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Abstract

Several hundred plant species are documented as metal hyperaccumulators, and a
majority of them are restricted to metalliferous soils and are known as obligate
hyperaccumulators. However, some other plant species are widely spread in
metalliferous and non-metalliferous soils, and hyperaccumulate metals when
occurring in metalliferous habitats. These plant species are listed as facultative
hyperaccumulators. This phenomenon of metal hyperaccumulation has profound
implications in the field of phytoremediation.

Metal hyperaccumulator plants have developed a number of regulatory
mechanisms, including heavy metal absorption, transportation, chelation, and
detoxification, for their survival in the metal-contaminated environment. Several
metalloproteins or metallochaperone-like proteins containing conserved heavy
metal-associated (HMA) domains are involved in metal binding and transport.
P1B-metal transporting ATPases are of particular interest for their role in metal
transport at the cellular and subcellular levels in accumulator plants. The genomic
data of accumulator plants in the Brassicaceae have shown many upregulated and
downregulated genes in accumulator plants when encountering heavy metal
stress. Nucleotide and protein sequences from different websites such as http://
www.ncbi.nih.gov, http://www.tigr.org, http://www.brassica.info, etc. that
encode heavy metal ATPases and transporter protein homologs were collected.
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The functional and evolutionary similarities in the genes and proteins induced by
heavy metals among different accumulator and non-accumulator species were
analyzed. In the present communication, we have overviewed these findings and
highlighted the role of transporter proteins in metal homeostasis in
hyperaccumulator plants.
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1.1 Introduction

Heavy metal pollution is a serious global challenge that needs urgent attention. The
high amount of heavy metals, especially toxic metals, reduces plant growth and
negatively affects the physiological and metabolic processes, including the inhibi-
tion in respiration and photosynthesis, which could lead to plant death (Garbisu and
Alkorta 2001; Schmidt 2003; Schwartz et al. 2003). In addition, metal contamination
in the soil has a negative impact on the soil microbial population, and it alters the
composition and structure of the soil (Giller et al. 1998; Kozdroj and van Elsas 2001;
Kurek and Bollag 2004). In the USA and China major problem of land contamina-
tion by heavy metals have been reported and represent a great challenge for agricul-
turist and environmentalists (McKeehan and Kan 2000; Liu et al. 2007). Small
industrial units are pouring their untreated effluents into surface drains that extend
through agricultural fields in India, Pakistan, and Bangladesh, causing significant
soil and water pollution (Lone et al. 2008). The plants absorb contaminants through
the root system and transport them up in the shoots. Heavy metals such as Cu, Zn,
Mn, Fe are essential micronutrients for plant growth but are potentially phytotoxic to
plants when found in high amounts in the soil. As Cd, Pb, Cr, Ni, and Hg have been
identified in polluted soils and water and most of these metal/metalloids are
non-essential to plant growth and toxic to the plant both at a cellular and subcellular
level (Memon et al. 2001). The toxicity of these metals alters or inhibits numerous
metabolic processes at the cellular level, such as inhibiting enzymes required for cell
functioning and disrupting the membrane integrity. The toxic amount of the metal
increases the production of reactive oxygen species (ROS) (Pagliano et al. 2006). It
induces oxidative stress, deteriorates membrane integrity, and damages the DNA
(Quartacci et al. 2001). However, some unique plant species can grow and flourish
on both the natural metalliferous soils and as well as on heavy metal polluted soils
because of anthropogenic activities.

The European Union launched a comprehensive heavy metal survey program to
estimate the heavy metal content of the topsoil of European Union Countries named
LUCAST Top Soil Survey of the European Union (Tóth et al. 2013). This survey has
opened up new possibilities to get detailed information on the soil cover in Europe,
including the heavy metal content data of these soils (Tóth et al. 2016). This survey
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is useful to identify the potential heavy metal-contaminated sites and will allow the
environmentalists to monitor, control, and clean these contaminated sites for reuse.

The European research study called “Progress in the management of
Contaminated Sites in Europe” reported about 2.5 million potentially contaminated
sites, of which about 14% (340,000 sites) are estimated to be contaminated (Van
Liedekerke et al. 2014). Among EU countries, Belgium, Finland, and Lithuania
reported having the highest number of contaminated sites. The major sources of
contamination that have the highest impact on soil and water pollution across Europe
are shown in Fig. 1.1 (Van Liedekerke et al. 2014). The key contributing factors for
soil and water pollution seem to be waste disposal and treatment and industrial and
commercial activities (Fig. 1.1).

The most common contaminant in soils and groundwater across Europe is shown
in Fig. 1.2. It is noticed that heavy metals are the major contaminants present in
water and soils in Europe.

The estimated cost of managing contaminated areas in Europe is around €6.5 bil-
lion per year. It corresponds to an average annual national expenditure on managing
contaminated sites in on average about €10 per capita (Van Liedekerke et al. 2014).
Because of the high cost of the conventional management techniques, there is an
urgent need to find out cheaper and more efficient remediation technologies that can
be successfully applied to remediate polluted soil and water across Europe and the
rest of the world. One of the most efficient biological approaches to contaminated
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Fig. 1.1 Key sources of contamination reported in 2011 (Van Liedekerke et al. 2014)
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soil and water remediation is phytoremediation. It is considered a new and promising
technology for the reclamation of polluted sites and is less costly than other
conventional methods like physicochemical approaches, etc. (Garbisu and Alkorta
2001; McGrath et al. 2001; Raskin et al. 1997).

