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Abstract. Most of the previous shell elements based on the classic geometrically
exact shell theory focused on the quadrilateral meshes. However, shell elements
with quadrilateral meshes are difficult to model shell structures with arbitrary
geometry. In this paper, a novel six-node triangular shell with five degrees of
freedom per node based on the local frame approach is presented on the special
Euclidean group SE(3), which is an extension of our recent work [1]. Consid-
ering the classic Mindlin–Ressiner hypothesis, the total Lagrangian method and
Green–Lagrange strain tensor are employed for shells with large displacements
and large rotations. To ensure the objectivity of the discretized strain measures,
the rigid-body motion of the reference point within an element is removed and the
relative motion is interpolated. To improve element solution accuracy, the strain
interpolation schemes based on the assumed strain method are used to eliminate
membrane and shear locking. The effectiveness of the presented novel triangu-
lar shell is demonstrated by several popular geometrically nonlinear benchmark
examples.

Keywords: Triangular shell · Special Euclidean group SE(3) · Strain
interpolation schemes

1 Introduction

Geometrically nonlinear behaviors of plates and shells are widely involved in the fields
of aerospace and civil engineering. As reported in our recent work [1, 2], shell and beam
elements based on the geometrically exact theory on SE(3) exhibit good properties. The
Jacobian matrices corresponding to the inertial and elastic forces are invariant under
the rigid-body motion, which results in the reduction of the geometric nonlinearity of
rigid-body motion. For the geometrically nonlinear problems, the number of the update
times required for the Jacobian matrices declines sharply, which improves the computa-
tional efficiency in dynamic analysis. However, this related study of the geometrically
exact shell on SE(3) only focused on quadrilateral elements. In practice, the modeling
complex engineering structures such as a spinning solar sail with a hexagonal mem-
brane [3] frequently requires the combination of quadrilateral and triangular elements or
integral triangular elements. Moreover, triangular shell elements are relatively efficient
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for automatic mesh generation and perform well in dealing with shell structures with
complicate geometry.

Usually, to develop shell elements with good performance, the membrane and shear
locking are difficult to circumvent. Because the locking phenomena affect the computa-
tional accuracy for shells dominated by bending or membrane-bending mixed problems
[4, 5]. Fortunately, numerous and effective locking alleviation techniques for membrane
and shear locking have been investigated over the past decades. As one of the most
commonly used techniques, the uniform or selective reduced integration techniques,
originally reported in Ref. [6, 7], were successfully used to alleviate locking [8–13].
However, the use of the technique of reduced integration is often accompanied with the
appearance of spurious zero energy modes [14]. As an alternative, the assumed natural
strain (ANS) approach shows better accuracy and robust [15–17]. This approach was
originally applied to four-node quadrilateral plate elements [18] by Hughes and Tezdu-
yar, and then to shell elements by Dvorkin and Bathe [19]. Later, the ANS approach
was widely employed for the locking alleviation of in a family of shell elements based
on the Mixed Interpolation of Tensorial Components (MITC) approach and other shell
elements [20–27]. In our recent study [1], the ANS approach was also used to eliminate
shear locking of a geometrically exact shell formulated on SE(3) and good solution
accuracy was observed.

On basis of the Simo’s shell theory [28], Flores et al. [29] proposed a group of
triangular shell elements for linear and nonlinear analysis. As a matter of fact, the work
done by Flores et al. was an extension of the triangular shell elements proposed by Oñate
et al. [30, 31]. Lee and Bathe [20] presented several three-node and six-nodeMITC shell
elements and corresponding assumed strain interpolation schemes to avoid membrane
and transverse locking. Kim and Bathe [21] proposed a triangular six-node shell element
that represented a significant improvement over the previous six-node shell element [20].
Recently, MRezaiee–Pajand et al. [24] extended the six-node shell element proposed by
Kim and Bathe to geometrically nonlinear analysis. However, a six-node triangular shell
based on geometrically exact shell theory in the SE(3) framework has not been reported
so far.

