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1 Introduction

Reinforcement learning for multiple collaborative agents is important and has many
practical applications. Consider a team that consists of different types of players. In
many cases, to win a game, each type of player must master highly relevant actions
that are necessarily different from the other types of player. For example, players of
a defensive team should guard relevant and diverse areas or relevant and different
types of players of the other team. This is also the case when controllingmany similar
robots to perform a task that cannot be performed by a single one. Training them in a
way they take different and relevant actions can lead to faster and better convergence
to optimal collaboration.

Typical approaches in reinforcement learning, which let each agent take actions
independently of other agents, are therefore not effective. Formulating the learning
as handling the combination of actions as if it is an action of a hypothetical agent can
lead to searching in an exponentially larger action spaces that grow with the number
of agents and therefore does not scale well.

In Osogami and Raymond (2019), we have proposed the use of the determinant of
amatrix to approximate the action-value function in reinforcement learning that takes
into account both relevance and diversity in a natural manner.When each action of an
agent in a particular state is characterized by a feature vector, the length of the feature
vector corresponds to the relevance of that action at that state. Meanwhile, the angle
between two feature vectors represents the diversity between the two corresponding
actions at that state. A set of feature vectors then comprises a parallelotopewhose vol-
ume is determined by the lengths (i.e., relevances) and the angles (i.e., diversities) of
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Increasing the diversity

Fig. 1 The logarithm of the squared volume of the parallelepiped defined by the feature vectors of
actions represents the value of the combination of those actions. The volume of the parallelepiped
is determined by the length of vectors (their relevances) and their angles (their diversities). The
volume can be increased by increasing relevance, diversity, or both

the feature vectors. An example of a parallelotope from three feature vectors in three
dimensions is shown in Fig. 1. The figure also illustrates two ways the volume can be
increased: increasing relevance and increasing diversity. The squared volume of the
parallelotope can be computed from the determinant of theGrammatrix of the feature
vectors. More specifically, the value of a combination of relevant and diverse actions
at a state can be computed from the logarithm of the determinant (log-determinant) of
the principal submatrix of a positive semidefinite matrix (kernel), where the principal
submatrix is specified by the actions, and the kernel depends on the state.

InOsogami andRaymond (2019),we have derived efficient learning rules of deter-
minantal SARSA (state-action-reward-state-action algorithm). Namely, we approx-
imate the action-value function of N agents with an N × N kernel matrix whose
effective dimension is K � N , so that at each iteration the action-value function
can be updated with the additional O(K 3) computational complexity. Determinan-
tal SARSA has been shown to find nearly optimal policies approximately ten times
faster than baseline approaches (Sallans and Hinton 2001, 2004; Heess et al. 2017;
Sallans 2002), where free energy of a restrictedBoltzmannmachine (RBM) is used as
a functional approximator. In this paper, we add theoretical insights and experiments
on how to avoid policies with poor local optima by techniques based on derivation
of the learning rules of determinantal SARSA.

2 Determinantal SARSA

In this section, we review determinantal SARSA, which we have proposed in
Osogami and Raymond (2019). Determinantal SARSA considers the setting with
a team of agents under central control. In the following, an agent team refers to the
team of agents, and a team action refers to the combination of their actions. At each
time t , the agent team makes an observation ot . Let zt ≡ ξ(at−1, rt , ot ) represent the
(features of) observation at time t , which may include the preceding team action at−1
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and reward rt in addition to ot . Let z≤t denote the observations up to t . Depending
on what has been observed (i.e., z≤t ), the agent team takes a team action at . Let
xt ≡ ψ(at ) ∈ {0, 1}N be a binary representation of a team action at (e.g.,, xt may
indicate which subset of N possible actions is taken by the agent team). The agent
team then obtains reward rt+1, and the environment changes its state. The agent team
then makes a partial observation ot+1 of the environment and chooses the next team
action at+1, and this process is continued. The goal of the agent team is to sequentially
choose team actions so that the cumulative reward is maximized.

Given that the agent team has z≤t , performs the action with the binary representa-
tion x, and acts according to the policy under consideration, determinantal SARSA
seeks to learn theQ (action value) function Qθ (z≤t , x) so that it best approximates the
expected cumulative reward. By learning the Q function, one can identify the action
that is optimal at a given state when one follows the policy under consideration from
the next state. This allows one to iteratively improve the policy under consideration.

