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Abstract Heavy metal pollution poses a grave environmental threat. Some of the
most toxicmetals are highlymobile and, therefore, easily transported through ground
water systems, thus, affecting large areas. Over the last decade, adsorption has been
greatly focused on as a strategy for contaminated water treatment. Its versatility and
relative ease of application have been a major determinant of its preference. Nano-
sized adsorbents have high surface areas and are size tunable and, hence, have been
favored in adsorption applications. The magnetic properties of nanosized magnetite
(Fe3O4) have made them particularly favorable. Magnetite composites with various
materials have widely been applied in the adsorptive treatment of real and synthetic
water containing heavy metal pollutants. This review outlines the application of
Fe3O4 nanoparticles and Fe3O4 organic composites in the adsorption of heavy metal
ions in aqueous solution. The reviewed articles indicate that the formation of Fe3O4

inorganic–organic composites improves the adsorption efficiencies of the compos-
ites and improves their applicability by providing magnetic separability. The pres-
ence of Fe3O4 nanoparticles in the composite materials also provides for improved
reusability of the adsorbent. Generally, the formation of these composites tends to
make adsorption a more viable alternative to conventional water treatment options
for heavy metal pollutants in water.
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1 Introduction

The environmental accumulation of heavy metals is of great concern owing to their
non-biodegradability [5, 31, 64]. Heavy metal pollution occurs primarily through
either of the following anthropogenic processes: manufacturing, mining, burning of
fossil fuels, and agriculture [20, 66]. Although anthropogenic activities contribute
the greater extent of heavy metal pollution, natural phenomena, e.g., erosion and
weathering of rocks also contribute to the pollution burden [48]. According to the
US EPA, the most toxic heavy metals are arsenic and lead with a maximum contam-
inant level goal (MCLG) of 0 mg L−1 (US EPA 2009; [21, 63]. Other listed toxic
heavy metals are copper, chromium, mercury, nickel, and cadmium. Heavy metals
may be toxic even at low concentrations resulting in poisoning or genetic disorders
as they have the potential to interfere with biological processes [12, 22]. As infor-
mation on the toxicity of heavy metals increases, the regulatory limits are adjusted
to lower concentrations making remediation more challenging [62]. Techniques like
electrochemical and photocatalytic oxidation, chemical coagulation, ion exchange,
bio- and phyto-remediation, and adsorption have been employed for the adsorption
of heavy metal pollution control [9, 40].

Adsorption is considered favorable due to its efficiency, versatility, simplicity
of operation, zero sludge production, and relatively lower costs [42, 70]. Adsorp-
tion at the solid-solution interface provides a possibility to control pollution due
to liquid waste [20]. Through consistent improvement efforts, several adsorbents
have been developed with current technologies focusing on nanosized adsorbents
due to the uniqueness of the properties owing to their nanometer sizes. Some of the
most investigated nanomaterials are iron oxides as a result of their stability, pollutant
affinity, and relatively low toxicity compared to other metal containing nanoparticles
[61]. Magnetite has received great consideration because it offers superior advan-
tages such as surface areas >100 m2 g−1 and superparamagnetism (~90 emu g−1

for bulk magnetite) as the size reduces to nanoscale [27, 61]. The removal of pollu-
tants through adsorption methods is highly dependent on the adsorbent’s surface
charge and the adsorbate’s speciation and degree of ionization [20]. The presence of
both ferrous (Fe2+) and ferric (Fe3+) ions allows Fe3O4 nanoparticles to participate in
redox-coupled adsorption processeswhich are particularly useful in the sequestration
of multi-valent ions. Themagnetic properties of Fe3O4 make them easily recoverable
after treatment, a challenge while using many nanometer sized materials [4, 20]. The
recovered particles can be reused, therefore, reducing the economic burden of the
treatment process [4, 12].