1.2 Advancing Phytoremediation Potential to Clean
up the Environmental Pollution

Phytoremediation is a biological process where plants extract, remove, stabilize, or
degrade the pollutants from the soil and waters (Salt et al. 1998). Some specific
plants can extract, immobilize or metabolize and accumulate organic and inorganic
contaminants and remediate the polluted areas for reuse for either agriculture or
social (recreational parks, gardens, etc.) purposes. It is considered economical and
environmentally friendly biotechnology where plants and microorganisms are used
to remove contaminants from polluted soils and industrial waste.

Currently, several physicochemical approaches are being used to clean up
contaminated soils. However, physicochemical approaches are generally costly,
used on a small scale because they have toxic effects when used on a large scale.
Therefore, phytoremediation as a safe biological approach represents a perspective
alternative and efficient solution for sustainable environmental cleanup (Salt et al.
1998; Peer et al. 2005; Golubev et al. 2011). Primarily, phytoremediation technology
aims to remove or degrade or immobilize environmental pollutants, especially
anthropogenic origin, to restore the contaminated sites for reuse in agriculture,
forestry, and other public and private applications. Six different phytoremediation
methods are briefly listed here; all are commonly used in the phytoremediation of
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Fig. 1.2 The most frequently occurring contaminants in soil and groundwater are: BTEX—
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metals and other organic contaminants from soil and water. They include
phytoextraction, rhizofiltration, phytostabilization, phytovolatilization, and
phytodegradation (Salt et al. 1998; Peer et al. 2005; Thakare et al. 2021; Sarma
et al. 2021).

Phytoextraction technology is generally focused on the use of plants to extract
and remove metals from soil and water and has been extensively developed by
several academic and industrial groups in several countries. The major criterion of
this technology is to extract and accumulate metals from the polluted sites and
accumulate them in the aerial part of the plant, which can be removed to dispose
of or burnt to recover metals (Chaney et al. 2018). We will be mainly discussing this
technology in our review paper. Recently Chaney’s group has introduced a new
term, “agromining,” which is possibly derived from this technology and
encapsulates the entire series of processes involved in producing metals for com-
mercial or industrial use (van der Ent et al. 2015; Chaney et al. 2018). Rhizofiltration
uses plant roots or rhizomes for extracting metals from wastewaters.
Phytostabilization is a technique that uses plant roots to absorb contaminants from
the soil and make them harmless by preventing them from leaching. In
Phytovolatilization, plants take up the elements like Se, As, and Hg and translocate
and volatilize pollutants from their foliage. Phytodegradation technology uses plants
and related microorganisms to degrade and remove organic contaminants from the
soil and water (Salt et al. 1998; Garbisu and Alkorta 2001; Peer et al. 2005).

Phytoremediation offers many advantages over the other conventional physical
and chemical methods like precipitation with lime, ion exchange, and precipitation
with bio-sulfide, biosorption, etc., which are costly and difficult to handle at a large
scale (Khalid et al. 2017). Phytoremediation efforts are mostly focused on using
plants in combination with root rhizosphere microorganisms to eliminate toxic heavy
metals from soils and water and speeding up the degradation of organic and
inorganic contaminants (Silver and Phung 2005; Gerhardt et al. 2017; Sonowal et
al. 2022). The advantages that phytoremediation offers are the low cost, minimiza-
tion of the chemical and biological volume to be disposed of, high efficiency in
detoxifying very dilute effluents, and the reuse of the collected heavy metals from
contaminated areas. There are several factors that could be considered in developing
effective and successful phytoremediation technology. One of the most important
factors is identifying or developing (through molecular breeding) an ideal plant/or
plant species for effective phytoextraction of toxic metals from the polluted soils or
the environment (Suman et al. 2018). Other factors include the use of modern
agronomical practices, optimizing crop and soil management practices, and devel-
oping cutting edge-technologies for extracting metals efficiently from biomass
(Zhuang et al. 2007; Kidd et al. 2015). To develop a suitable plant for
phytoextraction following parameters should be considered: rapid metal entry into
root tissues needs to be accompanied by efficient metal transport into the shoots.
Metal uptake efficiency primarily depends on the bioavailability of the metal in soil
(Lu et al. 2018). Bioavailability of heavy metals is the primary factor for effective
phytoextraction and describes the degree of availability of the pollutants which plant
can take from the soil and sediment. However, metal bioavailability is a complex
process and is dependent on many other factors related to the soil structure and
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chemical composition (McGrath and Zhao 2003). Rhizospheric microbes and root
exudates such as siderophores and organic acids can alter the bioavailability of
heavy metals in the soil (Thijs et al. 2017). Several elements in the soil and plant
roots can mobilize the metals from the soil and enhance the metal uptake through the
plant roots. For instance, initial metal uptake can be achieved by mobilizing the
metal bound to soil particles through the secretion of organic exudates like mugenic
and aveic acids from roots which cause the acidification of the soil and the chelation
of metals (Muszyńska et al. 2015). After uptake, the metal is translocated from roots
to shoots through xylem tissues. To enter the metal in xylem tissues, it must cross the
endodermis through the transporters or channels in the membrane. Once the metal is
loaded into the xylem (possibly through metal ATPases and other transporters), it is
transported into the leaves and then can be stored in different cells, depending on the
chemical form of the metal, since it can be converted into less toxic forms through
different chemical mechanisms (conversion or complexation) (Peer et al. 2005).

There are many advantages in using phytoremediation technology for removing
contaminants from the environment compared to traditional technologies. First of
all, it is cheap and cost-effective, around 50% to 90% cheaper than other conven-
tional chemical or engineering options (Salt et al. 1998; Peer et al. 2005). Secondly,
it is easy to dispose of the plants, and it will cause limited disturbance to the
landscape (Batty and Dolan 2013). The metals can be extracted easily from biomass
to prevent the resulting plant material as hazardous waste. There are some
disadvantages of using this technology; for example, it takes a longer time to
remediate the soil for reuse. This can be addressed using plant species with a short
growth cycle and high biomass (Pollard 2016; Suman et al. 2018).

