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Abstract. The parametric instability of an electromechanically coupled single-
span rotor-bearing system subjected to periodic axial loads is studied. Here, the
rotor system is equipped with two piezoelectric dampers, which has been devel-
oped in our previous work. The so-called electromechanically coupled charac-
teristic is namely derived from that damper. By using assumed mode method
and Lagrange equation, the equations of motion are derived. The multiple scales
method is utilized to obtain the analytical instability boundaries. Numerical simu-
lations based on the discrete state transitionmatrix method (DSTM) are conducted
to verify the analytical results.With the comparison between analytical results and
simulated results, we find that the additional combination instability regions are
created due to the usage of piezoelectric dampers.
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1 Introduction

When the rotating slender structures, such as cylindrical shell or shaft are subjected to
periodic axial forces, they may experience unstable transverse vibrations in some case.
Such vibrations are so-called parametrically excited vibrations. It is very necessary to
study the dynamic stability of these structures. On one hand, the rotating shaft or shell
under periodic axial load canbe found frommanyactualmechanical systems, e.g.,marine
propulsion shafting, aero-engine and so on. On the other hand, as abovementioned, these
structures may be unstable due to certain combinations of the values of load parameters
and natural frequency of transverse vibration. The final consequences will vary from
economic loss to risk of catastrophic events. Thus, the dynamic stability of periodic
axial loaded shafts or shells has received considerable attention over the years [3–12].
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For example, Chen et al. [3] used the Timoshenko beam theory and FE method to
build the rotor model, and then applied the Bolotin’s method to construct the instability
regions. Their results showed that due to the Coriolis effect, the boundaries of the regions
of dynamic instability were shifted out and the sizes of these regions were increased as
the rotational speed increased. However, whether the Bolotin’s method is applicable
to the rotating structure or not, there seems to have some disputes. Pei [6] found that
using the Bolotin’s method may enlarge the instability region for the gyroscopic system,
which may contradict the results based upon the Floquet’s method. Song et al. [9]
presented a new method—discrete singular convolution. In their research, the external
viscous damping and internal material damping were considered so as to analyze their
influence on the stability of axial loaded rotating shaft. Qaderi et al. [10] investigated the
dynamic responses of a rotating unbalanced shaft with geometrical nonlinearity under
periodic axial loads. There the resonances, bifurcations, and stability of the response
were analyzed. Phadatare et al. [12] studied the vibration and bifurcation analysis of a
spinning rotor-disk-bearing system so as to reveal the effect of unbalance eccentricity
and pulsating axial load on the dynamic stability. All of these papers are based on
the rotor system. In addition, some research activities based on the rotating cylindrical
shell model also have great reference value. For instance, Han et al. [7] investigated
the parametric instability of a rotating cylindrical shell under periodic axial loads. By
using the multiple scale method, the analytical expressions of instability boundaries for
various modes were obtained. Their theoretical analysis demonstrated that as long as
rotation is considered, only combination instability regions exist for such rotating shell.

Although there have been many research activities focused on the dynamic stability
analysis of parametrically excited rotating shafts or shells, there seems to be little refer-
ence about how to control the parametric resonances. In our previous research [1, 2], a
novel piezoelectric damper has been developed for the lateral vibration control of rotor
system. Through the preliminary experiment, the authors realize that this damper may
also be used for the parametric resonance. However, how the damper’s performance is
for the parametric excited rotor is not very clear. Thus, in this paper, its influence on
the rotor’s dynamic behavior is studied. Certainly, as a preliminary theoretical analysis,
only the dynamic stability analysis is presented here, where the analytical expressions
of instability boundaries are also derived.

The content of this paper can be listed as follows: In Sect. 2, the mathematical
model is given. In Sect. 3, the solving process of obtained mathematical model based
on the multiple scales method is proposed, where the instability boundaries are derived
analytically. Moreover, the existence condition of instability regions is presented there.
In Sect. 4, the numerical simulations are carried out with comparison between analytical
results and numerical results. There, the influence of shunt circuit parameters on the
instability regions are analyzed in detail. Finally, some conclusions are given.

2 The Mathematical Model

When the rotor system is mounted with the proposed damper, the whole dynamic model
can be shown in Fig. 1. Note that all of supporting structures are linear. The electrome-
chanically coupled boundary conditions which are generalized as spring-mass-damper



Parametric Instability of an Electromechanically Coupled Rotor-Bearing System 569

systems are namely derived from the proposed damper. For the detailed description about
this damper, one can refer to Refs. [1, 2]. Consider a spinning circular Rayleigh beam,
through introducing two transverse (v, w) and two rotational (B, Γ ) displacements in a
fixed reference coordinate, as shown in Fig. 1, the deflection of a point in the shaft can
be described.