2 Magnetite

Iron-based nanoparticles have recently been applied in the adsorptive treatment of
polluted water [65]. Of the reported iron-based nanoparticles, zero-valent iron has
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received the greatest attention [26, 32]. Nanosized iron oxides composition varies
depending the iron species present and the magnetic properties; of the known iron
oxides, hematite (α-Fe2O3) maghemite (γ-Fe2O3), and magnetite (Fe3O4) have been
considered in the adsorption of heavy metals [29, 35, 38, 57]. Superparamagnetic
iron oxides (magnetite; Fe3O4) are commonly applied because of the ease of post-
adsorption retrieval using an external magnetic field. Upon removal of the magnetic
field, the particles are demagnetized since they do not possess residual magnetization
[25, 48].

A wide range of synthetic methods including solvothermal [29, 37], laser co-
vaporization [54], sol–gel [23, 51], thermal decomposition [2, 52], and chemical
co-precipitation [20, 43] has been used in the production of Fe3O4 nanoparticles.
Chemical co-precipitation the most favored method because it is simple, efficient,
and relatively cheaper than the above-mentioned methods [1, 68]. Chemical co-
precipitation of Fe3O4 takes place in alkaline media, and the formation of Fe3O4

follows the reaction steps outlined in Eqs. 1–4 below [68].

Fe3+ + 3OH → Fe(OH)3 (1)

Fe(OH)3 → FeOOH + H2O (2)

Fe2+ + 2OH− → Fe(OH)2 (3)

2FeOOH + Fe(OH)2 → Fe3O4 + 2H2O (4)

Apart from magnetite nanoparticles synthesized at the point of application,
commercial magnetite nanoparticles are readily available and have also been applied
in heavy metal adsorption. Iconaru et al. [20] synthesized 14 nm magnetite nanopar-
ticles and compared their properties with those of commercial magnetite of 90 nm
average diameters [20]. The surface area ratio of the commercial to synthesized
magnetite was 7%; however, the synthesized sample showed lower crystallinity [15,
28]. When applied in the adsorption of As(V) and Cu(II), it was evident that the as-
synthesized smaller particles provided better adsorption efficiencies for both species
[20, 36]. The results obtained from As(V) and Cu(II) adsorption on both nanopar-
ticle batches weremodeled following a theoretical calculation of the packing density.
Data from adsorption on commercial nanoparticles provided a better accuracy than
synthesized sample, while As(V) data had 50% higher accuracy than Cu(II) adsorp-
tion data. The results pointed to more uniform distribution of commercial nanopar-
ticles as compared to synthesized nanoparticles with a higher affinity for As(V) than
Cu(II) resulting from differences in complexation energies in the adsorption process
[19].

Further, Kumari et al. [29] studied Cr(VI) and Pb(II) adsorption on meso-
porous Fe3O4 nanospheres synthesized using a solvothermal method [29]. Hollow
nanospheres consist of a shell-like morphology of nanoparticles with a hollow
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core providing low densities. The hollow nanospheres were synthesized using a
solvothermal method. In the solvothermal method, the solvent acts as a reducing
mediumreducing a small amount of theFe3+ precursor toFe2+. The structure directing
salt initiates nucleation to form spheres in the presence of the surfactant with the
solvent controlling the size of the spheres. Ostwald ripening results in small inner
spheres forming larger ones on the outer side increasing the size of the inner cavities.
This results in the formation of a hollow interior with larger nanocrystals forming
the outer surface. The particle diameters were determined to be 31 nm with surface
areas of 11 m2 g−1. Adsorption of Cr(VI) and Pb(II) ions resulted in modifications
on the adsorbent surface of the with the initially rough surface appearing smooth in
post-adsorption analyzes.

