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Abstract

Heavy metals (HMs) and radionuclides pose a serious threat to human health
because of their ubiquity, non-biodegradability, and long-term persistence in the
environment. The presence of high amounts of these pollutants in soil has a
detrimental influence on soil fertility, agricultural productivity, and yield. HMs
and radionuclides contamination have been remediated using a variety of con-
ventional approaches. However, these technologies have limitations, such as
excessive cost, intensive labor, and alteration of the soil native microflora by
affecting soil properties with the potential to pollute the environment with the
release of secondary pollutants. As a result, switching to a more cost-effective and
eco-friendly method is very desirable. Phytoremediation technology for HMs and
radionuclides decontamination has been recognized as a novel, low-cost, and
ecologically acceptable solution. The present chapter explains the major pro-
cesses of phytoremediation, as well as the function of transgenic plants in
increasing plant efficacy for HMs and radionuclides decontamination. The role
of plant growth regulators (PGRs), beneficial microorganisms, arbuscular mycor-
rhizal fungi (AMF), and nanoparticles (NPs) in phytoremediation is also
discussed.
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5.1 Introduction

Pollutants are substances that are found at higher concentrations in the environment
than their natural abundance and have a negative impact on the ecosystem. Organic
pollutants include benzene, toluene, polychlorinated biphenyls (PCBs),
polyaromatic hydrocarbons (PAHs), dioxins, nitro-aromatics, dyes, polymers,
pesticides, and chlorinated organics. Inorganic pollutants, on the other hand, com-
prise a variety of toxic heavy metals (HMs) and radionuclides. HMs are highly
notorious contaminants because of their abundance, non-biodegradability, and long-
term persistence in the environment. They include copper (Cu), cadmium (Cd),
chromium (Cr), cobalt (Co), zinc (Zn), iron (Fe), nickel (Ni), mercury (Hg), lead
(Pb), arsenic (As), aluminum (Al), silver (Ag), and platinum (Pt). HMs pollute the
soil and water and have toxic, genotoxic, teratogenic, and mutagenic impacts on
living organisms. Once accumulated in soils, these metals have an inverse effect on
soil fertility and diminish agricultural production. Furthermore, even at low
concentrations, they induce endocrine disruption and neurological problems. They
are classified as priority pollutants by environmental protection agencies across the
globe because they can pose serious health risks. Like HMs, radionuclides cannot be
naturally or synthetically degraded. In addition, numerous studies have reported that
cesium (37Cs) and strontium (90Sr) are not removed from the top 0.4 meters of soil
even under high rainfall, and the migration rate from the top few centimeters of soil
is slow. Therefore, radionuclides have become a threat to public health when
exposed and/or deposited in the soil and water. Moreover, exposure to radioactivity
is a common and natural phenomenon. For instance, exposure to cosmic radiation,
radon (Rn) gas from rocks and soil, or potassium (40K) through food.

Furthermore, elevated levels of these pollutants in soils have a negative impact on
crop development, and yields by dissolving cell organelles and disrupting
membranes, acting as genotoxic substances, disrupting physiological processes
like photosynthesis, or inactivating respiration, protein synthesis, and carbohydrate
metabolism. Hence, remediation of these pollutants has become a necessity to
sustain a stable environment. Several traditional remediation approaches have been
explored to remediate HMs and radionuclides contamination. However, these
technologies are costly and hazardous with the potential to release secondary
pollutants into the environment. Therefore, adaptation to an alternative, cost-
effective, eco-friendly technology having high removal efficiency is highly desir-
able. Phytoremediation has been identified as an emerging, low-cost, and
eco-sustainable approach to HMs and radionuclides decontamination (Sarma et al.
2021). Phytoremediation uses plants to remove, degrade, or detoxify toxic metals
(Nedjimi 2021; Thakare et al. 2021). Phytoextraction, phytostabilization,
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phytovolatilization, phytodegradation, and rhizodegradation are types of
phytoremediation techniques that have been utilized for soil decontamination. The
present chapter discusses various sources and toxic effects of HMs and
radionuclides, plant strategies for avoiding and/or tolerating hazardous metals, as
well as the importance of genetic engineering (GE) in improving efficiency of
phytoremediation. The role of plant growth regulators (PGRs), beneficial
microorganisms, arbuscular mycorrhizal fungi (AMF), and nanoparticles (NPs) in
assisting phytoremediation is also highlighted.

5.2 Heavy Metals (HMs) and Radionuclides

Heavy metals (HMs) are defined as elements with numerous metallic properties, i.e.,
ductility, conductivity, stability, ligand specificity, etc., an atomic number >20, and
a density >5 g/cm3. They are generally present in the environment at a trace level
(<1 g/kg/ppb). HMs can also be classified into essential and non-essential HMs.
Essential HMs consist of Co, Cr, Cu, Fe, Mn, Ni, and Zn and non-essential includes
Pb, Cd, and Hg. In addition, according to their level of toxicity, they can also be
grouped as extremely poisonous, moderately poisonous, and relatively less poison-
ous. Radionuclides, on the other hand, are a class of chemicals where the nucleus of
the atom is unstable. Radionuclides achieve stability through changes in the nucleus
(spontaneous fission, emission of alpha particles, or conversion of neutrons to
protons or the reverse). The emission of radionuclides from nuclear power plants,
as well as their subsequent mobility in the environment, is a subject of intense public
concern. HMs and radionuclides are emitted from both natural as well as anthropo-
genic sources, such as automobile exhaust, smelting, warfare, electronic industries,
agrochemical use, irrigation, waste disposal, fossil fuel consumption, nuclear plants,
and nuclear weapons testing as shown in Table 5.1.

