
Chapter 13
Antimicrobial Potential and Metabolite
Profiling of Marine Actinobacteria

Jignasha Thumar and Satya P. Singh

Abstract Over 90% volume of the Earth’s crust is covered by oceans. Many natural
product-based drug discovery programs are being run and funded by developed
countries. Marine organisms harbor incredibly diverse natural products with novel
pharmaceutical applications. Among all the marine microorganisms, actinomycetes
remain the most popular because of their capacity to produce a wide range of
secondary metabolites that can be developed into drugs for treatment of wide
range of diseases in human, agriculture, and veterinary sectors. Further, these
compounds also hold the potential in treatment of life-threatened infections in
humans. Numerous antibacterial, antifungal, cytotoxic, neurotoxic, antiviral, and
antitumor compounds against new targets including AIDS, anti-inflammation, aging
process, and immunosuppression have been characterized from marine actinomy-
cetes. Streptomyces is the most prominent genus studied so far in this regard.
However, many rare actinomycete genera have also been reported to produce a
diverse array of antimicrobial compounds including polyenes, peptides, macrolides,
aminoglycosides, polyether, etc. This chapter highlights the metabolite profiling of
marine actinomycetes with respect to current status on drug discovery programs. It
further stresses on the emergence of discovery of new antimicrobial metabolites, as
the replacement of already existing ones, due to serious problem of antibiotic
resistance among the human pathogens.
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Abbreviations

AGS Human gastric adenocarcinoma cells
DKP Diketopiperazine
ECD Electron capture detector
FDA Food and drug administration
GC-MS Gas chromatography mass spectrometry
HepG-2 Human liver cancer cell lines
HPLC High performance liquid chromatography
HRESIMS High resolution electrospray ionization mass spectrometry
HRTOFMS High resolution time-of-flight mass spectrometry
IC50 Half-maximal inhibitory concentration
KB Keratin-forming tumor cell lines
LC-MS Liquid chromatography mass spectrometry
LU-1 Lung cancer cell lines
MAC Mycobacterium avium complex
MCF-7 Breast cancer cell line
MiaPaca-2 1-Pancreatic carcinoma cell lines
MIC Minimum inhibitory concentration
MRSA Methicillin-resistant Staphylococcus aureus
NMR Nuclear magnetic resonance
TLC Thin layer chromatography
VRE Vancomycin-resistant Enterococci
WHO World Health Organization

13.1 Introduction

Emergence of antibiotic resistance in pathogens has become an alarming problem
over the globe. In addition, the decline in the discovery and development of new
antibiotics has created havoc in the health sector (Genilloud 2017; Durand et al.
2019). The development of multiple drug resistance in the pathogenic strains
reduced susceptibility to antimicrobial compounds and modification of the target
drugs has led to an increase in deaths caused by the infectious diseases worldwide.
These pathogenic bacteria possess a number of virulent factors, some encoded in
plasmids, bacteriophages, and the bacterial chromosomes. Such organisms can also
colonize in a biofilm protecting the cells against therapeutic antibacterial agents
(Brander et al. 2005; Lino and Degracious 2006). According to the list on the fetal
human pathogens, released by World Health Organization (WHO) in 2017, there are
a total of 12 bacterial families having multiple drug resistance (WHO 2017). O’Neill
(2016) reported that approximately, 7,00,000 deaths occur every year due to multi-
drug-resistant pathogens, and this may increase to ten million per year by 2050, if the
current trend continues. Organisms may develop multiple drug resistance by various
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mechanisms; such as presence of antibiotic degrading enzymes, antibiotic altering
enzymes, and gene transfer processes like conjugation, transformation, and trans-
duction. Therefore, it necessitates the search of naturally occurring novel antimicro-
bial compounds to curve the increasing menace of the infection (Vasavada et al.
2006; Thumar et al. 2010).

13.2 Antibiotics: Past and Present

Nature is the great treasure of millions of prokaryotes and eukaryotes which includes
approximately 0.5 million plant species, 1011–1012 microbial species and 1.5 million
fungi. Unfortunately, only a small fraction out of it (approximately
250,000–300,000) has been documented (Berdy 2012; Locey and Lennon 2016).
The microbial metabolites are used as the main bioactive scaffold for the develop-
ment of the novel antibiotics instead of using the already known synthetic combi-
national treasure of molecules to develop novel drugs (Challinor and Bode 2015).
The period spanning 1950–1960 is considered as “The golden age of antibiotics.”
During this time phase, the large-scale cultivation of microorganisms and extraction
of secondary metabolites for the identification of novel antimicrobial compounds
was carried out. Genus Streptomyces alone is identified as the huge source of novel
antimicrobial compounds including antibacterial, antifungals, antiprotozoal, and
antivirals. US Food and Drug administration (FDA) gave approval to approximately
1211 small molecule drugs during 1981–2014, among which approximately 65%
accounted for natural chemicals/compounds (Newman and Cragg 2016; Noman Van
2016).

13.2.1 Antibiotics from Actinomycetes: Research
and Developments

During the last 76 years of research on the actinomycetes for novel bioactive
metabolites for human welfare, more than 5000 bioactive compounds were explored
and investigated. During this period, the actinomycetes research advanced in various
dimensions, from isolation and screening techniques to molecular approaches
including post-genomic research for metabolites (Demain and Sanchez 2009;
Subramani and Aalbersberg 2012). According to a report by Subramani and
Sipkema (2019), during 2007–2017, approximately 177 new species of marine
actinomycetes were isolated from geographically rare habitats and belonged to
33 families including three novel families and 29 new genera. The single genus
Streptomyces produces more than 80% of all actinomycetes origin antibiotics
(Subramani and Aalbersberg 2013). Ten major classes of antibiotics are produced
by actinomycetes including oligomycin-type macrolids, polyene macrolids,
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daunomycin-type anthracyclines, non-actin type cyclopolylactones,
aminoglycosides, streptothricin, nigericin-type polyethers, cyclopolylactones,
quinoxaline-peptides, and actinomycins (Berdy 2012).