Luther et al. [34] synthesized Fe3O4 nanoparticles and studied the effects of pH
and interfering anions on As(III) and As(V) adsorption [34]. The synthesized Fe3O4

nanomaterials had diameters of 17 nm, and the optimum pH used for adsorption
studies was pH 6 since it was within the optimum range for both As species. The
As(III) adsorption capacity was consistently higher than As(V) capacity after 1 h
and 24 h contact time; however, a decreased binding capacity with increased contact
time was observed and attributed to redox dissolution. Interference studies indi-
cated that the presence of SO4

2− affected the binding of As(III) decreasing it by
up to 50% at concentrations greater than 1000 ppm, while As(V) binding of was
completely eliminated at similar concentrations. The presence of PO4

3− had insignif-
icant effects on the adsorption capacity of either As species, while the presence of
CO3

2− decreased As(III) and As(V) binding of by up to 15% and 50%, respectively.
From the highlighted studies, Fe3O4 has been portrayed as an efficient adsorbent for
the sequestration of heavy metal ions in water. The particle size, pH, and competing
ions have been identified as important factors influencing the adsorption process.
Table 1 summarizes the efficiency of magnetite adsorbents in the sequestration of
heavy metals.

Table 1 Application of magnetite nanoparticles for heavy metal (HM) adsorption

Preparation method Particle size (nm) Target pollutant Adsorption capacity
(mg g−1)

References

Commercial 89.4 ± 0.6 As(V) 39.26 [20]

Cu(II) 9.06 [20]

Co-precipitation 14.2 ± 0.3 As(V) 66.53 [20]

Cu(II) 10.67 [20]

Co-precipitation 7.2 ± 1 Cr(VI) 13.51 [42]

Precipitation 25 ± 3 As(V) 9.72 [11]

Solvothermal 31.2 Pb(II) 11.89 [29]

Cr(VI) 6.55 [29]

Co-precipitation 16.5 ± 0.5 As(III) 5.68 [34]

Co-precipitation 16.5 ± 0.5 As(V) 4.78 [34]
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3 Magnetite Composites

Pristine Fe3O4 nanoparticles commonly face challenges of oxidation during prepara-
tion, handling, and adsorption resulting in changes in their dispersion and magnetic
properties [46]. Similarly, the achievement of size control during Fe3O4 synthesis
presents a challenge due to agglomeration resulting from high surface energies
resulting in broad particle size distribution, insufficient dispersion, and difficulty
in mass production. One of the most studied methods to control Fe3O4 properties
during synthesis is the formation of composite materials, and composites retain
the properties of both materials, therefore, providing a more versatile adsorbent.
Fe3O4 inorganic–organic composite adsorbents are favored over pristine Fe3O4 as
they incorporate the high surface areas, mechanical strength, and magnetism of the
inorganic Fe3O4 component and provide functional groups from the organic mate-
rial [43]. The organic functional groups provide multiple advantages of anchoring
the Fe3O4 surfaces, surface passivation, as well as sequestration of various pollu-
tants including heavy metals [14, 42]. In this section, inorganic–organic composites
of Fe3O4 with some selected organic materials are reviewed with a focus on their
application in heavy metal adsorption.

3.1 Magnetite-polymer Composites

The modification of Fe3O4 nanoparticle surfaces with organic ligands presents
an avenue for both surface passivation and functionalization allowing for the
targeted adsorption of desired pollutants [61]. Organic ligands control particle
growth resulting in smaller particles, hence, large accessible surface areas, there-
fore, improving the adsorption capacities [16]. Zarnegar and Safari [68] studied
polymer stabilization effects on Fe3O4 nanoparticle properties. They prepared Fe3O4