1.3 Use of Hyperaccumulator Plants for Phytoremediation
of Metals from the Polluted Soils

Plants can degrade organic and inorganic contaminants, mainly with the help of root
rhizosphere microorganisms (Lone et al. 2008). The metal hyperaccumulator plants
grow on metalliferous soils and accumulate extraordinarily high amounts of heavy
metals in the aboveground parts, far above the levels found in most plant species,
without suffering phytotoxic effects (van der Ent et al. 2013). Hyperaccumulators
have three essential characteristics which are lacking in non-hyperaccumulator
species; an increase in heavy metal uptake rate, high root-to-shoot translocation,
and a greater ability to detoxify and sequester heavy metals in shoots. On the
molecular level hyperaccumulator plants have different gene expression and regula-
tion patterns than non-accumulator plants (Goolsby and Mason 2016). The
hyperaccumulator plants efficiently absorb and translocate metals from the roots to
the shoots and sequester them in the cell wall and vacuole (Memon and Schroder
2009; Memon 2016). Accumulator plants constitutively overexpress the genes
encoding membrane transporter proteins, such as ZIPs, HMAs, MATE, YSL, and
MTPs for metal transport in the cell (Rascio and Navari-Izzo 2011; Memon and
Schroder 2009; Memon 2016). Hyperaccumulator plant species are an important
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economic source for removing the contaminants from the soil, and the metals can be
harvested from the growing plants for marketing (Chaney et al. 2018).

Hyperaccumulator plants actively absorb and take up large amounts of one or
more heavy metals from the soil and efficiently translocate to the shoot and
accumulated in the aboveground parts of the plant, especially with the leaves, at
concentrations 100–1000 fold higher than those found in non-hyperaccumulator
species without showing any toxicity symptoms (Reeves and Brooks 1983;
Bhargava et al. 2012). Although a distinct feature, hyperaccumulation also relies
on hyper tolerance, a distinct feature of the hyperaccumulator plants essential for
these plants to avoid heavy metal toxicity. Goolsby and Mason (2015) have
highlighted several key issues related to defining the hyperaccumulation trait and
proposed a more objective definition of hyper accumulation than the definition
previously proposed by van der Ent et al. (2013). This redefined definition reflects
both the genetic and physiological mechanisms underlying hyperaccumulation and
the evolutionary aspects of this phenomenon. They suggested that
hyperaccumulation and tolerance should be considered two distinct continuous traits
mediated by genetically and physiologically distinct mechanisms. The plant
phenotypes span a wide range of combinations of both traits producing four general
categories: tolerant accumulator (traditional hyperaccumulators; e.g., Astragalus
bisculcatus for Se), non-tolerant accumulator (excluded from the naturalistic defini-
tion of hyperaccumulation; e.g., Thlaspi goesingense for Zn), non-tolerant
non-accumulator, and tolerant non-accumulator (Goolsby and Mason 2015). The
two last categories are typically collapsed together as non-hyperaccumulators (for
example, Arabidopsis thaliana for Cd and Silene vulgaris for Cu).

The heavy metal accumulation ability of the plant varies significantly and is
dependent on the type of the species and cultivars within the species. The different
mechanisms of ion uptake are operating in each species, based on their genetic,
morphological, physiological, and anatomical characteristics. To date, there are
more than 700 plant species known worldwide to accumulate metals in large
amounts, and these accumulator species are of interest for their potential use in the
phytoremediation of metal-contaminated soils (Reeves et al. 2018). For example,
Noccaea caerulescens (Thlaspi) and Arabidopsis hallari are characterized as
hyperaccumulator plants of Zn/Cd. Several crops Brasssica spp. such as B. nigra
L., B. juncea L. Czern, B. napus L., and B. rapa L. exhibit enhanced accumulation of
Cu, Zn, and Cd (Ebbs et al. 1997). A list of hyperaccumulator plants is given in
Table 1.1. In this table, several plant species belong to different families accumulate
metal both in roots and/or shoots. Hyperaccumulator plants have got a considerable
interest in exploiting their accumulation traits for practical use, in particular, to
develop cheap and clean technologies for phytoremediation of heavy metal from
contaminated soils or for phytomining valuable metals from mineralized sites
(Chaney et al. 2018).

However, there are many factors that could be considered for efficient
phytoremediation and also for beneficial agromining, such as plant tolerance to
pollutants, agronomic characteristics of the plant species, climatic conditions (rain-
fall, temperature), soil physicochemical properties, and the recent technologies
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Table 1.1 A list of hyperaccumulator plants. Metal shoot/root ratio and the plant tissues where
metal is highly accumulated is given (Memon, Kusur, and Memon unpublished data)

Plant name Metal
TF (Cs/
Cr) Tissue References

Arabidopsis halleri Cd 0.23 Root Bert et al. (2003)

Arabis paniculata 1.45 Root, shoot Tang et al. (2009)

Arabis gemmifera 6.13 Shoot Kubota and Takenaka
(2003)

Thlaspi caerulescens – Shoot Baker et al. (1994)

T. goesingense 0.5 Root Lombi et al. (2000)

N. praecox (T. praecox) – Shoot
(5960 ppm)

Vogel-Mikuš et al.
(2008)

Sedum alfredii 1.05 Root,shoot Xiong et al. (2004)

Tamarix smyrnensis 1.36 Root,shoot Manousaki et al. (2008)