The accumulation of HMs in the soil causes severe health problems for plants,
animals, and humans. According to the United States Environmental Protection
Agency (USEPA), soil HM contamination has caused health issues for about
ten million humans all over the world. As a result, HM accumulation in plants via
the soil–root interface is a serious threat (Sakizadeha and Ghorbani 2017). The most
well-known case of Hg poisoning is the Minamata disease in Japan. Another
example of HM poisoning is the disaster in the Spanish national reserve. The
water in the reservoir was polluted with traces of HMs, mineral sediment, and acidic
chemicals. In addition, Hinckley water contamination is another most common
example of Cr contamination in the world. Lead poisoning is also not uncommon
and is probably the best example of an HM poisoning. It has been reported that
890,000 children aged 1–5 have elevated blood lead levels in the USA (Pirkle et al.
1998). The Kyshtym disaster (1957), Stationary Low-Power Reactor Number One,
also known as SL-1 accident (1961), Three Mile Island accident (1979), Chernobyl
accident (1986), and Fukushima Daiichi disaster (2011) are a few major nuclear
disasters in history. The Chernobyl disaster in Ukraine is a common example. The
Chernobyl accident happened in a dangerously constructed nuclear power reactor
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Table 5.1 Sources of heavy metals (HMs) and radionuclides in the environment

Contaminant Sources

Heavy metals
Zinc (Zn) Electroplating and smelting

Cadmium (Cd) Smelting, incineration, fuel combustion, waste batteries, e-waste, and paint
sludge

Copper (Cu) Mining, electroplating, and smelting operations

Mercury (Hg) Chlor-alkali plants, thermal power plants, electrical appliances, fluorescent
lamps, and hospital waste

Chromium (Cr) Mining, leather tanning, industrial coolants, and chromium salt
manufacturers

Lead (Pb) Lead-acid batteries, e-waste, coal-based thermal power plants, bangle
industry, ceramics, paints, and smelting operations

Arsenic (As) Geogenic/natural processes, smelting operations, thermal power plants, and
fuel-burning

Cobalt (Co) Volcanic emissions, weathering of rocks, and decomposition of plant waste

Nickel (Ni) Smelting operations, battery industry, and thermal power plants

Manganese (Mn) Mining, alloy production, goods processing, iron-manganese operations,
welding, and agrochemical production

Iron (Fe) Geogenic, industrial, agricultural, pharmaceutical, domestic effluents, and
atmospheric sources

Aluminum (Al) Mining and processing of aluminum ores or the production of aluminum
metal, alloys, and compounds, coal-fired power plants and incinerators

Radionuclides
Uranium
(235, 238U)

Mining/milling of uranium ores, geological repositories of nuclear waste,
testing of nuclear weapons, and natural sources

Thorium (232Th) Natural, mining, milling and processing, phosphate fertilizer production, tin
processing, industrial boilers, and military operations

Strontium
(89, 90Sr)

Spent nuclear fuel, nuclear accidents, nuclear fallout, nuclear fission,
nuclear weapons testing, geological repository of nuclear waste, and
radioactive storage leaking

Radium
(226, 228Ra)

Decay product of U and Th from mill tailing and production of phosphate
fertilizers

Cobalt (60Co) Car, truck, and airplane exhausts, burning coal and oil, industrial processes,
and nuclear medicines

Iodine (131I) Nuclear tests, fuel reprocessing, and spent nuclear fuel

Cesium (137Cs) Nuclear accidents and weapons testing

Carbon (14C) Natural and nuclear weapons explosions

Tritium (3H) Nuclear accidents and testing of nuclear weapons

Potassium (40K) Natural

Plutonium
(239Pu)

Geological repositories of nuclear waste, nuclear accidents, testing of
nuclear weapons, and fuel reprocessing

Radon (220,226Rn) Decay product of U and Th from mill tailing
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with a total meltdown of the core and 10 days of free emission of radionuclides into
the atmosphere. In addition, nuclear disasters, such as Fukushima, have
contaminated coastal ecosystems by dispersing radionuclides. Several amendments’
applications, independently of their type and concentration, reduced their
concentrations in the soil available fraction and the soil leachates. Any change in
the concentration of these metals will either cause deficiency or will interfere with
cellular functions, ultimately adversely affecting the growth of plants, as presented in
Table 5.2.

5.3 Phytoremediation: An Environmental Tool
for the Reclamation of Contaminated Sites

Phytoremediation is a broad concept that refers to a variety of processes involving
plant–soil–atmosphere interactions. It is an emerging technology that involves the
use of plants to extract, sequester, degrade, or immobilize pollutants from the soil
and water. Potential plants for phytoremediation usually possess four important
characteristics; (1) rapid growth and high biomass, (2) abstruse root system, (3) har-
vestable, and (4) accumulation of excessive concentration of pollutants in the shoots.
The ability of plants to remove HMs and radionuclides from soils has been reported
by many researchers. Eichhornia crassipes roots removed 54% of the initial U
within 4 min of contact time (Bhainsa and D’Souza 2001). Entry et al. (2001)
compared the potential of bahiagrass, Johnson grass, and switchgrass to accumulate
137Cs and 90Sr from contaminated soils in the presence and absence of either
sphagnum peat or poultry litter amendments. Johnson grass growing on soil treated
with chicken litter showed the highest accumulation of these radionuclides. Among
three plants, viz., Indian mustard, redroot pigweed, and tepary bean, redroot pigweed
showed the highest accumulation of 137Cs and 90Sr (Fuhrmann et al. 2002).
Bystrzejewska-Piotrowska and Urban (2004) reported that onion plants (Allium
cepa) may play an important role in the 137Cs recycling by facilitating the transfer
of fallout 137Cs to the soil. Eapen et al. (2006) reported that Calotropis gigantea
plants accumulated 90Sr and 137Cs more in their roots than in their shoots. Sasmaz
and Sasmaz (2009) reported that Astragalus gummifer can be utilized to rehabilitate
the soil contaminated by Sr. In another study, Ocimum basilicum seeds showed
significant uptake of both 137Cs and 90Sr. The maximum adsorption capacity was
160 mg Cs g�1 and 247 mg Sr g�1 seed dry weight (Chakraborty et al. 2007).
Melastoma malabathricum L. was reported to accumulate a relatively high range of
Pb and As concentration (Selamat et al. 2014). In comparison to other plants,
Miscanthus floridulus and Cyperus iria are reported to have the potential for
phytoremediation of radionuclide 232Th in the soil (Yan 2016). In another study,
Bhat et al. (2016) reported that Centella asiatica can uptake and accumulate Fe
significantly in the aerial parts. Silva et al. (2018) suggested that Cassia alata plants
can be used for the phytoremediation of Cd. Hypnum plumaeforme has been
described as a possible Rn pollution accumulator plant, as well as a possible
indicator plant for Rn pollution monitoring (Zhang et al. 2019). Phytoremediation
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Table 5.2 Effects of heavy metals (HMs) and radionuclides on plants

