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1 Introduction

The evaluation of bearing capacity is the major criterion in the construction of
any infrastructure like buildings, dams, bridges, etc. There are several empirical,
semi-empirical formulas or methods to estimate the ultimate bearing capacity of
footing like Terzhaghi, Meyerhoffs, plate load method, etc. But these are conven-
tional methods that are both time-consuming and less accurate and even sometimes
the field methods are less applicable in a remote area as well. These laboratory and
field methods are also limited to simpler problems and could not easily manipu-
late complexities that are generated mostly during performing these conventional
methods. There are several geotechnical calculations that require complexities to
attain a final result like settlement, slope failure, estimation of bearing capacity, etc.
The estimation of bearing capacity of eccentrically inclined loaded strip footing by
field methods is itself a challenging task. Therefore, the neural network technique is
used to eliminate these complications. With the help of this technique, a well-trained
and tested software model can be prepared.

The neural network works on the learning of the experimental or theoretical data.
It relates the data with the output in the form of “activation functions”. It provides
the approximate result or output as compared to the desired output by minimizing
errors through iterations. The objective of the current study is to develop a GRNN-
General regression neural network prediction model using experimental datasets
from laboratory model tests performed by Patra [1] over dense sand and medium
dense sand. Three input parameters (Df/B, e/B, and α/φ) are used to predict a single
output in the form of reduction factor (RF). The results found by GRNN are then
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compared with the empirical as well as ANN results [2]. The software used to apply
GRNN in the present study is DTREG, the results of which are further compared
with the results of ANN prediction.

2 Literature Review

2.1 Laboratory Model Test

Laboratory model test was conducted by Patra [1] to determine the ultimate bearing
capacity of shallow strip footing subjected to eccentrically inclined load resting over
dense and medium dense sand. Reduction factor (RF) value is defined as a ratio
of ultimate bearing capacity considering eccentrically inclined load to the bearing
capacity centrally loaded with no inclination. The poorly graded dense sand having
a coefficient of curvature (Cc), coefficient of uniformity (Cu), and effective size of
1.15, 1.45, and 0.325mm, respectively,was used in the investigation. The embedment
ratio (Df/B), eccentricity ratio (e/B), and inclination ratio were varied from 0 to 1, 0
to 0.15, and 0 to 20°, respectively. Empirical equations were also used to calculate the
value of reduction factor and treated as calculated RF which was further compared
with the experimental values of RF. A variation of around 15% or less was seen and
in some cases deviation was about 30% or less. The experimental value of RF is
given by

RF = [
qu(Df/B,e/B,α/φ)

]
/
[
qu(Df/B,e/B=0,α/φ=0)

]
(1)

2.2 ANN Modeling

The experimental datasets were utilized for training and testing ANN. A total of
120 datasets were used for model preparation out of which 70% was utilized for
training data and 30% was utilized as testing or validation data. Embedment ratio,
Eccentricity ratio, and inclination ratio were used as predictor variables, and a single
output as reduction factor (RF) which was further utilized to get the bearing capacity.
MATLAB software was used for ANNmodeling, the training function utilized in this
model building was TRAINLM, the adaptation learning function was LEARNGDM,
and the performance function was MSE. The number of hidden layers used in the
model was one. Figure 1 shows the connection strength of several inputs in the neural
network diagram.
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Fig. 1 Neural network diagram showing connection strength of several inputs [2]

3 Methodology

Probability density function used in GRNN is a normal distribution function with
each training sample. In the GRNNmodeling network, the output is calculated on the
basis of weight adjustment mechanism with the help of “Euclidean distance” which
is approximately the square of the difference between the training data sample and
the testing data sample. If the Euclidean distance of a certain variable is large, then
it means that the weight will be less and connection strength will be less for that
variable. But if the Euclidean distance is small for certain variables, it will have a
large amount of weight and connection strength. The equation used in GRNN is

Y (x) =
∑

Yie
−(

d2i
2σ2

)

∑
e−(

d2i
2σ2

)

(2)

Input sample is denoted as “X” and input sample in training as “Xi”. Yi is the
output sample regarding the input sample of Xi. Euclidean distance is denoted as
di2 which is the distance between X and Xi. The activation function which actually

denotes the weight of that input sample is given by e−(
d2i
2σ2

).
The activation function utilized is the Gaussian type which comes under the type

of radial basis function. The normal distribution is widely described by the Gaussian
function. It is the best kernel function whose equation is given by

g(x) = 1

σ
√
2π

e− 1
2 (

x−μ

σ
)
2

(3)

3.1 Architecture of GRNN Model

The networkmodel is divided into four layers starting from the input layer and ending
at the output layer.
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Fig. 2 GRNN architecture
model

Hidden layer
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e/B     
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Input Layer: Each input layer is provided with one neuron in the input layer. The
range of input neurons is standardized by the subtraction of median and division of
interquartile range. At the end of the layer, the value of each neuron is then provided
to the next hidden layer neurons for further processing.

