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Abstract. This study proposes a novel zero-stiffness vibration isolator and inves-
tigates its dynamic responses under micro-oscillation with a friction consider-
ation. The novel vibration isolator is based on the mechanism of a cam-roller
Quasi-Zero-Stiffness (QZS) system while with improvement by reducing its sys-
tem components. The proposed vibration isolator consists of a designed bearing,
which can provide stiffness responses in the radial direction, and an inserted rod
with curved surface. Without the precise cooperation between the positive and
negative stiffness systems required in a typical QZS isolator, the designed single
stiffness system can provide the high-static-low-dynamic stiffness characteristic
directly. The static characteristics of the stiffness performance are numerically
confirmed, and then the dynamic responses with friction consideration at the con-
tact surfaces are discussed. The displacement transmissibility in low frequency
range is numerically validated when applying harmonic excitation on the base.
The analysis results of this study reveal a unique vibration isolating performance
of the zero-stiffness system under frication consideration.

Keywords: Zero-stiffness · Vibration isolator · Friction consideration ·
Displacement transmissibility

1 Introduction

Nonlinear QZS vibration isolation systems have been proposed to overcome the disad-
vantage of a traditional linear isolator [1, 2]. A typical QZS system is combined by a
linear isolation system and a negative stiffness structure, thus a high-static-low-dynamic
stiffness (HSLDS) can be generated for the effective vibration isolation in a low fre-
quency range. Different types of the stiffness system such as springs [3, 4], buckled
beams [5] and magnetic springs [6], have been used individually, or in various com-
binations for both positive and negative stiffness structures. The dynamic response of
the QZS isolation systems have been extensively studied for isolating low-frequency
vibrations, in which the lamped mass model and Harmonic Balance Method are used
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frequently for analysis [4, 7]. Other models, such as the finite element model, are also
used based on the structure type [8].

This study proposes a novel zero-stiffness vibration isolator that can achieve the high-
static-low-dynamic stiffness characteristic directly without precise cooperation between
the positive and negative stiffness systems. The proposed vibration isolator is based
on the cam-roller mechanism [9, 10] and consists of a designed bearing, which can
provide stiffness responses in the radial direction, and an inserted rodwith special curved
surface, as shown in Fig. 1(a) and (b). The design concept of the bearing and the static
characteristics of the isolator are first presented, and then nonlinear dynamic performance
with a friction consideration [11, 12] at the connect surface is evaluated.

Fig. 1. Schematic diagram of the system: (a) system configuration and (b) force-displacement
relationship.

2 The Model of the Zero-Stiffness System

There are two systems involves in this novel design for a zero-stiffness performance: a
bearing design and a curved rod as shown in Fig. 1(a). The bearing structure is designed
based on cantilevered beams, which are limited deformable in the horizontal plane. One
end of the beam is fixed on the outer ring of the structure and a hemisphere roller is
placed on the other end. When the curved rod is inserted, the contact of the rod surface
and the hemisphere balls could perform a cam-roller mechanical principle. Thus, the
stiffness in the vertical direction can be designed according to the rod surface curve
and a HSLDS characteristic can be achieved when using for vibration isolation. The
benefits of proposed system are: firstly, the system size can be reduced when comparing
to other spring structures. Higher stiffness can be obtained when using the cantilevered
beam structure with less deformation. Secondly, the system stiffness can be designed
sectional as Demands. Even a zero-stiffness performance can be resulted as shown in
Fig. 1(b) when special rod shape is achieved. It should be noting that a weak spring
(k ≈ 0) is also applied to define the initial position of the rod in zero-stiffness section
for vibration application. The following sections of this paper will demonstrate the
designing the system and its static performance, and then the dynamic performance will
be discussed.
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2.1 Designing of the Structure and Static Performance

Fig. 2. Mechanism of the proposed bearing structure: (a) top view and (b) deformed condition.

As presented in Fig. 2, the designed bearing could include N sets of cantilevered
beam-roller. When inserting a rod at the center of the outer ring, the contact points of
each hemisphere roller to the cross-section of the inserted rod should be on a concentric
circle with the outer ring. Considering geometrically-trigonometric relationships of the
rollers and the neglecting the small deformation of the cantilevered beams, themaximum
number of the beam-roller set can have the relationship as:

π

Nmax
≥ sin−1

(
r

Rin + r

)
(1)

where Rin is initial radius of the concentric circle when the beams are at stress-free
condition, and r is the radius of the hemisphere roller.

To minimize the size of the bearing and the system, the relation between maximum
number of the beam-roller set and the ratio of Rin and r can be calculated as shown in
Fig. 3. It can be found that the higher ratio of Rin/r could using more beam-roller set
in the bearing system which could bring more radiation stiffness of the bearing kh and
provide higher equivalent negative stiffness in the vertical direction.

It also can be found that the minimum size of the radius of the outer ring structure,
Rout , can be the relationship as:

Rout
2 = (Lcos(θb))

2 + (Lsin(θb) + Rin + r)2 (2)

where as shown in the Fig. 2(b), L is the effective length of the cantilevered beam, which
is calculated from the support location to the center of the roller and θb is the angle
between the beam surface and the possible force direction from the rod to the roller.