13.2.2 Marine Actinomycetes: The Source of Novel
Antimicrobial Compounds

It is believed that till date we could explore only a small portion of marine microbes.
Because of limited accessibility and lack of proper leads, many unique biomolecules
from different marine microbial communities are waiting to be discovered. The
major pharmaceutical companies are at the verge of losing interest from natural
products of microbial origin and focusing on alternative discovery approaches, such
as combinational chemistry (Koehn and Carter 2005). This paradigm shift is because
of the over-exploitation of the microbial resources and continued rediscovery of
compounds that are already in use. However, natural product research has renewed
the interest because of significant rise in the demand of novel compounds to treat
drug-resistant microbial infections (Li and Vedaras 2009). This is mainly due to the
low returns from alternative discovery platforms. It included the exploration of
microbial wealth from poorly and less attended habitats, a concept based on the
assumption that organisms evolve new bioactive metabolites in order to adapt to the
unusual/extreme environments (Letzel et al. 2013). In the light of this knowledge,
marine actinomycetes have recently focused attention with emphasis on their bio-
catalytic potential and pharmaceutically important secondary metabolites (Sharma
et al. 2020; Rathore et al. 2021).

Actinomycetes are a group of industrially important microorganisms because of
their capability to produce a range of commercially viable products in various
sectors; including agriculture, healthcare, veterinary, food, and nutrition (Sisi et al.
2020; Thakrar and Singh 2019; Thumar and Singh 2009). As per the records until
October, 2016, the domain Bacteria includes 30 currently recognized phyla, the
Actinobacteria being one of the largest phyla with 6 families, about 18 orders, almost
63 families and more than 370 genera (Subramani and Sipkema 2019). Despite a
critical role in biogeochemical cycles, the actinomycetes also produce a variety of
enzymes (Thumar and Singh 2007a, b; Chen et al. 2020) and therapeutic compounds
(Sisi et al. 2020). There are approximately 500,000 naturally occurring biological
compounds, from which approximately.

70,000 are microbially derived molecules and 29% are solely derived from
actinomycetes. Actinomycetes are Gram-positive, high G + C (>55%) bacteria
which were earlier misbelieved as an intermediate link between bacteria and fungi.
Being saprophytic in nature, they are the dominant group of soil microflora involved
in recycling of organic matter. The metabolites obtained from actinomycetes range
from enzymes, antitumor agents, immunity-modifiers, enzyme inhibitors, cytotoxic
molecules to vitamins, and nutritional material.
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Approximately, 70% of the surface of planet Earth is covered by oceans,
accounting for nearly 97% of total water and possessing 80% of the life. There are
15 exclusively marine phyla out of total 33 known animal phyla (Margulis and
Chapman 2009). The marine habitats vary in their ecological pressure with respect to
available nutrients, pressure, light, oxygen, predation, competition for space, etc. In
order to survive under such extreme conditions, marine organisms have developed
unique survival strategies, such as secretion of potent and novel secondary metab-
olites (Skropeta and Wei 2014). Various unexplored or underexplored ecosystems
are the most promising sources of novel actinomycetes (Dhakal, et al. 2017). Many
of these compounded are afforded by marine actinomycetes belonging to deep sea
sediments, marine sponges, marine invertebrates, plants, and coral reefs (Zhang et al.
2005; Thomas et al. 2010; Vynne et al. 2011; Blunt et al. 2013; Viegelmann et al.
2014).

13.2.2.1 Bioactive Compounds from Marine Actinomycetes with Novel
Pharmaceutical Potential

Research on pharmaceutically active metabolites from marine actinomycetes is
emerging as a hot spot since a decade. A significant number of varied and novel
molecules have been isolated from marine-derived actinomycetes. A new molecule,
3-(4-hydroxybenzyl) piperazine-2,5-dione was obtained from a marine Streptomyces
sp. (Sobolevskaya et al. 2007). Molecular structure of the compound was drawn on
the basis of NMR and mass spectroscopy. Its cytotoxic activity was checked on
sperm and eggs of the sea urchin Strogylocentrotus intermedius.

Actinomycetes exhibit a tremendous taxonomic diversity ranging from the most
typical genus Streptomyces to rare and exotic non-Streptomyces genera including
Dietzia, Salinispora, Marinophilus, Rhodococcus, Solwaraspora, Salinibacterium,
Williamsia, Verrucosispora, and Aeromicrobium, and thereby, increasing the pos-
sibilities of new potent bioactive metabolites (Valliappan et al. 2014). There are
many compounds from marine actinomycetes, which have been selected for the
pharmaceutical trial based on their strong potential. For instance, Diazepinomicin—
a dibenzodiazepine alkaloid extracted fromMicromonospora strain, which exhibited
significant antitumor activities. Further, it is also nominated for clinical trials in
phase II for the treatment of human glioblastoma cancer (Charan et al. 2004; Mason
et al. 2012).

Salinispora is a newly described genus of obligate actinomycetes and also a rich
source of such compounds (William and Jensen 2006; Williams et al. 2007a).
Diverse categories of secondary metabolites such as cyanosporaside A, saliniketal
A and B (Williams et al. 2007b) and sporolide A (Buchanan et al. 2005) have been
discovered from this actinomycete on the basis of numerous chemical investigations.
Recent studies highlighted Salinispora and its extraordinary biosynthetic diversity
(Jensen et al. 2015). Interestingly, Salinosporamide A, a β-lactone-γ-lactam obtained
from Salinispora tropica could enter clinical trials soon after its discovery to cure
multiple myeloma.
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13.3 Metabolite Profiling of Marine Actinobacteria

Majority of the drug discovery programs are oriented around actinobacteria because
of their abundant resourcefulness for discovery of numerous lead metabolites.
Further, the emergence of unique metabolic pathways provides them an ability to
synthesize diverse categories of bioactive metabolites which are rarely available in
terrestrial habitats. Marine actinomycetes hold an important position in drug discov-
ery programs in comparison to terrestrial counter parts, mainly because of their
unique metabolic pathways and rich molecular library (Yang et al. 2019). Many new
biologically active compounds have been isolated from marine actinomycetes from
the year 2015 to 2021 as highlighted in Table 13.1.