Hidden Layer: The hidden layer neurons are fed values by the input layer neurons.
Then comes the hidden layer which is provided with a single neuron for each case in
the training data set. The values of predictor and target variables for similar case are
stored by the neuron. The input values are presented over the X-axis, the distance
from the neurons center point known as Euclidean distance, and is computed by
the hidden layer after which using sigma values radial basis activation function is
applied. This layer is mainly provided to compute the Euclidean distance which
helps in adjusting the weightage of certain predictor variables and in the application
of suitable activation function. The output of the hidden layer is then fed to the next
layer known as the Pattern layer.

Pattern Layer or Summation Layer: This layer takes values from the hidden layer
as input. It contains only two neurons, one is theNumerator neuron and the other is the
Denominator neuron. The value of the denominator is computed by the summation
of all values of activation function. The value for numerator neuron is computed by
summation of multiplicative values of activation function and output data set values.
The output values of both numerator and denominator are fed to the next layer known
as the decision layer.

Output or Decision Layer: This layer contains only a single neuron. This layer
ultimately predicts the target variable by simply computing its value from the division
of the Numerator neuron and Denominator neuron values which are fed from the
Pattern layer. Figure 2 shows the GRNN architecture model used.

3.2 Training Principle

The primary work in training with generalized regression neural network technique
is to select the optimum value of sigma (σ) which helps to control the spread of
radial basis function (RBF). The conjugate gradient algorithm is used by the DTREG
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software for the computation of optimum sigma values. Separate sigma (σ) values
for each predictor variable are used. The software uses the leave one out method for
evaluation of σ values during optimization.

4 Database and Preprocessing

The laboratorymodel test conducted by Patra [1] over shallow strip footing subjected
to eccentrically inclined load resting over dense and medium dense sand was used.
Data sets are divided into two categories: training and testing, around 70% of data
sets are used as training data, whereas 30% of data sets are utilized as testing data.
Total 120 data sets are available, so the first 90 sets are taken as training sets, whereas
the last 30 sets are used as testing sets.

Table 1 shows the soil characteristics and parameters used by Patra [1] in the
investigation. Eccentricity ratio was varied from 0 to 0.15, inclination ratio was
varied from 0 to 20° and embedment ratio was varied from 0 to 1 for dense and
medium dense type sand. Experimental datasets are used to model the training and
testing process given in Table 2.

In this study, a trial version ofDTREG softwarewas usedwhich helps in providing
results but is unable to generate an equation for the required output.After the selection
of the type of model to be built, values of sigma are selected or decided for the
model. In this model preparation, sigma for each variable is used. The minimum and
maximum sigma value is kept as 0.0001 and 10, respectively and 20 search steps are
set for the model. Leave one out method is used in model testing and validation. The
target variable is the reduction factor and three input variables are used for prediction.
The validation method applied in the modeling is “Leave one out method” in which
cross validation is performed by leaving one row out for each model built.

Table 1 Soil parameters and its characteristics [1]

Sand type Unit weight
of
compaction
(Kg/m3)

Relative
density of
sand (%)

Friction
angle (φ)
degree

Df/B e/B Load
inclination
(α) degree

Dense 14.36 69 40.8 0 0.5 1.0 0 0.05 0.1
0.15

0 5 10 15 20

Medium
dense

13.97 51 37.5 0 0.5 1.0 0 0.05 0.1
0.15

0 5 10 15 20
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Table 2 Experimental model datasets [1]

Data type Expt. No. e/B Df/B α/φ Experimental qu
(kN/m2)

