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Bacterial Community Composition
Dynamics in Rice Rhizosphere: A
Metagenomic Approaches
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Abstract The rhizosphere area of plant root surface shows bountiful diversity of
microorganisms. Microbial community within rhizosphere inhabiting the rice field
ecosystem have been studied previously. It is not possible to isolate the whole
microbial genome by traditional culture dependent method. Metagenomic covers
entire genome of all microbial community irrespective of any habitat without in vitro
culturing. Present review has been aimed to summarize the past practices and recent
issues of metagenomic analysis of paddy field bacterial communities within rhizo-
sphere from different geographic locations. So, this chapter deals with the recent
tools, platform, pipelines and software of metagenomics used with other techniques
(e.g., 16S rRNA gene sequencing with V3-V4 hypervariable region,
Pyrosequencing, Metaproteomic, etc.) for the study of bacterial composition from
different regions such as rhizosphere, phyllosphere, bulk soil, wetland region of soil,
irrigated soil, flooded and non-flooded soil, high prevalence of salt soil and high
incidence of rice blast fungus contaminated soil. The findings from this review helps
to enhance the crop production, improve soil quality by more use of biofertilizers
and also helps in disease management with biocontrol agent.

Keywords Metagenomic · Pyrosequencing · Metaproteomic · Hypervariable
region · Biocontrol agent

6.1 Introduction

Rice is widely consumed staple food for 50% of population of world (up to three
billion people) especially in Asia and Africa. Interestingly, rice plants represent a
habitat for a varied microbial population that colonizes the rhizosphere, a restricted
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zone of the plant roots’ surface (Kowalchuk et al. 2010). The root growth of the
majority of plants in soil has altered the spatial structure (Angers and Caron 1998).
According to Curtis et al. (2002) a soil can have up to 4 � 106 different types of
microbial taxa, and 1 g of soil can have more than one million distinct microbial
genomes which ultimately shows an enormous microbial diversity remains within
the soil especially in rhizosphere, predicted by Gans (2005). Since, majority of
microorganisms cannot be cultured by culture dependent or conventional method,
is intrigued by unraveling soil microbial community structure as well as functional-
ity remains as an attractive challenge for enhancing the plant health and crop
production (Yang et al. 2019). About 20–50% of the plant photosynthate is
transported below the ground level and it is totally depending upon the different
plant species (Kuzyakov and Domanski 2000) and about 18% of plant photosynthate
is discharged into the soil environment on average (Jones et al. 2009). The favorable
impacts of the rhizosphere microbial population on rice plants, including the pro-
duction of plant growth-promoting bacteria (PGPR) have been thoroughly investi-
gated (Subhashini and Singh 2014; Majeed et al. 2015), phosphate solubilization
(Elias et al. 2016), nitrogen fixation process, mycorrhizal fungi, also acts as biocon-
trol agents for management of various plants diseases (Massart et al. 2015) with a
high level of stress tolerance (Tsurumaru et al. 2015).

Rice differs from most crops in that it is typically cultivated in flooded soil, which
results in the formation of oxic and anoxic zones within the rice rhizosphere area of
soil, which select for specific physiological groups of microbial community with
either aerobic, anaerobic, or facultative metabolism (Brune et al. 2000). The struc-
ture of the microbial population in the rhizosphere of the rice field environment has
previously been characterized. The majority of research has concentrated on isolat-
ing, identifying, and characterization of rice rhizospheric bacteria from various
locales and types (Vacheron et al. 2013). The bacteria in the rhizosphere had been
studied widely (Zhang et al. 2016; Prajakta et al. 2019; Yang et al. 2020a, b;
Maheshwari et al. 2021). They also influence the rhizosphere microbiota’s chemical
composition and offer crucial microbial growth substrates through rhizodeposition
(Lynch and Whipps 1990). The decomposition of organic matter in soil is also
largely attributed to the microbial population (Kuzyakov 2002; Yang et al. 2020a).
Recently developed technologists, provide relatively quick and prompt sequencing
of metagenomic DNA samples at very moderate cost in short time (Subhashini et al.
2017; Yang et al. 2020b), metagenomic DNA sequencing, however completely
sequenced whole genome sequencing, depends on the DNA extracted (Gautam et
al. 2019).

