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Abstract. As a tool for transporting goods, three-dimensional bridge
cranes are widely used in many industrial sites, such as workshops, ware-
houses, docks and so on. The main control objective is to transport goods
to the designated position smoothly and quickly while restraining load
swing angles. However, the influence of external disturbances and the
uncertainty of the system model parameters increase the difficulty of
designing the controller. In the first step, we constructed a composite
signal to increase the coupling relationship of the state vectors, and then
designed an adaptive tracking controller, which can achieve a satisfactory
tracking effect while completing the estimations of the uncertain model
parameters. In the second step, considering the fact that the velocity
signals are not measurable in actual situations, we replace the velocity
feedback with velocity-like signals, and then propose an improved adap-
tive tracking control strategy. Use Matlab as a simulation platform to
complete comparative simulation and robustness verification. A series of
simulation results shows that the designed controller can complete the
control goal and its control performance is significantly better than the
other two controllers in the comparative simulation.

Keywords: Three-dimensional overhead crane · Adaptive tracking ·
Output feedback

1 Introduction

Overhead cranes play a very important role in cargo transfer in industrial sites
because of their small footprint, convenience, and fast transportation. As a large-
scale mechanical equipment, with the popularization and use of overhead cranes
in various industrial environments, higher and higher requirements are put for-
ward for its stable, efficient and safe operation. Therefore, research on crane
automation control technology is gradually becoming more important [1].

The crane has a process of acceleration or deceleration during operation,
which is bound to cause the swing of load. This kind of swing phenomenon
is particularly obvious during the starting and braking of the crane. In addi-
tion, overhead crane use hook to connect load during lifting operation, so it
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exhibits double pendulum characteristics. When the crane trolley moves to a
predetermined position, the swing of the load will cause difficulty in hoisting and
positioning, increase the duration of hoisting operations, and lower the work effi-
ciency of the crane. Aiming at the problem of trolley positioning and swing angle
suppression, many scholars have provided solutions and optimization strategies,
which can be divided into open loop control, and closed loop control. Open loop
control includes motion planning optimal control [2–4] and input shaping control
[5–7]. Closed-loop control includes sliding mode control [8–10], adaptive control
[11–13], passivity-based control [14–16] and intelligent control [17–19].

Then, some typical control strategies are enumerated and analyzed. Fu et
al. proposed a minimum time motion online planning method under constrained
conditions in [20]. Considering the coupling relationship between trolley posi-
tioning and load swing, an optimization problem is proposed and the solution
of the motion planning problem is calculated in real time. Taking into account
the problem of load assignment of multiple cranes in real work scenarios, Ji et
al. created a mixed integer programming in which a mathematical equation can
solve the optimization problem. Through case analysis, this method can improve
crane transportation efficiency [21]. In order to achieve the control objectives of
trolley positioning and anti swing, Zhang et al. designed an online motion plan-
ning method in [22]. The proposed method includes the correlation functions of
trolley positioning and swing angles, and the effectiveness of the method is veri-
fied by theoretical proof and simulation. A disturbance observer control strategy
that can eliminate unknown disturbances in finite time is designed by Wu in [23].
During the design process, some conversions were made to the original dynamic
model of the crane system. Mathematical analysis and experiments verify the
superiority of this method. Combining adaptive control and sliding mode con-
trol, an adaptive integral sliding mode controller is derived by Zhang et al. in
[24]. At the same time, the purpose of swing angle suppression is achieved by
increasing the state vector coupling. In [25], Le et al. designed a hierarchical
sliding mode controller based on the crane system, and then used an intelligent
algorithm to determine the control gains.

After careful investigation, it is certain that the existing literature provides
ideas for the control method of the three-dimensional double pendulum crane
system to a large extent. However, some problems still need to be resolved for
the crane system studied in this article: (1) Due to the complexity of the three-
dimensional double pendulum overhead crane model, it is challenging to design
the controller to achieve the control goal. It can be found that in most liter-
atures, when faced with a complex model with many degrees of freedom, the
author ignores some nonlinear terms to simplify the model, and then performs
controller design or theoretical analysis on the basis of the simplified model. (2)
There are often some unknown disturbances in actual working scenarios, and
this issue should also be considered when designing the controller. (3) Many
existing controllers contain velocity signals, but in reality, the velocity signals
are unmeasurable when the crane is hoisting.
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Thus, in order to solve the above problems, an improved adaptive tracking
controller without velocity feedback is proposed. In summary, the main contri-
butions of this method are as follows: (1) Unlike the traditional controllers, it
does not need to linearize the dynamic model of crane system when designing the
controller. (2) In practice, there are always unknown external disturbances in the
crane system, which is considered in this paper. (3) The problem of unmeasurable
velocity and angular velocity is overcome by introducing velocity function.