The unique feature of the Local Frame of Lie Group (LFLG) [1] can eliminate the
geometrically nonlinear of the overall rigid motion for flexible components. Therefore,
the generalized inertial forces and internal forces as well as their Jacobian matrices are
invariable under the arbitrary rigid body motion. However, our recent work has been
limited to quadrilateral shell meshes [1], and there are difficulties in modeling finite
elements of shell structures containing arbitrary geometries. The contribution of this
paper is to develop a six-node triangular shell with 5-DoF per node based on the local
frame, which is helpful to promote the development of the next-generation software
of multibody system dynamics [1]. Besides, to improve solution accuracy, the strain
interpolation schemes presented in [20, 21] are used to alleviate membrane and shear
locking. The versatility of the presented triangular shell was validated by several popular
geometrically nonlinear benchmarks.
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2 Deformation Description

B0 and B refer to the reference and current configurations of a six-node shell element
in Fig. 1. The configuration space of a geometrically exact shell [28] can be represented
by a position on the mid-surface and a unit direction vector. e = {e1, e2, e3}, an inertial
coordinate system, is regarded as a reference system. Additionally,A1,A2, andA3 denote
the areas of the triangles P12, P23, and P31, respectively.

The position of any point P in the current configuration can be written as

xP(ξ1, ξ2, ξ3) = x(ξ1, ξ2) + ξ3t(ξ1, ξ2) = x(ξ1, ξ2) + R(ξ1, ξ2)yP(ξ3), (1)

where x ∈ R
3 and t ∈ S2 (a unit sphere) denote the position vector and the unit direction

vector under global coordinate system. In addition, R, an element of the special orthog-
onal group SO(3), represents the rotation of the director vector, yP(ξ3) = ξ3e3, and ξ3 ∈
[−h/2, h/2] is the coordinate spanning the shell’s thickness. Note that according to [28],
the variation δt of the direction vector belongs to the tangent space of S2 and has only
two independent components. As a matter of fact, per node of the classical geometrically
exact shell has 5-DoF.

Fig. 1. General motion of a six-node shell element.

The current configuration on SE(3) can be expressed as
[
xP(ξ1,ξ2,ξ3)

1

]
= H(ξ1, ξ2)

[
yP(ξ3)

1

]
, (2)

where H ∈ SE(3), including the translational and rotational information of a shell, can
be obtained as follows

H = H(R, x) =
[

R x
01×3 1

]
(3)

Taking the variation and derivative of H to a parameter s, the following expressions
can be obtained

δH = H(δh)∼,
dH
ds

= Hf̃, (4)
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with

δh =
[

δhu
δhω

]
∈ R

6, (δh)∼ =
[

(δhω)∼ δhu
01×3 0

]
∈ se(3), (5)

where h = [hTu ,hTω]T and f = [
fTu fTω

]T
consist of two 3 × 1 vectors. The notations

(•)∼ and •̃ represent that there is an invertible linear map from R
k to the Lie algebra, the

expression of which depends on the dimension k. se(3) indicates the Lie algebra space
of SE(3). In addition, δhu = RTδx is the position variable, and (δhω)~ = RTδR.

According to continuum mechanics, the strain tensor E(ξ1, ξ2, ξ3) can be obtained
as

Eij = 1

2

(
FT
ikFkj − δij

)
= 1

2

(
∂xTP
∂ξi

∂xP
∂ξj

− ∂x0TP
∂ξi

∂x0P
∂ξj

)
, (6)

with
⎧⎪⎨
⎪⎩

∂xP(ξ1,ξ2,ξ3)
∂ξ1

= RNf1
∂xP(ξ1,ξ2,ξ3)