Fig. 1. The dynamic model of rotor system mounted with vibration ring

where � is the rotating speed of shaft and ω is the whirl speed of that. The strain
energy of a rotating shaft can be expressed as

Us = 1

2
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0
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where E is the Young’s modulus, ID is the diametrical moment of inertia and L is the
length of the shaft. The prime denotes the partial differentiation with respect to location
x. Here, the periodic axial force P(t) is

P(t) = Pcr(χ + ε cos θ t) (2)

where Pcr , χ, ε and θ represent the fundamental static buckling load, static load coef-
ficient, dynamic load coefficient and excitation frequency, respectively. The total strain
energy of springs at the end of shaft is
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The total kinetic energy of the whole system is

T = 1

2

∫ L

0

[
ρA

(
v̇2 + ẇ2

)
+ ρID

(
Ḃ2 + 	̇2

)
− 2ρ�Ip	̇B + ρ�2Ip

]
dx

+1

2

∫ L

0

[
M

(
v̇2 + ẇ2

)
+ Jp

(
Ḃ2 + 	̇2

)
− 2Jp�	̇B + Jp�

2
]
δ(x − x0)dx

+
∫ L

0

{
Me[−v̇ sin(�t + ϕ) + ẇ cos(�t + ϕ)]δ(x − x0) + 1

2
M�2e2δ2(x − x0)

}
dx

(4)

where the first term represents the kinetic energy of rotating shaft, the second and third
terms represent that of eccentric disk. The symbols ρ, A, Ip,M, Jp, e, ϕ, x0 and δ(x) are
the mass density, area of cross section of shaft, polar moment of inertia of shaft, disk
mass, polar moment of inertia of disk, mass eccentricity and its phase of disk, location
of disk and Dirac delta function, respectively. The Rayleigh’s dissipation function due
to the damping can be formulated as

� = 1

2
η(ẇ|x=0 − ȧlz)

2 + 1

2
η
(
v̇|x=0 − ȧly

)2 + 1

2
η(ẇ|x=L − ȧrz)

2

+1

2
η
(
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)2 + 1

2
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2
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2
ζ ˙̃q2rz + 1

2
ζ ˙̃q2ry

(5)

The assumed mode method is used to discretize the elastic displacements in space
and time as

v(x, t) =
n∑

i=1

φi(x)pi(t) = �(x)p(t), w(x, t) =
n∑

i=1

φi(x)qi(t) = �(x)q(t) (6)

where �(x) = [φ1(x), φ2(x), …, φn(x)], p(t) = [p1(t), p2(t), …, pn(t)]T, q(t) = [q1(t),
q2(t), …, qn(t)]T. φi(x) is the corresponding shape function of the beam bending under
the short circuit condition. The variable n represent the number of the corresponding
mode shapes used for spatial discretization. The time-dependent variables pi(t) and qi(t)
are the corresponding generalized coordinates to be determined. In this paper, two mode
shapes are used, i.e., n = 2. By combining Eqs. (1)–(6) and then substituting them into
the Lagrange’s equation, that is

d

dt

(
∂L

∂ ṡ

)
−

(
∂L

∂s

)
+ ∂�

∂ ṡ
= 0 (7)

where L = T − Uk − Us and s = [p1(t), p2(t), q1(t), q2(t), alz, aly, arz, ary,
q̃lz, q̃ly, q̃rz, q̃ry]T is the vector of the flexible generalized coordinates of size 12, the
equations of motion can be obtained

Mr p̈ + Gr q̇ + Dr ṗ + [Kr − P(t)Sr ]p − η�T(0)ȧly − η�T(L)ȧry − keq�
T(0)aly

− keq�
T(L)ary = �T(x0) · M�2e cos(�t + ϕ)

Mr q̈ − Gr ṗ + Dr q̇ + [Kr − P(t)Sr ]q − η�T(0)ȧlz − η�T(L)ȧrz − keq�
T(0)alz

− keq�
T(L)arz = �T(x0) · M�2e sin(�t + ϕ)

(8a)
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ηȧly + (
keq + keq1 + keq2

)
aly − keq2q̃ly = keq�(0)p + η�(0)ṗ

ηȧlz + (
keq + keq1 + keq2

)
alz − keq2q̃lz = keq�(0)q + η�(0)q̇

ηȧry + (
keq + keq1 + keq2

)
ary − keq2q̃ry = keq�(L)p + η�(L)ṗ

ηȧrz + (
keq + keq1 + keq2

)
arz − keq2q̃rz = keq�(L)q + η�(L)q̇

(8b)

keq2
(
aly − q̃ly

) = ζ ˙̃qly
keq2(alz − q̃lz) = ζ ˙̃qlz
keq2

(
ary − q̃ry

) = ζ ˙̃qry
keq2(arz − q̃rz) = ζ ˙̃qrz

(8c)