2 Three-Dimensional Overhead Cranes with
Double-Pendulum Modeling and Control Objective

2.1 System Modeling

According to Fig. 1, the dynamic model of the crane can be obtained as follows
[26,27].

M (q) q̈ + C (q, q̇) q̇ + G (q) = Γ − Ξ (1)

The specific expressions of M(q), C(q, q̇), G(q) and Γ can be calculated
mathematically as follows:

M(q) =

⎡
⎢⎢⎢⎢⎢⎢⎣

m11 m12 m13 m14 m15 m16

m21 m22 m23 m24 m25 m26

m31 m32 m33 m34 m35 m36

m41 m42 m43 m44 m45 m46

m51 m52 m53 m54 m55 m56

m61 m62 m63 m64 m65 m66

⎤
⎥⎥⎥⎥⎥⎥⎦

, C(q, q̇) =

⎡
⎢⎢⎢⎢⎢⎢⎣

c11 c12 c13 c14 c15 c16
c21 c22 c23 c24 c25 c26
c31 c32 c33 c34 c35 c36
c41 c42 c43 c44 c45 c46
c51 c52 c53 c54 c55 c56
c61 c62 c63 c64 c65 c66

⎤
⎥⎥⎥⎥⎥⎥⎦

,

G(q) =
[
0 0 g3 g4 g5 g6

]T
, Γ =

[
Fx − Frx Fy − Fry 0 0 0 0

]T
,

Ξ =
[
Ξ1 Ξ2 Ξ3 Ξ4 Ξ5 Ξ6

]T
, q =

[
x y θ1 θ2 θ3 θ4

]T
,

m11 = M1 + m1 + m2,m12 = 0,m13 = (m1 + m2)l1C1C2,

m14 = −(m1 + m2)l1S1S2,m15 = m2l2C3C4,m16 = −m2l2S3S4,

m21 = 0,m22 = M2 + m1 + m2,m23 = 0,m24 = (m1 + m2)l1C2,

m25 = 0,m26 = m2l2C4,m31 = (m1 + m2)l1C1C2,m32 = 0,

m33 = (m1 + m2)l21C
2
2 ,m34 = 0,m35 = m2l1l2C1−3C2C4,

m36 = m2l1l2S1−3C2S4,m41 = −(m1 + m2)l1S1S2,

m42 = (m1 + m2)l1C2,m43 = 0,m44 = m1l
2
1 + m2l

2
2,

m45 = −m2l1l2S1−3S2C4,

m46 = m2l1l2(C2C4 + C1C3S2S4 + S1S2S3S4),
m51 = m2l2C3C4,m52 = 0,m53 = m2l1l2C1−3C2C4,

m54 = −m2l1l2S1−3S2C4,m55 = m2l
2
2C

2
4 ,m56 = 0,

m61 = −m2l2S3S4,m62 = m2l2C4,m63 = m2l1l2S1−3C2S4,

m64 = m2l1l2(C2C4 + C1C3S2S4 + S1S2S3S4),m65 = 0,m66 = m2l
2
2
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c11 = 0, c12 = 0, c13 = −(m1 + m2)l1(C2S1θ̇1 + C1S2θ̇2),
c14 = −(m1 + m2)l1(C1S2θ̇1 + C2S1θ̇2), c15 = −m2l2(C4S3θ̇3 + C3S4θ̇4),
c16 = −m2l2(C3S4θ̇3 + C4S3θ̇4), c21 = 0, c22 = 0, c23 = 0,

c24 = −(m1 + m2)l1 sin θ2θ̇2, c25 = 0, c26 = −m2l2 sin θ4θ̇4,

c31 = 0, c32 = 0, c33 = −(m1 + m2)l21S2C2θ̇2,

c34 = −(m1 + m2)l21S2C2θ̇1, c35 = m2l1l2S1−3(C2C4θ̇3 + S2S4θ̇4),
c36 = −m2l1l2C2(C1C3S4θ̇3 + S1S3S4θ̇3 + C1C4S3θ̇4 − C3C4S1θ̇4),
c41 = 0, c42 = 0, c43 = (m1 + m2)l21S2C2θ̇1, c44 = 0,

c45 = m2l1l2S2(C1C3C4θ̇3 + C4S1S3θ̇3 − C1S3S4θ̇4 + C3S1S4θ̇4),
c46 = m2l1l2(C1C3C4S2θ̇4 + C4S1S2S3θ̇4 − C2S4θ̇4 − C1S2S3S4θ̇3