13.3.1 Antibacterial Activities

Antibacterial substances are significant in the control of infectious diseases which
may cause deaths due to drug resistance among the pathogens. The microbial
pathogens have developed resistance against various antibacterial compounds.
Marine actinobacteria are being used to develop effective newer drugs without any
side effects (Table 13.1)

13.3.1.1 Antibacterial Compounds from Marine-Derived
Streptomyces sp.

Reports say that out of 100% bioactive metabolites isolated from actinomycetes till
date, more than 70% were derived from Streptomyces and rest from other rare
actinomycete species. Until recently, a range of antibacterial compounds have
been reported from marine-derived Streptomyces sp. Hassan et al. (2015) identified
Salinamide F (1), from the culture broth of Streptomyces sp., having antibacterial
activity against a range of bacterial pathogens including Enterococcus faecalis,
Enterobacter cloacae, Haemophilus influenzae, and Neisseria gonorrhoeae. Chem-
ical analysis of Salinamide F by HRTOFMS revealed its molecular formula
C51H71N7O16. Similarly, aranciamycins I and J (2) from Streptomyces sp.
CMB0150 showed moderate-to-severe activity againstMycobacterium tuberculosis,
Gram-positive Bacillus subtilis, and human cancel cell lines with IC50 values
0.7–1.7 μM, >1.1 μM and >7.5, respectively (Khalil et al. 2015). Streptomyces
sp.SNM5 has been reported to produce Hormaomycins B and C (3) under altered
cultural conditions (Bae et al. 2015a). Very similar to this, rocheicoside A (5)—a
cytosine type nucleotides discovered from Streptomyces rochei 06CM016 demon-
strated significant antimicrobial activity (Aksoy et al. 2016). Similarly, Lacret and
co-workers (2016) reported napyradiomycin MDN-0170 (7) from Streptomyces
zhaozhouensis CA-271078 with antibacterial (against methicillin-resistant
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Table 13.1 Novel bioactive metabolites from marine actinomycetes (From year 2015–2021)

Sr.
no. The organism Name of the compound

Biological
activity Reference

01 Streptomyces sp. Salinamide F Antibacterial Hassan et al.
(2015)

02 Streptomyces sp.
CMB0150

Aranciamycins I and J Antibacterial Khalil et al.
(2015)

03 Streptomyces sp.SNM5 Hormaomycins B and C Antibacterial Bae et al.
(2015a)

04 Streptomyces sp. Mohangamides A and B Antifungal Bae et al.
(2015b)

05 Streptomyces rochei
06CM016

Rocheicoside A Antibacterial
and antifungal

Aksoy et al.
(2016)

06 Streptomyces
zhaozhouensis
CA-185989

Ikarugamycin derivatives Antifungal Lacret et al.
(2015)

07 Streptomyces
zhaozhouensis
CA-271078

Napyradiomycin
MDN-0170

Antibacterial
and antifungal

Lacret et al.
(2016)

08 Streptomyces sp.
SCSGAA 0027

Nahuoic acids B-E Antibacterial Nong et al.
(2016)

09 Nocardiopsis sp. SCSIO
10419, SCSIO 04583,
SCSIO KS107

α-pyrones (1–8) Antibacterial Zhang et al.
(2016)

10 Streptomyces sp.
182SMLY

Polycyclic anthraquinones Antibacterial Liang et al.
(2016)

11 Micromonospora
sp. 5–297

Tetrocarcins N and O Antibacterial Tan et al.
(2016)

12 Nocardiopsis sp. G057 Compounds 1–12 Antibacterial
and antifungal

Thi et al.
(2016a)

13 Micromonospora sp.
G019

Quinoline alkaloid and
1,4- dioxane derivative

Antibacterial Thi et al.
(2016b)

14 Verrucosispora sp. MS
100047

1-Hydroxy-2, 5-dimethyl
benzoate

Antibacterial Huang et al.
(2016)

15 Streptomyces sp.IMB094 Neo-actinomycins A and B Antibacterial
and antifungal

Wang et al.
(2017)

16 Streptomyces sp.SUK 25 Diketopiperazine
derivatives

Antibacterial
and cytotoxic

Alshaibani
et al. (2017)

17 Streptomyces
sp. HZP-2216E

N-arylpyrazinone Antibacterial
and cytotoxic

Zhang et al.
(2017a)

18 Streptomyces
sp. HZP-2216E

Indolizinium alkaloids and
Bifilomycins

Antibacterial
and cytotoxic

Zhang et al.
(2017b)

19 Streptomyces sp. EGY1 Sharkquinone Antitumor Abdelfattah
et al. (2017)

20 Streptomyces sp. M-207 Lobophorin K Antibacterial
and cytotoxic

Brana et al.
(2017)

21 Streptomyces chartreusis
NA02069

Streptazolins A and B Antibacterial Yang et al.
(2017)

(continued)
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Table 13.1 (continued)

Sr.
no. The organism Name of the compound

Biological
activity Reference

22 Micromonospora
sp. RJA4480

Ansa microlides (1–4) Antibacterial Williams
et al. (2017)

23 Micromonospora harpali
SCSIO GJ089

Spirotetronate aglycones Antibacterial Gui et al.
(2017)

24 Kribella sp. MI481-42F6 Kribellosides Antifungal Igarashi
et al. (2017)

25 Actinomadura sp. DSMS-
114

Methylbenz[a]anthracene-
7, 12-quinone

Antibacterial Kurata et al.
(2017)

26 Thermoactinomyces
vulgaris ISCAR 2354

Thermoactinoamide A Antibacterial Teta et al.
(2017)