composite materials with polyethylene glycol (PEG) and polycitric acid (PCA) [68].
The synthesis was carried out in two stages; firstly, PCA-PEG-PCA copolymer
macromolecules were prepared followed by the co-precipitation of ferric and ferrous
ions in the presence of the copolymers. During the co-precipitation, ferric and ferrous
salts were first stirredwith the polymers resulting in the formation of a complex struc-
ture with surface carboxylic acid groups. Upon the addition of a base, the carboxylic
acid groups promoted nucleation, while the copolymers controlled the nanoparticles
growth thereby providing size control and resulting in the formation of particles
of 5–10 nm. The dendritic nature of the macromolecules provided repulsion aiding
in particle dispersion providing uniformly dispersed particles. The polymer-coated
particles were spherical and monodisperse with 5–10 nm diameters and 66.54 emu
g−1 saturation magnetization compared to 15–30 nm and 62.76 emu g−1, respec-
tively, for uncoated Fe3O4. Polymer stabilization improved the size distribution and
magnetic properties of Fe3O4 as a result of improved crystallinity of the smaller
nanoparticles [68].
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Guan and co-workers prepared a core–shell nano-adsorbent consisting of a nano-
magnetite core and a polyacrylic acid shell for the adsorption of Cr(III) ions from
tannery effluent. A silane coupling agent aided the grafting of polyacrylic acid onto
the surface of the magnetite nanoparticles. The synthesized composite material had a
core size of 21± 5 nm and specific surface areas of 41.4± 0.6m2 g−1. The saturation
magnetization decreased in the order pristine Fe3O4 > silane/Fe3O4 > polyacrylic
acid/silane/Fe3O4. The decrease is resulted from the encapsulation of the Fe3O4 in a
polymeric shell; however, the resulting composite retained sufficient magnetism to
facilitate magnetic separation within 5min of adsorption completion. Chromium(III)
adsorption was most favorable at pH 6 resulting in a percentage removal of 92.5%.
The results indicated that Cr(III) ions were coordinated with the carboxyl groups on
the polyacrylic acid shell.

Bhaumik et al. [8] reported on the synthesis of polypyrolle-magnetite
(PPY/Fe3O4) nanocomposite for Cr(VI) adsorption [8]. The composite synthesis was
carried out in situ through chemical oxidative polymerization [7]. Fe3O4 nanoparti-
cles were spherical but appeared aggregated, but after polymerization with polypy-
rolle, the particles were spherical with larger particle sizes resulting from polypy-
rolle encapsulation of the particles. The nanocomposite presented superior adsorp-
tion properties compared to its constituents in the order PPY/ Fe3O4 > PPY >
Fe3O4. Adsorption of Cr(VI) on the nanocomposite was determined to be through
ion exchange and reduction [44]. The appearance of Cr(III) species on the spent
adsorbent surface indicated that a portion of the bound Cr(VI) ions was reduced by
the electron-rich polypyrolle groups in the composite material. The adsorbent was
tested for reusability, and two cycles were deemed optimum with a 17% reduction
in capacity observed in the third cycle.

Burks et al. [10] studied the characterization and chromium adsorption properties
of mercaptopropionic acid-coated magnetite nanoparticles. Calculations from TGA
measurements indicated that the coverage of mercaptopropionic acid on SPION
surface was approximately 2.5 μmol m−2 [10], while FTIR results revealed that
mercaptopropionic acid formed surface bonds with the SPION using the carboxy-
late end leaving the thiol group exposed [41]. Bands attributed to sulfonate groups
indicated oxidation of the thiol groups during air drying. From the isotherm fitting,
the obtained data pointed to a multilayer adsorption on a heterogenous surface. At
low Cr(VI) concentrations, the reaction was controlled by diffusion to the adsorbent
surface; however, as concentrations increased, chemisorption was the rate limiting
step. Multiple rate controlling steps were confirmed by a plot of qt against t1/2 (intra-
particle diffusion kinetic model) [43]. The adsorption mechanism was illustrated to
be via the bonding of HCrO4

− ions to -SO3H groups on the 3-MPA surface.
Alqadami et al. [1] studied the application of 5–10 nm Fe3O4@TSC

(magnetite@tri-sodium citrate) nanocomposite in the adsorption of Cr3+ and Co2+

ions [1]. The presence of Cr–O and Co–O bonds on the spent adsorbent surface
was attributed to electrostatic attraction to the electron rich acetate groups. Adsorp-
tion of Cr3+ was faster than that of Co2+; thus, the equilibrium time for Co2+ was
considered as the optimal contact time, and pH 6 was considered as optimal above
which the formation of metal hydroxides resulted in decreased adsorption efficiency.
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Langmuir isotherm and pseudo-second-order kinetics model accurately described
>97% of the observed results, and the adsorption process was determined to be
exothermic. A decrease in adsorption with temperature was attributed to weakening
adsorbent-adsorbate and adsorbate–adsorbate forces.