Here, Eq. (8a) is the governing equationof thewhole systemandEqs. (8b) and (8c) are
the boundary conditions. If the piezo stacks are shunted with a single resonant RLC cir-
cuit, the electrical damping ζ will have the Laplace form: ζ = 2 cot2 βθ2p (sL + R + 1

sC ),
where s is the Laplace variable. Substituting its expression into Eq. (8c), these equations
can then be expressed as
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 cot2 βθ2p L · ¨̃qly + 2 cot2 βθ2p R · ˙̃qly +
(
keq2 + 2 cot2 βθ2p

C

)
q̃ly − keq2aly = 0

2 cot2 βθ2p L · ¨̃qlz + 2 cot2 βθ2p R · ˙̃qlz +
(
keq2 + 2 cot2 βθ2p

C

)
q̃lz − keq2alz = 0

2 cot2 βθ2p L · ¨̃qry + 2 cot2 βθ2p R · ˙̃qry +
(
keq2 + 2 cot2 βθ2p

C

)
q̃ry − keq2ary = 0

2 cot2 βθ2p L · ¨̃qrz + 2 cot2 βθ2p R · ˙̃qrz +
(
keq2 + 2 cot2 βθ2p

C

)
q̃rz − keq2arz = 0

(9)

By combining Eq. (8) and Eq. (9), the following matrix form of equations of motion
can be obtained

M̃ÿv + D̃ẏv + G̃ẏv +
(
K̃ − εPcr cos θ t · S̃

)
yv = F̃v

M̃ÿw + D̃ẏw − G̃ẏv +
(
K̃ − εPcr cos θ t · S̃

)
yw = F̃w

(10)

where yv = [p1(t),p2(t),aly,ary, q̃ly, q̃ry]T and yw = [q1(t),q2(t),alz,arz, q̃lz, q̃rz]T.Here,
the matrices M̃, G̃, K̃, D̃, S̃, F̃v, F̃w represent the mass matrix, gyroscopic matrix,
stiffness matrix, damping matrix, axial stiffness matrix, generalized unbalance vector
force along v direction and w direction, respectively. The dimensions of these matrices
are all 6 × 6. The detailed expressions of them are provided in Appendix A. It should be
mentioned that the stiffness matrixK has included the effect of static axial load. In fact,
Eq. (10) can be further simplified. For the isotropic boundary condition, the following
definition could be introduced

y1 = p1 + jq1, y2 = p2 + jq2, · · · , yn = pn + jqn,

al = aly + jalz, ar = ary + jarz, q̃l = q̃ly + jq̃lz, q̃r = q̃ry + jq̃rz
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Then Eq. (10) can be simplified as

M̃ÿ +
(
D̃ − jG̃

)
ẏ +

(
K̃ − εPcr cos θ t · S̃

)
y = F̃ (11)

where j = √−1, y = yv + jyw = [y1, y2, al, ar , q̃l, q̃r]T and F̃ = F̃v+j F̃w =
M�2e[φ1(x0)ej(�t+ϕ), φ2(x0), 0, 0, 0, 0]T.

From the expressions of matrices M̃, G̃, K̃, D̃ and S̃, it can be found that these
matrices are non-diagonal due to the assumed approximate mode shapes. Thus, one
can diagonalize some ones of them and reduce their scales by using the eigenvectors ψ

of eigenvalue problem: (K̃−λ M̃)ψ = 0. It should be pointed out that this eigenvalue
problem represents the rotor system is non-rotating and only suffered by the static axial
load. This problem should be solved in two case, that is, the short-circuit case (L = 0)
and closed-circuit case (L �= 0). Note that the mass matrix M̃ is always singular due to
the massless degree of freedoms al and ar . Hence, it is easy to be concluded that the rotor
system has 2 useful eigenvectors in the short-circuit case and 4 useful eigenvectors in the
closed-circuit case. Then these eigenvectors are combined to form the modal matrix �

= [ψ1, ψ2, …, ψN ], where N = 2 or 4. Here, the eigenvectors are the weighted normal
modal vectors which have been divided by the square roots of the generalized masses.
Assume that the modal displacement vector y has the form: y(t) = �q(t). Substituting
it into Eq. (11) and premultiplying each side by �T, one can obtain

Iq̈ + (
D − jG

)
q̇ + (

K − 2ε cos θ t · S)q = F (12)

where I is the identity matrix,K = �TK� = diag[α1, α2,…, αN ] is the diagonal matrix
consists of the rotor system’s square of eigenvalues αi (i = 1, 2, …, N) under the static

condition, D = �TD̃�, G = �G̃�
T
, S = Pcr

2 �T ˜S� and F = �TF̃.