Without in vitro culturing, prior individual identification, or gene amplification, a
metagenomics study covers the entire genome of any microbial community
inhabiting any habitat such as soil and water (Abulencia et al. 2006; Kunin et al.
2008). Metagenomic analysis in terms of the functions that they drive and regulate,
analysis involves isolating DNA from an environmental sample, cloning the DNA
into a suitable vector, transforming the clones into a host bacterium, and screening
the resulting transformants (Zhang et al. 2019). Recent technological development
has gradually increased our knowledge about the global ecological distribution of
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microbiota across the space and time and have furnished evidence for the contribu-
tion to ecosystem function (Chu et al. 2020). The use of metagenome sequencing
techniques, such as Next Generation Sequencing technologies, has yielded enor-
mous amounts of data, resulting in remarkable developments. To obtain detailed
information on the diversity and ecology of microbial forms, the method involved
isolating metagenomics DNA directly from an environmental niche (e.g., soil and
water), fragmentation, generation of a sequence clone library, taxonomy and gene
family community profiling, and high-throughput sequencing (Spence et al. 2014).
The overall Metagenomics steps is illustrated in Fig. 6.1. The progress of
metagenomics is totally dependent on high-throughput techniques for processing
DNA from various environments and analyzing their sequence after running on
high-end sequencers. Furthermore, examining millions or trillions of reads and
putting them together to create a full genome is a difficult operation (Aguiar-Pulido
et al. 2016a, b). Metagenomic analysis data provide the functional properties of a
complex below-ground soil microbial community, such as intra and inter interac-
tions, and so assist in the understanding their evolutionary aspect of microbial
ecosystems as genetic and metabolic networks (Filippo et al. 2012; Ponomarova
and Patil 2015).

This chapter article explains the current understanding of comparative
metagenomic analysis of microbial diversity of paddy rhizospheric compartments
and makes comparison of rhizospheric bacterial community structure among the
different locations. A 16S rRNA gene profiling and shotgun metagenome analysis
were used by Metagenomics. PCR will be used to amplify the V3-V4 region of 16S
rRNA genes, which will then be sequenced on the Illumina Platform. Metagenomic
library will be made and analyzed by different software. After then, a taxonomic
analysis of a representative sequence from each OUT would be carried out to
determine species distribution. The results will be represented in two-dimensional
PCOA plots. The findings will be extremely useful since they may aid in the process
of increasing rice output, improving crop quality, and reducing environmental
impact owing to the usage of chemical fertilizers.

In this study, we focused on a variety of high-throughput sequencing investiga-
tions, collecting taxonomic data on bacterial communities at the genus level in the
paddy rhizosphere and comparing them at the phylum level between rice plants from
various places (Cox et al. 2010). Furthermore, this study explores metagenomic
techniques to rhizospheric microbiomes and reports on the bacterial community
composition in paddy rhizosphere (Mendes et al. 2013).

6.2 Approaches for Communities Structure Dynamics

Rhizospheric soil microbial communities play variety of roles in the function of soil
by including enhancing organic and inorganic nutrient availability and nutrient
cycling by boosting organic matter breakdown (Singh et al. 2019). The rhizospheric
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Fig. 6.1 Stepwise illustration of metagenomics
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soil bacterial population is typically dominated by Proteobacteria, Actinobacteria,
Acidobacteria, and Chloroflexi (Hussain et al. 2012).

In one of the studies in this research field, Arjun (2011), 16S rRNA sequencing
retrieved from database found total 12 representative clones from the paddy field
rhizosphere soil in Kuttanand, Kerala. About 600 bp were viewed and compiled and
aligned using BioEdit version 5.0.6 software (Hall 2001) and generated phylogenetic
tree by neighbor joining method with 1000 resampling bootstrap analysis by using
Mega v.4 software (Tamura et al. 2007). The dominant taxa in the library were found
to be Proteobacteria (7/12) followed by Firmicutes (2/12), Bacteriodetes (2/12) and
Acidobacteria (1/12) (Table 6.1). These four phylotypes are also thought to describe
the bacterial community structure in rice rhizospheric soil in previous investigations,
and Proteobacteria are the largest and most metabolically diverse group of soil
bacteria (Lu et al. 2006).