∂ξ2
=RNf2

∂xP(ξ1,ξ2,ξ3)
∂ξ3

=Re3

, (7)

where Fkj and δij in Eq. (6) indicate the deformation gradient and the Kronecker delta,

i, j, k = 1, 2, 3. N = [
I3×3 −ỹP

]
, fi = [

fTiu f
T
iω

]T ∈ R
6, i = 1, 2. Assuming a curved

initial configuration, the deformation measures can be decomposed into

fi(ξ1, ξ2) = f0i (ξ1, ξ2) + εi(ξ1, ξ2), (8)

where f0i and εi are the deformation measures of the reference configuration and the
deformation of the current configuration with respect to the reference configuration,
respectively. Then, εi can be obtained as

εi =
[
fiu − f0iu
fiω − f0iω

]
=

[
RTx − RTx0

axi(RTR′) − axi(R0TR0′
)

]
, (9)

where (•),i = ∂(•)/∂ξi, and axi(•) refers to the axial vector of the antisymmetric matrix
•. The tangent operator TSO(3) and its inverse are introduced as

⎧⎨
⎩
TSO(3)(�) = I3×3 − a2(�)�̃ + a3(�)�̃�̃

T−1
SO(3)(�) = I3×3 + 1

2
�̃ + a4(�)�̃�̃

, (10)

where a3(�) = (‖�‖ − sin(‖�‖))/‖�‖3, a4(�) = (1 − ‖�‖
2 cot( ‖�‖

2 ))/‖�‖2.



A Six-Node Triangular Shell Based on the Local Frame of Lie Group 467

The expressions of Eij in Eq. (6) can be written as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E11 = −fT1uξ3ẽ3f1ω + f0T1u ξ3ẽ3f01ω + 1

2
(fT1uf1u − f0T1u f

0
1u)

E12 = E21 = −fT1uξ3ẽ3f2ω + f0T1u ξ3ẽ3f02ω + 1

2
(fT1uf2u − f0T1u f

0
2u)

E13 = E31 = 1

2
(f1u − f01u)

Te3

E22 = −fT2uξ3ẽ3f2ω + f0T2u ξ3ẽ3f02ω + 1

2
(fT2uf2u − f0T2u f

0
2u)

E23 = E32 = 1
2 (f2u − f02u)

Te3 E33 = 0

. (11)

The membrane strain χ, bending strain δ, and shear strain ρ are given by

χij = 1
2 (f

T
iufju − f0Tiu f0ju)

δij = −ξ3(fTiuẽ3fjω − f0Tiu ẽ3f0jω)

ρi = (fiu − f0iu)
Te3

. (12)

3 Equilibrium Equations

The virtual work of static equilibrium equations can be expressed as

δWint − δWext = 0, (13)

where δWint and δWext indicate the virtual work done by the internal and external forces.
Considering the isotropic linear elastic material, the internal virtual work reads

δWint =
∫
S
(δχT

Cmχ + δδTCbδ + δρT
Csρ)dS, (14)

where S is the reference surface area, the matrices Cm, Cs and Cb are the corresponding
constitutive matrices of the membrane, bending and shear strain, respectively.

The virtual work done by the external forces is obtained as

δWext =
∫
V

δxTP pedV =
∫
S
δhTpextdS, (15)

where

pext =
∫ [

I3×3

ỹP(ξ3)

]
RTpedξ3, (16)

where pe and pext are both 3 × 1 vectors of applied external forces expressed in the
reference frame and the local frame, and I3×3 is a 3 × 3 unit matrix.
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4 Finite Element Discretization

For the discretization of the virtual work of the internal force, the core is the variations of
the deformation measures εi. According to Eq. (9), the variations of εi can be evaluated
as

δεi =
[

δfiu
δfiω

]
=

[
GiuδhN
GiωδhN

]
, δhN =

[
δuN

δ�N

]
, (17)

where uN and �N denote the local displacement and rotation vectors of nodes, and the
detailed expressions of Giu and Giω can be obtained according to the Appendix.