When rod is inserted with its cross-section larger than the initial radius of the con-
centric circle, Rin + �r, the cantilevered beam can be forced at the roller center with a
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Fig. 3. Maximum number of the beam-roller set with in the system.

deformation. Thus, the equivalent total radiation stiffness of the bearing kh due to the
deformation of the cantilevered beams can be calculated as

kh = N
Ebh3

4L3cos(θb)
(3)

where a rectangle cross-section beam is assumed to be applied, b and h are the width
and thickness of the beam, and E is the elastic module of the beam material.

It is also worth noting that the direction of the force applied on the beam has an
angle change due to the roller contact,θr as shown in the Fig. 2(b). Only when θr is
small and can be neglected, the force applied to the beam can be assumed in the vertical
direction. Otherwise, when θr is big, the force applied perpendicular to the beam surface
is calculated as

P = Fcos(θb − θ r)andθr = PL2

2EI
(4)

where I = 1
12bh

3 is the moment of inertia of the beam, F is the force applied on the
roller, and P is the force applies perpendicular to the beam.

By substituting the Eq. (4) into Eq. (1), a required radiation stiffness kh, the outer
radius of the bearing can be rewritten as

Rout =

√√√√√
⎛
⎝ 3

√
N

Ebh3

4khcos(θb)
cos(θb)

⎞
⎠

2

+ (
3

√
N

Ebh3

4khcos(θb)
sin(θb) + Rin + r)

2

(5)

where N must satisfy the minimum requirement as shown in the Eq. (1).
Figure 4 illustrates the Inclined angle analysis of the beams within the bearing

structure for required stiffness Kh. This analysis is based on using spring steel beams.
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Fig. 4. Inclined angle analysis of the beams within the bearing structure for required stiffness to
minimize the bearing size.

Particular design parameters are given as: E = 205GPa, b = 8mm, h = 3mm, r =
4mm,Rin = 24mm,N = 20 and Kh = 160N/m. It is clearly shown that although the
minimum length of the beam can be required when θb = 0, its outer ring size is not at
its minimum. For the given design parameters, the minimum size of the outer ring can
be achieved when θb = −50.

2.2 Designing of the Curved Rod

The inclined angle of the touching surface on the shaped rod could decide the transfor-
mation ratio of the total raboth the natural frequency diation stiffness to the resultant
stiffness in vertical direction (Fig. 5).

Fig. 5. (a) Mechanism of the bearing-rod system and (b) the rod inclined curve.
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If the rod surface curve is expressed as:

y(x) = A(x)B (6)

The equivalent vertical stiffness kv can be rewritten as:

kv = kh

⎛
⎜⎜⎜⎝

(( y
A

) 1
B

)1−B{
2
( y
A

) 1
B + δ − B

[( y
A

) 1
B + δ

]}

AB2y

⎞
⎟⎟⎟⎠ (7)

where A and B are algebraic constants, δ is the pre-compression condition of the
beam at the original point of the curve.

It is worth noting that special curve conditions could result different equivalent
vertical stiffness as demand: when B = 1, the rod would be presented as a cone shaped
rod, and the equivalent vertical stiffness can be simplified to a constant kv = kh

A2
; when

B = 2&δ = 0, a zero-stiffness condition kv = 0 can be achieved along the rod. The
combination of the two special curve conditions thus can provide the desired stiffness in
the vertical direction along the rod, the stiffness static performance of proposed system
then could be able as shown in Fig. 1(b). it is ideally that the vibration can be totally
isolated to the load platform at the zero-stiffness section. However, for any real engineer
application, the frictions involved in the cam-roller system should not be neglected as it
can directly effect on the dynamic response.

3 Dynamic Analysis with Friction Consideration

The designed zero-stiffness system would be investigated with a Coulomb friction con-
sideration at its contact surface between the rod and the roller. Although the proposed
system is a single-degree-of-freedom system, its dynamic behavior still can be compli-
cated as nonlinearities due to the friction consideration and the unsymmetrical curved
shape.

According to the geometry relationship at the contact surface, the equation of motion
along the rod can be expressed as:

mz̈m + ky + μmg
(
2
√
CRy

)
sgn

(
U̇

) = 0 (8)

where k is the vertical stiffness of the system and it equal to 0 while within the zero-
stiffness section, μ is the frictional coefficient, g is the gravity constant, CR is the curve
constant (same as A in Eq. (6)), y is the location of the contact point along the rod from
the original point, U̇ denotes the absolute speed of the roller to the rod, and z̈m denote
the absolute acceleration of the weight.