Contaminant Harmful effects

Zn Excessive concentration of Zn hampers growth and development, metabolism
and causes oxidative damage in plants. It also affects the catalytic efficiency of
enzymes, which results in retarded growth and ultimately causes senescence

Cd Elevated levels of Cd show symptoms of injury, i.e., chlorosis, inhibition of
growth, root tips browning, and finally death. It might also reduce the absorption
of nitrate and its transport from roots to shoots by inhibiting nitrate reductase
activity. It can also induce lipid peroxidation, inhibit chlorophyll biosynthesis,
and reduce the activity of enzymes that are involved in the fixation of CO2

Cu Cu in the soil is cytotoxic. Elevated concentrations of Cu cause oxidative stress
and the development of reactive oxygen species (ROS). It can disturb metabolic
pathways and also damage macromolecules. Cu causes leaf chlorosis and plant
growth retardation

Hg A high level of Hg2+ inhibits mitochondrial function and causes oxidative stress
by activating the development of ROS. This ultimately leads to the disruption of
biomembrane lipids and plant cellular metabolism

Cr A high concentration of Cr affects the germination of seeds. It can also interfere
with the process of photosynthesis, i.e., CO2 fixation, electron transport, photo-
phosphorylation, and enzyme activities

Pb The toxic concentration adversely affects growth and photosynthetic processes
by inhibiting the activity of carboxylation enzymes. It also inhibits elongation of
roots and stems and expansion of leaves. Pb poisoning also impairs mineral
nutrition by inhibiting enzyme activity, creating a water imbalance, altering
membrane permeability, and disrupting mineral nutrition

As Roots are generally the first tissue to be exposed to As, where the metalloid
inhibits root extension and proliferation. As interferes with critical metabolic
processes, which can lead to death. Antioxidant resistance systems are triggered
by As exposure

Co Crop dropping, suppression of greening, discolored veins, premature leaf
closure, and decreased shoot weight are the toxic effects of Co

Ni Excessive Ni2+ in the soil induces a variety of physiological changes and toxicity
in plants, including chlorosis and necrosis. A high Ni2+ environment causes
nutrient imbalance, which leads to cell membrane dysfunction

Mn The accumulation of too much Mn in the leaves reduces the photosynthetic rate.
Mn toxicity is characterized by necrotic brown spotting on leaves, petioles, and
stems. The symptom is commonly known as “crinkle leaf.” It is also linked to
browning and chlorosis in these tissues. Excess Mn is said to block a Fe-related
mechanism, preventing chlorophyll synthesis

Fe The excess Fe2+ produces free radicals, which irreversibly destroy cellular
structure and damage membranes, DNA, and proteins

Al An elevated concentration of Al causes a reduction in plant growth, thickening of
roots, root tip dieback, yellowing and purpling, wilting, loss of apical
dominance, and sometimes loss of geotropism occurs. Al also reduces the
performance of several enzymes such as ATPases

Radionuclides An elevated concentration of U can cause macroscopic effects such as stunted
growth and reduced biomass production. U can interact with macromolecules
and can affect enzyme capacities and membrane permeability, inducing
oxidative stress-related responses in plants. The higher concentration of Sr
damages various processes of photosynthesis, such as energy absorption, energy
transfer, and photosynthetic carbon assimilation, and induces oxidative stress
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employs various techniques, such as phytoextraction, phytostabilization,
phytovolatilization, phytodegradation, and rhizodegradation for the remediation of
polluted soil as present in Fig. 5.1.

5.3.1 Phytoextraction

Plants can absorb nutrients from the soil naturally. The absorption of chemicals
through the plant’s root system and the accumulation of metal and radioactive
contaminants from the soil in their shoots is known as phytoextraction.
Phytoextraction is also called phytoaccumulation. The contaminants, as well as
plant biomass containing metals and radionuclides, have been extracted during the
post-harvest process (Raskin and Ensley 2000). Phytoextraction has been applied to
many contaminants such as metals-Ag, Cd, Co, Cr, Cu, Hg, Mn, Mo, Ni, Pb, and Zn
(Salt et al. 1995), metalloids-As and Se (Kumar et al. 1995), and radionuclides- 90Sr,
95Nb, 99Tc,106Ru, 144Ce, 226,228Ra, 239,240Pu, 241Am, 228,230,232Th, 244Cm, and 237Np
(Nisbet and Shaw 1994; Kabata-Pendias and Pendias 1996). The ability of a plant to
translocate and accumulate contaminants varies, depending on the plant species
(Susarla et al. 2002).

5.3.2 Phytostabilization

The alternative approach is to slow down contaminant movement and stabilize the
contaminant by storing it in the plant roots or precipitating it with root exudate. This
method is best for dealing with radionuclides with short half-lives (Lee 2013) and

Fig. 5.1 An overview of the soil contaminant cleanup mechanisms
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metals such as Pb, As, Cd, Cr, Cu, and Zn (Etim 2012). Metals in the root zone can
be stabilized by changing their oxidation state from soluble to insoluble by root-
mediated precipitation. Metal-tolerant plants are used to restore vegetation at pol-
luted sites, reducing the risk of contaminants migrating by wind erosion and
transport of exposed surface soils, as well as pollution leaching into groundwater.
Plants also help to prevent soil erosion and reduce the amount of water available in
the environment through a thick root system.