3 Multiple Scales Method for Dynamic Analysis

In this section, the method of multiple scales [13] is applied to Eq. (12). Note that for
the instability regions analysis, only the homogeneous form of Eq. (12) need to be used.
Introducing two time scales T0 = t and T1 = εt, a perturbation solution is sought in the
form

q(t) = q0(T0,T1) + εq1(T0,T1) + O
(
ε2, ε3, · · ·

)
(13)

Then

q̇ = D0q + εD1q, q̈ = D2
0q + 2εD0D1q + O

(
ε2, ε3, · · ·

)
(14)

where D0 = ∂/∂T0 and D1 = ∂/∂T1. Note that the small dimensionless parameter ε

is same with the dynamic load coefficient of periodic axial force P(t), which is for the
purpose of balancing the influence of dynamic load coefficient ε, damping coefficient η,
and resistance value R. Therefore, one can write

η → εη, R → εR (15)
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Then, D = εD. In this case, Eq. (12) can be transformed into

Iq̈ − jGq̇ + Kq = ε
[
−Dq̇ +

(
ejθ t + e−jθ t

)
Sq

]
(16)

By substituting Eq. (13) and (14) into Eq. (16), replacing θ t by θT0 and equating
coefficients of the same power of ε0 and ε1, one obtains

D2
0q0 − jGD0q0 + Kq0 = 0 (17)

and

D2
0q1 − jGD0q1 + Kq1 = −2D0D1q0 + jGD1q0 − DD0q0 +

(
ejθ t + e−jθ t

)
Sq0

(18)

Equation (17) defines a standard linear time-independent damped gyroscopic system
that can be solved via the modal analysis. Its modal solution [10] is

q0 =
N∑
i=1

Ai(T1)riejωFiT0 +
N∑

k=1

Bk(T1)ske−jωBkT0 (19)

where Ai(T1) and Bk(T1) represent a complex function with respect to T1 to be deter-
mined later, ωFi > 0 and ωBk > 0 are the ith (i = 1, 2, …, N) forward whirl frequency
and kth (k = 1, 2, …, N) backward whirl frequency with respect to the specific rotating
speed �, which are solved respectively from

det
(
−ω2

F I + ωFG + K
)

= 0 (20a)

and

det
(
−ω2

BI − ωBG + K
)

= 0 (20b)

Actually Eq. (20a) or Eq. (20b) has 2N solutions which contain all of the syn-
chronous whirl frequencies. Equation (20a) has N positive solutions which represent
the synchronous forward whirl frequencies and N negative ones which represent the
synchronous backward whirl frequencies; whereas Eq. (20b) is quite the opposite. Thus,
in this paper, only the positive solutions of these two equations are considered to avoid
confusion. Following this stipulation, the ith or kthmode ri or sk which is used in Eq. (19)
can be solved respectively from

(
−ω2

FiI + ωFiG + K
)
ri = 0 (21a)

and (
−ω2

BkI − ωBkG + K
)
sk = 0 (21b)

Substituting Eq. (19) into Eq. (18), which will lead to
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D2
0q1 − jGD0q1 + Kq1

=
N∑
i=1

Ȧi(T1)
(−2jωFiI + jG

)
rie

jωFiT0 +
N∑

k=1

Ḃk (T1)
(
2jωBk I + jG

)
ske

−jωBkT0

− j
N∑
i=1

ωFiAi(T1)Drie
jωFiT0 + j

N∑
k=1

ωBkBk (T1)Dske
−jωBkT0

+S

⎡
⎣ N∑
i=1

Ai(T1)
(
ej(θ+ωFi)T0 + ej(−θ+ωFi)T0

)
ri +

N∑
k=1

Bk (T1)
(
ej(θ−ωBk )T0 + e−j(θ+ωBk )T0

)
sk

⎤
⎦
(22)

where the superscript dot denotes the derivative with respect to T1 to indicate the fact
that Ai or Bk is independent of T0. In Eq. (22), one can find that the forced term ej�T0

and the other terms ej(θ−ωBk )T0 , ej(−θ+ωFi)T0 and so on can form the secular terms if and
only if they satisfy that: �, θ + ωFi, –θ + ωFi, θ–ωBk and –θ–ωBk equal to ωFi or –ωBk .
Thus, it is easy to find that only the shaft rotating speed � equals to ωFi or –ωBk and
axial excitation frequency θ equals to ωFi + ωBk can produce the resonances. That is to
say, only the combination instability regions may exist. This phenomenon is consistent
with many references proposed, for example, Refs. [7, 11]. It is also can be concluded
that the new combination instability regions will be formed in the closed-circuit case
because the additional whirl frequencies are introduced by the shunt circuit. Section 4
will enhance the readers’ comprehension about this phenomenon.