Rorippa globosa 2.21 Shoot Sun et al. (2011)

Arabis gemmifera Zn 6.48 Shoot Kubota and Takenaka
(2003)

A. paniculata 1.98 Shoot Tang et al. (2009)

T. goesingense – Shoot Baker et al. (1994)

Thlaspi caerulescens – Shoot Reeves and Brooks
(1983)

Arabidopsis halleri 0.16 Root Küpper et al. (2000)

Sedum alfredii 0.43 Root Sun et al. (2005)

Salix viminalis – Shoot Schmidt (2003)

Brassica napus 4.02 Shoot Brunetti et al. (2011)

Aeolanthus biformifolius Cu – Shoot
(13,700 ppm)

Brooks et al. (1978)

Crassula helmsii – Shoot
(9200 ppm)

Küpper et al. (2009)

Elsholtzia splendens 0.033 Root Weng et al. (2005)

Sorghum sudanense L. 3.41 Shoot Wei et al. (2008)

Chrysanthemum
coronarium L.

7.58 Shoot Wei et al. (2008)

Brassica napus 2.13 Shoot Brunetti et al. (2011)

Spartina argentinensis Cr 5.1 Shoot Redondo-Gómez (2013)

Brassica juncea 0.56 Root Seth et al. (2012)

Brassica napus 5.04 Shoot Brunetti et al. (2011)

Elodea canadensis 0.05 Root Ranieri et al. (2013)

Arabis gemmifera 0.15 Root Kubota and Takenaka
(2003)

Hemidesmus indicus Pb 0.66 Root Sekhar et al. (2005)

Brassica oleracea 0.54 Root Zhu et al. (2004)

B. campestris 0.62 Root

Arabis paniculata 1.96 Shoot Zeng et al. (2009)

Brassica juncea 0.2 Root Seth et al. (2012)

T. caerulescens – Shoot
(0.66 ppm)

Baker et al. (1994)

(continued)
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available for the recovery of metals from the harvested plant biomass. The naturally
occurring heavy metal accumulator plants are good candidates for phytoextraction
(Table 1.1) because they take metal from the soil in two or three orders of magnitude
than non-accumulator plants growing on natural uncontaminated soils. Table 1.1
shows the TF (translocation factor) value of metals in plants. Several accumulator
plant species had translocation factor (TF) of metals more than one, suggesting that
plants remove the metals from the soil by phytoextraction and translocate them to
shoots (Brunetti et al. 2011; Kubota and Takenaka 2003). On the contrary,
non-accumulator plants have TF less than one and cannot accumulate metal in
shoots.

It appears that both chemical and biological approaches are still not wholly
efficient and need more efforts for their effective use in the future (Kidd et al.
2015). Some plants may accumulate one metal, whereas others can accumulate
two or more metals at a time, which could be beneficial for phytoremediation and
phytomining (see Table 1.1) (Chaney et al. 2007).

Although the annual biomass yield is an essential trait for phytoremediation, the
ability to hyperaccumulates and hypertolerate metals is of greater importance than
high biomass (Chaney et al. 1997). Hyperaccumulator plants absorb and transport
many valuable metals from the contaminated soil and accumulate them in their
shoots. These marketable metals could be recovered from the plant biomass for use
in the metal industries (Brooks et al. 1998; Chaney et al. 2018). Commercial
technologies have been developed for Ni phytomining using Alyssum Ni
hyperaccumulator species (Broadhurst et al. 2004). However, other high price metals
(Au, Tl, Co, and U) can be extracted using hyperaccumulator plants from the soil or
mine tailing containing concentrations of the metals at a level uneconomic for
conventional extraction techniques.

1.3.1 Selection of Plant Species for Phytoextraction

As mentioned above, one of the requirements for plants to be used in
phytoremediation of soil is to take up the heavy metals from the contaminated
soils efficiently. In other words, if a plant species accumulate and concentrate metals
in their shoots at levels greater than those in the soil is an excellent candidate for
remediation of the polluted soils. The plants that grow in their natural habitats and

Table 1.1 (continued)

Plant name Metal
TF (Cs/
Cr) Tissue References

Sedum alfredii 0.003 Root Sun et al. (2005)

Brassica napus 5.04 Shoot Brunetti et al. (2011)

Sesbania drummondii 1.1 Root, shoot Ruley et al. (2006)

TF, translocation factor¼ (Cs, concentration of metal in shoots/ Cr, concentration of metal in roots)
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accumulate 100 μg/g for Cd, Se, and Tl; 300 μg/g for Co, Cu, and Cr; 1000 μg/g for
Ni, Pb, and As; 3000 μg/g for Zn; and 10,000 μg/g for Mn in their dried foliage are
proposed to be hyperaccumulators (Rascio and Navari-Izzo 2011; van der Ent et al.
2013). To find out the hyperaccumulator plants and their accumulation capacity and
specificity to the metal accumulation, a global database (www.hyperaccumulators.
org) was created in 2015 and is administered and maintained by the Center for Mined
Land Rehabilitation, University of Queensland, Brisbane, Australia. The data about
all known metal and metalloid accumulator plants are deposited, continuously
updated, and is free to use (Reeves et al. 2017). This database currently contains
more than 700 different metal hyperaccumulator species, and most of the plant
species are Ni accumulators (523 spp.). Some plant species accumulate Cu (53 spe-
cies.), Co (42 species), Mn (42 species), Se (41 species), Zn (20 species), Pb
(8 species), Cd (7 species), and As (5 species). A very few plant species are
accumulators of rare elements (Reeves et al. 2017). The most strongly represented
hyperaccumulator plant species are in the Brassicaceae (83 species) and
Phyllanthaceae (59 species) families.