5.3.3 Phytovolatilization

Phytovolatilization is the process of contaminants being absorbed and converted into
less toxic volatile forms which are assimilated by the roots, translocated to the shoot,
and then volatilized in the atmosphere as vapors through the stomatal leaves
(Tollsten and Muller 1996; Raskin and Ensley 2000). Phytovolatilization can
occur with contaminants present in the soil, sediment, or water. This approach has
the benefit of converting the contaminant, mercuric ion, into a less toxic material.
The downside is that Hg emitted into the atmosphere is likely to be recycled by
precipitation and then redeposited in lakes and oceans. Phytovolatilization of
radionuclides, which takes advantage of a plant’s ability to transpire massive
quantities of water, is currently being used for tritium (3H) remediation. Tritium, a
radioactive hydrogen isotope with a half-life of around 12 years, decays to stable
He. However, since phytovolatilization requires the release of pollutants into the
environment, a risk assessment of the effects on the ecosystem and human health
may be required.

5.3.4 Phytodegradation

Phytodegradation, also known as phytotransformation, is the degradation of organic
contaminants into simple molecules through a plant metabolic method.
Contaminant-metabolizing enzymes formed by plants can be released into the
rhizosphere, where they may continue to work in contaminant transformation.
Dehydrogenase, nitrogenase, laccase, and nitrilase are examples of plant-formed
enzymes in plant sediments and soils and released by roots (Schnoor et al. 1995).
The plant degrades the organic contaminant and uses it for its own purposes. Plants
can pick up nitrate and integrate it into proteins or other nitrogen-containing
compounds or it can be converted to nitrogen gas. Some organic contaminants,
such as chlorinated solvents, herbicides, 2,4,6-trinitrotoluene, and trichloroethylene,
are remedied through phytodegradation.
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5.3.5 Rhizodegradation

Rhizodegradation is a term that describes the breakdown of pollutants in the
rhizosphere of plants. Plants provide habitats for bacteria and mycorrhizal fungi to
work together to degrade pollutants. The bacteria flourished in the rhizosphere,
causes the contaminant to degrade. Plant exudates, such as sugar, amino acids,
enzymes, and other components increase the microbial population (Shahzad et al.
2015). The rate of rhizodegradation can be accelerated by soil characteristics such
as aeration and moisture content (Kirk et al. 2005). Organic chemicals such as
petroleum hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), chlorinated
solvents, pesticides, polychlorinated biphenyls (PCBs), benzene, toluene, ethylben-
zene, and xylenes are removed through rhizodegradation. Table 5.3 presents
various phytoremediation techniques employed for the remediation of HMs and
radionuclides.

5.4 Plants Strategies Towards Metals

Plants tolerant to the presence of high concentrations of metals in the soil are
classified as metallophytes. To cope with the toxicity of high amounts of elements
in the soil, metallophytes exhibit two major strategies, viz., exclusion and accumu-
lation (Baker 1981). In exclusion, plants resist the translocation of metals to their
tissues. The metal excluder restricts the amount of metal translocated from roots to
shoots, thus maintaining low levels of metal concentration in the aerial sections of
the plants. Exclusion involves modification of the pH in the rhizosphere by secretion
of organic acids from roots which bind to the metals and decrease their bioavailabil-
ity. Other mechanisms involve the accumulation of metals in cell walls. However,
beyond a certain threshold dose, this mechanism usually breaks down and the metal
is taken up by the roots. In Silene paradoxa, the generation of metal-excluding root
cell walls was suggested to be one of the factors contributing to low Cu accumulation
and thus limiting the Cu uptake by the root cells by decreasing their pectin concen-
tration in the cell wall and increasing pectin methylation, thus preventing the binding
of Cu (Colzi et al. 2012). Seregin et al. (2003) reported maize as an excluder plant,
with its root system acting as a barrier, restricting Ni uptake by above-ground organs.
In another study, Wei et al. (2005) reported Oenothera biennis and Commelina
communis as Cd excluders and Taraxacum mongolicum as a Zn excluder.

In accumulation, metals are accumulated in a non-toxic form in the upper plant
parts at both low and high concentrations. Plants can be distinguished as indicators,
accumulators, and hyperaccumulators based on their ability to accumulate metals in
their tissues. Indicator plants sequester metals in the above-ground aerial tissue, but
the level of metal within their tissue reflects those in the surrounding soil. These
plants are of biological and ecological importance since they are pollution indicators.
Accumulator plant species can accumulate greater metal concentrations in the aerial
portions of the plant with a shoot/root ratio of >1 (Baker 1981). Hyperaccumulator
plants can accumulate extraordinarily high amounts of metals in the aerial organs, far

5 Phytoremediation of Heavy Metals and Radionuclides: Sustainable Approach. . . 91



above the levels found in the majority of species, without experiencing phytotoxic
effects. These plants have a high rate of metal uptake, a faster root-to-shoot translo-
cation, and a better ability to detoxify and sequester toxic metal in their leaves
(Rascio and Navari-Izzo 2011). The criterion for hyperaccumulators of Co, Cu, Cr,
Pb, and Ni are plants containing over 1000 μg/g of any of these elements in the dry
matter; for Mn and Zn, the criterion is 10,000 μg/g (Baker and Brooks 1989). The
fate of hyperaccumulation depends on the plant species, soil physicochemical
properties such as pH, cation exchange capacity (CEC), organic matter content,
electrical conductivity (EC), and metal concentration in the soil. Hyperaccumulators

Table 5.3 Remediation of heavy metals (HMs) and radionuclides by different types of
phytoremediation

Type Plant species
HMs/
radionuclides References

Phytoextraction Brassica juncea and Brassica
chinensis

U Huang et al. (1998)

Phytovolatilization Arabidopsis thaliana Hg Rugh et al. (1996)

Phytovolatilization Liriodendron tulipifera Hg Rugh et al. (1998)

Phytovolatilization Arabidopsis and Brassica
juncea

Se LeDuc et al. (2004)