Assume that there are resonances defined by

� = ωFi + εσ1

θ = ωFi + ωBk + εσ0
(23)

where σ 0 and σ 1 are the detuning parameters. Substituting Eq. (23) into Eq. (22) and
rearranging the resulting terms on the right hand of Eq. (22) yield

D2
0q1 − jGD0q1 + Kq1

=
[
Ȧi(T1)

(−2jωFiI + jG
)
ri − jωFiAi(T1)Dri + Bk(T1)Sskejσ0T1

]
ejωFiT0

+
[
Ḃk(T1)

(
2jωBkI + jG

)
sk + jωBkBk(T1)Dsk + Ai(T1)Srie−jσ0T1

]
e−jωBkT0 + NST

(24)

where NST stands for non-secular generating terms. To derive the solvability conditions,
assume that the solution of Eq. (24) takes the form

q1(T0,T1) = Pi(T1)e
jωFiT0 + Qk(T1)e

−jωBkT0 (25)

where Pi and Qk is the T1-dependent vector to be determined. Substituting Eq. (25)
into Eq. (24) and then equating each coefficient of ejωFiT0 and e−jωBkT0 in the resulting
equation, one can obtain

(
−ω2

FiI + ωFiG + K
)
Pi = RF

i = Ȧi(T1)
(−2jωFiI + jG

)
ri

− jωFiAi(T1)Dri + Bk(T1)Sskejσ0T1
(26a)
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and
(
−ω2

BkI − ωBkG + K
)
Qk = RB

k = Ḃk(T1)
(
2jωBkI + jG

)
sk

+ jωBkBk(T1)Dsk + Ai(T1)Srie−jσ0T1
(26b)

Equation (26a) or (26b) can be seen as a system ofN linear equations inN unknowns
Pi or Qk . According to Eq. (20), its coefficient determinants vanishes. Hence, to ensure
the existence of solutions Pi and Qk , each matrix in which the residual vector RF

i or R
B
k

replaces columnaorb (a,b=1, 2,…,N) of
(−ω2

FiI + ωFiG + K
)
or−ω2

BkI− ωBkG+K
should be degenerated. If denoting such matrix as �F

ia or �B
kb, the solvability conditions

will be written as

det
(
�F

ia

)
= 0, (a = 1, 2, · · · , N ) (27a)

and

det
(
�B

kb

)
= 0, (b = 1, 2, · · · , N ) (27b)

It should be mentioned that Eq. (27a) or (27b) yields a solvability condition consists
of N ordinary differential equations with the respect of Ai(T1) and Bk(T1). Therefore,
there are totally a set of N ordinary differential equations derived from the solvability
conditions for an N degree-of-freedom system.

Specifically, this paper only gives the detailed dynamic analysis for the closed-
circuit case and the resonances near first whirl mode are considered. The other cases are
similar. Then we have � = ωcc

F1 +εσ1 and θ = ωcc
F1 + ωcc

B1 +εσ 0 (i = k = 1), where
‘cc’ represents the closed-circuit case. Ref. [14] has demonstrated that the solvability
conditions are unchanged as one chooses the different columns of−(

ωcc
F1

)2I+ωcc
F1G+K

or −(
ωcc
B1

)2I − ωcc
B1G + K to form the matrix �F

1a or �B
1b, and thus, this paper chooses

the first column, i.e., a = b = 1. By following the solving process from Eq. (13) to
Eq. (27), one can obtain the detailed expressions of the residual vectors RF

1 and RB
1

RF
1 =

⎛
⎜⎜⎝
RF
11

RF
21

RF
31

RF
41

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

jȦ1

(
g11 + g12r21 + g13r31 + g14r41 − 2

(
ωcc
F1

)2)

− jA1

(
d11 + d12r21 + d13r31 + d14r41

)
ωcc
F1

+ (s11 + s12s21 + s13s31 + s14s41)B1e
σ0T1

jȦ1

(
g21 + g23r31 + g24r41 + g22r21 − 2r21

(
ωcc
F1

)2)