1.3.2 Hyperaccumulator Plant Species in Brassicaceae

Brassicaceae comprises approximately 338 genera and 3700 species. In the
Brassicaceae family, the Brassica genus contains about 100 species, including
essential oilseed crops (for example, Brassica napus, B. juncea) and many common
vegetable plants (Ozturk et al. 2012; Warwick and Black 1991). Among Brassica,
B. rapa has the smallest genome, at ca. 529 Mb, and B. napus have the largest one, at
ca 1132 Mb (Lysak et al. 2005; Nagaharu 1935). The genome of both species is
sequenced, and the data is available in the public domain http://www.
brassicagenome.net/databases.php; https://www.ncbi.nlm.nih.gov/genome/?
term¼brassica%20napus (Memon 2016; Liu et al. 2016). Around 80–90% homol-
ogy between the exons of putative orthologous genes in Arabidopsis and Brassica is
reported (Ozturk et al. 2012). Due to that, the annotated Arabidopsis genome
sequence can be exploited for the comparative analysis of Arabidopsis and Brassica
genomes. The plant species in Brassica (e.g., B. juncea; B. napus; B. nigra) produce
high biomass and accumulate and tolerate high metals (including Cd, Cu, Ni, Pb, U,
Zn) in their tissues (Anjum et al. 2012a, b; Kumar et al. 1995). B. juncea is
considered a suitable candidate for phytoremediation of multiple heavy metals
from the soil. It is highly metal tolerant and comparatively accumulates more metals
in its shoots than other Brassica species Zn, Cd, and Pb. For example, this species
accumulates a high amount of Cd in their shoots (1450 μg Cd/g dry wt), three times
more than reported in B. napus (555 μg/g dry wt). In addition, it absorbs a huge
amount of other metals such as Pb (28% reduction) and Se (reduced between 13 and
48%) (Szczygłowska et al. 2014). It also accumulates more Zn from the soil than
Noccaea caerulescens, a known hyperaccumulator of zinc. It appears that B. juncea
produces ten times more biomass than N. caerulescens (Anjum et al. 2012a, b;
Szczygłowska et al. 2014). B .nigra Diyarbakir ecotype (Southern Anatolia), a
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diploid, is known as Cu accumulator (Memon and Zahirovic 2014) and accumulated
around 20,000 μg g�1 DW Cu in their shoots (Ozturk et al. 2012; Cevher-Keskin
et al. 2019). Because of the high Cu accumulation capacity of B. nigra, this plant
could become a suitable candidate for phytoremediation of Cu-polluted soils
(Cevher-Keskin et al. 2019; Dalyan et al. 2017; Kumar et al. 2012; Memon and
Zahirovic 2014).

1.4 Subcellular Localization of Metals in Hyperaccumulator
Plants

To understand the mechanism of metal hyperaccumulator, the detailed physiological
knowledge of metal absorption by roots, translocation to the shoots, and the subcel-
lular localization of the metals in the leaves are of great importance (Memon and
Schroder 2009; Tangahu et al. 2011). Microarray analysis with Cu accumulator
B. nigra Diyarbakar ecotype showed several hundredfold increases in metal trans-
port ATPases and other genes related to metal transport and accumulation in plants
treated with 500 μMCu (Memon and Zahirovic 2014). Several other genes related to
signal transduction, metabolism, and transport facilitation were highly expressed
with high Cu. For example, the genes involved in the glutathione pathway (γ-ECS,
PC, etc.) were also highly expressed in root and shoot tissues (Memon and Zahirovic
2014; Merakli and Memon, unpublished data). Because of its high growth both at
low and high Cu, this plant was classified as a facultative metallophyte (Memon
2016).

It is interesting to know the mechanisms responsible for making these metals in
an innocuous form in the plant cell. One of the primary mechanisms for detoxifica-
tion in the plant cell is storing and depositing the metals in the vacuolar compartment
(Memon et al. 2001; Reeves et al. 2018; Tangahu et al. 2011). Different organic acid
chelators such as malate, citrate, histidine, and nicotinamide play a role in
translocating metal cations through the xylem (Salt et al. 1995; Stephan et al.
1996; von Wirén et al. 1999). To maintain the metal homeostasis in the cell,
hyperaccumulator plants efficiently absorb metal from the soil and transport it to
shoots and sequestered them in the subcellular compartments (e.g., cell wall, vacu-
ole, etc.) or secreted in the trichomes (Hanikenne and Nouet 2011; Memon and
Schroder 2009; Memon and Yatazawa 1982; Ovečka and Takáč 2014). Previously,
we carried out an electroprobe X-ray microprobe analysis to understand the subcel-
lular localization of Mn in the leaves of Mn accumulator plant Acanthopanas
sciadophylloides and tea. The micro-distribution pattern of Mn showed that a large
portion of Mn was located in the cell wall and vacuolar compartment of epidermal
cells (Fig. 1.3), and it was almost absent from the cytoplasm (Memon et al. 1981;
Memon and Yatazawa 1984). One of the detoxification mechanisms proposed was
Mn2+ complex with malate in the cytoplasm and then transported to the vacuole
where it is dissociated from malate and forms a stable complex with oxalate. Under
this condition, malate functions as a “transport vehicle” through the cytoplasm and
oxalate as the “terminal acceptor” in the vacuole (Memon and Schroder 2009;
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Memon and Yatazawa 1984). There are several other mechanisms involved in metal
detoxification, e.g., production of superoxide dismutase, peroxidase, catalase, gluta-
thione reductase, and nonenzymatic antioxidants (e.g., flavonoids, reduced glutathi-
one, ascorbic acid), which play a significant role in neutralizing the free radicals
caused by ROS and minimize the plant cell damage (Küpper et al. 1999; van de
Mortel et al. 2006; Li et al. 2015).

