, natural materials such as clays, biosorbents such as
chitosan are not only efficient solid adsorbents but also very economical. Recently
cellulose and chitosan are used in many applications as adsorbents. However, the
effective adsorbents are not utilized in industrial level as yet [19]. As the adsorbate
is accumulated on the adsorbent surface, adsorbent is a surface process. Carbon-
based nanomaterials, metal oxide-based nanomaterials, Carbon, metal oxide hybrid
nanomaterials and polymer-based nanomaterials are widely used as adsorbents for
wastewater treatment specifically for the removal of heavy metals and dye removal.

Carbon-based nanomaterials like activated carbon, CNTs, fullerenes, and
graphene are widely used because of their non-toxicity, structural stability and high
adsorption [25]. They are also available in abundance and are prepared easily. Metal
oxide-based nanomaterials like Fe3O4,MnO2, TiO2,MgO, CdO and ZnO are used as
adsorbents for the removal of heavy metal ions and dyes. High surface area, specific
affinity, low solubility with relatively no environmental impact are the characteristics
responsible for them to be utilized as adsorbents.
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Retention and permeability are the properties to be considered in nanofiltration
membranes. They depend on the electric charge and the valency of the solute and the
solution. Monovalent ions are more permeable than the multi-valent ions. Similarly,
the retention rate depends on the specific cations and anions. Themembrane pore size
is another important factor in membrane processes. Beside nanofiltration process,
reverse osmosis techniques are performed using nanomembranes [85].

The common difficulties on nanomembrane technology are scaling and fouling
issueswhich are being overcomeby specific composites andCQDdopedmembranes.

2.3 Role of Nanomaterials as Sensors for Water Remediation

Nanomaterials are used as sensors for water quality monitoring due to its unique
optical and electronic properties [75]. The particles containing a core and a shell are
the core–shell nanocomposite materials. They were prepared from metal nanopar-
ticles as precursors following bi-functional molecules or co-precipitation method.
Their customized physical and chemical properties over their single-component
enable them to be utilized in many applications. These synthesized nanomaterials
are used as sensors because of their tunable optical properties by their ratio of
core-to-shell thickness.

Nanosensors play an important role in detectingpollutants fromessentialmaterials
like air and water in environment. SnO2 and reduced graphene oxide together are
used for electrochemical detection of ultra-trace heavy metal ions in drinking water.
A pH-based sensor synthesized from ZnO nanorods was used to find the pH in water.
A bismuth porous carbon nanocomposite showed high sensitivity in detecting Pb2+

and Cd2+ ions in tap drinking water and wastewater even at a very low concentration
levels [67]. The sensitivity and selectivity of nanomaterials and nanostructures are
the key factors to employ them as sensors. Inorganic quantum dots, graphene oxide,
QCD and metallic clusters are excellent fluorescent materials. Further their high
photostability, high quantum efficiency, size-dependent fluorescence emission peaks
enable them to be used as fluorescent sensors for the detection of heavymetals. QCDs
linked with Au NPs are good sensors of Hg2+ in river water with excellent selectivity
over other metal ions. ARhodamine B-Au NP-based probe with nanometal surface
energy transfer is reported [54] as a sensor for detecting mercury in water.

2.4 Nanomaterials as Photocatalysts for Water Purification

Photocatalysis is the enhancement of a photoreaction by the presence of a cata-
lyst. The photocatalyst is the light that is absorbed. The photocatalytic activity
(PCA) is first to create electron-hole pairs by the ability of the catalyst, which in
turn generate free radicals (e.g., hydroxyl radicals: OH−) that are able to undergo
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secondary reactions. They are then used to break down organic molecules, organ-
isms and inorganic molecules in various applications like removal of air pollution,
in building materials for self-cleaning surfaces and in water purification [http://pro
tecsolutions.com.tr/uploads/41bf0b835349bea49bd2d50fc0327678.pdf].

The techniques from nanotechnology water treatment using nanostructured
catalytic membranes, nanosorbents and nanophotocatalyst are both eco-friendly and
efficient, but the investment and energy in implementing them are enormous.

Organic pollutants such as Congo red, azo dyes, phenol aromatic base pollu-
tants, toluene, dichlorophenol trichlorobenzene, chlorinated ethene, etc. are removed
using TiO2 based nanotubes effectively from wastewater. Titanium dioxide (TiO2) is
considered as good nanophotocatalyst material due to toxic-free property, chemical
stability, easy availability and low cost. Photocatalysts like ZnO, which are used to
eliminate pollutants in wastewater are also effectively reused. Pd incorporated ZnO
nanomaterial is used for the removal of Escherichia coli (E.Coli) from wastewater
due to their high photocatalytic activity [4]. TiO2 activity is by the oxidation of
pollutants by the formation of hydroxyl radicals. The photogenerated e−-h+ pairs are
separated which are responsible for the transformation of pollutants. The ability to
decompose the pollutants is exceptional. Its photocatalytic activity can be performed
under sunlight. It is environmentally safe, non toxic and of low cost.

Generally, light is absorbed, excites the electrons from conduction band to valence
band [9]. TiO2 photocatalytic activity causes adsorption of organics to its surface.
Then the degradation of the adsorbents occurs. For an efficient water purification
through TiO2-based photocatalytic process, proper light absorption to enable cata-
lyst action is necessary. Also, recombination of photogeneration of e−-h+ pairs
reduces the photocatalytic efficiency. Hence, e−-h+ separation must be increased.
For the effective adsorption and degradation of organics by TiO2, its surface area
is made large and active. The TiO2may also be doped appropriately for an effective
photocatalytic activity. Nanostructures of metal oxide semiconductors as photocat-
alysts are efficient in the removal of biological contaminants from polluted water
[87]. Nanostructured photocatalytic adsorption is higher for nanocatalysts of large
surface-to-volume ratio. Being excited by sunlight they can be employed every-
where to degrade organic, inorganic and microbial contaminants by their effective
redox process. Nanoparticles of TiO2 and ZnO catalysis are examples for ground-
water remediation of chemical contaminants. Ternary oxide zinc stannate photocat-
alyst is another good photocatalyst for water purification. The addition of hydrogen
peroxide (H2O2) being an electron acceptor on potassium persulfate (K2S2O8) and
TiO2enhances the degradation rate of the pollutants. Complete mineralization of
carbofuranwas observed by addition of total organic carbon (TOC) analyzer. Cymox-
anil, dimethoate,methomyl, oxamyl, pyrimethanil and telone are somepesticides that
are completely destroyed by completemineralization. Bacteria includingEscherichia
coli, Salmonella typhimurium, Pseudomonas aeruginosa, and Enterobacter cloacae
were successfully degraded by TiO2 nanoparticles (Degussa P25) under solar light
irradiation.

http://protecsolutions.com.tr/uploads/41bf0b835349bea49bd2d50fc0327678.pdf
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3 Understanding Carbon Quantum Dots

3.1 Properties of Carbon Quantum Dots

Carbon dots are nanoparticles with all the dimensions measured within the nanoscale
(no dimensions are larger than 100 nm). Carbon quantum dots, also recognized as
C-dots, have the molecular geometry and physical properties comparable with that
of graphene oxide. They vary from graphene oxide in terms of dimensions, being
quasispherical nanoparticles with width below 10 nm [49]. The assembly of carbon
quantum dot structure is represented in Fig. 2.

The structure collectively can be viewed as a muster of functional groups
comprising of oxygen atoms essentially C=O, −OH and C–O reinforced on the
outside of a solitary layer graphene sheet. The structure and properties of the graphene
sheets are altered due to the accumulation of oxygenated functional groups and
particle sizes to exhibit the quantum internment properties.Also, the electron-transfer
and inventory properties of CQDs can be functional to distinct generation of electrons
by light.

The ample functional groups (–NH2, −COOH, OH, etc.) on the exterior of
CQDs can be functioned as dynamic binding site with transition metal ions. Prin-
cipally, CQDs can be employed as resourceful electrocatalysts when blended with
other inorganic compounds, such as metal phosphates, metal sulfides and layered
double hydroxides (LDHs), etc. CQDs contrast to the naturally occurring rare
preciousmetals are economical, easily accessible, providemore active catalytic sites,
improved structural stability and enhanced electronic conductivity [31, 90]. The
modest chemical structure of carbon dots recommends that they can be produced
from organic or eco-friendly waste, providing a stimulating prospect to renovate

Fig. 2 Carbon quantum dot
structure
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waste into progressive efficient nanomaterials for attaining a globular economy and
justifiable development. Several waste matter have been turned into carbon dots such
as orange peels, fish scales, waste paper, onion waste and hair [22]. By varying the
concentration of precursors, reaction time, solution pH and reaction temperature,
the physicochemical properties of CQDs can be modified. Consequently, CQDs are
appropriate in the versatile applications of energy conversion, optoelectronic devices,
bio-imaging and water purification methods.

Various studies have stated the usage of CQDs in wastewater treatment or for
wastewater monitoring. For instance, CQDs have been used to discard uranium and
also in tracking the dangerous materials in industrial waste. CQDs can also be func-
tional as adsorbents for the removal of benzopyrene and Cd(II) in environmental
water samples. Additional study has stated the use of CQDs as an antimicrobial
agent for degradation of bacteria.

CQDs have fascinated the attention in biomedical applications, as they possess
exceptional biocompatibility, good solubility in aqueous solution and necessary
optical properties apart from wastewater treatment. Manufacture of CQDs from eco-
friendly materials (carbon wastes and plant-based sources) should be fortified due
to its low cost, extensive accessibility, low toxicity and sustainability. Also, this can
decrease waste production and the consumption of chemical substances [89]. Due to
the emerging complex environmental problems, carbon-based materials, especially
CQDs, have sparked a lot of interest in the field of energy conversion and storage
(Lim 2015).

Contamination of heavy metal is identified to be the origin of toxic effects on
the human health and environment. The discharge of overwhelming metal in water
sources could be a challenging issue confronted by the mankind in the twenty-first
century. Even when present in trace amount in natural systems these metal ions will
have the poisonous effects and they are nonbiodegradable. Extremely low concen-
tration of these metal ions in the environment can affect the signaling mechanisms
and cellular machinery in the body. This will cause damage to bones, teeth, liver
and organs of human body. A major portion of inorganic pollutants in the form of
anions (Cr2O7

2−) and cations (Hg2+, Fe3+ Co2+, Ni2+, Pb2+ and Cd2+) in water form
the major portion of the heavy metal ions.

Synthesis of water-dispersible fluorescent CQDs (2–5 nm size) from naturally
obtainable cabbage as the carbon source has been established. The results indicated
the potential of CQDs from cabbage in advancement of chemosensor probes to
sense the existence of heavy metal ions in innumerable environmental and biological
samples. The fluorescence intensity of CDQs obtained by this method could be
substantially quenched in the presence of various metal ions such as Hg2+, Fe3+ and
Pb2+. Additional work is mandatory for quantitative estimation of metal ions since
the nanosensor prepared lacks selectivity. Sustainable carbon-based photosensitive
probes offer an alternative to the noxious semiconductor QDs that are presently in
practice for detecting applications [1].

The components and structure of CQDs govern their diverse properties. CQD
surface expose biocompatibility and excellent solubility in water due to numerous
carboxyl moieties. CQDs are also appropriate for surface passivation with various
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biological, polymeric, inorganic or organic materials and chemical modification.
Because of this surface passivation, the CDQs can improve the fluorescence
properties as well as physical properties (Lim 2015). Carbon quantum dots are
group of carbon nanostructures which have established widespread attention due
to their exceptional properties including chemical inertness, high resistance to
photobleaching, non-toxicity, good biocompatibility, remarkable photostability, high
solubility in water [78].

Quantum-sized semiconductor nanoparticles have been established as a signifi-
cant class of photoactive nanomaterials for a diversity of scope and implementation.
There has been wide research on the photoresponse, photoinduced charge sepa-
ration and electron transfer processes for the use of semiconductor quantum dots
in light energy conversion and related areas. The electron-donating abilities of the
photoexcited carbon dots were also verified in the photoreduction of Ag(I) to Ag
[98]. Compared to the traditional semiconductor quantum dots, the fluorescent CDs
possess excessive advantages comprising their exceptional stable chemical proper-
ties and optical properties. CDs replace semiconductor quantum dots in biological
imaging since CDs are eco-friendly with low toxicity characteristics.

Fluorescent nanomaterials have gained a lot of attention as potential competi-
tors to conventional fluorescent dye probe in recent years due to the high demand
for fluorescent probe in chemical sensing, biological monitoring, and other related
fields. Traditional fluorescent dye flaws such as low stability, low fluorescence inten-
sity and rapid photobleaching can be overcome by fluorescent nanomaterials with
its quantum size effect.

Because of their low toxicity, changeable surface functional groups, exceptional
biocompatibility, CDs have become a hotspot of drug delivery science [35]. From
both the viewof fundamental research and real-world application Photoluminescence
(PL) is one of the most captivating features of CQDs [16, 42, 61, 104]. For CDQs,
the diverse reliance of the intensity and emission wavelength is one of the consistent
features of the photoluminescence.

The distinct dependency of the emission wavelength and intensity is a typical
feature of the PL for CQDs. The optical array of nanoparticles of different sizes or
CQDs with different emissive traps on the surface may be the cause of this unusual
phenomenon (Li 2018).

The large and excitation-dependent PL emission spectrum reflects the difference
in particle size and PL emission [84, 107] CQD emission activity under 470 nm
wavelength irradiationwith different concentrationswas investigated. As the concen-
tration of CQDs was increased, the PL intensity of the solution first increased and
then decreased [89].

The size-dependent optical absorption of CQDs is one of themost intriguing prop-
erties. The PL is a well-known sign of quantum confinement. Zhao et al. stressed
the importance of size in determining the excitation wavelength of CQDs. When
compared with particles of the same size, PL was with more varying emissive trap
sites [51, 66]. The fluorescence properties of CQDs depends on excitation of certain
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Fig. 3 Two modifications of CQD

range of wavelength. This makes it more viable for many applications. CQDs fluo-
rescence properties depend on their functional groups, sizes and crystalline degrees.
Barely CQDs are less in fluorescence quantumyield. But it can be intensely enhanced
by functionalization, passivation and chemical alteration by other molecules. The
precursor of carbon dots also plays a crucial role because of its core and surface
structure originate from the initial raw material [24].

3.2 Passivation and Functionalization

Passivation is a thin protective or insulating layer formed around CQDs. Often this
layer prevents the impurities bonding with CQDs as its surface is highly reactive due
to the presence of oxygen and carbon thus improving the photoluminescent intensity.
This covering is generally done by polymer or organic molecules which are non-
radiative by the visible radiations. Hence, the CQDs have their usual luminescence.
Further, because of this protection, CQDs become stable and hence will have long
life.

Functionalization is to create functional groups such as hydroxyl, carboxyl and
carbonyl, for enhancing various features of CQDs. Generally, the functional groups
are attached during the synthesis itself. It is by acid treatment or hydrothermal process
for the attachment of sulfur-, amines, selenium-, phosphorus-, boron-, and oxygen-
containing or by attaching boron, amines containing by Solvothermal method [40].
The two modifications, passivation and functionalization on the surface of CQD are
depicted in Fig. 3.

3.3 Some Methods of CQD Synthesis

Synthesis of Carbon Quantum dots can be broadly classified as Top-Down Method
and Bottom-Up Method.

The macromolecule is crushed or disseminated into small-sized CQDs using
chemical or physicalmethods in the top-down process, while the bottom-up approach
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refers to the chemical polymerization and carbonization of a sequence of small
molecules into CQDs.

Top-Down Methods

Arc-discharge:

In this approach, C-dots was developed from crude carbon nanotube soot (residue)
[29]. Next step the residue was oxidized with 3.3 M HNO3 to bring in carboxyl
groups. Later the resulted substance was extracted with NaOH/basic solution of
pH 8.4. A stable dark colored suspension was observed. The extracted matter was
purified by Gel electrophoresis. The arc-discharge soot method comprises a number
of complex segments and the CNPs produced by the arc-discharge process have
minimal yield. But it was hard to purify the segments. In addition, since they were
mixed with oxygen externally, the fluorescent NPs obtained by the oxidized carbon
nanotube had the ability to gather when dispersed in water. It was coated in a thin
layer of carbon, indicating that it was more widespread division.

Laser ablation method:

By laser treatment of graphite fragments in polymer solution Carbon quantum dots
(C-dots) with typical sizes of about 3, 8 and 13 nm were produced [26]. The size
control of C-dots can be understood by regulating the laser pulse width. Carbon
dots obtained show excitation wavelength and size-dependent photoluminescence
behavior.

The cause may be the effect of laser pulse width on C-dot nucleation and growth
conditions. As opposed to short-pulse-width lasers, the long-pulse-width laser will
be better suited in controlling the size and morphology of nanostructures in different
material systems.

Electrochemical method:

Carbon Quantum Dots (CQDs) are captivating incredible attention due to their,
biocompatibility, optical properties, low toxicity, extensive applicability and water
dispersibility. By the electrochemical oxidation of a graphite electrode in alkaline
alcohols, CQDs with an average width of (4.0 ± 0.2) nm and high crystallinity
were produced. CQDs dispersion formed was colorless, then changed to bright
yellow when stored in ambient conditions. This color distinction appeared to be
due to oxygenation of surface species over time based on fluorescence spectroscopy,
Fourier transform infrared spectroscopy (FTIR), UV–Vis absorption, high-resolution
transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy
(XPS).

Carbon quantum dots are produced by electrochemically by oxidizing graphite
electrodes in alkaline alcohols [53] and are used for ferric ion detection and cell
imaging.
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Bottom-up Methods

Thermolysis-Chemical route:

Most common synthesis method for fluorescent carbon dot is by thermal decompo-
sition of citric acid. Several intermediates are formed and they also produce fluores-
cent species during the process. The reaction pathway is very complicated, and the
specifics are still unknown. In the current work [71], By combining, Xray photoelec-
tron spectroscopy, infrared analysis and liquid chromatography/mass spectroscopy
(LC/MS) with the modification of the absorption, emission, and optical properties,
the formation of fluorescent C-dots from citric acid was studied as a function of
reaction time. As shown by the decay time study, the reaction intermediates have
been identified and found to generate two key emissive species, in the green and
blue, at various stages. C-dots were also synthesized from the intermediates through
thermal decomposition, with an emission limit of around 450 nm. To improve the
control and repeatability of C-dots synthesis, a better understanding of the process
is needed.

In a Teflon-lined autoclave, fresh pepper was suspended in water and heated at
180 °C for 5 h [101]. In the next step to obtain purified CDQs, large particles were
separated by centrifugation and the filtrate was dialyzed with water.

Microwave synthesis:

Fluorescent CQDs were initially produced from roasted chickpeas by a microwave-
supported pyrolysis [6]. It has been characterized using fourier transform infrared
spectroscopy (FTIR) spectroscopy, transmission electron microscopy (TEM), UV–
vis absorption spectroscopy, X-ray diffraction (XRD) technique and Fluorescence
spectroscopy. Roasted chickpea was used as the carbon source. This entire synthesis
is eco-friendly and the CDQs produced have shown beneficial properties such as
good water solubility, excellent photostability and high fluorescence intensity.

Under UV light, the CQDs emit a blue fluorescence (at 365 nm). CQDs were
prepared in 120 s using a microwave oven (350 watts). The effect of different metal
ions on the fluorescence intensity of CQDs was studied to see if it could be used to
detect metal ions.

One-pot microwave treatment of lotus root (LR) yielded fluorescent nitrogen-
doped CQDs with a nitrogen content of 5.23%, Gu et al. [11] without the use of any
other surface passivation agents.

Hydrothermal method:

In hydrothermal method the carbon dots are synthesized with external heating from
precursors such as birch bark soot, blueberry, blackbird cherry, redcurrant, glucose,
citric acid and cowberry [36]. The photoluminescence of these carbon dots at various
excitation wavelengths was studied. It is shown that as the excitation wavelengths
are increased, the luminescence spectra intensity peaks change. The discovery of
this effect opens up new possibilities for the creation of composite materials made of
carbon dots, starch, and epoxy that can turn blue LED light to green. In a Teflon-lined
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autoclave, fresh chopped rose-heart radish was mixed with water and heated to 180
C for 3 h [70]. A dialysis membrane was used to isolate the solution.

Pyrolysis carbonization 800 °C. Sweet potato was carbonized by hydrothermal
treatment [77]. The microstructure and chemical composition of the CQDs were
studied. A simple hydrothermal methodwas used tomake highly luminescent carbon
dots (C-dots) directly from lemon juice [7]. To control the luminescence of CQDs,
different temperatures, time, precursor aging and diluted solvents were used.

A one-step hydrothermal method was used to make CQDs from waste tea leaves
and peanut shells [112]. CQDs with high quantum yield and good stability were
studied in terms of their synthetic conditions, structure and optical properties.

The use of cowberry, blackbird cherry, blueberry, redcurrant and birch bark soot
as precursors in a hydrothermal method with external heating was investigated [36].
It is shown that there is an effect of the shift of luminescence spectra intensity peaks
with the increasing of excitation wavelengths.

Solvothermal method:

Carbonquantumdots (CQDs)were preparedvia a hydrothermalmethod starting from
phosphoric acid, urea and citric acid in dimethylformamide solution by doping with
phosphorus and nitrogen [37]. CQDswere characterized for the surface composition,
optical properties, energy levels, size and morphology. Cyclic voltammetry was used
to differentiate the LUMO andHOMO levels of the doped CQDs. Ferric (III) ions are
found to quench the fluorescence. The selective coordination of Fe3+ by the surface
functional groups on the CQDs can be attributed due to the quenching mechanism,
as calculated by energy level measurements and absorption spectra. CQDs have
been demonstrated to be viable fluorescent probes for determining Fe3+ with high
selectivity and sensitivity.

Template method:

Developing C-dots by calcination in appropriate mesoporous silicon spheres or
patterns, and etching to remove supports and produce nano-sized C-dots are the
two stages of this process. Zong [114] determined a method for using silica meso-
porous spheres as rough models. After this, the silica spheres were saturated with
mixed solution of complex salts and citric acid. Following that, mesoporous supports
were calcined and expelled and the photostability of subsequent C-dots, as well as
mono-dispersion, verified that they had remarkable luminescence properties. Yang
[99] reported a soft-hard template approach for developing consistently structural
PL C-dots. The obtained C-dots’ composition, tunable size, and crystalline degrees
were found to have extra high stability properties after template elimination, passi-
vation and carbonization. The challenge of forming aggregates has been effectively
removed [29].
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Other Methods

Carbonization procedure:

Carbon quantum dots (CQDs) are formed by the gathering of the central aromatic
ring system of asphaltenemolecules due toπ–π interaction. The direct carbonization
of dispersed carbonaceous microcrystals in mesophase pitch is viewed as a simple
method for the synthesis of CQDs [23].

Regulating the nucleation temperature for mesophase formation changes the size
of the as-prepared CQDs. Excitation-independent fluorescent behavior was observed
in the CQDs, with a quantum yield of up to 87%. CDQs were successfully used for
the fluorescent detection of Fe3+ ions with high sensitivity and specificity.

The outcome of this method furnished the ascendable production of CQDs at
low cost. In addition to this, it also gives clear evidence to realize the hardening of
asphaltene at nanoscale.

Synthesis of S–N–C-dots on a large scale was done using etching and carboniza-
tion of hair fiber by sulfuric acid [82]. It was shown that the S content of the as-
formulated S–N–C-dots increased with reaction temperature, while the N content
remained almost same.

CQDs nanohybrids:

Recent studies on the preparation of novel hybrids consisting of CQDs and inorganic
nanoparticle cores (e.g., titania, silica, iron oxide and zinc oxide) have been attempted
[91]. The hybrids formed, mix the fluorescence properties of the CQDs with the
mechanical, magnetic and optical or properties of the oxide cores. These hybrids
could be used as photocatalysts or magneto-optical biolabeling agents. Bidentate
TiO2/vitamin-C (VC) complexes were used to make TiO2/CQDs composites using
a hydrothermal process.

The hydrogen production from photocatalytic water splitting catalyzed by the
TiO2/CQDs nanohybrids was explored. The impact of hydrothermal temperature,
reaction time, and vitamin C concentration was also investigated. The photocatalytic
efficiency of these nanohybrids can be attributed to the hydrothermal treatment’s
collaborative effects, as well as the appropriate electron transfer capability during
the transformation of CQDs.

4 Carbon Quantum Dots (CQDs) for Water Purification

CQDs are known to exhibit strong photoluminescence, nontoxic unlike metal-based
quantum dots with exceptional optical and fluorescence characteristics with high
quantum yield. Also known for high thermal and optical photostability, tunable
excitation and emission, with easy surface functionalization [73].

Many researchers have reported [89] that two absorption peaks due to π → π*
transition of C=C and n → π* transition of C=O from CQD. They are further
tuned by either doping or by CQD-based composites. Photoluminescence is another
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useful property ofCQDs, dependent on the emission wavelength and intensity. It is
attributed due to the surface defects resulting from sp2 and sp3 hybridized carbon.
The various functional groups (−COOH,−OH,−NH2, etc.) on the surface of CQDs
are another fascinating feature withwhich the interaction takes placewith the organic
and inorganic ions. Due to good water solubility, chemical stability, easy preparation
from cheap and easily available materials, innumerable applications of CQDs are
being reported. It is intended to review some of them for the water purification in
this part of the chapter.

CQDs are synthesized by each research group by their requirement for their appli-
cation. The synthesized CQDs were then characterized by a few of the following
methods to confirm its properties.

UV molecules on absorption of ultraviolet or visible light excite the bonding and
non-bonding electrons to higher anti-bonding molecular orbitals. The electron that
absorbs longer wavelength of light is more easily excited (i.e., lower energy gap
between the HOMO and the LUMO).π–π*, n–π*, σ–σ*, and n–σ* are four possible
types of transitions. Their probable transitions are as σ–σ* > n–σ* > π–π* > n–π*.

PL—Photoluminescence is light emission by the absorption of photons from any
form of matter. It is one of many forms of luminescence caused by photoexcitation.

TEM—In transmission electron microscopy, an image of the specimen is formed
by a beam of electrons transmitted through it. The thickness of specimen is most
often less than 100 nm thick or a suspension on a grid.

XRD—The atomic and molecular structure of a crystal is found using X-ray
crystallography. The incident X-rays diffract through the specimen in the required
direction to get its crystalline structure.

Raman spectroscopy is used to determine vibrational modes of molecules.
Besides, the rotational and other low-frequency modes of vibrations of the systems
are observed. It usually provides a structural fingerprint for identifying themolecules.

IR—chemical substances or functional groups in material in the form of solid,
liquid, or gas are identified using infrared spectroscopy. It is found by the interaction
of matter with infrared radiation through absorption, emission, or reflection.

XPS—X-ray photoelectron spectroscopy is performed using photoelectric effect
which is a surface-sensitive technique. In a material, it is performed to identify the
surface and inside elements and their chemical state. Further, the overall electronic
structure and density of the electronic states are determined. This technique also
shows the elements that are bonded to thematerial elements.Generally, this technique
gives both the in line profiling, in depth profiling of the elemental composition across
the surface, or when paired with ion-beam etching.

4.1 Carbon Quantum Dots as Membranes

Nanofiltration membranes play a vital role in water remediation. One of the draw-
backs of the conventional water filtration method is that dissolved salts and some
soluble inorganic and organic substances cannot be removed. So, nanotechnology
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Fig. 4 Membrane structure with CQDs embedded as a layer

is preferred for the water treatment. This is done by using nanoporous polymers,
nanomembranes, etc., which typically have pore sizes that range from 1 to 50 nm,
filtering out almost all the bacteria andmany harmful substances. Desalination is also
categorized under this method [68]. The general structure of the membrane consists
of several layers. In a simple membrane structure, CDQs are evenly spread as a layer
between dense top layer and porous sublayer as shown in Fig. 4.

The application of membranes has been significantly enhanced by the addition
of CQDs in thin-film nanocomposite (TFN) membranes. The water flux and power
density are enhanced. The purity of water was very high, due to permeability through
these membranes. The toxic ions were almost nil as the water purity reported was
99%. TFN membrane surface becomes more negatively charged when CQDs are
incorporated in selective layers. Hence, the anions are very effectively reduced. There
is a remarkable improvement in antifouling properties on the selective layer. This is
also due to the electrostatic repulsions between foulants and the membrane surface.
The efficient and large surface area, large interstitial space with many functional
groups are themain reason for the highest fluxes. The presence of specific hydrophilic
groups in CQDs also causes reduction of non-specific adsorption, thereby increasing
the selectivity in the required adsorption of pollutants. These membranes are used in
reverse osmosis application because of enhanced water permeability, high permeate
flux and antifouling capability.

All the processes like desalination performance, porosity, permeability,
hydrophilicity, selectivity, etc., are enhanced by the incorporation of CQDs onto
membrane surfaces of the selective layers.

One research group [89] have published that three types of element doped CQDs
were synthesized (carboxyl, amino and sulfur) to study about anti-fouling. Another
study for the removal of selenium and arsenic by CQDs modified TFN membranes
using sodium ion (Na-CQD).

Membrane selectivity and permeability are major challenges of the membrane
technology. The energy consumption in the power-driven membrane, fouling adds to
further disadvantages. Therefore, prior to ultrafiltration or reverse osmosis (RO) some
pretreatment have been employed. Improvements are also focused on mechanical
strength, physicochemical properties of membranes and structures further to selec-
tivity and permeability. Beside polymers many composites were developed, using
many nanomaterials and it offers solutions to an extent due to the selective prop-
erties of all the materials in the membrane. Membrane surface hydrophilicity, heat
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production, compaction are other difficulties encountered. Some nanomaterials have
selective properties to overcome these issues. Further, the polymeric membranes are
modified by incorporating nano zero-valent iron (nZVI) and noble metals supported
on nZVI for reductive degradation of the microbial contaminants.

Although many approaches have been employed to improve the membrane
technology, Carbon quantum dots (CQDs) with its optical properties, excellent
hydrophilicity, low toxicity, environmental friendliness, and low cost was first
embedded into the polyamide layer during interfacial polymerization and novel
thin-film composite membranes produced are used for pressure retarded osmosis
application.

Similarly, forward osmosis, membrane distillation, pressure retarted osmosis
are other nanomembrane technology, improved drastically by CQD modified
membranes.

The membrane plays an important role in pressure retarded osmosis (PRO) and
a high-performance PRO membranes were desired. For the first time, thin-film
composite membranes with carbon quantum dots incorporation, was developed for
osmotic power generation [15]. Both the original CQDs (O-CQD) and Na+–func-
tionalized CQDs (NaCQD) were synthesized and reported that enhanced water flux
and power density were found in the incorporation of Na+–functionalized CQDs.

Forward osmosis (FO) is preferred due to its less energy consumption, low fouling
and low cost. In FO, a semipermeable membrane is used in the water separation
process to separate the dissolved solutes from water. Natural energy in the form
of osmotic pressure is used in FO to transport water through the membrane where
the dissolved solutes are retained on the other side.

The water flux (Jw) and reverse salt (Js) flux were calculated using the following
equations:

Jw = �m

Am�t

Js = �(CtVt )

Jw Am�t

where Δm is the weight in grams change of the draw solution, Am is the effective
membrane area in square cm, Ct and Vt are the salt concentration in mol/L and feed
solution volume at the end of experiment, respectively, and Δt is the measured time
period in minutes.

One of the main drawbacks is membrane fouling due to osmotic driving force that
may even lead to some toxic effects in FOmembrane [44]. Carbon quantum dots due
to hydrophilicity and surface passivation properties reveal high osmotic pressure and
hence allow high water flux.

CQDs are synthesized by hydrothermal method from tulsi leaves as a draw solute
[13]. The osmotic pressure difference between the feed and the draw solution was
used to calculate the Water flux through the FO membrane. Higher water flux and
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lower reverse solute flux were got with deionized water (DI) as feed and gave
maximum water flux with synthetic wastewater.

A thin-film composite membrane was synthesized from oil palm biomass-based
CQD which was derived from activated carbon inserted into polysulfone-selective
layers, for forward osmosis. The membrane surface hydrophilicity and porosity in
CQDs-PSF got significantly enhanced, which in turn improved membrane perme-
ability. It had been found that the porosity reduces water resistance during transport.
The following equation was used to determine the porosity of the membrane.

Porosity = Ww − Wd

ρAt

where Ww is the mass of wet membrane in g, Wd is the mass of dry membrane in
g, A is the active membrane surface area in cm2, ρ is the density of pure water in
g/cm3, and t is the thickness of membrane measured in μm [47].

It is also understood that increasing hydrophilicity allows water, but not foulants.
But disruption of foulants occurs. The polymer membranes are contaminated by
microorganisms or bacteria since they are hydrophobic and hence cause fouling.
Thus, incorporating CQDs on the polysulfone (CQDs-PSF) membrane is substituted
in FO. Mostly this composite membrane prevented bacterial activity largely and the
antifouling property enhanced water flux.

Carbonquantumdots (CQDs) are fabricated fromcitric acid and thepolydopamine
(PDA) layer transplanted on the surface of poly(ether sulfone) substrate (PES)
membranes are immobilized onto through covalent bonding [110]. This CQD-PDA
layer was found to inactivate E. coli and S. aureus, and results in anti-biofouling. The
CQD surface is negatively charged. Hence, unreacted carboxyl groups which are also
the negatively charged bacteria are electrostatically repelled. Further CQD due to the
smaller size and with oxygen-containing functional groups could have damaged or
killed the bacteria by oxidative stress. Thus, the CQDmodified PROmembranes not
only showed antifouling properties for osmotic power generation, but also indicated
higher recovery after backwash. This is an essential requirement of the membrane
particularly when natural water streams are used as the feed solution.

Biogas slurry is treated with reverse osmosis (RO). Biogas slurry is mainly made
up small molecular-weight amino acids. Nanofiltration membranes were one option
for RO, but there are two disadvantages. One is that since both the amino acids and
nanofiltration containing negatively charged particles, RO becomes ineffective. The
second disadvantage is that due to low molecular-weight amino acid, only a strong
NF membrane must be used for higher retention. But this will greatly reduce water
flux. Hence, a conventional TFC membrane with CQD layer between substrate is
fabricated [100]. This is not only the best for separation of small molecules from
biogas slurry but also enhances the water flux. Polyethersulfone (PES) ultrafiltra-
tion membranes were used as substrates. Then these substrates were immersed in
an aqueous solution containing CQDs and 48.8 g deionized water for 10 min to
activate the –COOH groups. The modified substrate was named as “CQDs/PES”.
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The intermediate layer of CQD increases the water transmission due to increased
hydrophilicity.

Seawater desalination is mainly done by forward osmosis which is a large scale
process. A suitable draw solute is essential for a high-performance. So, high osmotic
pressure must be generated and low solute leakage is required. Some organic and
inorganic draw solutes, like sodium chloride, ethanol, etc., have been considered but
with drawbacks like reverse drawpermeation, energy consumption and fouling. Thus,
causes damage to membranes. Hence, Na+-functionalized carbon quantum dots was
employed as draw solutes in FO for seawater desalination [20]. Being rich in ionic
species Na_CQDs, their aqueous dispersion shows high osmotic pressure than that
of seawater. Further, Na_CQDs demonstrate high water fluxwith very low reverse
draw solute permeation. However, in the FO desalination process using Na_CQDs
as draw solutes, the energy consumption is yet to be explored.

Antifouling and anti-microbial properties of CQDs’ are the essential properties
for the production of a multi-functional composite material. Due to its solubility in
polar solvents like water, it is even more viable for membranes applications. Many
membranemodifications with CQDswere done for all purposes like reverse osmosis,
forward osmosis, seawater desalination, with enhanced water flux and low energy
consumption.

CQDs for membrane applications are mostly synthesized by heating of citric
acid by various methods like solvothermal, hydrothermal and microwave-assisted
pyrolysis. This technique is simple, and the yield is high. The size and functional
groups on CQD surfaces are generally controlled by pyrolysis temperature and time.

Membranes by CQDs are developed as thin-film nanocomposite (TFN)
membranes or as CQD/polymer composite membranes or asMembranes with CQDs
on top of substrates. TFN membranes modified with CQDs were found to have high
hydrophilicity, larger permeability, selective solute retention and good anti-fouling
property.

CQDs were found to disperse well in polymer matrix to form CQD/polymer
composite membranes with high stability and strength. Thesemembranes are formed
through chemical bonds between CQDs and host polymer matrix. So, there is unifor-
mity in properties throughout themembrane. They also exhibited high hydrophilicity
and larger permeability.

MembraneswithCQDson topof substrates are obtainedwhenCQDsare coated on
various membrane surfaces. Even in these membranes, covalent bond exists between
CQDs oxygen groups and amine groups at the membrane surfaces [111]. Enhanced
antifouling resistance was noticed. Due to the fluorescence property of CQDs, the
surface effects are prominent. Especially the interactions between themembranes and
foulants were studied to enhance the antibacterial properties of the membranes. One
such revelation was the electrostatic repulsion between the bacteria and membrane
surface as both of them are negatively charged.

CQDS modified membranes were also found to have greater resistance for chlo-
rine. This requirement is essential since in polymer composite membranes, the
polymer layers like polyamide layer, are generally degraded by chlorine. Thereby, it
increases the lifetime of such membranes.
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The interesting properties of CQDs interaction with foulants, not only make it an
antibacterial but also as a sensor.Although thereweremanyadvantages inmembranes
modified by CQDs like water recovery, reuse, desalination, clean energy production
etc., there are also some drawbacks. First drawback is to understand the properties
and features of CQDs according to their synthesis. A systematic study on CQDs on
synthesis, size, shape, and surface dispersion and property may make an efficient
agent for membrane applications. Further, CQDs being small and water-soluble, the
thorough study becomes essential before it is made available for commercial use
although they are found to be biocompatible and nontoxic.

A research group [12], reported the construction of a composite membrane which
also possess self-cleaning ability. CQD membrane is reported to have high perme-
ability and selectivity. A Poly(ether sulfone) (PES) UF substrate is precoated with
polydopamine (PDA). This membrane is introduced into CQDs solution to form
selective layer to construct “PDA–CQDs–TFC”membrane. The purpose of the PDA–
CQDs layer is to prevent the solute penetration and reduces concentrationpolarization
(CP) issues. Thickness of 30 nm and smooth surface of PDA–CQDs–TFCmembrane
are the reasons for it to be great onmitigation of concentration polarization. It is found
that the salt rejection of divalent ions and the water permeability are higher for PDA–
CQDs–TFC membrane. The structure of the membrane with large voids is the cause
of large permeability and salt rejection. The organic molecules that are adsorbed
onto the membrane surface are then degraded by the efficient photocatalytic effect
of CQD layer. MB and orange II are the dyes that were degraded.

Thin-film nanocomposite (TFN) membranes with three functionalized CQDs
namely, carboxylic CQD (CCQD), amino CQD (NCQD) and sulfonated CQD
(SCQD) were synthesized by some researchers [83]. CCQD was prepared directly
by pyrolyzing citric acid (CA), NCQD by low-temperature pyrolysis of CA in the
presence of branched polyethyleneimine (BPEI) and SCQD by pyrolysis method
usingCAandPoly(sodium4-styrene sulfonate) as precursors andTFN-CCQD,TFN-
NCQD and TFN-SCQD, are the respective TFN membranes formed by interfacial
polymerization. Due to their loose structures, water fluxes increased linearly with
the applied pressure. In separation performance, when tested with Na2SO4, MgSO4,
MgCl2, NaCl salts, the sequence of rejection was Na2SO4 >MgSO4 >MgCl2 > NaCl
showing the membranes are negatively charged polyamide layer. The antifouling
properties were tested with bovine serum albumin (BSA) which was found to have
improved due to hydrophilicity from CQD as the adsorption of hydrophobic BSA
by the membranes were reduced. The researchers also reported that better retention
of divalent cations by the membranes is due to the adhesion strength between amino
groups and polyamide matrix.

CQDs were produced from citric acid by hydrothermal method. Sodium-ion
modified carbon quantum dot (Na-CQD) is prepared by alkalization process. TFN
membranes with varying Na-CQD loading were analyzed for the nanofiltration
process for water purification. The hydrophilicity of polyamide (PA) layers was
found to be enhanced due to Na-CQDs in the membrane. As the Na-CQD loading
was increased, salt rejections was observed to increase, due to pore size being smaller
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and pore size distribution. The modified TFNmembranes, Na-CQD, was then exper-
imented for simultaneous removal of Se and As in single ion and mixed ion solu-
tions. Se rejection was found higher in mixed solution which was suggested due
to pH value. But As rejections are found almost same for both single and mixed
ion solutions and were also suggested due to the close pH values. Na-CQD loading
of 0.05 wt.% membrane was reported [102] to be superior with high pure water
permeability and salt rejections. It had been concluded that by the addition of Na-
CQDs the polyethersulfone polymer membrane showed better fouling resistance
against proteins. Because of these improved anti-fouling properties, this Na-CQD
membrane is effective in water remediation.

CQD synthesized from lemon juice by hydrothermal treatment. It was embedded
with Ag nanoparticles to produce silver/carbon quantum dot (Ag/CQD) membrane.
The structure of the membrane consisted of dense top layer and porous sublayer.
Of the varying wt.% of Ag/CQD, 0.5 wt.% of Ag/CQD was reported to have high
permeability which is attributed due to the hydrogen bonding of composite CQD
and water which increased the water flow through the membrane. In the analysis of
tartrazine dye, removal 0.7 wt.% of Ag/CQD had the highest rejection rate which
is due to the electrostatic repulsive force between the membrane and foulants. The
irreversible fouling and reversible fouling were seen to be high for no or low loading
of Ag/CQD. It was reported [33] that due to low electronegativity, the tartrazine
foulants were not repelled and hence easily entered into the membrane pores. Thus,
the size of the pores and the electronegativity are important in both permeability and
antifouling of membranes. The nanomembrane applications associated with CQDs
are listed in Table 1.

