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Abstract. The vibration characteristics of a rotating tapered beam
under the excitation of wake flows are considered. The governing equa-
tion of the beam is obtained and discretized to a set of ordinary differ-
ential equations by using the Galerkin’s method. The coupled vibrations
for the first two modes of the beam are investigated. The effects of sys-
tem parameters such as the taper ratio, the non-dimensional frequency
ratio and radius on the first two natural frequencies of the vibrations are
studied. Moreover, the vibration responses and stabilities of the coupled
system are studied under the 1:1 primary resonance. And the relations
between the amplitude of the vibration for the first mode and the param-
eters including the detuning parameter, the non-dimensional frequency
ratio as well as the damping coefficient are investigated for different taper
ratios.
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resonance · Vibration response

1 Introduction

The vibrations of tapered beams have attracted much interest of many
researchers for the significant applications such as wind turbines, helicopter
rotors and compressors of aero-engine, etc. Especially, the tapered structures
are widely used in rotating machines to save weight or to reduce stresses. The
static and dynamic characteristics of the tapered beams with various working
conditions were investigated. Lee et al. studied the elastica of cantilevered beams
of variable cross sections subjected to combined loading by using the numerical
and experimental methods [1]. The vibrations of a tapered cantilever (Euler-
Bernoulli) beam carrying a moving mass were investigated in [2,3], and the mode
shapes of the free tapered beam as well as the effect the tapering, the magnitude
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and velocity of the mass on the tip deflections of the beam were studied. The
effect of taper ratio on parametric stability of a rotating tapered beam was inves-
tigated by Bulut [4]. The dynamic stiffness method was developed to investigate
the free vibration of a rotating tapered Rayleigh beam by Banerjee and Jackson
[5]. The modal analysis of rotating axially functionally graded tapered Euler-
Bernoulli beams with various boundary conditions was carried out by Fang and
Zhou [6]. The free vibrations and effects of various taper ratios on the natu-
ral frequencies of a tapered beam were investigated by using the transfer-matrix
method [7]. Yao and Zhang [8] studied the reliability and sensitivity of an axially
moving beam with simply supported boundary conditions. In [9] the nonlinear
bending and torsional vibrations of tapered beams made of axially function-
ally graded (AFG) material were analyzed numerically. The adomian modified
decomposition method (AMDM) was employed by Desmond and Martin [10] for
the free transverse vibration analysis of the rotating non-uniform tapered Euler-
Bernoulli beams with several boundary conditions, rotation speeds, and beam
lengths. The out-of-rotation plane bending vibrations of a rotating tapered beam
with periodically varying speed were considered in [10]. Mazanoglu and Guler
studied the flap-wise and chord-wise vibrations of AFG tapered beams rotating
around a hub, and the effects of taper ratio, hub radius, angular velocity and
non-homogeneity on the thin beams with several classical boundary conditions
were investigated as well [11].

Owing to the complex working circumstance, the free vibrations of the
tapered beam and the system parameter effects such as the tapered ratio, rotat-
ing speed on either the natural frequencies or responses were the main points
investigated in the articles. Herein, the vibrations of the rotating cantilever beam
under the excitation of wake flows are investigated. A number of articles have
investigated the influence of the wake flows on the vibrations of the beams.
However, there is no uniform model to represent the characteristics of the wake-
flows. While the effect of the wake-flows was modeled as the a series of harmonic
forces in some articles. The impact vibration characteristics of a shrouded blade
with asymmetric gaps under wake flow excitations were studied [12], where the
wake-flow aerodynamic excitation acting on the blade was assumed as a periodic
force. Ma et al. studied the vibration characteristics of rotating shrouded blades
with impacts [13], in which the aerodynamic load owing to the fluid force was
assumed as a harmonic force. The flow velocity was assumed harmonically vary
along the pipe rather than with time in [14] when investigate dynamics and sta-
bility of fluid-conveying corrugated pipes. Moreover, the effect of the wake-flows
was represented by the time-varying oscillation, such as the van der Pol oscil-
lator, etc. In order to analyse the characteristics of the rotating tapered beam,
the effect of the wake-flow on the structure is represented by the harmonic force
as well.

