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1	 �Introduction: Why We Need to Exercise at Old Age

The end of the human lifespan is characterized by an accumulation of diseases and 
disabilities. Generalized inflammation (=inflammaging [1]), the inability to match 
energy expenditure with energy uptake (=metabolic inflexibility [2]), loss of muscle 
mass (=sarcopenia [3]), deterioration of muscle strength (=dynapenia [4]), bone 
loss (leading to osteoporosis), and the catastrophic event of fractures are hallmarks 
of aging that facilitate disease and disability accumulation. This multi-faceted and 
multi-factorial phenotype is nowadays referred to as the frailty syndrome of old 
age [5].

The frailty phenotype bears many similarities with the effects of disuse. Thus, 
immobilization by experimental bed rest readily leads to metabolic derailment 
[6], muscle atrophy [7] and muscle weakness [8], and bone loss [7]. Older people 
tend to become generally less active, and they frequently stay in bed because of 
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health problems, which are strongly associated with deterioration of mobility 
[9]. Sedentarism and disuse, therefore must be considered as substantial con-
tributors to the frailty phenotype. On the other hand, detrimental immobilization 
effects recover after reambulation in young people [10, 11]. On the reverse side, 
virtually all bodily functions decline even in master athletes [12], i.e., in people 
who maintain extremely high levels of physical activity up to old age. One would 
therefore think of the frailty phenotype that results from both senescence and 
age-related sedentarism and disuse (see Fig. 1). From that perspective, the idea 
to use physical interventions in order to ameliorate frailty severity seems straight-
forward, but hoping to reverse aging [13] will likely remain futile.

2	 �Specific Requirements for Physical Training at Old Age

It is widely recognized that physical exercise improves health and well-being at all 
ages [14]. In the world’s populace, however, physical activity levels are declining to 
alarmingly low levels across all age groups. To combat this pandemic, the World 
Health Organization [15], the USA Department of Health [16], and national and 
international scientific and medical societies have all provided guidelines that shall 
increase levelsof physical activity. However, most older people hesitate to partici-
pate in physical exercise programs, in particular of those exercises that are new to 
them, strenuous, challenging, or time consuming. Also, from a scientific point of 
view, the classical publications on trainability in older people [17] were performed 
on highly selected sub-populations, which limits their generalizability. Moreover, 
many proposed exercise interventions are not easily feasible for geriatric patients 
because of ailments, co-morbidities, or lack of motivation.

Therefore, old age requires exercise modalities that target the causes of frailty 
(e.g., musculoskeletal de-conditioning), on the one hand, and are safely feasible 
within a reasonable time on the other hand. In that sense, the therapeutic usage of 
whole body vibration (WBV) to halt sarcopenia, dynapenia, and osteoporosis seems 
a straightforward approach.
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Fig. 1  Conceptualization 
of the frailty syndrome 
resulting from the 
combined effects of (a) 
senescence (blue line), i.e., 
an irreversible biological 
program, and (b) the 
beneficial modulatory 
effects of exercise (green 
lines) and sedentarism or 
even disuse (red lines)
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3	 �Whole Body Vibration: The Fundamentals

WBV differs from most other types of exercise in that energy from an external 
machine is inserted into the human body. This energy transfer is crucial. Physically, 
vibrations are mechanical oscillations that are characterized by frequency (=number 
of cycles per unit time), their amplitude (displacement from neutral to peak, or also 
from minimum to maximum as “peak-to-peak”), and by their shape. As to shape, 
vibrations are mostly sinusoidal (thus “smooth”) in the realm of engineering, but 
rarely so in biology and physiology (e.g., electrocardiogram). The utilization of 
vibrations started early on in our evolution. Not speaking of sound and audition, 
vibration is used as a means of communication in bees in order to inform peers 
about location and abundance of food, vibration is used by spiders as the source of 
information on prey in their cobweb, and as a rutting signal by male treehoppers to 
alert potential spouses.

Most available vibration platforms operate with vertical displacements, and they 
should produce sine waves to prevent higher frequency components or shocks that 
could aggravate safety concerns. To elicit a physiological response in our body, 
vibrating actuators have to be coupled to a bodily interface (typically the foot, see 
Fig. 2). It is important to realize that energy transfer is complete only when the 
coupling is fixed. Next, the vibration signals are transmitted through the tissues, and 
the propagation of the signals depends on the viscoelastic properties of the tissue. If 
the tissue was purely elastic, then the energy transmission would be complete, and 
resonance could have catastrophic consequences. However, muscle tissue has vis-
cous, damping properties that dissipate mechanical energy [19, 20], which helps to 
prevent resonance catastrophe.