A ternary composite of magnetite nanoparticles (Fe3O4 NPs), reduced graphene
oxide sheets (rGO), and poly-N-phenylglycine nanofibers (d-PPGNFs)was prepared
for Cu(II) adsorption [27]. The formation of Fe3O4 (270 ± 30 nm) on GO sheets
opened the spaces between the sheets, while the grafting of PPG NFs nearly doubled
the composite’s surface area. The nanofibers ultrafine morphology was responsible
for the increased surface area. Copper adsorption was more efficient on the ternary
composite as compared to the binary composite as a result of increased affinity by
PPG nanofibers and higher surface areas. The COO− group in the nanofibers was
responsible for the increased cation affinity by electrostatic attraction. Formation of
a stable copper-carboxylate complex led to preferential copper adsorption in bimetal
solutions with cobalt ions.

In 2010, Warner and co-workers demonstrated the synthesis of lauric acid capped
Fe3O4 followed by a single step ligand exchange reaction to alter the surface and
produce nanoparticles with affinities for a variety of heavy metal pollutants [61].
High-temperature decomposition was applied to generate a magnetite core and lauric
acid shell resulting in the formation of 8 nm particles with surface areas >100m2 g−1.
Surface-modified nanoparticles were applied in the adsorption ofHg, Pb, Cd, Ag, Co,
Cu, and Tl in spiked river water to determine their efficiency. After ligand exchange,
core sizes remained unaffected and the particles were superparamagnetic with no
remnant coercivity. Adsorption efficiencies of the functionalized particles for the
tested metal pollutants were consistently higher than those of activated carbon with
the exception of Ag where activated carbon had the highest distribution coefficient.

Studies on organic ligand stabilized Fe3O4 nanoparticles have concluded that their
presence does not alter the nanoparticles magnetic properties and in fact increases
the particles affinity for specific heavy metal pollutants while maintaining the high
surface areas and superparamagnetism [27, 68].

3.2 Magnetite-biosorbent Composites

Biological materials with the capability of binding pollutants on their surfaces
(adsorption) are referred to as biosorbents. In the process of biosorption, heavymetals
(pollutants) are adsorbed through a metabolically passive process which occurs on
non-living tissues [67]. Biomaterials do not pose a threat to the environment since
they are organic in nature and are biodegradable [47]. Several biosorbents have
been applied in heavy metals adsorption due to the abundance of functional groups
capable of heavy metal sequestration [13, 50, 60]. Despite the adsorption potentials
of biomaterials, they face challenges such as low porosity, surface areas, and diffi-
culty in post-treatment separation [39, 66]. The incorporation of nanomaterials on
the surfaces of biosorbents has been confirmed to improve surface areas and porosity
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of adsorbents [27, 69]. Fe3O4 nanoparticles when deposited on biosorbents incorpo-
rate magnetic properties on the composite adsorbent allowing for the application of
magnetic separation. In this section, we review the application of Fe3O4-biosorbent
composites in the adsorption of heavy metals.

3.2.1 Magnetite-chitosan Composites

Chitosan is the secondmost naturally available polymer after cellulose, and it contains
–NH2 and OH functional groups which sequester ions through coordination forming
a mesh-like cage-shaped structure [18, 64]. However, the reusability of traditional
chitosan adsorbents poses a challenge; therefore, the formation of magnetic compos-
ites has been considered. The chitosan-magnetite composites faced some challenges
due to low sorption capacities owing to their large sizes leading [64] to explore the
formation of polyethylenemodified polystyrene/Fe3O4/chitosan (PS/Fe3O4/CS-PEI)
of sub-micron sizes for Cu(II) adsorption [64]. The adsorbents had an average size
of 300 nm with Fe3O4 nanoparticles of ~10 nm immobilized on the surface. The
composite retained its magnetic properties and was easily recovered by magnetic
separation, and it was confirmed that all the constituents of the composite material
were present in the adsorbent. Themechanism of Cu(II) adsorption on PS/Fe3O4/CS-
PEIwas attributed to the surface complexation betweenCu(II) ions andN atoms from
nitrogen containing groups on the adsorbent surface.