Table 1 CQD/composite in nanomembrane applications

CQD/composite Enhanced/detected/degraded References

Membrane Na-CQD Selenium and arsenic Rani et al. [89]

NaCQD Flux and power density Gai et al. [15]

CQD High osmotic pressure Doshi and
Mungray [13]

CQDs-PSF Bacterial activity Mahat et al. [47]

CQD-PDA E. coli and S. aureus Zhao et al. [110]

CQDs/PES Biogas slurry Yang et al. [100]

NaCQD FO Guo et al. [20]

PDA–CQDs–TFC MB and orange II Shao et al. [12]

TFN-NCQD and
TFN-SCQD

Na2SO4, MgSO4, MgCl2, NaCl
salts

Sun and Wu [83]

Na-CQDs Se and As Hea et al. [102]

Ag/CQD High permeability Gan et al. [33]
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4.2 Carbon Quantum Dots as Sensors

Tunable fluorescence property of CQDs and the simple method to modify the surface
state of CQDs for selectivity have made them very attractive as sensors. Being
biocompatible and nontoxic are added advantages. In a mixture of different ions
or chemical species, the specific ions or chemical compounds could be detected by
them. The size of theCQDs plays a role in the photoluminescent properties. They give
UV, visible and near infra-red light emission for small (1.2 nm), medium (∼3 nm)
and large (∼3.8 nm) size, respectively [21].

Many mechanisms make CQDs possible sensors. 1. The excitation or deex-
citation of electron between the CQD and another species. 2. In resonance
energy transfer (RET) mechanism energy is transferred between two light-sensitive
molecules. The energy is transferred from a donor initially in its excited state to an
acceptor, where CQD may be either a donor or an acceptor. 3. In photoinduced elec-
tron transfer (PET) is an electron from an excited state is transferred from a donor
to an acceptor. Thus, a charge separation is generated or may be considered as a
redox reaction taking place in excited state as denoted in Fig. 5.

In inner filter effect (IFE) an absorber in the detection system absobs the excitation
and/or emission light. Also, the observed fluorescence intensity is proportional to the
intensity of the exciting light. This inner filter effect is used for sensing applications
by the fluorescent carbon dots.

It is also been reported that fluorescence emission of the CQDs is being caused
by surface by the incorporated material with specific functional groups.

CQDs are directly used as sensors through their fluorescent signals. They can also
be coupled with some receptors to reflect the signals. CQDs may also be integrated
with other similar sensor materials [95].

Polystyrene sulfonate-coated CQDs (PSS-CQDs) were used as hydrogeological
sensor where surface functionalization and fluorescence emission of the CQDs are
the parameters used to study the flow of water.

Fig. 5 Photoinduced electron transfer



Water Purification by Carbon Quantum Dots 137

PSS-CQDs showed excellent fluorescence property under various physical condi-
tions like temperature, pressure, etc. It was tested in real humic situations as tracers
and found to be detected easily without any background effects. PSS-CQDs also
revealed less stickiness in different types of soil and sand samples when tested in
real ground experiments.

The velocity of laminar groundwater flow is proportional to the ground slope.
The hydraulic gradient can be calculated between two points using Darcy’s law as
follows.

Vn = k j

where n is effective porosity of an aquifer, Vis pore velocity of groundwater, k is
hydraulic conductivity of an aquifer and j is hydraulic gradient.

The borehole tracer method is employed, where the groundwater velocity is
then found from the filtration velocity of the groundwater and concentration. This
procedure is used in groundwater velocity analysis.

Finally, it was found that PSS-CQDs were promising hydrogeological tracers for
groundwater studies [86]. CQDs are found to have excellent selectivity toward the
target. For example, N-doped CQDs are appropriate sensors for Fe3+ ions detection.
CQDs changed the colors of the solution to indicate their presence. It is attributed due
to the quenching of the fluorescence intensity. Also, it was able to selectively sense
Fe3+ ions although there were about 15 metal ions present in the solution. Similarly,
nitrogen and sulfur-doped CQDs was able to detect Hg2+ in lake water and tap water
[46].

CQDs may be tuned with different functional groups to be used as sensors selec-
tively. Even the synthesis of the CQDs plays a role in the selectivity or sensing perfor-
mance. Synthesis of CQDs from human hair was used for detection of chloroform
(CHCl3) in water. CQDs were produced by two different methods, using microwave
and by conventional thermal treatment method [22]. The presence of chloroformwas
indicated by enhanced fluorescence. CQDs by the conventional method showed high
selectivity to chloroform. In chlorine-treated drinking water, the nitrogen–oxygen
functional group on CQDS was found to be an effective sensor of chlorine.

The nitrogen-doped CQDs have been synthesized from lotus root by microwave
treatment method [11]. This LR-CQDs were found to be an active and efficient
selective fluorescent sensor for Hg2+. This was tested for the detection of Hg2+ in tap
water and found to be equally effective as it was tested for biomedical applications.
Thus, it can be considered as a possible sensor of Hg2+ in environmental samples
also.

CQDs were synthesized from ginkgo leaves as precursors by hydrothermal
method. Various water samples with different Hg2+ concentrations were analyzed
[110]. The hydrophilic-OH, −COOH and −NH2 functional groups in CQDs were
responsible for its uniform dissolution in aqueous solution which was essential for
Hg2+ detection. CQDs photoluminescence intensity was tested in the presence of
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several metal ions. And it was found that there was a clear decrease in the photo-
luminescence intensity showing that CQD is an effective and selective sensor for
Hg2+.

Amine-capped CQDs were produced and used for the detection of picric acid
(PA) in aqueous solution through fluorescent intensity [58]. It was found to be very
effective and highly selective. This was evident when common reagents like ethanol,
phenol, acetone, etc., showed little effect of fluorescence emission. The selectivity is
found because of the electrostatic interaction between PA in water and amino groups
on the CQDs surface. The fluorescent intensity decreased when the PA concentration
was increased.When the fluorescence quenching experiment was performed in water
and ethanol as a function of PA concentration, fluorescent quenching was more
pronounced for water. It was suggested that polarity of the water being higher, there
was a strong electrostatic interaction between PA and CQDs thereby increasing the
fluorescence quenching in water.

Researchers [38] have used doped CQDs for the detection of picric acid (PA).
DopedCQDswere an effectivefluorescent sensor. Itwas found to be ahighly selective
probe by Fluorescence resonance energy transfer mechanism. Nitrogen and sulfur
co-dopedCQDs (NS-CQDs)were prepared by hydrothermalmethod. From thewater
sample collected from tap water, the concentration of PA, was measured. Thus, NS-
CQDs as a sensor, was sensitive, selective and also fast in detection of PA in water.
Fluorescence intensity was directly related to the concentrations of PA.

Fluorescence quenching is one of the efficient methods used for the detection of
Hypochlorite ions (ClO−). Recently researchers [32] synthesized nitrogen-fluorine-
co-doped carbon quantum dots (NFCDs) by one-pot hydrothermal method. Strong
green fluorescence light was emitted by NFCDs under UV light. It was found to have
good stability in water. As soon as ClO− was added, the fluorescence intensity was
quenched immediately and had no effect on pH factor of solution. When examined
in the presence of many other ions, fluorescence quenching was absent for other
elements. This is evident for the perfect selectivity, without any practical interference
due to other elements. It was revealed to be an ideal probe for ClO− detection. The
wide range of detection and low limit of detection proved it an excellent probe for
the ClO− detection in all water samples for essential utilities.

Polyamine functionalized CQD by capping with branched poly- (ethylenimine)
(BPEI) with excellent fluorescence activity was used to sense free copper ions [103].
Amino groups at the surface of the BPEI-CQDs react with Cu2+ to form cupric amine
and this may attribute to the fluorescence quenching of CQD. It is found to be very
sensitive and selective amongmany other ions to detect Cu2+ especially in riverwater.
Further its wide range of response makes it a favorable probe for Cu2+ detection in
environmental water samples.

Nitrogen-doped carbon quantum dots (NCQDs) from tartaric acid and L-arginine
as the precursors was prepared by solvothermal method and was used to detect
Hg2+ or Fe3+ from tap water and river water [113]. The fluorescence intensities of
Hg2+ or Fe3+ at different concentrations in a buffer solution were recorded at room
temperature. NCQDs showed different colors in solution and solid state. pH range
was optimized from 3 to 7 for the detection Hg2+ and Fe3+. When Hg2+ and Fe3+
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coexisted, addition of thiourea was necessary for their detection. It was suggested
that it may be due to stronger binding affinity of Hg2+ to thiourea than toNCQDs. The
recoveries of Hg2+ and Fe3+ were reported to be in the range of 86.50–115.05% with
relative standard deviation less than 5.99%. The results obtained on the detection of
Hg2+ and Fe3+ were done for the tap water and river water. It proved to be an apt
probe for its detection.

N and S co-doped carbon quantum dots (N, S-CQDs) was synthesized by
hydrothermal method using L-cysteine as the single precursor. The N, S-CQDs
proved to be a good sensor for detection of Hg2+ ions in DI water and a real water
sample [92]. In the selectivity analysis of this detection system for Hg2+ ions with
different concentrations, no remarkable decrease is observed by the addition of other
metal ions into the N, S-CQDs solution. Hence, good selectivity of Hg2+ ions by this
system was confirmed. Photoluminescent intensity was found to decrease when the
concentration of Hg2+ ions was increased in the real lake water sample. This was
done with various minerals and organics coexisting in the lake water. Another group
[43] prepared similar Nitrogen and sulfur co-doped CQDs (N,S/C-dots)from of L-
cysteine and citric acid, from hair fiber, gentamycin sulfate and rice as precursors
for the detection of Hg2+. At Hg2+ concentration of chelating agent 300 μM, the
fluorescence intensity was completely quenched. Detection of Hg2+ was analyzed
in the lake water and tap water. It was reported to have showed good detection and
recovery. Electron-transfer rate and coordination interaction betweenN,S/C-dots and
Hg2+ were responsible for quenching which detected the presence of Hg2+. Thus,
N,S/C-dots were reported to have high sensitivity and ion selectivity as a sensor.

CQDs were synthesized from glycerin, ethylene glycol and cellulose micro-
crystalline as precursors by hydrothermal process [3]. The fluorescent CQDs are
then used to determine contaminants such as carboxylated multi-walled carbon
nanotubes (c-MWCNTs), single-walled carbon nanotubes (SWCNTs), humic acids
(HA) and graphene-based products. The preparation of CQD affects the fluorescent
features. pH dependence on the fluorescence of CQD was also investigated. The
researchers reported that CDs synthesized from cellulose microcrystalline was suit-
able in detecting contaminants in river water. Further hydrogen bonding interactions
were responsible in detecting the contaminants. The poor dependance on pH made
it possible to sense over a wide range of pH value. It was found that no appreciable
change in quenching due to high concentration of NaCl. This may be attributed due
to the weak interaction between ions of NaCl and carboxylic groups of MWCNTs.
Thus, CQDs are found to be an effective sensor of c-MWCNTs in water samples.

One-pot solvothermal method was employed using BBr3 as the boron source
and hydroquinone as the precursor and Fluorescent B-doped carbon quantum dots
(BCQDs) was synthesized. It was reported [97] that it was used as a sensor to detect
hydrogen peroxide (H2O2) and glucose. The detection of H2O2 was indicated by
the complete quenching of fluorescence emission of BCQD. It is due to the electron
transfer between the boron fromBCQDandH2O2. The electronswere given byH2O2

to boron to form stable B–O coordination bonds. This was responsible for fluores-
cence quenching. The fluorescence intensity was found to decrease by the increase
of H2O2 concentration. It was reported that glucose oxidase (GOx) is the catalyst for
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the oxidation of glucose to form gluconic acid and H2O2. Thus, the glucose concen-
tration in the presence of GOx was found to quench the BCQD fluorescence thereby
indicating its presence.

One research group [22] synthesized CQDs from cabbage by hydrothermal
method. Such CQDs were found to have –OH and –COOH groups on its surface.
This photo fluorescent CQDs with these functional groups were used as sensors to
detect Pb2+, Hg2+, Cd2+, Cr3+and Fe3+ metal ions. A mixture of the CQDs and heavy
metal ion solutions prepared were explored for fluorescent sensing from aqueous
solution. The fluorescence intensity measurements showed that the intensity was
completely quenched in case of Fe3+ ions. For Pb2+ and Hg2+ there was significant
decrease in the intensity. However, Cd2+ and Cr3+ showed negligible quenching. The
group reported that further studies must be done on CQD as sensor for food, water
and health.

CQDs were synthesized from 1,3-phenylenediamineand citric acid as precursors
by one-step ultrasonic vibrating method with m-phenylenediamine and citric acid as
rawmaterials. Cr2O7

2− of various concentrations with CQDs solution were prepared
and their fluorescence spectra was studied for sensing dichromate ions. River water
and drinking water were directly used for the study. pH value was adjusted to 5 as
optimum value. The result displayed a linear correlation between the quenching of
intensity to the concentration of Cr2O7

2−. The quenching effect of CQDs onCr2O72−
ion was distinctly displayed. The test was done in the presence of Cr2O7

2−, MnO4
−,

NO2−, F−, Cl−, Br−, I−, S2−, SO4
2−, S2O3

2−, S2O8
2−, (SCN)−, CO3

2−, PO4
3−,

Fe2+, Fe3+, Cu2+, K+, Ca2+, Na+, Mg2+, Mn2+, Zn2+, Al3+ and H2O2. The results
displayed that the quenching effect of CDs on Cr2O7

2− ion was highly selective. The
recoveries ranged from 96 to 98% in drinking water. The research group [18] stated
ion-selective recognition in real samples is convenient, response fast and detected
accurately. Hence, a nanoplatform for sensing dichromate ion with high accuracy
and reliability was claimed by them.

CQDswere synthesized fromwhey as precursor for detecting selenite, (Se(IV)) in
water by functionalized CQD (fGCQD) [63]. It is found that –OH, −COOH are the
functional groups on the surface. The detection was done by analyzing the photo-
luminescence intensity. It is found that the presence of Se (IV) had considerably
quenched the fluorescent intensity. It is due to the interaction between amine groups
and Se (IV) which reduced almost all the vacancies and produce no radiation by the
recombination of the charge carriers. The detection meets the requirement of routine
selenium analysis in potable water. In the selectivity analysis, the detection was done
in the presence of Ni2+, Se6+, Cl−, Cu2+, As3+, As5+, Pb2+, Br−, NO3−, NO2− and
F− ions. 70% quenching was found due to selenium, showing reasonable selectivity
although slight quenching is found due to Pb2+, may be possible by the complex
formation of H–Pb2+. Thus, fGCQDs probes have high sensitivity and selectivity of
selenium against real water samples collected from lake, ground and well.

Carbon quantum dots were synthesized citric acid one-pot hydrothermal method.
Then using urea as nitrogen source nitrogen-doped carbon dots (N-CDs) were
prepared for detection of Hg2+ from water. The N-CDs concentration was fixed as
8 μg mL-1in this detection experiment. A strong PL peak at 440 nm was exhibited
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by N-CDs alone. Addition of 40 mM Hg2+, drastically quenched the fluorescence
indicating the presence of Hg2+. This is attributed due to the interaction between
Hg2+ with the carboxyl or hydroxyl group of N-CDs. Non-radiative recombination
by the photo charge carriers was responsible for the fluorescence quenching. The
detection was reported [109] to be highly sensitive and selective. It was investigated
in both tap and mineral water samples. It was found linear over a range of 0–50 nM.
Further, the limit of detection was 2.88 nM for tap water and 2.87 nM for mineral
water.

A review on CQDs as an optical sensor for detecting heavy metals using the
optical characteristics of CQDs was reported. The various mechanisms attributed for
the investigations were described below.

• Fluorescence quenching, inner filter effects (IFEs)—Here the non-radiative
recombination of the photo-excited charge carriers cause quenching of fluores-
cence emission. Cu (II) and Fe (III) ions are detected using this mechanism.

• Inner filter effects (IFEs)—here an emission is caused when CQDs are combined
with IFE, by the absorption spectra from an absorbent. Determination of Cr(VI)
is done by this mechanism. Fluorescence enhancement is also caused by binding
an analyte to CQDs. The example of this method is the detection of Ag+ions.
When Ag+ions are added to CQDs, an enhancement in fluorescence occurs and
this phenomenon is used for detection.

• Photo induced electron transfer (PET)—here the photoelectron excites the analyte
to form a complex with the receptor. This excited electron interferes with the
excited CQD. Hence, there will be a change in its phosphorescent signal. The
metal detection is done on this basis like in the detection of Cu2+.

• Phosphorescence, ratiometric dual emission, and fluorescence resonance energy
transfer (FRET)—is a tool used for determining the distance between two fluo-
rophores. It is a process of non-radiative transfer of energy. The energy is trans-
ferred from an excited, donor, molecular fluorophore to another acceptor, fluo-
rophore.Hence, therewill be quenching of the donor and excitation of the acceptor
unit which may either produce a radiative or non-radiative photon. CQD-labeled
oligodeoxyribonucleotide and graphene oxide are used for detection of Hg (II) in
water.

• Activation/enhancement, surface-enhanced Raman scattering (SERS)—This
mechanism allows detection of the molecules by the adsorption of metals on
rough metallicsurfaces. By passivation on CQDs, some inorganic pollutants may
be detected.

• Mercury, arsenic, selenium, iron, copper, lead, cadmium, zinc and chromium
are some of the metals reported [64]. These are detected using CQDs, modified
CQDs and composite CQDs from water by following any one of the mechanisms
explained above.

CQDs were synthesized by hydrothermal process from orange peel, paulownia
leaves, ginkgo biloba leaves, and magnolia flower and denoted as OP-CQDs, PL-
CQDs, GB-CQDs, and MF-CQDs, respectively. It is used for Fe3+ ions detection in
pond water. When applied to detect Fe3+ ions, fluorescence quenching is recorded
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in PL spectrum. It is reported [89] that the interaction of amino groups, carboxyl
groups and hydroxyl groups on CQDs surface was responsible for the detection.
The aggregation of CQDs was caused due to strong attraction/ interaction between
Fe3+ ions, NH2, COOH− and OH− functional groups of CQDs. This prompted the
non-radiative recombination of photo charge carriers caused by the fluorescence
quenching. The selective determination of Fe3+ was effective in the presence of Ag+,
K+, Na+, Pb2+, Fe3+, Fe2+, Al3+, Cd2+, Zn2+, Cu2+, Mg2+, Ca2+, Cr3+, Ba2+ and Hg2+

ions. Thus, a highly sensitive and selective sensor for Fe3+ was successfully applied
with satisfactory recoveries of 94%–108%.

Boron nitrogen co-doped carbon quantum dots (B, N-CDs) were synthesized by
hydrothermal method for the fluorescence detection of Cr(VI) in river water samples
byUV–Visible absorption spectrum [105]. The optimized concentration of B,N-CDs
for maximum response is (0.01–0.10 mg/L). The pH and contact time are (5–11)
and (0–10 min), respectively. The selectivity was excellent when the analysis was
performed with Al3+, Ca2+, Cr3+, Cu2+, Fe2+, Fe3+, Hg2+, K+, Mg2+, Mn2+, Pb2+ and
Zn2+ions. The static quenching mechanism and IFE were the mechanisms reported
for fluorescence quenching in the detection.

Nitrogen-doped carbon quantum dots (N-CQDs) were synthesized by
hydrothermal method using citric acid and nitrogen from ethylenediamine (EDA)
as source for the detection of nitrite from tap water. In the optimized synthesis of
N-CQDs, 3 g of citric acid and 3 ml of EDA were used. The optimum value of pH is
chosen as 2. In the analysis of the fluorescence spectra of N-CQDs it was reported
[14] to have quenched by nitrite in 15 min. Further, it was selectively quenched when
analyzed in the presence ofNa+, Co2+, Ba2+, Ni2+, Hg2+, Cr3+, Pb2+, Cu2+, Zn2+, Fe3+,
F−, Cl−, Br−, I−, PO4

3−, HPO4
2−, H2PO4

−, SO3
2−, CO3

2− andNO3
– ions. The reac-

tion of amide group of CQDs with nitrous acid formed N-nitroso compounds, which
was stated to be responsible of fluorescence quenching.

Carbon quantum dots with Nitrogen-doped (N-CQDs) was synthesized by
hydrothermal method, carbon quantum dots from orange peel (ON-CQDs) and
carbon quantum dots from watermelon peel (WN-CQDs) and used for the detection
of oxytetracycline (OTC) with different concentrations in tap water and lake water
[17]. In the fluorescence analysis, fluorescence quenching responses observed were
0.973μmol L− 1 for orange peel carbon quantum dots (ON-CQDs) and 0.077μmol
L − 1 for watermelon peel carbon quantum dots (WN-CQDs)) under the optimal
reaction conditions. Both the fluorescent probes were found to be both sensitive and
selective detectors of OTC.

CQDswere synthesized using various concentrations of citric acid and ammonium
dihydrogen phosphate. An optimum CQD was synthesized by two-step microwave
method and used for polarization fluorescence analysis (FPA) for copper (2+)
cations detection in water samples. For comparison, the fluorescence quenching
was analyzed with FPA quenching. The fluorescence polarization versus angular
displacement is measured as it is a process of absorption to emission of photon.
Fluorescence polarization shows particle size changes due to absorption of copper at
CQDs surface, at constant temperature and viscosity. The FPAmeasurement ofCQDs
was stated to be effective when compared with fluorescence quenching to determine
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Table 2 CQD application as nanosensor

CQD/composite Enhanced/detected/degraded Reference

Sensor PSS-CQDs Hydrogeological tracers Warsi et al. [86]

Sulfur-doped CQDs,
N-CQDs

Fe3+, Hg2+ Molaei [45]

CQDs Chloroform Singh et al. [22]

Nitrogen-doped CQDs Hg2+ Gu et al. [11]

Amine-capped CQDs Picric acid Niu et al. [58]

NS-CQDs Picric acid Khan et al. [38]

NFCDs ClO− Guo et al. [20]

BPEI-CQDs Cu2+ Dong et al. [103]

NCQDs Fe3+, Hg2+ Zhu et al. [113]

N, S-CQDs Hg2+ Wei et al. [92]

CQDs c-MWCNTs Cayuela et al. [3]

BCQDs H2O2, Glucose Shan et al. [99]

CQDs Fe3+, Hg2+, Pb2+ Singh et al. [22]

N, S/C-dots Hg2+ Li et al. [43]

CQDs Cr2O7
2− Qiaoa et al. [18]

fCQDs Selenium Devi et al. [64]

OP-CQDs, GB-CQDs,
PL-CQDs and MF-CQDs

Fe3+ Wang et al. [89]

B, N-CDs Cr(VI) Wang et al. [105]

N-CQDs Nitrite Feng et al. [14]

ON-CQDs, WN-CQDs OTC Gao et al. [17]

CQDs Cu2+ Yakusheva et al. [2]

copper cations in water. Thus, polarization fluorescence analysis (FPA) is consid-
ered yet another method for various applications [2]. The nanosensor applications
associated with CQDs are listed in Table 2.

4.3 Carbon Quantum Dots for Removal of Pollutants

Photocatalysis is a favorable method for water remediation. Both solar and UV light
are used for pollutant degradation. It is an oxidation process, a sustainable and an
environmentally friendly technique for water purification [93].

CQDs exhibits photoluminescence. It is an excellent fluorescent material and
effective photocatalyst upon irradiation by UV light. CQDs are also sensitive toward
visible light that results in the enhancement of charge carriers and photocatalytic
performance. CQDs have also been shown to undergo electron transfer in different
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Fig. 6 General mechanism of CQD as photocatalyst

situations. It is capable of reducing the recombination of photogenerated charges.
All these factors make it suitable for wastewater treatment in organic and inorganic
pollutants removal from water. The general mechanism of photocatalyst is indicated
in Fig. 6.

A compositemade fromCQDs andNH2-MIL-125, a kind ofmetal-organic frame-
work, (CQDs/NH2-MIL-125), photocatalyst is used for almost 100% degradation of
Rhodamine B (RhB) by using UV-Vis irradiation. RhB degradation under visible
light irradiation was done by CQDs/La2Ti2O7 composite as photo-catalyst. Degra-
dation of methylene blue (MB) by the photocatalyst formed by CQDs on the zirconia
surface (ZrO2) under a UV irradiation has been reported. Similarly, degradation of
93% acid violet 43 and p-nitrophenol by the photocatalyst CQDs onto the surface
of pyrogenic nanoparticles (P25) was reported. CQDs/TiO2 composite nanofibers is
used for photocatalytic degradation of methylene blue (MB) dyes.

CQDs are also used as a fluorescent probe for sensing Hg (II) and Cr6+ ions in
water samples. Nitrogen and phosphorus-doped CQDs are used for the detection
Fe3+ions. Fluorescence quenching of Fe3+ by nitrogen-doped-CQDs (NCQDs) is
also reported.

CQDs can be used for the removal of removing organic and inorganic pollu-
tants Cd2+ and Pb2+ ions from wastewater by absorption treatment. N-CQDs were
successfully incorporated for this treatment. Another adsorbent, polyethyleneimine-
functionalized CQDs onto themagneticmaterials (MnFe2O4) to produce a nanocom-
posite (PECQDs/MnFe2O4) is applied for the removal of uranium. Another research
group [89] has used three types of iron oxide adsorbents (Fe3O4, C11-Fe3O4 and
CQDs/C11-Fe3O4) and reported the removal of benzo[a]pyrene (BaP) in wastewater
samples. The NCQDs with iron oxide (Fe3O4) are used as an adsorbent for removal
of lead. The composite of CQDs with zinc-aluminium layered double hydroxide
(CQDs/ZnAl-LDH) is used for the adsorption of cadmium.

CQDs are also recognized as a good disinfection of wastewater besides waste
water monitoring. CQDs are also used for decontamination of Cd (II) and removal
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of benzopyrene from water because of its photocatalytic property, dispersed well in
water and good antimicrobial property. The antibacterial activity of CQDs has been
reported for the degradation of E. coli and S. aureus. The analysis of antibacterial
property of CQDs-TiO2 is also reported. NCQDs are found to develop antimicrobial
activity against Staphylococcus. NCQDs are first found to interact with the bacteria,
Staphylococcus. Then they are destroyed by UV light irradiation.

Sunlight being sustainable and a renewable source of energy, semiconductor
photocatalysis was an attractive process for water remediation [8]. But there were
some modifications essential for this simple process. One such requirement was that
the photo energy must be greater than the bandgap energy. This was generally not
feasible in visible light as the principle of photocatalysis is the excitation of electron-
hole through the bandgap by light energy. So, as a requirement, their electronic and
optical properties were initially modified by nanomaterials. Their properties due to
their size and structure, were more suitable for water purification.

The invent of CQDs made it more suitable material as a photocatalyst for water
purification. Increase in the size of CQDs decreases the bandgap and hence results
in a change in its luminescence. It may further be changed when the CQDs are
modified with other functional groups like hydroxyl, etc. CQDs are noted for their
wide tunable photoluminescence effect, surface effect, quantum confinement effect
(QCE), and edge effect. A good absorbance in UV region is noticed in CQDs due
to π-π* transition of C C bonds and n-π* transition of C O bonds which may be
enhanced to UV–visible region by additional functional groups.

Up-conversion photoluminescence is a process in which emission of light by
sequential absorption of two or more photons. The emitted light is of shorter wave-
length than that of the excitation wavelength. It is an anti-Stokes type emission. This
optical property is also noticed in CQDs.

All these properties are the requirement of photocatalytic reactions, like transport
of charge carriers and surface redox reactions. CQDs is capable photocatalyst for
degradation of pollutants in water remediation [74]. In photocatalysis, the pollutant
molecules are broken down to harmless substances due to photo-oxidative reactions.
Hence, efficient, visible light photocatalystwasnecessary for degrading thepollutants
in water. Although electrons are excited easily in narrow bandgaps by visible light,
recombination among the charge carriers also take place at a faster rate. Therefore,
UV light was preferred, but it also demanded more protection in the case of water
remediation.

All the above requirementswere fulfilled by the fluorescent CQDs. They are amor-
phous, sp3 hybridized and fluoresce due to quantum confinement. Thus, researchers
focused CQDs modified semiconductor as catalysts. Further advantages like photo-
stability and recyclability were also found in CQDs modified photocatalysts. CQDs
are very effective in photocatalysis process capable of optical absorbance in both
UV and visible region. Also, it is excellent in the case of both narrow and wide
bandgaps. CQDs are also active in up-conversion photoluminescence. It is good in
surface effects with abundant surface functional groups.
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The interaction between the π-π* transition of CQD and the aromatic ring of
organic pollutants are responsible for the abundant absorption of organic pollutants.
The enhanced adsorption of metal ions is due to their interaction with the functional
groups on the CQDs surface.

The photocatalytic activity of many wide bandgap (Eg ≥ 3 eV) semiconduc-
tors modified with CQDs has been improved by reducing the recombination rate or
increasing the charge separations. For example, CQDs modified TiO2 photocatalyst
to emit charge carriers from longer wavelength light, which are reemitted as shorter
wavelength light by CQD was studied. CQDs/TiO2 photocatalyst was reported for
the degradation of pollutant phenol under UV light irradiation due toπ–π interaction
of CQDs and Phenol. CQDs modified ZnO photocatalysts were known for enhanced
transfer of e−-h+ pairs due to increased separation of photogenerated charge. N-
doped ZnO-CQD photocatalyst composites were found to degrade malachite green
(MG), methylene blue (MB) and fluorescein dyes under daylight irradiation.

The wide range capability of CQDs as catalyst improved the charge efficiency,
reduced photocorrosion in waste water remediation. CQDs modified ZnS photo-
catalyst degrade dyes. Degradation of Tetracycline (TC), Bisphenol A (BPA),
and Rhodamine B (Rh B) under visible light was observed by CQDs modified
BiOBr. CQDs modified KNbO3 photocatalyst removed crystal violet dye under the
illumination of visible light.

The CQDs modified photocatalyst reduces the recombination of photogener-
ated electrons and holes narrow band gap (Eg < 3) photocatalysts and thereby
improve photocatalytic activity. For example, CQDs modified CdS are reported for
degradation of dye Rhodamine B (Rh B) under visible light.

CQDs were found to have modified heterojunction photocatalysts. For example,
CQDs modified Bi2MoO6 photocatalyst are reported for degradation of Rhodamine
B (RhB) and Methylene Blue (MB) below visible light irradiation [76].
CQDs/BiOCl/BiOBr reported for degradation of rhodamine B (RhB), tetracycline
hydrochloride (TC), ciprofloxacin (CIP) and bisphenol A (BPA) under visible light
irradiation.

A nitrogen-doped CQDs (N-CQD) from grass was synthesized with good
absorbance of UV and visible radiation with 2.5 eV band gap. Its photocatalytic
activity was then tested on Acid Blue, Acid Red, Methylene blue, Eriochrome Black
T, Methyl orange and Eosin Ydyes with the degradation time observed were 30 min,
30 min, 90 min, immediately, immediately and 90 min, respectively. The synthe-
sized N-CQD was found to decompose the dye molecules. It required more time to
decompose dyes of higher concentration. It is attributed that more time is required
to produce enough amount of reactive oxide species (ROS) for degradation [46].
Synthesized N-CQD can decompose under visible radiation because of a low band
gap (1.94 eV) beside ROS produced from UV radiation to the water. From the study
of surface adsorption ability of the N-CQD, it was observed that the heavy metal ions
like Cd2+ and Pb2+ were removed from the water. Thus, surface adsorption activity
of synthesized N-CQDmay be adopted in removing organic and inorganic pollutants
from the drinking water.
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CQDs were synthesized from m-phenylelnediamine (MPDA) by hydrothermal
heating method. A chitosan/carboxymethyl cellulose (CMC) hydrogel/CQD
composite was prepared and used for water desalination and water remediation
[72]. The hydrogel/CQD composite was made to absorb water through its porous
structure. The water-swollen hydrogel/CQD composite were then irradiated by
solar illumination for evaporation. Water is then recollected by condensation. This
procedure is repeated for 50 cycles. Even after so many purification cycles, the
C-dot/gel composite is found recyclable and stable. CQD/hydrogel systemis also
used for removal of metal ions, detergents and organic pollutants from water. Cu2+,
Ni2+, Ag+, and Cd2+, sodium dodecyl sulfate and rhodamine6G got absorbed by
CQD/hydrogel composite due to the solar energy illumination. The amount of light
absorbance depends on the concentration of CQD in CQD/hydrogel composite. This
enhancement was more in the infrared region where heat energy is predominant.
Thus, this inexpensive, biodegradable CQD/hydrogel composite contributes more in
desalination and purification of water.

CQDswere synthesized from petroleum coke by hydrothermal method and doped
with Chitosan to form Chitosan-CQDs (CH–CQD) membrane [39]. It was found to
have good the adsorption capacity. The negatively charged CQDs interact electrostat-
ically with positively charged chitosan. A uniform composite membrane is obtained.
CQDs are doped with oxygen, nitrogen and sulfur. The removal efficiency of Cd2+

ions by CH–CQDs in the presence of Cd2+, Zn2+ and Pb2+ ions showed it to be very
effective in selectivity. Its extraction of Cd2+ was very fast under UV irradiation
at pH = 8. Although several mechanisms are proposed, no confirmed reason was
concluded.

CQDsmodifiedZnSn(OH)6 (ZSH) compositeswere synthesized by hydrothermal
method [65]. It was found to be formed as microspheres with uniform solid, hollow
and yolk-shell structures. When photocatalytic activities of ZSH@CQDs compos-
ites were studied, degradation of organic pollutant, Rhodamine B(RhB) dye under
visible light illumination was observed. When analyzed as photocatalytic disinfec-
tion, complete inactivation of Staphylococcus aureus was noticed. Up-conversion
effect ofCQDs is suggested for the enhanced photocatalytic activity of the composite.
Also, the increase in electrons for capturing photogenerated electrons and reduce the
recombination rate of charge carriers were the reasons indicated by the authors.

Fe3O4/N-Carbon quantumdotswere synthesized by chemicalmethod. It was used
for adsorption and extraction of Pb2+ ions from tap water and seawater samples [50].
The adsorption capacity was high with low toxicity and short separation time. The
reasons attributed were high surface area, good solubility and the polar functional
groups present on the surface of the CQDs. The adsorption was studied by varying
the sample pH, extraction time and amount of the sorbent. The optimized values
chosen were pH of 6.5, sorption time of 10 min, and sorbent amount of 25.1 mg.
Fe3O4/N-CQDs showed high selectivity toward Pb2+ among many other metal ions.
The multiple usage of the adsorbent showed the stability of it in the desorption
solution.
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N-doped carbon quantum dots (NCQDs) was synthesized by hydrothermal
method [34]. N-doped carbon quantum dots/TiO2 (NCQDs/TiO2) hybrid composites
were then obtained by ultrasonic dispersion of TiO2 in NCQDs of various concen-
trations like 0.2, 1, 2, 4 or 10) mL. Then NCQDs/TiO2 is used for the photocatalytic
degradation of Methylene blue (MB) under visible light irradiation. The photodegra-
dation of MB by 1NCQDs/TiO2 was more than 86.9% under visible light irradiation
found much higher than other concentrations of NCQDs. The photocatalytic activity
is enhanced by electron transfer and subsequent electron-MB+ separation efficiency.
The NCQDs are then responsible for the electrons to combine with oxygen and
complete the photodegradation process.

First, CQDs is synthesized by hydrothermal method. CQDs/KNbO3 composites
were then prepared by dispersion of KNbO3 in CQD. The degradation of crystal
violet dye as target organic pollutant in water, under visible light irradiation with
simultaneous evolution of hydrogen was observed [106]. CQDs is responsible for
photoabsorption in visible light range and increased the electron-hole (e−–h+) pairs
for enhanced photocatalytic effect. The mass proportion of CQDs and KNbO3 was
1.5/0.5 and degradation of crystal violet dye is found to be maximum. The hydrogen
evolution amount is the highest for this mass proportion. This composite can be
recycled for further photocatalytic effect. Thus, degradation of organic pollutants
associated by evolution of hydrogen was done using this CQDs/KNbO3, according
to the characteristics of CQDs on KNbO3.

The CQDs were synthesized by microwave irradiation method from starch.
To produce CQDs@PAFPnanobiosorbent, the synthesized CQD is added to the
polymer solution of anthranilic acid-formaldehyde-phthalic acid (PAFP). The
CQDs@PAFPnanobiosorbent was used for the removal of uranium (VI) in three
different samples of tap water, seawater and wastewater [48]. These samples were
optimized to pH 5.0. CQDs@PAFP was mixed with these samples and subjected to
microwave irradiation. The surface of PAFP being coated with CQDs, increased
the adsorption capability due to the increase in the available functional groups.
The researchers explained the mechanism using the pseudo-second-order model.
CQDs@PAFPnanobiosorbent are reported to be reused for repeated application
cycles with the recycling reagent being HCl. The sorption mechanism was desig-
nated due to the pseudo-second-order model and closely tailored with Freundlich
model. The reusability of different sorbents such as CQDs@PAFPnanobiosorbent is
a significant economical factor. As said above, HCl is the recycling reagent for the
regeneration of the CQDs@PAFPnanobiosorbent.

CQDs synthesized by hydrothermal method from cellulose, which is obtained
from wood [79]. The preparation materials are the same for both CQDs and nanofib-
rillated cellulose (NFC) aerogels. Due to the presence of functional groups on its
surface, NFC is a good carrier for composite materials. It is used as a framework to
hold CQDs. CQDs/NFC composite aerogels is formed with ease by intermolecular
forces or hydrogen bonds because of the large amount of hydroxyl groups present
in both. Both the CQDs/NFC composite was then used for the adsorption and detec-
tion of heavy metal ions (Cr3+) in water. The detection analysis sustained the CQDs
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fluorescence and the porous structure of the aerogels. A pH of 6 was considered for
a maximum adsorption performance. In the analysis of adsorption, it was found to
increase rapidly and stabilizedwith time. It also increasedwith the rise in ion concen-
tration of the solution due to the porous structure. Thus, through the measurement
of the fluorescence effect of CQDs, using the applications of aerogels and CQDs for
the adsorption of heavy metal ions in water, is observed.

Cationic CQDs (L-CQDs) were synthesized by the pyrolysis of ionic liquid and
citric acid. L-CQDs/ZnO composites were prepared by hydrothermal method [27].
The absorption of L-CQDs/ZnO composites lies in the visible region. The separa-
tion of electron-hole pairs by photogeneration and the fast transfer of electrons by
the L-CQDs/ZnO composites enhances the photocatalytic activity. It was reported
that L-CQD/ZnO composites degraded phenol more effectively than ZnO. 3%- L-
CQDs/ZnOwas found as the best photocatalyst when varied and analyzed between 1
and 5% L-CQDs/ZnO. In the recyclability test of the composite, it proved as a stable
photocatalyst with no prominent decrease in the degradation rate of phenol. Thus, it
confirms that it is a possible measure for wastewater purification by degradation.

Disposal of dyes is a major pollutant of the main water sources like lakes, rivers,
and oceans. These organic pollutants are removed by photocatalytic degradation of
CQDs. Direct and indirect degradations are involved in water purification from dyes.
Indirect dye degradation employs redox reactions in the conduction bands (CBs)
and valence bands (VBs). In direct degradation, the dye themselves are made to
absorb light and get excited where they are degraded by redox reactions. In both
the mechanisms, CQDs are responsible for both reducing the recombination rate
of photo-generated electron-hole pairs. CQDs/2D TiO2nanaocomposites prepared
as sheets by hydrothermal process are used for effective degradation of RhB under
visible irradiation [81].

CQDs have been synthesized through hydrothermal process from rice husks
[59]. Using Ethylenediamine (EDA) and ascorbic acid as functionalization agents to
produce amino and carboxyl functionalized CQDs. They are denoted as NCQD and
CCQD. Heavy metal ion (cadmium nitrate) with different concentrations with func-
tionalized CQDs solutions were analyzed for Photoluminescence (PL) intensities.
Carboxyl (CCQD-2.5), and amino-functionalized CQDs (NCQD-10.0) amount of
EDA and ascorbic acid in ml were being found as the optimum samples for the study
of detection and degradation. A linear relation was observed in optical response for
both functionalized CQDs for different Cd2+ ion concentrations. The electrostatic
attractive force between Cd2+ cations and anionic functional group of CQDs were
responsible for the PL intensity quenching. Further, Cd2+ ions improved the electron
transfer and reduced the recombination of charges and thereby the quenching was
enhanced. The carboxyl functionalized CQDs quenching effect was found more than
that of amino-functionalized CQDs.

In Cd2+ ions removal, both amino and carboxyl functionalized CQDs were found
to be effective. More number of CQDs created more active sites for heavy metal
ion adhesion thereby making their removal possible. They have reported that amino-
functionalized CQDs removal was higher than that of carboxyl functionalized CQDs.
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It is due to adsorptive sites available were increased for the interaction between
negatively chargedmetal cations and CQDs. So, the diffusion of metal ions into these
sites of CQDs’ surface led to removal of more metal ions. The reduction potential
in cadmium solution further increased the removal of Cd2+ions from contaminated
water by CQDs.

Another research group [60] synthesized carbon quantum dots/zinc aluminum
layered double hydroxide (CQD/ZnAl-LDH) composite by one-pot hydrothermal
method for adsorption of Cd(II) ions from water. It is attributed due to the electro-
static attractive force between positively charged ZnAl-LDH nanoplates and nega-
tively charged CQDs. It is found that as the pH is increased from 2 to 5 adsorption of
Cd(II) initially increases and reaches a plateau at above pH 5. It is also reported
that the adsorption was completed within 20 min, as all the functional groups’
site of CQDs/ZnAl-LDH adsorbent have been occupied by Cd(II). The pseudo-
second-order kinetic model was indicated by adsorption and confirmed by chemical
adsorption.

CQDs were synthesized by hydrothermal method from tapioca for the removal
of lead from water [56]. Solution of different concentrations of lead (ll) nitrate with
CQDs are prepared and the absorbance spectra was analyzed. Batch adsorption was
used to find the amount of lead adsorbed by CQDusing adsorption isotherm. Adsorp-
tion isotherm gives the equilibrium relationship between CDQs as adsorbent and lead
as adsorbate. From the adsorption isotherm, the optimum adsorption was at 260 min
with the lead removal efficiency of 80.6%. Adsorption process fits well with both
Langmuir and Freundlich models. Further, chemisorption reaction the functional
groups on the surface of CQDs and between the lead ions is largely considered for
adsorption.