Knief et al. (2012) obtained 749,569 and 1,340,274 Rhizospheric and
Phyllospheric soil sequences from paddy fields at the International Rice Research
Institute in Los Banos, Philippines after a year. In the rhizospheric soil samples were
found most abundantly Alphaproteobacteria and Deltaproteobacteria. Further more
significant taxa such as Firmicutes, Actinobacteria, Gammaproteobacteria and
Deinococcus—Thermus. Most abundant phyla include Archaea in the rhizosphere
than phyllosphere region was detected. In this research article, scientists also studied
Metaproteogenome and they were found majority of proteins within
Alphaproteobacteria (33%) in these samples, proteins assigned particularly
Azospirillum, Bradyrhizobium, Rhodopseudomonas, Methylobacterium,
Magnetospirillum, and Methylosinus (Table 6.1). Based on metagenome readings
and clone library analyses, the Betaproteobacteria (Acidovorax, Dechloromonas,
and Herbaspirillum) and Deltaproteobacteria (Anaeromyxobacter, Desulfovibrio,
and Geobacter) genera dominated the bacterial population. Furthermore, Sinclair
et al. (2015), were focused microbial community structure in rice producing areas of
Guadalquivir marshes (Seville). In the months of July (tillering or vegetative stage)
and September (between blooming or ripening and maturity stage), rice rhizospheric
soil was examined (Marschner et al. 2001). Total 240 cfu were obtained. The soil
samples were collected from four different regions in rice yielding areas of Guadal-
quivir marshes (Seville). These areas were: Puebla, Colinas, Calonge and Rincon.
The soil in these locations has two major issues that have impacted rice production:
increased salt levels in irrigation water and rice plants infected with the rice blast
fungus Magnaporthe oryzae, 25 different bacterial genera were identified based on
16S rRNA gene sequencing analysis, although only eight were found at both sample
times, July and September. From July to September, the Paenibacillus, Bacillus, and
Pantoea communities grew in dominance, whereas the Enterobacter, Pseudomonas,
and Exiguobacterium communities decreased. In July, there was a 21.34% increase
in Exiguobacterium and a 20.21% increase in Enterobacter. Conversely Bacillus
(37.33%) was more abundant in September. According to 16S rRNA sequencing of
total DNA from four areas found that Proteobacteria, Acidobacteria and
Anaerolineae were found to be more significantly in all areas. Proteobacteria
(Betaproteobacteria) was most abundantly detected group followed by Bacteriodetes
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Table 6.1 Different Bacterial taxa identified in the different geographic locations of rice
rhizospheric soil composition

S. No.
Geographic
coordinates Approach

Findings related to
rhizospheric bacterial
composition References

1. Kuttanand,
Kerala, India.

16S rRNA
Sequencing and
Pyrosequencing

Bacterial Community in rice
rhizosphere dominantly
observed taxa were
Proteobacteria, followed by
Firmicutes, then Bacteroidetes
and Acidobacteria.

Arjun (2011)

2. Los Banos,
Philippines

16S rRNA gene
sequencing and
Metaproteomic
profiling.

Microbial community compo-
sition in rice rhizosphere
includes Archaea (2.6%),
Actinobacteria (8.5%),
Chloroflexi (4.6%),
Alphaproteobacteria (14%),
Betaproteobacteria (16.6%),
and Deltaproteobacteria
(10.6%).

Knief et al.
(2012)

3. Guadalquivir
marshes
(Seville),
Spain.

16S rRNA gene
Sequencing

Most frequently present group
was Proteobacteria
Betaproteobacteria followed
by Archaea, Bacteroidetes,
Chloroflexi, Acidobacteria,
Thermococci,
Sphingobacteria,
Vermicomicrobia, Bacillus,
Enterobacteria,
Exiguobacterium.

Lucas et al.
(2013)

4. South Korea,
Philippine,
Italy and
China

16S rRNA, pmoA,
and mcrA
amplifications

16S rRNA gene sequencing,
pmoA and mcrA amplification
analysis observed that rice field
methanogens mainly comprise
Methanocella,
Methanobacterium, and domi-
nantly Methanosaeta all over
the cultivation.

Hyo Jung
Lee et al.
(2014)

5. Bogor, West
Java and
Indonesia.

16S rRNA gene
sequencing and nif
gene amplification

16S rRNA sequencing
observed 5 genera of Actino-
mycetes including
Geodermatophilus,
Actinoplanes,
Actinokineospora, Streptomy-
ces, and Kocuria while nif
gene amplification showed that
strain member of species Rhi-
zobium and
Anaeromyxobacter.