Haldorai et al. [18] demonstrated the efficiency of <30 nm Fe3O4/chitosan
(Fe3O4/CS) for the adsorption ofLanthanum (La3+) ions fromaqueous solutions [18].
Successful adsorption of La3+ on the adsorbent surface was confirmed by scanning
electron microscopy. Response surface methodology (RSM) was applied to optimize
the factors affecting the adsorption process. The Box-Behnken model (BBM) was
used to determine the parameters’ effects on the adsorption efficiency. The investi-
gated parameters were solution pH, adsorbent dosage, reaction time, and tempera-
ture. The quadratic model which explained 87% of the total variables predicted the
efficient removal of La3+ for the studied parameters. The adsorption efficiency was
highly dependent on the solution pH, and the optimum pHwas observed to be pH 11.
Reaction time and temperature had insignificant effects onLa3+ adsorption efficiency.
Increasing the adsorbent dosage provided more adsorption sites thereby increasing
the adsorption efficiency. The Freundlich isotherm model fitted the adsorption data
pointing to adsorption on heterogenous sites.

Chitosan-modified biochar was employed for the adsorption of dissolved As(V)
by [33] to improve the separation ability of the chitosan/biochar composite, and
chitosan was coated with magnetic Fe3O4 fluid during the composite formation [33].
Although the synthesized magnetic chitosan biochar (MCB) exhibited a lower satu-
ration magnetization (16.67 emu g−1) compared to the magnetic fluid (67 emu g−1),
it was sufficient to providemagnetic separation. TheAs(V) adsorption capacity of the
binary and ternary composites improved threefold compared to biochar indicating the
contribution of chitosan and Fe3O4 during adsorption. In the presence of competing
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anions, As(V) adsorption efficiency was significantly altered by the presence of
PO4

3−, CO3
2−, and SO4

2−, while Cl and NO3
− had no significant impact.

3.2.2 Magnetite-agricultural Biosorbent Composites

Plant tannin is a natural polyphenol capable of reductively adsorbing heavy metal
ions, includingAg(I), Au(III), Cr(VI), and Pd(II), due to the large number of hydroxyl
groups it contains [14]. Microspheres consisting of a magnetic Fe3O4 core and silica
shell are favorable as the magnetic core provides for simple magnetic retrieval, while
the silica shell passivates the core and provides active sites allowing for further modi-
fication. Persimmon tannin (PT) was immobilized on the Fe3O4@SiO2 spheres to
create an organic–inorganic composite material and applied in the sequestration of
Au(III) and Pd(II) [14]. The PT was immobilized onto the spheres via a two-step
method involving the reduction of FeCl3 in ethylene glycol to form Fe3O4 and sol–
gel method to prepare the silica coating [14]. Solution pH between 1 and 5 was
investigated for Au(III) and Pd(II) adsorption. There was an observed increase in
Au(III) adsorption with an increase in pH which was attributed to the more favorable
adsorption of hydrolyzed chlorogold (AuCl3(OH)− and AuCl2(OH)2−) as compared
to AuCl4− which is the dominant species below pH 3. The decreased adsorption
below the point of zero charge (pHPZC) at pH 1.6 resulted from competition for the
availablewithCl− ions in solution. The optimumadsorption of Pd(II)was determined
to be pH 3 despite the observed slight increase in adsorption capacity at pH 5 which
was attributed to the formation of Pd(OH)42− whose adsorption is less favorable than
that of PdCl3. The transfer and sharing electrons between the Fe3O4@SiO2@PT and
metal ions were determined to be the mechanism for adsorption. Au(III) and Pd(II)
adsorption onto Fe3O4@SiO2@PT proceeded via a fast adsorption phase with elec-
trostatic adsorption and intraparticle diffusion controlling the process followed by a
slower second phase resulting forms the relatively time-consuming redox process.
Evidence of the redox process was obtained from the post-adsorption XPS analysis,
and the spectra indicated that Au(III) was reduced to metallic gold, while Pd(II) was
chelated by oxygen-containing surface groups of the adsorbent. Au(III) adsorption
was overall faster than Pd(II) adsorption indicating a higher affinity of the adsorbent
for Au(III). The Fe3O4@SiO2@PT composite demonstrated selective adsorption for
Au(III) despite interference from othermetal ions, while the selectivity for Pd(II) was
lower due to competition for adsorption sites with Au(III). Higher concentrations of
Cl− ions also decreased Pd(II) adsorption efficiency.