+C3S1S2S4θ̇3), c51 = 0, c52 = 0,

c53 = −m2l1l2C4(C2C3S1θ̇1 − C1C2S3θ̇1 + C1C2S2θ̇2 + S1S2S3θ̇2),
c54 = −m2l1l2C4(C1C3S2θ̇1 + S1S2S3θ̇1 − C1C2S3θ̇2 + C2C3S1θ̇2),
c55 = −m2l

2
2S4C4θ̇4, c56 = −m2l

2
2S4C4θ̇3, c61 = 0, c62 = 0,

c63 = m2l1l2S4(C1C2C3θ̇1 + C2S1S3θ̇1 + C1C2S3θ̇2 − C3S1S2θ̇2),
c64 = m2l1l2(C1C2C3S4θ̇2 + S1S3S4C2θ̇2 − C4S2θ̇2 + C1S2S3S4θ̇1

−S1S2S4C3θ̇1), c65 = m2l
2
2S4C4θ̇3, c66 = 0,

g3 = (m1 + m2)gl1S1C2, g4 = (m1 + m2)gl1C1S2,

g5 = m2gl2S3C4, g6 = m2gl2C3S4 (2)

where M1 represent the mass of the trolley, the result of trolley’s mass plus
bridge’ mass is set to M2, m1 represent the mass of hook, the mass of load is set
to m2. l1 is the length of cable, l2 is the distance from the hook to the load. θ1,
θ2 are used to depict the swing of hook, θ3 and θ4 are used to depict the swing
of load. Besides, for ease of reading, Sj is the abbreviation of sin θj and Cj is the
abbreviation of cos θj(j = 1, 2, 3, 4). x and y denote the displacement variables
of the trolley along the X-axis and the Y -axis. The force applied to the trolley
along the X-axis, is set to Fx. Then, the force applied to the trolley along the
Y -axis, is set to Fy. Frx, Fry describes the force of friction along the X-axis and
the Y -axis, which are defined as follows:

Frx = frox tanh (ẋ/δx) + κrx |ẋ| ẋ (3)
Fry = froy tanh (ẏ/δy) + κry |ẏ| ẏ (4)

where frox , froy , δx , δy represent the static friction coefficients, and κrx and
κry denote the viscous friction coefficients.

From (1), (2), it can be known that M (q) is positive definite, and the anti-
symmetric relation between the M (q) and C (q, q̇) is as follows:

αT

[
1
2
Ṁ (q) − C (q, q̇)

]
α = 0,∀α ∈ R6 (5)
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In general, the following assumption is reasonable:

– In practical application, the swing angle components studied in this paper
have the following restrictions:

−π

2
< θ1, θ2, θ3, θ4 <

π

2
(6)

2.2 Control Objective

The control objective is that, on the one hand, the trolley can accurately reach
the target position along the set trajectory, and on the other hand, it can effec-
tively eliminate the swing angle of the hook and load. It can be elaborated as
the following expressions:

lim
t→∞ x = xr, lim

t→∞ y = yr, lim
t→∞ θ1 = 0,

lim
t→∞ θ2 = 0, lim

t→∞ θ3 = 0, lim
t→∞ θ4 = 0 (7)

where xr, yr denotes the reference trajectories of trolley. Regarding the refer-
ence trajectories xr, yr corresponding to x and y, the following conditions are
generally guaranteed:

xr, yr, ẋr, ẏr ∈ L∞
xr (0) = x0, yr (0) = y0

ẋr (0) = 0, ẏr (0) = 0
ẍr (0) = 0, ÿr (0) = 0 (8)

When t ≥ ts, it can be obtained that,

xr (t) = xd, yr (t) = yd,

ẋr (t) = 0, ẏr (t) = 0
ẍr (t) = 0, ÿr (t) = 0 (9)

where x0, y0 denote the initial displacement values, xd, yd represent the desired
positions, ts is used to describe the settling time.