In this paper, an Euler-Bernoulli tapered beam attached to a rotating rigid
disk is considered, where the excitation owing to the wake flows is assumed as
a harmonic force. And the integro-partial differential equation is obtained and
discretized by the Galerkin’s method to a set of ordinary differential equations.
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Then the theoretical analysis about the coupling vibrations of first two modes is
carried out by using the multiple scale method. Moreover, the effects of system
parameters including the taper ratio, the non-dimensional frequency ratio, the
non-dimensional radius on the natural frequencies of the first two modes are
investigated. The vibration responses under the 1:1 primary resonance of the
first two modes are studied by using the averaged equations. Furthermore, with
different taper ratios, the relations between the amplitude for the vibration of
the first mode and different system parameters are studied by using the direct
integration method.

2 Modeling

2.1 Modeling of a Rotating Tapered Beam

The model of the rotating tapered beam is assumed as a continuous straight
cantilever beam based on the Euler-Bernoulli formulation in the centrifugal force
field as shown in Fig. 1, where Ω, r̄, ρ, l, c, A(x), EI(x) denote the rotating speed,
the radius of the rotating disk, mass density, length of the beam, the viscous
damping coefficient, the area of the beam cross-section and the bending rigidity,
respectively. Assume the beam has the constant breadth, and the height varying
from x = 0 to x = l linearly, then one have that A(x) = A0(1 − k

x

l
), I(x) =

I0(1 − k
x

l
)3, where k denotes the taper ratio and k ∈ (0, 1), A0, I0 are the area

of the cross-section and the area moment of the inertia at x = 0, respectively.

Fig. 1. The rotating beam with taper ratio.

The governing equation of motion of the beam can be obtained by considering
the equilibrium of forces and moments acting on the differential segment of the
beam with a length of dx as follows,

[
∂2

∂x2

(
EI(x)

∂2w(x, t)

∂x2

)]
dx −

[
∂

∂x

(
Fcent

∂w(x, t)

∂x

)]
dx + ρA(x)

∂2w(x, t)

∂t2
dx

+ c
∂w(x, t)

∂t
dx = F̃ dx,

(1)

where

Fcent =
∫ l

x

fcent(ξ, t)dξ =
∫ l

x

ρΩ2 A(ξ)(r̄ + ξ)dξ, (2)
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and fcent(x, t) = ρΩ2A(x)(r̄ +x) is the distributed load owing to the centrifugal
force. F̃ denotes the aerodynamic force induced by the wake flows which is
complex from the point view of the fluid characteristics. However, it could be
seen as a periodic force due to the rotating of the beam as studied in [12] and [13].
Where the wake-flow aerodynamic excitation acting on the blade is assumed as a
sum of a series of harmonic forces, reads F̃ = F0 +F1 cos(nΩt)+F2 cos(2nΩt)+
· · · + Fm cos(mnΩt). The frequency of the excitation is n times of the rotating
speed of the blade, where n is the number of obstacles in the front of the rotor-
beam. F0 is a constant, and Fm (m = 1, 2, 3, · · · ) is the amplitude of the mth
harmonic component. In this study, the first harmonic component of the wake-
flow force is adopted, that is F̃ = F1 cos(nΩt).

Introducing y = w/l, v = x/l, ξ̄ = ξ/l, r = r̄/l, τ = Ωt, Eq. (1) becomes

∂2y(v, τ)

∂τ2
+

η

1− kv

∂y(v, τ)

∂τ
+ ω2(1− kv)2

∂4y(v, τ)

∂v4
− 6ω2(1− kv)k

∂3y(v, τ)

∂v3

+6ω2k2 ∂2y(v, τ)

∂v2
− 1

1− kv

(∫ 1

v
(1− kξ̄)(r + ξ̄)dξ̄

)
∂2y(v, τ)

∂v2
+ (r + v)

∂y(v, τ)

∂v
= F̄ cos(nτ),

(3)

where F̄ =
F1

ρA0lΩ2(1− kv)
, ω =

ω0

Ω
, ω0 =

√
EI0

ρA0l4
, η =

c

ρA0Ω
.