Magnetite-tea waste composite was prepared by [66] for the adsorption of Pb2+

from rainwater, groundwater, and freshwater [66]. Tea leaves contain numerous polar
aliphatic and aromatic functional groups allowing it to be good adsorbent for heavy
metals [55]. The magnetite-tea waste composite was prepared via co-precipitation of
iron-loaded tea waste in aqueous media resulting in a sixfold increase in the tea waste
surface area with a slight reduction in pore size. The prepared composite retained the
superparamagnetism of Fe3O4 with saturation magnetism values of 7 and 32 emu
g−1 for the composite and Fe3O4, respectively. Formation of the composite prevented
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Fe leaching in the studied water samples. Unmodified tea waste showed consistent
higher Pb2+ adsorption efficiencies which is largely attributed to the presence of -
NH2 and -COOH functional groups which sequester Pb2+ ions, while the presence of
humic acid resulted in the formation of Pb-humate complexes, therefore, lowering
Pb2+ concentration in groundwater samples.

The calcination effects of Fe3O4—honeycomb briquette cinders (HBC) —
composite on arsenic (As(III) and As(V)) adsorption was studied by [6]. HBC are
waste biomass materials from cylindrical stoves. Arsenic adsorption on the Fe3O4—
HBC—composite surface proceeded via a ligand exchange process and formed inner-
sphere complexes [6, 45]. Electrostatic repulsion led to decreased adsorption at higher
pH ranges since the adsorbent surface became increasingly negatively charged.

3.2.3 Magnetite-cellulose Composites

Cellulose is a renewable, biodegradable, and inexpensive raw material as a result of
its abundance in nature; in fact, it has often been cited as the most abundant organic
raw material on the planet [56]. The challenge cellulose-based adsorbents face is
difficulty in recovery, and magnetization of the cellulose adsorbents through the
formation of composites with superparamagnetic magnetite nanoparticles, therefore,
provides a simple solution to this challenge. Several authors have investigated the
formation of compositematerials with either pure cellulose or cellulosicmaterials for
the adsorption of heavy metals from water, and some of their findings are presented
in this section.

Cellulose-magnetite composites were synthesized for aqueous Cr(VI) adsorption
by [53] and [56]. The nanoparticles with sizes ranging between 10 and 40 nm were
attached by the bacterial cellulose (BC) nanofibrils forming a compositematerialwith
saturation magnetization values of 40 emu g−1 [53]. The composite was determined
to be superparamagnetic, and the observed results were attributed to the small sizes
of the composite particles. Response surface methodology (RSM) was used to better
understand the influence of the factors and their interactions on Cr(VI) sequestration.
Solution pH and its interaction with the adsorbate concentration were the factors that
most significantly influenced the adsorption process. The optimum pH for adsorption
was determined to be pH 4 from the influence of the factors on the removal efficiency
of chromium. XPS analysis pointed to adsorption followed by Cr(VI) reduction to
Cr(III) by a heterogeneous redox process as the adsorption mechanism.