27 Actinomycete HF-11225 Nivelactum B Antibacterial Chen et al.
(2018)

28 Streptomyces pratensis New angucycline-type
antibiotics

Antibacterial Akhter et al.
(2018)

29 Streptomyces
coeruleorubidus GRG 4

Bis (2-Ethylhexyl) phthal-
ate (BEP)

Antibacterial
and antitumor

Rajivgandhi
et al. (2018)

30 Streptomyces
sp. LHW52447

Actinomycins D1-D4 Antibacterial Jiao et al.
(2018)

31 Streptomyces
cyaneofuscatus M-169

Anthramycin B Antibacterial Rodriguez
et al. (2018)

32 Streptomyces seoulensis
A 01

Streptoceomycin 1 Antibacterial Zhang et al.
(2018a)

33 Streptomyces sp. ZZ745 Bagremycins (F-G) Antibacterial Zhang et al.
(2018b)

34 Streptomyces
xinghaiensis SCSIO
S15077

Tunicamycin E Antibacterial
and antifungal

Zhang et al.
(2018c)

35 Streptomyces
sp. IMB7–145

Niphimycins C-E Antibacterial
and antifungal

Hu et al.
(2018)

36 Nocardiopsis sp. Terretonin N-1 Antibacterial Hamed et al.
(2018a)

37 Streptomyces mutabilis
sp. MII

Borrelidin B Anticancer Hamed et al.
(2018b)

38 Micromonospora
carbonacea LS276

Tetrocarcin Q Antibacterial Gong et al.
(2018)

39 Streptomyces chartreusis
XMA39

Medermycin,
Streptoxepinmycin A-D

Antibacterial
and antifungal

Jiang et al.
(2018)

40 Nocardiopsis
sp. CNQ-115

Fluvirucin Antibacterial Leutou et al.
(2018)

41 Lechevalieria
aerocolonigenes K
10–0216

Pyrizomicins A and B Antibacterial
and antifungal

Kimura et al.
(2018)

42 Kocuria marina CMGS2 Kocumarin Antibacterial Uzair et al.
(2018)

(continued)

248 J. Thumar and S. P. Singh



Staphylococcus aureus) and antifungal properties (against Aspergillus niger and
Candida albicans). The compound was studied with respect to its structure on the
basis of molecular modeling in combination with nOe—nuclear overhauser effect
NMR spectroscopy—and coupling constant analysis. Streptomyces sp. SCSGAA
0027 yielded nahuoic acids B-E (8); a novel nahuoic acid with SETD8 inhibition
activity. Compound 1–5 showed antibiofilm activity against Shewanella onedensis
MR-1 biofilms (Nong et al. 2016).

Table 13.1 (continued)

Sr.
no. The organism Name of the compound

Biological
activity Reference

43 Streptomyces sp. G212 Novel metabolites Antibacterial
and antifungal

Cao et al.
(2019a)

44 Streptomycetes sp. G248 Lavandulylated flavanoids Antibacterial Cao et al.
(2019b)

45 Streptomycetes sp. strain
271,078

Napyradiomycins Antibacterial
and cytotoxic

Carretero-
Monila et al.
(2019)

46 Streptomycetes
albolongus CA-186053

Medermycin analog
MDN-0171

Antibacterial Lacret et al.
(2019)

47 Streptomycetes puniceus Diketopiperazines Antifungal Kim et al.
(2019)

48 Streptomyces sp. ZZ741 Streptoglutirimides Antifungal,
antibacterial,
and cytotoxic

Zhang et al.
(2019a)

49 Streptomyces sp. SCSIO
41

Aranciamycin and
Isotirandamycin

Cytotoxic and
antibacterial

Cong et al.
(2019)

50 Streptomyces althioticus
MSM3

Desertomycin G Antitumor and
antibacterial

Brana et al.
(2019)

51 Streptomyces sp. OPMA
1730

Nosiheptides,
Griseoviridin, and
Etamycin

Antibacterial Hosoda et al.
(2019)

52 Streptomyces sp. ZZ820 Streptoprenylindoles A-C Antibacterial Yi et al.
(2019)

53 Streptomyces atratus
SCSIOZH16

Atratumycin Antibacterial Sun et al.
(2019)

54 Salinispora arenicola
BRA-213

Salinapththoquinones Antibacterial Da Silva
et al. (2019)

55 Verucosispora sp. SCSIO Kendomycins Antibacterial Zhang et al.
(2019b)

56 Streptomyces sp. G246 Lavandulylated flavanoids Antibacterial
and antifungal

Cao et al.
(2020)

57 Streptomyces sp.EG1 Mersaquinone Antibacterial Kim et al.
(2020)

58 Streptomyces sp.4506 Lobophorin L and M Antibacterial Luo et al.
(2020)

59 Streptomyces sp. n-hexadecanoic acid,
tetradecanoic acid, and
pentadecanoic acid

Antifungal Sangkanu
et al. (2021)
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Neo-actinomycins A and B (15) were extracted from Streptomyces sp. IMB094
which displayed strong antibacterial activity against VRE (vancomycin-resistant
Enterococci). Structure elucidation by spectroscopic analysis confirmed the presence
of tetracyclic 5H-oxazolo (4,5-b) phenoxazine (Wang et al. 2017). Streptomyces
sp. SUK 25 produced five active diketopiperazine (DKP) derivatives (16) which
displayed significant activities against multi-drug-resistant Staphylococcus aureus
(Alshaibani et al. 2017). Streptazolins A and B (21) were isolated, together with
already reported streptazolin, from Streptomyces chartreusis NA02069, which
displayed weak anti-Bacillus subtilis activity with MIC value of 64 μM. While
compound A inhibited acetylcholinesterase (AchE) activity under in vitro conditions
with IC50 value 50.6 μM, compound B was not active at all (Yang et al. 2017). Novel
angucycline-type antibiotics 1 and 2 (28) from Streptomyces pratensis NA-ZhouA1
showed antibacterial activities against Klebsiella pneumoniae, Escherichia coli, and
MRSA (methicillin-resistant Staphylococcus aureus) (Akhter et al. 2018). Bis
(2-ethylhexyl) phthalate (BEP) (29) produced by Streptomyces coeruleorubidus
GRG 4, inhibited CR (colistin resistant) Klebsiella pneumoniae, and Pseudomonas
aeruginosa (Rajivgandhi et al. 2018). Recently, Jiao et al. (2018) reported actino-
mycins D1–D4 (30) from the culture broth of Streptomyces sp. LHW52447. They
exhibited strong antibacterial activities against MRSA (MIC- 0.125–0.25 μg/ml).