Next, we have to consider the human body as being composed of different seg-
ments that are connected by joints (see Fig. 2a). Importantly, each joint acts as a 
viscoelastic spring, and spring stiffness depends on the joint angle. Thus, the trans-
mission of vibration signals for a vibrating footplate increases with erect posture 
and with stiff muscles. Conversely, vibration transmission can be reduced by assum-
ing a crouched posture, by adjusting muscle tone, and also by placing weight on the 
fore-foot, as this introduces the ankle joint into the chain. For similar reasons, 
namely via “adding a joint,” side-alternating vibration is associated with smaller 
vibration transmission to head and trunk than synchronous vibration platforms [21, 
22], as side-alternating platforms actuate the lumbo-sacral joint in the frontal plane, 
which is not the case for synchronous vibration (Fig. 2b).

4	 �Acute Physiological Responses to WBV

Within the muscle tissue, WBV elicits elongation of the muscle fascicles, tendon 
stretch and phase-synchronous electrical activation of the acting muscle [23], which 
is interpreted by most authors as evidence for activation of mono-synaptic stretch 
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reflexes [24]. At the same time, vibration does not only elicit stretch reflexes but 
also inhibits their spinal transmission reflexes [24]. This has been termed “vibration 
paradox” [25], and it could be explained by mechanisms such as presynaptic inhibi-
tion or post-activation depression. In addition, vibration activates cutaneous and 
Golgi tendon receptors [26, 27], both of which interfere with spinal reflexes.

Muscle stretch is also associated with a rapid increase in muscle temperature [19]. 
Another immediate response to vibration is the enhancement of blood flow [28], 
which is depending on the frequency of vibration and, to a lesser extent, on its ampli-
tude [29]. The enhanced perfusion is associated with improvements in muscle tissue 
oxygenation [30] and is dependent upon the alignment with the gravity vector [31]. 
Thus, a likely explanation would be that mechanical energy provided by vibration 
helps to “push” venous blood across venous valves to facilitate the cardiac return.

As one would expect, WBV also stimulates whole body oxygen uptake [32]. 
This vibration-related excess oxygen uptake scales with the frequency and ampli-
tude of vibration [33], and it seems to be somewhat blunted in older age [34].
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Fig. 2  Physical application of vibration platforms for human exercise. (a) The human body can be 
conceptualized as a mass (= trunk and head) that sits on thigh, shank, and foot, which are linked 
through joints. Mass and viscoelastic joint properties jointly determine the dynamic response of 
the human body to vibration. (b) Illustration of the two types of vibration platform. Synchronous 
mode pushes both legs simultaneously, which exempts the lumbo-sacral joint from rotation in the 
frontal plane. In side-alternating platform, the two legs are pushed anti-phase, and the damping 
contribution of the lumbo-sacral joint can help to reduce vibration transmission to the head and 
trunk. Figure reproduced from Rittweger [18]
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5	 �WBV for Prevention of Sarcopenia and Dynapenia

There is an ongoing debate as to whether greater gains in muscle mass and muscle 
strength can be achieved in young people by adding vibration on top of traditional 
exercise, but current studies show either inconclusive or marginal results [35–38]. 
Although a closer look may reveal specific effectiveness of WBV for calf muscle 
hypertrophy (as opposed to knee extensor hypertrophy), and that this seems to be 
related to improvements in reactive power in drop jumps [38], it seems reasonable 
to conclude that superposition of WBV onto traditional resistive training has only 
moderate to marginal benefits. Likewise, there has been no significant evidence for 
the effectiveness of WBV when applying it as a countermeasure against muscle 
wasting in experimental bed rest, either with or without additional resistive exercise 
[39, 40].

However, the notion of lacking effectiveness for muscle has to be adjusted when 
shifting the focus to older people. Thus, several studies that tested the addition of 
WBV onto standard geriatric conditioning exercise in nursing homes [41, 42] 
repeatedly report genuine WBV benefits in timed up-and-go and balance (see 
Table  1). In somewhat younger community dwellers, Bogaerts et  al. [47] found 
beneficial effects of WBV on balance, and Roelants et al. [48] superiority for mus-
cle power for WBV in comparison to standard resistive training. By contrast, a 
smaller study with lower statistical power did not find a genuine effect of WBV [49, 
50]. Osteoarthritis (OA) is a common co-morbidity in old age. In that respect, it is 
very interesting to note that a genuine benefit by WBV on muscle strength has been 
demonstrated in elderly women with OA [51]. Overall, as stated by a recent meta-
analysis, WBV demonstrates effectiveness to improve muscle strength and power, 
vertical jump performance and other functional measures [46].

A more detailed picture of the existing literature is given in Table 2. It emerges 
from this table that WBV is feasible and that it helps on its own to improve muscle 
power, gait speed, balance, and well-being. The effectiveness is most pronounced in 
old age and in people residing in nursing homes or in geriatric rehabilitation units 
(see Table 1). Moreover, combined conventional exercise plus WBV has the poten-
tial to achieve more than either of them individually.