The CQD composite or CQDmodified photocatalysts are noted for their increased
photocatalytic activity. It is reported that the OH• and O2 radicals are mainly respon-
sible for this enhancement in the degradation of dye from water through photo-
catalytic activity. Photogeneratedelectron-hole pairs recombination is decreased by
CQD. The functional groups like aldehyde and carbonyl groups then interact with
the pollutants to form hydroxyl and oxide ions which cause the degradation of dyes.

The photocatalytic activity of TiO2-CQDs was stated as an example by a research
group [52]. The oxygen on the TiO2-CQD surface interact with the photoelectrons
to form oxide ion. Similarly, hydroxyl ion is formed from holes and water. These are
responsible for the degradation of methylene blue (MB).

CQDs/NaBiO3hybrid materials were synthesized through hydrothermal method
for the reduction of Cr(VI) from contaminated water [94]. Among different concen-
trations, 6 wt.% CQDs/NaBiO3 showed 97.7% after 90 min under irradiation of
visible light. The optimal pH reported was equal to 3. High specific surface area
with the increased number of active sites in CQDs/NaBiO3 enhanced the Cr(VI)
adsorption. The enhanced light absorption, increased photo carriers generation, the
band gap reduction and recombination reduction supported the effort of absorption.
It was reported that the reduction efficiency of Cr(VI) was stable at around 95% even
after three consecutive recycling.
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N-doped ZnO/fulvic acid (FA)/carbon quantum dot (CQD) nanocomposite (N-
ZnO/FA/CQD) was synthesized by hydrothermal method from Saffron for catalytic
degradation of MB by ultrasonic irradiation [55]. The polluted water with MB was
irradiated with ultrasonic irradiation of 20 kHz, 100 W. It is reported that the degra-
dation process ofMBwas 94%.When it was also examined on rhodamine B(RhB) in
the presence of catalyst, the absorbance was found to be reduced. The production of
−OH and −H by ultrasonics were responsible for degradation of MB. The optimum
pH of the solution was 8 and the effective contact time was reported to be 50 min.

A flower-like αFeOOH hybridized with carbon quantum dots (CQD@FeOOH)
is synthesized for degradation of refractory phenol. αFeOOH and CQD@FeOOH
under Fenton, photocatalysis, and photo-Fenton conditions were analyzed for the
phenol degradation. When αFeOOH is modified by CQDs, the degradation is signif-
icant under all conditions mentioned above. 100% degradation in a contact time of
50 min under photo-Fenton conditions is reported. The degradation mechanism is
explained on the basis of electron spin resonance (ESR) spectra, photoluminescence
(PL) spectral analysis and free radical trapping. Thus, the photo-Fenton reactions are
considered for the degradation by CQDsmodified compounds [62]. The applications
associated with CQDs for pollutant degradations are listed in Table 3.

CQDs and its composite were synthesized to suit their application. It is then char-
acterized by one or few methods. Next, the examinations are done on a comparative
basis to emphasize the importance of CQD in water purification. It is intended to
mention the CQD/composite in detection and degradation rather than the complete
procedure by each research group. The optical properties exhibited by carbon dots
were separately discussed. The fluorescent emission/absorption spectra of CQD
extends in UV and visible region with the maximum wavelength ranging from about
300 to 500 nm. In general, attributes of CQD in relevant applications are found to
depend on the synthesis and the material used for the synthesis. Thus, CQDs with
other nanomaterials play a vital role as a sensor, photocatalyst and membrane in
water purification.

5 Conclusion

One of the important reasons for the study of CQDs is the facile method of synthesis
from easily available inexpensive materials as depicted in Fig. 7. In this chapter, a
mini-review of water purification of CQDs is summarized. CQDs, being a nano-
material, the role of nanotechnology in various process of water remediation is
introduced. CQDs are considered in nanomembranes, nanosensors and degradation
through photocatalysts. Hence, the general process of these in water remediation
is discussed initially. The CQDs with its versatile properties and easy production
from naturally occurring, cheap rawmaterials, its properties and synthesis have been
discussed briefly in introduction before its applications inwater purification. Initially,
these fascinating CQDs being biocompatible were investigated intensively in bio
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Table 3 CQD application for pollutant removal

CQD/composite Pollutant References

Degrader CQDs/NH2-MIL-125
CQDs/La2Ti2O7
NCQDs
PECQDs/MnFe2O4
CQDs/C11-Fe3O4)
CQDs/ZnAl-LDH

RhB
MB
Cd2+ and Pb2+

Uranium
BaP
Cadmium

Wang et al. [89]

CQDs/BiOCl/BiOBr RhB, TC, CIP, BPA Sharma et al. [76]

N-CQD Acid Blue, Acid Red, Eosin
Y, Eriochrome Black T,
Methyl orange and MB dyes,
Cd2+ and Pb2+

Sabet and Mahdavi [46]

CQD/hydrogel Cu2+, Ni2+, Ag+, and Cd2+,
sodium dodecyl sulfate and
rhodamine 6G

Singh et al. [72]

CH–CQD Cd2+ Jlassi et al. [39]

ZSH@CQDs RhB Zhang et al. [108]

Fe3O4/ N-CQDs Pb2+ Mashkani et al. [50]

NCQDs/TiO2 MB Zhang et al. [34]

CQDs/KNbO3 Organic (Violet dye) Qu et al. [106]

CQDs@PAFP Uranium(VI) Mahmoud et al. [48]

CQDs/NFC Cr3+ Song et al. [79]

L-CQD/ZnO Phenol Liang et al. [27]

CQDs RhB Phanga and Tan [81]

NCQD and CCQD Cd2+ Abidin et al. [59]

CQD/ZnAl-LDH Cd(II) Rahmaniana et al. [60]

CQDs Pb Pudza et al. [56]

TiO2-CQDs MB Pirsaheb et al. [52]

CQDs/NaBiO3 Cr(VI) Wu et al. [94]

N-ZnO/FA/CQD MB Moalem-Banhangi et al. [55]

CQD@FeOOH Phenol Wu et al. [62]

and energy applications. Recently, the adventure has started in water purifications
as nanomembranes, nanosensors and adsorbent photocatalysts. It had been intended
to review the advent in these fields and grouped accordingly for easy reference,
application and for future development.
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Fig. 7 A few easily available and low-cost raw materials for CQD synthesis
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Supramolecular Ion-Exchange Resins
Based on Calixarene Derivatives
for Pollutant Removal from Aquatic
Environmental Samples

Jumina and Yehezkiel Steven Kurniawan

Abstract Water pollutants, i.e., heavy metal ions, pesticides, dyes, and pigments,
are contaminating our aquatic environment and generating serious health damage for
the human body. Adsorption using ion-exchange resin materials is one of the versa-
tile techniques for water treatment due to its simple and low-cost process. However,
when the separation and pre-concentration of the water pollutants only rely on the
ion-exchange mechanism, selective removal of water pollutants cannot be easily
achieved. In contrast, a supramolecular organic compound named calixarene offers
a promising technology for selective ion and molecular discrimination due to strict
host–guest interactions. We reviewed the up-to-date research of supramolecular ion-
exchange resins based on calixarene derivatives for pollutant removal from aquatic
environmental samples. There are three techniques to prepare the supramolecular
ion-exchange resins based on calixarene derivatives: (1) impregnation of calixarene
on the commercially available resins, (2) polymerization of calixarene, and (3)
crosslink-reaction of the calixarene derivatives. The description, advantages, and
disadvantages of each technique are discussed. By using these techniques, hundreds
of ion-exchange resin materials have been successfully prepared and they showed
a remarkable capability and selectivity for heavy metal ions, pesticides, dyes, and
pigments removal.
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Abbreviations

α and β Elovich coefficients (mg g−1 min−1)
bT Adsorption heat constant (J mol−1)
Cads Concentration of adsorbed pollutants on the stationary phase (g L−1)
Ce Adsorbate concentration at the equilibrium condition (mg L−1)
Ci Initial concentration of pollutants (g L−1)
Ct Concentration of pollutants after adsorption for t min (g L−1)
Es Mean free energy of adsorption (J mol−1)
k Adsorption rate constant
kBA Bohart-Adams adsorption rate constant (L g−1)
kTH Thomas adsorption rate constant (L g−1 min−1)
kYN Yoon and Nelson adsorption rate constant (min−1)
K Equilibrium constant
KDR Dubinin-Radushkevich constant (mol2 J−2)
KF Freundlich constant (mg g−1)
KIPD Intraparticle diffusion constant (mg g−1)
KL Langmuir constant (L mg−1)
KT Temkin constant (L g−1)
m Mass of the used adsorbent in the fixed-bed adsorption (g)
mt Total amount of pollutants injected to the stationary phase (g)
n The heterogeneity factor
Q Flow rate of the aqueous phase (L min−1)
qe Equilibrium adsorption capacity of adsorbate (mg g−1)
qmax Maximum adsorption capacity (mg g−1)
qo Initial adsorption capacity of adsorbate (mg g−1)
qt Adsorption capacity of adsorbate at a certain time (mg g−1)
qtotal Total adsorbed pollutants on the stationary phase (g)
R Ideal gas constant (8.314 J mol−1 K−1)
t Adsorption time (min)
t” Breakthrough time or required time to reach 50% of adsorbate adsorption

(min)
T Adsorption temperature (K)
Z Column height (m)
ΔGo Change in Gibbs energy (J mol−1)
ΔHo Change in enthalpy energy (J mol−1)
ΔSo Change in entropy energy (J mol−1 K−1)
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1 Introduction

Nowadays, water pollution has reached alarming levels, especially in developing
countries [66, 76, 9]. In Indonesia, dangerous water pollutants which are environ-
mentally hazardous and poisonous to humans have been reported in Jakarta and
Surabaya cities [6, 73]. However, in these locations, the upstream river waters are
still being used for drinking water sources and as a result, cancer, diarrhea, and other
digestive problems happen [5, 37]. Even though several efforts have been made to
overcome these serious problems, the handling of water pollution is sometimes not
easy due to the wide area of the involved aquatic environment. Furthermore, the
water pollutants may exist as colorless compounds and are not easily detected by the
naked eye [28].

Thewater pollutants are hazardous chemicals such as heavymetal ions, pesticides,
dyes, and pigments, which are found in higher amounts than the allowed concen-
trations [122]. Heavy metal ions are cation or anion species containing high-density
metal (more than 5 g mL−1) as well as high atomic weight (higher than 50 g mol−1),
such as copper (Cu(II)), cobalt (Co(II)), cadmium (Cd(II)), lead (Pb(II)), mercury
(Hg(II)), chromium (Cr(III) and Cr(VI)), and arsenic (As(III) and As(V)) [16, 27].
These metal ions are highly toxic for human health even in trace concentrations
[32, 75]. Cu(II) and Co(II) ions cause insomnia, anxiety, anemia, chronic headaches,
endocrine and congenital disruption [16]. The Cd(II) ion causes nervous, respira-
tory, cardiovascular, and reproduction degenerative diseases while Pb(II) and Hg(II)
ions generate fatigue, sperm dysfunction, nervous disorders, and cognitive deficits
[124]. Additionally, Cr(III), As(III), and As(V) ions are carcinogenic for the skin,
sinuses, and lungs [27]. Cr(VI) in the form of Cr2O7

2− anions have been widely used
for electroplating, wood preserving, and textile dyeing in many industrial processes,
however, Cr(VI) ions generate serious health problems to the lungs, liver, and kidneys
as well as degrading the biodiversity of aquatic environments [48].

Pesticides are chemicals used in farmlands to preserve the crops from unde-
sired insects or other organisms [151, 137]. Unfortunately, up to 90% of pesticide
compounds are accumulated in the soil and water environment [126]. Commonly
used pesticides are hexachlorocyclohexane, endosulfan, paraquat, hexaconazole, and
chlorpyrifos [41, 114]. The chemical structures of each pesticide are shown in Fig. 1.
The hexachlorocyclohexane, endosulfan, paraquat, hexaconazole, and chlorpyrifos
pesticides are categorized as highly toxic pollutants according to the United Nations
Environmental Protection Agency [95]. The presence of pesticides in the aquatic
ecology generates serious health disorders such as paresthesia, nausea, muscular
fasciculations, pulmonary edema, endocrine disruption, and cardiac arrhythmias
[114].

Meanwhile, dyes and pigments have been extensively used in our life especially
for food colorants, textiles, paint, cosmetics, and other daily household items [53,
20]. Butyl rhodamine B, methyl red, methyl orange, methylene blue, methyl green,
methyl violet, eosin, acid orange 5, reactive black-5, reactive black-45, and congo red
are common dyes and pigments in the industrial fields [19]. The chemical structures
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Fig. 1 The chemical structures of the commonly used pesticides, i.e., hexachlorocyclohexane,
endosulfan, paraquat, hexaconazole, and chlorpyrifos

of common dyes and pigments are shown in Fig. 2. Because of their popular use
around the world, the release of dyes and pigments into our environment is inevitable
thus generating serious health and environmental problems. The condition becomes
worse when the dyes and pigments are very stable, highly soluble in the water, slow
to degrade, and highly toxic for human health and aquatic organisms [86].

Due to the serious effects on human health and environment, these water pollu-
tants should be removed or at least reduced to an acceptable concentration level.
Several techniques for water treatment have been established such as adsorption,
bioremediation, photocatalysis, membrane filtration, coagulation, and precipitation
[127, 23, 51, 64, 72, 8, 49]. Among the water treatment techniques, adsorption is the
most favorable process with its simple and facile operation conditions which are very
suitable for commercial purposes [1, 24]. In contrast, bioremediation is a compli-
cated process since it is very sensitive for pH, oxygen level, temperature, and light
intensity and thus not favorable for commercial application [8]. The photocatalysis
process is a simple process, however, it requires a long time to degrade the pollutants
with strong light intensity which is not cost-effective nor feasible [64]. Membrane
filtration is prone to fouling effects and involves an expensive regeneration process
[49]. On the other hand, coagulation and precipitation processes are not a selective
process and thus less effectivewhile the processes of separation and preconcentration
are difficult to be achieved [72, 127].
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Fig. 2 The chemical structures of the commonly used dyes and pigments, i.e., methyl red, methyl
orange, acid orange 5,methyl green,methyl violet, congo red, reactive black-5, and reactive black-45

2 Adsorption Process Using Ion-Exchange Resin Materials

2.1 Adsorption Process

Adsorption is an adhesion process of chemicals (adsorbates) in the form of cation,
anion, gas, or liquid onto the surface of heterogeneous material due to physical
and/or chemical interactions (see Fig. 3) [69]. The most common adsorption process
is the adsorption of ions and small molecules on the solid materials’ surface [89].
The excellent adsorption process is composed of high maximum adsorption capacity
and high selectivity thus the adsorption process could selectively eliminate as much
as possible of pollutants among a mixture in the real samples [51]. Moreover, high
regenerability of the adsorbent material is also important thus it could be used several
times without losing the adsorption capability [107].

Several factors such as adsorbent dosage, shaking time, shaking speed, pollu-
tant concentration, pH, and temperature influence the adsorption process. Each
factor should be evaluated independently to find the optimum adsorption conditions
while the other factors should be kept as constant [92]. By increasing the adsorbent
dosage, the adsorbent percentage will increase until reaching a plateau. The same
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Aqueous phase
Adsorption
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Homogenous Heterogenous

Adsorbent material

Boundary surface

Active sites
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Fig. 3 Schematic representation of adsorption process.Adsorbates are adsorbed through an adsorp-
tion process from the aqueous phase onto the active sites of the adsorbent materials. In general,
adsorbent material contains homogenous and heterogenous active sites on the boundary surface

phenomenon will be observed for shaking time and shaking speed.When the shaking
time and shaking speed are increased, the adsorbent percentage will increase until
reaching the maximum value. In contrast, increasing pollutant concentration will
decrease the adsorption percentage [108].

On the other hand, the trend of pH and temperature could not be predicted as
easily as for the other factors [103]. For example, cationic resin materials are not
effective at high pH values because the positive charges of the active functional
groups are neutralized by the alkaline media. The cationic resin needs a lower pH
value to adsorb anionic chemicals. However, acidic condition (very low pH value)
is not always suitable because the adsorbates could become protonated and thus the
adsorption percentages are significantly decreased [51]. Similar to the pH value,
temperature affects the adsorption process according to the enthalpy value of the
reaction. When the adsorption reaction is exothermic (owing to the negative value of
enthalpy), the lower temperature is desirable for the adsorption process.However, low
temperature decreases the adsorption rate making the complete adsorption process
time-consuming [112].Because of that, it is crucial to adjust the adsorption conditions
to reach an efficient process for the most effective removal of water pollutants.
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2.2 Kinetic and Thermodynamic Aspects of the Adsorption
Process

In general, the adsorption process shall be investigated in both kinetic and thermo-
dynamic studies [84, 98]. The kinetic study revealed how fast an adsorption process
occurs at a certain operation condition [140]. Several kineticmodels have been devel-
oped such as zeroth-order, first-order, pseudo-first-order (Lagergren), second-order,
pseudo-second-order (Ho and McKay), Elovich, intraparticle diffusion, and liquid
film diffusion [51, 70, 46, 68]. Each mathematical equation of these models is given
as the following Eqs. (1)–(8), respectively.

qt = −kt + qo (1)

ln(qt ) = −kt + ln(qo) (2)

ln(qe − qt ) = ln(qe) − kt (3)

1

qt
= kt + 1

qo
(4)

t

qt
= 1

kq2
e

+ t

qe
(5)

qt = t ln(αβ)

β
+ ln(t)

β
(6)

qt = kt1/2 + KI PD (7)

ln

(
1 − qt

qe

)
= −kt (8)

where qo, qt , and qe denote initial adsorption capacity of adsorbate (mg g−1), the
adsorption capacity of adsorbate at a certain time (mg g−1), and equilibrium adsorp-
tion capacity of adsorbate (mg g−1), respectively. The k, t, KIPD, α, and β denote the
adsorption rate constant, adsorption time (min), intraparticle diffusion constant (mg
g−1), Elovich coefficients (mg g−1 min−1), respectively.

Additionally, adsorption isotherm is defined as the mathematic relation of the
equilibrium adsorption capacity and concentration of the adsorbate on the solid
surface at a certain temperature [10]. So far, there are four common adsorption
isotherm models, i.e., Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich
[133, 36, 30, 69]. The mathematical equations of the Langmuir, Freundlich, Temkin,
and Dubinin-Radushkevich models are given as Eqs. (9)–(12), respectively.
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(12)

Es = (2KDR)−2 (13)

where Ce, qmax, n, R, bT , and T represent adsorbate concentration at the equilibrium
condition (mol L−1 or mg L−1), maximum adsorption capacity (mol g−1 or mg g−1),
the heterogeneity factor, ideal gas constant (8.314 J mol−1 K−1), adsorption heat
constant (J mol−1), and temperature (K), respectively. While KL, KF , KT , KDR, and
Es represent Langmuir constant (L mg−1), Freundlich constant (mg g−1), Temkin
constant (L g−1), Dubinin-Radushkevich constant (mol2 J−2), and mean free energy
of adsorption (J mol−1), respectively.

The Langmuir model describes a well-ordered monolayer adsorption process of
the adsorbate onto the homogeneous surface of the adsorbent material. The adsor-
bates are adsorbed in the limited number of identical adsorption sites on the surface
of the adsorbent material. When the isotherm adsorption process of water pollu-
tants follows the Langmuir model, the adsorption process mainly occurs through
chemisorption reaction and the adjacent adsorbates do not interact with each other
[69]. Meanwhile, the Freundlich model describes a multilayer adsorption process of
the adsorbate onto the heterogeneous surface of the adsorbent material. The hetero-
geneity factor (n) describes the surface heterogeneity degree, as well as the distri-
bution factor of the adsorbate molecules on the surface of the adsorbent material.
The higher heterogeneity factor gives higher adsorption density on a certain area of
the adsorbent material. A favorable adsorption process is reflected from the value of
the heterogeneity factor higher than 1.0. When the isotherm adsorption process of
water pollutants follows the Freundlichmodel, the adsorption process occurs through
physisorption reaction and the adjacent adsorbates do interact with each other [36].

The Temkin model describes the decrement of adsorption heat that is caused by
the increment of the number of adsorbate molecules on the surface of the adsor-
bent [133]. Meanwhile, the Dubinin–Radushkevich model describes an adsorption
process of the adsorbate onto the micropores of the adsorbent material. When the
isotherm adsorption process ofwater pollutants fitswell with theDubinin–Radushke-
vich model, the adsorbates may be adsorbed in monolayer or multilayer formation.
The Dubinin–Radushkevich constant could be converted to the mean free energy of
adsorption through an Eq. (13). When the value of mean free energy (Es) of adsorp-
tion is less than 16 kJ mol−1, the adsorption process occurs through chemisorption or
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ion-exchange reaction [30]. Further investigation on the thermodynamic parameters
of the adsorption process could be calculated by using the following Eqs. (14)–(16):

K = Cs

Ce
(14)

�Go = −RT ln(K ) (15)

ln(K ) = �So

R
− �Ho

RT
(16)

where K, ΔGo, ΔSo, and ΔHo represent equilibrium constant, change in Gibbs (J
mol−1), entropy (J mol−1 K−1), and enthalpy (J mol−1) energy, respectively.

A negative change in Gibbs energy denotes a favorable adsorption process at a
certain temperature. A positive value of change in enthalpy reflects an endothermic
process while a negative value of change in enthalpy reflects an exothermic process
[84]. The physisorption process is indicated by the change in enthalpy value less than
20 kJ mol−1 while the chemisorption process is indicated by the change in enthalpy
value higher than 20 kJ mol−1. A positive value of the change in entropy reflects
the increase of disorder (degree of freedom) while a negative value of the change in
entropy reflects the decrease of disorder of the adsorption reaction equation [98].

2.3 Batch and Fixed-Bed Adsorption Process

In the experimental investigation, the adsorption process could be carried out through
two procedures, i.e. batch and fixed-bed adsorption [82] (see Fig. 4). Batch adsorp-
tion is a non-continuous system that is carried out in a closed reactor [1]. The main
disadvantage of batch adsorption is the re-conditioning process after the adsorp-
tion reaction takes a long time. The adsorbent material should be filtered from the
closed reactor and then the adsorbent material should be regenerated and readded
into another batch reactor making the process not simple nor convenient [112].

On the other hand, fixed-bed adsorption (also known as column adsorption) is a
continuous system in which the adsorbent material is placed in the tube reactor as a
stationary phase and then in the aqueous phase flows through a column reactor [40].
The main disadvantage of fixed-bed adsorption is the maintenance of adsorption
conditions is not as simple as batch adsorption. However, the fixed-bed adsorption
process could be continuously operated [130]. The elution of the adsorbates from the
adsorbent material could be easily conducted using an elution or stripping reagent.
The commonelution agent for ion-exchange resinmaterial for heavymetal adsorption
is an acidic solution (HCl or HNO3 or H2SO4) [141].

From the batch adsorption, the obtained data involve adsorption percentages
(%Adsorption) only (see Eq. 17) [1]. In contrast, the fixed-bed adsorption process
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Fixed-bed adsorption process

Calixarene
adsorbent

Water 
pollutant

Adsorbed water pollutant
on calixarene adsorbent

Ct = 0 0 < Ct < C0 Ct = Ci

Ci

Ct = 0

Ci

Saturated 
Zone
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Fig. 4 Schematic representation of batch and fixed-bed adsorption experiment. In the batch adsorp-
tion process, the water pollutants were adsorbed on the active sites of calixarene adsorbent which
is homogeneously distributed in the aqueous phase. In the fixed-bed adsorption process, the water
pollutants flow from the inlet (upper part) to the outlet (lower part) of a column reactor. During the
adsorption process, the unsaturated zone (Ct = 0) gradually changes to the saturated zone (0 < Ct
< Co) to reach the equilibrium state (Ct = Ci). Whereas Ci = initial concentration of pollutants (g
L−1). Ct = concentration of pollutants after adsorption for t min (g L−1)

could be presented as a breakthrough curve using an Eq. (18). Then, the removal
percentage (%Removal) of water pollutants using a fixed-bed adsorption process
could be calculated using Eq. (19) [82].

%Adsorption = (Ci − Ct )

Ci
× 100% (17)
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qtotal = Q

1000

t∫
0
Cadsdt (18)

%Removal = qt
mt

× 100% (19)

where Ci, Ct , qtotal, Q, Cads, and mt are initial concentration of pollutants (g L−1 or
mol L−1), concentration of pollutants after adsorption for t min (g L−1 or mol L−1),
total adsorbed pollutants on the stationary phase (g), flow rate of the aqueous phase
(L min−1), concentration of adsorbed pollutants on the stationary phase (g L−1 or
mol L−1), and total amount of pollutants injected to the stationary phase (g).

The breakthrough curve of the fixed-bed adsorption could be modeled through
three models, i.e. Thomas, Bohart-Adams, and Yoon and Nelson models [120, 22].
The Thomas model predicts plug flow of adsorbate through the stationary phase thus
no axial dispersion happens [135]. Meanwhile, the Bohart-Adams model describes
that the adsorption rate is correlated to the adsorption capacity and the initial concen-
tration of the adsorbate in the aqueous phase. The Bohart-Adamsmodel assumes that
the equilibrium state is reached by a stepwise occupation of the adsorption sites on
the surface of the adsorbent materials. However, the Bohart-Adams model is suit-
able for only the first 50% of the breakthrough curve [15]. On the other hand, Yoon
and Nelson’s model describes that the adsorption rate is decreased by increasing
the sorption capacity and the breakthrough of the adsorbate in the aqueous phase.
Yoon and Nelson’s model is the simplest model due to the least required experi-
mental data compared to the other models [148]. The mathematical equations of
Thomas, Bohart-Adams, and Yoon and Nelson models are given as the following
Eqs. (20)–(22):
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= kT HCo + kT H
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(20)
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kY N
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(
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where m, Z, t”, kTH , kBA, and kYN represent mass of the used adsorbent in the fixed-
bed adsorption (g), column height (m), breakthrough time (required time to reach
50% of adsorbate adsorption, min), Thomas adsorption rate constant (L g−1 min−1),
Bohart-Adams adsorption rate constant (L g−1), and Yoon and Nelson adsorption
rate constant (min−1).

Pollutants removal from the aquatic media is being evaluated over the past several
years through an adsorption process employing either organic or inorganic materials.
These materials are activated carbon, clay, chitosan, zeolite, metal oxide, and ion-
exchange resins [93, 144, 97, 54, 74, 14, 43, 109, 105, 20, 55].Among thesematerials,
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ion-exchange resins are the most special ones because they possess a strong binding
affinitywithwater pollutants [26]. Furthermore, ion-exchange resins are easily regen-
erated by adjustment of the pH value thus the usage lifetime is longer than the other
adsorbent materials [115].

2.4 Ion-Exchange Resin Material

A resin material is defined as a macroporous solid material that is generated from the
polymerization of organic compounds [17]. In general, phenolic, silicon, and epoxide
compounds provide thermally and chemically stable resin materials [88]. Moreover,
these resin materials exhibit high adsorption capability, in addition to the difficult-
free regeneration process, thus the adsorption process using resin materials is simple,
efficient, and low-cost to be employed in commercial applications [38]. Several resin
materials have been commercially available such as Amberlite XAD-4, Amberlite
XAD-16, Merrifield, cellulose, silica, and so on [18]. The chemical structures of
these resin materials are shown in Fig. 5. However, when the separation and pre-
concentration of the water pollutants only rely on the ion-exchange mechanism,
selective removal of water pollutants is not possible to be established [58]. Therefore,

Fig. 5 The chemical structures of the commonly used resin materials, i.e., Amberlite XAD-4 resin,
Amberlite XAD-16 resin, Merrifield resin, cellulose, and silica
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further modification is still required to optimize the removal of water pollutants using
an ion-exchange resin material.

3 Calixarene

Calixarene is one of the supramolecular host compoundswith remarkable discrimina-
tive effects due to excellent non-covalent and size-exclusion interactions [47, 118].
Calixarene is a cyclic oligomer consisting of aldehyde and p-alkylphenol deriva-
tives. Calixarene compounds were introduced by Gutsche in 1978 and afterward, the
calixarene field attracted the world’s attention due to its high stability, rigid structure,
large-scale synthesis, and ease in modifications [117]. By using the ion template on
the synthesis process of calixarene, the cavity size of calixarene could be controlled to
form calix[4]arene, calix[5]arene, calix[6]arene, and calix[8]arene [65]. The chem-
ical structures of calix[n]arene are shown in Fig. 6. Besides, the conformation of
calixarene could be adjusted in several modes [59]. As an example, calix[4]arene
exists in cone, partial cone, 1,2-alternate, and 1,3-alternate conformations. Other
families of calix[4]arene such as calix[4]resorcinarene, calix[4]pyrogallolarene,
calix[4]pyrrole, and oxacalix[4]arene (see Fig. 7) have been introduced and thor-
oughly investigated for several applications [33, 56, 77, 52, 61, 34, 111]. The chemical
modification of calixarene on either the lower or upper rim could be easily conducted
while maintaining the conformation of the calixarene [71, 65]. Accordingly,
researchers are giving high interest to the calixarene field [60, 62, 63, 66].

These macrocyclic calixarene derivatives exhibit outstanding separation and pre-
concentration of pollutants due to favorable chelates, size discrimination, and strong
electrostatic interactions [103]. Furthermore, these calixarene compounds could be
easily regenerated by adjustment of the pH value. By adjusting the pH value, the
functional groups will have different charges thus the conformation of calixarene
is influenced. The flexibility of calixarene conformation is pivotal to establish a
highly efficient adsorption process [123]. However, the main drawback of employing

Fig. 6 The chemical structures of calix[n]arene including calix[4]arene, calix[5]arene,
calix[6]arene, and calix[8]arene. The “n” represents the number of the phenolic aromatic ring
in the cyclic structure
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Fig. 7 The chemical structures of calix[4]arene, calix[4]resorcinarene, calix[4]pyrogallolarene,
calix[4]pyrrole, and oxacalix[4]arene

calixarene for the removal of pollutants is their solubility in the aqueous media. The
phenolic functional groups of calixarene easily form hydrogen bonding with water
molecules thus the adsorbent loss is inevitable [51]. Because of that, impregnation
and polymerization of calixarene derivatives are important to prevent the adsorbent
loss for real applications [104].

So far, there are three common techniques to prepare supramolecular ion-
exchange resins based on calixarene derivatives. They are impregnation of calixarene
on the commercially available resin materials, polymerization of calixarene, and
crosslinking-reaction of the calixarene derivatives.A schematic process of these three
techniques is shown in Fig. 8. By using these techniques, hundreds of ion-exchange
resin materials have been successfully prepared and they showed a remarkable capa-
bility for heavymetal ions, pesticides, dyes, and pigments removal. The present book
chapter discusses the up-to-date research of supramolecular ion-exchange resins
based on calixarene derivatives for pollutant removal from aquatic environmental
samples.
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= Adsorbent

Copolymerization of calixarene Polymerization of calixarene

Crosslink-reaction of calixarene

Impregnated calixarene on
the commercially available resin materials
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Fig. 8 A schematic process of impregnation of calixarene on the commercially available resin
materials, copolymerization of calixarene, polymerization of calixarene, and crosslink-reaction of
calixarene derivatives

4 Removal of the Pollutants from Aquatic Environmental
Samples Using Supramolecular Ion-Exchange Resins

4.1 Impregnated Calixarene on the Commercially Available
Resin Materials

Impregnation of calixarene on the commercially available resins is the simplest tech-
nique to prepare supramolecular ion-exchange resin materials. Early study of the
impregnation of calixarene derivatives onMerrifield’s resin has been reported in 2004
[13]. Three types of calix[4]arene have been used, i.e., calix[4]arene 1, calix[4]arene
2, and calix[4]arene 3 (see Fig. 9). Either calix[4]arene 1 or calix[4]arene 3
represent hydrophilic calix[4]arene while calix[4]arene 2 represents hydrophobic
calix[4]arene. The impregnation process was conducted through a chemical bond
formation between free calix-OH and Cl-CH2-resin functional groups under alkaline
conditions (NaH in tetrahydrofuran). By using a stirring method at room tempera-
ture, the calix[4]arene-resin materials were obtained in 70–86% yield with 0.38–
0.78 mmol calix[4]arene amount per 1 g of resin material [13]. The study demon-
strated that the calixarene compound was easily and efficiently impregnated onto
the surface of the polymer material through a simple stirring procedure, which is
remarkable.
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Modification of polystyrene resin material with calix[4]arene derivative 4 has
been prepared and applied for metal ions adsorption application [4]. The polystyrene
material was prepared from vinylbenzyl chloridemonomer through suspension poly-
merization with the addition of divinylbenzene as the cross-linker agent. The impreg-
nation of calix[4]arene derivative was done by reacting the calix[4]arene with NaH
thus the phenolate ion attacked the benzylic carbon forming an ether bond. The resin
materialwas able to adsorb97%ofCs(I) ionwhile a small amount ofCu(II) (14%) and
Pb(II) (7.4%) ions were also adsorbed. When calix[4]arene 5 was employed for the
impregnation of polystyrene material, the selectivity was reversed. The polystyrene-
calix[4]arene 5 resin material could adsorb Cu(II) (67%) and Pb(II) (100%) ions in
high percentages, however, the Cs(I) adsorption dropped to 44% [4]. It can be noted
that the metal ions’ adsorption ability depends on the calix[4]arene substituents.

A study on the heavy metal adsorption process using grafted-calix[4]arene on the
cellulose has also been performed [129]. The evaluated heavy metals were Cu(II),
Cd(II), Hg(II), Pb(II), and Cr(VI) ions. The resin material was prepared from high-
purity cellulose and calix[4]arene 1 using 3-glycidoxypropyl triethoxysilane and
3-aminopropyl triethoxysilane linker agents under alkaline conditions. From the
elemental analysis, it was found that as much as 0.64 mmol of calix[4]arene 1 was
successfully grafted on 1 g of cellulosematerial. The thermogravimetric (TGA) anal-
ysis showed that the resinmaterialwas stable up to 570K.The cellulose-calix[4]arene
1 resin material gave similar qmax values in the range of 0.076–0.095 mmol g−1

(equivalent to 1.27–3.56 mg g−1) for Cu(II), Cd(II), Hg(II), and Pb(II) metal ions
due to similar charges of divalent metal ions. On the other hand, since the Cr(VI) ion
was found as Cr2O7

2− anion thus lower pH is required for Cr(VI) adsorption. It was
found that the Cr(VI) adsorption percentage was achieved in 2.1, 34, 67, and 91%
for pH of 4.5, 3.5, 2.5, and 1.5, respectively. Lower pH value caused protonation of
calix[4]arene 1 thus the –OH functional groups could interact with Cr2O7

2− anion
through dipole–dipole interactions [129].

Simultaneous adsorption ofCo(II), Ni(II), Cu(II), andCd(II)metal ionswas inves-
tigated employing modified Amberlite XAD-16 resin using calix[4]resorcinarene 6
[40]. These metal ions were preconcentrated from the real samples such as spinach,
tobacco, black tea, mushroom, wheat, and commercial juices from Iran through an
adsorption process. The preparation of Amberlite XAD-16-calix[4]resorcinarene 6
resinmaterial was done by impregnating the calix[4]resorcinarene 6 solution inwater
through afixed-bed columnofAmberliteXAD-16 resin. Since the ion-exchange resin
was employed as the adsorbent material, effort on pH optimization is required. The
adsorption percentages of Co(II), Ni(II), Cu(II), and Cd(II) ions reached the highest
value at pH 6.0. Below pH 6.0, these metal ions’ adsorption was low due to protona-
tion of phenolic groups of calix[4]resorcinarene 6 thus the ion-exchange reaction did
not happen. On the other hand, above pH6.0, themetal ions form hydroxo-complexes
with hydroxide ions thus lowering the effective charge of metal ions and weakening
the ion-exchange interaction. At pH 6.0, the adsorption percentages of Co(II), Ni(II),
Cu(II), and Cd(II) metal ions were 96, 97, 97, and 96%, which is remarkable. The
adsorption percentage was similar due to the similar charges of these divalent metal
ions. The Amberlite XAD-16-calix[4]resorcinarene 6 resin was regenerated using
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Fig. 9 Functionalized calixarene and calixresorcinarene derivatives as the active site on the
supramolecular ion-exchange resinmaterials. 1: Unmodified calix[4]arene. 2: Alkoxy calix[4]arene.
3, 19, 20: Carboxylic acid calixarene. 4: Dealkylated calix[4]arene. 5: Phosphonate calix[4]arene.
6: Calix[4]resorcinarene. 7–14: Nitrogenated calixarene. 15, 16: Hydroxylated calix[4]arene. 17:
Nitrogenated calix[4]resorcinarene. 18: Allylated calix[4]arene

3.0 M HCl by protonating the phenolic groups of calix[4]resorcinarene thus the
adsorbed metal ions were released. In the real sample analysis, it was found that
the recovery percentages of Co(II), Ni(II), Cu(II), and Cd(II) ions were found in
the range of 96–105% with the preconcentration factor up to 208, which is again
remarkable [40].

The modified silica material using calix[4]arene 7 containing dimethylamino-
functional group has been prepared and evaluated for Co(II), Cu(II), Zn(II), Ni(II),
and Cr(III) ions adsorption [96]. The modification of silica material was done using
1-chloro-2,3-epoxypropane as the linker agent in dry toluene solvent. From the
elemental analysis, it was found that 0.49 mmol calix[4]arene 7 was successfully
impregnated on 1 g of silica material. The resin material was stable up to 590 K as
shown from the TGA analysis. A quick adsorption process of Co(II), Cu(II), Zn(II),
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Ni(II), andCr(III)metal ionswas achieved in less than 20min. From the pH study, the
adsorption percentages of Co(II), Cu(II), Zn(II), Ni(II), and Cr(III) metal ions were
increased at a higher pHvalue.A quantitative adsorption percentage ofCo(II), Cu(II),
Zn(II), Ni(II), and Cr(III) metal ions was achieved at pH 4.0. The highest adsorption
ability was achieved at pH 4.0 giving the qmax values of Co(II), Cu(II), Zn(II), Ni(II),
and Cr(III) metal ions of 30, 34, 36, 53, and 47 mg g−1, respectively. The resin mate-
rial could be easily recovered employing 0.5 M HCl. From the reusability study, the
silica-calix[4]arene 7 resin did not lose the adsorption capability even after twelve
repeated cycles. The silica-calix[4]arene 7 resin material has been evaluated also for
the real water samples, i.e. tap water and Yellow River water. It was found that the
recovery percentage was 97–100 and 96–101% for tap water and Yellow River water
samples, respectively [96].

The adsorption studies of Cu(II) ions employing a modified silica gel-
calix[4]arene 8 have been investigated [130]. The modification of silica gel was
conducted using a 3-aminopropyl triethoxysilane linker agent to form an amide bond
with the calix[4]arene 8 [39]. By using silica gel-calix[4]arene 8 resin material, as
much as 80% of Cu(II) ions were removed. The adsorption isotherm of Cu(II) ions
fit the Langmuir model yielding the qmax value of 0.079 mmol g−1 at pH 6.0. The
observed qmax value (0.079mmol g−1) was bigger than other materials such as fly ash
(0.022 mmol g−1), sawdust (0.028 mmol g−1), zeolite (0.054 mmol g−1), and acti-
vated carbon (0.070 mmol g−1), which is remarkable [139, 7, 149, 106]. On the other
side, the fixed-bed column study followed Yoon and Nelson model (R2 = 0.9924)
rather than the Thomas model (R2 = 0.9896). From the Yoon and Nelson model, the
kYN of Cu(II) ions was 0.048 min−1 and the t”was 22.4 min. The reusability study of
the resin material for the three-cycle process showed that the resin material exhibited
similar adsorption capability for Cu(II) ions with negligible decrement (about 2%
deviation) [130].

Modification of Amberlite XAD-4 resin with calix[4]arene 9 for As(III) removal
from real samples has been evaluated [84]. The calix[4]arene 9 was immobilized on
the Amberlite XAD-4 by the stirring method for 120 h in ethanol solvent at room
temperature. Through the stirring method, it was found that as much as 0.63 mmol
calix[4]arene 9 was successfully impregnated on 1 g of the Amberlite XAD-4 resin
material. The resin material was stable up to 760 K from the TGA analysis. The
adsorption process showed that pH 4.5 for 45 min was the best condition for As(III)
adsorption. The reason is As(III) exists as AsO3

3− anion thus the acidic media was
favorable for As(III) adsorption using Amberlite XAD-4-calix[4]arene 9 resin mate-
rial. At pH higher than 4.5, the amino-functional group was deprotonated thus the
electron repulsion happened between lone pairs of electrons of amine and AsO3

3−
anion thus the adsorption percentage was quenched. In contrast, at pH lower than
4.5, the AsO3

3− anion was protonated to form HAsO3
2−, H2AsO3

−, and H3AsO3

thus weakening the electrostatic interaction with the impregnated calix[4]arene 9 on
the resin material.

The adsorption kinetics of As(III) using Amberlite XAD-4-calix[4]arene 9 resin
material followed with the pseudo-second-order kinetic model while the isotherm
adsorption of As(III) followed the Langmuir model. It was found that the qmax value
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reached 12 mg g−1 which is better than other adsorbent materials such as pine wood
char (0.001 mg g−1), magnetic sand (0.136 mg g−1), biomass (0.164 mg g−1), and
Fe-coated mesoporous carbon (5.96mg g−1) [134, 42, 90, 21]. The favorable adsorp-
tion was reflected from the negative ΔGo energy (−9.85 kJ mol−1) demonstrating
that the chemisorption occurred through electrostatic interactions. When the Amber-
lite XAD-4-calix[4]arene 9 material was employed for a real application, as much
as 76% of As(III) could be adsorbed from the Iranian wastewater sample, which
is remarkable [84]. On the other hand, the evaluation of As(III) and As(V) adsorp-
tion using Merrifield-calix[4]arene 10 resin material has been conducted [113]. The
Merrifield-calix[4]arene 10 resin material was prepared by a reflux method for 24 h
under a nitrogen atmosphere. The resin material contained 0.34 mmol calix[4]arene
10 in 1 g of Merrifield support. By employing the Merrifield- calix[4]arene 10 resin
material, as much as 97% and 89% of As(III) and As(V) ions were successfully
adsorbed at pH 1. Since the calix[4]arene contained morpholine moieties thus the
adsorbed As(III) and As(V) ions could be stripped adopting 0.1 M NaOH to give the
regenerated resin material [113].