Rusmana
et al. (2015)

6. Vercelli, Italy. 16S rRNA gene
Pyrotag sequencing.

More abundance of Archaea
and Acidobacteria in

Breidenbach
et al. (2016)

(continued)
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Table 6.1 (continued)

S. No.
Geographic
coordinates Approach

Findings related to
rhizospheric bacterial
composition References

rhizosphere observed. The rhi-
zosphere also consists of
higher relative abundances of
Alphaproteobacteria,
Betaproteobacteria,
Gammaproteobacteria,
Deltaproteobacteria,
Cyanobacteria, Chloroflexi,
Firmicutes, and
Verrucomicrobia.

7. Venezuela. 16S rDNA taxo-
nomic profiling.

Gammaproteobacteria was
determined to be the most
dominant phyla of
Proteobacteria, followed by
Betaproteobacteria and
Alphaproteobacteria,
Acidobacteria, Nitrospirae,
Cyanobacteria, Firmicutes,
Vermicomicrobia,
Bacteriodetes, Caulobacter,
and so on.

Venturi et al.
(2018)

8. Kerala, India 16S rRNA gene
hypervariable
V3-V4 region

In this sample, most detected
phyla were Proteobacteria
(26 � 14%), Firmicutes
(21 � 9%), Actinobacteria
(17 � 6%), and Acidobacteria
(14 � 10%).

Imchen et al.
(2018)

9. Maritsa river
and Zlato Pole
wetland,
Bulgaria.

V3-V5 hypervari-
able region of 16S
rRNA amplicon
sequencing.

Abundantly found phyla
includes Proteobacteria (68%),
Gammaproteobacteria (45%),
Acinetobacter (54%),
Alphaproteobacteria (21.4%),
Actinobacteria (18.5%),
Firmicutes (9.4%), and
Bacteriodetes (8.3%).

Ivan et al.
(2019)

10. Faisalabad,
Pakistan.

16S rRNA gene
amplification.

Reports have been shown that
dominant groups were
Proteobacteria, Acidobacteria,
Actinobacteria, Bacteriodetes,
Chloroflexi, Firmicutes,
Nitrospirae, Gaiella,
Marmoricola, Clostridium.

Maria et al.
(2020)
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and Chloroflexi (Table 6.1). Thermococci archaea were identified in locations with
high Magnaporthe oryzae frequency, while Sphingnobacteria archaea were discov-
ered in areas with high salt occurrence. Conversely, Verrucomicrobiae class was
only detected in control area.

Scientists performed rice field experiments at research farm located in Sacheon,
South Korea (Lee et al. 2014). The rice field was ploughed and harrowed, and water
was flooded up to 5 cm above the soil surface (Witt et al. 2000). Following that,
21-day-old Korean rice seeds (Oryza sativa, Japonica type) were planted. Every
30 days soil samples were collected in triplicate. For detecting the 16S rRNA gene
copies Archaea and Bacteria and targeting the pmoA and mcrA gene (Breidenbach
and Conrad 2015). 16S rRNA gene sequencing analysis obtained 80% of bacterial
reads of four taxa including Proteobacteria, Acidobacteria, Chloroflexi and
Actinobacteria during whole cultivation. 16S rRNA gene sequencing, pmoA and
mcrA amplification analysis represents that the rice paddy methanogens mainly
comprise Methanocella, Methanobacterium and dominantly Methanosaeta all over
the cultivation (Table 6.1) (Vaksmaa et al. 2017; Wang et al. 2018).

Rusmana et al. (2015) collected rice rhizospheric soil samples from three different
types of agroecosystems (irrigated rice, marshy tidal, and dry) in Indonesia while
performing 16S rRNA gene and nifH gene amplification (Reichardt et al. 1997). 16S
rRNA gene analysis found abundance of five genera of Actinomycetes mainly
comprises Actinokineospora, Actinoplans, Geodermatophilus, Kocuria and Strepto-
myces (Nimnoi et al. 2010). Most abundantly found species within Streptomyces in
almost all genera were Streptomyces alboniger and Streptomyces acidiscabies (Taj
and Rajkumar 2016). The amplification of the Nif gene revealed a biological role that
was closely related to Rhizobium and Anaeromyxobacter strains (Martina et al.
2008; Pereira et al. 2013).