Metal accumulation and compartmentalization patterns differ depending on plant
species and element type. According to Küpper et al. (2000), A. hallari accumulates
more Zn and Cd in the mesophyll cells than in the epidermis, but N. caerulescens
accumulates six times more Zn and Cd in epidermis cells than in mesophyll cells.
B. juncea (a metal tolerant and accumulator plant), on the other hand, accumulates
40 times more Cd in trichomes compared to leaves (Dalyan et al. 2017; Küpper et al.
1999). Alyssum lesbiacum also accumulates a significant amount of Zn and Ni in leaf
trichomes (Reeves et al. 2018).

Fig. 1.3 Secondary electron
images line scan profile of a
leaf section of a tea plant with
Mn (Ka radiation) peaks. It
shows the localization of Mn
at the subcellular level in the
epidermis. E epidermis,
P palisade parenchyma cells
(Memon et al. 1981)
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Various alternative detoxifying and accumulation mechanisms have been pro-
posed (Hanikenne and Nouet 2011; Isaure et al. 2015; Memon 2016; Rascio and
Navari-Izzo 2011) in which metals can be bound and sequestered by phytochelatins,
metallothioneins, metalloenzymes, and metal-activated enzymes. Recent
advancements in the next-generation sequencing technologies have opened up new
possibilities to understand the metal detoxification mechanisms in plants at the
cellular and molecular level (Verbruggen et al. 2013).

1.5 Metal Transporters and Their Function in the Plant Cell

Several genes and proteins related to metal absorption and transport have been
identified and characterized in several accumulator plants. These metal transporters
are subdivided into six main groups, including natural resistance macrophage protein
(NRAMP), ZRT-like protein (ZIP), cation diffusion facilitator (CDF), Yellow-
stripe-like (YSL), and heavy metal P1B-type ATPases (HMAs) (Guerinot 2000;
Memon 2016; Merlot et al. 2018). Table 1.2 shows the genomic structure and protein
length of different metal transporters, including metal ATPases, NRAMPs, and ZIP
proteins identified from different plant species. To maintain the metal homeostasis in
the cell, a metal accumulator plant can activate several transporters, which can
function either in excluding metal at the root or sequestering them at the subcellular
level in the vacuole, chloroplast, and some other cellular compartments. Analysis of
the A. thaliana genome has shown the genes of several metal transporter families,
including 15 members of zinc and iron transporters (ZIP), eight members of Cation
Diffusion Facilitator (CDF), six members of copper transporters (CTR), six
members of NRAMP homologous, and eight members of Cu, Zn/Cd transporting
ATPases (Mäser et al. 2001; Merlot et al. 2018) (http://www.cbs.umn.edu/
arabidopsis/). The role of some other transporter families, such as vacuolar cation
proton exchanger (CAX) and ABC transporters in metal homeostasis, have been
elucidated (Colangelo and Guerinot 2006; Hall and Williams 2003; Memon 2016;
Memon and Schroder 2009; Sarma et al. 2018). Li et al. have identified 55 AtHMPs
and 46 OsHMPs in dicot Arabidopsis and monocot rice, respectively (Li et al. 2020).
These proteins are named metalloproteins or metallochaperone-like proteins
containing heavy metal-associated (HMA) domains comprising a conserved HMA
domain with around 30 amino acid residues. Several other proteins that transport or
detoxify heavy metals have this conserved domain. Two cysteine residues in this
domain bind with copper, zinc, cadmium, cobalt, and other heavy metals (Li et al.
2020). These HMA domain-containing proteins fall into four groups; HPPs (heavy
metal-associated plant proteins), HIPPs (heavy metal-associated isoprenylated plant
proteins), ATX1-like copper transport proteins, and heavy metal ATPases (HMAs)
(Memon 2016).

Among the genes of transporter families described above, P1B-type ATPases, an
ion pump, which utilizes the energy resulting from ATP hydrolysis to carry mem-
brane transport of multiple metal ions in the subcellular level, is of particular
importance. These ATPases maintain the homeostasis of the heavy metals in the
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Table 1.2 Genomic structure, cDNA, and protein length of different transporters of different plant
species (Memon, Kusur, and Memon unpublished data)

Plant name
Gene
name

Genomic
DNA base
pairs (bp)a

cDNA
base
pairs (bp) Exon Intron

Protein length
amino acids
(aa)

A. thaliana HMA1* 4776 2460 13 12 819

M. trunculata 9415 2490 829

B. napus 4359 2331 776

G. max 14,420 2454 817

S. tuberosum 9994 2454 817

A. lyrata 3448 2421 11 10 806

B. rapa 4207 2457 13 12 818

Z. mays HMA2 6917 3726 10 9 1241

O. sativa 7771 3204 1067

B. napus 8845 2661 15 14 886

B. rapa 6062 2715 9 8 904

O. lucimarinus 2328 1 1 776

G. max 8194 1683 10 9 560

A. lyrata HMA3 3369 2274 10 9 757

C. sativus 6642 2667 888

Z. mays 3484 2959 6 5 893

B. oleracea 4012 2292 8 7 763

B. rapa 8243 3864 10 9 1287

B. napus 3396 2291 9 8 763

G. max HMA4 12,008 2865 8 7 954

A. lyrata 7886 3828 10 9 1275

S. oleracea 9964 2901 966

B. napus 8158 3585 1194

B. oleracea 7550 3588 1195

B. rapa 7723 3573 1190

M. trunculata 9737 2991 5 4 996

A. thaliana HMA5 3657 2988 6 5 995

B. napus 3604 2922 4 3 973

B. oleracea 5077 2922 973

B. rapa 3542 2934 977

A. thaliana HMA6 7322

C. sativa 7368 2856 19 18 951

A. thaliana HMA7 7773 10 9

C. sativa 5401 3021 1006

N. tabacum 4525 2667 3 9 888

G. max HMA8 8496 2711 17 16 903

C. sativa 5735 2655 884

A. lyrata NRAMP1 3274 1581 12 11 526

B. napus 5770 1599 13 12 532

B. oleracea 3319 1599 11 10 532

(continued)
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Table 1.2 (continued)