Experimental
RF

Calculated RF

Training 1 0.05 0 0 133.42 0.8 0.9

2 0.1 0 0 109.87 0.659 0.8

3 0.15 0 0 86.33 0.518 0.7

4 0 0 0.123 128.51 0.771 0.77

5 0.05 0 0.123 103.01 0.618 0.693

6 0.1 0 0.123 86.33 0.518 0.616

7 0 0 0.245 96.14 0.576 0.57

8 0.05 0 0.245 76.52 0.459 0.513

9 0.15 0 0.245 51.99 0.312 0.399

10 0 0 0.368 66.71 0.4 0.4

11 0.1 0 0.368 44.15 0.265 0.32

12 0.15 0 0.368 35.12 0.211 0.28

13 0.05 0 0.49 34.83 0.209 0.234

14 0.1 0 0.49 29.43 0.176 0.208

15 0.15 0 0.49 23.54 0.141 0.182

16 0 0.5 0 264.87 1 1

17 0.05 0.5 0 226.61 0.856 0.9

18 0.1 0.5 0 195.22 0.737 0.8

19 0 0.5 0.123 223.67 0.844 0.822

20 0.05 0.5 0.123 193.26 0.73 0.74

21 0.15 0.5 0.123 140.28 0.53 0.575

22 0 0.5 0.245 186.39 0.704 0.656

23 0.1 0.5 0.245 137.34 0.519 0.525

24 0.15 0.5 0.245 116.74 0.441 0.459

25 0.05 0.5 0.368 129.49 0.489 0.453

26 0.1 0.5 0.368 111.83 0.422 0.402

27 0.15 0.5 0.368 94.18 0.356 0.352

28 0 0.5 0.49 115.76 0.437 0.364

29 0.05 0.5 0.49 98.1 0.37 0.328

30 0.15 0.5 0.49 72.59 0.274 0.255

31 0 1 0 353.16 1 1

32 0.1 1 0 278.6 0.789 0.8

33 0.15 1 0 245.25 0.694 0.7

34 0.05 1 0.123 277.62 0.786 0.79

35 0.1 1 0.123 241.33 0.683 0.702

(continued)
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Table 2 (continued)

Data type Expt. No. e/B Df/B α/φ Experimental qu
(kN/m2)

Experimental
RF

Calculated RF

36 0.15 1 0.123 215.82 0.611 0.614

37 0 1 0.245 264.87 0.75 0.755

38 0.05 1 0.245 239.36 0.678 0.679

39 0.1 1 0.245 212.88 0.603 0.604

40 0 1 0.368 225.63 0.639 0.632

41 0.1 1 0.368 179.52 0.508 0.506

42 0.15 1 0.368 155.98 0.442 0.443

43 0.05 1 0.49 166.77 0.472 0.459

44 0.1 1 0.49 143.23 0.406 0.408

45 0.15 1 0.49 126.55 0.358 0.357

46 0 0 0 101.04 1 1

47 0.05 0 0 84.37 0.835 0.9

48 0.15 0 0 54.94 0.544 0.7

49 0 0 0.133 79.46 0.786 0.751

50 0.1 0 0.133 52.97 0.524 0.601

51 0.15 0 0.133 42.18 0.417 0.526

52 0.05 0 0.267 47.09 0.466 0.484

53 0.1 0 0.267 38.46 0.381 0.43

54 0.15 0 0.267 31.39 0.311 0.376

55 0 0 0.4 38.26 0.379 0.36

56 0.05 0 0.4 32.37 0.32 0.324

57 0.1 0 0.4 26.98 0.267 0.288

58 0 0 0.533 24.03 0.238 0.218

59 0.05 0 0.533 19.62 0.194 0.196

60 0.15 0 0.533 13.34 0.132 0.152

61 0 0.5 0 143.23 1 1

62 0.1 0.5 0 103.99 0.726 0.8

63 0.15 0.5 0 87.31 0.61 0.7

64 0.05 0.5 0.133 103.99 0.726 0.726

65 0.1 0.5 0.133 90.25 0.63 0.645

66 0.15 0.5 0.133 72.59 0.507 0.565

67 0 0.5 0.267 98.1 0.685 0.628

68 0.05 0.5 0.267 84.86 0.592 0.565

69 0.1 0.5 0.267 72.59 0.507 0.502

70 0 0.5 0.4 79.46 0.555 0.465

(continued)
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Table 2 (continued)

Data type Expt. No. e/B Df/B α/φ Experimental qu
(kN/m2)