6.3 Metagenomics Software as Bioinformatic Tools

Metagenomics is the study of genes in relation to their environment In addition, at
the Rice Research Institute in Vercelli, Italy, a rhizospheric soil sample was taken
from paddy fields. Rice plants were sampled at four different stages: Stage 1 (early
vegetative or tillering), Stage 2 (late vegetative), Stage 3 (reproductive or flowering),
and Stage 4 (maturity). Using the UPARSE workflow, 8685 OTUs with 97%
identity were found from 16S rRNA Pyrotag sequence analysis (Edgar 2013). The
Silva taxonomy and method were used to classify relative OTU sequences in
MOTHUR version 1.31.2 (Schloss et al. 2009). Absolute abundance of Archaea
was detected to be higher in rhizospheric soil than bulk soil sample. For Archaea,
Methanosarcina and Methanosaeta were found more abundant in rhizospheric soil of
Vercelli. Abundantly present genera such as Acidobacteria, Alphaproteobacteria,
Deltaproteobacteria, Betaproteobacteria, Cyanobacteria, Chloroflexi, Firmicutes.
Potential iron reducer (e.g., Geobacter and Anaeromyxobacter) (Conrad and Frenzel
2002; Hori et al. 2010). The VEGAN package version 2.2.1 was used to investigate
OTU relative abundances (Oksanen et al. 2013). Fermenters (e.g., Clostridia and
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Opitutus) and endophytic plant growth promoting bacteria (e.g., Herbaspirillum
species) were reported to be more prevalent in rhizospheric soil (Andreesen and
Schaupp 1973; Chin et al. 2001). Base pairs were viewed and compiled and aligned
using BioEdit version 5.0.6 software (Hall 2001) and generated phylogenetic tree by
neighbor joining method with 1000 resampling bootstrap analysis by using Mega v.4
software (Tamura et al. 2007). Multivariate analysis revealed considerable differ-
ences between the sites when comparing the taxonomic patterns of the bacterial
communities. Ivan et al. (2019) studied V3-V5 hypervariable region of 16S rRNA
amplicon sequencing using Miseq Illumina platform (Ebersberg, Germany). The
gene expression of PmoA and mcrA was studied using quantitative reverse tran-
scriptase real-time PCR (qRT-PCR) (Lee et al. 2014). 16S rRNA gene sequencing,
pmoA and mcrA amplification analysis perceived that rice paddy methanogens
mainly consist of Methanocella, Methanobacterium and dominantly Methanosaeta
all over the cultivation (Table 6.1) (Vaksmaa et al. 2017; Wang et al. 2018). The
tools for deciphering the metagenome have been listed in Table 6.2.

6.4 Proteomics Analysis of Bacterial Community

Genomic, proteomic, metabolomic, metagenomic, and transcriptomic studies are all
included in the term “omics.” It refers to the joint characterization and measurement
of biological molecule pools that translate into an organism’s structure, function, and
dynamics. Proteomics has enabled the identification of ever-increasing number of
protein (Anderson and Anderson 1998; Blackstock and Weir 1990; Anwar et al.
2019). Recent research findings indicate that rhizosphere soil metagenomic analysis
can provide a sketch of a protein domain’s functional areas, which can be used for
protein optimization and functional characterization (Jin et al. 2016). InterPro is a
software used for access the information about Protein domains, protein activity,
active site within the protein, protein families and function (Singh et al. 2016). Genes
encoding dinitrogen reductase (nifH) and dinitrogenase (nifD and nifK) were often
found in the phyllosphere and rhizosphere, according to metagenomic analysis in the
current study (Zeng et al. 2005). In phyllosphere, the most abundant nifH sequence
types were found to be Azorhizobium and Rhodopseudomonas while in rhizosphere,
the nifH sequences was detected across diverse taxa such as Rhizobium,
Methylococcus, Dechloromonas, Anaeromyxobacter, Syntrophobacter, and some
methanogenic archaea (Knief et al. 2012; Singh et al. 2016). The metaproteomic
analysis reveals that genus Methylobacterium were detected most dominant in
phyllosphere community.
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Table 6.2 Bioinformatics tools for metagenomic data analysis

S. No. Software Function of software References

1. MetaQUAST For quality assessment of metagenomic
assemblies.

Mikheenko et al.
(2016)

2. Mothur Software for analysis of 16S rRNA gene
sequencing

Schloss et al. (2009)

3. MetaVelvet Metagenomic de novo assembler Namiki et al. (2012),
Zerbino and Birney
(2008)

4. MG-RAST Access to a number of tools for metagenomic
analysis via a web-based platform.

Glass et al. (2010)

5. IDBA-UD For the building of contigs using a progres-
sive cycle of rising k-mer values

Peng et al. (2012)

6. Megahit Useful in metagenomic analysis and uses
similar approach to IDBA-UD

Li et al. (2015)