Suppose that a steady-state can be reached for the proposed system in a frictional
oscillator. The displacement of the payload can be exhibited to the same period of
the excitation. A time interval

[
0 2π/ωb

]
can be found between a generic couples of

subsequent maximum value, which could represent the steady-state of the motion. An
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unknown phase shift is also expected between the excitation and the response. Assuming
that the motion is continuous and symmetric with respect to the initial position of the
contact between the rod and the rollers, the absolute speed of the roller to the rod at all
internal points within the half time interval

[
0 π/ωb

]
from the maximum displacement

to the minimum condition are always negative U̇ < 0, so Eq. (8) will be rewritten as:

Ü − C1
√
1 + U = C2cos(ωbt + ϕ) (9)

where C1 = 2μg
(√

CR√
y0

)
,C2 = Zeωb

2

y0
and ωb is the excitation frequency. It also should

be noted that the initial position y0, which is defined by the weak spring and the phase
angle ϕ of the excitation are both unknown.

An analytical solution using Taylor series expansion with keeping up to the third-
order about its initial position can be succinctly written as:

Ü − C1

(
1 + U

2

)
= C2cos(ωbt + ϕ) (10)

The end boundary conditions of both displacement and velocity in a half time period[
0 π/ωb

]
can be found as:

{
U(0) = U0 U̇(0) = 0

U(
π
ωb

) = −U0 U̇(
π
ωb

) = 0 (11)

As solving the general solution of Eq. (10), the response regarding to the time interval
can be expressed as:

U(t) =
(

− 2

C1
ωn

2
)
[Ancos(ωnt) + Bnsin(ωnt)] − 2

[
1 + C2

C1
cos(ωbt + ϕ)

]
(12)

where ωn is the natural frequency of the system for a target weight m. Since the system
would provide a zero-stiffness, the calculation of its natural frequency is depending on
the initial position of the contact of the rod and the roller, where ωn = √

g/y0.
The constants An and Bn can be then removed by bring U(t) into its boundary

conditions U(0) and U̇(0), So

U(t) =
(
U0 + 2

C2

C1
cos(ϕ) + 2

)
cos(ωnt) − 2

C2

C1

ωb

ωn
sin(ϕ)sin(ωnt) − 2

[
1 + C2

C1
cos(ωbt + ϕ)

]
(13)

Substituting the response result into the impositions of the boundary condition at
time interval π

ωb
allows to finding the unknown values of the phase angle ϕ, hence:

⎧⎨
⎩

cos(ϕ) = − 1
2
C1
C2
U0

sin(ϕ) = −C1
C2

1
α

sin( π
α )

cos( π
α )+1

(14)

where α = ωb/ωn.
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By introducing a damping function D(α) = 1
α

sin( π
α )

cos( π
α )+1

, the maximum absolute

displacement U0 can be determined as

U0 = 2

√(
C2

C1

)2

− D(α)
2 (15)

It should be noted that as for continuous motion,U̇(t) < 0 at t ∈
[
0 π

ωb

]
; substituting

the cos(ϕ) and sin(ϕ), a unique limit condition for the validity of the maximum absolute
displacement U0 can be obtained, which is independently of the ratio between friction
and external force:

U0 >
−2ωnsin(ωnt) + 2Dωb[cos(ωnt) − cos(ωbt)]

ωbsin(ωbt)
(16)

It must be underlined that the friction response has been considered over the response
of the weak spring applied for initial position, and which has been neglected when analy-
sis the dynamic behavior within the zero-stiffness section. The numerical solution of the
amplitude-frequency relationship can be calculated and shown in Fig. 6 to investigate
the system dynamic response. However, the response under the limit condition as shown

Fig. 6. Displacement transmissibility of the proposed system with frictional consideration with
different designing parameters: (a) natural frequency of the system ωn; (b) excitation amplitude
Ze; (c) rod curve constant CR and (d) frictional coefficient μ
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in Eq. (16) cannot be captured in the analytic solution. Only the displacement transmis-
sibility with respect to the excitation frequency within the limit condition are discussed.
From Fig. 8, the effects of the designing parameters, such as natural frequency of the
system ωn, rod curve constant CR, frictional coefficient μ and the excitation amplitude
Ze to the AF response can be found, respectively.

According to Fig. 6 (a–b), both the natural frequency of the system ωn, which is
depending on the initial position of the contact of the rod and the roller, and the excitation
amplitude Ze can be found to decide the unique limit condition in the nonlinear dynamic
analysis. Either low natural frequency or large excitation amplitude could increase the
range within the limited condition, and in the meantime reduce the workable isolation
frequency range. Other parameters which can have significant effect on the vibration
isolation performance are also simulated and presented in Fig. 6(c)–(d). The increasing
of either the frictional coefficient μ or the rod curve constant CR are able to increase the
workable isolation range of the system.

4 Conclusions

A HSLDS vibration isolation system is proposed with a novel designed bearing and
a curved surface rod. The designed system omits the precise cooperation between the
positive and negative stiffness systems in a typical QZS system and is able to provide a
high-static-low-dynamic stiffness directly. The design concept and its static character-
istics of the stiffness performance have been numerically confirmed and discussed. A
zero-stiffness-in-range property at the targeted weight applied can be achieved ideally.
Then nonlinear dynamic performance under micro-oscillation with a friction considera-
tion is also evaluated. The analysis results of this study reveal a unique vibration isolating
performance of the zero-stiffness system under frication consideration.
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