The boundary conditions are assumed as that of a cantilever beam, y(0) =
y′(0) = y′′(1) = y′′′(1) = 0.

2.2 The Galerkin Discretization for the Governing Equation

Discretization of the partial differential equation (3) into the finite-dimensional
system is done according to the study in [15,16]. Assuming the dimension-

less transverse response is expanded as y(τ, v) =
n∑

j=1

yj(τ)ỹj(v), where ỹj(v)

is assumed as the set of eigenfunctions of an Euler-Bernoulli beam, that is

ỹj(v) = cosh λjv − cos λjv − cosh λj + cos λj

sinhλj + sin λj
(sinh λjv − sin λjv) (4)

and λj(j = 1, 2 · · · ) are the roots of the transcendental equation 1+cosλ cosh λ =
0.

The differential equations of the tapered rotating beam are obtained by using
the Galerkin’s discretization, reads

d2yj(τ)

dτ2
+ η

n∑

i=1

Aij
dyj(τ)

dτ
+ ω

2
n∑

i=1

Bijyj(τ) − 6ω
2
k

n∑

i=1

Cijyj(τ) + 6ω
2
k
2

n∑

i=1

Dijyj(τ)

−
n∑

i=1
Eijyj(τ) + r

n∑
i=1

Mijyj(τ) +
n∑

i=1
Nijyj(τ) = Faj cos(nτ), (j = 1, 2, . . .)

(5)

where Aij =

∫ 1

0

ỹi(v)ỹj(v)

1 − kv
dv, Bij =

∫ 1

0
(1 − kv)

2 ∂4ỹi(v)

∂v4
ỹj(v)dv,

Cij =

∫ 1

0
(1 − kv)

∂3ỹi(v)

∂v3
ỹj(v)dv, Dij =

∫ 1

0

∂2ỹi(v)

∂v2
ỹj(v)dv,



686 D. Wang et al.

Eij =

∫ 1

0

(
1

1 − kv

(
r(1 − v) +

1 − kr

2
(1 − v)

2 − k

3
(1 − v)

3
))

∂2ỹi(v)

∂v2
ỹj(v)dv,

Mij =

∫ 1

0

∂ỹi(v)

∂v
ỹj(v)dv, Nij =

∫ 1

0
v

∂ỹi(v)

∂v
ỹj(v)dv, aj =

∫ 1

0

1

(1 − kv)
ỹj(v)dv, F =

F1

ρA0lΩ2
.

To investigate the effects of system parameters on the natural frequencies
as well as vibration characteristics of the beam, the vibrations for the first two
modes are investigated in the following,

ÿ1(τ) + ηA11ẏ1(τ) + ηA21ẏ2(τ) + (ω2B11 − 6ω2kC11 + 6ω2k2D11 − E11 + rM11 + N11)y1(τ)

+ (ω2B21 − 6ω2kC21 + 6ω2k2D21 − E21 + rM21 + N21)y2(τ) = Fa1 cos(nτ),

(6)
ÿ2(τ) + ηA12ẏ1(τ) + ηA22ẏ2(τ) +

(
ω2B12 − 6ω2kC12 + 6ω2k2D12 − E12 + rM12 + N12

)
y1(τ)

+
(
ω2B22 − 6ω2kC22 + 6ω2k2D22 − E22 + rM22 + N22

)
y2(τ) = Fa2 cos(nτ).