7. UPSARSE Pipeline for quality and length filtering of
sequencing reads and OUT generation

Edgar (2013)

8. MetAMOS Ability to test multiple assembly tools and
used for contigs length, contiguity, and error
rates

Treangen et al. (2013)

9. VEGAN Software for diversity analysis and commu-
nity ecology functions

Oksanen et al. (2013)

10. InterPro Software for access the information about
protein domains, protein activity active site of
protein, protein families and function

Mitchell et al. (2015)

11. MegaGene
Annotator

For high contig length and large number of
predicted gene

Noguchi et al. (2008)

12. RayMeta Scalable software tool and assemblies are
constructed on the basis of de Bruijin graphs

Boisvert et al. (2012),
Pell et al. (2012)

13. QUIIME Quantitative insight into microbial ecology Caporaso et al. (2010)

Pipeline used for microbiome analysis from
raw DNA sequencing data generated by
Illumina platform

14. CONCOCT Used to count the number of clusters and
reconstruct pathogenic genomes (Shiga-toxin
producing strain of E. coli outbreak in 2011)

Alneberg et al. (2014)

15. CARMA Used for Metagenomic analysis Gerlach et al. (2009)

16. Prokka Pipeline used for annotation of bacterial
genomes

Seemann 2014

17. MEGAN Software used for analysis of large
metagenomic datasets

Huson and Weber
(2013)

18. Glimmer-MG Software for gene prediction and provide
accurate gene error-prone sequences than
other method

Delcher et al. (2007)

19. PICRUST Used to connects taxonomic classifying
metaprofiling results

Langille et al. (2013)

(continued)
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6.5 Bacterial Community Structure at Different Level

There are several bacterial communities which present at different locations on
geological areas of soil like some are associated with root endophytes, in
phyllosphere, endorhizosphere, bulk soil, flooded and non-flooded soil, irrigated
soil (Singh et al. 2020). Some bacterial communities are survived in high prevalence
of Magnaporthe oryzae (Rice blast Fungus) and some in high incidence of salt.

6.5.1 Bacterial Community Composition Associated
with Root Endophytes

Previously, research was conducted to investigate the microbial community structure
of Indian rice root endophytes (Sengupta et al. 2017). Vittorio et al. used 16S rRNA
taxonomy profiling of the rhizosphere and endorhizosphere of two high-yielding rice
cultivars, Pionero 2010 FL and DANAC 6D 20A, which were cultivated intensively
in Venezuela. Three Pionero 2010FL rhizosphere soil samples and three DANAC
SD 20A rhizosphere soil samples were taken from Association of Certified Seed
Producers of Western Plains paddy fields after 88 days of planting. After analyzing
the complete rhizospheric and endorhizospheric bacterial community structure, they
retrieved 326,496 bacterial readings. Proteobacteria accounted for 70–87% of all
OTUs in the bacterial microbiota. Gammaproteobacteria was the most numerous

Table 6.2 (continued)

S. No. Software Function of software References

20. MetaWatt For metagenomic assembly, contig clustering
or binning, and bin inspection for taxonomic
signatures (through BLAST) and sequence
coverage.

Strous et al. (2012)

21. BioEdit Software of biological sequence alignment
editor

Hall (2001)

22. FragGene
Scan

Used to predicts fragments of gene from short
reads

Rho et al. (2010)

23. PIPITS Used for processing of ITS amplicons Gweon et al. (2015)

24. EDGE Software comprising QC, annotation,
Assembly, binning, taxonomic profiling, and
phylogenetic tree construction

Li et al. (2014)

25. USEARCH Open-source software Edgar and Flyvbjerg
(2015)

26. VSEARCH Open-source software Rognes et al. (2016)

27. EBI
Metagenomics

Software used for data trimming and dupli-
cates removal

Hunter et al. (2014)

28. qRT-PCR Real-time quantitative reverse transcriptase
PCR

Lee et al. (2014)
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Proteobacteria class, followed by Alphaproteobacteria and Betaproteobacteria.
Deltaproteobacteria and epsilonproteobacteria, on the other hand, were not found
in the endorhizosphere. The colony of Acidobacteria and Nitrospirae was exclu-
sively found in the rhizosphere. The phylum Cyanobacteria was also abundant in
rhizospheric soil. Bacteriodetes and Verrucomicrobia abundant in Pionero 2010
FL. Caulobacter genus was significant and massively abundant in both rhizosphere
and endorhizosphere soil sample.