Investigation of the Cr(VI) adsorption using modified Amberlite XAD-4-
calix[8]arene 11 has been reported [112]. The resin material was prepared through a
simple stirring method for 60 h in water:ethanol 1:1 v/v media. Through the stirring
method, it was found that as much as 0.1 mmol of calix[8]arene 11 was success-
fully impregnated in 1 g of the Amberlite XAD-4 resin. The adsorption process was
conducted using a fixed-bed method employing 1 g of modified resin with a volu-
metric rate of 2 mL min−1. The pH 3.0 media was reported as the best media for
the adsorption of Cr(VI). The acidic condition is required to protonate the tertiary-
amine functional groups thus the calix[8]arene has a positive charge to interact with
the Cr(VI) ion in the form of Cr2O7

2− anion. The batch adsorption isotherm of
Cr(VI) ions onto Amberlite XAD-4-calix[8]arene 11 resin followed the Langmuir
model with qmax value of 88 mg g−1. Meanwhile, the fixed-bed column investigation
followed the Thomas model with kTH of 9 mL mg−1 min−1. The resin material was
easily regenerated using 4.0 M HCl to elute the Cr(VI) thus the resin material could
be reused [112].

Modification of chitosan resin material with calix[4]arene 12 has been studied
[131]. The calix[4]arene 12 and chitosan resin material were combined by using
N,N’-diisopropylcarbodiimide as the coupling reagent through a stirring method
under nitrogen atmosphere for 72 h. The chitosan-calix[4]arene 12 resin material
was obtained in 61% yield owing to 0.72 mmol calix[4]arene 12 content in 1 g of
chitosan material. The chitosan-calix[4]arene 12 material was stable up to 470 K
as reflected from the TGA analysis. The chitosan-calix[4]arene 12 material gave a
three timeshigher adsorptionpercentage (89%) than theunmodified chitosanmaterial
(29%) for Cr(VI) adsorption at the same pH value (4.5). Furthermore, the chitosan-
calix[4]arene 12 material reached a quantitative adsorption percentage (100%) for
Cr(VI) adsorption at a lower pH value (1.5), which is remarkable. The calix[4]arene-
chitosan resin material also gave high adsorption percentages for other heavy metal
ions such as Cu(II), Cd(II), Pb(II), and Hg(II) with 84, 87, 90, and 93%, respectively.
These adsorption percentages were much higher than the adsorption percentage of
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Cu(II) (27%), Cd(II) (34%), Pb(II) (31%), andHg(II) (30%) ionswith the unmodified
chitosan material, which is again remarkable [131].

ModifiedMerrifield resin material with calix[4]arene 13 has been used to precon-
centrate the radioactive metal ions [50]. The Merrifield’s resin material was refluxed
in the presence of calix[4]arene 13 in dimethylformamide:tetrahydrofuran 1:5 v/v
solvent for 24 h under argon atmosphere. The amount of loaded calix[4]arene 13 on
Merrifield’s resin was around 8.9% w/w. The optimum pH values for 100% adsorp-
tion of Ce(III), La(III), Th(IV), and U(VI) were 6.5–8.5; 6.5–8.5; 2.5–4.5; and 5.5–
7.0, respectively. These metal ions were easily eluted using HCl solution to give
the preconcentration factors of 130, 125, 102, and 108 for Ce(III), La(III), Th(IV),
and U(VI) ions, respectively. The reusability of the resin material was evaluated for
12 repeated cycles with only a 2% decrement in the adsorption capability, which is
remarkable. The preconcentration of the radioactive metal ions from real samples,
i.e., Monazite sand and other geological solids, was also investigated demonstrating
that the Merrifield-calix[4]arene 13 resin material has excellent potential to be used
in a commercial application [50].

Impregnation of calix[4]arene 14 on the Amberlite XAD-4 resin material was
found to be effective for ClO4

− (perchlorate) anion removal from the aqueous phase
[83]. The removal of perchlorate anion is crucial due to its harmful effects such as
physical growth and mental disorders, and carcinogenic effect on human organs. The
Amberlite XAD-4-calix[4]arene 14 resin material was prepared by several reaction
steps, such as nitration, reduction, diazotization, and coupling reactions to obtain the
Amberlite XAD-4 resin with a connection with aminocalix[4]arene through an azo
bond (see Fig. 10). The Amberlite XAD-4-calix[4]arene 14 resin material was able
to adsorb 94% of perchlorate anion at pH 4.5. The isotherm of perchlorate anion
adsorption followed the Langmuir model with the qmax value of 139 mmol g−1.

The qmax value (139 mmol g−1) of perchlorate adsorption using Amberlite XAD-
4-calix[4]arene 14 resin material was higher than the other adsorbent materials
such as oxidized carbon nanotube (0.068 mmol g−1), iron hydroxide-doped gran-
ular activated carbon nanomaterial (0.16 mmol g−1), granular activated carbon
(0.36 mmol g−1), MIEX resin (0.96 mmol g−1), quaternary amine-modified reed
(3.25 mmol g−1), and calcined Zn-Al hydroxides (5.49 mmol g−1), which is remark-
able [35, 142, 145, 12, 132, 146]. Meanwhile, the adsorption kinetics fit well with the
pseudo-second-order kinetic model (R2 = 0.999) with the k of 162 g mol−1 min−1.
The other anions, such as NO3

− (nitrate), NO2
− (nitrite), Br− (bromide), Cl−

(chloride), F− (fluoride), SO4
2− (sulfate), and PO4

3− (phosphate), did not signif-
icantly influence the perchlorate ion adsorption percentage. The resin material
selectively removed the perchlorate anion from the aqueous solution. The adsorp-
tion of the perchlorate anion was favorable due to the chemisorption process as
shown from the negative ΔGo energy (−5 kJ mol−1). Furthermore, the Amberlite
XAD-4-calix[4]arene 14 resin material was easily regenerated using HCl solution
[83].

Impregnated calix[4]arene 15 on Amberlite XAD-4 resin material has been
employed for the removal of several dyes, i.e. methyl violet, methyl green, methyl
red, methyl orange, eosin, and methylene blue [86]. The resin material was prepared
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Fig. 10 Preparation of calix[4]arene-Amberlite XAD-4 resin material through a chemical impreg-
nation process. First step is the nitration of aromatic rings of Amberlite XAD-4 resin. Second step
is the reduction of nitro to amine functional group. Third step is the diazotization reaction of amino
to the diazonium functional group. Last step is coupling reaction of diazo-Amberlite XAD-4 resin
with calix[4]arene derivatives

through a stirring method thus as much as 0.052 mmol calix[4]arene 15 was immo-
bilized in 1 g of the Amberlite XAD-4 resin material. Through a batch study, it
was found that the resin material was selective for methylene blue, methyl green,
and methyl violet dyes in around 90% adsorption percentage. Meanwhile, the other
dyes, i.e., methyl red, methyl orange, and eosin were adsorbed in lower percent-
ages (30–40%). The optimum reaction condition was 5 mg of adsorbent dose for
30 min adsorption process at pH 6.0 at 293 K. The isotherm adsorption followed the
Freundlich adsorption model with n values in the range of 2.0–2.1 showing that a
favorable adsorption process was observed [86].

The qmax value for methylene blue, methyl green, and methyl violet using impreg-
nated calix[4]arene 15 on Amberlite XAD-4 resin material were 0.89, 1.04, and
1.25 mol g−1 (or mg g−1), respectively [86]. The qmax value of methyl violet adsorp-
tion using calix[4]arene-resin material (1.25 mol g−1) was bigger than the other
adsorbents such as activated carbon (3.7 × 10–6 mol g−1), carbon nanotubes (1.1 ×
10–4 mol g−1), and wood sawdust (1.2 × 10–5 mol g−1) [99, 91]. The qmax value for
methyl green adsorption using calix[4]arene-resinmaterial (1.04mol g−1)was higher
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than activated carbon (1.0 × 10–5 mol g−1), and NiFe2O4-carbon nanotubes (2.4 ×
10–6 mol g−1) [45, 11]. Meanwhile, the qmax value of methylene blue adsorption
using calix[4]arene-resin material (0.89 mol g−1) was higher than activated carbon
(3.7 × 10–6 mol g−1), and the unmodified resin adsorbent (6.0 × 10–6 mol g−1)
[150, 116]. These results demonstrated that the calix[4]arene-resin material exhibits
much better adsorption capability for organic dyes than the other adsorbentmaterials,
which is remarkable. It is pivotal to be noted that the impregnated calix[4]arene 15 on
Amberlite XAD-4 resin material exhibited a 99% adsorption percentage of methy-
lene blue, methyl green, and methyl violate dyes from the real wastewater samples.
The favorable adsorption was generated from the negative ΔGo energy, i.e. −16.1,
−12.9, and −13.8 kJ mol−1 for methylene blue, methyl green, and methyl violate,
respectively. Furthermore, the Amberlite XAD-4-calix[4]arene 15 resinmaterial was
easily regenerated through elution of 0.6 M HCl solution and the resin material gave
around 90% of organic dyes adsorption after the five-cycles process [86].

Grafted calix[n]arene (n= 4, 6, and 8) on the starch biopolymer gave high adsorp-
tion capability toward butyl rhodamine B in the aqueous solution [20]. The starch-
calix[n]arene resin material was prepared by grafting the starch resin material with
calix[n]arene derivative using epichlorohydrin as the linker agent under alkaline
conditions. It was found that the adsorbent was stable up to 480 K. The adsorption
process reached the best performance at pH 9.0. Through the grafting process, the
qmax value of the starch-calix[n]arene resin material was remarkably enhanced up
to 17 times higher than the unmodified starch material (0.58 mg g−1). The kinetic
of butyl rhodamine B adsorption on the grafted-polymer fit well with the second-
order kinetic model. Meanwhile, the adsorption isotherm of the butyl rhodamine
B fit the Langmuir model giving the qmax value of 13 mg g−1. Furthermore, the
adsorbed butyl rhodamine B on the calix[8]arene-starchmaterial was easily desorbed
using ethanol:water 4:1 v/v thus regenerating the free adsorbent material. The starch-
calix[8]arene material could be used for ten cycles of butyl rhodamine B adsorption
process without a significant decrement of the adsorption capability [20].

The Amberlite XAD-4-calix[4]arene 4 resin material has been applied for azo
dyes adsorption from the aqueous solution [53]. The congo red, reactive black-
5, and reactive black-45 were evaluated as the azo model compounds. To modify
the Amberlite XAD-4 resin, at first, the resin was nitrated using concentrated nitric
acid/sulfuric acid reagents. Then the nitro functional group was reduced to the amine
group followed by Sandmeyer reaction to form diazonium chloride salt. The diazo-
nium chloride salt of Amberlite XAD-4 resin was reacted with calix[4]arene 4 thus
the Amberlite XAD-4 resin and calix[4]arene 4 was connected through –N = N–
bonds. It was found that the optimum adsorption condition was achieved at 100 mg
dose of adsorbent, 1 h contact time, and 0.2 M NaCl media as the aqueous phase.
Since the adsorption of azo dyes occurred through the electrostatic interactions, it is
reasonable that each azo dye required different pH conditions. Congo red reached
the maximum adsorption percentage (72%) at pH 6 while reactive black-5 reached
the maximum adsorption percentage (82%) at higher pH (11). The reactive black-
45 compound requires pH 3.0 to reach 60% adsorption percentage using Amberlite
XAD-4-calix[4]arene 4 resin material [53].
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Modified silica material with calix[4]arene 1 has been prepared using silicon
tetrachloride as the linker agent under alkaline conditions for 50 h [82]. By optimizing
several adsorption parameters and conditions such as adsorbent dose, contact time,
pH, and shaking speed, it was found that quantitative endosulfan adsorption (98–
99%) was reached employing 50 mg of resin material at pH 2.0 with a shaking
speed of 125 rpm for 60 min. The isotherm of endosulfan adsorption followed the
Freundlich model (R2 = 0.992). From the fixed-bed adsorption study, it was found
that 0.002mmol endosulfan could be adsorbed after 30min processwith a volumetric
rate of 6 mL min−1 according to the Thomas model. The adsorbent regeneration was
easily achieved using 5 mL of a binary mixture of n-hexane and ethyl acetate giving
around 90% recovery percentage. The adsorption ability of the silica-calix[4]arene
1 resin material did not significantly change after the five-cycles adsorption process
at the optimum condition. Furthermore, the silica-calix[4]arene 1 resin material was
able to remove 90–94% of endosulfan from real polluted-water samples, which is
promising for environmental applications [82].

Calix[4]arene-composite resin has been employed for hexaconazole and chlor-
pyrifos pesticides adsorption from the aqueous solution [98]. The composite resinwas
prepared fromamagnetic nanoparticle, graphene oxide, and glucamine-calix[4]arene
16 through a crosslinking reaction using 3-glycidyloxypropyl trimethoxysilane for
24 h. The composite resin exhibited 90–100% adsorption percentages of hexacona-
zole and chlorpyrifos pesticides at a pH range of 5.0–7.5 for 30 min batch process.
The isotherm adsorption of these pesticides followed the Langmuir model with qmax
values of 79 and 94 mg g−1, respectively. The high maximum adsorption capacity of
hexaconazole and chlorpyrifos pesticides was achieved due to the favorable adsorp-
tion process as reflected from the ΔGo energy, i.e., −33.97 and −36.39 kJ mol−1,
respectively.When the composite resinmaterial was applied for real samples, around
80–95% of the pesticides were adsorbed from the tap water, river water, and wastew-
ater. The resin nanomaterial was easily regenerated using acetone solvent for 5 min
shaking process. After the twenty-cycles process, the resin nanomaterials still gave
80–84% adsorption, which is remarkable [98].

Modified silica material with p-tert-butylcalix[8]arene was found as a useful tech-
nique for hexachlorocyclohexane removal from the aqueous media [85]. The silica
material was modified using silicon tetrachloride and p-tert-butylcalix[8]arene in dry
dichloromethane solvent for 60 h. The optimum condition was 20 mg adsorbent dose
at pH 8.0 for 60 min adsorption process. The resin material gave 103 mg g−1 as the
qmax value according to the Langmuir model. The observed qmax value (103 mg g−1)
was much bigger than bagasse (0.251 mg g−1) and clinoptilolite (0.244 mg g−1)
adsorbent materials [44, 125]. From the real sample study, the resin material exhib-
ited 79–86% removal of hexachlorocyclohexane from thewastewater samples, which
is remarkable [85].

The impregnation technique is low-priced because only a small amount of
calixarene is required [3]. The impregnation process could be conducted in twoways,
i.e., physical and chemical methods [78, 80, 81]. Physical impregnation is generally
done by stirring of commercially available resin material and calixarene derivatives
for a long time (24–120 h). The calixarene derivatives will be adsorbed in the resin
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material thus increasing the adsorption capability of the resinmaterial [79]. Themain
drawback of physical impregnation is the long time required in the preparation of
composite material and slow leaching of the calixarene derivative thus the adsorp-
tion capability of resin material is decreased over time [83]. In contrast, chemical
impregnation is generally done by stirring of commercially available resin material
and calixarene derivatives in the presence of the linker agent in a shorter time [94].
The calixarene derivatives will be connected with the resin material through covalent
bondings thus the leaching of calixarene is suppressed. However, the main drawback
of chemical impregnation is the higher preparation cost of composite material [3].

4.2 Polymerization of Calixarenes

Polymerization of calixarene could be conducted as copolymerization or total-
polymerization reactions. The copolymerization of calixarene with the other
monomers has been evaluated due to the low-cost process [87]. The copolymer-
ization technique is conducted by mixing the commercially available monomer
such as bisphenol A, vinyl acetate, diisocyanate, styrene, norbornene, and tetraph-
thaloyl dichloride with functionalized calixarene [57, 138]. Meanwhile, the total-
polymerization reaction of calixarene has been performed by adding the allyl func-
tional groups on the calixarene framework. The polymerization of calixarene could
be conducted through free-radical, cationic, or anionic reactions [147].

Calix[4]arene-based polyurethane and copolyether materials have been prepared
through a copolymerization reaction [29]. The calix[4]arene-based polyurethane
material was prepared by mixing calix[4]arene derivative, 2,4-tolylendiisocianate,
and dibutyltin dilaurate in dry toluene at 350K for 8 h.Meanwhile, the calix[4]arene-
based copolyether material was prepared by mixing calix[4]arene dialcohol deriva-
tive, bisphenol-A, and NaH in dry tetrahydrofuran at 350 K for 12 h. By using
various calix[4]arene derivatives, the calix[4]arene-based polyurethane material was
obtained in 35–55% yield with an index of polydispersity (IPD) of 1.70–2.10. The
calix[4]arene-based polyurethane material had a glass transition temperature (Tg)
in a range of 370–400 K with the molecular weight of 12.3–19.5 kg mol−1. The
calix[4]arene-based copolyether material was obtained in 47–58% yield with an IPD
of 2.42–2.68. The calix[4]arene-based copolyethermaterial hadTg in a range of 348–
372 K with the molecular weight of 11.1–11.6 kg mol−1. The calix[4]arene-based
polyurethane material exhibited high adsorption percentage (85–97%) for Ag(I) and
Cs(I) ions over the othermetal ions (less than 15%),which is remarkable.Meanwhile,
the calix[4]arene-based copolyether material gave a low adsorption percentage (up
to 18%) toward Cs(I) ions only [29].

Copolymer material of polyaniline, polyacrylic acid, and calix[4]resorcinarene
17 was reported as a promising adsorbent for paraquat pesticide from the aquatic
media [31]. The copolymerization reaction was conducted through a free-radical
reaction using ammonium persulfate as an initiator in carbon disulfide and dimethyl-
formamide as solvents. The optimum adsorption condition was 50 mg of adsorbent
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material at pH 8 for 5 min process to give 93% of adsorption percentage of paraquat.
The isotherm adsorption process followed the Freundlich model with qmax value of
0.4 mg g−1 [31].

Our research group conducted total-polymerization of calixarene derivatives
by the addition of allyl functional group [110]. The addition of allyl functional
group would lead to cationic polymerization under acidic conditions thus the
calixarene derivatives are connected to each other to form an ion-exchange resin
material. Calix[6]arene-polymer was successfully prepared from the monoallyloxy-
calix[6]arene. The polymerization reaction was conducted for 8 h in chloroform
catalyzed by sulfuric acid. The polymerization process was terminated with the addi-
tion of a limited amount of methanol to form calix[6]arene-polymer. The successful
polymerization reaction was indicated by the disappearance of –CH=CH2 functional
group from the nuclear magnetic resonance and Fourier transform infrared spectra.
The polymer material was produced as a brown solid with a melting point of 472–
474 K. The molecular weight of calix[6]arene-polymer was 24.6–30.2 kg mol−1

[110].
The synthesized calix[4]arene-polymer has also been synthesized from

calix[4]arene 18monomer under acidic conditions [67]. Themonomer was dissolved
in chloroform and then polymerized in the presence of sulfuric acid solution for
7 h. The polymerization reaction was stopped by the addition of a small amount of
methanol to form calix[4]arene-polymer. The calix[4]arene-polymer was obtained as
a brown solid in 80% yield. The melting point of the calix[4]arene-polymer is some-
what above 650 K. The surface area of the polymer was 46.6 m2 g−1 with a pore
diameter of 300 nm. When the calix[4]arene-polymer material was employed for
Cd(II) adsorption from the aqueous media, the best adsorption condition for Cd(II)
was at pH 6.0 for 50 min shaking. The adsorption isotherm of Cd(II) ions followed
the Langmuir isothermmodel with 96 mg g−1 as the qmax value. TheΔGo adsorption
energy value was −32.65 kJ mol−1 demonstrating that chemisorption of Cd(II) ions
onto the calix[4]arene polymer is highly favorable [67].

On the other hand, the calix[4]arene-, calix[6]arene-, and calix[8]arene-polymer
also gave remarkable adsorption capability for paraquat from the aqueous phase
[119]. The calix[n]arene-polymer was prepared through Sonogashira-Hagihara
cross-coupling reaction of calix[n]arene with tetracetylene pyrene in tetrahydrofuran
at 340K.The calix[n]arene-polymer gave69, 70, and100%adsorptionpercentages of
paraquat for n= 4, 6, and 8, respectively. The calix[8]arene-polymerwas found as the
best adsorbentmaterial with qmax value of 419mg g−1.Meanwhile, the calix[4]arene-
and calix[6]arene-polymer gave the same qmax value of paraquat (411 mg g−1). It
was reported that the calix[4]arene-, calix[6]arene-, and calix[8]arene-polymer have
a surface area of 759, 725, and 635 m2 g−1, respectively. Therefore, the adsorption
of paraquat was influenced by the larger ring size of calix[n]arene rather than the
larger surface area. The calix[n]arene-polymer was easily regenerated by washing
for 15 min with methanol to elute the adsorbed paraquat compound. After the three-
recycles process, the adsorption percentage of paraquat using calix[n]arene-polymer
did not significantly change demonstrating that they are potential polymers to be
used in the real process [119].
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Compared to the impregnation process, the polymerization process gave higher
adsorption capability and faster reaction time in material preparation. Higher adsorp-
tion capability is caused by a higher amount of calixarene in the resinmaterial.Mean-
while, faster reaction time is caused by more elevated reactivity of the monomer
species in a comparison with the inert resin material. The main disadvantage of
employing calixarene polymer is higher production cost because a higher amount of
calixarene derivative is used in the preparation of resin material [128].

4.3 Crosslinking Reaction of the Calixarenes

Instead of impregnation and polymerization of calixarene, utilizing the unmodified
calixarene to prepare resin material is also possible through crosslinking reactions
[102]. Since calixarenes have phenol moiety thus they could be linked to each other
through a Friedel-Craft reaction. Compared to the impregnation and polymerization
process, the crosslinking reaction gave much higher adsorption capability [1]. The
higher adsorption capability is caused by a higher amount of calixarene in the resin
material. However, the preparation cost of crosslinked calixarene resin material is
the most expensive compared to the other techniques.

Crosslinking reaction of calixarene has been thoroughly studied by theOhto group
in Japan. The calix[4]arene-resin material was synthesized from a crosslinking of
calix[4]arene 19 derivatives using s-trioxane as the crosslinker agent [121]. The
calix[4]arene 19 and crosslinker agent were reacted in acetic acid media at 380 K for
8 h. The resin material is insoluble in water, chloroform, methanol, ethanol, acetone,
and dimethylsulfoxide. Furthermore, the resin material is also insoluble in NaOH,
NH3, HNO3, and HCl solution media thus calix[4]arene-resin material could be used
in almost all media for the adsorption of heavy metal ions [102].

The calix[4]arene-resin material was selective for Pb(II) adsorption over Ni(II),
Co(II), Zn(II), and Cu(II) ions at pH 3.5 or lower. The Pb(II) adsorption fit the
Langmuir isotherm model with the qmax value of 278 mg g−1. The observed qmax
value (278 mg g−1) is 2.2 times higher than the free calix[4]arene 19 (128 mg g−1)
confirming that the crosslinking reaction is favorable for higher adsorption capability.
Preconcentration of Pb(II) from amodel mixture of Zn(II) and Pb(II) solution (initial
concentration of each ionwas 100mgL−1) was achieved through a fixed-bed process.
The resin material was easily regenerated by flowing 0.1 M HCl to obtain 3,000 mg
L−1 Pb(II) solution yielding the preconcentration factor equals to 30 [121].

In our previous work, we also prepared calix[6]arene-resin material from a
crosslinking reaction of calix[6]arene 20 using s-trioxane as the crosslinker agent [1].
The crosslinking reaction conditions were similar to the preparation of calix[4]arene-
resin material. The particle size of the calix[6]arene-resin material was less than
0.15 mm thus providing a relatively large surface area. The qmax value for Pb(II)
ions was 269 mg g−1 which is slightly lower than calix[4]arene-resin material.
We expected that the larger number of the carboxylic acid functional group would
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Fig. 11 Profile of a breakthrough and b elution of Pb(II), Zn(II), and Cu(II) metal ions employing
calix[6]arene-resin material. The calix[6]arene-resin material selectively adsorbed Pb(II) with a
high preconcentration factor. Adsorbent mass = 150 mg. Concentration of Pb(II) = concentration
of Cu(II) = 12 mg L−1. Concentration of Zn(II) = 120 mg L−1. pH = 4.1. Elution agent = 2.0 M
HCl solution [1]

improve the maximum adsorption capacity for Pb(II) ions because calix[6]arene-
resin has a higher density of carboxylic acid group (6-COOH/monomer) than the
calix[4]arene-resin (4-COOH/monomer). In contrast, upgrading the calix[4]arene-
resin to calix[6]arene-resinmaterial also leads to a larger cavity size of calixarene thus
weakening the chelating ability of calixarene itself. Both factors seem to influence the
maximum adsorption capacity value for Pb(II) ions thus both materials gave similar
qmax value (278mg g−1 for calix[4]arene-resin vs 269mg g−1 for calix[6]arene-resin)
[1].

When the Pb(II) adsorption capability of calix[n]arene-resin materials was
compared to the other adsorbent materials, the calix[n]arene-resin materials demon-
strated a much higher maximum adsorption capacity value, which is remarkable.
The calix[n]arene-resin materials (269–278 mg g−1) gave several times enhance-
ment on the maximum adsorption capacity value than carbon nanotubes (10mg g−1),
imprinted polymer (20 mg g−1), silica gel-ofloxacin (49 mg g−1), iminodiacetate-
type cellulose (178 mg g−1), peanut shell-phosphonic acid (117 mg g−1) [2,
25, 136, 143, 152]. Furthermore, the crosslinked calix[n]arene-resin materials
also exhibited a higher qmax value than the impregnated resin of calix[4]arene
(68 mg g−1) and calix[6]arene (31 mg g−1), as well as calix[4]arene polymer-
supported resin material (128 mg g−1) [100, 101]. These results demonstrate that
crosslinked types of calixarene resin are promising adsorbent material for heavy
metal removal than calixarene-impregnated and -supported resin materials. The
crosslinked calix[6]arene resin material was easily regenerated with elution of
1.0 M HCl and stable enough for the five-cycles adsorption process. The fixed-
bed column experiment revealed that the crosslinked calix[6]arene resin material
was selectively preconcentrated Pb(II) ions up to 10 times higher than the initial
concentration over Cu(II) and Zn(II) metal ions from lead-bearing effluents (see
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Fig. 11), which is remarkable [1]. Table 1 shows the summary of adsorption condi-
tion and maximum adsorption capacity value of water pollutans removal using
supramolecular ion-exchange resin based on calixarene derivatives.

5 Conclusions

Supramolecular ion-exchange resins based on calixarenes are found to be an effi-
cient adsorbent material for water pollutant adsorption and removal from the aquatic
media. The supramolecular ion-exchange resins based on calixarenes could be
prepared through three techniques: (1) impregnation of calixarene on the commer-
cially available resins, (2) polymerization of calixarene, and (3) crosslink-reaction of
the calixarene derivatives. Impregnation of calixarene on the commercially available
resins is the simplest technique, however, thematerial preparation is time-consuming
and had low adsorption capacity. Furthermore, the impregnated calixarene is slowly
leached thus the adsorption capability of the resin material is decreased over time.
Polymerization gave faster material preparation due to a higher reactivity of the
monomers. Meanwhile, the crosslink reaction gave the adsorbent material with the
highest adsorption capacity among the other techniques. The supramolecular ion-
exchange resin materials possess a strong binding affinity with the water pollutants
(heavy metal ions, pesticides, dyes, and pigments). Furthermore, the supramolecular
ion-exchange resins are easily regenerated by adjustment of the pH value thus the
usage lifetime is longer for commercial applications.
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Luminescent Carbon Dots
for Environmental Photocatalytic

Fernanda G. L. Medeiros Borsagli and Alessandro Borsagli

Abstract Innovative materials based on different natural sources with enhanced
luminescence propertyare called carbon dots. Different synthesis methods of these
incredible nanomaterials are changing their property. The photocatalytic potential of
the carbon dots has a solution for wastewater treatment. Important characterizations
to determine carbon dots’ features Are low cost, biocompatible, facile synthesis,
high-quantum yield (QY) nanomaterial, namely carbon dot. In regard to the scenario
in which the proliferation of waste in waters caused by anthropogenic activities and
natural disasters has become a primary global concern because of severe health and
environmental harms, the search for new materials that provide eradication of waste
present in water is a great challenge. In this sense, nanomaterials arising from natural
sources is an incredible alternative, as the carbon dots. Many types of carbon dots
were anaalyzed in the literature, as these nanomaterials have considerable potential
for many purposes, including the photocatalytic process of organic and inorganic
materials in water because they are low cost and biocompatible, which makes them
eco-friendly materials to apply in water treatment. In this overview, we presented
various researches that demonstrated different carbon dots syntheses, an extensive
characterization by many techniques, and the photocatalytic process was reported
based on differentmodels, as different precursors,methodologies of syntheses,which
changes all photodegradation results. Based on the literature, we have also demon-
strated that these nanomaterials exhibit an incredible potential for photodegradation
of diversity of organicmaterials, includingbenzene, pesticides, phenol andmethylene
blue, and others, in water, indicating their promising solution of low cost, biocom-
patible, photocatalytic nanomaterial for wastewater treatment. Finally, this overview
shows that these luminescent materials presented the incredible potential of use in
wastewater treatment.
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Abbreviation

AFM Atomic Microscopy Force
ATP Adenosine 5′-triphosphate (ATP)
CDs or Cdots Carbon Dots
DLS Dynamic Light Scattering
FTIR Infrared Spectroscopy
FL Fluorescence Spectroscopy
HRTEM Transmission Electronic Microscopy with Higher Resolution
PL Photoluminescence or Photoluminescence Spectroscopy
UV-Visible Ultraviolet-Visible Spectroscopy
XRD X-Ray Diffraction
XPS X-Ray Photoelectron Spectroscopy

1 Introduction

Water is one of the essential substances present in nature that is fundamental for the
equilibrium of animal and vegetable life; even so, the ecosystem. In addition, this
element is connected to the development of each society and culture around theworld.
Moreover, it directly impacts many human activities, like many industries, agricul-
ture, livestock, energy, and governments. Hence, the connection between water and
sustainable progress is quite complex, numerous, and deep profound. Additionally,
the water quality has increased a lot of its deterioration due to anthropogenic actives
[2, 72]. In this way, the gigantic toxicity and significant pollutants resistance of many
materials, mainly in the aquatic’s environments, as pigments, phenolics, drugs, fungi-
cide, pesticide, and insecticide, caused a major concern of reduction of potable water
on the planet [72].

On the other wise, many chemical, physical, and physicochemical water treat-
ments are available. The choice depends on the type of compound, the treatment
methodology and its cost. Also, the material used for water treatment changes all
analyses, results, and cost of the process [5, 6, 51]. In this sense, the use of different
natural sources, as natural polymers, biological materials, biomass, others, is fasci-
nating based on various applications. Moreover, these natural sources show an excel-
lent thermal conversion and do not release toxic compounds in the environment, are
available in large quantities, or particular wastes from manufacturing operations
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may have great potential to be used as low-cost biomass, as they represent practi-
cally unexploited resources, are broadly available and are environmentally friendly
[6, 51, 61].

In this way, the use of these natural sources in many applications has increased
in the past few years. In such a way, these materials have been widely used in
nanomaterials production, as stabilizers for nanoparticles or even in their production.
Thusly, distinct nanomaterials, semiconductor nanocrystals, namely, quantum dots
(QDs), are inorganic particles in the range of 1–10 nm. Their electronic and optical
characteristics vary a lot according to crystal size as for the physical dimension.
These unique ultra-small semiconductor nanocrystals have a short time ago come
up as a progressive materials class, which possess unique characteristics, [67, 74,
103]. Therefore, many of these quantum dots are toxic to human health. In this
sense, a recently produced nanoparticle class based on these natural sources has
drawn the attention of many research pieces, the carbon quantum dots or knowledge
carbon dots (Cdots or CD). This class of nanoparticles is a new class of ultra-small
semiconductors with 10 nm of diameter approximately, and it can overcome the
traditional quantum dots restriction [8].

The advantages of the carbon dots are the simple synthesis, low cost, and
outstanding biocompatibility. Their applications range from sensing, catalysis,
nanomedicine, energy conversion, and bioimaging because of the photolumines-
cence (PL) emission, which implies good luminescence (Fig. 1) [90] (Zhang and
Hu 106). In this context, the ultra-small semiconductor nanocrystal carbon dot has
many applications; one of these is related to cell labeling, cancer cell diagnosis, and
photocatalytic activity for wastewater treatment.

Many methods are used to produce carbon dots. One of them includes top-down
approaches, where materials based on graphite or carbon nanotubes are exposed to
laser ablation or electrochemical process. Another option is via bottom-up method-
ology, where polysaccharides or similar are used to produce the carbon dots using
external energy, as ultrasonication,microwave, or heating [49, 59, 81]. The advantage

Fig. 1 Schematic presentation of the application of carbon dots in Science, Engineering and
Industry (Produced by the author)
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goes to an excellent solubility in awatermedium, incredible luminescence in the pres-
ence of visible light, little toxicity, excellent biological compatibility, considerable
stability, to facility functionalization [18, 33, 86].

Moreover, the different synthesis of these carbon dots may modify their size and
properties. Besides, the introduction of chemical groups at the graphitic sheet edges
also adjusted their characterization and properties, including the photoluminescence
[10, 41, 75, 91]. Furthermore, their luminescence property may explain based on
defects in its surface, boundary structure, doping, and triple fundamental carbene
state as free zig-zag sites, recombination of hole, and electrons [18, 57]. Another
fascinating property perceived in some carbon dots is the anti-Stoke transition based
on the excitation or conversion of multiple photons [11, 95].

In this sense, this chapter overviews the researches about carbon dots in the
last years. This new class of nanomaterials brings lots of advantages over many
types of nanoparticles. The possibility of using these natural nanomaterials in water
treatment has increased the attention in the recent decade. This overview intends
to demonstrate different carbon dots synthesis, as its intriguing properties provide
diverse applications,mainlywith regard to using their luminescent potential forwater
treatment.

2 Carbon Dots Synthesis

The literature exhibited various researches that produced different carbon dots,
hydrothermal method, carbonization/pyrolysis, microwave, and others. The carbon
dots were mostly performed based on hydrothermal methods, probably, based on
the simple equipment, few parameters, facile synthesis. The microwave synthesis
demonstrated a better performance in terms of time, as most of this type is made
in a few minutes, and a facile synthesis [63]. Therefore, regardless of the method
used, all synthesis revealed carbon dots with a remarkable morphology (1–10 nm),
properties (mainly, the photoluminescence excitation and emission at 200–400 nm),
and achievement [47], which are the requirements for the use of nanomaterials in
water treatment.

Moreover, the source used for each synthesis, regardless of method, chemical
groups involved, the concentration of precursors, and time of synthesis changing all
results (Wu et al. 2011). Also, most of the researches was performed on biological
applications. However, a few works showed a great result of selectivity of some
ions, like mercury (Hg2+) [89], chromates (Cr2O7

2−) [55], iron (Fe3+) [66], which
implies a potential for photocatalytic activity in water treatment. Also, an incredible
potential of conjugated, functionalization, energy transfer, luminescence properties,
doping, low cost, outstanding biocompatibility, and facile synthesis, it is predicted
the potential use of these materials as an alternative luminescent nanomaterial for
environmental photocatalytic.

In the past years, a crescent number of different routes of carbon dots were
performed in the literature. Although the proposal of this overview is bringing most
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of the data compiled in the literature, it is impossible to demonstrate all synthesis. In
this way, it was compiled the most intriguing researches about carbon dots synthesis
in the last years.

2.1 Hydrothermal Method

Most of the carbon dots syntheses are performed on the top-downmethod or bottom-
up methods. The differences of both are based on the cost and method of producing
the carbon dots. Newly, chemical routes based on the hydrothermal synthesis, consid-
ering one of the most straightforward and low-cost methods because using a cheap
apparatus, it is performed with basic manipulation, it has small energy expenditure,
excellent selectivity, and its performance is one single step (Liu et al. 107) [40]. This
approach has been used in the past years by many scientists worldwide [24, 40, 64,
92] (Liu et al. 107).

In this way, Liang et al. [40] performed a simple, greener, and facile hydrothermal
carbon dots synthesis using only water and gelatine (Fig. 2). Its synthesis produced a
carbon dotwith a small size (Fig. 3) and photoluminescence (PL) emission at 430 nm.
The synthesis consists of dissolving the gelatine, whose source is the skin and bones
of animals, in water, then, the solution goes to the autoclave at the temperature of
200 °C for 3 h. In sequence, the yellow solution is centrifugated for 30 min to remove
any precipitate, and carbon dots by hydrothermal synthesis was produced.

In addition, Zhang et al. [93] used hydrothermal synthesis based on the fish scale
of grass carp precursors. Similar to Liang et al. [40], the fish scale precursor was
dissolved in deionized water. In sequence, a Teflon stainless steel was used at a
temperature of 200 °C in an autoclave for 20 h. Then, it was centrifugated for 15 min
to remove the precipitate, and an aqueous Carbon dot was produced with distinct
chemical groups, like OH, NH2, C = O, C≡N, C-N, C-O (Fig. 4). The Lidocaine
hydrochloride (2-(diethylamino)-N-(2,6-dimethy-lphenyl)-acetamide hydrochloride
(LH)was themain target to detect based on carbon dots fluorescence. Similarly, Saud
et al. [65] performed carbon dots synthesis based on hydrothermal methodology, in
their research was used acid citric and urea were dissolved in water at 180 °C for

Fig. 2 Graphical abstract of the photoluminescent carbon dots synthesis based on commercial
gelatine using a hydrothermal treatment. (By Liang et al. [40], License number 4960230818190
provided by Elsevier and Copyright Clearance Center)
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Fig. 3 a Images by High-Resolution Transmission Electronic Microscopy (HRTEM) (inset) and b
Carbon dots Size distribution. (By Liang et al. [40], License number 4960230818190 provided by
Elsevier and Copyright Clearance Center)

Fig. 4 aFish scales preparation schematic of carbondots, carbondots results at (b)High-Resolution
Transmission Electronic Microscopy (HRTEM) and Transmission Electronic Microscopy (TEM)
(inset), c X-Ray Diffraction (XRD) and d Fourier Transform Infrared Spectroscopy (FTIR). (By
Zhang et al. [93], License number 4960231003729 provided by Elsevier and Copyright Clearance
Center)

5 h into autoclave Teflon stainless steel. After the complete filtration, separating the
larges particles, the carbon dots were used to compose a nanofiber composite with
TiO2 to apply into the photocatalytic process.

Shangguan et al. [66] also made new carbon dots using adenosine 5′-triphosphate
(ATP) by hydrothermal synthesis at 220 °C for 6 h. The adenosine 5′-triphosphatewas
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Fig. 5 HighlyFluorescentN/PCo-dopedCarbonDots Synthesis for Fe3+ Detection (ByShangguan
et al. [66], Reprinted (adapted) with permission from (By Shangguan et al. [66]. Copyright (2020)
American Chemical Society)

used to provide a source of nitrogen, phosphorous, and carbon simultaneous. These
carbondots showed excellent fluorescence properties, low toxicity, chemical stability,
incredible quantum yield. Added these nanomaterials presented a remarkably Fe3+

selective in the presence of Ethylenediamine tetra acetic acid (EDTA) doping the
carbon dots (Fig. 5).

Further, Yuan et al. [104] prepared carbon dots by a hydrothermal method based
on wheat straw on autoclave at the temperature of 250 °C for 10 h. In this synthesis,
the supernatant was discharged, and the solution was dialyzed for 10min. The pellets
obtained were dissolved in deionized water for later use. The carbon dots produced
showed a photoluminescence excitation at 360 nm and (1.7 ± 0.2) nm of average
size based on Dynamic Light Scattering (DLS) (Fig. 6).

The advantage of this methodology is the facility of synthesis and the need for
only a few pieces of equipment. Nevertheless, the production time is too long, which
implies an increase in energy cost and difficulty in their reproduction on a large
scale. However, it is still the most used methodology to produce carbon dots in the
literature.

2.2 Carbonization or Pyrolysis Synthesis

Moreover, the hydrothermal synthesis, other methods have been performed based on
carbonization using natural sources, as watermelon peel [96], carbohydrates [56],
low-molecular-weight alcohols [15], water hyacinth leaves [60], citric acid, and L-
tyrosine methyl Ester produced carbon dots based on low-temperature carbonization
using watermelon peel [96, 98]. In their research, at the temperature of 220 °C, the
watermelon peel was carbonized for 2 h in an air atmosphere (Fig. 7). The carbon
dots showed a size of approximately 2 nm and incredible luminescence.

Prathumsuwan et al. [60] produced carbon dots using water hyacinth leaves by
carbonization based on acid-treated pyrolysis to detected borax (sodium tetraborate
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Fig. 6 aBands at 247 and 334 nmof the carbon dots at Ultraviolet-Visible Spectroscopy (UV-Vvis)
absorption (black line), and the carbon dots narrow and symmetrical photoluminescence (PL) (red
line) band. Inset digital images of carbon dots dispersed in pure water at daylight (left) and 365-
nmUltraviolet–Visible (UV) light (right), respectively. bCarbon dots photoluminescence spectra at
different excitation wavelengths in the range of 320–500 nm (slit= 5 nm) (PL-normalized emission
spectra inset). Characters’ optical images using the C-dots as ink on the UV-non-resistant paper at
(c) white light and d UV light. (By Yuan et al. [104], License number 49603113339822 provided
by Elsevier and Copyright Clearance Center)

Fig. 7 Graphical abstract of water-soluble fluorescent carbon dots synthesis based on watermelon
peel (By Zhou et al. [96], License number 4960330931030 provided by Elsevier and Copyright
Clearance Center)

decahydrate (Na2B4O7.10H2O)), a chemical reagent used to several industrial prod-
ucts, including sanitary products for houses (Fig. 8). Their carbon dots showed a
3–4 nm size and presented an excellent sensibility with borax and borax conjugated
with other reagents and an incredible borax recovery (Table 1).