(7)

3 The 1:1 Primary Resonance

3.1 Effects of System Parameters on the First Two Natural
Frequencies

The multiple scale method [16] is often utilized to understand the qualitative
characteristics of the system which presents the resonant conditions. Introducing
the scaling parameters η → εη, F → εF into Eqs. (6) and (7), one can obtain

ÿ1(τ)+K1(ω)y1(τ)+K2(ω)y2(τ) = εFa1 cos(nτ)−εηA11ẏ1(τ)−εηA21ẏ2(τ), (8)

ÿ2(τ)+K3(ω)y2(τ)+K4(ω)y1(τ) = εFa2 cos(nτ)−εηA22ẏ2(τ)−εηA12ẏ1(τ), (9)

where
K1 = ω2B11 − 6ω2kC11 + 6ω2k2D11 − E11 + rM11 + N11,
K2 = ω2B21 − 6ω2kC21 + 6ω2k2D21 − E21 + rM21 + N21,
K3 = ω2B22 − 6ω2kC22 + 6ω2k2D22 − E22 + rM22 + N22,
K4 = ω2B12 − 6ω2kC12 + 6ω2k2D12 − E12 + rM12 + N12.

Assume the approximate form of the solutions as follows,

y1(ε, τ) = y10(T0, T1) + εy11(T0, T1) + · · · ,
y2(ε, τ) = y20(T0, T1) + εy21(T0, T1) + · · · .

(10)

Substituting the solutions (10) into Eqs. (8) and (9) and equating coefficient of
like powers of ε, one can obtain that
Order ε0,

D2
0y10 + K1y10 + K2y20 = 0, (11)

D2
0y20 + K3y20 + K4y10 = 0. (12)
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Order ε1,

D2
0y11+K1y11+K2y21 =

1
2
Fa1e

inτ −ηA11D0y10−ηA21D0y20−2D0D1y10+c.c.,

(13)

D2
0y21+K3y21+K4y11 =

1
2
Fa2e

inτ −ηA22D0y20−ηA12D0y10−2D0D1y20+c.c.,

(14)

where
d

dt
= D0 + εD1 + ε2D2 + · · · , d2

dt2
= D2

0 + 2εD0D1 + · · · , and Dn =
∂

∂Tn
.

The general solutions of Eqs. (11) and (12) can be obtained in the complex
form

y10 = Ȳ1(T1)eiω1T0 + Ȳ2(T1)eiω2T0 + c.c.,
y20 = φ1Ȳ1(T1)eiω1T0 + φ2Ȳ2(T1)eiω2T0 + c.c.,

(15)

where ω1 and ω2 are the natural frequencies of the coupled system (11) and

(12), yielding ω1,2 =

√
K1 + K3 ∓ √

(K1 + K3)2 − 4(K1K3 − K2K4)
2

. And

φi =
ω2

i − K1

K2
=

K4

ω2
i − K3

, (i = 1, 2) are the mode coefficients, c.c. stands

for the complex conjugate of the proceeding terms.
As shown in the expressions, the natural frequencies ω1 and ω2 of vibrations

of the first two modes are determined by three parameters, that is, the taper
ratio k, the non-dimensional frequency ratio ω as well as the non-dimensional
radius r. Hence, the effects of system parameters on the natural frequencies ω1

and ω2 are studied by using the numerical methods as shown in Fig. (2) to
Fig.(7).

As can be seen from Fig. 2, when ω is fixed at 1, for r = 0.6 and r = 1.0,
the frequency ω1 of the first mode is increasing while the frequency ω2 of the
second mode is decreasing firstly and then increases as the taper ratio k increases.
Meanwhile, for r = 1.5 and r = 2.0, both the frequencies ω1 and ω2 of the first
and second modes increase as k increases.

2.2

2.4

2.6

2.8

3.0

0.0 0.2 0.4 0.6 0.8 1.0
5

6

7

8

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 2. The relations between natural frequencies ω1 and ω2 for vibrations of the first
two modes with respect to the taper ratio k for r = 0.6, 1.0, 1.5, 2.0 respectively.
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Figure 3 shows that when r is fixed at 1, and for ω = 0.08, both the frequencies
ω1 and ω2 of the first and second modes increase as k increases. While for
ω = 0.10 and 0.12, the first natural frequency ω1 increases firstly and then
decreases with the taper ratio k increases. On the other hand, the second natural
frequency ω2 decreases firstly and then increases with the taper ratio k increases.