The discretization form of the virtual work of the internal force can be expressed as

δWint = δhTN

∫
S
(BT

m Cmχ + BT
b Cbδ + BT

s Csρ)dS, (18)

where

Bm =
⎡
⎣ fT1uG1u

fT2uG2u

fT1uG2u + fT2uG1u

⎤
⎦, (19)

Bs =
[
eT3G1u

eT3G2u

]
, (20)

Bb =
⎡
⎣ −fT1uẽ3G1ω + fT1ωẽ3G1u

−fT2uẽ3G2ω + fT2ωẽ3G2u

−fT1uẽ3G2ω + fT2ωẽ3G1u − fT2uẽ3G1ω + fT1ωẽ3G2u

⎤
⎦. (21)

The linearization of the virtual work done by the internal forces can be computed as

	(δWint) = δhTNKmat	hN + δhTNKgeo	hN, (22)

the expressions of the material and geometric stiffness matrices Kmat and Kgeo are
expressed as follows

Kmat =
∫
S
(BT

mCmBm + BT
s CsBs + BT

bCbBb)dS, (23)

Kgeo =
∫
S
(	BT

mCmχ + 	BT
s Csρ + 	BT

bCbδ)dS, (24)

where the expressions of 	Bm 	Bs and 	Bb can be obtained from the Appendix.
The discretized virtual work of the external forces can be presented as

δWext = δhTN

∫
S
N∗T
u

∫ [
I3×3

ỹp(ξ3)

]
(RTpe)dξ3dS, (25)

then, the following expression can be obtained after performing the linearization

	(δWext) = δhTN

∫
S
N∗T
u

∫ [
I3×3

ỹp(ξ3)

]
(̃RTpe) N∗

ωdξ3dS	�N, (26)

where N∗(ξ1, ξ2) = [
N∗T
u N∗T

ω

]T
is the standard shape function of the six-node

triangular element.
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5 Strain Interpolation Schemes

The strain interpolation schemes for membrane and shear strains reported in [20] per-
forms well for problems dominated by both bending and membrane and results in an
effective MITC6 shell element. Since successful applications of the schemes, the strain
interpolation schemes are also employed to alleviate membrane and shear locking in this
study.

Figures 2 and 3 exhibit the interpolation schemes for membrane and shear strains,
respectively. Note that for membrane strains, to obtain the in-plane shear strain χ12, the
following equation is used

χ12 = 1

2
(χ11 + χ22) − χ33, (27)

ξ11 = ξ12 = 1

2
− 1

2
√
3
, ξ21 = ξ22 = 1

2
+ 1

2
√
3
, ξ31 = ξ32 = 1

2
+ 1

2
√
3
, (28)

For details on how to obtain the coefficients a1, b1, c1, …, f 1, f 2, see Ref. [20].

Fig. 2. The interpolation and tying points
used for membrane strain.

Fig. 3. The interpolation and tying points used
for shear strain.

6 Numerical Examples

6.1 Cantilever Plate Subjected to End Moment

Figure 4 illustrates a cantilever bending plate with a distributed moment acting on its
free end. This is a typical example to test the large rotation capability of the proposed
shell elements [23, 24, 32]. The geometry property of this cantilever plate are set to l =
12, w = 1, and thickness h = 0.01, respectively. The Young’s modulus and Poisson’s
ration are set to E = 1.2× 106 and v= 0.When using the end momentMmax = 2M0, the
plate rolls up into a complete circle, where M0 = EI/l. The cantilever plate is modeled
using a 2 × 16 × 1 shell elements.



470 T. Zhang et al.

Fig. 4. Cantilever plate subjected to end
moment.

Fig. 5. Load–displacement curves of free end.

Fig. 6. Deformation configurations.

In fact, the analytical solution of this example can be obtained from the formula
1/ρ = M/EI, ρ is the curvature radius. The displacements of the free end x or z can be
expressed as

⎧⎪⎨
⎪⎩

x

l
= M0

M
sin(

M0

M
) − 1

z

l
= M0

M
(1 − cos(

M0

M
))

. (29)

The variation of displacements versus load steps is illustrated in Fig. 5 and the result
obtained by the novel shell element is coincide with the analytical solution. Figure 6
displays the deformed configurations at various load stages and a perfect complete circle
is obtained when M = Mmax .