Also, Zhou et al. (2018) produced a new bio-thiol based on carbon dots. In
their research, the carbon dots stabilizer with L-tyrosine methyl Ester (Try-CD)
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Fig. 8 Carbon dots synthesis using acid treatment and pyrolysis of water hyacinth leaves and borax
sensing application. (By Prathumsuwan et al. [60], License number 4960340738285 provided by
Elsevier and Copyright Clearance Center)

Table 1 Borax Relative Standard Deviation (RSD) and Recovering at fish ball samples (adapted
fromPrathumsuwan et al. [60], License number 4960340738285providedbyElsevier andCopyright
Clearance Center)

Added (µM) Found (µM) Recovery ± SDa (%) RSDa (%)

10 10.2 101.8 ± 0.6 0.59

30 30.3 101.0 ± 0.8 0.80

50 49.4 98.8 ± 1.1 1.12

a Results after nine independent measurements (Adapted By Prathumsuwan et al. [60], License
number 4960340738285 provided by Elsevier and Copyright Clearance Center)

was performed using citric acid by incomplete pyrolysis conjugated a hydrothermal
method (Fig. 9). The Try-CD showed a size of 2.2 nm and excellent luminescence.
Similarly, [16] performed a nitrogen dopped-carbon dots (N-CD) based on electro-
chemical carbonization of ethanolamine for cysteine detection. Their work presented

Fig. 9 The interaction among Tyr-CDs, tyrosinase, and biothiols graphical abstract. (By c), License
number 4960771261694 provided by Elsevier and Copyright Clearance Center)
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an N-CD with a remarkable cysteine selectivity, nanoparticles size of 3 nm, and
photoluminescence at 320–480 nm.

2.3 Microwave and Other Methodologies

Although the hydrothermal and carbonization synthesis, other types were used in the
literature. One of them is microwave synthesis; this method consists of producing
carbon dots under microwave irradiation at a specific time that varies from a few
minutes to an hour. Hence, [89] produced new carbon dots using microwave irra-
diation for 5 min using ethylenediamine and citric acid as a forerunner to detected
Hg2+. In their work, the carbon dots showed a narrow distribution of (2.5 ± 0.5) nm,
a great quantum yield (QY), and the presence of chemical elements like C, N, O, and
limited H (4%, calculated).

Similarly, [14] made a carbon dot based on microwave irradiation under chitosan
hydrogel. In their research, the chitosan was dissolved into 0.1 M acetic acid under
microwave irradiation for 5min. These researches focus into determine the character-
istics of new carbon dots and properties on different pH. The results were fascinating;
the particles sizes were among 0.6–8.7 nm, the photoluminescence (PL) emission
was among 300–400 nm, decreasing the intensity for higher wavelengths at different
pH produced, although the carbon dots solutions show distinct color (from dark
yellow to white as the pH increase from 1 to 5).

Furthermore, [19] composed thiol-functionalized carbon dots based onmicrowave
synthesis to detect mercury ion (Hg2+). It was used polyethylene glycol and chitosan
gel functionalized with 1,4-Dithiothreitol (DTT as a precursor of the thiol group. The
photoluminescence showed luminescence in the range of 280–412 nm; the average
size was around 8 nm and an incredible Hg2+ selectivity.

Unlike microwave synthesis, [88] used a solvothermal method to produce carbon
dots-embedded zincone microspheres to detect chromates (Cr2O7

2−) in water. Their
photoluminescence properties were dependent on CD concentration at 345–525 nm
(Fig. 10). Besides, it was showed excellent selectivity for Cr2O7

2− compared to other
ions (Fig. 11).

In addition to microwave synthesis and solvothermal methods, many other
syntheses are shown in the literature, as electrochemical synthesis, physicochemical
synthesis, and others. The main differences among them are the time of production,
equipment, sources, and energy used, contributing to different results in the class of
cost and facility of production. In this overview, the most used in the literature were
presented.
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Fig. 10 a Mixture of carbon dots/zincone synthesis at ambient light (left); Images of the residual
suspension (right-top) and the carbon dots/zincone precipitates separated (right) at ambient and UV
light. Images of Zn(Ac)2·2H2O (b) and only HMTA (c). Photoluminescence of carbon dots spectra
(d) and the carbon dots/zincone solution at distinct excitation wavelengths (e). (By Xue et al. [88],
License number 4960360762015 provided by Elsevier and Copyright Clearance Center)

Fig. 11 Analysis of carbon
dots/zincone selectivity for
different ions and phenol
(Concentration = 100 µM).
(By Xue et al. [88], License
number 4960360762015
provided by Elsevier and
Copyright Clearance Center)

3 Characterization and Properties of Carbon Dots

A nanomaterial characterization implies a diversity of technique, equipment, and
preparation to determine the potential characteristics and properties beyond the
human senses, requiring immense sensitivity, short of many applied physics and
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chemistry laws, to most materials. On this wise, techniques such as Transmission
Electronic Microscopy with higher resolution (HRTEM), Photoluminescence Spec-
troscopy (PL), X-RayDiffraction (XRD), X-Ray Photoelectron Spectroscopy (XPS),
Dynamic Light Scattering (DLS), Atomic Microscopy Force (AFM), Ultraviolet–
Visible Spectroscopy (UV-Visible), Infrared Spectroscopy (FTIR), were used to
indicate the unimaginable properties and characteristics of these carbon dots.

One of the most critical characteristics that imply these materials’ potential for
many applications, including water treatment, is the size of carbon dots. Their size
provides intrinsic properties related to being applied in many areas, as catalysis [35],
electrical conductivity, bioimaging [26, 30, 45], selectivity sensor [58], theragnostic
cells [105], agricultural [34], pharmaceutical [43], batteries [22], etc. In the case of
water treatment, the photocatalytic process associatedwith catalysis is one of themost
exciting treatments. Therefore, this amusingmechanism implies some characteristics
thatmaybemodulated by the synthesis andprecursors used in the process.Nowadays,
this practice has achieved much attention, essentially due to process potential, not
producing residues [4, 55].

Hence, the morphology of the carbon dots and their size are evaluated by
differentmicroscopy, as TransmissionMicroscopy (TEM)orHigh-ResolutionTrans-
mission Microscopy (HRTEM), or Atomic Force Microscopy (AFM). Saud et al.
[65] performed carbon dots synthesis based on hydrothermal methodology. In their
research, the carbon dots were used to form a nanofiber composite with TiO2 to apply
to degradation based on the sunlight of methylene blue. They compared the nanofiber
composite with carbon dots without them aiming to study the nanoparticles’ distri-
bution (Fig. 12). Comparing the TiO2 nanofibers and the carbon dots/TiO2 nanofiber,
the distribution of carbon dots into nanofiber was very homogeneous under the TiO2

nanofibers surface. In addition, the size of carbon dots was in the range of 3–4 nm.
Thusly, Iqbal et al. [29] developed a synthesis of carbon dots doping the nanopar-

ticle with nitrogen (N-CD) using melamine and anhydrous citric acid as precur-
sors. Their N-CD showed a yellow solution that confirmed the presence of carbon
dots based on High-Resolution Transmission Electronic Microscopy characteriza-
tion, showing a homogenous dispersion and spherical formation with a 3 nm average
(Fig. 13).

Although the Transmission Electronic Microscopy or High-Resolution Trans-
mission Electronic Microscopy (TEM/HRTEM) analysis, other techniques were
performed to determine the size of the nanoparticle, however important charac-
teristics, such as chemical groups and luminescence. The luminescence of these
nanomaterials is one of the characteristics that the researchers sought because of the
potential for many applications, mainly water treatment. This property is associated
with electron radiative combinations and defects in these materials’ surfaces [7, 54,
57, 78, 79]. Most carbon dots showed photoluminescence (PL) emission in the range
of blue and green spectra [1, 100]. Along these lines [35] performed a facile synthesis
to produce the carbon dots based on alkali-assisted electrochemical oxidant fabrica-
tion, using graphite rods as precursors. The carbon dots presented a color emission
of blue, green, brown, and yellow using a fluorescence microscope (FL), and it was
used for the photocatalytic activity.
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Fig. 12 TiO2 nanofiber Images in Transmission Electronic Microscopy (TEM) analysis of (a),
TEM images of carbon dots/TiO2 composite nanofiber (b), and carbon dots/TiO2 composite
nanofiber High-Resolution Transmission ElectronicMicroscopy (HRTEM) images (c, d). (By Saud
et al. [65], License number 4960230347225 provided by Elsevier and Copyright Clearance Center)

In this way, Wang et al. [76] developed a carbon dot doping with nitrogen using
m-aminobenzoic derivative for a biosensor of Fe3+. Their work reported an excellent
sensitivity of Fe3+ depended on pH. Besides, Sun et al. [68] developed new carbon
dots using oligomeric ethylene glycol diamine that presented a quenching of PLwhen
togetherwithAg+, 4-nitrotoluene, 2,4-dinitrotoluene andN,N-diethyl aniline.Hence,
Liu et al. [45] produced new carbon dots based on the carbonization of chitosan to
obtain an amino-functionalized Carbon Dot. In their work, the luminescence of these
materials presented a quantum yield of 4.34% excitation. Therefore, this quantum
yield (QY) was dependent on pH, showing more stability in the pH range of 5–9
(Fig. 14). According to the authors, the photoluminescence emission emerged to a
resonant wavelength in acid conditions, as the basicmedium, the reducedwavelength
implicated that the carbon dots functionalized with the amino group were incredibly
sensitive to the pH of the solution.
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Fig. 13 Transmission Electronic Microscopy images (a, b) and High-Resolution Transmission
ElectronicMicroscopy (C) of N-CDs. Diameter distribution of N-CDs. (By Iqbal et al. [29], License
number 4961460644964 provided by Elsevier and Copyright Clearance Center)

Beyond the photoluminescence (PL) characterization, other important techniques
that determine some crucial characteristics, as chemical groups that influence some
properties in these potential nanomaterials, are the infrared spectroscopy, mainly
the Fourier Transform Infrared Spectroscopy (FTIR). Infrared Spectroscopy is a
critical analysis to evaluate the chemical groups present in the materials. In the
case of carbon dots, the type of synthesis and reagents involved in the carbon dots
production change the chemical groups in the surface of carbon dots, which may
impact the photoluminescence mechanism, consequently, the photocatalytic activity
in water treatment, as may change the bandgap transition or implied the existence of
various surface defects [50].

Liu et al. (107) synthesized a hydrothermal carbon dot using ammonia to detect
Cu2+ in water. The Infrared Spectroscopy analysis exhibited bands at 1309 to
1650 cm−1 relative to the presence of aromatic CN heterocycles, also at 2930 and
3402 cm−1 band associated with O–H andN–H groups. This technique conjugated to
others proves the existence of nitrogen-doped carbon dots with great photolumines-
cence that was selective to Cu2+ in water. Xiao et al. (110) synthesized a new Carbon
dot using microwave methodology based on chitosan for potential water treatment.
In their research, amino-functionalized carbon dots were produced to bands related
to O–H (at 3447 cm−1), N–H bending vibrations (at 1644 and 1593 cm−1), C-H (at
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Fig. 14 a Photoluminescence (PL) emission spectra and b Photoluminescence (PL) up-conversion
of CDs. c Photoluminescence (PL) spectra of CDs at distinct pH solutions and d Time-resolved
PL decay and fitting curves. (By Liu et al. [45], Creative Commons, this is an open-access article
distributed under the terms of the Creative Commons CC BY license, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.
You are not required to obtain permission to reuse this article. To request permission for a type of
use not listed, please contact Springer Nature)

1130 cm−1) groups around the carbon dot surface, indicating the chitosan degrada-
tion and dehydration based on pyranose ring decomposition, similarly to report to
[101]. Along these lines, [69] made colloidal carbon dots spheres with noble metals.
In their work, bands at 1585 cm−1 and 1390 cm−1 related to silver-loaded spheres
were visualized, indicating the in-plane vibrations of crystalline graphite, also the
disorder of amorphous Carbon.

X-Ray Photoelectron Spectroscopy (XPS) is another interesting technique that
indicates the presence of chemical groups and their state, as oxidation, which can
induce luminescence effects that improve photocatalytic activity.Wu et al. [82] made
carbon dots based on carboxymethylcellulose by hydrothermal synthesis. Their work
used some techniques, one of themwasX-ray Photoelectron Spectroscopy. This char-
acterization was used to indicate some characteristics that improve electrophilicity,
which is an essential property of conductive materials. The X-Ray Photoelectron
Spectroscopy confirmed the presence of N protonated in the characteristic centered
band of quaternary at 400.7–402.3 eV, indicating that hydrochars improve their



216 F. G. L. M. Borsagli and A. Borsagli

conductivity. In addition, the technique showed the N existence in the format of
N-groups, which is a stabler group than O-groups.

Likewise, X-Ray Diffraction (XRD) may be used to determine the crystalline
structure of carbon components or the characteristic amorphous structure of carbon
dots after synthesis. [70] done a porous carbon by chemical activation, which
produced some carbon dots in the synthesis. TheX-RayDiffraction analysis indicates
the presence of amorphous Carbon, probably indicating the carbon dots’ presence.

Added to these different techniques along these lines, another fascinating charac-
terization used to demonstrate these carbon nanomaterials’ critical characteristics is
the ultraviolet–visible spectroscopy, UVVisible.Most of the carbon dots presented in
the literature exhibit broad wavelength at 250–350 nm in the ultraviolet–visible anal-
ysis [3]. Hence,Wu et al. [83]made carbon dots based on hydrothermal methodology
using bleach hard Kraft pulp as precursors for potential applications as a photosen-
sitizer. The ultraviolet–visible analysis allowed the determination of the weak and
large band at 250–300 nm associated with intrinsic complex electron transition over
the surface. Li et al. (109) produced a new composite based on carbon dots and ZnO
based on sol–gel methodology using spin-coating processing. In their research, the
nanocomposite showed an absorption centered band at 304 nm with a diminishing
curve, similar to graphene quantum dots produced in the literature [37], which may
associate with small particle size and defects in the surface (Fig. 15).

The precursor of carbon dots may change the surface of these nanomaterials, and
thesemodifications appeared in the spectroscopy analysis, as ultraviolet–visible anal-
ysis based on the emission spectra [31]. Moreover, carbonyl and amino functional-
ization in some carbon dots showed spectra at ultraviolet–visible analysis, promoting
red shift depends on the alterations in the HOMO–LUMO energy levels in the carbon
dots [38].

4 Photocatalytic Activity of Carbon Dots

Despite the fundamental advances in the recent decades in the range of water treat-
ment and depuration processes, the growth of innovative materials based on different
nanoparticles combininghighphotocatalytic capacity, lowcost, biocompatibility, and
environmentally friendly features represents a decisive challenge to be overcome by
researchers andprofessionals.Nonetheless, oneof the significant challenges in photo-
catalytic treatment is discovering a potent photocatalytic material [28, 73]. Thus, the
carbon dots are one of the most innovative materials with significant fluorescence
applied in the water treatment, as the photocatalytic process (Li et al. 109) [27].

Although many nanomaterials have a large bandgap, like TiO2, ZnO, CdS, etc.,
the Carbon dots have the advantage of biocompatibility, environment-friendly, facile
synthesis, residues as sources, incredible luminescence, and absurd photolytic poten-
tial [12, 32, 62]. On this line, [9] produced a new Carbon Dot with functionaliza-
tion over their surface using polyethylene glycol (PEG) (Fig. 16). Their innova-
tive nanomaterial was capable of catalyzing and photo regenerating H2 from water.
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Fig. 15 Transmission Electronic Microscopy and Atomic Force Microscopy images of carbon
dots (a, b), respectively, c Diameter distributions, dUltraviolet–visible absorption spectra at visible
and Ultraviolet (UV) irradiation (365 nm), respectively. (By Liu et al. (108), License number
4964220569467 provided by Elsevier and Copyright Clearance Center)

Fig. 16 Carbon dots based on PEG-functionalized before (left) and after (right) metal coating. (By
Cao et al. [9], Copyright (2020) American Chemical Society)
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The functionalization with poly(ethylene glycol) diamine (PEG) provides carboxylic
groups that change the size and, consequently, the nanomaterial’s photoluminescence
property.

Following this line, Liu et al. (46) made a metal-free nanoparticle based on carbon
dots for photocatalytic solar water splitting. In their research, the quantum yield
efficiency was 16% in the band at 420 nm with 2% of solar energy conversion, and
the photocatalytic showed incredible stability. Moreover, when the concentration of
carbon dots was changed in the ultrathin layer, the bandgap changed too, mainly
because of the agglomeration of carbon dots. Furthermore, the Carbon Dot showed
a synergic with BiVO4 indicating a potential solar water energy capability based on
photocatalytic activity. Similarly, Ye et al. [102] designed a new Carbon Dot to be
used as an ultrathin intralayer amongBiVO4 andNiOOH/FeOOH layers based on the
water-splitting process. The photoluminescence emission was among 340–500 nm,
similar to other studies in the literature [48, 53, 71, 85, 97, 99].

Wang et al. [77] performed a Carbon Dot using overcooked barbecue meat as
a precursor. Their carbon material presented optical similar to other carbon dots
performed in the literature usingother sources. Furthermore, the carbondots showeda
highQuantumYield (QY) (40% into the green region) and an amusing photocatalytic
activity reducing silver and gold ions over carbon dots surface. Also, Wu et al.
[83] made carbon dots based on pentosan using a hydrothermal methodology. In
their work, the photocatalytic activity was tested to methylene blue (MB), an azo
dye, generally used as a model of cationic dye in water [6, 51], using visible light
irradiation. This nanomaterial, combined with TiO2, showed a 100%Methylene Blue
(MB) degradation, mostly because of free electron and energy transfer to the TiO2

conduction band (Fig. 17).
In this way, [80] designed carbon dots functionalized with Polyethylene Glycol

(PEG) using gold as covering. This hybrid nanomaterial presented an outstanding
absorption at visible light and a high photoluminescence property. Along these lines,
Li et al. (109) developed carbon dots to use as selective oxidation of benzyl alcohol
to benzaldehyde. Their research showed that these carbon dots settled 92% of the
conversion rate with an incredible selectivity.

Emanuele and collaborators [17] studied various graphitic and amorphous carbon
dots based on fructose, glucose, and citric acid, comparing their structure and photo-
catalytic activity. Their research demonstrated that the methodology to produce the
carbon dots affected carbon dots’ structural and optical properties significantly. This
changing affects the photon transferability, which adjustment the methyl viologen
photocatalytic activity of these nanomaterials. Thusly, Yu et al. (111) developed a
nanocomposite using carbon dots and TiO2 as precursors into the nanosheet. Their
investigation validated that the nanosheet’s photocatalytic property was boosted with
carbondots incorporationusing rhodamineBas amodel under visible light irradiation
(Fig. 18).

In this line of produce new nanocomposites, [23] performed a nanocomposite
using carbon dots and TiO2. Their research developed a new nanocomposite based
on electrochemical synthesis to accelerate the photodegradation of methylene blue.
The research demonstrated that theMethyleneBlue degradationwas directly affected
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Fig. 17 a CNDs/TiO2 composite Scanning Electronic Microscopy (SEM) and High-Resolution
Transmission Electronic Microscopy (HRTEM) images; b%Methylene Blue degradation at time;
c CNDs/TiO2 photocatalytic process at visible light and d Reuse results. (ByWu et al. [83], License
number 4964920164029 provided by Elsevier and Copyright Clearance Center)

Fig. 18 Photocatalytic Mechanism of carbon dots/TNS composites at visible light. (By Yu et al.
(111), License number 4965420327740 provided by Elsevier and Copyright Clearance Center)

by the crystallization of Carbon Dot/TiO2. Even so, they reached 90% of Methylene
Blue degradation after 120 min. Complementing these studies based on CD/TiO2

nanocomposites, [13] processed this new nanocomposite using a sol–gel method-
ology to act in the photocatalytic process of Rhodamine B and cefradine. This
new nanomaterial announced an increasing degradation of these two wastes water
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Fig. 19 Illustration of synthesis of a Carbon Dot and b Carbon Dot@TiO2 nanohybrid. (By
Hazarika and Karak [20], License number 4965430966051 provided by Elsevier and Copyright
Clearance Center)

when carbon dots was incorporated into TiO2; mainly, this enhancement occurred to
electron–hole pairs.

Integrating this nanocomposite line using TiO2, [20] performed a new carbon
dots/TiO2 based on hydrothermal methodology using citric acid and glycerol as
precursors. This newmaterial was used for organic pollutants degradation, as phenol
and benzene in water (Figs. 19 and 20). They indicated that the carbon dots incor-
poration into TiO2 reduced the electron recombination rate, which improved the
efficiency of photodegradation, mainly because of anatase structure predomination
into TiO2 crystalline structure, when Carbon Dot was incorporated, as this phase in
TiO2 crystalline structure presents a better photocatalytic activity demonstrated in
various works [52, 87, 94].

Additionally, [25] synthesized new carbon dots using a facile and efficient route.
Their studywas developed to determine the photoluminescent property, mainly in the
organic photocatalytic activity in water. They demonstrated that O and N radicals’
presence on the surface of carbon dots affected the increase of photoluminescence
(PL).

Although these many important characteristics of the photoluminescence prop-
erty of carbon dots and the mechanism involved in the photocatalytic process of
these nanomaterials, the kinetics of the photocatalytic process is a critical param-
eter in the analysis. The kinetic shows the mechanism involved in the photocatalytic
activity [42]. Most of the researches developed in the literature based on carbon dots
did not study this parameter. They focus on the carbon dots properties, synthesis,
and the photocatalytic process is just an application-focused hook. However, the
kinetic is most studied following the kinetic equations, as pseudo-first-order and
pseudo-second-order [21], even in the carbon dots photocatalytic activity. In this
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Fig. 20 Organics Photocatalytic process by Carbon Dot@TiO2 nanohybrid. (By Hazarika and
Karak [20], License number 4965440767721 provided by Elsevier andCopyright Clearance Center)

sense, Hazarika and Karak [20] studied the photocatalytic degradation kinetics of
some organic chemicals, like benzene, pesticide, and phenol using carbon dots/TiO2.
In their work, the pseudo-first-order was the best fitting of benzene, and phenol
degradation demonstrated a typical photodegradation behavior of this nanomaterial.

5 Conclusion

This overview exposed a range of researches based on carbon dots. These unequaled
nanomaterials present various properties and characteristics that allow them many
applications, including water treatment. The different synthesis affects their char-
acteristics, which implies different properties, as luminescence, altering the photo-
catalytic activity, proposal of this overview. Many types of techniques are used to
determine their characteristics, such as Infrared Spectroscopy, Ultraviolet–Visible
Spectroscopy,X-raySpectroscopy, TransmissionElectronicMicroscopywithHigher
Resolution, and others. Moreover, these nanomaterials exhibit an incredible poten-
tial for photodegradation of diversity of organic and inorganic materials in water,
indicating their promising solution of low cost, biocompatible, photocatalytic
nanomaterial for wastewater treatment.
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Multifunctional Composite Aerogels—As
Micropollutant Scavengers

Oumaima Mertah, Anina James, Masoumeh Zargar, Sushma Chauhan,
Abdelhak Kherbeche, and Padmanaban Velayudhaperumal Chellam

Abstract Composite aerogels are low-density porous material with a high surface
area, facilitating their application in wastewater treatment. The surface of these aero-
gels can be modified based on the ionic charge of the target pollutants. Improved
properties like high gas holdup, a low mean free path of diffusion, high mechanical
strength, and integrated 3D gel architecture make them an ideal matrix for several
environmental applications. This review focuses on carbon, silica, metal-based, and
biopolymer composite aerogels toward effluent treatment. The challenges in the
synthesis of aerogels using various reduction methods and strategies for surface
modification of aerogels having improved water treatment properties are compared.
Composite aerogels’ application for removing textile dyes, heavy metals, and pesti-
cides, and the oil separation is discussed along with relevant reaction kinetics.
The adsorptive and photocatalytic removal of micropollutants by aerogels are also
compared. Though several novel composite aerogels have been experimented with in
wastewater treatment, the toxicity implications limit their extensive scale application.
The toxicity of precursor compounds such as polyacrylonitrile, resorcinol–formalde-
hyde, phenol, Tetramethyl orthosilicate (TMOS), and leaching of nanoparticles from
aerogels are discussed. As a solution to these impediments, bio-aerogels’ use and
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further improvement for water treatment are highly warranted. The possibility of
using aerogels in large-scale applications in moving toward a sustainable circular
economy is also emphasized.

Keywords Aerogels · Synthesis · Micropollutants · Reaction kinetics ·
Ecotoxicology

1 Introduction

Aerogels are one of the most promising and versatile material, as an outcome
of advancements in the composite material science. The applications of aerogels
depends on the type of composite backbone like silica, tungstic oxide, alumina,
nickel tartrate, stannic oxide, gelatin, egg albumin, agar, nitrocellulose, and cellu-
lose aerogels [1]. The early years of research were limited to and focused on silica-
based aerogels. The basic plan of synthesis of aerogels, which are nearly dried gels,
involves sol–gel reactions with specific drying processes applied to obtain pores and
networks’ functional structure. Attributes associated with its composition, texture,
and surface area depends on the flexibility conferred by the sol–gel method, which
also permits varying the constituents according to the utility [2]. Properties of aero-
gels, such as high porosities, improved surface area, and dielectric strengths, and
low densities, acoustic impedance, thermal conductivities, and refractive index, has
brought about monumental impact in different industrial sector. Since its origination,
researchers have tried various permutations and combinations with several materials
to make different kinds of aerogels complying with specific requirements. The last
few decades of the twentieth century witnessed the development of silica aerogels
based onmetal oxides such as titanium, zirconium, aluminum [3], and synthetic poly-
mers incorporating resorcinol–formaldehyde [4], polyurethane [5]. With respect to
low thermal conductivity, polymer aerogels were superior to silica aerogels [6]. The
advent of the twenty-first century witnessed the development of a new generation of
composite aerogels thatwere carbon based, including carbon nanotubes, graphene [7,
8], semiconductor chalcogenides such as CdS, CdSe, PbTe [9, 10], biological aero-
gels or bio-aerogels such as cellulose and other polysaccharides including various
proteins [11, 12] and, lately SiC-based aerogels [13, 14]. Bio-aerogels were quick to
catch researchers’ attention because compared to too fragile silica aerogels, and they
demonstrated improved mechanical strength and stability [15, 16]. The preparation
and utilization of bio-aerogels do not entail any toxic components; hence its use
furthers the green chemistry revolution rendering it a mass appeal, particularly, but
not limited to, life science industries [17, 18]. In recent years, the functionality of the
aerogels has seen tremendous growth with the incorporation of nanomaterials in its
making. Thermal insulation was the singular contribution of aerogels (silica-based)
in its nascent years. Early studies highlighted their use in catalysis, which required
high surface area and porosity [19, 20]. After a lull of few decades, by early 2000s,
intensive research toward the development of novel aerogels toward environmental
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cleanup [21, 22], chemical sensors [23], filtering media [24] acoustic transducers
[25], energy storage devices [26], metal casting molds [27], water repellant coatings
[28], drug delivery and other biomedical and pharmaceutical applications [29], 30],
extracting agents [31], and protective clothing [32].

The growingwater pollution caused bywidespread industrial and household efflu-
ents, fossil fuel use, radionuclides contamination, etc., is a grave concern. The pollu-
tants’ extreme toxicity, recalcitrant nature, and tendency to accumulate and transfer
in the food chain and the ensuing prolonged catastrophic threat to different living
ecosystems. Several strategies have been developed to mitigate water contamination,
such as biological degradation [33], flocculation [34], electrochemical treatment [35],
photocatalysis [36], advancedoxidation [37], nanofiltration [38], and adsorption [39].

Among these, adsorption has created a wide scope for research and implemen-
tation in industrial-scale applications. The preparation of low-cost novel functional
materials toward sustainability with ease of operation toward the treatment with less
secondary pollution has gained more research attention in recent years. Based on the
type of pollutants, different types of adsorbentswere used;As the separation of adsor-
bents and their composites require high-speed centrifugation and vacuum filtration
[40] makes it more laborious to recycle them. Aerogels are the perfect candidates due
to their high surface stable three-dimensional (3D) structures, intricate and extensive
network of channels, and multidimensional mass transport pathways [41].

This review pivots on the various methods of fabrication and physiochemical
properties of carbon, silica, metal-based, and biopolymer composite aerogels for
water treatment, particularly for removing textile dyes, heavy metals and pesticides,
and oil separation (Fig. 1). Thoughmany types of composite aerogels have been used
in wastewater treatment, there may have been an oversight regarding the toxicity of
precursor compounds such as polyacrylonitrile, resorcinol–formaldehyde, phenol,
TMOS, and leaching of nanoparticles, which may limit their large scale application.
This leads the discussion to the practical, sustainable, and large-scale use and further
improvement of bio-aerogels for water treatment to move toward a circular economy.

2 Methods for the Synthesis of Composites Aerogels

Aerogels’ achievement is directly linked to its chemical compositions, crystal struc-
tures, pore structures, and surface morphologies. Scientists and engineers still desire
aerogel composites with unique structures and superior performance. Generally,
aerogels are made from different monomers (hydrophilic or hydrophobic) for partic-
ular uses and can be synthetic or natural polymers. Its lowmechanical strength a slow
degradation rate, and durability, which have to be balanced by optimal design [42,
43]. Besides pure aerogels, the fabrication of composites aerogels can bemodified by
differentmethods depending on theirmaterial compositions to improve theirmechan-
ical and thermal structures. In recent decades, nanoparticles and their composites have
become exciting and challenging for scientists due to their extensive applications.
However, the safety of nanoparticle technology inhibits its application. To overcome
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Fig. 1 Schematic outline of aerogels: synthesis, properties, and application

the hazards to human health and the environment, it is advantageous to combine
them with gels and to improve their amalgamation properties at the same time [44].
The incorporation of nanoparticles into the gel network brings about a rearrangement
and consequently, the creation of new materials. The gels can attain varied chem-
ical and physical properties that favor their application in several fields [45]. Many
nanoparticles have been introduced into polymeric networks to obtain composites
aerogel such as carbon (graphene, carbon nano tubes, and carbon fibers), silica, and
metal/metal oxide-based aerogels using different methods.

Carbon is the most abundant component in several nanostructures ranging from
zero dimension (0D) to three dimensions (3D) with attractive properties, including
high electric conductivity and ease of use, making it a promising material in various
applications. Carbon-based nanoparticles like carbon nanotubes (CNTs), graphene,
and carbon fibers are widely introduced into polymers to add functionalities to
the polymer network using appropriate host–guest interactions [46, 47]. Polymer
gelators and the carbon-based nanoparticles interact with each other in numerous
forms to build composites, usually van der Waals forces over the aliphatic chains,
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π − π stacking among aromatic sites, dipolar and electrostatic interactions using
polar moieties providing stability and flexibility [48]. The most recent studies
proved that carbon-based nanoparticles incorporated aerogels exhibited strong prop-
erties, including biocompatibility, electrical conductivity, high porosity, efficient
self-healing, and mechanical strength.

The intact interaction of silica nanoparticles with the polymer enhances the
mechanical strength of the nanocomposite gel [49, 50]. These advantages have urged
scientists to focus further on silica-based nanocomposite gels. The adsorption of poly
(N, N0-dimethyl acrylamide) (PDMA) chains on silica affect the formation of a phys-
ical network [51] that enhances the mechanical property of the gels network. More-
over, Luo et al. [52] studied the chemical crosslinking of trimethoxy silyl groups
present in methyltrimethoxysilane (MTMS) solution with the hydroxyl groups of
polyvinyl alcohol (PVA) to synthesize nanocomposite gels with the strong mechan-
ical property. The addition of silica nanoparticles (Si NPs) in the polyacrylic acid and
chitosan (PAA/CS) gel increased the compression strength and the fracture tough-
ness [53]. Silica NPs increase the crosslinking density of gel, surface area, tunable
biodegradability, and beneficial mechanical properties. Metal nanoparticles such as
gold, silver, copper, nickel, and metal oxide nanoparticles based nanocomposites gel
have garnered enormous attention due to their extensive application in the field of
biomedicine toward sensor development.

Several researchers have studied gels incorporated with gold nanoparticles (Au
NPs) due to their fluent surface functionalization, compatibility, facile synthesis,
and high electrical and optical proprieties [54–56]. Song et al. [55] reported the
aggregated systems of small Au-NPs in DNA gel using gel scaffold assembled
using enzymatic ligating of X-shaped DNA. This modified gel finds its applica-
tion for photo-thermal therapy and contrast CT imaging and radio-sensitization in
disease diagnosis. Au-NPs-based nanocomposite gels have several useful properties,
however, the price of gold limit their large-scale applications.

Silver nanoparticles (Ag NPs) were widely experimented with in various applica-
tions of the biomedical field because of their improved properties and characteristics
toward diagnosis and treatment [57, 58]. Ag NPs impregnated nanocomposite gels
increase gelling properties, electrical conductivity, optical effects, deformability, and
antibacterial properties [59, 60]. Simultaneously, the in situ reduction of Ag+ ions
could be obtained by robust reducing species formed during water radiolysis to
enhance mechanical properties, elasticity, and antibacterial properties. Therefore,
the synthesis of metal nanoparticles based nanocomposite gels results in promising
new materials.

There is enormous research interest in the development of composite aerogelswith
specially designed functions. However, composites’ preparation is still in the early
stages requiring several slight adjustments in their synthesis for their applications in
critical areas, especially the biomedical field (Table 1).
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3 Properties of Aerogels

Aerogels consist of highly porous structures with high surface areas, and their
structures are mainly defined by the process by which they are synthesized. The
surface area of these aerogels, their pore volume, and size distribution can be tuned
during their production to achieve aerogels of desired properties that can be applied
for adsorption and catalytic processes during water treatment. When analyzing
the aerogel’s properties, some of the factors that mainly need discussion are its
morphology, surface modifications to enhance their properties, and their stability
characteristics under different environments. The density andmicrostructure of aero-
gels and their backbone materials and applied synthesis strategies greatly influence
their properties [97]. Therefore, it is vital to conduct reliable characterizations to iden-
tify the correct structure–property relationships of aerogels and suitable materials for
their production to target specific applications.

3.1 Morphological Analysis of Aerogels

Aerogels are low-density compounds whose three-dimensional macrostructure
exert hydrophobicity characteristics. This hydrophobicity makes them suitable for
removing oil-based contaminants from the environment and allows modifications
in them to remove contaminants of different characteristics. Their porous structures
contain several channels and confer good mass transfer properties. This homoge-
nous porosity also makes them act as excellent catalysts for performing photocat-
alytic methods of water treatment. These aerogels exist in different morpholog-
ical forms such as particulate, nonparticulate, or fibrous form and generally appear
as a monolith, powder, or film [98]. The inner structures of these aerogels consist
of micropores (<2 nm), mesopores (>2 to <50 nm), or mixed pores of both sizes.
The inclusion of fillers or polymers in aerogels can improve their morphology by
modifying their physical properties. The composition of aerogel composites can be
beneficially modified by adding enhancers to them, and thus, improving their inter-
facial adhesion. A gelatin-based organic–inorganic composite aerogel was applied
for removing multiple contaminants from complex wastewater treatment in which
the amphiphilic structure and high porosity exerted by the aerogels showed excel-
lent selectivity toward many pollutants such as dyes and heavy metals with good
reusability properties [99]. In the case of starch-based aerogels, the changes in the
structure of the synthesized aerogel, its properties and morphology depend on the
nature of the raw material, composition of monomers like amylose and amylopectin
[100].

The structure and morphology of aerogels, including their pore structure, pore
size, pore connectivity, cell type, crystallinity, significantly contribute thermal and
mechanical properties to them [101].Morphological analysis can be performed using
awide range of techniques like X-rayDiffraction (XRD) spectroscopy, BET nitrogen
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adsorption/desorption analysis, helium and mercury porosimetry, Scanning Electron
Microscopy (SEM). Synthesis and process conditions of aerogels, such as controlling
their solvent solidification, freezing rate and method, and different organic or inor-
ganic additives into the aerogel structures can significantly alter their microstructure
[102, 103]. SEM-based morphological analysis of aerogels, which can assist with
identifying aerogels cell size, homogeneity, and estimation of their pore size distri-
bution (through subsequent image analysis). SEM gets more integral for the analysis
of composite structures that show the material composition effects on the pore struc-
ture and material/pore size distribution [104, 105]. For instance, SEM imaging of
bioaerogels with 2% nanofibrillated cellulose (NFC) formed through conventional
(CFD) and spray (SFD) freezing techniques showed the significant contribution of the
freezing step on the bioaerogels morphology; where bioaerogels generated through
CFD show a 2D-sheet-like morphology while those made by SFD demonstrate a
three-dimensional fibrillary skeleton structure (Fig. 2). This has been attributed to
the freezing toward the variant structure of crystalline ice [102].

X-ray Diffraction (XRD) spectrometry is one of the direct approaches for
analyzing crystal structure in aerogels (amorphous or crystalline). XRD estimates
the aerogel’s crystallinity according to the position of the most substantial diffrac-
tion peaks in their XRD pattern [104]. XRD is beneficial for analysis of the modi-
fied or hybrid aerogel structures to determine the nature of aerogel’s crystallinity
[104, 106]. For instance, Gong et al. studied the chitosan graphene oxide (CS GO)
composite aerogels and, through XRD spectroscopy, the crystallinity of the chitosan
was significantly improved upon graphene oxide integration (from 23.7 to 59.5%).
This was attributed to the enhanced nucleation and hydrogen bond formation with
chitosan amino groups [107, 108]. Brunauer–Emmett–Teller (BET) and Barrett–
Joyner–Halena (BJH) models are useful approaches for the structural analysis of

Fig. 2 SEM images showing the effect of freeze-drying strategy on the structure of aero-
gels prepared from 2% nanofibrillated cellulose, a–c conventional freeze-drying and d–f spray
freeze-drying (reproduced from Jiménez-Saelices [97, 102] with permission from Elsevier)
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aerogels [102]. To perform the BET-BJH analysis, the samples are first dried and
degassed to remove physisorbed species at high vacuum at 100 °C for 24 h followed
by nitrogen adsorption/desorption at −196 °C. The adsorbed/desorbed volume of
nitrogen as well as the generated isotherms during the process identify the pore
size, pore-volume, distribution, specific surface area of the aerogels [102]. Aerogels’
porosity can be characterized using helium or mercury porosimetry [104, 109].

3.2 Surface Chemical Analysis

Efficient aerogels that can separate a wide range of pollutants from wastewater are
achieved by modifying their surface using chemical modifiers containing different
functional groups. These chemical modifiers form an intermediate reactive layer
between the aerogel and water by using their functional groups and performing
effective sorption. Polydopamine, tannic acid, and gallic acid are commonly used
modifiers to perform the aerogels’ surface functionalization [110]. The carboxyl,
methyl, and amino groups based functional groups tailor the aerogel surface and
provide strong affinities to adsorb the contaminants by increasing their pore size,
density, and surface area [111]. A graphene-based aerogel with superhydropho-
bicity and superoleophilicity was fabricated for application in water treatment, and
during their synthesis, functionalization using polydopamine and modification by
fluoroalkyl silane promoted their selectivity and absorptivity toward contaminant
removal providing high efficiency in oil/water separation processes [112]. A cellu-
lose nanofibril aerogel was chemically modified through the oxidation–sulfonation
process, andwhen applied for oil/water separation, the higher surface charge densities
improved their separation efficiencies and the groups on their hierar-
chical structure promoted the superoleophobic characteristics [113]. A multifunc-
tional aerogel of cellulose nanofibrils decorated on its surface with different percent-
ages of carbon nanotubes was fabricated for application in wastewater treatment.
When applied, they exhibited antimicrobial and antioxidant properties proving them
as potential candidates for industrial-level applications [114]. The highly amine-rich
surface and a three-dimensional nanofiber-based aerogel’s porosity showed excellent
adsorption capacities toward heavymetal removal fromwastewater. Its improved effi-
cacy and versatility were achieved due to the aerogel’s surface chemical modification
[115]. Doping the surfaces of aerogels with doping materials can also help improvise
their surface properties, and those which are metal doped can confer catalytic proper-
ties [116]. AnAg-doped carbon aerogelwas fabricated and applied in drinkingwaters
for removing halide ions. It was found that these modified surfaces had increased
surface areas with improved porous structures and performed efficient chemisorption
of the ions onto the aerogels [117].

The surface chemistry of the aerogels can be analyzed using a wide range of
spectroscopic methods such as Fourier Transform Infrared (FTIR), 13C Nuclear
Magnetic Resonance (NMR), X-ray Photoelectron (XPS), and Energy Dispersive
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Table 2 Fourier transform
infrared spectral band
assignments for composite
polyisocyanurate (PIR) silica
aerogels (reproduced from
Zhao et al. [101] with
permission from Elsevier)

Wave number (cm−1) Functional groups

3369 – NH–stretching vibration absorption

2913 C–H stretching

2275 – N C O antisymmetric stretching

1712 C O stretching vibration

1596 Benzene rings C C stretching

1225 C–O asymmetric stretching

1068 C–O–C antisymmetric stretching in
alcohol hydroxyl

814 C–H variable angle vibration in
benzene ring

X-Ray Analysis (EDX). FTIR spectroscopy is applied to identify the chemical struc-
ture of aerogels. It typically performs over around 100 scans within the range of
4000–400 cm−1. A diverse range of chemical bonds has been identified for aerogels
using FTIR depending on the aerogel’s backbone materials and precursors, fabrica-
tion solvents, and final structures. For instance, the IR spectra band assignments for
composite polyisocyanurate (PIR) silica aerogels are reported in Table 2, showing
varied IR spectral peaks and the composition of the product aerogels [101].