3 Controller Design

The energy equation of the crane system studied in this paper is described as
follows

E =
1
2
q̇T M(q)q̇ + (m1 + m2) gl1(1 − C1C2) + m2gl2(1 − C3C4) (10)

Combining with Eq. (5), the expression of Ė can be obtained:

Ė = q̇T M(q)q̈ +
1
2
q̇T Ṁ(q)q̇ + (m1 + m2) gl1(S1C2θ̇1 + C1S2θ̇2)
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+ m2gl2(S3C4θ̇3 + C3S4θ̇4)
= (Fx − Frx − Ξ1) ẋ + (Fy − Fry − Ξ2) ẏ

− Ξ3θ̇1 − Ξ4θ̇2 − Ξ5θ̇3 − Ξ6θ̇4 (11)

where Ξ1, Ξ2, Ξ3, Ξ4 represent air frictions and ξ1, ξ2, ξ3, ξ4 denote friction-
related parameters.

Ξ1 = −ξ1ẋ, Ξ2 = −ξ2ẏ, Ξ3 = −ξ3θ̇1,

Ξ4 = −ξ4θ̇2, Ξ5 = −ξ5θ̇3, Ξ6 = −ξ6θ̇4 (12)

In order to improve the control performance, we built the following new
signals by enhancing the coupling between the system state variables, and used
them in the subsequent controller analysis and design.

ψx = x + κ1S1C2+κ2S3C4 (13)
ψy = y + κ3S2+κ4S4 (14)
eψx = ψx − xr = ex + κ1S1C2+κ2S3C4 (15)
eψy = ψy − yr = ey + κ3S2+κ4S4 (16)

where κ1, κ2, κ3 and κ4 ∈ R.
Hence, the tracking error vector can be expressed as follows:

q̇eψ =
[

ėψx ėψy θ̇1 θ̇2 θ̇3 θ̇4
]T

(17)

where ėψx = ẋ + (κ1S1C2+κ2S3C4)
′ − ẋr, ėψy = ẏ + (κ3S2+κ4S4)

′ − ẏr.
Based on the new error vector, the system energy equation can be rewritten

as follows:

VEΨ =
1
2
q̇T
eψMq̇eψ + (m1 + m2) gl1(1 − C1C2) + m2gl2(1 − C3C4) (18)

Substituting Eq. (2) and Eq. (17) into the derivative of VEΨ with respect to
time, the following expressions are obtained through mathematical calculation
and sorting

V̇EΨ = [Fx − Frx − Ξ1+(M1 + m1 + m2)(κ1S1C2+κ2S3C4)
′′

− (M1 + m1 + m2) ẍr] ėψx + [Fy − Fry − Ξ2+(M2 + m1 + m2)
×(κ3S2+κ4S4)

′′ − (M2 + m1 + m2) ÿr] ėψy

+ [−Ξ3 +(m1 + m2)l1C1C2(κ1S1C2+κ2S3C4)
′′

− (m1 + m2)l1C1C2 ẍr] θ̇1
+ [−Ξ4− (m1 + m2)l1S1S2(κ1S1C2+κ2S3C4)

′′

− (m1 + m2)l1C2(κ3S2+κ4S4)
′′ + (m1 + m2)l1S1S2ẍr

− (m1 + m2)l1C2ÿr] θ̇2 + [−Ξ5 +m2l2C3C4(κ1S1C2+κ2S3C4)
′′

−m2l2C3C4 ẍr] θ̇3 + [−Ξ6 − m2l2S3S4(κ1S1C2+κ2S3C4)
′′

−m2l2C4(κ3S2+κ4S4)
′′ + m2l2S3S4 ẍr − m2l2C4ÿr] θ̇4

(19)
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where

Υx =
[
tanh

(
ẋ
δx

)
|ẋ| x ẋ (κ1S1C2+κ2S3C4)

′′ − ẍr

]T
(20)

Υy =
[
tanh

(
ẏ
δy

)
|ẏ| y ẏ (κ3S2+κ4S4)

′′ − ÿr

]T
(21)

σx =
[
frox κrx ξ1 M1 + m1 + m2

]T
(22)

σy =
[
froy κry ξ2 M2 + m1 + m2

]T
(23)

H1 = −ξ3θ̇
2
1+ [(m1 + m2)l1C1C2(κ1S1C2+κ2S3C4)

′′

− (m1 + m2)l1C1C2ẍr] θ̇1 (24)
H2 = −ξ4θ̇

2
2 + [−(m1 + m2) l1S1S2(κ1S1C2+κ2S3C4)

′′

− (m1 + m2)l1C2(κ3S2+κ4S4)
′′

+ (m1 + m2)l1S1S2ẍr − (m1 + m2) l1C2ÿr] θ̇2 (25)

H3 = −ξ5θ̇
2
3 +

[
m2l2C3C4 (κ1S1C2+κ2S3C4)