Phytoextraction Nyssa sylvatica and
Liquidambar styraciflua

238U and
232Th

Hinton et al. (2005)

Phytoextraction Rumex crispus Zn and Cd Zhuang et al. (2007)

Phytovolatilization Brassica juncea Hg Moreno et al. (2008)

Phytostabilization Atriplex halimus subsp.
schweinfurthii

Cd Nedjimi and Daoud
(2009)

Phytoextraction Calotropis procera Pb and Cd D’Souza et al. (2010)

Phytoextraction Catharanthus roseus 137Cs Fulekar et al. (2010)

Phytoextraction Salix spp. and Helianthus
annuus

U Mihalik et al. (2010)

Phytoextraction Raphanus sativus 88Sr and 133Cs Wang et al. (2012)

Phytostabilization Solanum nigrum Cd Khan et al. (2014)

Phytostabilization Vigna radiata Cd Prapagdee et al. (2014)

Phytoextraction Pteris vittata As Lei et al. (2016)

Phytostabilization Hibiscus cannabinus Cd Chen et al. (2017)

Phytostabilization Leptochloa fusca U and Pb Ahsan et al. (2017)

Phytostabilization Helianthus annuus cv. Zaria Cd Shahabivand et al.
(2017)

Phytostabilization Canavalia ensiformis Cu Santana et al. (2018)

Phytoextraction Chlorophytum laxum R. Br Cd Chuaphasuk and
Prapagdee (2019)

Phytoextraction Lepidium sativum Hg Smolinska (2019)

Phytoextraction Rhizophora apiculata Mn Khan et al. (2020)

Phytoextraction Vetiveria zizanioides U Pentyala and Eapen
(2020)
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are excellent models for studying metal control, including the physiology of metal
intake, transport, and sequestration, as well as evolution and adaption in harsh
settings. Above-ground parts assimilate high amounts of metal as compared to
ground parts in hyperaccumulator plants. Species belonging to the family
Brassicaceae, Asteraceae, Amaranthaceae, Cyperaceae, Fabaceae, Lamiaceae,
Poaceae, and Euphorbiaceae have been qualified as hyperaccumulators
(Table 5.4). However, high metal specificity, lower biomass production with specific
ecology and requirements in terms of climate, soil characteristics, water regime, are
some of the obstacles to hyperaccumulator plants based remediation technology.

HMs/radionuclides can be transferred by apoplastic and symplastic channels
through the roots, stems, and leaves (Song et al. 2017). Acidification of the rhizo-
sphere via plasma membrane proton pumps and release of ligands capable of
chelating the metal allows plants to desorb metals from the soil matrix. The metal
ion can be transferred through the root in a radial fashion. Before reaching the xylem
for transport to the shoot, the metal passes through the epidermis, cortex, casparian
strip in the endodermis, and the pericycle of the roots. Once metal reaches the xylem,
it is transported to the leaves by the flow of xylem sap, where it crosses a membrane
to enter the leaf tissues. Once metal penetrates the leaf tissues, it can be sequestered
in numerous subcellular compartments, such as the cell wall, cytosol, and vacuole, or
volatilized through the stomata. Cellular compartmentation of metals in leaves varies
between hyperaccumulator species. Kupper et al. (1999) demonstrated that Zn was
sequestered predominantly in the epidermal vacuoles in Thlaspi caerulescens leaves
instead of its mesophyll cells. However, in another study, Arabidopsis halleri
preferentially accumulated Zn in its mesophyll cells as compared to epidermal
cells (Kupper et al. 2000).

5.5 Phytoremediation by Transgenic Plants

Genetic engineering (GE) is used as an efficient method for evaluation and a better
understanding of various important steps at the molecular level for improving plant
tolerance to various environmental stresses and metal toxicity. A gene from a foreign
source, such as a plant species, bacteria, or animals, is transferred and incorporated
into the genome of a target plant. The foreign gene inherited after DNA recombina-
tion confers unique traits to the plants. GE can significantly improve metal absorp-
tion, transport, oxidation, and sequestration. Important crop plants like maize, rice,
and sorghum are frequently grown in acidic soils where Al toxicity is a major issue.
Overproduction of citrate resulted in Al tolerance in transgenic Nicotiana tabacum
and Carica papaya plants. This study demonstrates that organic acid excretion is a
mechanism of Al tolerance in higher plants (de la Fuente et al. 1997). Arabidopsis
thaliana expressing merBpe that encodes for organomercurial lyase (MerB) grew
vigorously at a wide range of concentrations of monomethylmercuric chloride and
phenylmercuric acetate (Bizily et al. 1999). Arabidopsis thaliana expressingmerBpe
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Table 5.4 Potential hyperaccumulator species

HMs Hyperaccumulator species References

Zn Sedum alfredii Yang et al. (2002)

Potentilla griffithii Qiu et al. (2006)

Thlaspi caerulescens Banasova et al. (2008)

Justicia procumbens Phaenark et al. (2009)

Cd Sedum alfredii Ni and Wei (2003)

Viola baoshanensis Liu et al. (2004)

Thlaspi caerulescens Banasova et al. (2008)

Chromolaena odoratum, Gynura pseudochina,
Impatiens violaeflora, and Justicia procumbens

Phaenark et al. (2009)

Lonicera japonica Liu et al. (2009)

Prosopis laevigata Buendia-Gongalez et al. (2010)

Coronopus didymus Sidhu et al. (2017)

Vetiveria zizanioides Kumar et al. (2018)

Cu Helianthus annuus and Hydrangea paniculata Forte and Mutiti (2017)

Lactuca sativa Shams et al. (2019)

Hg Mentha arvensis Manikandan et al. (2015)

Cr Leersia hexandra Zhang et al. (2007)

Prosopis laevigata Buendia-Gongalez et al. (2010)

Iris ensata Usman et al. (2012)

Nopalea cochenillifera Adki et al. (2013)

Pb Sesbania drummondii Sahi et al. (2002)

Helianthus annuus Boonyapookana et al. (2005)