6	 �WBV for Prevention of Osteoporosis

Whereas the majority of interventional WBV studies, if not all of them, that inves-
tigated muscular endpoints have used vibration specifications that encompassed 
peak accelerations greater than 1 g, there have been two competing approaches in 
the bone field. Both “schools”’ argue that bone tissue strain [64, 65] and strain rate 
[66] constitute mechanical signals that determine bone modeling and remodeling. 
However, whereas the first school ascribes the osteogenic strain effects predomi-
nantly to peak strains [67], the second school proposed that the effectiveness is a 
product of the number of strain cycles repetitions as well as their magnitude and that 
large-magnitude cycles can be replaced by a larger number of low-magnitude strain 
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cycles [68]. Accordingly, the high-magnitude philosophy tried to maximize tissue 
strains and therefore used high-magnitude vibration (characterized by peak vibra-
tions >1  g). The low-magnitude school has applied vibration specifications that 
were substantially below 1  g peak acceleration. Initial pre-clinical studies were 
positive for both low- and high-magnitude vibration protocols [69, 70], and initial 
clinical studies suggested the effectiveness of low-magnitude vibration in children 
with disabling conditions [71] and osteopenic women [72]. Moreover, the combina-
tion of high-magnitude vibration with resistive exercise prevented muscle wasting 
and bone loss in experimental bed rest in young men [73], and a subsequent study 
has demonstrated a genuine role for the vibration component [74].

However, further studies have yielded mixed results, and meta-analyses report 
limited effectiveness of WBV for bone mineral density (see Table 2). Effectiveness 
seems somewhat stronger for the lumbar spine and for the hip when using 

Table 1  Randomized controlled trials that tested the effectiveness of WBV for neuromuscular 
outcomes in geriatric populations. When several publications arose from the same study, they have 
been collated into the same row of the table

References Population
Period 
[months]

N 
Subjects Outcome

Ma et al. [43] Postmenopausal 
women

≥6 1014 Lumbar spine aBMD: 
Improved in low-
magnitude WBV only
Femoral neck aBMD: No 
effect

Oliveira et al. [44] Postmenopausal 
women

≥6 1833 Lumbar spine aBMD: 
Improved by WBV (flexed 
and straight knee)
Femoral aBMD: Improved 
by WBV with flexed knees
Trochanter aBMD: 
Improved by WBV with 
flexed knees on side-
alternating platforms

Jepsen, Thomsen, 
Hansen, Jorgensen, 
Masud and Ryg 
[45]

Age ≥ 50 years ≥6 1839 Lumbar spine and total 
hip aBMD, tibia and 
radius vBMD: No effect
Fracture rate: Improved 
by WBV (risk ratio 0.48)
Falls rate: Improved by 
WBV (risk ratio 0.76)

Lau, Liao, Yu, Teo, 
Chung and Pang 
[46]

Age ≥ 50 years 1.5–18 896 Lumbar spine and total 
hip aBMD: No effect

CRT chair-rising test; Ctrl passive control; Ex: exercise without weights; fkStand flexed knee 
stand; fkWBV flexed knee vibration; FT fitness training; lkWBV locked knee vibration; N number 
of participants in each group; n.r. not reported; PT standard physical therapy; Res resistive exercise 
with weights; SE static exercise; Squat squatting exercise; TUG timed up-and-go; saWBV side-
alternating WBV; Side-alt. Side-alternating; Synchr synchronous; syWBV synchronous WBV; vs.; 
WBV whole body vibration
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side-alternating platforms with flexed knees. However, the effects on bone density 
are moderate at best. The risk of fracture, however, was reported to be halved by 
WBV. That a relatively small effect on bone is associated with substantial reduc-
tions in fracture rate has also been reported for pharmacological treatment of osteo-
porosis [75]. However, WBV seems also to reduce the risk of falls [45], and the vast 
majority of osteoporotic fractures are caused by falls [76]. It, therefore, seems that 
part of the reduction of the risk to fall is attributable to neuromuscular benefits by 
WBV. On the other hand, the reduction in falls can only partly explain the reduction 
in fractures by WBV interventions. A similar observation had been made in a large, 
prospective exercise study, in which the fracture-to-fall ratio was halved by a multi-
modal exercise intervention [77]. Although there was no alteration in bone mineral 
density, one could, of course, try to explain the discrepancy by effects on bone 
“quality” [78]. However, as an alternative hypothesis, I propose that exercise inter-
ventions in old age improve the capability of the neuromuscular system to dissipate 
kinetic energy and to thereby prevent fractures.

7	 �Conclusion

In the past two decades of application in geriatric and rehabilitation medicine, 
WBV has demonstrated good feasibility and a low-risk profile. Evidence is emerg-
ing to suggest that important aspects of the age-related frailty syndrome can be 
mitigated by whole body vibration interventions. This applies to dynapenia and to 
a lesser extent to sarcopenia, and also to the risks for fall and to fracture, all of 
which can be improved by WBV. As a caveat, randomized controlled trials are 
still lacking in extremely frail populations, e.g., in early rehabilitation after inten-
sive care or after stroke. Also, there is a remarkable dearth of studies on metabolic 
WBV effects in old age. However, given that the relative effectiveness of WBV 
seems to increase in old age and that acceptance of other types of physical exer-
cise or therapy dwindles, WBV seems particularly suitable in geriatric and reha-
bilitation medicine.
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