Plant name
Gene
name

Genomic
DNA base
pairs (bp)a

cDNA
base
pairs (bp) Exon Intron

Protein length
amino acids
(aa)

B. rapa 3344 1599 532

A. thaliana NRAMP2 2703 1593 4 3 530

A. lyrata 2708 1599 532

B. napus 1969 1077 5 4 358

B. rapa 2755 1599 532

A. thaliana NRAMP3 2630 1530 4 3 509

A. lyrata 2539 1524 507

B. napus 3735 1542 513

O. sativa 2367 1536 14 13 511

A. thaliana NRAMP4 2632 1539 3 2 512

B. napus 1741 1539 6 5 512

B. oleracea 2465 1536 3 2 511

B. rapa 2350 1539 512

A. thaliana NRAMP5 2321 1593 4 3 530

A. lyrata 2322 1590 529

B. napus 2590 1596 531

B. oleracea 2577 1596 531

A. thaliana NRAMP6 4441 1584 13 12 527

B. napus 3338 867 7 8 288

B. oleracea 3220 1561 13 12 520

B. rapa 7237 1512 503

A. thaliana ZIP1 1551 1068 2 1 355

G. max 3147 1065 3 2 354

A. thaliana ZIP2 1696 1062 2 1 353

O. sativa 4301 1101 3 2 366

N. attenuata 1251 996 331

A. thaliana ZIP3 2861 1020 3 2 339

O. sativa 259 1095 364

H. annaus ZIP4 2524 1254 5 4 417

G. hirsutum 2531 1256 4 3 422

O. sativa ZIP5 4301 1101 3 2 366

N. attenuata 3458 1032 343

A. lyrata ZIP6 1639 1008 2 1 335

M. trunculata 612 306 1 101

C. sativus 612 306 101

A. thaliana ZIP7 1613 1098 3 2 365

O. sativa 3353 1155 4 3 384

A. thaliana ZIP8 1728 5 4

O. sativa 3239 1173 3 2 390

A. lyrata ZIP9 2516 1170 4 3 389

Q. suber 1059 1 1 187

(continued)
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cell and are present in prokaryotic and eukaryotic cells, including bacteria, plants,
and mammals.

1.6 Function of Heavy Metal ATPases (HMAs) in Plants

There are three main pumps (ATPases) present in plant cells. The first Fo-F1 type
ATPase is present in chloroplast and mitochondrial membrane and is involved in
ATP synthesis. V-type ATPases are present in the tonoplast membrane and generate
the H+ gradient required for transport across the tonoplast membrane. The third one
P-type ATPases are present in the plasma membrane and other organelle membranes
and are involved in the active pumping of charged substrates across the cell
membranes and form a phosphorylated intermediate during the reaction cycle
(Palmgren and Nissen 2011). The P-type ATPases are classified into five major
families (P1-P5) and divided into several subgroups (Axelsen and Palmgren 2001).
Heavy metal ATPases (P1B ATPases) are a subclade of P1-ATPase and transport
heavy metals such as Cu, Zn, Cd, Pb, and Co and are the main pumps required in
metal detoxification and metal homeostasis in the cell (Østerberg and Palmgren
2018). P1B-ATPases contain six to eight transmembrane domains (TMs), an HP
locus, and a CPx/SPC motif (Williams and Mills 2005), required for metal binding
and transport. The majority of these ATPases possess conserved regions such as
DKTGT, GDGxNDxP, PxxK, and S/TGE in their sequence necessary for their
proper function (Williams and Mills 2005). Based on their substrate specificity,
these ATPases are subdivided into two groups, Cu/Ag (Cu+-ATPases) and Zn/Cd/
Co/Pb transporters (Zn2+-ATPases) (Axelsen and Palmgren 2001).

The plant genome contains many copies of P1B-ATPases, especially Arabidopsis
thaliana has eight, rice has nine, and soybean has 25 genes in their genome (Fang
et al. 2016; Williams and Mills 2005). Table 1.2 shows the genomic size and
structure, cDNA, and protein length of different metal ATPases identified in the
genome in various plant species. HMA2, HMA3, and HMA4 have high sequence
homology among them and transport Zn and Cd. HMA2 and HMA4 are the plasma
membrane transporters in pericycle cells and are involved in root-to-shoot transport

Table 1.2 (continued)

Plant name
Gene
name

Genomic
DNA base
pairs (bp)a

cDNA
base
pairs (bp) Exon Intron

Protein length
amino acids
(aa)