Colocasia esculenta Islam et al. (2016)

Hydrangea paniculata Forte and Mutiti (2017)

As Pteris vittata Ma et al. (2001)

Pteris cretica, Pteris longifolia, and Pteris umbrosa Zhao et al. (2002)

Pityrogramma calomelanos Francesconi et al. (2002)

Lemma gibba Mkandawire and Dudel (2005)

Co Haumaniastrum robertii and Haumaniastrum
katangense

Kabeya et al. (2018)

Ni Sebertia acuminata Jaffre et al. (1976)

Berkheya coddii Robinson et al. (1997a)

Alyssum bertolonii Robinson et al. (1997b)

Streptanthus polygaloides Reeves et al. (1981)

Mn Austromyrtus bidwillii Bidwell et al. (2002)

Phytolacca acinosa Xue et al. (2004)

Schima superba Yang et al. (2008)

Phytolacca americana Pollard et al. (2009)

Fe Imperata cylindrica Rodriguez et al. (2005)

Centella asiatica Bhat et al. (2016)
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may be used to degrade methylmercury at polluted sites and sequester Hg(II).
Expression of CAX2 (calcium exchanger 2) in Nicotiana tabacum accumulated
more Ca2+, Cd2+, and Mn2+ and was more tolerant to elevated Mn2+ levels. The
expression of CAX2 also increased Cd2+ and Mn2+ transport in isolated root tono-
plast vesicles. These findings imply that CAX2 has a broad substrate range and
maybe a key component in improving plant ion tolerance (Hirschi et al. 2000).
Arabidopsis thaliana plants expressing Escherichia coli arsenate reductase (arsC)
and γ-glutamylcysteine synthetase (γ-ECS) genes enhanced As tolerance and
hyperaccumulation of As in above-ground parts (Dhankher et al. 2002). Pilon
et al. (2003) expressed a mouse (Mus musculus) Se-Cys lyase (SL) in the cytosol
or chloroplasts of Arabidopsis to direct Se flow away from incorporation into
proteins. SL specifically catalyzes the decomposition of Se-Cys into elemental Se
and alanine. The transgenics showed SL activities up to two-fold in cytosolic lines
and six-fold in chloroplastic lines compared to wild-type plants. Se incorporation
into proteins was reduced two-fold in both types of SL transgenics, indicating that
the approach successfully redirected Se flow in the plant. Enhanced shoot Se
concentrations up to 1.5-fold were shown in both the cytosolic as well as
chloroplastic lines.

Eapen et al. (2003) developed hairy root cultures of Brassica juncea and
Chenopodium amaranticolor by Agrobacterium rhizogenes mediated genetic trans-
formation. The stable, transformed root systems of B. juncea and C. amaranticolor
uptake 20–23% and 13% of U from the solution containing up to 5000 mM
concentration, respectively. Wangeline et al. (2004) reported that Indian mustard
[Brassica juncea (L.) Czern.] transgenics overexpressing ATP sulfurylase were
more tolerant to As(III), As(V), Cd, Cu, Hg, and Zn, but less tolerant to Mo and V
than the wild-type. LeDuc et al. (2004) overexpressed the gene encoding
selenocysteine methyltransferase (SMT) from Astragalus bisulcatus in Arabidopsis
and B. juncea. SMT transgenic seedlings tolerated Se, particularly selenite, produc-
ing three- to seven-fold greater biomass and three-fold longer root lengths. A
significant increase in Se accumulation and volatilization was also observed in
SMT plants. To enhance the phytoextraction capacity of Linum usitatissimum L.,
the linseed breeding line AGT 917 was engineered to constitutively express the
genetic fusion of the α-domain of mammalian metallothionein 1a (αMT1a) and the
β-glucuronidase gus gene. The stem of the αMT1/2 line contained an average of 3.3
and 1.9 times higher levels of Cd than stems of the corresponding AGT 917 when
grown in soils amended with Cd at 20 and 360 mg kg�1 (Vrbova et al. 2013). In
another study, expression of the bacterial Hg transporter MerE promoted the trans-
port and accumulation of methylmercury in transgenic Arabidopsis, which may be a
useful method for improving the efficacy of plants to facilitate the phytoremediation
of methylmercury pollution (Sone et al. 2013). Transgenic plants enhancing the
phytoremediation of HMs are depicted in Table 5.5.
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5.6 Plant Growth Regulators (PGRs) Facilitated
Phytoremediation

Plant growth regulators (PGRs) are organic substances that regulate increased plant
tolerance to abiotic stress by stimulating expression of the genes associated with
antioxidant activity, modulation of cellular redox homeostasis, and alteration in
transcription element activities. PGRs include auxins, gibberellins, cytokinins, eth-
ylene, abscisic acid, salicylic acid, jasmonates, brassinosteroids, and strigolactones
(Bulak et al. 2014). The exogenous application of indole acetic acid alleviated the
negative effect of Cr on growth, protein, nitrogen content, and nitrogen metabolism,
and led to a decrease in oxidative injuries caused by Cr (Gangwar and Singh 2011).
In A. thaliana, 5 μM of gibberellic acid was reported to alleviate Cd toxicity by
reducing Cd uptake and lipid peroxidation (Zhu et al. 2012). Ali et al. (2015)
reported that the application of gibberellic acid-3 enhanced the length, fresh and
dry weight of shoots and roots as well as grain yield of mungbean in the Ni
contaminated soils. Application of gibberellic acid-3 significantly increased the
biomass of Solanum nigrum by 56% and increased Cd concentrations in the shoot
by 16% at 1000 mg L�1 (Ji et al. 2015). The exogenous abscisic acid can decrease Zn
concentrations in Populus x canescens tissues by modulating the transcript levels of
key genes involved in Zn uptake and detoxification, and by activating the
antioxidative defense system (Shi et al. 2015). In another study, the addition of
exogenous abscisic acid enhanced the tolerance of grapevine (Vitis vinifera L.) to
excess Zn due to the expression of both VviZIP genes and detoxification-related
genes (Song et al. 2019). The application of different PGRs (indole-3-acetic acid,
indole-3-butyric acid, diethyl aminoethyl hexanoate, 6-benzylaminopurine,
1-naphthylacetic acid, abscisic acid, 2,4-dichlorophenoxyacetic acid, ethrel,
brassinolide, gibberellic acid-3, and compound sodium nitrophenolate) enhanced
the growth of Amaranthus hypochondriacus L. and the phytoextraction efficiency of
Cd. However, the application of indole-3-butyric acid or diethyl aminoethyl
hexanoate was reported to fix more Cd in upper and lower epidermal cells (Sun
et al. 2019). Zhang et al. (2020) reported increased tolerance of tea plants to Cd stress
on exogenous application of indole acetic acid (10 μM). Gong et al. (2020) reported
that the exogenous application of indole-3-acetic acid reduced the malondialdehyde
(MDA) concentrations in Cu stressed seedlings and increased biomass, proline
content, and the activities of antioxidant enzymes. Thus, indole-3-acetic acid
alleviated Cu toxicity and enhanced Cu tolerance in spinach seedlings.