One can see from Fig. 4 that both the frequencies ω1 and ω2 of the first
and second modes increase as r increases when the taper ratio k = 0.0, 0.5, 0.9,
respectively, and the parameter ω is fixed at 0.1. Moreover, for a fixed r, the first
natural frequency ω1 increases while the second natural frequency ω2 decreases
as k increases.

2.38

2.40

2.42

2.44

2.46

0.0 0.2 0.4 0.6 0.8 1.0

0.12

0.10

0.08

5.4

5.6

5.8

6.0

6.2

0.0 0.2 0.4 0.6 0.8 1.0

0.12

0.10

0.08

Fig. 3. The relations between natural frequencies ω1 and ω2 for vibrations of the first
two modes with respect to the taper ratio k for ω = 0.08, 0.10, 0.12 respectively.
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r

1.6

2.0

2.4

2.8

3

4

5

6

7

8

0.0 0.4 0.8 1.2 1.6 2.0
r

Fig. 4. The relations between natural frequencies ω1 and ω2 for vibrations of the first
two modes with respect to r for k = 0.0, 0.5, 0.9 respectively.

Figure 5 shows that when k is fixed at 0.5, both the first two natural fre-
quencies ω1 and ω2 increase as the non-dimensional radius r increases for
ω = 0.8, 1.0, 1.2 respectively.

One can see from Fig. 6 that when r is fixed at 2, both the first two natural
frequencies ω1 and ω2 increase as the non-dimensional frequency ratio ω increases
for k = 0.0, 0.5, 0.9 respectively. Figure 7 shows that when k is fixed at 0.5, both
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the first two natural frequencies ω1 and ω2 increase as the non-dimensional
frequency ratio ω increases for r = 0.6, 1.0, 1.5, 2.0 respectively.

The results indicates that the effect of the taper ratio on the natural fre-
quencies is complicated and several cases are existing. Moreover, increasing the
radius of the hub and decreasing the rotating speed can increase the first two
natural frequencies of the beam.

4.5
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5.5

6.0

6.5

7.0

7.5

0.0 0.4 0.8 1.2 1.6 2.0
r

0 8
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1.2

32

30

28

26

24

22

20
0.0 0.4 0.8 1.2 1.6 2.0

r

1.2

1.0

0 8

Fig. 5. The relations between natural frequencies ω1 and ω2 for vibrations of the first
two modes with respect to r for ω = 0.8, 1.0, 1.2 respectively.
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Fig. 6. The relations between natural frequencies ω1 and ω2 for vibrations of the first
two modes with respect to ω for k = 0.0, 0.5, 0.9 respectively.

3.2 The Vibration Response Analysis for the Coupled System

The research in [17,18] showed that the dynamic systems can present rich vibra-
tion characteristics when the resonance occurs. To investigate the effects of the
system parameters on the responses of the system, the 1:1 primary resonance
is studied and the relation between the frequency of the fluid force as well as
the first natural frequency is assumed as n : ω1 ≈ 1 : 1, n = ω1 − εσ, where
σ denotes the detuning parameter. Substitute (15) into Eqs. (13) and (14) and
consider the resonance conditions yielding

D2
0y11 + K1y11 + K2y21 =

1

2
Fa1ei(ω1−εσ)τ − iηA11(ω1Ȳ1eiω1T0 + ω2Ȳ2eiω2T0 )

− iηA21(ω1φ1Ȳ1eiω1T0 + ω2φ2Ȳ2eiω2T0 )− 2i(ω1eiω1T0D1Ȳ1 + ω2eiω2T0D1Ȳ2) + c.c.,
(16)



690 D. Wang et al.

2

4

6

8

10

12

0.0 0.4 0.8 1.2 1.6 2.0
0

10

20

30

40

50

60

0.0 0.4 0.8 1.2 1.6 2.0

Fig. 7. The relations between natural frequencies ω1 and ω2 for vibrations of the first
two modes with respect to ω for r = 0.6, 1.0, 1.5, 2.0 respectively.