′′ − m2l2C3C4ẍr

]
θ̇3 (26)

H4 = −ξ6θ̇
2
4 + [−m2l2S3S4 (κ1S1C2+κ2S3C4)

′′ − m2l2C4(κ3S2+κ4S4)
′′

+ m2l2S3S4 ẍr − m2l2C4ÿr] θ̇4 (27)

Inspired by Eq. (19), the following control laws can be constructed:

Fx = −kpxeψx − kdxėψx + ΥT
x σ̂x (28)

Fy = −kpyeψy − kdy ėψy + ΥT
y σ̂y (29)

where kpx, kpy, kdx, kdy are undetermined control parameters, σ̂x, σ̂y denotes
the estimators of σx, σy and the specific expressions are as follows:

σ̂x =
[
f̂rox κ̂rx ξ̂1 ̂M1 + m1 + m2

]T
(30)

σy =
[
f̂roy κ̂ry ξ̂2 ̂M2 + m1 + m2

]T
(31)

Then, the adaptive laws are designed as follows:

˙̂σx = −A−1Υxėψx, ˙̂σy = −B−1Υy ėψy (32)
A = diag

{
a1 a2 a3 a4

} ∈ R4×4 (33)

B = diag
{

b1 b2 b3 b4
} ∈ R4×4 (34)

However, in actual application, the velocity signals are not measurable during
the crane operation, which is also the weakness of the controller in Eqs. (28), (29).
Therefore, we construct auxiliary functions x and y containing the velocity
signals and introduce it into the controller in Eqs. (28), (29). Whereupon a novel
adaptive output feedback control method, which can handle the aforementioned
issue, is presented.

Fx = −kpxeψx − kdxx + ΥT
x σ̂x (35)
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Fy = −kpyeψy − kdyy + ΥT
y σ̂y (36)

where

x = λx + kdxeψx, λ̇x = −kdx (λx + kdxeψx) (37)

y = λy + kdyeψy, λ̇x = −kdy (λy + kdyeψy) (38)
̇x = −kdxx + kdxėψx (39)
̇y = −kdyy + kdy ėψy (40)

4 Results and Discussion

To further conform the superiority of the control strategy, as mentioned in Eqs.
(35), (36), in terms of trolley positioning and swing angles reduction, the MAT-
LAB is used for simulation verification and analysis.

4.1 Simulation Conditions

Firstly, the dynamic model given in Eq. (1) is operated by the proposed con-
troller. When selecting these control gains, the first step is to adjust the control
gains kpx, kdx, kpy, kdy on the basis of PD controller, and then fine tune the con-
trol gains κ1, κ2,A,B. After repeated trial and error, the controller gains used
in the simulation are selected as follows:

kpx = 8, kdx = 6, kpy = 8, kdy = 10
κ1 = −0.27, κ2 = −0.25

A = diag
{

0.01 0.01 0.01 0.01
}

B = diag
{

0.01 0.01 0.01 0.01
}

(41)

The target positions of the trolley are set as xd = 0.3 [m], yd = 0.3 [m] ts = 3[s],
and the initial positions x0, y0 are set to zero. The physical parameters of the
crane model are set as follows: M1 = 0.5[kg], M2 = 2.5[kg], m1 = 0.5[kg],
m2 = 0.5 [kg], l1 = 0.4[m], l2 = 0.3[m].

4.2 Comparative Simulations

In this subsection, in order to verify the effectiveness of the proposed control
strategy, the comparative simulations are carried out.

(1) Sliding mode controller

F =
(
PT P

)−1
PT (R + q̈ − Λė − ks − μ tanh (s)) (42)

with s = ė + βė and e = q − qd representing the chosen sliding surface and
error matrix respectively, where q =

[
x y θ1 θ2 θ3 θ4

]T
, qd =

[
xd yd 0 0 0 0

]T .
Meanwhile, Λ is a positive gain matrix and k, μ are undetermined parameters.
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After carefully selecting parameters by trial and error, the following values can be
obtained: Λ = diag {0.085, 0.1, 1, 1, 1, 1} , k = μ = 5. P and R are the auxiliary
matrix functions in Eq. (43), which are defined as:

P =
[

p11 p21 p31 p41 p51 p61
p12 p22 p32 p42 p52 p62

]T

R =
[

r11 r21 r31 r41 r51 r61
]T

(43)

with

p11 =
1

M1
, p21 = 0, p31 = − 1

M2l1
, p41 = 0, p51 = 0, p61 = 0,

p12 = 0, p22 =
1

M2
, p32 = 0, p42 = − 1

M2l1
, p52 = 0, p62 = 0,

r11 =
(m1gθ1 + m2gθ1)