Anthramycin B (31), a potent anti-tubercular compound against Mycobacterum
tuberculosis (MIC 0.03 μg/ml) has been isolated from Streptomyces cyaneofuscatus
M-169. The structure elucidation of the compound revealed the presence of lactone
carbonyl on first carbon and oxygenated enol on third carbon. Further, the ability of
the organism to produce anthramycin B at very high quantities (17.7 mg/L) was
evident during the studies (Rodriguez et al. 2018). A rare macrodilactone named
Streptoceomycin 1 (32) with anti-microaerophilic bacterial activity has been
extracted from Streptomyces seoulensis A 01. When characterized to unfold the
structural details, it was found to possess a pentacyclic ring along with the ether
bridge (Zhang et al. 2018a). Two Bagremycins analogs; F and G (32) were obtained
from Streptomyces sp. ZZ745. Both the compounds were highly active against
Escherichia coli and showed the MIC values 41.8 (F) and 61.7 (G) μM, respectively
(Zhang et al. 2018b). Same way, Streptomyces xinghaiensis SCSIOS15077 is
reported to produce tunicamycin E by Zhang et al. (2018c). Very high to moderate
activities against Bacillus thuringiensisW102 and Bacillus thuringiensis BT01 were
evident based on the MIC values (range: 0.0008–2 μg/ml). Further, four new
naphthoquinones named Medermycin (39) and Streptoxepinmycin A-D were
found in the extracts of Streptomyces chartreusis XMA39 (Jiang et al. 2018).
These compounds afforded the antibacterial compounds against E. coli and MRSA
along with antifungal activities against Candida albicans.

Cao et al. (2019a) reported novel metabolites (43) with antibacterial and antifun-
gal activities from marine-derived Streptomycetes sp. G212. Nuclear magnetic
resonance (NMR) and other analysis confirmed the presence of three new
lavandulylated flavonoids (44) which showed significant inhibitory activities against
multi-drug-resistant Mycobacterium tuberculosis H37Rv. Recently, Carretero-
Monila et al. (2019) reported four new napyradiomycins (1–3, 5) (45) from
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Streptomycetes sp. strain 271,078 with detailed characterization. While compound
1 had a functionalized prenyl side chains of napyradiomycin—A series, compound
2 and 3 harbored rings of chlorocyclohexane resembling to napyradiomycin B. The
authors further identified compound 5 to be a new class of napyradiomycins on the
basis of its cyclic ether ring and designated the compound as napyradiomycin D1.
All the compounds also displayed remarkable inhibitory activities againstMycobac-
terium tuberculosis, Staphylococcus aureus, and cytotoxic activity against human
liver cancer cell lines (Hepatoma G2). Lacret and co-workers (2019) isolated a new
Medermycin analog MDN-0171 (46) from marine-derived Streptomycetes
albolongus CA-186053 which showed potent activity against MRSA (methicillin-
resistant Staphylococcus aureus) and E. coli. Streptoglutirimides A-J (48) with
antibacterial (methicillin-resistant Staphylococcus aureus; MIC: 08–12 μg/ml), anti-
fungal (Candida albicans; MIC: 08–20 μg/ml) and cytotoxic (human glioma
U87MG and U251 cells with IC50 values 1.5–3.8 μM) activities was reported by
Zhang et al. (2019a). They elucidated the structure of these compounds based on
their HRESIMS data, ECD calculations, X-ray diffraction experiments, and NMR
spectroscopic analysis.

Mycobacterium is a multi-drug-resistant organism and is known to cause serious
diseases in humans includingMycobacterium avium complex (MAC). Cultivation of
Streptomyces sp. OPMA 1730 yielded Griseoviridin, Nosiheptides, and Etamycin
(51). Interestingly, these compounds showed portent activities against Mycobacte-
rium avium andM. intracellularewith MIC in the range of 0.024–1.5 μg/ml (Hosoda
et al. 2019). Streptoprenylindoles A-C (52) was isolated from Streptomyces
sp. ZZ820, which reflected the antibacterial activity against MRSA (Yi et al.
2019). Recently, Sun et al. (2019) reported atratumycin (53) from Streptomyces
atratus SCSIOZH16 with broad spectrum antibacterial activity. The organic extract
of sponge-derived Streptomyces sp. G246 yielded two new lavandulylated flavo-
noids (56). These metabolites had a broad spectrum antibacterial activity against a
range of Gram-positive (Bacillus subtilis and Staphylococcus aureus) and Gram-
negative bacteria (Enterococcus faecalis, Salmonella enterica, Pseudomonas
aeruginosa) (Cao et al. 2020). Similarly, Kim and co-workers (2020) reported
mersaquinone (57) from Streptomyces sp. EG1 which displayed antibacterial activity
against MRSA (MIC- 3.36 μg/ml). Luo et al. (2020) reported two new
spirotetronates (58) natural products from marine Streptomyces sp.4506 with strong
antibacterial activities.