The identified characteristic peaks determined by FTIR spectroscopy define
the chemical structure of the developed aerogels. They indicate the extent of the
precursors and additives (i.e., reacted, partially reacted, or non-reacted materials).

13C NMR can also be used for spectral peak identification of the organic aerogels
signposting the different species and chemical bonds present within the aerogel
structure [118]. NMR can further identify the amorphous or crystalline structure of
aerogels [103].

X-ray photoelectron spectroscopy analyzes aerogels’ surface chemistry and its
characterization [104]. It is usually conducted using a Kratos Axis Ultra instrument
and has a nearly 15 nm analysis depth (from the surface) [119]. The spectra usually
require deconvolution using commercial software such as CasaXPS to identify the
exact chemical bonds associated with a single element and the composition of the
original elements. This can clarify the materials’ ratio and the relevant chemical
interactions in aerogels [104]. The EDX detector of the SEM or Transmission Elec-
tron Microscopy (TEM) instruments can be used for the surface elemental analysis
of the aerogels and the techniques mentioned above. EDX analysis can quickly assist
with the identification of aerogels and modification efficiencies.

3.3 Thermal and Mechanical Stability

Themechanical strength of silica-based aerogels is low so combining themwith other
fibrous materials can improve their structural integrity. These aerogels’ mechanical
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strength can be enhanced and tuned by combining themwith polymers, by prolonging
their aging step. Among these methods, the crosslinking of polymers with the silica
backbone of the aerogel strengthen their network integrity and improve their strength
[98]. Using chemical crosslinkers containing amine, phosphate, and carboxylic
groups during aerogel synthesis can help modify and improve their mechanical prop-
erties. The addition of polyvinyl alcohol when synthesizing graphene oxide-based
aerogels has been found to improve their stability, as the hydroxyl groups of polyvinyl
alcohol crosslinks with the polar groups of graphene oxide layers; this enhances the
number of vacant sites for adsorption on the aerogels for efficient adsorption of
contaminants and can provide high structural stabilities [98]. Such polyvinyl alcohol
crosslinked graphene oxide aerogels also have self-recovery properties bywhich they
can maintain their original structure if they are subjected to extreme stress and strain
conditions. The different proportions of polyvinyl alcohol and graphene oxide ratio
can confer their different properties, making them a successful candidate for water
treatment applications by providing high selective adsorption [120]. Another robust
cellulose-based aerogel was synthesized by crosslinking polyethyleneimine (PEI)
onto cellulose nanofibrils (CNF) by using 3-glycidyloxypropyl tri methoxy silane
(GPTMS) as a crosslinking agent and improved mechanical. Adsorption capaci-
ties toward removal from waters were achieved when the increased
mass ratios of PEI to GPTMS and increased amine content were maintained [121].
As maintaining the thermal strength of aerogels is vital for their widespread appli-
cation, opacifiers can be added to improve their radiation properties to withstand
high-temperature ranges and make them serve as excellent insulators. The propor-
tion of opacifiers added may also affect their structural properties as they can affect
their structural conformation, so appropriate proportions must be maintained [121].
When the aerogel’s pore size is >68 nm, the heat conduction through these pores
occurs at a higher rate, and their thermal conductivities are increased. Aerogels can
have a range of thermal and mechanical stabilities depending on their pore structure,
density, and material. For instance, silica aerogels have low mechanical stability due
to their highly porous structure while being intrinsically thermal resistant [122, 123],
while polyamide aerogels and cellulose/biochar aerogels have superior mechanical
and relatively high thermal properties [118, 124]. Several techniques have been used
to define the extent of aerogels’ thermal and mechanical strength outlined here.

3.3.1 Mechanical Analysis of Aerogels

Aerogels’ mechanical identity is usually classified through elasticity, brittleness,
plasticity, reusability, compression, and expansion tests. The significant parameters
of mechanical stability in terms of elastic and fracture properties of porous aerogels
are their porosity and specific density level. These parameters are smaller for porous
aerogels than non-porous ones [125]. Themechanical characterization techniques for
aerogels can be categorized into static (three-point bending and uniaxial compres-
sion) or dynamic (ultrasonic, Brillouin scattering, dynamic mechanical analysis)
techniques. The elastic properties of aerogels like Young’s modulus, Poisson ratio,
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shear modulus, and internal friction are analyzed using dynamic techniques whereas
elastic modulus and rupture strength are determined through static techniques [125–
128]. Single Edge Notched Beam and double cleavage drilled compression tests
are also commonly used to characterize the toughness and stress corrosion resis-
tance of aerogels [125, 129]. Elasticity and deformation recovery of aerogels can
be further tested by the execution of multiple squeezing and reabsorption cycles in
a sample solution and measuring its adsorption capacity variation upon each cycle
[106, 130, 131].

3.3.2 Thermal Analysis of Aerogels

The aerogels’ thermal strength is characterized using Thermogravimetric Analysis
(TGA) to identify the decomposition rates and maximum temperatures up to which
the aerogels can tolerate without decomposition [101]. The experiment is usually
conducted under dry air or nitrogen by increasing the chamber’s temperature (loaded
with a small amount of the aerogel sample (~5 mg)) from ~30 to 800 °C with
designated gas flow and heating rates. Inorganic-based aerogels or organic aerogels
incorporated with inorganic materials such as silica have, by nature, higher thermal
resistance than pure organic aerogels. Aerogels’ thermal conductivity is character-
ized using commercial or custom-made thermal conductivity analyzers that typically
contain hot plates using nearly 25 cm × 25 cm × 2 cm aerogel specimens. The
thermal conductivity of materials depends on their nature, density, cell size and
structure, and pore size and connectivity [101]. For instance, silica aerogels have
low thermal conductivity due to low density and high porosity [123].

3.4 Effect of Raw Materials

As noted before, several materials have been used to develop aerogels, which are
generally classified into organic (e.g., cellulose, polyurethane, poly (vinyl alcohol)
(PVA), polystyrene, polyimide, polysaccharide, etc.), inorganic (e.g., SiO2 generated
from various alkoxysilanes such as Al2O3, TiO2, ZrO2, SiC), carbon aerogels (pure
carbon, carbon nanotubes (CNT), graphene) and other novel aerogels such as silicon,
carbide, carbonitride, or composite/hybrid aerogels. All these have distinct proper-
ties that affect their applications and performance [7, 132–135]. Cellulose-based,
polyimide-based, and derived carbon aerogels, have various properties, making them
suitable for many applications [135]. Polymer aerogels have relatively high mechan-
ical and environmental stability and have thermal conductivities in the same range as
silica-based aerogels. They also have a high compressive modulus in the range of 1–
5 MPa. The morphology of polymer aerogels can depend on the fabrication solvent
and synthesis conditions and structural parameters (i.e., pore size, pore structure,
ordering, etc.). The typical morphologies include but are not limited to colloidal-
like nanoparticles, nanofibrillar/microfibrillar networks (e.g., globular superstructure
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nanofiber networks, homogeneous interwoven nanofiber networks), and sheet-like
skeletons with a range of fiber sizes and alignment properties [134, 135]. Among
polymers used for aerogels synthesis, cellulosic materials have typical physicochem-
ical properties, high biodegradability, wide availability, and low cost and can be
quickly processed and tailored in nanosized structures [134, 135]. Hence, cellu-
losic materials have recently gained significant attention to develop aerogels with
applications ranging from sensors, energy storage, and thermal insulation [136–138]
to mitigation of pollution [106, 109, 139–141]. Cellulosic aerogels typically have
densities in the range of 10–105 kg/m3, a high specific surface area up to 600 m2/g,
and can be fabricated with a wide range of morphological structures [15]. Cellulosic
aerogels also have strong mechanical properties (i.e., high modulus up to 0.95 MPa
and compression strength up to 150 MPa, and high toughness and energy absorp-
tion [134]. The challenges in the preparation of cellulosic aerogels, novel methods
of preparation, and their properties are critically reviewed in the reported literature
[134, 142, 143]. Resin-based aerogels such as polybenzoxazine typically have meso-
porous structures and have relatively high mechanical strength and low shrinkage
after polymerization as well as high density (around 300 kg/m3) and high surface
areas (384 m2/g). These normally contain spherical polymer particles [135, 144,
145]. The polymer forming the organic aerogels can be later heated making carbon
aerogels that have high electrical conductivity, high power and energy density [146],
and high adsorption capacity (specific surface area up to 193 m2/g for pure carbon
aerogels and up to 998 m2/g for graphene-based carbon aerogels). The mechanical
and thermal stability of carbon aerogels is also relatively high [147, 148]. Carbon
aerogels have the lowest density among all other types of aerogels (0.16 mg/cm3)
[149].

Silica aerogels are lightweight with a density of ∼0.003–0.5 g/cm3 and have
highly porous structures (80–99.8%) with specific surface areas between 500 and
1200 m2/g. The combination of low density and high porosity of regular silica-based
aerogels makes them fragile with low mechanical properties [122, 123, 134]. The
mechanical properties of silica aerogels (e.g., elasticity, flexibility) can be tailored to
make reinforced silica aerogels by varying their processing conditions, the combina-
tion of silane precursors, or using additives such as organic polymers on their surface
[122]. The highly porous structure of silica aerogels with low thermal conductivity
increases the mechanical reinforcement due to their increased density [123, 150].
Figure 3 illustrates a silica aerogel sample’s extremely low thermal conductivity
protecting a delicate flower being damaged by heat [123].

4 Application of Aerogel on Environment

An increase in the scarcity of natural resources and their overexploitation has raised
concerns about environmental pollution. For decades various efforts are being made
to mitigate pollution by the application of green methods. The use of non-toxic,
natural polymers and other biodegradable materials is one such method. Recently
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Fig. 3 A silica aerogel slab protecting a delicate flower from excessive heat generated from a burner
(https://commons.wikimedia.org/wiki/File:Aerogelflower_filtered.jpg)

aerogels have attractedmuch attention from researchers and governments for holding
the potential of being eco-friendly. Klister developed aerogel in the 1930s, but its
development was paced off due to a lack of technological development. However,
recently much development in aerogel synthesis has taken place. Various types of
aerogels are present, inorganic aerogels, synthetic polymer-based aerogel, carbon
aerogels, and natural macromolecule-based aerogels [151]. Aerogels are prepared
generally by a sol–gel process accompanied by drying. Aerogels were initially
synthesized for thermal insulations in air space technology and building sectors.
Recent yet substantial research shows aerogels aremutifunctional. Aerogels could be
a promising solution to environmental pollution. For environment cleanup purposes,
aerogels used are fabricated from carbon, silica, and natural polymer, (for example,
cellulose) [152]. For instance, pesticides and herbicides arewidely used in agriculture
to protect the crop from invading pests and weeds. However, they are a significant
threat to the environment. Cotet and coworkers have reported the use of carbon
aerogel for pesticide adsorption. They prepared carbon aerogel along with xerogel
and investigated their adsorption property against the pesticide alpha-cypermethrin.
Their study showed that carbon aerogels were better adsorbents when compared to
xerogels. The observed adsorption capacity is found to be 28.44 mg/g. Also, the
grain size affected the adsorption capability. A decrease of 6.45% in adsorption was
observed in increasing grain size attributed to internal diffusion limitation. Temper-
ature inductive study suggests an increase of about 14% in adsorption capacity
compared with xerogel. The study indicates aerogels as promising adsorbents for
environmental cleanup [153]. In context with the above study, the applications of
aerogels for environmental cleanup are discussed.

https://commons.wikimedia.org/wiki/File:Aerogelflower_filtered.jpg
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4.1 Aerogel for Heavy Metal Cleanup

Heavy metals are high-density metals present in the environment and are hazardous
to human health. Heavy metals get dumped into the environment from industries like
metal processing, chemical production industries, etc. They get incorporated as part
of the food chain and get accumulated in living forms. They can be carcinogenic
upon long exposure. Many methods are employed to remove heavy metals from
the environment, like chemical precipitation and coagulation-flocculation. But these
methods are inefficient as heavy metals are present in minimal quantities. Aerogels,
due to their excellent adsorbing property, can be used for heavy metal removal.
Electro-sorption processes are emerging as an efficient way to remove transition
heavy metals from water. Many reports have shown that carbon aerogels are useful
in this aspect.ManySoutheast and far eastAsia countries use cadmium-contaminated
water for agricultural land irrigation. Cadmium is associated with cardiovascular and
kidney diseases. Carbon electrode-based electrosorption has been attempted for its
removal. When carbon aerogel was used as electrode material for electrosorption,
up to 97.5% adsorption was observed. This value is higher than any other material
used for the same purpose.

In chromiumelectrosorption, carbon aerogel showed about 71%adsorption.Aero-
gels have been reported to adsorb copper ions also. Most of the electrosorption
occurs around 1.2 V. It is also suggested that altering the carbon aerogel material
like doping, can enhance the aerogel’s adsorption capacity. Graphene aerogel also
could remove lead when doped with nitrogen. Up to 42% of lead was removed
by nitrogen-doped graphene aerogel. However, graphene doped with sulfur showed
better electrosorption [154].

Graphene nanosheets have recently attracted researchers for their use in heavy
metal adsorption. Developing 3D graphene nanosheets is reported to be beneficial.
Some of the useful properties found in graphene 3D aerogels are the following:

• Peculiar characteristics based on the formation of graphene building blocks.
• Unique 3D porous network with micro-, meso-, and macropores facilitates the

diffusion of pollutants.
• Fully exposed active sites enhance the adsorption of pollutant molecules.
• The integrated morphology of the graphene promotes recycle of water treatment

strategies.

To increase the removal capacity, a multilayered system could be beneficial such
as that provided by MnO2 nanostructure. It has a high surface area and is environ-
mentally friendly. Thus, Liu and coworkers attempted to design new material from
graphene and MnO2; they prepared a hybrid aerogel, and tested it for heavy metal
removal. Their results indicated that pH plays a vital role in the sorption of heavy
metals like lead, cadmium, and copper. The aerogels so created showed a good deal
of adsorption and reusability. The adsorption kinetics was also found to be enhanced
[155].
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4.2 Aerogels in Dye Removal

Dyes are cationic or anionic colored chemicals widely used in the textile, printing,
plastic, rubber, cosmetics, leather tanning, paper, and food processing industries.
However, their release into the environment is a serious concern. They have been
shown to reduce photosynthesis in aquatic life. They may cause eye burns, skin irri-
tation, affect the gastrointestinal tract, and may also cause cancer. However, various
methods are employed to remove the dye, like adsorption, chemical oxidation or
reduction, microbial treatment, nanofiltration, etc. Adsorption is a preferred method
due to its simplicity and low cost. Aerogels made from various materials are used for
this purpose. Among them are carbon nanotubes (CNTs), graphene, and nanocellu-
lose that have caught the attention because they have the potential to be used as high-
efficiency adsorbents.Aerogels prepared fromhybrids of cellulose andgraphene have
been reported for the removal of dyes. These hydrogels showed adsorption of methy-
lene blue and congo red up to 1166mg/g and 507mg/g, respectively [156]. Function-
alization of graphene is essential for enhancing the adsorption property. Oxidation is
the most common method. It helps in the formation of moieties like COO, COOH,
CO, and OH. The aerogels of graphene are widely used to absorb organic dyes [157].
Aerogels prepared using graphene oxide and graphene nanosheets impregnated with
cellulose from the waste newspaper are synthesized. Such aerogels were reported to
be prepared by the sol–gel and freeze-drying process.

Structural analysis and characterization of aerogel developed from graphene
oxide/cellulose show that it has a foam-like structure with adequate adsorption
capacity. Various interactions were reported between aerogel and dyes, like elec-
trostatic interaction, charge repulsion, and pi–pi interaction [158]. Graphene oxide
is also reported to be modified with silk fibroin. Structural characterization by SEM,
XPS, XRD, Raman, and TG showed awell-developed porous structure. It showed the
adsorption capacity of organic dye up to 1322 mg/g [159]. CuS/graphene aerogels
have also been reported for anionic and cationic dye degradation due to their unique
network structure and photoelectric properties [160].

Graphene oxide with agar is also used to make composite aerogel for dye removal
and can be recycled [161]. Apart from graphene, cellulose nanofiber also has gained
attention to be used as aerogel for dye removal. It is eco-friendly, sustainable, and
biodegradable, making it a potent candidate for the purpose. Carbon nanofibers are
mostly hydrophilic, restricting their water treatment usage; however, if their surface
can be modified to hydrophobicity, they are beneficial. Zhou and Hsieh reported
silane-modified carbon nanofibers [138]. Hasan and coworkers also reported their
potential for the adsorption of dye from the water of up to 150 mg/g. It also showed
low thermal conductivity, therefore, it could be used in building insulators [162].
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4.3 Aerogel for Oil Removal

Many methods are used for the removal of oil spillage from water bodies and can
be classified into three types: (1) biological method; (2) physical method; and (3)
chemical method. The microbial method of removal is fair but requires a huge time
to process. Absorbents are also a useful method of oil removal. They are categorized
as inorganic mineral, natural organic material, and synthetic organic. However, most
of the absorbents used have a low absorbing capacity and absorbs water. Recycled
cellulose from waste can be used for making aerogels for oil removal because of its
highly porous structure. Cellulose is hydrophilic, and to introduce hydrophobicity
in it, methyltrimethoxysilane is used. The hydrophobic recycled cellulose aerogel
showed an absorption capacity of up to 20.5 g/g. The absorption took place best
around 40 °C [163]. Silica aerogels developed by the sol–gel process are also utilized
for oil removal [164, 165].

Graphene-based aerogels with superhydrophobic/super oleophilic attributes can
be used for water treatment. Graphene nanosheets have an intrinsic hydrophobic
property that makes them suitable for oil removal from water. In a study, graphene
wasmodified with fluoroalkyl silane, which increased its water contact and increased
its ability to absorb oil and removed other pollutants as well [159]. Highly porous
monolithic aerogels based on ZnO photocatalyst and polystyrene were reported to
show the ability to remove organic pollutants from water [166].

4.4 Aerogel for Water Treatment

Aerogels are used in water treatment and purification because of their attractant
properties. Heavy metals are highly hazardous and very difficult to remove from the
contaminated environment, causingmassive damage to humans’ internal organs. The
heavy metal contaminated water is efficiently treated and removed by the aerogel.
Amino-functionalized resorcinol–formaldehyde aerogels were reported to adsorb
heavy metal ions of Cd (II), Hg (II), and Pb (II) from solution [167]. The adsorptions
of different heavymetalswere optimizedwith several parameters such as pH, temper-
ature, contact time, the capacity of heavy metal sorption, and sorbent concentration.
The modified amino group adsorbs the heavy metals on the aerogel surface. Such
aerogels could be used to eliminate heavy metals from contaminated water. Aerogel
can be synthesized using polybenzoxazine, amines, phenol, formaldehyde as base
material by sol–gel reaction [144]. Polybenzoxazine acts as a potential polymer to
chelate heavy metals during the treatment of wastewater. They explained that the
high capacity and strong coordination of polybenzoxazine with Sn2+ was by the
Van der Waals force and Irving–Williams rule on aerogel’s surface area. Chen et al.
[168] prepared the cheapest biomass-based aerogels of carbon (CDPC) and carbon
oxide (CDPCO) using cotton with alkaline engraving methods to eliminate heavy
metals from the solution [168]. The experiments proved that the ions of heavy metals
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depend on the interaction of heavymetals with the active groups of –COOH and –OH
on the surface of CDPCO. This aerogel adsorption of metal ions profile was well
adopted with the Langmuir model. Carbogel synthesized by the basis of protein-
doped cellulose through hydrothermal carbonization of cellulose performed at low
pHwith the occurrence of glycoprotein to enhance both types of anionic and cationic
heavy metals attached with carbo gel treatment of contaminated water [169].

4.5 Removal of Pesticides by Aerogels

Chemical pesticides cause toxicity and lead to cancer and neurological diseases
among other morbidities in human beings. Carbon aerogel was analyzed for the effi-
ciency of pesticide removal. The exclusive properties of aerogel such as manageable
porosity, high surface areawith large volume pores [170], thermal stability are advan-
tageous for removing pesticides from the contaminated water. α-Cypermethrin is a
pesticide classified as pyrethroid, commonly used against insect pests and arachnid-
like ticks and mites. It could be absorbed and removed by carbon aerogel from the
polluted water [153]. Recently, Kien et al. prepared and proved carbon aerogel’s
competence for removing pesticides such as DDT and cypermethrin up to 95–
99% from polluted river water samples in Cuu Long Delta [171]. Modified metal–
organic frameworks (MOFs) compositewith carbonnanoparticles aerogels have been
synthesized for removing the toxic pesticides polluting water [62] (Table 3).

5 Eco-Toxicological Aspects of Aerogels

In the twenty-first century, no other human-made material has piqued researchers’
curiosity worldwide, as have the aerogels. Vast numbers of research articles are
published extolling the potential as well as useful applications of aerogels. Remedia-
tion ofwater pollution through adsorption has been highlighted as one of the aerogels’
applications. It averts the impracticalities and lack of sustainability due to toxicity
and high cost of techniques such as flocculation, electrochemical treatment, photo-
catalysis, advanced oxidation, nanofiltration, and biological degradation. However,
there may be an oversight regarding the toxicity of chemicals used to synthesize the
aerogels, particularly those used for water treatment.

Graphene oxide (GO), at dosage 50mg/L, has been reported to induce in zebrafish
embryos, minor cell growth hindrance and deferral in the hatching, and multiwalled
carbon nanotubes, even at relatively low concentration of 25 mg/L, exhibit severe
toxicity leading to potent cell growth hindrance and acute morphological defects
in growing embryos [172]. Resorcinol–formaldehyde aerogels have been shown
to absorb several heavy metals [167, 173], however, the synthesis of these aero-
gels involves toxic components [16]. GO polypyrrole composite, GO poly (acrylic
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Table 3 Types of aerogel with their porous compound and its application [152]

Type of composite aerogel Porous compound Application

Cellulose aerogel Waste engine oil Biomedical applications such as
thermal insulation, drug delivery
system

Starch-based carbon aerogel Crystal violet
Methylene blue
Methyl violet

Removal of azo dye
Oil spill cleanup

Carbon aerogel CI Reactive Red 2 dye
Toluene

Hydrogen and electrical energy
storage, desalination, and
electrocatalysis

Carbon micro belt aerogel Oils Oil remediation

Graphene aerogel Organic solvent and Oils Removal of organic solvent and
oil remediation

Magnetic graphene aerogel Organic solvent and dyes
Motor oils

Removal of organic solvent and
oil remediation

Magnetic cellulose aerogel Oils Oil remediation

Graphene carbon nanotube
aerogel

Petroleum products,
organic solvent, and fats

Oil and dye as well as water
purification and soil remediation

Hydrocarbon silica xerogel’s
Hydrocarbon silica aerogel

Dieldrin
RhB

Used as catalysis, as a template
to metal oxide

Hydrocarbon granular silica
aerogel

Phenol Removal of the toxic compound

Hydrophobic silica-based aerogel
and xerogels

Toxic organic solvents,
oils

Oil spill cleanup

Particulate hydrocarbon silica
aerogel

Liquid oils Oil spill cleanup

Poly (alkoxysilane) organogels Oils and crude oils Oil spill cleanup

Titana aerogel Azo-Dye Orange II Used as photocatalysts water
splitting for hydrogen
production

Montmorillonite clay-polymer
composite aerogel-
hydrophobized with TMOS

Motor oils, Dodecane Industrial application

Sodium silicate-based aerogel Phenol removal Removal of the toxic compound

Silica aerogel-activated carbon
nanocomposite

Heavy metal (Pb2+, Cu2+) Removal of heavy metals

Alginate aerogel Heavy metal (Pb2+, Cu2+) Used as a drug delivery system

Calcium alginate carbon aerogel Organic compound Removal of lead, copper,
cadmium ions

Polysaccharide based aerogel Organic compound Pharmaceuticals application as
drug delivery system
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acid) hydrogel, G.O./poly(amidoamine) nanocomposite, and several such aerogles
created fromGOsheets towhich polymers have been incorporated using crosslinking
agents increases their efficiency; but, these polymers are obtained from toxic, non-
renewable sources [174]. Although chemical crosslinking is an efficient method to
improve aerogels’ functionality, chemicals used as crosslinkers have potential toxi-
city. Further, undesired side product formation due to any non-selective activity of the
chemicals also needs attention. Toxicity of leachates from polymers of acrylonitrile,
styrene, epoxy was reported in Daphnia magna [175]. Kwon et al. [176] reported
the marine pollution caused by styrene oligomers and the need to monitor it. Repro-
ductive toxicity was observed in mice orally administered styrene [176]. Similarly,
oxidative stress and membrane destruction were seen in cyanobacteria exposed to
polystyrene nanoparticles [177]. The rapid expansion in nanoparticles’ usage and
studies on their harmful effect on humans, other animals, and the environment has
raised legitimate concerns as their minimal size potentiates their accumulation in the
body [178, 179]. Schrand et al. [180] reviewed the toxicity of metal-based nanopar-
ticles on mammalian cells and emphasized the need for a comprehensive database
on nanoparticles’ health, safety, and environmental impact. Wang et al. [66, 112,
159, 181] highlighted that conventional aerogels’ raw materials come from toxic,
non-renewable inorganic or petrochemical-based materials.

Concerns about the harmful environmental impact of aerogels and their precursor
chemicals have led researchers worldwide to focus on developing non-toxic alter-
natives such as polysaccharide-based aerogels or bio-aerogels. These aerogels are
formulated from natural ingredients that are biodegradable and hence eco-friendly.
Cellulose as a precursor to bioaerogels has legitimately garneredmost of the attention
due to its widespread presence in plant parts such as cotton [182], coconut husk [183],
and properties like biocompatibility, sustainability, low toxicity, renewability make
it an excellent candidate for several industries [66] as well as for water treatment.
[184] used cellulose in polymer-graphene composites to boost oil–water separa-
tion. Alatalo et al. [169] fabricated a cellulose-based carbon aerogel to remove ionic
metal pollutants fromwater. Huang andWang [185] suggested that treatments such as
chemical precipitation, oxidation/reduction, membrane separation are adequate for
removal of high concentrations of heavy metals but may not be effective in treating
water with low concentration; however, cheap adsorbents such as alginate, clay, etc.,
could be utilized for efficacious removal of low concentration of heavy metals from
water. They fabricated an aerogel constituting polysaccharide alginate and calcium
by the freeze-drying technique to decontaminate Pb2+ and Cu2+ from water.

Similarly, Yan et al. [174] synthesized chitosan crosslinked Grapheneoxide ligno-
sulfonate aerogel (GLCA) for dye removal; lignosulfonate (LS), an integral derivative
of naturally occurring lignin polymer, is a byproduct of paper and pulping factories,
hence easily procurable and has been abundantly utilized for adsorption of pollutants
in aqueous solutions. Chitosan (CS) is also economical, plentiful biomaterial with
considerable biocompatibility that aids in circumventing limitations of reduced selec-
tivity and efficiency, and elevated energy consumption and use of polluting chemi-
cals precursors. Of the several biopolymeric materials such as pectin, guar gum, etc.,
studied by researchers for the creation of composite materials [186], starch, found
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in abundance in nature, is a material with a vast number of potential applications.
It is easily extractable from plants, has high molecular weight and large surface
area, is non-toxic, inexpensive, and biodegradable [187], making it a good adsor-
bent for decontamination of harmful toxins from water [188, 189]. The presence of
multiple hydroxyl groups in the structure of starch accentuates its utility because
these groups undergo chemical alteration easily, forming ethers, esters, hydrogen
bonds, etc. Furthermore, the functionality of starch is enhanced by its derivatization
and crosslinking [190, 191]. Naushad et al. [192] fabricated starch/SnO2 nanocom-
posite that could remove toxic mercury ions from an aqueous medium, establishing
starch’s application as a potential adsorbent for remediation of water contaminated
with heavy metals. Karaki et al. [193] emphasize the potential of enzymatic modifi-
cation of polysaccharides to improve their specificity and selectivity properties and
reduce the input energy and the negative environmental impact, making it attrac-
tive alternatives to toxic and non-specific chemical approaches and enlarging the
field of their potential applications. With the boom in the research on aerogels, it is
imperative to focus on alternatives that are substantially less costly to the environ-
ment, bioaerogels are excellent alternatives that have applications in several fields,
including wastewater remediation.

6 Conclusion

Aerogels are one of the most promising materials of the twenty-first century. Its
potential to be structurally altered to suit the incumbent needs is one of its trade-
mark characteristics. Various materials have been successfully used in the creation
of different types of aerogels, but in the present scenario when we are grappling
with pollution the world over, aerogels made of biopolymers seem to be highly
encouraging. Aerogels can play a vital role in environmental cleanup. It has shown
its ability to remove pollutants from various scapes of nature particularly water,
where it can remediate oil spills and dyes to heavy metals and pesticides. Owing to
its unique structural properties, pollution mitigating potential, eco-friendliness, and
biodegradability, aerogels demand much more insight and research to boost their
usage.
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Abstract Pollution generated by wastewater containing inorganic pollutants, such
as heavymetals, has always been considered a real problem for our planet. Therefore,
the removal of these micropollutants from polluted water is a valuable intervention
to preserve human health and the environment. Many conventional methods are used
today to treat wastewater, such as membrane filtration, chemical precipitation, ion
exchange, and adsorption by activated carbon, but the operating cost they generate
has restricted their use. To overcome this limitation, scientists have focused for
always on the application of marine resources to clean up the environment. The
adsorption of heavy metals by biosorbents obtained from algae has been widely
studied forwastewater treatment, as the exploitation of this biomass has the advantage
of being a low cost, renewable and abundant biological raw material, and its use as a
biosorbent is also a great alternative to activated carbon. The sorption capacity of the
vegetable adsorbent is depending on chemical constitution of their cell wall and the
presence of macromolecules with various functional groups that interact with metal
ions. We review in this chapter, (1) the challenges associated with heavy metals,
such as water pollution, hazardous effects, and their removal techniques including
biosorption based on algae biopolymers, such as alginate and carrageenan, (2) the
main chemical and structural compounds of macroalgae responsible for the metal
ions removal, (3) current knowledge on the potential of macroalgae regarding their
pharmacological applications and possible biosorbents prepared from them for the
removal of metal ions from aqueous solutions.
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1 Introduction

Heavy metal pollution is among the phenomena that received throughout the world
an increasing attention, it has become a serious global environmental problem and
a major concern. The interest in these pollutants is mainly linked to the harmful
effects they have on human health, as well as on other organisms living in the aquatic
environment, because of their bioaccumulation, toxicity, and non-biodegradability
properties, these pollution problems are due to the environmental disorder caused by
the fast growth of industrial activities [102].

The adverse effects of these molecules on humans depend on some factors such
as dosage, emission rate, and exposure period. Moreover, the toxicity level of some
heavy metals for humans was found to follow the order Co < Al < Cr < Pb < Ni <
Zn < Cu < Cd < Hg [81]. Among these toxic micropollutants, Hg, Cd, and Pb have
receivedmore attention for the last decades, because of their toxicity and their effects
on the environment and the living organisms [157]. Few of these inorganic pollutants
such as zinc and iron are needed for human defense, plants, and other living beings,
but although the importance occupied by them, they can pose health hazards if their
concentrations exceed allowable limits. As an example, the excess of zinc has main
symptoms for human, such as nausea, dizziness, electrolyte imbalance, and muscle
stiffness [5, 53].

If some metals have demonstrated their main function in human body, there are
some that are toxic even at low concentration as the case of cadmium, which is a
non-biodegradable element in nature, and up to day it has not been proven to have any
physiological function in humanbody [54].Another point is that a chronic exposure to
Pb(II) even to low concentration decreases the intelligence capacity of children [81].
As a result of the critical effects of heavy metals, concerned environmental agencies,
such as the World Health Organization (WHO) and the United States Environmental
Protection Agency (USEPA) set safe limits for heavy metals in recycled, in drinking
water, and inwastewater [108]. The safe limits of heavymetals inwastewater samples
as well as in drinking water according to the WHO guidelines are listed in Table 8.1.

For many decades, various conventional technologies were employed to remove
metals from aqueous effluents, such as chemical precipitation (hydroxide and sulfide
precipitation), ion exchange, membrane filtration, coagulation/flocculation, flota-
tion, and electrochemical treatment [9]. Each of these processes has its disadvan-
tages [48]. These limitations have led researchers to find other alternative methods
such as adsorption, especially which focus on the use of abundant and less expen-
sive biomaterials. The widely used adsorbent around the world is activated carbons,
but the increased cost of these materials and some complexities involved in their
synthesis limited their use. Therefore, low-cost adsorbents must be developed to
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Table 8.1 World Health
Organization guidelines for
safe limits of heavy metals

Sample Metal ions Safe limits
(ppm)

References

Wastewater Pb(II) 0.01 Ayeni [14]

Ni(II) 0.02 Ayeni [14]

Cr(III) 0.05 Ayeni [14]

Hg(II) 0.001 Onuegbu et al.
[113]

Cd(II) 0.003 Ayeni [14]

Drinking water As(V) 0.01 Sayato [137]

Cd(II) 0.003 Sayato [137]

Pb(II) 0.01 Sayato [137]

Hg(II) 0.006 Sayato [137]

Ni(II) 0.07 Sayato [137]

Cr(III) 0.05 Sayato [137]

Zn(II) 5 King et al. [80]

replace the current expensive adsorption method of removing heavy metals from
solution. Hence, searching for an alternative of activated carbon from abundant and
inexpensive sources is of concern [48].

A number of researches have been carried out on biosorption using both the micro
andmacroalgae biomass [19, 68, 69, 121]. Themarinemacroalgae have demonstrated
their ability toward the removal of inorganic pollutants including heavy metal ions
[93]. The good removal capacity of these resources is due to the surface structure,
which contains active functional groups involved in the biosorption process [69].
Biosorption by dried seaweeds has been intensively studied in recent years as an
economical treatment for the removal or recovery of metals from industrial effluents
[59, 70, 140]. Applying dried seaweeds in the adsorption of these ions present several
advantages such as wide availability, low cost, high metal sorption capacity, and
reasonably regular quality [12]. This process implies the use of dried macroalgae
or their derivatives to adsorb the metal ions with the ligands or functional groups
located on the external surface of them. The passive elimination of some of these
toxic pollutants as the case of Cd2+, Cu2+, Zn2+, Pb2+, Cr3+, and Hg2+ by inexpensive
biomaterials requires that the adsorbent has certain adsorbent properties such as high
selectivity and high metal uptake [33].

2 Metal Pollution and Health Effects

Heavy metals are the most toxic pollutants, and the resulting pollution is considered
a worldwide environmental problem. The discharge of industrial wastewater without
prior treatment or with insufficient treatment leads to dangerous effects on the one
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hand, on marine organisms living in aquatic environment and on human health as
the main consumer in the food chain of marine resources, on the other hand, on the
state of the wastewater treatment plant and that of the sanitation network.

Heavy metals are defined as metallic elements that have a relatively high density
compared to water, they are characterized by a high atomic weight and a density
approximately five times higher than that of water [151]. They present in many
industrial effluents generated by numerous anthropogenic activities, such as plating
facilities, mining operations, and tanneries, as well as, they are continuously released
into the biosphere by volcanoes due to natural weathering of rocks [17, 157]. Heavy
metals, such as cadmium, arsenic, lead, and copper, are among the common inorganic
pollutants of serious concern in wastewater treatment, they are particularly charac-
terized by their high toxicity, and even in trace amounts, they can cause serious
disturbance to aquatic organisms and health problems for humans [142]. Several
studies have focused on the exploitation of marine resources as a source of alterna-
tive applications more suited to current environmental challenges including heavy
metal pollution [86, 95, 96]. The following paragraphs will highlight some of the
effects of heavymetals, which have taken a large part in the recently published studies
regarding the biosorption of inorganic pollutants by marine macroalgae.

Cadmium, which is known under the symbol Cd, it is a chemical element from
group IIB of the transition metals ofMendeleev’s periodic table, with atomic number
48 and atomicmass of about 112.4 g/mol [112]. Thismetal is used in various domains
such as accumulators or alkaline batteries, pigments for paints or plastics and in
electrolytic process by deposit or by cadmium plating on metals or to reduce melting
points. Cadmium is a known cumulative toxic substance whose disposal half-life is
about 20–40 years; it is stored primarily in the liver and kidneys after entering the
body [11]. This metal poses serious risks to human health, and it has not been shown
to have any physiological function in human body [54].

Arsenic is another heavy metal, which occupies a considerable place in the
published data concerning the field of biosorption due to its toxicity and danger.
Arsenic is a chemical element with atomic number 33 designated by the symbol As,
and it is generally considered ametalloid. Arsenic occurs naturally in its two forms of
oxyanions, namely, arsenite As(III) and arsenate As(V) [138], as well as it occurs in
the –3, 0,+ 3, and+ 5 oxidation states [143]. Numerous studies have been conducted
as an attempt to solve the problem of arsenic pollution and to find the most efficient
technology to remove its species from drinking water and industrial wastewater [28,
61, 138]. The main source of pollution caused by arsenic in the environment is the
smelting of ores, such as those of gold, silver, and copper. As a result, arsenic from
these sources is distributed in the air, water, soil and finds its way into human body
through direct inhalation or contamination of food and consumer products.

Lead, known as Pb, it is a chemical element with atomic number 82. It is a natural
constituent of the earth’s crust, and it is commonly found in soils, plants, and water
in trace amounts. This metal usually exists in ores, which also contain other metals
such as copper and zinc, which are extracted as a co-product of these metals. Lead
is a toxic heavy metal that can reach human body by inhalation and ingestion from
various sources, such as contaminated air, water, soil, and food. Lead has become the
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most common toxic metal in the world due to human actions, and today, this metal
is widely used in different sectors including, building construction, fusible alloys,
bullets, and lead-acid batteries [26].

Copper is another kind of inorganic pollutants that have been extensively studied
by researchers regarding the field of bio-absorption [29, 97]. Copper is a chemical
element with atomic number 29 known as Cu. It is a member of the family of metals
included in the periodic table of the elements. Copper is an essential nutrient for
humans, animals, and plants, but it can be hazardous to human health at high expo-
sures. This metal can exist in the form of free cationic Cu2+ under acidic conditions,
and trace amounts of [Cu(OH)]+ and water-soluble Cu(OH)2 under neutral and basic
conditions [72].

3 Technologies of Wastewater Treatment

Currently, various technologies are applied for the removal of heavy metals from
industrial wastewater in large conventional treatment plants. The following section
highlights the most commonly used methods for this purpose including chem-
ical precipitation, ion exchange, membrane filtration, electrochemical, flotation,
and adsorption. For a brief comparison, the advantages and disadvantages of each
treatment method are listed in Table 8.2.

3.1 Chemical Precipitation

Due to its simplicity, chemical precipitation is considered among the most widely
used conventional processes to remove heavy metals from inorganic effluents [84].
This process is based on a mechanism in which an insoluble metal is produced
by the reaction of the metals dissolved in solution and the precipitant [56]. In this
process, the positively charged molecules and those negatively charged (anions) are
combined. As well as, the dissolved metal precipitation is compelled by increasing
the soluble anion concentration [61]. Very fine particles are then generated at the
end of this process. Therefore, chemical precipitants, coagulants, and flocculation
processes are used to increase their size and in order to remove them as sludge [56].

3.2 Ion Exchange

Ion exchange is another example of the technologies used to treat polluted efflu-
ents. This technique is based on the attraction of soluble ions from the liquid to the
solid phase. In addition, the resins used in this method, which are hydrophobic solid
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Table 8.2 Comparison of applied technologies to heavy metal ions removal from wastewaters

Process Advantages Disadvantages References

Chemical
Precipitation

• Low capital cost
• Simple operation

• High operating cost
• High cost of disposal of
produced sludge

Wang et al. [159]

Ion exchange • Metal-selective,
• eLimited-pH tolerance
• High regeneration

• High-initial-capital
• High-maintenance cost

Gao et al. [51]

Membrane
filtration

• High efficiency
• Appropriate for a
variety of wastewater
compositions

• Membrane fouling
• Secondary pollution
• Short lifespan of
membranes

• High operation cost

Hube et al. [67]

Electrochemical
treatment

• Cost effective
• Effective at ambient
temperature

• Electrode materials
with long operating life

• Blockage of
electrodeposition due to
the metal hydroxide
precipitation

• Wasted energy and
unstable process

Chaplin [25]
Liu et al. [95, 96]
Tran et al. [153]

Adsorption • High efficiency
• Capacity to remove
metals

• Less chemical
consumption

• High operating cost,
• The efficiency decrease
with the presence of
other metals

Da’na [31]

substances, can retain positively or negatively charged ions from an electrolyte solu-
tion and at the same time release other ions of a similar charge in the solution in an
equivalent quantity [56]. The process of ion exchange should not be confused with
solvent extraction, the difference being that the first indicates the separation of solid
from liquid, and the second means the separation of liquid from liquid. Furthermore,
this technique is considered a valuable technique for recovering minerals from the
mining process and mining tailings using chelating resins [71].

3.3 Membrane Filtration

This technology makes it possible to obtain purified water by passing it through
special filter membranes, which physically retain the impurities present in water.
Various types ofmembranefiltration such as ultrafiltration, nanofiltration, and reverse
osmosis can be used to treat wastewater containing heavy metals. In general, these
methods of separation have been of growing interest both for the treatment of drinking
water and wastewater. Ultrafiltration and nanofiltration are effective for the removal
of all classes of pollutants. Whereas, microfiltration is not much use for the treat-
ment of these effluents because of its large pore size [124]. Reverse osmosis is
another membrane separation technique that uses pressure to allow the solution to
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pass through a membrane that retains the solute on one side and allows the solvent
to move to the other side [56].

3.4 Electrochemical Treatment

The electrochemical method is a technology that allows to eliminate heavy metals
from wastewater. It consists in making these micropollutants precipitate in a weakly
acidic or neutralized catholyte in the form of hydroxides [56]. The main reagent used
during this treatment is the electron, which is a clean reagent. Thus, there is no need to
add any additional reagent [125]. The electrochemical wastewater treatment involves
electroplating, electrocoagulation, electroflotation, and electrooxidation [56]. This
technology is chosen to treat these effluents because it offers ideal tools for addressing
environmental problems.