M1
, r21 =

(m1gθ2 + m2gθ2)
M2

,

r31 =
(M1 + m1 + m2)m1gθ1 + m1m2g(θ1 − θ3)

M1m1l1
,

r41 =
(M2 + m1 + m2)m1gθ2 + M2m2g(θ2 − θ4)

M2m1l1
,

r51 =
(m1 + m2) g (θ1 − θ3)

m1l2
,

r61 =
(m1 + m2) g (θ2 − θ4)

m1l2
(44)

(2) LQR controller

Fx = −kpxex − kdxẋ − k1θ1 − k2θ3 − k3θ̇1 − k4θ̇3 + Frx,

Fy = −kpyey − kdy ẏ − k5θ2 − k6θ4 − k7θ̇2 − k8θ̇4 + Fry, (45)

with kpx, kpy, kdx, kdy, ka, kb, kc, kd, ke, kf , kg, kh ∈ R denote control
gains, which are calculated kpx = 11.3137, kpy = 11.3137, kdx = 18.5403,
kdy = 22.9924, ka = −76.0345, kb = −15.2300, kc = 40.6143, kd − 0.1772,
ke = −44.4926, kf = −17.7791, kg = 21.5435 and kh = 1.2262.

In order to intuitively demonstrate the superiority of the proposed controller
in trolley tracking and positioning and restraining the load swing angles, the
simulation results of actuated state components x, y, underactuated state com-
ponents θ1, θ2, θ3, θ4, and input force Fx, Fy, when the three controllers act
on the crane are all reflected in Fig. 2. The sub-figure in the first row of Fig. 2
describes the tracking and positioning performance of the trolley. Through com-
parative analysis, the conclusion can be drawn that the proposed controller can
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drive the trolley to reach the set position significantly faster than the other two
control methods. The second and third rows of Fig. 2 display the simulation
results of the swing angles of the crane during operation. Under the control of
the proposed control strategy, when the trolley reaches the target position, the
swing angles are also suppressed to 0. Although the swing angles can also be
eliminated by the other two controllers, they takes longer time because of their
longer positioning time. In addition, when adopting the proposed controller, the
amplitude of the load swing angles are smaller than that of the other two con-
trollers. In conclusion, the proposed control strategy achieves better performance
than the other two control methods in terms of trolley positioning, swing angles
elimination.

4.3 Robust Performance

In order to verify the robustness of the proposed controller, we carried out the
following three sets of simulation to reflect the control performance under the
perturbation of the system model parameters and the non-zero initial swing
angle. Meanwhile, The control parameters in the following sets of simulations
are all the same values in Eq. (42). For easy analysis, the parameter changes are
placed together with the original image In order to facilitate the analysis, the
figure with the changed parameters and the original picture are plotted together.

In the first set of simulation, we obtained the simulation results presented
in Fig. 3 by changing the load mass from 0.5 [kg] to 1 [kg], 1.5 [kg]. It can be
the control performance of the proposed controller is basically the same. Next,
we changed the rope length l2 to 0.2[m], 0.4[m] and got the conclusion that
different l2 can not impose the influence on control performance. The results
reveal that the control method has strong robustness to the changes of crane
model parameters.

Finally, non-zero initial value of double-pendulum load sway angles, which
were set as θ1(0) = −4.6[deg], θ2(0) = −4.6[deg], θ3(0) = −4.6[deg], and θ4(0) =
−4.6[deg], were also considered in this study. It can be seen intuitively from
Fig. 5 that the controller can still maintain an excellent control effect which is
shown in the positioning time of the trolley and the elimination effect of the
swing angles are basically unchanged when existing non-zero initial swing angle.
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Fig. 1. Three-dimensional overhead cranes with double-pendulum effect model
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Fig. 2. Comparative simulation results
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Fig. 3. Simulation results with different load mass
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Fig. 5. Simulation results with non-zero initial hook and load sway angles

5 Conclusion

Aiming at the complex dynamics model of the three-dimensional double pen-
dulum overhead crane, an improved adaptive tracking controller is derived. By
constructing new signals to increase the coupling relationship of the state vector,
all the controlled state vectors are included in the controller. In addition, auxil-
iary functions are designed to handle the issue that the velocity signals cannot
be measured. A series of simulation results intuitively confirmed the feasibility
and robustness of the proposed controller.
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