13.3.1.2 Antibacterial Compounds from Marine-Derived
NOCARDIOPSIS sp.

Genus Nocardiopsis is known for its biotechnologically versatile and ecologically
important nature. Many species of Nocardiopsis have been reported to belong to
hyper saline locations. Diverse antibacterial compounds including terphenyls, alka-
loids, polyketides, quinoline alkaloids, amines, proteins, thiopeptides, and phenzines
have been studied from this genus. Eight new α-pyrones (9) were obtained from
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Nocardiopsis sp. SCSIO 10419, SCSIO 04583, and SCSIO KS107. They displayed
antibacterial activity against Bacillus cereus and Micrococcus luteus (Zhang et al.
2016). The structure analysis revealed that the side chain was important to decide the
characteristic high wavelength ECD transition. Similarly, Nocardiopsis sp. G057
afforded the secretion of 12 compounds each with different chemical properties (12).
While antibacterial activity of compound 1 was evident against E. coli (MIC 16 μg/
ml), compound 2 and 3 displayed the activity against both, Gram-positive and Gram-
negative bacteria and the yeast candida albicans, respectively (Thi et al. 2016a).

Terpenes have emerged as an interesting group of bioactive metabolites these
days, may be because of their diverse skeletal compositions. Soil-state fermentation
of Nocardiopsis sp. yielded a highly oxygenated terretonin N-1 (36)—a unique
tetracyclic 6-hydroxymeroterpenoid. While its antibacterial activity against Gram-
positive Staphylococcus warneriwas very significant, very low activity was detected
against Gram-negative E.coli (7 mm) (Hamed et al. 2018a). Recently, Fluvirucin B6
(40)—a 14-membered macrolactum was extracted from Nocardiopsis sp.CNQ-115.
Surprisingly, it exhibited weak antibacterial activity against Gram-positive Bacilli
and no effect at all on Gram-negative bacteria (Leutou et al. 2018).

13.3.1.3 Antibacterial Compounds from Marine-Derived
Micromonospora sp.

Genus Micromonospora has been established as a vigorous model for the drug
discovery module since its discovery before 100 years. It is still emerging as an
untapped resource of many drug leads because of its unique chemical diversity.
Micromonospora sp. 5–297 produced two new tetrocarcins N- and O-glycosidic
spirotetronate antibiotics (11). Structural analysis revealed that tetrocarcin O is the
derivative of tetrocarcin N. Both the compounds were able to inhibit the growth of
Bacillus subtilis with MIC ranging from 02 μg/ml (tetrocarcin N) to 64 μg/ml
(tetrocarcin O). Similarly, Micromonospora sp.G019 secreted quinoline alkaloid as
well as 1,4-dioxine derivative (13). While quinoline alkaloid showed antibacterial
activity against human pathogens including Enterococcus faecalis, Salmonella
enterica, and Escherichia coli, the 1, 4-dioxane derivative was effective against
Enterococcus faecalis and Candida albicans (MIC- 32 μg/ml and 64 μg/ml, respec-
tively) (Thi et al. 2016b). Ansa microlides 1–4 (22) were obtained from
Micromonospora sp. RJA4480. These four antibiotics showed very high
antibacterial activity against prominent human pathogens including methicillin-
resistant Staphylococcus aureus, Escherichia coli, and Mycobacterium tuberculosis
having MIC values of 0.0009, 0.0003, and 0.0009 (compound 1); 0.0001, 0.00083,
and 0.0009 μg/ml (compound 2); 0.8, 1.8, and 7.0 μg/ml (compound 3); 0.06, 0.40,
and 1.80 (compound 4) μg/ml, respectively (Williams et al. 2017).

Two spirotetronate aglycones (23), 22-dehydroxymethyl-kijanolide and
8-hydroxy-22-dehydroxymethyl-kijanolide, were separated from Micromonospora
harpali SCSIO GJ089. Both the compounds displayed very high activity against
Bacillus subtilis and B. thuringiensis with MIC values ranging from 0.016 to 8.0 μg/
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ml (Gui et al. 2017). The fermentation broth ofMicromonospora carbonacea LS276
yielded a new spirotetrone Tetrocarcin Q (38). Bearing a glycosyl group, the
compound possessed moderate potency (MIC; 12.5 μM), when tested against Bacil-
lus subtilis ATCC 63501. Presence of a unique sugar (2-deoxy-allose) at C-9
position of the compound was reported for the first time from spirotetronate glyco-
sides (Gong et al. 2018).

13.3.1.4 Antibacterial Compounds from Other Marine-Derived
Actinomycetes

As stated earlier, there are only a few rare non-Streptomyces actinomycete genera
have been identified from marine sources in recent past. Bulk cultivation of
Verrucosispora sp. MS 100047 afforded the production of a new glycerol
1-hydroxy-2, 5-dimethyl benzoate—a salicylic acid derivative (14). It exhibited
selective activity against methicillin-resistant Staphylococcus aureus (MRSA) with
MIC 12.5 μg/ml. In addition; the compound also displayed significant anti-
tubercular activity (Huang et al. 2016). Kurata et al. (2017) reported the extraction
and structure elucidation of Actinomadura sp. DS-MS-1145 derived, 6, dihydrol-1-
8, dihydroxy-3-methylbenz(a)anthracene-7, 12-quinone (25). The purified com-
pound possessed very strong activity when tested against Gram-positive Staphylo-
coccus aureus. However, scare activities were evident against Gram-negative,
E. coli; yeast, Candida albicans and fungi, Aspergillus brasiliensis. The molecular
formula of the compound was C19H14O4 with the molecular weight 306.0966
(Kurata et al. 2017). Thermoactinoamide A (26)—a lipophilic cyclopeptide antibi-
otic was obtained from thermophilic bacteria—Thermoactinomyces vulgaris ISCAR
2354. The cyclic hexapeptide displayed potent activity against Staphylococcus
aureus with MIC value 35 μM (Teta et al. 2017). Nivelactum B (27) was obtained
from actinomycete HF-11225, which displayed antibacterial activities against a
range of pathogens.