Experimental
RF

Calculated RF

71 0.05 0.5 0.4 67.89 0.474 0.418

72 0.15 0.5 0.4 48.07 0.336 0.325

73 0 0.5 0.533 58.27 0.407 0.319

74 0.1 0.5 0.533 43.16 0.301 0.255

75 0.15 0.5 0.533 36.3 0.253 0.223

76 0.05 1 0 193.26 0.925 0.9

77 0.1 1 0 175.6 0.84 0.8

78 0.15 1 0 156.96 0.751 0.7

79 0 1 0.133 186.39 0.892 0.867

80 0.05 1 0.133 168.73 0.808 0.78

81 0.1 1 0.133 153.04 0.732 0.693

82 0 1 0.267 160.88 0.77 0.733

83 0.05 1 0.267 144.21 0.69 0.66

84 0.15 1 0.267 112.82 0.54 0.513

85 0 1 0.4 133.42 0.638 0.6

86 0.1 1 0.4 106.93 0.512 0.48

87 0.15 1 0.4 94.18 0.451 0.42

88 0.05 1 0.533 92.21 0.441 0.42

89 0.1 1 0.533 84.37 0.404 0.373

90 0.15 1 0.533 75.54 0.362 0.327

Testing 1 0 0 0 166.77 1 1

2 0.15 0 0.123 65.73 0.394 0.539

3 0.1 0 0.245 62.78 0.376 0.456

4 0.05 0 0.368 53.96 0.324 0.36

5 0 0 0.49 43.16 0.259 0.26

6 0.15 0.5 0 164.81 0.622 0.7

7 0.1 0.5 0.123 165.79 0.626 0.658

8 0.05 0.5 0.245 160.88 0.607 0.59

9 0 0.5 0.368 151.07 0.57 0.503

10 0.1 0.5 0.49 85.35 0.322 0.291

11 0.05 1 0 313.92 0.889 0.9

12 0 1 0.123 313.92 0.889 0.877

13 0.15 1 0.245 188.35 0.533 0.528

14 0.05 1 0.368 206.01 0.583 0.569

15 0 1 0.49 183.45 0.519 0.51

(continued)
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Table 2 (continued)

Data type Expt. No. e/B Df/B α/φ Experimental qu
(kN/m2)

Experimental
RF

Calculated RF

16 0.1 0 0 68.67 0.68 0.8

17 0.05 0 0.133 63.77 0.631 0.676

18 0 0 0.267 55.92 0.553 0.538

19 0.15 0 0.4 20.6 0.204 0.252

20 0.1 0 0.533 16.68 0.165 0.174

21 0.05 0.5 0 123.61 0.863 0.9

22 0 0.5 0.133 120.66 0.842 0.807

23 0.15 0.5 0.267 60.82 0.425 0.44

24 0.1 0.5 0.4 56.9 0.397 0.372

25 0.05 0.5 0.533 50.03 0.349 0.287

26 0 1 0 208.95 1 1

27 0.15 1 0.133 137.34 0.657 0.607

28 0.1 1 0.267 129.49 0.62 0.587

29 0.05 1 0.4 118.7 0.568 0.54

30 0 1 0.533 98.1 0.469 0.467

5 Results and Discussions

Best performance analysis is done byusing correlation coefficient (Cr), determination
coefficient (R2),mean square error (MSE), rootmean square error (RMSE), andmean
absolute error (MAE).

Table 3 reveals the training and testing parameters of the experimental model test
conducted by Patra [1]. 70% of data sets are used as training data and a GRNNmodel
is built. 30% of datasets are used in the testing data. The coefficient of correlation
for training and testing data was 0.998 and 0.994, respectively. It shows the linearity
between the value predicted and the actual output with greater precision. More close
the value to 1 shows higher linearity. The values of statistical parameters for GNN
for all continuous variables are shown in Table 4. As RF is the target variable and the
other three are predictor variables. The maximum value for RF was 1, whereas its
minimum value was 0.132, and the mean value was 0.65229. The value of standard
deviation was 0. 19,833. The statistical parameters from ANN are shown in Table 5.
In the statistical analysis, the maximum value of output was 1 and its minimum value
was 0.132. Whereas as mean or the average value was set as 0.555. The standard
deviation of the output variable was 0.217.