D2
0y21 + K3y21 + K4y11 =

1

2
Fa2ei(ω1−εσ)τ − iηA22(ω1φ1Ȳ1eiω1T0 + ω2φ2Ȳ2eiω2T0 )

− iηA12(ω1Ȳ1eiω1T0 + ω2Ȳ2eiω2T0 )− 2i(ω1φ1eiω1T0D1Ȳ1 + ω2φ2eiω2T0D1Ȳ2) + c.c.
(17)

Letting

P1 =
1
2
Fa1e

−iσT1 − iηA11ω1Ȳ1 − iηA21ω1φ1Ȳ1 − 2iω1D1Ȳ1,

Q1 = −iηA11ω2Ȳ2 − iηA21ω2φ2Ȳ2 − 2iω2D1Ȳ2,

P2 =
1
2
Fa2e

−iσT1 − iηA22ω1φ1Ȳ1 − iηA12ω1Ȳ1 − 2iω1φ1D1Ȳ1,

Q2 = −iηA22ω2φ2Ȳ2 − iηA12ω2Ȳ2 − 2iω2φ2D1Ȳ2,

the solvability conditions can be obtained as∣∣∣∣K1 − ω2
1 P1

K4 P2

∣∣∣∣ =
∣∣∣∣K1 − ω2

2 Q1

K4 Q2

∣∣∣∣ = 0. (18)

The derivatives of amplitudes Ȳ1 and Ȳ2 with respect to T1 can be obtained
by Eq. (18), that is

D1Ȳ1 =
1

2[φ1(K1 − ω2
1 )− K4]ω1

{ 1
2
iFe−iσT1 [K4a1 − a2(K1 − ω2

1 )]

+ηω1[K4(A11 + A21φ1)− (K1 − ω2
1 )(A22φ1 + A12)]Ȳ1

}
,

(19)

D1Ȳ2 =
K4 (A11 + A21φ2) + (ω2

2 − K1 ) (A22φ2 + A12)

2φ2(K1 − ω2
2 )− 2K4

ηȲ2. (20)

Assuming the functions Ȳ1 and Ȳ2 are expressed in the polar co-ordinates, which
reads

Ȳ1(T1) =
Y1(T1)

2
eiθ1(T1), Ȳ2(T1) =

Y2(T1)
2

eiθ2(T1), (21)

where Yj , θj(j = 1, 2) represent the amplitudes and phase angles of the responses,
respectively. The first-order averaged equations can be obtained after separating
the real and imaginary parts by substituting (21) into Eqs. (19) and (20), that is

Y ′
1 =

1

2[φ1(K1 − ω2
1 )− K4]ω1

{
F [K4a1 − a2(K1 − ω2

1 )] sinϕ+

ηω1[K4(A11 + A21φ1)− (K1 − ω2
1 )(A22φ1 + A12)]Y1

}
,

(22)
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θ′
1 =

F [K4a1 − a2(K1 − ω2
1 )]

2[φ1(K1 − ω2
1 )− K4]ω1Y1

cos(σT1 + θ1), (23)

Y ′
2 =

K4 (A11 + A21φ2) + (ω2
2 − K1 ) (A22φ2 + A12)

2φ2(K1 − ω2
2 )− 2K4

ηY2, (24)

θ′
2 = 0, (25)

where (′) denotes the derivatives with respect to T1 and ϕ = σT1 + θ1.
The averaged Eqs. (24) and (25) show that the vibration of the second mode

for the rotating beam is periodic. Hence the response of the vibration for the first
mode is studied in the following. The equilibrium solutions of Eqs. (22) and (23)
correspond to periodic motions of the coupled system. The steady-state solutions
for the system (22) and (23) are obtained by the direct numerical method when
assuming Y ′

1 = 0, ϕ′ = 0 and

ϕ′ =
F [K4a1 − a2(K1 − ω2

1 )]
2[φ1(K1 − ω2

1 ) − K4]ω1Ȳ1
cos ϕ + σ. (26)