The culture broth of very rare actinomycete Lechevalieria aerocolonigenes K
10-0216 yielded Pyrizomicins A and B (41), which exhibited strong activity against
a range of pathogenic bacteria. Interestingly, the results of NMR and mass spectros-
copy proposed them as the new thiazolyl pyridine compounds (Kimura et al. 2018).
A unique ultraviolet (UV) bioactive kocumarin (42) was obtained from Kocuria
marina CMGS2 isolated from a sea weed Pelvetia canaliculata. It showed potent
activity against pathogenic bacteria including MRSA (range of MIC; 15–20 μg/ml)
and fungal isolates (minimum fungal inhibitory concentration; 15–25 μg/ml). The
chemical structure elucidation studies confirmed the compound to be 4-[(Z)-2 phenyl
ethenyl] benzoic acid (Uzair et al. 2018). Salinaphthoquinones (54) with broad
spectrum antimicrobial activities were obtained from Salinispora arenicola
BRA-213 (Da Silva et al. 2019). The solvent extracts of Verucosispora sp. SCSIO
07399 yielded three new analogs (B-D) of kendomycin (55) with very good
antibacterial activities. The compounds were very effective against six Gram-
positive bacteria with 0.5–8.0 μg/ml (range) of MIC values (Zhang et al. 2019b).
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13.3.2 Antifungal Activities

While numerous antibiotics have been isolated from a range of marine microorgan-
isms, studies to discover potent compounds against fungal pathogen are still at the
limit. Marine actinobacteria can be a hidden treasure for the exploration of many
antifungal metabolites. As discussed in the Table 13.1 Bae et al. (2015b), reported
mohangamides A and B (4) from Streptomyces sp. which strongly inhibited Candida
albicans isocitrate lyase. When studied by chromatographic and spectroscopic
analysis, the compound showed a novel structure with dilactone-ethered
pseudodimeric peptides having 14 different amino acids and two unusual acyl
chains. Similarly, Ikarugamycin derivatives (6) from Streptomyces zhaozhouensis
CA-185989 showed remarkable antifungal activities, when tested against Candida
albicans (MIC; 2–4 μg/ml) and Aspergillus fumigatus (MIC; 4–8 μg/ml) (Lacret
et al. 2015). Antifungal cocktail included three new tetramic acid macrolactams
(polycyclic) with four already identified compounds. Further, the authors claimed
that compound-1 from the above mixture was a newly isolated natural compound by
them and hence, was given the trivial name isokarugamycin. Capping enzymes are
different in terms of the structure and function in yeast, when compared to mamma-
lian system. Cultivation of Kribbella sp. MI481-42F6 yielded Kribellosides (24)—
RNA 50-triphosphatase inhibitor which belong to the alkyl glyceryl ethers.
Kribellosides inhibited Saccharomyces cerevisiae and secured the minimum inhib-
itory concentration in the range of 3.12–100 μg/ml. In addition, it also suppressed the
activity of intracellular RNA 5’triohosphatase, named Cet1p from the same organ-
ism (Igarashi et al. 2017). Interestingly, tunicamycin E (34)with moderate antifungal
activities (MIC; 02–1 μg/ml) against fuconazole-resistant Candida albicans
ATCC96901 has been reported for the first time from Streptomyces xinghaiensis
SCSIOS15077, isolated from the marine mud sample (Zhang et al. 2018c).

Antifungal activities of five Diketopiperazines (47) from marine Streptomycetes
puniceus, against Candida albicans, were explained by Kim et al. (2019). Cyclo (L-
Phe-L-Val) was a potent inhibitor with 27 μg/ml half-maximal inhibitory concentra-
tion. Streptoglutirimides A-J having antifungal (Candida albicans; MIC: 08–20 μg/
ml), antibacterial (MRSA; MIC: 08–12 μg/ml), and cytotoxic (against human glioma
U87MG and U251 cells with IC50 values 1.5–3.8 μM) activities was reported from
Streptomyces sp. ZZ741 by Zhang et al. (2019a). They elucidated the structure of
these compounds based on their HRESIMS data, ECD calculations, X-ray diffrac-
tion experiments, and NMR spectroscopic analysis.

Most recently, Sangkanu et al. (2021) extracted and identified n-hexadecanoic
acid, tetradecanoic acid, and pentadecanoic acid (59) from Streptomyces sp. All the
compounds were capable enough to inhibit Talaromyces marneffei—a thermally
dimorphic pathogenic fungus.
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13.3.3 Anticancer Activities

Mankind has witnessed many serious health problems such as cancer. Cao et al.
(2019a) emphasised that the second most common reason of deaths in human
females is breast cancer. While a number of metabolites with anticancer properties
are known in recent years, there is need for extensive efforts in this direction. The
immense development in the cancer research has geared up the search for anticancer
compounds from natural resources. In this direction, many marine actinobacteria are
also being studied with respect to their potential to produce antitumor, anticancer,
and cytotoxic compounds. The literature suggests that only limited studies have
focused on finding bioactive metabolites (Table 13.1) as anticancer agents from
marine actinobacteria.