Figure 2 shows the relative importance of the variable in the prediction model. It
can be easily seen in Fig. 2 that the inclination variable shows 100% importance or
impact over the target variable while the eccentricity ratio variable shows 33.946%
impact and embedment ratio makes the least impact or least important as compared
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Table 3 Experimental model datasets [1]

Parameters Training Testing

Mean target value for input data 0.652293 0.652293

Mean target value for predicted values 0.6530206 0.6544816

Variance in input data 0.0393364 0.0393364

Residual (unexplained) variance after model fit 0.000158 0.0005374

Proportion of variance explained by model (R2) 99.598% 98.634%

Coefficient of variation (Cv) 0.019267 0.035538

Normalized mean square error (NMSE) 0.004015 0.013661

Correlation between actual and predicted 0.998156 0.994194

Maximum error 0.492199 0.089428

Root mean square error (RMSE) 0.012568 0.0231815

Mean squared error (MSE) 0.000158 0.0005374

Mean absolute error (MAE) 0.0090726 0.0177511

Mean absolute percentage error (MAPE) 0.0179782 0.0323818

Table 4 Statistical parameters from GRNN

Variable Rows Minimum Maximum Mean Standard deviation

Df/B 120 0 1 0.66956 0.37450

A 120 0 20 7.98676 6.80215

e/B 120 0 0.15 0.06603 0.05531

RF 120 0.132 1 0.65229 0.19833

Table 5 Statistical parameters from ANN [2]

Parameter Maximum Minimum Average Standard deviation

e/B 0.15 0 0.075 0.056

Df/b 1 0 0.5 0.408

α/φ 0.533 0 0.256 0.181

RF 1 0.132 0.555 0.217

to the other two variables with around 22.112% importance over the target variable.
Figures 3 and 4 show the variation of experimental RF (Actual) versus predicted
RF value from GRNN and experimental RF versus empirically calculated RF(CRF),
respectively. Higher variation can be seen, but still, the graph proceeds in the linear
direction but less linearity is shown as compared to the GRNN prediction model
graph which is shown in Fig. 3.

Figure 5 shows the variation of actual target variable and AN N predicted output
variable for training and testing data. It can be seen from Fig. 5 that the model built
was providing good results, which were analyzed with the help of coefficient of
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Fig. 3 Relative importance of input variables on output variable RF

Fig. 4 Plot between experimental RF (Actual) and predicted RF value from GRNN

correlation. The value of Cr for training was 0.997 which is much closer to the value
1, whereas the Cr value for testing was 0.996 which represents a good prediction
according to this model.

The comparison between ANN and GNNwith different indices is shown in Table
6. No such variation in results was seen between the GRNN network model and
the ANN model. The mean square error was less in GRNN prediction work. There
was a slight difference between the correlation coefficient like for training work
was 0.998 for GRNN model, whereas 0.997 for ANN model, and for testing it was
0.994 for GRNN and 0.996 for ANN. Results of both GRNN and ANN show higher
accuracy than empirically calculated results, which are also shown in Figs. 3, 4, 5.
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Fig. 5 Plot between Experimental RF and Empirically calculated RF(CRF)

Fig. 6 Plot of experimental RF and predicted RF from ANN [2]

Table 6 Comparison between ANN and GRNN with Mathematical indices

Type of model GRNN (present study) ANN (results from [2])

Testing Training Testing Training

MSE 0.0005 0.00015 0.0019 0.001

RMSE 0.0231 0.0125 0.043 0.032

Rˆ2 0.986 0.996 0.992 0.994

Cr 0.994 0.998 0.996 0.997
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6 Conclusions

Highlights of the present study are shown below:

1. No such variations in results between ANN and GRNN were spotted, both
models were equally accurate.

2. The data available was never enough for backpropagation neural network, this
GRNN neural network technique founds to be advantageous because of the
ability of this technique in utilizing fewer data samples efficiently to converge
the function.

3. The standard deviation found in the output reduction factor (RF) was lesser in
the GRNN model as compared to the ANN model.

4. In the GRNN model, the inclination ratio was provided higher importance as
compared to other two input variables like embedment ratio and eccentricity
ratio (α/φ as 100%, e/B as 33.946% and Df/B as 21.112%), whereas in the
ANN network model, as per Garson’s algorithm, the inclination ratio (α/φ) was
given more importance as compared to other two followed by embedment ratio
(Df/B) and then eccentricity ratio (e/B).
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