As can be seen from Fig. 8(a) to Fig. 10(a), when the non-dimensional fre-
quency ratio ω is fixed, the amplitude Y1 for the vibration of the first mode
increases with the detuning parameter σ increases firstly until σ = 0, then the
amplitude Y1 decreases as σ increases. While Fig. 8(b) to Fig. 10(b) show that the
amplitude Y1 decreases as ω increases for a fixed η, which has a good agreement
with that of shown in Fig. 8(a) to Fig. 10(a).
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Fig. 8. Bifurcation curves: (a) the amplitude Y1 of the response for the first mode
vibration with respect to the detunig parameter σ for ω = 0.5, 1, 2 respectively; (b) the
amplitude Y1 of the response for the first mode vibration with respect to the frequency
ratio ω for η = 0.001, 0.01 respectively; (c) the amplitude Y1 of the response for the
first mode vibration with respect to the damping η for F = 0.001, 0.01 respectively.
The other parameters are fixed at k = 0, r = 2.
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Fig. 9. Bifurcation curves: (a) the amplitude Y1 of the response for the first mode
vibration with respect to the detunig parameter σ for ω = 0.5, 1, 2 respectively; (b) the
amplitude Y1 of the response for the first mode vibration with respect to the frequency
ratio ω for η = 0.001, 0.01 respectively; (c) The amplitude Y1 of the response for the
first mode vibration with respect to the damping η for F = 0.001, 0.01 respectively.
The other parameters are fixed at k = 0.5, r = 2.
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Fig. 10. Bifurcation curves: (a) the amplitude Y1 of the response for the first mode
vibration with respect to the detunig parameter σ for ω = 0.5, 1, 2 respectively; (b) the
amplitude Y1 of the response for the first mode vibration with respect to the frequency
ratio ω for η = 0.001, 0.01 respectively; (c) the amplitude Y1 of the response for the
first mode vibration with respect to the damping η for F = 0.001, 0.01 respectively.
The other parameters are fixed at k = 0.9, r = 2.
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Moreover Fig. (8)(c) to (10)(c) show that the amplitude Y1 increases as η
increases firstly until η = 0, then the amplitude decreases as η increases. Espe-
cially, the Hopf bifurcation (H) occurs when η = 0. Meanwhile, the amplitude
Y1 increases when F is increasing. In addition, Fig. 8 to Fig. 10 show that the
response characteristics of the vibration for the first mode are kept when the
taper ratio k are chosen as 0.0, 0.5, 0.9 respectively. And the results indicated
that the design of tapered beam is very useful in engineering.

4 Conclusions

The vibrations of a rotating tapered beam under the excitation of wake flows
have been investigated, where the rotating blade was modeled as a cantilever
beam and the effect of wake flows was represented as a periodic force. The
coupled equations of the first two modes of the beam were obtained by the
Galerkin discretization. The 1:1 primary resonance for the coupled system were
studied by using the multiple scale method. Effects of the system parameters
including the taper ratio k, the non-dimensional frequency ratio ω as well as
the non-dimensional radius r on the first two natural frequencies were studied.
The results indicates that for a constant taper ratio k, increasing the radius of
the disk or decreasing the rotating speed could increase the first two natural
frequencies; while for the effects of the taper ratio, there exist several cases:
(a) for the certain value ω and r, increasing the taper ratio k, the first frequency
of the coupled system increases while the second natural frequency decreases
firstly and then increases; (b) for the certain value ω and r, both the natural
frequencies increases according to the increasing the taper ratio k; (c) for the
certain value ω and r, increasing the taper ratio k, the first natural frequency
increases firstly then decreases and the second natural frequency decreases firstly
then increases. The varying trends of the two natural frequencies are opposite
to each other.