− jA1

(
d21 + d22r21 + d23r31 + d23r41

)
ωcc
F1

+ (s21 + s22s21 + s23s31 + s24s41)B1e
σ0T1

jȦ1

(
g31 + g32r21 + g34r41 + g33r31 − 2r31

(
ωcc
F1

)2)

− jA1

(
d31 + d32r21 + d33r31 + d34r41

)
ωcc
F1

+ (s31 + s21s32 + s33s31 + s34s41)B1e
σ0T1

jȦ1

(
g41 + g42r21 + g43r31 + g44r41 − 2r41

(
ωcc
F1

)2)

− jA1

(
d41 + d42r21 + d43r31 + d44r41

)
ωcc
F1

+ (s41 + s42s21 + s43s31 + s44s41)B1e
σ0T1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(28a)
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and

RB
1 =

⎛
⎜⎜⎝
RB
11

RB
21

RB
31

RB
41

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

jḂ1

(
g11 + g12s21 + g13s31 + g14s41 + 2

(
ωcc
B1

)2)

+ jB1

(
d11 + d12s21 + d13s31 + d14s41

)
ωcc
B1

+ (s11 + s12r21 + s13r31 + s14r41)A1e
−σ0T1

jḂ1

(
g21 + g23s31 + g24s41 + g22s21 + 2s21

(
ωcc
B1

)2)

+ jB1

(
d21 + d22s21 + d23s31 + d23s41

)
ωcc
B1

+ (s21 + s22r21 + s23r31 + s24r41)A1e
−σ0T1

jḂ1

(
g31 + g32s21 + g34s41 + g33s31 + 2s31

(
ωcc
B1

)2)

+ jB1

(
d31 + d32s21 + d33s31 + d34s41

)
ωcc
B1

+ (s31 + s21r32 + s33r31 + s34r41)A1e
−σ0T1

jḂ1

(
g41 + g42s21 + g43s31 + g44s41 + 2s41

(
ωcc
B1

)2)

+ jB1

(
d41 + d42s21 + d43s31 + d44s41

)
ωcc
B1

+(s41 + s42r21 + s43r31 + s44r41)A1e
−σ0T1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(28b)

where r1 = [r11, r21, r31, r41]T and s1 = [s11, s21, s31, s41]T are the mode vectors which
can be derived from Appendix B. The matrices �F

11 and �B
11 in solvability condition

(27) are

�F
11 =

⎛
⎜⎜⎜⎝

RF
11 ωcc

F1g12 ωcc
F1g13 ωcc

F1g14
RF
21 α2 + ωcc

F1g22 − (
ωcc
F1

)2
ωcc
F1g23 ωcc

F1g24
RF
31 ωcc

F1g32 α3 + ωcc
F1g33 − (

ωcc
F1

)2
ωcc
F1g34

RF
41 ωcc

F1g42 ωcc
F1g43 α4 + ωcc

F1g44 − (
ωcc
F1

)2

⎞
⎟⎟⎟⎠

(29a)

and

�B
11 =

⎛
⎜⎜⎜⎝

RB
11 −ωcc

B1g12 −ωcc
B1g13 −ωcc

B1g14
RB
21 α2 − ωcc

B1g22 − (
ωcc
B1

)2 −ωcc
B1g23 −ωcc

B1g24
RB
31 −ωcc

B1g32 α3 − ωcc
B1g33 − (

ωcc
B1

)2 −ωcc
B1g34

RB
41 −ωcc

B1g42 −ωcc
B1g43 α4 − ωcc

B1g44 − (
ωcc
B1

)2

⎞
⎟⎟⎟⎠

(29b)

Substitution of Eq. (29) into Eq. (27) yields a set of 2 first order ordinary differential
equations with respect to A1(T1) and B1(T1), which are written as

∂A1

∂T1
+ �1A1 − 	1B1e

jσ0T1 = 0

∂B1

∂T1
+ �2B1 − 	2A1e

−jσ0T1 = 0
(30)

Here, the detailed expressions of �1, �2, 	1 and 	2 are so complicated that this
paper doesn’t show them. However, it can be sure that �1 and �2 are associated with
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the mechanical or electrical damping. If the system’s damping is eliminated, one have
�1 = �2 = 0. The nontrivial solutions of Eq. (30) have the form

A1(T1) = a1e
λaT1, B1(T1) = b1e(λa−jσ0)T1 (31)

wherea1 andb1 are the complex constants andλa are roots of the associated characteristic
equation, which are

λa = − j

2
σ0 − 1

2
(�1 + �2) ± 1

2

√
−σ 2

0 + � + (�1 − �2)
2 + 2jσ0(�1 − �2) (32)

with � = 4|	1	2|. For the undamped case, Eq. (32) can be reduced as

λa = − j

2
σ0 ± 1

2

√
−σ 2

0 + � (33)