5.7 Microbial Facilitated Phytoremediation

Beneficial microorganisms associated with plants enhance the efficiency of the
phytoremediation process either by altering the metal accumulation in plant tissues
or by conferring plant metal tolerance and/or enhancing plant biomass production.
These microorganisms influence metal uptake through translocation, transformation,
chelation, immobilization, solubilization, precipitation, volatilization, and
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complexation of metal, ultimately facilitating phytoremediation. Siderophores pro-
ducing microorganisms inhabiting the rhizosphere are believed to play an important
role in HM and radionuclide phytoextraction. Siderophores solubilize unavailable
forms of HM and radionuclide bearing minerals by complexation reaction. The
production of siderophores by Streptomyces tendae F4 has been reported to enhance
uptake of Cd in sunflower (Dimkpa et al. 2009). Microbial production of other
metabolites such as organic acids (Sayer et al. 1999; Saravanan et al. 2007),
biosurfactants (Juwarkar et al. 2007; Sonowal et al. 2022), hormones (Ma et al.
2008), and extracellular polymeric substances such as exopolysaccharides and
lipopolysaccharides (Joshi and Juwarkar 2009) also contribute to phytoremediation.
Through oxidation or reduction reactions, several plant-associated microorganisms
can alter HM and radionuclide mobility. A significant increase in the mobility of Cu,
Cd, Hg, and Zn by >90% was reported when co-inoculated with Fe-reducing
bacteria and the Fe/S oxidizing bacteria (Beolchini et al. 2009).

Many researchers have reported improved phytoremediation efficiency with
plant-associated microorganisms. Chen et al. (2013) suggested that two metal-
resistant and plant growth-promoting bacteria, viz., Burkholderia sp. J62 and Pseu-
domonas thivervalensis Y-1-3-9, promoted the growth and Cd uptake of Brassica
napus. The study indicates there might be potential for developing an effective
plant–microbe partnership for phytoextraction of Cd from heavily Cd contaminated
soils. In another study, inoculation of Pseudomonas sp. Lk9 significantly increased
shoot dry biomass (14%) and accumulated Cd (46.6%), Zn (16.4%), and Cu (16.0%)
in aerial parts of Solanum nigrum L. compared to uninoculated plants. This symbi-
otic association between S. nigrum L. and Pseudomonas sp. Lk9 also resulted in a
significant increase in the soil microbial biomass C (39.2%) and acid phosphatase
activity (28.6%.) (Chen et al. 2014). Soil inoculation with Arthrobacter sp. TISTR
2220 enhanced Cd accumulation in the roots, above-ground tissues, and whole plant
of Ocimum gratissimum L. by 1.2-fold, 1.4-fold, and 1.1-fold, respectively. This
synergistic use of Arthrobacter sp. with O. gratissimum L. could be a feasible
economic and environmental option for the reclamation of Cd polluted areas
(Prapagdee and Khonsue 2015). Szuba et al. (2017) reported that Paxillus involutus
accumulated Pb in the roots and stems of Populus� canescens trees, thus improving
the host plant growth. Inoculation of Leptochloa fusca (L.) Kunth with endophytic
bacterial consortia (Pantoea stewartii ASI11, Enterobacter sp. HU38, and
Microbacterium arborescens HU33) resulted in a 22–51% increase in root length,
25–62% increase in shoot height, 10–21% increase in chlorophyll content, and
17–59% more plant biomass in U and Pb contaminated soils. Enhanced metal uptake
capacity by 53–88% for U and 58–97% for Pb was also observed (Ahsan et al.
2017).

Piriformospora indica enhanced growth, Chl a, Chl b, proline content and
showed the ability to immobilize Cd in the root and reduce Cd concentrations in
the stem and leaves. This alleviated metal toxicity in the Helianthus annuus cv. Zaria
plants, and also resulted in phytostabilization of Cd polluted soils (Shahabivand et al.
2017). Inoculation of three metallotolerant siderophore-producing Streptomyces
sp. B1-B3 strains significantly stimulated plant biomass, reduced oxidative stress,
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and enhanced the uptake and bioaccumulation of Zn, Cd, and Pb in Salix dasyclados
L (Zloch et al. 2017). Bacillus cereus (T1B3) removed Cr6+ (82%), Fe (92%), Mn
(67%), Zn (36%), Cd (31%), Cu (25%), and Ni (43%) in the HM amended extract
medium. Results indicated that inoculating the native hyperaccumulator Vetiveria
zizanioides with the T1B3 strain improves the phytoremediation efficiency of V.
zizanioides (Nayak et al. 2018). Jin et al. (2019) reported that Simplicillium chinense
QD10 significantly enhanced the phytoextraction of Cd and Pb by Phragmites
communis. Irshad et al. (2019) reported higher As uptake and removal efficiency
by Vallisneria denseserrulata and the indigenous Bacillus sp. XZM partnership.
Enterobacter sp. FM-1, a potent bioaugmentation agent, facilitated Mn and Cd
phytoextraction in Polygonum hydropiper L. and Polygonum lapathifolium
L. (Li et al. 2020). Cupriavidus basilensis strain r507 showed excellent As tolerance,
rapid arsenite oxidation ability, and strong colonization of Pteris vittata. Inoculation
of P. vittata with strain r507 accumulated As (up to 171%), suggesting the feasibility
of co-cultivating hyperaccumulators with facilitator bacteria for practical As
phytoremediation (Yang et al. 2020).