3.5 Adsorption

Adsorption process is defined as a surface phenomenon by which one or more than
one adsorbate are fixed to the adsorbent surface and form binding through phys-
ical or chemical bonds. This process is recognized as the most promising and effi-
cient fundamental approach in the wastewater treatment processes [44]. One of the
main adsorbents employed to treat waste effluents is the activated carbon, because
it contains a developed surface area with large porous. For commercial carbons,
usually, their surface area is ranging from 500 to 1500 m2/g and sometimes even
up to 3000 m2/g. Coal, lignite, bone charcoal, and wood are among the main raw
materials extensively employed in the preparation of these adsorbents [134].

Despite the advantages of the previously listed physicochemical methods in the
treatment of polluted effluents, they can sometimes load the natural environment
with organic pollutants more toxic than the original ones. As well as, these methods
are known to be very expensive and require sophisticated equipment. Another point
is that activated carbon is recognized as the most powerful adsorbent, its industrial
application is prevented by the high cost associated with its production [10]. These
limitations, led researchers and industrialists to focus on finding other more efficient
and less expensive methods, including biosorption based on the use of biomaterials
prepared from cheap and abundant resources.

Biosorption is defined as a process in which substances of aqueous phase are
removed by passive bonds created between the substrate and the dead biomass
or derived materials [2]. Many data in the literature have been used to describe
the biosorption process the following terms; sorption, bio-adsorption, and removal
regarding organic and inorganic pollutants [15, 27, 45, 49, 139]. This interfacial
phenomenon, should not be confused with the accumulation or bioaccumulation
that indicates the absorption. As explained above, the biosorption involves a surface
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phenomenonwheremetal ions are attached to the dried algae, while bioaccumulation
requires the metabolic activity of a living organism to sequester these pollutants [2].

Recently, research has intensified on the mechanisms of biosorption by which
biomass is used to remove or to recover precious metals from processing solutions
[2]. Adsorption is still considered as a phenomenon in which a complex and poorly
understood mechanism is involved. It depends on the type of organism whether
is alive or not, the type of microorganism and the elemental species [106]. This
mechanism explains how the metal ion is binding to the biomass. Commonly, these
mechanisms are classified as either physical, chemical, or electrostatic adsorption
[118]. Ion exchange has been shown to be an important concept in biosorption, as
it can explain many observations made in heavy metal uptake experiments [33]. Ion
exchange, complexation, and coordination are of the main mechanisms behind the
uptake of heavy metals by macroalgae [136]. In addition to the previously mentioned
mechanisms, adsorption, precipitation, and covalent binding may also be involved,
but the most likely is ion exchange [90].

The functional groups of algae cellwalls play vital roles in biosorption.Carboxylic
and sulfate groups are known to be the main metal bending functional ionic groups in
the cell wall of algae [90]. Carboxylate groups of alginate have been identified as the
main binding site for metals [98]. Thus, there is a scientific and practical interest in
identifying the active sites of the bio polymeric structures involved in the sorption. For
this purpose, the determination of different functional groups that may be involved
in biosorption process is mandatory. The Fourier transform infrared spectroscopy
analysis (FTIR) provides information desired on these functional groups and the
molecular bonds of biosorbent are investigated [8]. This spectroscopy over the last
decades has proven and accepted to be a powerful tool for studying biological samples
[37]. FTIR analysis coupled with potentiometric titration was used to identify and
quantify surface functional groups of algae. In this regard, some functional groups
were identified to be the predominant in the surface of the three classes of marine
algae, namely, carboxyl, hydroxyl, amino, and sulfate groups [136]. These functional
groups work as binding sites for metal and are located at the surface of the cell wall
as polysaccharides, proteins and lipids.

Among the previously discussed groups, the hydroxyl groups especially present
in all polysaccharides can be negatively charged, which contributes to the adsorption
of metals at a high level [46]. The possible functional groups that participate in heavy
metals biosorption are, hydroxyl, carboxyl, amino, ester sulfhydryl, carbonyl, and
phosphate groups, they are found in alcohols and carbohydrates, fatty acids, proteins
and organic acids, proteins and nucleic acids, lipids, cysteine, aldehydes and polysac-
charides, deoxyribonucleic acid and tissue plasminogen activator, respectively [9].
Phaeophyceae cell wall has been characterized by its composition rich in chemical
functional groups, such as hydroxyl, carboxylic phenolic acid, and amine involved
in the biosorption process that is induced by the selective binding and interaction
created between the metals or any other pollutants and the biosorbent [108]. To study
various aspects involved in the biosorption of metal ions, the potential of biosorption
and some other parameters must be calculated based on the equations.
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qt = V (Ci − Ct )

m
(8.1)

%Removal = 100
Ci − C f

Ci
(8.2)

where qt is the biosorption capacity usually expressed in mg of metal per g of biosor-
bent, subscript t indicates adsorption capacity at a given time (t). Ci, Ct, and Cf

indicate the initial concentration, the concentration at given time, and at equilibrium
time (ppm), respectively. V is the volume of metal ion solution (L), and m shows the
biosorbent mass (g).

4 Marine Algae

Macro andmicroalgae are a diverse group of photosynthetic and aquatic living organ-
isms that are lacking advanced structures in their cell alignment and morphology
[147]. They range from unicellular to multicellular. Algae can grow both in fresh
and marine water. As well as, and compare to agricultural plants, they require only
less space [147]. In addition, they can be harvested throughout the year compared
with other crops that are usually harvested once or twice a year [107].

Algae are able to produce oxygen, consume carbon dioxide, act as the base of the
aquatic food chain, remove nutrients and pollutants from water, and to stabilize sedi-
ments [89]. Moreover, these photoautotrophic prokaryotic and eukaryotic organisms
are capable to assimilate nitrogen and phosphorus from the medium in the biomass
during their growth, and the biomass generated can then be converted into various
bioproducts following the apposite process [95, 96].

Algae are classified into two main types depending on their size: (i) microalgae,
which are a diverse group of photosyntheticmicroscopic organisms.Chemical energy
is produced by microalgae by converting the solar energy based on photosynthesis
like terrestrial plants. These microorganisms are suitable candidates to produce oil.
There are several methods to retrieve this oil, but the choice of which one will be
used is madding according to the properties of the algae [21], (ii) macroalgae, which
concern us much in this chapter, also known as seaweeds, as their name indicates
macroalgae are a groupof aquatic organisms that are visible to the naked eye. It should
be noted that there is another type of classification, which suggests that algae can be
classified into three categories according to their growth habits, namely, microscopic
algae, filamentous mat-forming algae, and the Chara/Nitella group, and each of the
previously mentioned groups causes its own unique problems to water system [89].
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5 Macroalgae

5.1 Classification and Use of Macroalgae

Based on their pigmentation, botanists divided marine macroalgae into three main
categories, which include (i) red algae (rhodophyceae), which include 390 genera
with 1810 intraspecific species or taxa, (ii) brown algae (phaeophyceae), that include
96 genera with 596 infraspecific species or taxa, and finally, (iii) green algae (chloro-
phyceae), which comprises 77 genera with 585 infraspecific species or taxa [141].
The pigment responsible for the red color of rhodophyta is phycobilins, and the
brown color of phaeophyta comes from fucoxanthin, while; many pigments (e.g.,
chlorophyll a and b, carotenes and xanthophylls) are behind the green color of chloro-
phyta, the main characteristics of marine macroalgae are summarized in Table 8.3
[114]. Moreover, the chemical structures of some chlorophyll behind the color of
these species are shown in Fig. 8.1. Seaweeds are often used as a source of food
and as a promising sustainable alternative to conventional terrestrial animal feed
resources, for their mineral content or the functional properties of their polysaccha-
rides. The high content of some components in the macroalgae, such as alginate and
carrageenan, hinders the use of these seaweeds in the feed of monogastric animals,
because the passage of these polysaccharides in their digestive tract is often without
any digestion [114].

Marine macroalgae are well recognized in Asia, in Japan for example, seaweed is
an important part ofmany dailymeals, they represent up to 10%of the total nutritional
intake of some cities as Kombu, Nori, Wakame, and Hijiki [115]. Moreover, the
current human consumption in terms of green, brown and red algae is 5%, 66.5%,
and 33%, respectively, this is high in Asia mainly in Japan, China, and Korea [85].

According to FAO estimates of the year 2014, 38% of the 23.8 million algae
recorded in the 2012 world harvest were consumed by people in recognized forms as
seaweeds, such as kelp, nori, or lava not counting the consumption of agar, alginates,
and carrageenans extracted from these algae and used as thickening food additives
[161]. Thismarine biomass is not limited to human consumption and feed production,

8.3 Main characteristics of macroalgae

Common name Divisions Pigments Type of cell
wall

Main components
of cell wall

Brown algae Phaephycophyta Chl a, Chl c,
Phycoxanthin

Double Cellulose, alginic
acid

Red algae Rhodopheacophyta Chl a, Chl d,
Beta-carotene,
Zeaxanthin

Double Cellulose

Green algae Chloropheacophyta Chl a, Chl b,
Beta-carotene

Single Cellulose
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Fig. 8.1 Structures of
chlorophylls: a Chlorophyll
a, b Chlorophyll b, c
Chlorophyll d
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but it can also be exploited as water purifier because it recycles polluted water from
fish waste in aquaculture [85].

5.2 Chemical and Structural Composition of Macroalgae

Algae are considered a promisingmaterial to be used as a biosorbent to cleanwastew-
ater from inorganic and organic pollutants, such as heavy metals and industrial dyes,
this is mainly due to their rich biochemical composition [108]. Besides the pigmen-
tation, they present various chemical and structural compositions [39]. This compo-
sition is generally constituted of three main components that are proteins, lipids, and
carbohydrates [148]. Some of these constituents especially carbohydrates, proteins,
and polysaccharides are commonly used to identify the type of macroalgae.

Lipids, the composition ofmacroalgae is characterized by different classes of fats,
such as polyunsaturated fatty acids (PUFAs), triglycerides (TAGs), unsaturated acids
and sterols, and the content of each class is depending on the season inwhich the algae
were harvested. Nelson et al. [111] investigated three macroalgae species, namely,
Egregia menziesii (phaeophyta), Chondracanthus canaliculatus (rhodophyta), and
Ulva lobata (chlorophyta) to examine their total lipids content as well as their lipid
classes in terms of diacylglyceryl ethers, wax esters, free fatty acid, sterols and polar
lipid, this content was monitored for 4 months, namely December, March, July, and
October 1997–98 that represent winter, spring, summer, and autumn, respectively.
It was found that the dominant class of lipids in all algal samples was polar lipids,
this result normally means that most lipids are structurally bound in membranes.
Regarding the total lipid content,U. lobata showed the highest lipid content recorded
in the spring (29 mg/g), while C. canaliculatus has been characterized with a low
lipid content ranging from 1, 7 to 3.1 dry mass (Table 8.4).

In the same context, three macroalgae were investigated, namely, the chlorophyta
Ulva lactuca Linnaeus, Jania rubens, and the rhodophyta Pterocladia capillacea to
evaluate their major components content including lipid, all samples were harvested
in April, August, and October 2010, corresponding to spring, summer, and autumn,
respectively [75]. Ulva lactuca has shown to contain more lipids (4.09 ± 0.2%)
than Jania rubens and Pterocladia capillacea. The green algae Ulva lactuca seems
to be among the most lipid-rich macroalgae, with a content of 3–4% of the algal
dry weight (Table 8.4). The lipid class that makes seaweeds more appropriate for
biodiesel applications is TAGs [149]. The red algaGracilaria verrucosawas studied
in order to evaluate its total lipid content and the proportion of lipid fractions during
the different stages of development. Male gametophytes were shown to have the
highest amount of TAGs that are contained in the lowest total lipid content measured
compared with all stages of development studied [77].

Proteins, regarding the protein content of marine algae, vary depending on the
species type. In general, algae show such a marked variation in their constituents
due to the effect of certain factors, such as the season of the year, the habitat, and
the depth in which they grow [22]. Protein-rich algae are used in industry as food
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Table 8.4 Chemical composition of macroalgae (% dry weight)

Macroalgae Lipids Proteins Carbohydrates References

U. lactuca 3–4 17–20 42–46 Khairy and El-Shafay [75]

J. rubens 1–2 10–13 34–42 Khairy and El-Shafay [75]

P. capillacea 2–3 17–24 48–51 Khairy and El-Shafay [75]

E. intestinalis 0.22 9.67 44.71 Pramanick et al. [122]

U. lactuca 0.38 8.77 37.87 Pramanick et al. [122]

C. repens 0.16 7.1 31.45 Pramanick et al. [122]

G. cervicornis 0.43 22.96 63.12 Marinho-Soriano et al. [101]

S. vulgare 0.45 15.76 67.80 Marinho-Soriano et al. [101]

U. lactuca 1.64 7.06 14.60 Wong and Cheung [162]

H. japonica 1.42 19.00 4.28 Wong and Cheung [162]

H. charoides 1.48 18.4 7.02 Wong and Cheung [162]

U. armoricana 2.6 – – Kendel et al. [74]

S. chordalis 3.0 – – Kendel et al. [74]

additives, as well as a high protein content has been reported in some red algae
[43]. The biochemical composition of some macroalgae showed that the red alga
Gracilaria Cervicornis has the highest protein content 22.96% compared with other
species harvested during the same seasons of the year (Table 8.4). Even if, some
published data gave a value of 32% for the protein content of the green alga Ulva
lactuca, but this was judged to be a high seasonal value [43]. It was reported that the
red macroalga Porphyra yezoensis can have up to 47% protein expressed on a dry
weight basis [50]. Moreover, this content was found to be higher even than that of
legumes recognized for their high-protein content such as soybeans [43].

The extraction of proteins from seaweeds is difficult due to the complex polysac-
charide of the cellwall and extracellularmatrix,which is somewhat species dependent
[114]. The protein fraction containing in the macroalgae may be calculated based on
the determination of elemental nitrogen using the nitrogen–protein conversion factor
of 6.25 according to AOAC method [91].

Carbohydrates and Polysaccharides, each algal division has its typical carbo-
hydrates. For example, the carbohydrates in brown algae species consist mainly of
alginates, laminaran (β-1.3-glucan), cellulose, fucoidan, and mannitol [82]. The cell
wall of marine algae and other components of the cell matrix consist mainly of struc-
tural polysaccharides existing in the form of heteropolysaccharide complex [116].
A large amount of these polysaccharides is in their sulfated form, which includes
the three main phycocolloids, namely brown algae alginates, red algae carrageenan,
and agar, and these biopolymers are in high demand in the hydrocolloid industry
[116]. These polysaccharides have a significant importance both technologically
and economically. Furthermore, Agar, alginate, and carrageenan are the three high-
value algal hydrocolloids, they are used as gelling and thickening agents in different
food, pharmaceutical, and biotechnology applications [129].
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Pramanick et al. [122] investigated three macroalgae, namely, Enteromorpha
intestinalis, Ulva Lactuca, and Catenella Repens to compare their biochemical
components. Their proximate composition was found to follow the order carbo-
hydrate > protein > fat > astaxanthin (Table 8.4). The estimation of carbohydrate
fraction is achieved by the phenol–sulfuric acid method developed by Dubois et al.
[35].

Earlier studies have indicated the effect of some environmental factors, namely,
light, temperature, salinity, and nitrogen availability on the growth and biochem-
ical compounds of marine macroalgae [36, 63, 76, 117, 128, 152]. Similarly, some
researches have displayed that the growth conditions, such as phosphate limitation,
nitrogen deprivation, and high salinity would affect more specifically lipid content
[126, 127, 132]. For example, the protein and carbohydrate contents of Ulva lactuca
are strongly affected by temperature and incubation time with an optimum at 30 °C
for 24 h of incubation [120]. The nutritional content of marine algae is also strongly
dependent on geographic locations and seasonal variations. Table 8.4 presents the
average seasonal composition of some macroalgae species reported in the literature.

6 Macroalgae Potential and Applications

6.1 Pharmacological Potential

The search for metabolites with pharmacological potential in different divisions of
macroalgae has developed considerably and has become one of the researcher’s
concerns worldwide. In addition, a continuous and great effort is being made by
academic and corporate institutions to identify biological activities in extracts of
this biomass with the desired potential [7, 16, 47] (Al-Malki 2020). The interest
in seaweeds may be explained by different advantages that they present compared
with other biomasses. The present section brings into light the macroalagae extracts
as a source of bioproducts exhibiting biological activities, such as antibacterial,
antitumoral, and antileishmanial activity for possible pharmacological applications.

Ainane [8] investigated two marine algae namely, Cystoseira tamariscifolia and
Bifurcaria bifurcata, to isolate extracts in order to evaluate their pharmacolog-
ical potential according to a range of biological activities, namely, antibacterial,
antileishmanian, antitumoral, and cytotoxicity activity. The technique used during
the extraction process is the Soxhlet, it allows a continuous solid–liquid extraction
using cycles of vaporization—condensation of the solvent. Four organic extracts
were obtained from successive Soxhlet extraction with solvents of increased polarity,
namely, hexane, ether, chloroform, and methanol. Each obtained extract was tested
with the following activities; antibacterial activity tested using four bacterial strains,
Escherichia coli, Enterobacter cloacae, Klebsiella pneumoni, and Staphylococcus
aureus, while the antitumor activity tested based on the interaction with the DNA
of the calf thymus, the antileishmanial activity tested toward Leishmaniain fantum,
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and finally the cytotoxicity activity tested toward the larvae of a saltwater shrimp:
Artemia Salina. All the extracts from C. tamariscifolia and B. bifurcata showed an
interesting inhibition zone against the three strains E. cloacae, K. pneumoni, and E.
colis, except the hexanic extracts, which do not show remarkable activity against the
latter strain.

Salari et al. [133] examined the antibacterial activity of nanoparticles synthesized
through the bio-reduction of silver ions into the desired silver nanoparticles (SNPs)
using the green alga Spirogyra varians. The bacterial strains used to evaluate the
SNPs activity are Bacillus cereus, Staphylococcus aureus, Escherichia coli, Listeria
monocytogenes, Pseudomonas aeruginosa, andKlebsiella. The reported results have
shown a remarkable antibacterial effect against Klebsilla, P. aeruginosa, and B.
cereus, and this activity was greater even than that of standard antibiotics.

The inhibition concentrations relative to the different extracts of Bifurcaria bifur-
cata where 50% of cells are inhibited (IC50) have a significant activity compared
with those of Cystoseira tamariscifolia, as well as IC50 of the hexanic extracts of
Bifurcaria bifurcata are much better than other extracts of the same species with a
remarkable value of 46.83 ppm [8].

Freile-Pelegrin et al. [47] used 27 species of macroalgae that belong to the three
algal categories, namely, red, brown, and green algae to test their antileishmanial
activity in vitro against Leishmania mexicana (L. Mexicana). The extracts from
Dictyota caribaea, Turbinariat urbinata, and Lobophora variegata (phaeophyta)
and from Laurencia microcladia (rhodoyta) showed a promising activity against L.
Mexicana with a lethal concentration of 50% (LC50) values ranging from 10.9 to
49.9 ppm.

Whereas, some researchers were unable to demonstrate antitumoral activity in
some of the macroalgae extracts [8], a group of researchers have proved that this
biomass is a source of various bioproducts with biomedical properties that are
capable to treat various types of diseases, such as cancer and inflammatory bowel
diseases [135]. The extracts of Sphaerococcus corono pifolius, namely n hexane,
dichloromethane, and acetone/methanol, exhibit the inhibition effect of diseases,
namely, the proliferation of cancer cells of the cervix, breast cancer cells, and
pancreatic cancer cells by inducing apoptosis [135]. Moreover, ethyl acetate frac-
tion of Tubunaria conoides was tested and showed high anticancer activity through
exhibiting synergistic effects over the respective standard compounds [119].

Abourriche et al. [4] proved that methylene chloride (CH2Cl2) fraction of Cysto-
seira tamariscifolia has a cytotoxicity activity against Artemia salina, with a lethal
dose 50 (LD50) of 41.7 ppm. Furthermore, the extracts of Bifurcaria bifurcata were
found to be toxic more than those of Cystoseira tamariscifolia toward the larvae of
Artemiasalina [8]. To know the cytotoxic potential of macroalgae, the results of their
LD50 must be compared with those of the active products used as a reference, such
as digitalin 151 ppm, podophyllotoxin 2.4 ppm, and bebeerine chloride 22.5 ppm
[103].
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Fig. 8.2 Possible forms of
dried macroalgae for
biosorbent preparation
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6.2 Macroalgae Biosorbents for Heavy Metal Removal

Numerous studies have been conducted looking at the use of marine macroalgae as
low-cost biosorbentmaterials for the removal of heavymetals fromwastewater [8, 30,
33, 99, 133, 164].While, some researchers have focused on the use of another type of
biomasses such as plants to remove these pollutants from aqueous solutions. In this
context, Chiban et al. [28] investigated the Moroccan plant Withania frutescens to
remove arsenic (V) from aqueous solution. The authors have shown the effectiveness
of using this plant as biosorbentwith a removal rate of arsenic reaching 73%, obtained
by controlling some physicochemical parameters. In the present section, the possible
biosorbents obtained from marine macroalgae are reviewed considering their appli-
cation in the removal of heavy metal ions. According to our humble summary of the
data reviewed in this study, the various potential sources of sorbents prepared from
dried biomass can be grouped into four main categories as shown in Fig. 8.2.

6.2.1 Raw Macroalgae

Apart from marine algae, there are many other forms of raw biomass, which are
currently used either to enhance the removal rate of adsorbents or as a source to
prepare adsorbent materials for further use in removing organic and inorganic pollu-
tants from aqueous solution, such as clays, plants, fungi, bacteria, and yeasts [15, 23,
110, 123, 165]. The complexity of the raw biomass structure indicates that there are
many ways involved in the removal of pollutants, but these remain poorly understood
[2].

Biosorbents can be derived from dried raw macroalgae without undergoing any
significant pretreatment that is normally applied to increase their adsorption capacity.
In this case, macroalgae are exposed only to a preliminary preparation during which
undesirable objects are removed from the recovered samples after their collection.
This preparation step remained similar in all data covered by this study with slight
differences. The use of dried algae in their raw form seems to be advantageous as
they are a natural and renewable material, and if they are directly applied in the
biosorption process as a biosorbent, which indicates no costs are involved other than
transport and simple approaches for their preparation [136]. It should also be noted
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that even after a simple preparation, such as washing and drying, these adsorbents
have important chemical properties that contribute to the removal of many pollutants
from the aqueous solution. Usually, during the preparation step, samples go through
four main steps: washing with distilled water in order to remove any adhering debris,
drying in the sun or in an oven, grinding/crushing, sieving to select particles of the
desired size, and finally the obtained samples are kept for later use. The exploitation
of algal biomass in its raw form for biosorbent preparation has proven its effec-
tiveness in the removal of heavy metals, and this can be seen through the various
publications regarding the potential of this non-activated biomass. Kumar et al. [86]
studied the adsorption potential of adsorbent prepared from Ulva fasciata without
prior pretreatment for the retention of Zn ions. This alga has demonstrated a good
zinc biosorption capacity with amaximum adsorption of 13.5mg/g, which highlights
the potential of this alga in the treatment of wastewater.

6.2.2 Modified Macroalgae

Numerous attempts have been carried out regarding the use of efficient techniques to
give new functionalities to bioserbent’s surface, as well as to understand the funda-
mental aspects of the biosorption mechanism [5, 34, 98]. Research and development
of new biosorption materials involve the use of seaweeds, especially those popularly
named brown algae, because of their high sorption capacity, which is similar to that
of commercial ion exchange resins, and their availability in almost unlimited quan-
tities in the ocean [98]. This biomass can be exploited in its original form with a
sample preliminary preparation (washing and drying) as mentioned above, as it can
be used after passing through important chemical and sometimes physical treatments
to increase its adsorption capacity toward metal ions dissolved in an aqueous solu-
tion. On the whole, surface modification methods can be categorized into two main
types: chemical and physical modification.

(a) Chemical Modifications

Marine algae are chemically treated to enhance their sorption ability and reinforce
their applications. The biosorbent prepared from thismarine biomass can bemodified
by various functional groups depending on the nature of the metal ion to adsorb.
These modifications can be made by a cross-linking reaction using epichlorohydrin
to harden the cell wall structure [79], or by NaOH treatment to increase the negative
charge on the cell surface [58], or by acid tomake the actives sites open for adsorption
[163], or byCa2+ solution treatment in order to enhance the ion exchange [83]. One of
the examples of algal biomass chemically modified used in the biosorption process,
is the one obtained after the crosslinking with epichlorohydrin and oxidizing by
potassium permanganate. In this approach, Laminaria japonica has undergone a
chemical modification by crosslinking treatment (Fig. 8.3), and before processing to
this step, the biomass selected for lead sorption uptake experiments was first: dried in
an oven at 40 °C until constant weight, ground and then sieved into a fraction 0.30–
0.4 mm. 10 g of the prepared biomass was made in contact with dimethyl sulphoxide
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Powdered biomass +
dimethyl sulphoxide
(stirred 24 h for at 25°C)

Addition of 20 mL of 
epichlorohydrin to the 
mixture (20 °C for 2 h)

Addition of 20 mL of 
5M NaOH 
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Filtration/wash with 70% 
aqueous 2-propanol

Wash with 
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Wash again with 70% 
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(60 ° C overnight)

Fig. 8.3 Crosslinking with epichlorydrin of L. japonica biomass

(DMSO) to expose the hidden metal-binding groups before crosslinking. Then, the
diluted 2-propanol was added to remove DMSO and epichlorohydrin excess [98].

Macroalgae can be crosslinked using other reagents as well. Crosslinking of the
raw brown alga Ascophyllum nodosum with bis(etheny1) sulfone reagent proved to
increase the sorption capacity of the biosorbent material due to the sulfone group’s
incorporation. In addition, this treatment has been shown to improve algae’s physical
properties, such as strength, hardness, and swelling characteristics without adversely
affecting the sorption [64].

Deniz and Karabulut [34] used various macroalgae, Polysiphonia sp (red algae),
Cystoseira sp (brown algae), andChaetomorpha sp,Ulva sp (green algae) andCysto-
seira sp (brown algae) to prepare a unique adsorbent, the biomass after having under-
gone a preparation step (washing, drying, sieving), it was treated with a NaOH
solution before testing its behavior regarding the elimination of zinc. The adsorbent
prepared fromvarious types ofmacroalgaewas judged to have a great potential for the
uptake of zinc ions from aqueous solution. Themaximum adsorption capacity of zinc
was found to be 115.198 mg/g and obtained under some optimal physicochemical
parameters (Table 8.5).

Among the interest of researchers is to compare the biosorption behavior of
macroalgae and understand the main causes behind their differences in regard to
the elimination of heavy metal ions. In this approach, Hamdy [60] used three brown
macroalgae Turbinaria decurrens, Cystoseira trinode, and Sargassum asperifolium,
and one red alga Laurencia obtusa to test their adsorption ability towards Cr3+, Co2+,
Ni2+, Cu2+, and Cd2+. The prepared algal samples were then treated with chloridric
acid until evolution of CO2 to remove calcium carbonates present in the algal cell
matrix before being used in the adsorption study. Comparedwith the good adsorption
capacities of the algae tested without HCl treatment for the elimination of different
metal ions, the treated algae showed a low capacity, especially for Cr3+ adsorp-
tion with Laurencia obtusa, where there was practically no adsorption and that was
explained to the loss of CaCo3 and the pH of the solution.
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8.5 Maximum adsorption capacities (mg/g) for the biosorption of metal ions on macroalgae

Macroalga Biosorbent Ion pH T (°C) q max (mg/g) References

Callithamnion
corymbosum sp

Raw alga Cu(II) 4.4 25 47.6 Lucaci et al.
[97]Iron

nanoparticles
/Alginate

Cu(II) 52.6

Waste alga Cu(II) 83.3

Alginate Cu(II) 166

Undaria
pinnatifida

Alga physically
modified

Cu(II) 4.5–5.5 20 126 Cho et al. [29]

Cu(II) 14

Cystfoseira
barbata

Raw alga
Raw alga

Cu(II) – 25 279 Trica et al.
[154]Pb(II) 69.3

Alginate
Alginate

Cu(II) 454

Pb(II) 107

Hydroclathrus
clathratus

Waste Cd(II) 6.2 25 96.5 Soliman et al.
[144]Cu(II) 43.4

Jania rubens Raw alga Co(II) 5 25 32.6 Ibrahim [68]

Pb(II) 30.6

Cr(III) 28.5

Cd(II) 30.5

Pterocladia
capillacea

Raw alga Co(II) – – 52.6 Ibrahim [68]

Pb(II) 34.1

Corallina
mediterranea

Raw alga Co(II) – – 76.2 Ibrahim [68]

Pb(II) 70.3

Cr(III) 64.3

Cd(II) 64.1

Galaxaura
oblongata

Raw alga Co(II) – – 74.2 Ibrahim [68]

Pb(II) 105

Cr(III) 88.6

Cd(II) 85.5

Schizomeris
leibleinii

Raw alga Cu(II) 6 25 55 Tavana et al.
[150]

Undaria
pinnatifida

Alga chemically
modified

Pb(II) 5.5 25 980 Kim et al. [79]

Syzygium
cumini L

Raw alga Zn(II) 6 - 35.8 King et al.
[80]

Ulva fasciata sp Raw alga Zn(II) 30 5 13.5 Kumar et al.
[86]
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(b) Physical Modifications

Chemicalmodification is not the only option to improve the properties of biosorbents,
physical modification has also been used to some extent. One of the main examples
of this type of modification is physical activation. This treatment is based on the
elimination of a large amount of internal carbon mass, which is a necessary step
to obtain a well-developed carbon structure. While, in chemical activation, all the
chemicals employed are dehydrating agents that affect pyrolytic decomposition and
prevent tar formation, thus, enhancing the yield of carbon [13]. The production of an
activated carbon by the physical activation includes a high temperature around 1100–
1250 K, this processing can be carried out on the basis of steam, carbon dioxide, and
air, or a combination of these [131]. The physical activation takes place in two main
steps: the first is a pyrolysis step of the carbon product with a temperature ranges
from 300 ˚C to 500 ˚C. At this first stage, the resulting char has a porosity not well
developed. The second step is to attack the char with steam or carbon dioxide with a
temperature of 900 ˚C–1000 ˚C. This step allows the porosity to develop completely
[6]. This kind of modification has been the subject of some published studies and this
is perhaps due to its remarkable influence on the adsorption capacity of bioadsorbents
prepared frommacroalgae and other biomasses regarding inorganic and even organic
pollutants [13, 29, 65, 78].

Cho et al. [29] evaluated the adsorption characteristics of charcoal derived from
the brown macroalga Undaria pinnatifida in the removal of copper from aqueous
solution. The charcoal was physically and chemically modified to compare the effect
of the chosen modification method on the capacity of the prepared biosorbent to
remove copper ions. This study demonstrated the effectiveness of using the physical
activated char prepared from seaweeds (Fig. 8.4) in the adsorption of Cu2+, which
is higher even than that activated as a result of the chemical process (activation by
KOH). The physically activated char showed a great adsorption capacity towardCu2+.
As well as, the authors have explained the low adsorption capacity of char prepared
through the chemical activation by the low amount of exchangeable cations, and this
was due to the use of an alkaline solution, which decreased the adsorption capacity.
The activation byKOH contributes to the removal of the exchangeable alkali or alkali
earth metals. The authors noted that the ion exchange might be the main mechanism

Dried alga
(8 g)

Pyrolysis with N2

(1 h, 500°C, 50 mL min-1)

Macroalgae-based
char

Modification in a reactor 
with water vapor.

(40 vol %)

Reactor temperature 
increasing from 25 to 700°C.

(rate of 5°C min-1)

Maintaining 
temperature 
at 700°C (1h)

Physically activated char

Fig. 8.4 Physical activation of char is derived from U. pinnatifida biomass
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involved in the removal of copper ions. Also, it was suggested that the heavy metal
ion removal procedure using biochar takes place in two steps, the first being the
adsorption that takes place in the porous structure of this biosorbent. While, in the
second step the ion exchange occurs [142].

6.2.3 Macroalgae Biopolymers

Agar, carrageenan, and alginates are seaweeds hydrocolloids and themost recognized
constituents of the algae cell wall. The term “hydrocolloid” refers to any substance
allowing the formation of colloidal systems in the form of a gel or sol system of
solubilized particles when it is in contact with water [129]. This section focuses
mainly on the alginates and carrageenans, which are biopolymers extracted from
seaweeds very suitable for the removal of heavy metal pollution. Carrageenans are
isolated from the cell wall of red algae, while alginates are obtained from those of
brown algae.

(a) Alginic acid and Alginates

Alginic acids are ionic polysaccharides and are abundant in the brown algae cell walls
[41]. These polysaccharides belong to a family of copolymers of b-D-mannuronic
acid (M) and a-L-guluronic acid (G) [87]. The content of these polysaccharides in
the biomass can reach 40% of the dry weight; this strongly depends on two main
factors, namely the species and growth conditions.

Alginate is a salt of alginic acid that refers to the common name given to the
family of linear polysaccharides containing 1,4-linked b-d-mannuronic (M) and a-
l- guluronic (G) [32, 82]. Apart from seaweeds, some microorganisms are able to
produce alginates as well, such as Azotobacter vinelandii and some strains of Pseu-
domonas [57]. The extracts of brown seaweeds containing alginates were not sold
as thinking and gelling agents until 1930s [82]. The total world production of this
polymerwas estimated to be around 30 000million/year [57]. The difference between
alginic acid and alginate can be observed in their chemical structures (Fig. 8.5).

The functional groups that aremost abundant in brown algae are carboxylic groups
present in alginate polysaccharides, they are responsible for the ion exchange capacity
and that of adsorption [136]. These hydrocolloids that are currently used in various
domains, have a high degree of physicochemical heterogeneity, which affects their
quality and determines their possible applicability.

Sodium and calcium alginate are the main known forms of alginic salts extracted
from macroalgae, and the difference between these salts depends mainly on the
nature of the reagent used during the extraction step. The adapted method to extract
sodium alginate by several researchers is that developed by Calumpong et al. [24]
with some slight modifications [42, 158]. In accordance with this procedure, 25 g
of the dried algae is soaked in 800 mL of 2% (v/v) formaldehyde under steering at
room temperature for 1 day to remove phenolic compounds and pigments. Later,
the sample is thoroughly rinsed with water, then added to 0.2 M hydrochloric acid
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Fig. 8.5 a Chemical
structure of alginic acid, b
Chemical structure of
sodium alginate
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(800 mL) and soaked overnight in HCL. Then, washed with pure water and start
the extraction step with the addition of 2% Na2Co3 during 3 h at 100 °C. After
this time, the mixture is centrifuged (10,000 × g, 30 min) to separate the soluble
fraction from the obtained mixture, while the polysaccharides are precipitated by 3
volumes of ethanol 95% (v/3v). Then, the collected sodium alginate is washed twice
by 100 mL of acetone, dried at 65 °C, dissolved again in 100 mL of pure water, and
before drying the alginate at 65 °C, it was first reprecipitated with ethanol (v/3v).
The different steps of sodium alginates extraction are listed in Fig. 1.6.

The difference between the alginates obtained from different sources is in their
guluronic (G) and mannuronic (M) residues and the length of each block [88]. These
extracts can exist in different forms, which do not have the same properties. Sodium
alginate is soluble in water, but calcium alginate can only be soluble if it is dissolved
in an alkaline medium because of their physico-chemical and rheological properties.
This polymer has a selective affinity toward the cations according to their nature.
This affinity depends on some factors including the composition of alginate and
electrostatics forces [3]. Physicochemical and rheological properties of the polymer
are influenced by the composition in terms of G and M. In addition, the M/G ratio,
which ranges between 0.25 and 2.25, allows to appreciate the quality of the alginate.
This ratio varies depending on two important factors: the season and the type of
the brown alga specie [104]. For instance, the alginate M/G of Laminaria digitata,
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Soaked in 
formaldehyde

(24 h at 25°C)

Dried algae
(25 g)

Addition of 
Na2CO3 2%
(3 h at 100° C)

Wash with water/ 
addition of HCl

(0.2 M, 0,8 L)

Wash with 
pure water

Centrifugation 
of soluble 
fraction

First precipitation of 
sodium alginates with 

ethanol (95%)

Wash twice with 
acetone 
(100 mL)

Dissolve in 
pure water

(100 mL)

Purified sodium alginates
Second precipitation 

with ethanol (95 %)

Fig. 8.6 Extraction of sodium alginates from a brown macroalga

Laminaria longicruris,AscophyllumNodosum,Macrocystis Pyrifera,Fucus Serratus
is 1,44; 2,03; 1,77 1,56; and 1,06, respectively [130]. M/G is calculated using the
below equation [55]. Alginates are widely used as additives and ingredients in the
food industry [52]. Furthermore, the appreciated extract alginate in food applications
is that rich in G acid thanks to its ability to form a gel.

M

G
= 1− FG

FG
. (8.3)

where M: mannuronic acid, G: guluronic, and FG represent the mole fraction of G.
After the extraction, the characterization step of the isolated alginate is essential.

In sum, the techniques employed for this purpose are: (i) FTIR spectroscopic analysis
that is used to show characteristic peaks corresponding to the various groups present
in the alginates extracted from seaweeds. It was recommended to quasi-quantitatively
determine the M/G value in alginates by measuring the ratio of the absorption band
intensities at 808 (M) and 787 cm−1 (G) in the infrared spectra [156]. (ii) NMR
spectroscopy; this technique of characterization is considered as the most reliable
method for the determination of the structure and composition of alginates [20]. The
information acquired by this analysis in terms of the uronic acid composition of the
alginate allow the calculation of the ratio Mannuronic acid/Guluronic acid (M/G)
[55] as well as the distribution of M and G units throughout the polymer chain [146].
(iii) Reological analysis: this technique allows to measure the viscosity of alginate
extract using a rheometer with a Peltier temperature control system at 25 °C [40].

Classical methods of alginate extraction seem to present certain disadvantages as
they can alter the chemical structure of the biopolymer [164]. Therefore, this situation
has pushed some researchers to look for other effective techniques, which do not
affect the physicochemical properties, especially if these alginates extracts are made
for future pharmaceutical or medical application. Ultrasound-assisted extraction is
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a process that does not affect the chemical structure of the biopolymer and its molar
mass distribution, and it also allows to reduce the extraction time [164].

Apart from its use in the removal of heavy metals, sodium alginate obtained
from brown seaweeds exhibits various biological properties, such as antitumour
and anti-inflammatory activity [119]. As well, alginate was described as a smart
polysaccharide. More information on alginate can be found in a good discussion on
the smarter behavior of this polymer and its applications; carried out by Gupta and
Raghava [57].

There is a wealth of literature on the use of alginates derived from brown algae
to remove heavy metal ions from aqueous solution [32, 38, 97, 118]. The huge
exploitation of this algae class may be explained by their performance toward these
cations, which is generally better than it is of other seaweeds divisions because of the
strong presence of carboxyl groups [136]. It was proved that these linking groups can
be increased by an oxidation of marine macroalgae with potassium permanganate.
Moreover, this treatment is considered to be one of the main means of increasing the
number of carboxylic groups of alginic acids. Consequently, the adsorption behavior
of this biomass increases [98]. The evaluation of this behavior in the raw brown
alga Cystoseira barbata and in its alginate extract regarding the removal of Cd(II)
and Pb(II) was the aim of a study conducted by [154]. According to this research,
C. barbata alginate showed a good performance, and the ratio M/G was found to
be 0.64, this normally indicates the dominance of block G over M. Regarding the
adsorption capacity, the alginate beads prepared fromC. barbata showed amaximum
adsorption capacity of 454 mg/g for Pb2+ and 107 mg/g for Cu2+. These capacities
were found to be higher even than those obtained when C. barbata was used as
adsorbent at its raw form. The obtained adsorption capacities of raw alga toward
Cu2+ and Pb2+ are 279.2 mg/g and 69.3 mg/g, respectively.

Sodium alginates as adsorbents are usually undergoing an essential chemical
modification during their preparation, due to the high solubility and weak chemical
resistance. This treatment consists of surface grafting and crosslinking [51]. As well
as, it was reported that the alginate extracted from Laminaria digitata in the form of
calcium alginate beads has a high copper and cadmium uptake capacity compared
with other bioadsorbents. This is usually due to its high M/G ratio [118]. One of
the solutions to overcome the difficulties of adsorbent materials based on sodium
alginates, such as their hard structure, limited solubility and high viscosity of their
solution, is to compositing themwith thosewith suitable low viscosity and rotation of
chains such as poly(vinyl alcohol). Ebrahimi et al. [38] prepared poly(vinyl alcohol)
and sodium alginate composite nanofibers (PVA/SA) through the electro spinning
method to remove cadmium ions from aqueuse solution. The maximum adsorption
capacity related to the use of this adsorbent is 93.163 mg/g, which was obtained with
Langmuir model and under optimal experimental conditions.

Brown algae are not the only class from which alginates can be extracted, in
1982, alginates were unexpectedly detected in one of the calcareous red algae species
belonging to the Corallinaceae family [156]. Therefore, this discovery has encour-
aged the researchers to focus on the red algae species as a source of extraction of these
polysaccharides. In this approach, and for a better valorization of marine resources, a
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recent study conducted by Lucaci et al. [97] has been carried out on the extraction of
alginate from red alga C. corymbosum sp, in order to test its potential as biosorbent
toward the removal of Cu(II) ions. The maximum adsorption capacity found based
on the Langmuir model is 166.66 mg/g reported with the use of C. corymbosum sp
alginate as adsorbent. Adsorption process of Cu2+ was 10 times higher than when
using raw algae as the adsorbent. The scanning electron microscope (SEM) charac-
terization of the alginate showed a porous structure and opening shapes. Furthermore,
FTIR spectroscopy indicated that the alginate extracted from the raw alga has a large
number of functional groups on its surface compared with the all adsorbent materials
investigated.