Amino-functionalized magnetite-silica-cellulose (Fe3O4@SiO2@cellulose)
nanocomposite was prepared in a multi-step synthesis by [56]. The composite
preparation proceeded firstly bymagnetite nanoparticle synthesis by co-precipitation
followed by deposition of silica onto the Fe3O4 nanoparticles, and the Fe3O4@SiO2

particles were suspended in a cellulose solution to form Fe3O4@SiO2@cellulose
composite. Amino-functionalization was achieved through grafting of glycidyl
methacrylate followed by reaction with ethylenediamine. Cr(VI) adsorption studies
indicated that the capacity was highly affected by the solution pH as reported in other
studies [42, 53]. The adsorbent showed promising results for Cr(VI) adsorption,
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and reusability tests confirmed its potential to be applied in up to five cycles
while retaining its efficiency. Gupta et al. [17] also reported improved adsorption
capacities for Cr(III) adsorption after the formation of composites of multiwalled
carbon nanotubes and magnetic iron oxide.

Other carbon-based materials that have been used in the formation of composites
with magnetite nanoparticles for adsorption include activated carbon [30, 49], starch
[3], wheat straw [58], palm shell [24], and pine cone [42]. From the reports, it
was established that the presence of Fe3O4 nanoparticles in the composites resulted
in ease of magnetic retrieval of the spent adsorbent, while the nanoscale sizes of
magnetite generally improved the accessible surface areas in the adsorbents thereby
improving their efficiency [17]. The functional groups from organic components of
the composites contribute greatly to the sequestration of heavy metal pollutants as
previously discussed.

Table 2 summarizes the adsorption capacities for someof the composites discussed
in this review.

Table 2 Application of magnetite-organic composites in the adsorption of heavy metal (HM)
pollutants

Adsorbent Surface group Pollutant Adsorption capacity (mg
g−1)

Reference

Polyacrylic
acid/silane/Fe3O4

– COOH Cr(III) 54.08 [16]

PPy/Fe3O4 – NH Cr(VI) 169.49 [8]

3-MPA SPION – SO3H Cr(VI) 45 [10]

Fe3O4@TSC – COOR Cr(III) 549.13 [1]

Fe3O4@TSC – COOR Co(II) 452.50 [1]

Fe3O4 NPs@rGO – COOH/–OH Cu(II) 2.20 [27]

Fe3O4 NPs@rGO-d-PPG – COO− Cu(II) 13.60 [27]

PS/Fe3O4/CS-PEI – NH2/–OH Cu(II) 212.30 [64]

Fe3O4/CS – NH2/–OH La(III) 342.46 [18]

Biochar – COO− As(V) 3.68 [33]

Chitosan/biochar (CB) – NH2/–OH As(V) 10.6 [33]

MCB – NH2/–OH As(V) 14.93 [33]

Fe3O4@SiO2@PT – OH Au(III) 917.43 [14]

Fe3O4@SiO2@PT – OH Pd(II) 196.46 [14]

Fe3O4-HBC – OH/–Si–O As(V) 3.36 [6]

Fe3O4-HBC – OH/–SiO As(III) 3.07 [6]

BC-Fe3O4 – OH/–COC Cr(VI) 11.56 [53]

Fe3O4@SiO2@cellulose – NH2 Cr(VI) 171.5 [56]
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4 Conclusion

Heavy metal contamination of ground water poses challenges in environmental
management, and strategies to improve the remediation efficiency are greatly desired.
The adsorption process provides an alternative to complex treatment strategies.
Adsorption provides ease of operation, selectivity, and wide applicability. The use of
different adsorbents provides selectivity for pollutants and increased adsorption effi-
ciency. The review established that the formation of composites of various organic
materialswith Fe3O4 nanoparticles provided high affinities for heavymetal pollutants
and increased surface areas andmagnetic separability which provided efficient reme-
diation. The presence of interfering ions minimally affected the adsorption process
owing to high affinity of Fe3O4 for the studied pollutants. Although numerous studies
onmagnetite and its various composites for the adsorption of pollutants fromwastew-
ater, most studies utilize synthetic wastewater and are often conducted in batchmode.
Reports on the application of these materials in continuous flows reactors using real
wastewater are still limited andwouldbe crucial to the applications of these composite
materials in industrial applications.
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