6.2 Slit Annular Plate Under Transverse Line Load

A slit annular plate with z-direction distributed transverse forces is exhibited in Fig. 7.
This numerical example considered in previous study [23, 24, 32] is to validate the
effectiveness of the novel triangular shell element for the thin-walled shell structures.
The inner diameter Ri, outer diameter Re, and thickness h are set to 6, 10, and 0.03,
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Fig. 7. Problem description of the slit
annular plate.
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Fig. 8. Load–displacement curves of slit
annular plate.

respectively. The Young’s modulus and Poisson’s ration of this annular plate are set
to E = 21 × 106 and v = 0.0. As shown in Fig. 7, the AB edge of the slit annular
plate is subjected to a uniformly distributed load, and the other edge is fixed to the
ground. As reported in [23, 24], the converged result computed by Sze et al. [32] is
considered as a reference solution. As shown in Fig. 8, the six-node triangular shell
obtains the converged result using a 2 × 10 × 30 element mesh. Figure 9 exhibits the
final deformed configuration relative to the initial configuration.

Fig. 9. Deformed and initial meshes of slit
annular plate.

Fig. 10. Reference configuration of the
pinched cylinder.

6.3 Pinched Cylinder with Free Edges

Figure 10 exhibits a cylinder shell with concentrated forces and this classical example
was considered in our recent work [1]. The geometry property of this shell are set to
L = 10.35 mm, R = 4.953 mm, and thickness h = 0.094 mm, respectively. The load
applied F to the shell of the shell are set to 40000 N. The material constants of this shell
are set to E = 10.5 × 106 N/mm2 and v = 0.3125, respectively. In this example, only
one-eighth of the shell was modeled due to the geometric symmetry. To demonstrate the
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correctness of the presented triangular shell element, the obtained results are compared
with the converged results in [1]. The variations of the magnitudes of displacements at
nodes A, B, and C under different meshes are shown in Fig. 11. It can be clearly seen that
the converged result obtained using the navel triangular shell with 2 × 12 × 8 elements
is coincide with the reference solution computed by the geometrically exact shell with
quadrilateral meshes. Figure 12 depicts the deformed configurations of pinched cylinder
under different pulling forces.

Fig. 11. Magnitudes of displacements. Fig. 12. Deformed configurations
of the cylinder shell under pulling
forces.

6.4 Spherical Shell with an 18° Hole

To verify the large deformation capabilities of the novel triangular shell, a spherical shell
with thicknesses of h= 0.04(R/h= 250) mm that was previously considered in Ref. [23,
24] is studied in this example. The radius R, Young’s modulus E, and Poisson’s ration
v of this spherical shell are set to 10 mm, 6.825 × 107 N/mm2 and 0.3, respectively.
Figure 13 exhibits the spherical shell with concentrated forces F = 2λF0, where F0 =
1 N. The factor λ is set to 200, and only one-quarter of the shell structure was modeled
in this example due to the geometric symmetry. The AM and BN planes are symmetric,
and the equator indicates a free edge. The converged results obtained using [24] are
taken as the reference solutions. It can be seen from Fig. 14 that the results obtained
using the novel triangular shell converge at 2× 20× 20meshes, which demonstrates the
correctness of the novel triangular shell. Therefore, the novel triangular shell on SE(3)
performs well for shell structures with large deformation.

The deformed configurations of the shell under different concentrated forces are
exhibited in Figs. 15 and 16.
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Fig. 13. Pinched hemisphere with an 18°
hole

Fig. 14. Load–displacement curves of a
hemispherical shell.

Fig. 15. Deformed configuration of the
hemispherical shell (P = 0.5Pmax).

Fig. 16. Deformed configuration of the
hemispherical shell (P = Pmax).

7 Conclusions

In this study, based on the local frame approach, a 5-DoF triangular shell with six nodes
on SE(3) is presented allowing for large displacements and rotations. To improve the
computational accuracy, strain interpolation strategies are used to eliminate the mem-
brane and shearing locking, which is different from the locking alleviation techniques
employed by the quadrilateral shell elements in our previous study [1]. According to the
excellent performance of the above geometrically nonlinear problems, we can conclude
that the proposed triangular shell element is an attractive element for shell structures
with curved sides.