Moreover, the averaged equations were derived and the relation curves were
computed. Effects of the system parameters including the dutuning parameter σ,
the taper ratio k, the damping coefficient η, the non-dimensional frequency ratio
ω on the responses were investigated. And the results indicate that increasing
the rotating speed of the beam or the damping coefficient can suppress the
vibration for the first mode. While increasing the amplitude of the air flow force
could excite the large-amplitude vibration of the first mode. Meanwhile, the
system displays the similar vibration characteristics for different taper ratio.
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4. GÖkhan B (2013) Effect of taper ratio on parametric stability of a rotating tapered
beam. Eur J Mech A/Solids 37:344–350

5. Banerjee JR, Jackson DR (2013) Free vibration of a rotating tapered Rayleigh
beam: a dynamic stiffness method of solution. Comput Struct 124:11–20

6. Fang J, Zhou D (2015) Free vibration analysis of rotating axially functionally
graded-tapered beams using Chebyshev-Ritz method. Mater Res Innov 19(5):1255–
1262

7. Lee JW, Lee JY (2016) Free vibration analysis using the transfer-matrix method
on a tapered beam. Comput Struct 164:75–82

8. Yao G, Zhang Y (2015) Reliability and sensitivity analysis of an axially moving
beam. Meccanica 51(3):491–499. https://doi.org/10.1007/s11012-015-0232-y

9. Ghayesh MH, Farokhi H (2017) Bending and vibration analyses of coupled axially
functionally graded tapered beams. Nonlinear Dyn 91(1):17–28. https://doi.org/
10.1007/s11071-017-3783-8

10. Desmond A, Martin J (2016) Simulation of tapered rotating beams with centrifugal
stiffening using the Adomian decomposition method. Appl Math Model 40:3230–
3241

11. Mazanoglu K, Guler S (2017) Flap-wise and chord-wise vibrations of axially func-
tionally graded tapered beams rotating around a hub. Mech Syst Signal Process
89:97–107

12. Chu SM, Cao DQ, Sun SP, Pan JZ, Wang LG (2013) Impact vibration charac-
teristics of a shrouded blade with asymmetric gaps under wake flow excitations.
Nonlinear Dyn 72:539–554

13. Ma H, Xie F, Nai H, Wen B (2016) Vibration characteristics analysis of rotating
shrouded blades with impacts. J Sound Vib 378:92–108

14. Wang YJ, Zhang QC, Wang W, Yang TZ (2019) In-plane dynamics of a fluidcon-
veying corrugated pipe supported at both ends. Appl Math Mech (English Edition)
40(8):1119–1134

15. Wang D, Hao Z, Chen YS, Zhang YX (2018) Dynamic and resonance response anal-
ysis for a turbine blade with varying rotating speed. J Theor Appl Mech 56(1):31–
42

16. Wang D, Chen Y, Wiercigroch M, Cao Q (2016) Bifurcation and dynamic
response analysis of rotating blade excited by upstream vortices. Appl Math Mech
37(9):1251–1274. https://doi.org/10.1007/s10483-016-2128-6

17. Hao ZF, Cao QJ, Wiercigroch M (2016) Two-sided damping constraint control for
high-performance vibration isolation and end-stop impact protection. Nonlinear
Dyn 86:2129–2144

18. Zhang D, Chen F (2015) Stability and bifurcation of a cantilever function-
ally graded material plate subjected to the transversal excitation. Meccanica
50(6):1403–1418. https://doi.org/10.1007/s11012-015-0101-8

https://doi.org/10.1007/s11012-015-0232-y
https://doi.org/10.1007/s11071-017-3783-8
https://doi.org/10.1007/s11071-017-3783-8
https://doi.org/10.1007/s10483-016-2128-6
https://doi.org/10.1007/s11012-015-0101-8

	Response Analysis of a Rotating Tapered Beam
	1 Introduction
	2 Modeling
	2.1 Modeling of a Rotating Tapered Beam
	2.2 The Galerkin Discretization for the Governing Equation

	3 The 1:1 Primary Resonance
	3.1 Effects of System Parameters on the First Two Natural Frequencies
	3.2 The Vibration Response Analysis for the Coupled System

	4 Conclusions
	References