Number of the researches have performed 16S rRNA gene amplification of
hypervariable V3-V4 region and was amplified using primers set Pro341F and
Pro805R (Takahashi et al. 2014; Merkel et al. 2019; Cichocki et al. 2020). They
were collected rhizosphere and bulk soil sample from seven different areas of India.
They obtained 28 phyla from all groups of bacteria. Among them the most dominant
phyla were Proteobacteria (25.7 � 14%) followed by Fermicutes (21 � 8.7%) then
Actinobacteria (16.7 � 6%) and Acidobacteria (13 � 10%). Candidatus koribacter
(8 � 19%) was most abundant genus in rhizosphere soil while Ktedonbacter (13%)
most frequently detected in bulk soil sample. Furthermore, 18 methanogen genera
were detected in all samples of rhizospheric and bulk soil (Lee et al. 2015). Most
abundant genera of methanogen were detected Methanosaeta, followed by
Methanobacterium and Methaocella (Rahalkar et al. 2016). Archaeal genera includ-
ing type I and type II methanotrophs were significantly detected throughout the
cultivation (Singh et al. 2016).

6.5.2 Flooded and Non-flooded Located Bacterial
Community

Multivariate analysis revealed considerable differences between the sites when
comparing the taxonomic patterns of the bacterial communities. Ivan et al. studied
V3-V5 hypervariable region of 16S rRNA amplicon sequencing using Miseq
Illumina platform (Ebersberg, Germany). At Zlato Pole, soil samples collected
from flooded and non-flooded rice paddies, as well as sediments and non-flooded
areas. Rice paddies are being located in wetlands along the Bulgarian side of the
Maritza River, such as the Zlato Pole wetland and the Tsalapitsa paddy fields. After
filtering of bacterial reads and OUT picking process, 181,328 sequences were
obtained from flooded samples and 158,260 samples were obtained from
non-flooded samples. Total 117 bacterial classes were identified among them
67 were detected in all soil samples. Proteobacteria (34%) in Plovdiv rice paddy
sediments to (68%) in Zlato Pole sediments of all bacterial sequences.
Alphaproteobacteria (21%) is the most common, followed by Gammaproteobacteria
(13%), Betaproteobacteria (6.8%), and Deltaproteobacteria (4%). Moreover, abun-
dant phyla were Actinobacteria (8–26%) and Acidobacteria (2–17%) detected the
third most abundant phylum while Firmicutes (9%) and Bacteriodetes (8%) detected
over Acidobacteria in Zlato pole sediments.
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6.5.3 Community Structure in Rhizosphere and Phyllosphere

In Faisalabad, Pakistan, a comparison of 16S rRNA gene amplification studies of
bacterial phyla in the rhizosphere and phyllosphere revealed that the rhizosphere had
more diversity than the phyllosphere. According to reports, a total of 9383 16S
rRNA sequences were retrieved from rhizospheric soil while 54,714 sequences were
retrieved from Basmati rice phyllospheric soil (Yasmin et al. 2020). Eighteen
different phyla detected from rhizosphere while seven phyla were from phyllosphere
soil sample. Seven phyla were found in both compartments. Proteobacteria were
most abundant phyla from both the compartments i.e., rhizosphere (37%) while
phyllosphere (80%) followed by Firmicutes (10%), Bacteriodetes (9%), Chloroflexi
(4%), Actinobacteria (1%) in phyllospheric soil sample. According to 16S rRNA
gene amplification analysis was detected 208 different genera from rhizosphere
while 24 genera from phyllosphere soil samples. In the bacterial community’s
rhizosphere and phyllosphere, 15 genera were determined to be common.
Bacillariophyla (22%) was the most common genus in the phyllosphere, followed
by Sphingomonas (9%), and Bradyrhizobium (7%). The most frequent genus in the
rhizospheric soil sample was Thaurea (4%).

16S rRNA sequencing retrieved from database found total 12 representative
clones from the paddy field rhizosphere soil in Kuttanand, Kerala (Arjun 2011).
The dominant taxa in the library were found to be Proteobacteria (7/12) followed by
Firmicutes (2/12), Bacteriodetes (2/12), and Acidobacteria (1/12). About 70–90% of
total OTUs, Proteobacteria was dominated the bacterial microbiota.
Gammaproteobacteria was the most important Proteobacteria phylum, followed by
Alphaproteobacteria and Betaproteobacteria. In the endorhizosphere,
deltaproteobacteria and epsilonproteobacteria were not found. Only the colony of
Acidobacteria and Nitrospirae was found in the rhizosphere. Along with
Cyanobacteria phylum was enriched in rhizospheric soil. Bacteriodetes and
Verrucomicrobia abundant in Pionero 2010 FL. Caulobacter genus was significant
and exclusively abundant rhizosphere as well as endorhizosphere (Sengupta et al.
2017).