A. thaliana ZIP10 1804 1095 3 2 364

O. sativa 2621 1215 5 4 404

A. thaliana ZIP11 1051 981 2 1 326

H. annaus 2932 981 326

A. thaliana ZIP12 1758 1068 2 2 355

O. brachyantha 11,024 1776 20 19 591

HMA Heavy metal ATPase, NRAMP Natural resistance-associated macrophage protein, ZIP Zinc-
regulated, iron-regulated transporter-like proteins
aPartial sequences (bp) are given for some of the genomic DNAs
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of Zn/Cd. HMA3 is located in the tonoplast and has a detoxification function through
vacuolar sequestration of Zn/Cd (Hanikenne et al. 2008; Hussain et al. 2004; Liu
et al. 2017; Morel et al. 2009; Wong and Cobbett 2009). Table 1.2 shows that HMA4
protein has longer amino acid sequences than other metal transporters and has an
essential function in Zn/Cd hypertolerance and hyperaccumulation in accumulator
plants like Arabidopsis hallari and Noccaea caerulescens. Three copies of HMA4
have been identified in A. hallari and are highly conserved in coding sequences but
diverge in promoter sequences (Nouet et al. 2015). Their complementation experi-
ment with the A. thaliana, hma2hma4 mutant (severe Zn-deficiency phenotype)
showed that all three copies restored root-to-shoot translocation of Zn. Each copy
had a different impact on the metal homeostasis in the A. thaliana. This observation
indicates a functional difference among the three A. halleri HMA4 copies, possibly
due to the differences in expression levels rather than in expression profile (Nouet
et al. 2015).

The C-terminus of the HMA4, one of the well-known ATPase transporter located
in the plasma membrane, binds Zn, has considerably divergent amino acid motifs
between A. thaliana (non- accumulator) and A. hallari (accumulator). The di-Cys
motif in this region has a high affinity for Zn binding in accumulator plants (Lekeux
et al. 2018). Similarly, BjHMA4 transporter protein in B. juncea showed a repeat
region BjHMA4R in the C-terminus not far from the last transmembrane domain in
the cytosol (Wang et al. 2019). It binds Cd2+ and improves Cd tolerance and
accumulation in B. juncea. AtHMA1, a chloroplast membrane protein, transports
Cu and Zn into and out of the chloroplast, respectively (Zhao et al. 2018). SpHMA1
in S. plumbizincicola leaves a chloroplast Cd exporter and protects photosynthesis
by inhibiting the Cd accumulation in the chloroplast (Zhao et al. 2018). The RNA
interference of chloroplast SpHMA1 and CRISPR/Cas9-induced HMA1 mutant
lines significantly increased Cd accumulation in the chloroplasts than wild-type
Sedum plumbizincicola. AtHMA5 is localized in the plasma membrane and
contributes to the detoxification of excess Cu in roots by increasing Cu translocation
from roots to shoots (Kobayashi et al. 2008). On the contrary, AtHMA6 (PAA1) and
AtHMA8 (PAA2) are located in chloroplast envelope and thylakoids and transport
Cu into the chloroplast (Abdel-Ghany et al. 2005; Shikanai et al. 2003). 20 HMA
genes (GmHMA1 to GmHMA20) in soybean are phylogenetically divided into
6 clusters (Fang et al. 2016). Six GmHMAs (5, 19,13,16,14, and 18) were classified
as Zn2+ ATPases, while the remaining HMAs were identified as Cu+-ATPases (Fang
et al. 2016). 17 HMA genes in Populus trichocarpa were shown to be differentially
regulated by high metal stress (Li et al. 2015).

Genomic analysis of metal accumulator species A. hallari, N. caerulecence,
B. juncea, B. napus, and B. nigra have identified the specific role of several metal
transporters, including metal ATPases in metal accumulation and tolerances in plants
(see Table 1.2) (Cevher-Keskin et al. 2019; Dalyan et al. 2017; Memon 2016). HMA
genes are identified both in model plants like A. thaliana, rice and in other crop
plants like B. napus, B. rapa, B. juncea, Glycine max, and P. trichocarpa (see
Table 1.3). The role of HMA1 to HMA4 in Cu, Zn, and Cd transport in the model
plants has been extensively studied and well-characterized at the gene and protein
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level. Functional studies of these transporters in yeast have given helpful information
related to the function of these transporter proteins in the eukaryotic cells (Fang et al.
2016; Wang et al. 2019).

In the last decade, many plant transporter genes involved in metal uptake and
translocation are characterized. However, identification and functional analysis of
many other transporter genes are still awaiting identification. More studies on the
expression and function of these transporter genes at the cellular and subcellular
levels coordinated with the structural analysis of the transporter proteins will reveal
the fundamental role of these transporters in the detoxication mechanism in accumu-
lator plants. Two different approaches could be taken related to the expression of
transporter genes in the accumulator and non-accumulator plants. For accumulator
plants, the overexpression of metal uptake and translocation transporters would
increase the translocation of toxic metals to aerial parts, which would target
phytoremediation. For non-accumulator edible crop plants, the low uptake
transporters could be engineered or overexpressed to minimize the transport of
toxic cation in edible crops.

1.7 Conclusion

The recent developments in phytoremediation have been summarized, and the role
of obligate and facultative accumulator plant species in metal accumulation and
detoxification has been discussed. X-ray microprobe analyzer data with frozen leaf
tissues of accumulator plant shows the subcellular localization of metals in the cell,
especially their localization in the cell wall and storage vacuole, and keeps the toxic
amount of metal away cytoplasm. The recent genomic analysis of one diploid
Brassica rapa and another tetraploid (amphidiploid) Brassica napus have shown
the differential gene expression of metal transporters when encountering low and
high metal concentrations in the soil. Recent progress in the genetic and molecular
analysis of the metal transporters has elucidated the molecular mechanism of metal
absorption, accumulation, and detoxification in hyperaccumulator plants and their
role in phytoremediation. Phytoremediation is an environmentally friendly and green
technology that holds great potential for environmental cleanup. In the future, it will
become an established technology for removing hazardous pollutants from the
environment. It will guarantee a greener and cleaner planet for all of us in the
coming years.
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