5.8 Arbuscular Mycorrhizal Fungi (AMF) Facilitated
Phytoremediation

Arbuscular Mycorrhizal Fungi (AMF) increases tolerance to HMs and radionuclides,
improves acquisition of water and nutrients, and results in the establishment of plants
in contaminated soil (Thakare et al. 2021). AMF improves phytoremediation via
chelation/complexation, compartmentation in vacuoles, metal retention in vesicules,
arbuscules, spore and cell walls, and production of glomalin (Cabral et al. 2015).
Entry et al. (1999) reported the accumulation of 137Cs and 90Sr from the
contaminated soil by bahiagrass (Paspalum notatum), Johnson grass (Sorghum
halpense), and switchgrass (Panicum virgatum) after inoculation with Glomus
mosseae and Glomus intraradices. Arriagada et al. (2004) reported that combined
inoculation of Glomus deserticola and Trichoderma koningii resulted in the highest
accumulation of Cd in the stem of the eucalyptus plant.

The AM association helped Phyllanthus niruri and Paspalum vaginatum plants to
survive in a disturbed ecosystem by enhancing the uptake and recycling of
radionuclides, particularly 137Cs and 90Sr (Selvaraj et al. 2004). Wang et al. (2005)
reported that inoculation of an AM fungal consortium consisting of Gigaspora
margarita ZJ37, Gigaspora decipiens ZJ38, Scutellospora gilmori ZJ39,
Acaulospora spp., and Glomus spp., increased not only the shoot biomass but also
the uptake of Cu, Zn, Pb, and Cd into the shoots of Elsholtzia splendens Nakai ex
F. Maekawa. Hashem et al. (2016) reported that AMF inoculation mitigated the Cd
stress tolerance of Cassia italica Mill by reducing lipid peroxidation and enhancing
the antioxidant activity. Trigonella foenum graecum plants accumulated high
concentrations of Cd in their root systems from AMF inoculation. Furthermore,
AMF colonization diminished the negative effects of Cd on plant development by
increasing antioxidant enzyme activity, soluble protein content, and decreasing
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malondialdehyde (MDA) content (Abdelhameed and Metwally 2019). Thus, AMF
presents a viable strategy to remediate and reclaim sites contaminated with HMs and
radionuclides.

5.9 Nanoparticles (NPs) Facilitated Phytoremediation

The use of nanotechnology in conjunction with phytoremediation is progressing
rapidly. A nanoparticle’s size typically falls between 1 and 100 nanometers. The
ability of nanoparticles (NPs) to penetrate within plants and translocate from roots to
other areas of the plants is largely determined by their size. Owing to their small size
and large surface area, NPs can penetrate the contaminant zone where other particles
are unable to, enabling NPs to have a wider range of applications. NPs cause
physiological and morphological changes in plants and the plants’ response strongly
depend on the NPs type, dose, and speciation as well as on the plant species
involved. NPs raise the pH of the soil and adsorb metal, reducing its mobility and
bioavailability. NPs also boost the plant defense system by regulating the metal
transport genes, promoting the synthesis of protective agents, and scavenging
reactive oxygen species (ROS) (Zhou et al. 2020; Prasad et al. 2017).

Singh and Lee (2016) observed that an application of 300 mg/kg of nano-titanium
dioxide (TiO2) particles significantly enhanced the Cd uptake (507.6 μg/g) by
soybean plants (Glycine max) from contaminated soil. In another study, the applica-
tion of 5 g/kg nano-hydroxyapatite (NHAP) to Pb contaminated soils significantly
increased the ryegrass biomass (Jin et al. 2016). Souri et al. (2017) reported a
significant beneficial effect of salicylic acid nanoparticles (SANPs) on the growth
and phytoremediation efficiency of Isatis cappadocica against As toxicity. The
maximum As accumulation in the shoots and roots reached 705 mg/kg and
1188 mg/kg, respectively. Gong et al. (2017) studied the effect of 100, 500, and
1000 mg/kg starch stabilized nZVI (S-nZVI) particles on the Cd accumulation in
Boehmeria nivea (L.) Gaudich (ramie). The addition of S-nZVI particles increased
the Cd accumulation in the roots, stems, and leaves by 16–50%, 29–52%, and
31–73%, respectively. Huang et al. (2018) observed maximum accumulation of Pb
(1175.40 μg/pot) in ryegrass (Lolium perenne) with the treatment of 100 mg/kg
nZVI. However, decreased Pb accumulation was reported in high concentrations of
nZVI (1000 and 2000 mg/kg). In another study, thidiazuron (TDZ) growth regulator
and magnesium oxide (MgO) nanoparticles increased plant growth, phenolic and
flavonoid contents, free radical scavenging activity, and Pb phytoaccumulation by
radish (Raphanus sativus L.) (Hussain et al. 2019).

5.10 Conclusion

Phytoremediation is a cost-effective plant-based approach for the reclamation of HM
and radionuclide polluted sites that has a high level of public acceptance. Plants can
also be genetically modified to achieve desirable traits such as rapid growth, high
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biomass output, high metal tolerance and accumulation, and strong adaptation to a
variety of climatic and geological settings. The prospect of using transgenic plants to
clean up contaminated sites has been thoroughly investigated and many plant species
harboring transgenes of various origins and presumptive functions have been sur-
veyed. Furthermore, PGRs, plant-associated microorganisms, AMF, and NPs also
boost phytoremediation efficiency.
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