A pre-extraction step has been recommended in order to obtain a high viscosity
of alginate, in which the alga is treated with 0.1% formaldehyde overnight and then
washed once using hydrochloric acid at pH 4 in a batch system with continuous
stirring lasting 15 min [62]. It was found that the alginate presents in algae biomass
cannot be all precipitated, but there is a significant amount still after the separation
and the precipitation steps due to its high solubility in water [42]. In this context, and
in order to not lose soluble alginate, Lucaci et al. [97] proposed the iron nanoparticles
functionalized with this polymer as adsorbent to test its behavior with regard to the
elimination of copper ions contained in the aqueous solution..

(b) Carageenans

Carrageenans are a group of linear sulfated polysaccharides obtained by extrac-
tion from certain species of red algae [155]. Carrageenan is composed of β-1,3
D-galactose and α-1,4 D-(anhydro) galactose and contains about 24% ester sulfate.
There are different types of carrageenan, which depends on the number and the posi-
tion of sulfate group. Carrageenan is divided into variety of types, such as lambda,
kappa, iota, theta, and mu carrageenan, and all containing 22–35% of sulfate groups.
This classification has been developed on the basis of the solubility of this polymer
in potassium chloride [109]. The chemical structure of some of these carrageenans,
as well as that of agarose, is shown in Fig. 8.7 [18, 109].

The world production of carrageenan is estimated at 16,500 ton/year, and only
commercially available forms are kappa, iota, and lambda carrageenan [130]. Kappa-
carrageenan is distinguished from agarose, which is a sulfated polysaccharide of
brown algae by the configuration of the a-linked galactose residues and by the pres-
ence of one sulfate substituent at C4 on the b-linked D galactose residues (Fig. 8.7).
Related to their rheological properties, agarose gives rigid and turbid gels, while κ-
and ι-carrageenans form clear gels [130]. The rigidity of the gels is directly related
to the molecular structure and decreases when the sulfate content increases [130].
Carrageenan is widely used as texturing andmoisturizing agents in various industries
and its use depends mainly on its rheological properties [18, 109].

Carrageenan can be isolated from red algae by the following two main steps; the
first is the extraction step using chemicals, such as strong bases KOH and NaOH, the
second is alcohol precipitation with ethanol, and then the carrageenan yield is sepa-
rated from the ethanol–water mixture by a filtration membrane [155]. The precipita-
tion can be also conducted using isopropyl alcohol [130]. Despite the emphasis on the



292 L. Boukarma et al.

Fig. 8.7 (a) Chemical
structure of μ-carageenan,
(b) Chemical structure of
k-carrageenan, (c) Chemical
structure of i-carrageenan,
(d) Chemical structure of
agarose
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extraction of carrageenan from algal biomass, its direct use in wastewater treatment
whether ladenwith organic or inorganic pollution, remains poorly documented. Thus,
more research is needed on the use of carrageenan prepared from red macroalgae as
a natural sorbent. Contrariwise, commercial grade carrageenan is well used as mate-
rials to prepare effective adsorbents for organic and inorganic pollutants removal [1,
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92, 94, 100, 105]. Biopolymers such as carrageenans have often been considered as
adsorbents for removing metals from solution, which is mainly explained by their
intrinsic properties in which several functional groups have a significant role [145].
Specifically, hydroxide and sulfate groups have been reported as dominant binding
groups in this polymer that are involved in the adsorption process.

6.2.4 Macroalgae Waste

Several studies have focused on the removal of heavy metals using agricultural and
industrial wastes, such as coal ash, rice husk, activated carbon [66, 73, 160]. In
this regards, algal marine macroalgae as adsorbents have also been widely studied
and appreciated. As well as, it was recommended that these biomaterials undergo
modifications and be treated with specific chemicals to increase their adsorption
capacity and make their surfaces more reactive [136].

The macroalgal waste from alginate extraction is a valuable biomass that can
be used as an adsorbent to remove Cu2+ from aqueous solution. A recent study
conducted by Lucaci et al. [97] proved that waste resulting from the alginate extrac-
tion process contained in the marine red alga C. corymbosum sp can be successfully
used in the removal of these ions with a considerable maximum adsorption capacity
of 83.33 mg/g. In fact, this capacity was found to be higher even than it’s of the raw
alga and the composite material (iron nanoparticles functionalized with alginate).
In the same approach, Soliman et al. [144] studied the residue of Hydroclathrus
clathratus after extracting most of its phytochemicals. The adsorption capacities of
the prepared adsorbent from this alga were 96.46 mg/g and 43.4 mg/g for Cd2+ and
Cu2+, respectively.

7 Concluding Remarks

This chapter has highlighted the possibility of using marine macroalgae as inexpen-
sive bio-adsorbents to reduce and remove heavy metal ions from industrial wastew-
ater, and through our humble analysis of the data reviewed in this topic, the following
remarks can be made:

• Seaweeds showed a great capacity to eliminate these inorganic pollutants from
water, thus, they can be used as adsorbents.

• Alginate and carrageenan have turned out to be the main polymers responsible for
the selectivity of macroalgae for these ions removal, due to their active binding
sites, such as carboxylic, sulfonic, and hydroxyl groups.

• Therefore, a particular attention should be paid to the determination of the chem-
ical and structural composition of algae, because it is a crucial step to which any
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researcher has to proceed before considering applying these algae in the biosorp-
tion process or in any other field, and such information makes it possible to find
out which category of algae is more suited to the removal of these ions.

• The great diversity and rich composition of this biomass may lead to the discovery
of many new algal bioproducts and processes in the future with potential removal
rate of metal ions.

• Also, the use of this resource in the field of biosorption has been seen as a
promising solution to the high cost associated with the traditional technologies
currently used to treat polluted effluents.

• Even if the number of attempts concerning the removal of these micropollutants
by dead marine algae, but still poorly treated their application in the treatment of
industrial wastewater.

• Despite the satisfactory results of algal biosorbents in removing heavy metals,
there is still a need to develop from this biomass effective and suitable sorbents
for the treatment of industrial wastewater containing various types of inorganic
impurities.
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Electrochemical Synthesis
of Titania-Containing Composites
with a Metallic Matrix for Photochemical
Degradation of Organic Pollutants
in Wastewater

V. S. Protsenko and F. I. Danilov

Abstract Immobilized TiO2 photocatalyst is considered as a promising approach
to fabricate high-performance and available materials for wastewater treatment.
The immobilization of TiO2 particles can be performed by various manufacturing
techniques, the electrochemical deposition being the most convenient and tunable
method. This chapter surveyed the literature data on electrochemical synthesis of
TiO2-containing composites with photocatalytic performance. The electrochemical
deposition and characterization of iron/titania composite coatings were considered
in detail. The content of TiO2 dispersed phase in the fabricated composites was up
to about 5 wt.%. The electrodeposited Fe–TiO2 composites exhibited photocatalytic
properties regarding the photochemical degradation of methylene blue and methyl
orange organic molecules in water solution. The apparent rate constants of photo-
chemical degradation of the examined organic dyes on the electrodeposited Fe–TiO2

photocatalyst were in the range of (1.8–12.8) × 10−3 min−1.

Keywords TiO2 heterogeneous photocatalyst · Coatings · Electrodeposition ·
Composite · Fe–TiO2 ·Methanesulfonate electrolyte · Protective ceria layer ·
Photochemical degradation · Organic dye ·Wastewater treatment

1 Introduction

It is well known that titania has wide applications in photocatalytic degradation of
organic pollutants, this technique is associatedwith promising and efficient advanced
oxidation processes [1, 9, 37, 39]. Advanced oxidation processes imply that different
strongly oxidizing agents (for instance, hydroxyl radicals •OH) are formed in the reac-
tion zone, which ensures almost the total mineralization of various organic contam-
inants. A number of treatment processes have been designed, which yield •OH radi-
cals and other oxidizing agents: O3 and H2O2 photolysis, Fenton and photo-Fenton
techniques, peroxonation, and heterogeneous photochemical catalysis [1, 32, 37,
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39]. Although all these kinds of advanced oxidation processes are of great value
and importance in the light of their practical application, the heterogeneous photo-
catalysis, involving the use of photo-excited semiconductor TiO2, attracts special
attention. This is due to the fact that titanium dioxide is considered actually as an
ideal photocatalyst for the treatment of industrial sewage [8, 13, 22, 27, 39, 41, 52].

TiO2 particles in heterogeneous photocatalysis can be used both in the form of
fine dispersed powders suspended in water solutions and in the form of layers in
which TiO2 particles are fixed on an appropriate substrate (immobilized TiO2 films)
[1, 39]. TiO2 photocatalytic particles in a suspended form demonstrate quite a few
advantages: they can be easily and reliably prepared and utilized, and their specific
surface area is commonly very high. In addition, slurry TiO2-containing systems can
be readily aerated, thereby reinforcing the photocatalytic behavior via impeding the
recombination of electron–hole pairs [39].

Unfortunately, the TiO2-based slurry systems are not stable enough; the processes
of aggregation and sedimentation can quickly occur in these systems, which reduces
the photocatalytic activity. In addition, there is a need to carry out an expensive
and time-consuming post-treatment of titania particles in order to maintain slurry
systems. At the same time, immobilized titania films are stable enough and exhibit
reliable photocatalytic activity during long-run tests [53]. In addition, immobilized
TiO2 thin layers do not require the filtration and separation of photocatalytic particles.
However, a problem arises concerning the search for a suitable and trouble-free
support for titania catalytic films.

Various kinds of materials have been developed to support the titania photocata-
lyst particles: activated carbon, silica, glasses, polymericmaterials, zeolites, alumina,
different steels, synthetic fibers, etc. [2, 36, 50, 53]. Immobilization of TiO2 particles
can be performed by using both transparent substrates (such as glass-based mate-
rials and fused silica) and lightproof substrates (such as fibers, metals, and activated
carbon). Numerous methods were developed to prepare supported titania: chemical
vapor deposition, thermal treatment, sol–gel technique, electrochemical and elec-
trophoretic deposition, sol-spray, and hydrothermal procedure [53]. These produc-
tion techniques commonly yield composites, which are regarded as high-efficient
materials to remove different pollutants from wastewater [14].

Generally speaking, the electrodeposition of composites coatings can be
conducted both on cathode and on anode. Cathodic electrochemical deposition yields
composite filmswith ametallic matrix [28], whereas anodic electrodeposition allows
producing oxide/hydroxide layers, which can also be used in wastewater treatment
[4, 23, 40].

Weconfine this chapter to the processes of cathodic electrodepositionof composite
films, in which finely dispersed TiO2 particles are immobilized by a growing elec-
trodeposited metallic matrix. This technique seems to be very promising to develop
efficient supports for TiO2 heterogeneous photocatalysts.
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2 Electrodeposition of Titania-Containing Composites
with Metallic Matrices

The electrochemical deposition of composite coatings often provides better physico-
chemical and performance properties than the electrodeposition of individual metals
and alloys [28, 60]. Electrochemical synthesis of composites includes incorpora-
tion of finely dispersed phase into a growing metallic matrix by using electrolytes
containing proper metal ions together with colloidal particles. This technique can
provide controlled, flexible, and reliable production of composite materials with
targeted chemical and phase compositions and physicochemical and service char-
acteristics. In addition, electrodeposition is considered a simple, available, and not
expensive technique [59]. Obviously, entrapping TiO2 nano- or micro-particles by
an electrodeposited metal matrix will ensure photocatalytic behavior of the obtained
composite layers.

There are a number of papers, which report the electrochemical synthesis of
photocatalytic titania-containing composites with a metallic matrix. Thus, nanos-
tructured composites Zn–TiO2 coatings were electrodeposited on a steel substrate
[21]. The obtained composite films, Zn–TiO2, were shown to be extremely active in
the photocatalytic oxidation of CH3CHO.

Reference [55] considered immobilization of TiO2 by co-electrodeposition with a
nickelmatrix from a commonWatt’s nickel plating electrolyte. The electrodeposition
was performed using a rotating disc electrode (brass). It was shown that the changes in
Ni surface morphology and microstructure have an influence upon the photocatalytic
behavior of the composite Ni–TiO2 electrodeposits under ultraviolet illumination.
The photocatalytic performance was reinforced by an increase in the TiO2 loading
in deposited layers and a decrease in the value of grain size in the Ni matrix.

Ni–TiO2/TiO2 multilayer electrodepositswere prepared via the sol-modified pulse
plating deposition method [34]. The activity of the multilayer coatings was estimated
by measuring the rate of the photochemical destruction of methyl orange dye. The
multilayers annealed at 450 °C showed optimum photocatalytic efficiency: 53.64%
methyl orange degradation after 5 h of ultraviolet illumination was observed.

It was stated that Ni–TiO2 composite films containing up to 2.35 wt.% of titania
can be prepared from an electrochemical system based on a deep eutectic solvent
(ethaline) [10]. These coatings were successfully used to perform the destruction of
methylene blue organic dye induced by ultraviolet light.

Reference [33] described the electrodeposition of Al–TiO2 composite layers from
a dimethyl sulfone–aluminum chloride plating bath with suspended titania particu-
lates. The electrodeposited Al–TiO2 composite layers were subsequently anodized in
an oxalic aqueous solution. It was stated that anodization step yielded the conversion
of Al matrix into an alumina film with a great number of nanopores. Thus, a porous
alumina layer with the embedded titania dispersed phase was prepared. The anodized
composite deposits exhibited better photocatalytic efficiency than the as-deposited
layers.
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Ag–TiO2 nanocomposites were electrochemically deposited using an alkaline
cyanide-free electrolyte based on the solution ofAgNO3 with colloidal TiO2 particles
[31]. Silver–TiO2 coatings showed photocatalytic and antimicrobial properties; such
behavior was comparable with the one obtained by other fabrication techniques. The
electrodeposition of Ag–SiO2–TiO2 and Ag–TiO2 composite layers on a graphite
substrate yielded materials with an improved photocatalytic performance under the
action of visible or ultraviolet radiation [49].

Reference [26] reported an interesting approach to the preparation of composite
films containing Ag, TiO2, and bamboo charcoal. The stepwise method included
sol–gel synthesis, wet impregnation, and electrodeposition. The as-fabricated coat-
ings exhibited photocatalytic and antibacterial activity. Bamboo-typeTiO2 nanotubes
embedded in electrodeposited nanostructured silver matrix showed photocatalytic
activity toward the photochemical destruction of methylene blue organic molecules
induced by ultraviolet illumination [29].

A gold–titania heterojunction nanotube composite having a tube-in-tube nanos-
tructure was synthesized using a pulsed electrolysis [30]. The electrodeposited
composite demonstrated an enhancedphotocatalytic behaviorwith respect to destruc-
tion of acid orange 7 organic dye; this phenomenon being resulted in the synergetic
effect in the system Cr(VI)—acid orange 7 organic dye.

Reference [51] showed that doped N,S–TiO2 particles can be immobilized into
Sn–Ni alloymatrix by direct current electrodeposition technique. The highest content
of embedded N,S–TiO2 particles in composite coatings was about 3.25 wt.%. The
prepared composite films manifested an improved photocatalytic activity toward the
destruction of Rhodamine B and methylene blue dyes.

Thus, various metals can be used as a matrix in TiO2-containing electrodeposited
composites with photocatalytic performance. A number of them suffer from high
costs (Ag, Au) and some are toxic and hazardous to people’s health and the envi-
ronment (Ni, Zn). From our point of view, the iron matrix is an excellent choice to
produce this kind of composite coatings, since iron and its soluble compound are
easily available, nontoxic, and inexpensive.

Iron-based coatings can be produced from plating electrolytes of various kinds
and compositions. Among them, a methanesulfonate plating bath proved to be very
successful [45, 57]. These plating electrolytes imply the application of methane-
sulfonic acid (CH3SO2OH) and its salts. Methanesulfonic acid is an eco-friendly
product and is nowadays regarded as a “green acid” (Walsh and Ponce de Leon [61];
[3, 15]. Most methanesulfonates well dissolve in water, the electroconductivity of
the electrolytes based on methanesulfonic acid and its salts is relatively high, and
the treatment of the resulting wastewater does not pose any difficulties and potential
danger to the environment [15]. Therefore, aqueous solutions of methanesulfonic
acid seem to be practically ideal electrolytes for many electrochemical processes.

Furthermore, we will overview the main results of our studies of the electrochem-
ical preparation of iron–titania coatings by using amethanesulfonate plating bath and
their use for photochemical catalysis in wastewater treatment [11, 43, 44], Protsenko
et al. [47, 48]; [12, 46, 58].
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3 Electrodeposition and Characterization
of Titania-Containing Composites with an Iron Matrix

To electrodeposit iron–TiO2 composite films, a methanesulfonate plating bath was
used [12, 46, 58]. Plating iron-containing electrolytes were prepared by dissolving
reagent grade chemicals in double-distilled water. The electrolyte contained 1.25 M
Fe(CH3SO3)2 and 1–12 g dm–3 TiO2 nanopowder. The synthesis of aqueous solu-
tion of Fe (II) methanesulfonate was performed according to the procedure defined
elsewhere [15]. A specified volume of Na2CO3 solution was added to the plating
bath to adjust its pH to a designated value (pH 1.3). This electroplating bath
allowed obtaining nanocrystalline iron-based electrodeposits, the current efficiency
and electrodeposition rate being relatively high (about 95% and ca. 2–4 μm min–1,
respectively) [45].

It is known that TiO2 may form different crystal structures determining its physic-
ochemical properties [8]. In thiswork,we usedDegussa P 25 nanopowder (Evonik) as
a TiO2 source for the plating bath preparation. The average diameter of particulates in
Degussa P 25 is about 25 nm. This kind of TiO2 nanopowder includes mixed anatase
and rutile crystalline modifications (at the weight ratio of about 80:20, respectively),
microquantity of an amorphous TiO2 phase being also detectable [38]. After adding
a required portion of TiO2 powder immediately to the iron plating electrolyte, the
colloidal methanesulfonate electrolyte was intensively stirred by a magnetic stirrer
for 1 h and then sonicated (an UZDN ultrasonic generator, 22.4 kHz, 1 h). This
treatment allowed ensuring the homogeneous distribution of dispersed TiO2 partic-
ulates throughout the system. In addition, the colloidal plating bath was uninterrupt-
edly agitated by a magnetic stirrer (~60 revs per minute) during the electrochemical
deposition of iron–titania composite films, which prevents the sedimentation of TiO2

agglomerated particles.
Fe–TiO2 composite coatings were electrodeposited at steady values of cathodic

current density (5–20A dm–2). A usual thermostated glass cell was used. The temper-
ature was 298 K. Plates made of mild steel (1 cm2) were used as substrates to elec-
trodeposit iron-based composite coatings. Prior to electrodepositing the coating, the
surface of the sample was degreased, etched for 1–2 min in aqueous HCl solution,
and washed with double distilled water. The anodes were made of mild steel.

Nanopowders of metal oxides in aqueous electrolyte are known to tend toward
aggregation. In compliance with DLVO (Derjaguin, Landau, Verwey, Overbeek)
theory, the double electric layer forming at the interface of colloidal particulates will
be compressed in the electrolytes having a relatively high ionic strength. Thiswill lead
to aggregation occurring in any lyophobic colloidal system. Therefore, we observed
the particle coagulation in iron-based plating baths, and the average diameter of
the colloidal particles was evaluated by the sedimentation in the field of gravitation
(digital analytical balance Vibra HT-120 (Shinko Denshi, Japan)). It was stated that
the most probable diameter of the TiO2 dispersed particles in methanesulfonate iron
plating electrolytes is about 2 μm.
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Fig. 1 Effect of the concentration of TiO2 in suspensions on the content of titania in the composite
films electrodeposited at various current densities (A m–2): (1) 0.05, (2) 0.10, (3) 0.15, and (4) 0.20.
The electrolytes contained 1.25 M Fe(CH3SO3)2, pH 1.3. The electrodeposition was conducted at
the temperature of 298 K for 20 min. (Reprinted from [58] by permission of Springer Nature)

An increase in the content of TiO2 dispersed phase in the composite electrode-
posits is observed with both increasing the titania concentration in the colloidal iron
plating bath and decreasing the cathodic current density (Fig. 1). Similar dependences
of the content of a dispersed phase are often detected in the case of electrochemical
deposition of different composite coatings [28].

The inclusion of colloidal particles in an electrochemically deposited matrix is
ascribed to their adsorption on the cathode surface, this process is described by
a kinetic model developed by ref.[16]. This concept implies that the introduction
of dispersed particulates into an electrodeposited matrix occurs via the two-step
adsorption mechanism. A Langmuir-like mathematical expression is involved to
interpret the adsorption of colloidal particles.At the first stage of adsorption, colloidal
particles become attached to the cathode surface, essentially saving their adsorption-
solvate shells. Therefore, the physical adsorption at the first stage is referred to as
a “weak adsorption”. The second stage implies that the adsorption-solvate shells at
the interface of colloidal particles disappear, and the particles become strongly fixed
on the electrode. Thus, the adsorption at the second stage is referred to as a “strong
adsorption”. Furthermore, the colloidal particulates that are firmly attached to the
metallic substrate are gradually incorporated into the growing composite film.

The kinetics of electrochemical codeposition of Fe–TiO2 composite electrode-
posits inmethanesulfonate platingbaths complieswith the advancedmodel suggested
by ref.[5]. The main kinetic equation of this model can be written as follows:
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where α is the volume concentration of the dispersed particles in the electrodeposit;
C is the volume concentration of dispersed particles in the electrolyte; A is the coef-
ficient taken from the exponential-type kinetic equation for the electrode process of
metal deposition i = i0eAη (here η is the cathodic overpotential and i0 is the exchange
current density);n is the number of electrons participating in electrochemical depo-
sition process; M is the relative atomic mass of deposited metal; F is the Faraday
constant; ρm is the metal density; k is the equilibrium adsorption constant; and B and
υ0 are some constants relating to the process of embedding the dispersed particulates
in the co-deposited metal (these constants are analogous to the coefficients A and i0,
respectively).

If we take the logarithm of Eq. (1), then the following expression can be obtained:
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As follows from Eq. (2), the graph in the lg C(1−α)

α
vs. lg i

1−α
coordinates should

give straight lines (Fig. 2), the slopes of these lines allow determining the values of B
A .

Fig. 2 Plots of lg C(1−α)
α

, lg i
1−α

dependences for iron–titania composite layers electrodeposited

at different TiO2 loadings in the electrolyte (g dm–3): (1) 10, (2) 5, (3) 2, and (4) 1. The electrolytes
contained 1.25 M of iron (II) methanesulfonate, pH 1.3. The electrodeposition was performed at
the temperature of 298 K. (Reprinted from [58] by permission of Springer Nature)
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These straight lines are parallel, which indicates that the B
A ratio does not depend on

both the cathode current density and the content of TiO2 in colloidal plating bath. The
calculated B

A value was stated to be about 0.583; hence, B is less than A. Considering
that B < A, it can be concluded that iron (II) cations that are on the surface of titania
particles in an adsorbed state are reduced with a decreased rate as compared with the
iron (II) cations in the bulk of plating bath [6].

On the basis of the calculated B
A values, C(1 − α)(2−

B
A )/α versus dependences

were plotted at varied cathodic current densities (Fig. 3). In conformity with Eq. (1),
the extrapolation of the series of these lines to the horizontal axis yields the value(− 1

k

)
. Calculation showed that the adsorption coefficient is k = 2.8 [58].

It is important to emphasize that the established value of k is much lower than that
in case of the use of a methanesulfonate plating bath with pure rutile modification of
titania at the same ionic composition (k= 49.8) [46]. This difference can be attributed
to some dissimilarity of chemical and colloidal properties of anatase and rutile.

It is reasonable to compare the content of TiO2 in composite electrodeposits
fabricated using colloidal electrolytes with Degussa P 25 titania particles on the one
hand, and pure rutile powder on the other hand. The experimental results revealed that
the mass concentration of TiO2 dispersed phase in the electrodeposited composites
from the electrolyte with the addition of Degussa P 25 powder is much lower than
that when the powder of solely rutile phase was used (all other conditions being

Fig. 3 Plots of

(
C(1− α)

(
2− B

A

))
/α vs. dependences for iron–titania composite layers electrode-

posited at varied current densities (Am–2): (1) 0.20, (2) 0.15, (3) 0.10, and (4) 0.05. The electrolytes
contained 1.25 M of iron (II) methanesulfonate, pH 1.3. The electrodeposition was performed at
the temperature of 298 K. (Reprinted from [58] by permission of Springer Nature)
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equal). For instance, at the TiO2 loading of 5 g dm–3 and the current density of 0.20
A m–2, the content of TiO2 particles embedded in the electrodeposits was about 12.1
and 2.5% for colloidal electrolytes containing rutile and Degussa P 25, respectively
[46, 58]. This may be due to the difference in the relevant adsorption coefficients.

To examine the morphological features of the surface of iron and iron–
TiO2 composite electrodeposits, scanning electron microscopy technique was used
(Fig. 4). The surface images of “pure” iron coatings exhibited the occurrence of
solitary non-uniform grains growing out of the surface layer (Fig. 4A). The pres-
ence of iron (about 97%) was demonstrated by the electron probe X-ray spectrum

Fig. 4 Scanning electron
microscopy micrographs of
pure iron (A), iron–titania (2
wt.%) (B), and iron–titania
(5 wt.%) (C) layers
electrodeposited at the
current density of 0.10 A
m–2. The coatings were
deposited from the plating
bath containing 1.25 M of
iron (II) methanesulfonate
(pH 1.3) at the temperature
of 298 K for 20 min.
(Reprinted from [12],
Copyright 2016, with
permission from Elsevier)
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Table 1 Content of different chemical elements (wt.%) in the places corresponding to points (1)
and (2) in Fig. 4C. (Reprinted from [12], Copyright 2016, with permission from Elsevier)

Point Iron Titanium Oxygen Other elements

(1) 1.21 58.49 40.14 0.16

(2) 97.27 1.41 1.17 0.15

microanalysis, small traces of oxygen and some other elements on the surface being
observed too.

Someflakelike agglomerations consisting of TiO2 dispersed particles are observed
on the surface images obtained by scanning electron microscopy (Fig. 4b,c); the
average size of these agglomerations is about 1–5 μm. The electron probe X-ray
spectrum microanalysis indicates that the flake-like agglomerated particles contain
mainly Ti and O (Table 1), and the ratio of titanium to oxygen practically coincides
with their stoichiometric ratio in titanium dioxide. The growth of the concentration
of TiO2 particulates in the colloidal plating bath promotes the expansion of these
agglomerations on the electrodeposits surface.

The results of electron probe X-ray spectrummicroanalysis indicate that a limited
amount of titanium (about 1–1.5%) is detectable on the surface areas where the
entrapped agglomerations of TiO2 are absent. It means that some nanosized particles
of titania are not conglomerated and can be embedded directly in the electrodeposited
metallic matrix.

The surface hardness of electrodeposits grows when titania dispersed particles
are entrapped by electrochemically deposited Fe matrix (Table 2). This may be
ascribed to the effect of dispersion strengthening [20]. This phenomenon is due to the
incorporation of fine particles of a dispersed phase, which impedes the movement
of dislocations in crystal structure, ensuring a hardening of composite materials.
When compared with “pure” iron electrodeposits, the microhardness of Fe–TiO2

composites is relatively high, which is extremely favorable in respect of their possible
practical use.

The presence ofTiO2 dispersed phase in electrodeposited layers imparts the photo-
catalytic activity to the surface of an electrodeposited composite. A process of photo-
chemical decompositionofmethyl orangedye inwastewater [54]wasused to evaluate
the photocatalytic activity of Fe–TiO2 composite electrodeposits fabricated from a
plating bath based on methanesulfonate salts.

Table 2 Effect of introduction of TiO2 dispersed phase into electrodeposited ironmatrix on surface
microhardness (the current density of 0.10 A m–2. (Reprinted from [12], Copyright 2016, with
permission from Elsevier)

Electrodeposit Surface hardness (HV)

Iron 470

Iron/titania (2 wt.%) 535

Iron/titania (5 wt.%) 665
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Fig. 5 Installation used to study photochemical efficiency of Fe–TiO2 composite films. UV lamp
was used as a [48] source of ultraviolet radiation. The sample of a photocatalyst (Fe–TiO2 electrode-
posited composite film) was immersed in the aqueous solution of an organic dye by a plastic holder.
The solution was continuously stirred by a magnetic stirrer (~60 revs per minute). (Reprinted from
Protsenko et al., Copyright 2017, with permission from Elsevier)

The kinetics of the destruction of above-mentioned organic dye in 0.1 M NaOH
was examined upon exposure to ultraviolet irradiation (λ = 180–275 nm) emitted
by a DKB-9 ultraviolet lamp [58]. The lamp was fixed above the solution of methyl
orange dye. Plates made of steel with deposited Fe–TiO2 films as photocatalysts
were immersed in the solution at a depth of 0.2 cm (Fig. 5). The volume of methyl
orange aqueous solution was 20 cm3. In all experiments, methyl orange solution was
uninterruptedly agitated. The concentration of methyl orange was determined via
photometric analysis (the wavelength was λ = 490 nm).

The molecules of methyl orange dye do not decompose in a 1 M NaOH solution
if they are not subjected to ultraviolet radiation (Fig. 6, curve 1). However, the influ-
ence of ultraviolet light causes the photochemical degradation (i.e., photolysis) of
methyl orange molecules (Fig. 6, curve 2). The rate of photochemical decomposi-
tion considerably increases when the Fe–TiO2 electrodeposited filmwas used (Fig. 6,
curve 3). Hence, the electrochemically synthesized Fe–TiO2 composite electrode-
posits demonstrate photocatalytic activity. It should be observed that the iron coatings
without embedded titania particles do not exhibit any photocatalytic behavior.

Kinetic curves plotted as “logarithm of the methyl orange concentration versus
time” dependences show a linear relation. This behavior indicates that the photo-
chemically induced destruction of methyl orange obeys the pseudo-first reaction
order. The linearized kinetic curves allow calculating the apparent rate constants: 5.4
× 10–3 min–1 and 13.5× 10–3 min–1 for organic dye decay in the absence and in the
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Fig. 6 Kinetic curves characterizing the reaction of methyl orange dye decolorization in a 1 M
NaOH solution: (1) in the dark, (2) under the action of ultraviolet light without any catalyst, and
(3) under the action of ultraviolet light on the electrodeposited iron–TiO2 photocatalyst (10 wt.%
TiO2). The insert shows the first-order linear transforms of the kinetic curves in coordinates lnC vs.
τ. (Reprinted from [58] by permission of Springer Nature)

presence of electrodeposited composite iron–titania (Degussa P 25) photocatalytic
layer, respectively [58].

It is worth comparing the value of apparent rate constant measured for the photo-
catalyst involving the use of TiO2 in the form of anatase (Degussa P 25) with that type
of the deposited Fe–TiO2 photocatalyst that includes titania in the form of “pure”
rutile: 9.8× 10–3 min–1 [46]. Composite iron–titania films containing predominantly
anatase exhibit considerably better photocatalytic efficiency than those based solely
on rutile phase, this observation coincides with the results given elsewhere [7, 42].

As far as the mechanism of photodestruction of methyl orange organic dye is
concerned, we believe that this process occurs on the surface of semiconductor
titania particles incorporated into deposited films in accordance with a basic reac-
tion scheme of heterogeneous photocatalysis. This mechanism includes the adsorp-
tion of a photon followed by the step of a generation of an electron and positively
charged hole. Then the water molecules are oxidized yielding •OH radicals; in addi-
tion, molecular oxygen originating from air is reduced forming hydrogen peroxide
(H2O2), hydroperoxyl radicals (•OOH ), and superoxide radical anions (O•−

2 ) [8, 41].
These oxygen-containing species are extremely reactive, they take part in the subse-
quent oxidative destruction of various organic compounds. Generally, heterogeneous
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photochemical catalysis involving titania particles ensures virtually total mineraliza-
tion of organic molecules and provides their destruction with the formation of CO2,
H2O, sulfate, and nitrate anions [25, 54].

The corrosion stability of iron-based electrochemically deposited composite
layers is not satisfactory enough, and iron matrix will corrode quickly in aqueous
solutions and humid atmosphere. Obviously, the use of composite iron–titania films
deposited in a methanesulfonate electrolyte as photocatalysts will be associated
with their rapid corrosion destruction and failure. Therefore, the search for ways
to increase the corrosion stability of the iron matrix is an important task, the
solution of which is a necessary condition for the successful application of iron–
titania composites as a photocatalytic material to purify the sewage from organic
contaminants.

Various treatment methods can be used to produce a protective film on the iron-
based coatings in order to enhance its corrosion resistance; cerium oxide layers
appear to be very promising from this standpoint. Deposited ceria layers were shown
to protect effectively iron and steel from corrosion damage [18, 19, 56]. They are
regarded as a proper replacement for chromate coatings that are very hazardous to
people’s health and environment (the issue of hexavalent chromium). In this context,
it should be mentioned that cerium oxide has been widely used in different water
treatment processes [24].

An environmentally friendly methanesulfonate electrolyte was developed to
prepare a protective thin ceria layer for the iron–titania composite films, Protsenko
et al. [48]. The plating bath for ceria electrodeposition contained 0.5 mol dm–3

Ce(CH3SO3)3. The cathodic electrosynthesis was conducted at the electrolyte pH of
1.3. The temperature was 298 K, and the cathodic current density was 5–25 A m–2.

When electrical current passes through the acid aqueous methanesulfonate solu-
tion, several reactions proceed on the cathode resulting in evolution of hydrogen and
electrochemical reduction of dissolved oxygen [18]:

H2O + e− = 1/2H2 + OH− (3)

H3O
+ + e− = 1/2H2 + H2O (4)

O2 + 2H2O + 2e− = H2O2 + 2OH− (5)

O2 + 2H2O + 4e− = 4OH− (6)

Sincemethanesulfonic acid is a very strong electrolyte [15] and its water solutions
do not exhibit any noticeable buffering action, an increase in the value of pH occurs
near the cathode surface due to the reactions [3–6] . This causes the formation of
cerium (III) hydroxides and hydroxo-complexes in the near electrode solution layer
[18]:
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Ce3+ + 3OH− = Ce(OH )3 (7)

2Ce3+ + 1/2O2 + H2O + 2OH− = 2[Ce(OH )]2+2 (8)

Cerium (III) compounds can be easily oxidized forming cerium (IV) complexes
and cerium (IV) oxide near the cathode surface:

Ce3+ + 1/2H2O2 + OH− = [Ce(OH )]2+2 (9)

Ce(OH )3 + O2 = 4CeO2 + 6H2O (10)

[Ce(OH )]2+2 = CeO2 + 2H2O (11)

It is shown that the surface appearance of iron–TiO2 composite films changes
after their cathodic processing in amethanesulfonate solution. As-deposited Fe–TiO2

coatings are light grey, whereas their surface becomes greyish-blue after the cathodic
treatment. Electron probe X-ray spectrum microanalysis indicated the formation of
CeO2 layers. Calculations revealed that the average thickness of the obtained ceria
films is about 60–70 nmProtsenko et al. [48]. The synthesized ceria films demonstrate
a good adhesion to the steel substrate: they cannot be separated from the surface of
iron–TiO2 electrodeposited composite by intensive rinsing with water.

According to the data obtained by the voltammetry method and electrochem-
ical impedance spectroscopy, Protsenko et al. [48], the formation of a thin ceria
layer causes an appreciable improvement in the corrosion resistance of iron–TiO2

electrodeposited composite in an aqueous medium. Thus, the Fe–TiO2 composite
coatings with a cathodically deposited protective CeO2 layer may serve as corrosion-
resistant photochemical catalysts to decompose organic dyes in wastewater having
natural pH. These composites modified with a ceria thin filmwill not corrode quickly
in the treated wastewater.

The photocatalytic behavior of the composite iron–TiO2 coatings with a thin
protective CeO2 film was characterized in the reactions of photodestruction of
two organic dyes, methyl orange and methylene blue, in water solutions, Prot-
senko et al. [48]. Spontaneous decomposition of methyl orange dye is not detected
without external irradiation, although photolysis is observed when the system is
exposed to ultraviolet light. However, the photochemically induced decay of methyl
orange molecules considerably accelerates by composite Fe–TiO2 catalyst. Thus,
the rate constant of photochemical decolorization was stated to increase from 1.1
× 10–3 min–1 to 1.8 × 10–3 min–1 when the composite electrodeposited iron–titania
film modified by ceria layer was introduced into the system.

Iron matrix without protective ceria layer corrodes rapidly in an aqueous medium
at neutral pH. Corrosion products of iron are accumulated in a solution as intensively
coloredfine-dispersed iron hydroxide; therefore, the kinetics of decolorization cannot
be estimated reliably by means of photometric measurements. Thus, the influence
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of electrochemical deposition of CeO2 film on the catalytic properties of electrode-
posited iron–titania photocatalyst was investigated in a water solution containing
0.1 M NaOH, in which Fe is highly resistant to corrosion and colored corrosion
products are not formed.

Kinetic study of the decolorization process in an alkaline solution containing
methyl orange, which was subjected to ultraviolet irradiation, showed that the depo-
sition of a thin ceria layer on the surface of iron–titania composite has no noticeable
effect on its photochemical performance (Fig. 7). Respective kinetic curves plotted
in linearized coordinates lnC vs. time practically coincide with each other, the calcu-
lated rate constant being about 12.8× 10–3 min–1. This value may be compared with
that typical of the photolysis (5.4 × 10–3 min–1, curve 1 in Fig. 7).

Several important conclusions can be drawn from the results described above.
An increase in solution pH accelerates both photolysis and photocatalytic destruc-
tion of the dye, other conditions being equal. It is believed that improved catalytic
activity of titania at higher pH is caused by the growth of the surface concentration
of active adsorption centers rather than by an increment in •OH radicals content that
is generated from OH– ions due to interaction with positively charged holes [17].

Fig. 7 Plot in linearized coordinates lnC vs. time characterizing the kinetics of decolorization
induced by ultraviolet light: (1) in the absence of catalyst, (2) under the action of iron–titania
catalyst (without modification), and (3) under the action of iron–titania catalyst [48] modified by
CeO2.Methyl orange dyewas dissolved in 0.1MNaOH (Reprinted fromProtsenko et al., Copyright
2017, with permission from Elsevier)
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The obtained data also indicate that the photocatalytic efficiency of composite
Fe–TiO2 deposits is not affected by the electrochemical modification of its surface
via formation of a thin protective CeO2 film (the rate constant of photochemically
induced decomposition of methyl orange remains practically unchanged). However,
it is well known that doping of semiconducting titania with some dopants (including
cerium) commonly enhances its photocatalytic activity [8, 35]. It should be remem-
bered in this context that the changes in chemistry, electronic structure, and crystal
lattice is a decisive factor when doping titanium dioxide [8]. The electrodeposition
of ceria films in accordance with the utilized procedure is conducted after the fabri-
cation of titania particles; therefore, there is no influence on both chemistry and
electronic and crystal structures of as-deposited Fe–TiO2 photocatalyst. Therefore,
this procedure cannot provide an efficient doping.

The photocatalytic performance of iron–TiO2 composite catalysts was also inves-
tigated in the process where the molecules of methylene blue dye were subjected to
destruction under the action of ultraviolet light (Fig. 8). The absorbance of aqueous
solutions was measured at the wavelengths of 670 nm in these experiments.

Fig. 8 Plot characterizing the kinetics of decolorization studied in aqueous solutions with natural
pH at different initial contents of organic dye (methylene blue): 1—1.00 × 10–4, 2—0.50 × 10–4,
and 3—0.25 × 10–4 M. The insert shows the first-order linear transforms of the kinetic curves in
coordinates lnC vs. τ. (Reprinted from Protsenko et al. [48], Copyright 2017, with permission from
Elsevier)
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Table 3 Kinetic parameters characterizing the photochemical decay of methylene blue and methyl
orange molecules on iron–titania catalyst with electrodeposited thin CeO2 layer. (Reprinted from
Protsenko et al. [48], Copyright 2017, with permission from Elsevier)

System k (min–1) τ 1/2 (min)

Methylene blue (at natural pH) 5.6 × 10–3 123.8

Methyl orange (at natural pH) 1.8 × 10–3 385.1

Methyl orange (0.1 M NaOH) 12.8 × 10–3 54.2

It should be noted that the rate of the photolysis ofmethylene blue dye is negligibly
small as compared with the rate of its photochemical destruction on the electrode-
posited Fe–TiO2 composite photocatalysts Protsenko et al. [48]. The rate constant
of the degradation of methylene blue was stated to be 5.6× 10–3 min–1, irrespective
of the initial concentration of the dye.

Table 3 summarizes the data on the rate constant and half-life of photochemical
destruction of the examined organic dyes on the Fe–TiO2 photocatalyst. As can be
seen, the electrodeposited iron–titania composites with a CeO2 protective film are
promising photocatalyst with respect to the photochemical decay of methyl orange
and methylene blue dyes in aqueous media at neutral pH values.

4 Conclusion

High-performance heterogeneous photocatalysts based on semiconducting titania
can be fabricated by the electrochemical deposition technique via co-deposition with
an iron matrix. The developed procedure involves the use of eco-friendly aqueous
methanesulfonate plating baths. The concentration of titania dispersed phase in elec-
trodeposited composite filmsmay reach 5wt.%. Themechanism of the co-deposition
complies with the improved Guglielmi’s mechanism.

The synthesized films with immobilized TiO2 particles exhibited pronounced
catalytic behavior in the photochemically induced decomposition of some organic
contaminants (organic dyes) under the action of ultraviolet radiation. Thus, these
heterogeneous composite photocatalysts can be successfully used in wastewater
treatment.

In order to protect the iron matrix from rapid corrosion damage, the modification
of the surface of as-deposited iron–titania composite was suggested via cathodic
electrochemical treatment in methanesulfonate solutions containing Ce(III) ions. A
deposited thin film of CeO2 protective layer appreciably improves corrosion stability
of the catalytic iron–TiO2 composite and does not affect its catalytic performance
toward the photochemical decomposition of methylene blue and methyl orange in
wastewater.
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