Obviously, only the static part of the triangular shell is exhibited in this paper. As
reported by [1], the most attractive advantages of the local frame approach are the
improvement of the computational efficient and the elimination of the geometric nonlin-
earity caused by rigid-bodymotion during the dynamic analysis. However, the geometric
nonlinearity of rigid-body motion cannot be completely eliminated due to the absence
of drilling DoFs. In fact, the relationship between the drilling DoF and the mid-surface
motion can be further established by the polar decomposition of the mid-plane defor-
mation gradient tensor [33], a 6-DoF shell including drilling rotations based on the local
frame can be derived. If using this 6-DoF triangular shell in the dynamic analysis, the
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geometric nonlinearity of rigid-body motion will be eliminated, which results in the
reduction of the times of the iterative matrix and the improvement of the computation
efficient. This related part is exactly what we are going to study.

Appendix

To observe the objective of the strain measures [34], the relative rotation is interpolated,
which is consistent with Ref. [2]. The formula is expressed as

�r
I = N ∗

I d
r
I, drI = log(R−1

r RI), (30)

where the notation �r
I denotes the relative rotation between nodes r and I, and Rr is the

rotationmatrix at the reference node, which is typically chosen as the first node within an
element [2]. The variations of the relative configuration vector drk and the strainmeasures
can be given by

δdrk =
[
−T−1

SO(3)(−drk) T
−1
SO(3)(d

r
k)

]
δ�rk, δ�rk =

[
δ�r

δ�k

]
, (31)

{
δfαu = RTN∗

u,αR
∗δuN + exp(d̃)TR̃T

r x,α δ�r + R̃Tx,α T(d)δd
δfαω = Tuω+(δhω,hω)δd + T(d)δd,α = �TT

SO(3)
(d,α) (δd) + T(d) δd,α

, (32)

where the symbols exp and T denote the exponential mapping and tangent operations on

SO(3), d =
N−1∑
k=1

N ∗
I d

r
I denotes the relative configuration vector on the gauss points, N is

the number of nodes. The expressions of Giu and Giω are easy to obtain from Eq. (32),
and the linearization of δfα can be derived with the help of an arbitrary 3 × 1 vector a

	δfTαua = (δuN)TM∗	�N+(δuN)TR∗TN∗T
,α (Rr

˜exp(d̃) · a 	�r + Rã	d)

+ δ�T
r R̃T

r x,α exp(d̃)ãT(d)	d + δ�T
r (

˜exp(d̃)a )R̃T
r x,α	�r

+ (
˜exp(d̃)a)RT

r N
∗
u,αR

∗	u − 	δdTT(d)TR̃Tx,α a − (	T(d)δd)TR̃Tx,α a

δdTT(d)Tã(RTN∗
u,αR

∗	u + exp(d̃)TR̃T
r x,α 	�r + R̃Tx,α T(d)	d)

,

(33)

	δfTαωa = 	δdT�TT
SO(3)

(d,α)Ta + (	δTSO(3)(d)d,α)Ta + (δTSO(3)(d)	d,α)Ta

+	δdTTSO(3)(d)Ta + δdT	TSO(3)(d)Ta
,

(34)

M∗ =

⎡
⎢⎢⎢⎢⎢⎣

˜RT
1M1

˜RT
2M2

. . .

˜RT
NMN

⎤
⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎣
M1

M2
...

MN

⎤
⎥⎥⎥⎦ = N∗T

u,αRa, (35)

R* represents the rotation transformation between δxN and δuN. The core of the first
and second derivatives for d is to compute the first and second derivatives of TSO(3) and
its inverse, which can be found in Ref. [2] and [35] and will not be repeated here. The
expressions of Bi and 	Bi can be easily obtained using the Eqs. (32), (33) and (34).
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