6.5.4 Bacterial Composition in Areas with High
Magnaporthe oryzae Prevalence and High Salt
Incidence

Proteobacteria, Acidobacteria, and Anaerolineae were detected in all four areas,
according to 16S rRNA sequencing of total DNA from the four regions.
Proteobacteria (Betaproteobacteria) was most abundantly detected group followed
by Bacteriodetes and Chloroflexi. Thermococci class archaea were identified in
locations with high Magnaporthe oryzae incidence, while Sphingnobacteria class
archaea were identified in areas of high salt incidence. The Verrucomicrobiae class,
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on the other hand, was only found in the control region (Lucas et al. 2013). The
rhizosphere has a higher absolute abundance of Archaea than the bulk soil sample.
For Archaea, Methanosarcina and Methanosaeta were found more abundant in
rhizospheric soil of Vercelli (Breidenbacht et al. 2016). Abundantly present genera
such as Acidobacteria, Alphaproteobacteria, Betaproteobacteria, Cyanobacteria,
Chloroflexi, Deltaproteobacteria, Firmicutes. Potential iron reducer (e.g., Geobacter
and Anaeromyxobacter) (Conrad and Frenzel 2002; Hori et al. 2010). Fermenters
(e.g., Clostridia and Opitutus) and endophytic plant growth promoting bacteria (e.g.,
Herbaspirillum species) are also more abundant in the rhizospheric soil (Andreesen
and Schaupp 1973; Chin et al. 2001). Furthermore, 18 methanogen genera were
detected in all samples of rhizospheric and bulk soil (Lee et al. 2015). Most abundant
genera of methanogen were detected Methanosaeta, followed by Methanobacterium
and Methaocella (Rahalkar et al. 2016). Archaeal genera belong to type I and type II
methanotrophs were found in entire cultivation (Singh et al. 2016). Total 117 bacte-
rial classes were identified among them 67 were detected in all soil samples.
Proteobacteria (34.2%) in Plovdiv rice paddy sediments to (68%) in Zlato Pole
sediments of all bacterial sequences. Alphaproteobacteria (21%) is the most com-
mon, followed by Gammaproteobacteria (13%), Betaproteobacteria (7%), and
Deltaproteobacteria (4%). Moreover, abundant phyla were Actinobacteria (8–26%)
and Acidobacteria (2–17%) detected the third most abundant phylum while
Firmicutes (9%) and Bacteriodetes (8%) detected over Acidobacteria in Zlato pole
sediments (Ivan et al. 2019).

6.6 Future Perspective

We’re working hard to figure out which bacterial genera are invading the rice
rhizosphere. From this review article, we conclude that among all bacterial commu-
nity in different samples from different locations most abundant phyla were detected
Proteobacteria in rhizosphere soil samples followed by Acidobacteria then
Actinobacteria, followed by Choroflexi and Firmicutes. Methylobacterium was
detected as most dominant genus from Methylotrophs. Archaea were predominantly
found in rhizosphere bulk soil, flooded soil, and wetland soil samples. Methanogenic
archaea are also found in some rhizospheric soil samples. Streptomyces were
detected from agroecosystem (irrigated rice and swampy rice) of rice plants. Fur-
thermore, analyzing the structure of microbial communities is required in order to
investigate the individual functions of bacteria. This understanding and insights aid
in the development of methods for greater crop production, improved soil quality,
and disease-causing microorganism protection in order to preserve natural resources
and, ultimately, to produce more sustainable agricultural production.

We may choose these succeeding strains for formulation of a suitable inoculant as
a biocontrol agent for administration in the rhizosphere of rice and disease manage-
ment of rice plants due to decreased efficacy of natural nutrients available in soil.
Biocontrol presumes special connotation being an environmental-friendly and
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cost-efficient strategy which can be used for effective rice disease management.
Numerous microbial species are acts as a biocontrol agent against many plant
pathogens. As a result, it is an inevitable step to gather as much microbial diversity
as possible in order to provide a higher level of protection while retaining rice yields.
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