From Eq. (33), it is easy to be concluded that A1 and B1 are bounded when σ 2
0 ≥ �

and unbounded when σ 2
0 ≥ �. Thus, the boundaries of the instability regions are

θ = ωcc
F1 + ωcc

B1 + ε
√

� (34)

4 Numerical Simulation

In this subsection, by applying theDSTMmethod and above solving process, the unstable
regions in the case of eliminating damping effect are respectively determined. Here, the
conclusion that only the combination instability regions exist for such a rotating slender
component subjected to periodic axial load is further confirmed. The model parameters
which are used in the following analyses are provided in Table 1. Here, it should be
mentioned that the fundamental static buckling load Pcr is the minimum axial static load
which will lead to buckling for the non-rotating beam. In the instability regions analysis,
the inductance value is set to 1.542H so that the resonance frequency of shunt circuit
will approach to 700 rad/s. About why we use this specific frequency, the readers will
understand this in the following analysis.

Before carrying out the instability regions analysis, it is necessary to determine
the rotor’s whirl characteristics. The Campbell diagrams for the short-circuit case and
closed-circuit case, which graphically show the relationship between rotating speed �

and whirl frequencies ω, are respectively shown in Fig. 2a and Fig. 2b. Here, the sign ‘o’
represents the synchronous forwardwhirl frequencies and signs ‘×’ and ‘�’ respectively
indicate the forward and backward whirl frequencies under specific rotating speed �.
In this subsection, the rotating speed � is set to 359.3 rad/s. Because only the ‘ ×’ and
‘�’ whirl frequencies are used in the instability regions analysis, all of them have been
collected in Table. 2 for simplicity. From Fig. 2, one can see that the whirl frequencies
in the closed-circuit case are changed little by comparison with that in the short-circuit
case. Thus, we can eliminate the superscript ‘sc’ and ‘cc’, which are used to distinguish
the short-circuit or closed-circuit case.Moreover, due to the introduction of shunt circuit,
the additional synchronous whirl modes, i.e., 2nd and 3rd synchronous whirl modes can
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be observed. These two whirl modes are so closed that we can merge them into one
mode, which is denoted by r, and hence, all of the additional whirl frequencies can be
denoted by ωr . Actually these two modes are respectively derived from the left and
right supporting structures. Then according to these whirl characteristics, the instability
regions can be determined and plotted, as shown in Fig. 3 and Fig. 4. Figure 3 represents
the short-circuit case and Fig. 4 represents the closed-circuit case. The blue shaded
regions represent the instability regions which are numerically determined by using
the discrete state transition matrix method (DSTM) [8]. The red solid lines represent
the unstable boundaries which are analytically determined by using Eq. (34). It can be
found from Fig. 3 and Fig. 4 that two new combination instability regions, i.e., region
‘A’ and ‘C’ in Fig. 4, are produced. Their starting points are formed by combining the
new whirl frequencies ωr with original whirl frequencies. That is namely the influence
of circuit on the instability regions. Furthermore, this phenomenon also confirms that
only the combination instability regions exist for the rotating slender component suffer
from periodic axial load. Now, the readers may understand why the electrical resonance
frequency is set to 700 rad/s, which distinguish from all of the rotor system’s whirling
frequencies. This behavior is aimed at separating the new instability regions from the
original regions more clearly.

Table 1. Model parameters used in the numerical simulation

Supporting structures Stiffness of spring 0 keq 2.635 × 107 N/m

Stiffness of spring 1 keq1 7.333 × 107 N/m

Stiffness of spring 2 keq2 2.444 × 107 N/m

Mechanical damping η 1000 N·s/m

Shunt circuit Inductance L 1.542 H

Capacitance C 5 × 10−6 F

Resistance R 0 ohms

Rotor system Young’s modulus of disk and shaft E 206 × 109 Pa

Mass density ρ 7900 kg/m3

Disk mass M 4.85 kg

Eccentricity of eccentric mass e 1 × 10−5 m

Phase of eccentric mass γ 0

Polar moment of inertia of disk Jp 0.0248 kg·m2

Radius of shaft r 0.015 m

Length of shaft L 0.7 m

Location of disk x0 0.175 m

Fundamental static buckling load Pcr 1.155 × 105 N

Static load coefficient χ 0.5
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Table 2. The whirling frequencies (rad/s) under � = 359.3 rad/s condition.