Cultivation of Streptomyces sp. 182SMLY produced two new polycyclic anthra-
quinones (10). Proliferation and progression of glioma—a type of cancer in the glial
cells of brain, was suppressed by these compounds (identified as
streptoanthraquinone and N-acetyl-N-demethylmayamycin) with IC50 values
>14–31 and 6.4–5 μM, respectively (Liang et al. 2016). Nocardiopsis sp. G057
was identified to produce 12 new compounds (12). These compounds displayed
strong cytotoxic activity against keratin-forming tumor (KB) cell lines, lung cancer
cell lines (LU-1), human liver cancer cell lines (HepG-2), and breast cancer cell line
(MCF-7). However, compound 1 and 2 displayed poor effect (IC50; 128 μg/ml)
against KB and LU cell lines even at high concentrations (Thi et al. 2016a).
Streptomyces sp. IMB094-derived neo-actinomycins A and B (15) exhibited strong
cytotoxic activities against adenocarcinomic human alveolar (A549) and human
colon cancer cell lines (HCT116) with IC50 values 65.8 and 38.7 nM, respectively
(Wang et al. 2017). Five active diketopiperazine (DKP) derivatives (16) were
obtained from endophytic Streptomyces sp. SUK 25 which displayed low toxicity
against human hepatoma HepaRG cell line (Alshaibani et al. 2017). Marine green
algae Ulva pertusa associated Streptomyces sp. HZP-2216E secreted
N-arylpyrazinone derivative (17) which selectively inhibited the cell division of
malignant glioma cells. In addition, Streptoarylpyrazinone A was identified as a rare
compound existing as a zwitterion from natural sources (Zhang et al. 2017a). Very
similar to this, a novel indolizinium alkaloid, named streptopertusacin A, (18) was
reported in the extracts of Streptomyces sp. HZP2216E. Chemical degradation,
electronic circular calculations and nOe confirmed it to be a novel compound.
Interestingly, it not only inhibited methicillin-resistant Staphylococcus aureus, but
also affected of human glioma cells with great potency (Zhang et al. 2017b). Marine
coral Lophelia pertusa – derived Streptomyces sp. M-207 afforded to produce
Lobophorin K (20). The compound managed to show very strong activity against
two human cell lines; 1-pancreatic carcinoma (MiaPaca-2) and 2-breast adenocarci-
noma (Brana et al. 2017). The activity of the compounds on human cell lines may
establish Streptomyces sp. M-207 as the potential candidate for the treatment of
highly prevailing breast cancer. Nivelactum B (1), a new macrolactum derivative
(27) with antifungal activities has been demonstrated from marine-derived
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actinomycete HF-11225, which showed weak cytotoxic and antifungal activity
(Chen et al. 2018). Sponge- associated Streptomyces sp. LHW52447 produce four
actinomycins D1-D4 (30) that possess an oxazole unit into the central
phenoxazinone chromohpore. When studied for the cytotoxicity potential, D1-D4
showed the activity against WI-38 human diploid lung fibroblasts (Jiao et al. 2018).

Niphimycins C-E was produced by Streptomyces sp. IMB7–145 (35). Hu et al.
(2018) proposed their full configuration on the basis of studies on their biosynthetic
gene clusters in ketoreductase and enoylreductase domains. The cytotoxicity of
niphimycins C, E, and F was evident against cancerous human HeLa cell lines
(IC50 range: 3.0–9.0 μM). N-acetylborrelidin B (37)—a naturally new microlide
antibiotic was obtained from Streptomyces mutabilis sp. MII which demonstrated a
potent cytotoxic effect even in crude extract against carcinoma cell lines of human
cervix (KB-3-1) under in vitro conditions (Hamed et al. 2018b). The fermentative
cultivation of Streptomyces sp. SCSIO 41 afforded aranciamycin and
isotirandamycin (49), which displayed in vitro cytotoxic activities against K560
cell lines with IC50 values; 22, 1.8, and 12.1 μM, respectively (Cong et al. 2019).

13.3.4 Antitumor Activities

Among various treatment strategies to combat cancer, chemotherapy remains the
main and the most efficient treatment. Marine actinomycetes have been recently
focused with respect to their metabolic and physiological abilities with the potential
to produce antitumor compounds (Table 13.1) (Olano et al. 2009). Abdelfattah et al.
(2017) reported a new ana-quinonoid tetracene, Sharkquinone (19) from the ethyl
acetate extracts of Streptomyces sp. EGY1. Quantum chemical calculations and
detailed spectral analysis revealed the structure of the compound, which displayed
strong ability to overcome necrosis factor-related apoptosis in human gastric ade-
nocarcinoma (AGS) cells. Streptomyces coeruleorubidus GRG 4 afforded to pro-
duce bis (2-ethylhexyl) phthalate (BEP) (29) which displayed very strong activity
antitumor activities. It inhibited the proliferation and progression of human lung
cancer cells in 24 h of treatment at the concentration of 100 μg/ml along with
oxidative damage. Compound was extracted in methanol followed by TLC and
HPLC analysis. Presence of carbonyl group was confirmed followed by GC-MS
and LC-MS that further confirmed the compound to be BEP (Rajivgandhi et al.
2018).

Desertomycin G (50) was obtained from Streptomyces althioticus MSM3. It was
first time reported to show antitumor activity against colorectal adenocarcinoma cells
(DLD-1) and human breast cancer adenocarcinoma (MCK-7) cell lines.
Desertomycin G also displayed moderate antibacterial activity against Clostridium
perfringens, Bacteroide fragilis, Haemophilus influenzae, and Neisseria
meningitidis (Brana et al. 2019).
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13.4 Conclusion

The world is at urgent need of new drugs, especially antibiotics, where the
unexplored and underexplored sources remain the natural products. New methodol-
ogies, such as genome sequencing in conjunction with molecular genetics, bioinfor-
matics, and understanding of the regulatory and biosynthetic pathways would lead to
develop rare molecules for diverse uses including pharmaceuticals. Several analyt-
ical approaches such as molecular networking, peptidogenomics and glycogenomics
are clubbed with advance mass spectra-based analysis and investigations, making it
possible to search strains that eliminate the randomness in the traditionally associ-
ated approaches. In the exploration of new resources for the novel bioactive mole-
cules, the marine environment catches more attention because of the tremendous
physiological variations among the organisms and also the metabolites of pharma-
ceutical interest. Expensive studies on the metabolite profiling of marine actinomy-
cetes opened the hidden treasure of the capabilities, these fraction of microorganisms
hold, with respect to the production of natural products with antibacterial, antifungal,
antiviral, and antitumor properties. They are even diverse with respect to their
structural skeletons including polyketides, caprolactones, lynamicins, sterols, terpe-
noids, cyclic hexapeptides, and nitrogen-containing compounds (e.g., alkaloids and
peptides). However, the blending of traditional knowledge and modern analytical
will certainly lead to the discovery of many new antimicrobial metabolites to combat
the novel infectious agents.
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