Short-circuit Closed-circuit

Mode 1st 2nd 1st 2nd 3rd 4th

Symbol ωsc
F1/ω

sc
B1 ωsc

F2/ω
sc
B2 ωcc

F1/ω
cc
B1 ωcc

F2/ω
cc
B2(ωr ) ωcc

F3/ω
cc
B3(ωr ) ωcc

F4/ω
cc
B4

Forward 359.3 1885.6 359.3 715.5 717.9 1896.8

Backward 342.3 1862.9 342.3 715.3 717.9 1874.2

Fig. 2. The Campbell diagrams for the (a) short-circuit case and (b) closed-circuit case

Fig. 3. The instability regions for the short-circuit case

Fig. 4. The instability regions for the closed-circuit case
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5 Conclusion

In this paper, the dynamic behavior of a rotor-bearing system with electromechanically
coupled boundary conditions under harmonic axial load is analyzed. Specifically, the
influence of shunt circuit on the rotor system’s instability regions is analyzed. Both the
analytical and simulated results show that only the combination instability regions exist
when the rotor is rotating, which is consistent with the previous research activities. Fur-
thermore, the instability regions analyses show that the rotation effect erases the primary
instability region. As long as the shaft starts to rotate, only the combination instability
region which is located by the combined whirling frequencies can be observed. The
external shunt circuits introduce the additional synchronous whirl modes. These addi-
tional whirling frequencies ωej (j = 1, 2, …) are combined with the original frequencies
ωf i or ωbi (i = 1, 2, …) to form the new combination instability regions. Their start
points can be written as: ωf i + ωej and ωbi + ωej.

Appendix A

The detailed expressions of M̃, G̃, K̃,
∼
D,

∼
S, F̃v, F̃w are given as follows:

where

m̃ij =
∫ L

0
ρA φi(x)φj(x)dx +

∫ L

0
ρIDφ′

i(x)φ
′
j(x)dx + Mφi(x0)φj(x0) + Jdφ

′
i(x0)φ

′
j(x0)

m̃55 = m̃66 = 2 cot2 βθ2p L

g̃ij =
∫ L

0
ρ�Ipφ

′
i(x)φ

′
j(x)dx + Jp�φ′

i(x0)φ
′
j(x0) (i, j = 1, 2)
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where

k̃ij =
∫ L

0
EIDφ′′

i (x)φ
′′
j (x)dx + keq

[
φi(0)φj(0) + φi(L)φj(L)

] − χPcrs̃ij

k̃55 = k̃66 = keq2 + 2 cot2 βθ2p

C
, k̃13 = k̃31 = −keqφ1(0), k̃14 = k̃41 = −keqφ1(L),

k̃23 = k̃32 = −keqφ2(0), k̃24 = k̃42 = −keqφ2(L)

d̃ij = η
[
φi(0)φj(0) + φi(L)φj(L)

]
d̃55 = d̃66 = 2 cot2 βθ2p R, d̃13 = d̃31 = −ηφ1(0), d̃14 = d̃41 = −ηφ1(L),

d̃23 = d̃32 = −ηφ2(0), d̃24 = d̃42 = −ηφ2(L)

and
{
F̃v = M�2e[φ1(x0) cos(�t + φ), φ2(x0) cos(�t + φ), 0, 0, 0, 0]T

F̃w = M�2e[φ1(x0) sin(�t + φ), φ2(x0) sin(�t + φ), 0, 0, 0, 0]T

Appendix B

For simplicity, only the mode vector ri is derived here and the derivation process of sk
is similar. In Eq. (21a), the matrix equation can be detailedly expressed as

⎛
⎜⎜⎜⎜⎝

−ω2
Fi + ωFig11 + α1 ωFig12 · · · ωFig1N

ωFig21 −ω2
Fi + ωFig11 + α1 · · · ωFig2N

.

.

.
.
.
.

. . .
.
.
.

ωFigN1 ωFigN2 · · · −ω2
Fi + ωFigNN + αN

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

r1i
r2i
.
.
.

rNi

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

0
0
.
.
.

0

⎞
⎟⎟⎟⎟⎠
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Assume r1i = 1, then the other elements of ri can be calculated by the following N
− 1 linear algebraic equations

⎛
⎜⎜⎜⎝

−ω2
Fi + ωFig22 + α2 ωFig22 · · · ωFig2N

ωFig32 −ω2
Fi + ωFig33 + α3 · · · ωFig3N

...
...

. . .
...

ωFigN2 ωFigN3 · · · −ω2
Fi + ωFigNN + αN

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

r2i
r3i
...

rNi

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

−ωFig21
−ωFig31

...

−ωFigN1

⎞
⎟⎟⎟⎠
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