In determinantal SARSA, the Q function is assumed to have the following form:

Qθ (z≤t , xt ) ≡ α + log detV(xt )Diag(exp(dt (φ)))V(xt )�. (1)

Here, V is an arbitrary N × K matrix for 0 < K ≤ N , and V(xt ) denotes the matrix
consisting of a subset of the rows ofV in a way that the rows ofV(xt ) are indexed by
the elements that are one in xt . Also, Diag(·) denotes the diagonal matrix formedwith
a given vector, dt (φ) is a time-varying K -dimensional vector, and its exponentiation
is elementwise. Here,dt (φ) should be considered as a time-seriesmodel, with param-
eter φ, that outputs a K -dimensional vector. Also, dt (φ) should be differentiable with
respect to φ to allow end-to-end learning. Examples of such dt (φ) include recurrent
neural networks (Hausknecht and Stone 2015), vector autoregressive models, and
dynamic Boltzmann machines (Osogami and Otsuka 2015; Osogami 2017).

To intuitively understand the form of Qθ in (1), consider the case where V is the
identity matrix of order K = N . In this case, Qθ is reduced to

Qθ (z≤t , xt ) = α + dt (φ)� x. (2)

If the i-th element of x indicates whether the i-th action is taken by an agent, the value
of a team action is the sum of the values of individual actions without consideration
of diversity, where dt (φ) represents the value (relevance) of individual actions at time
t . With a non-identity V, determinantal SARSA can take into account the diversity
in actions.

Determinantal SARSA learns all of the parameters θ ≡ (α,V, φ) in an end-to-end
manner. Specifically, at each iteration, determinantal SARSA updates θ according
to

θ ← θ + η
(
rt+1 + ρ Qθ (z≤t+1, xt+1) − Qθ (z≤t , xt )

) ∇θ Qθ (z≤t , xt ), (3)

where we need the gradient∇θ Qθ . In Osogami and Raymond (2019), we have shown
that the gradient can be represented in a computationally convenient form as follows:
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Algorithm 1 Determinantal SARSA (Osogami and Raymond 2019)1

1: Input: Discount factor ρ; learning rate η; initial θ
2: Take initial team-action a0; x0 ← ψ(a0)
3: for t = 0, 1, . . . do
4: Get rt+1 and observe ot+1; zt+1 ← ξ(at , rt+1, ot+1)

5: Take team-action at+1; xt+1 ← ψ(at+1)

6: Dt ← Diag(exp(dt (φ)))

7: Update dt (φ) to dt+1(φ) with zt+1
8: Dt+1 ← Diag(exp(dt+1(φ)))

9: Qt ← α + log detV(xt )Dt V(xt )�
10: Qt+1 ← α + log detV(xt+1)Dt+1 V(xt+1)

�
11: 	t ← rt+1 + ρ Qt+1 − Qt
12: α ← α + η 	t
13: V(xt ) ← V(xt ) + 2 η 	t (V(xt )+)�
14: φ ← φ + η 	t diag

(
V(xt )+ V(xt )

) ∇φdt (φ)

15: end for

∇αQθ (z≤t , x) = 1 (4)

∇V(x̄)Qθ (z≤t , x) = 0 (5)

∇V(x)Qθ (z≤t , x) = 2 (V(x)+)� (6)

∇φQθ (z≤t , x) = diag
(
V(x)+ V(x)

) ∇φdt (φ) (7)

where V(x)+ denotes the pseudo-inverse of V(x), diag(·) denotes the vector formed
with the diagonal elements of a given matrix, and x̄ ≡ 1 − x elementwise.

Algorithm 1 gives a pseudocode of determinantal SARSA. In each iteration of the
for-loop starting at Step 3, after getting reward rt+1 and making an observation ot+1

in Step 4, one takes a team action at+1 in Step 5. Steps 6–8 compute the diagonal
matrix Dt ≡ Diag(exp(dt (φ))) by using the time-series model dt (φ), whose state is
updated in Step 7 on the basis of the input zt . These diagonal matrices are then used
in Steps 9–12 to compute the TD error Δt . The parameters θ ≡ (α,V, φ) are then
updated in Steps 12–14. In Step 14, the gradient ∇φdt (φ) depends on the particular
time-series model under consideration. It is easy to estimate the computational time
to update parameters at each iteration of determinantal SARSA. Since the rank of
V is at most K , the computational complexity of the pseudo-inverse V(xt )+ and the
computation of log detV(xt )DtV(xt )� is O(K 3).

Note that onemayuse determinantal SARSA to the fully observable case by letting
Dt ≡ Diag(exp(dt (φ))) in (1) be static but depend on the fully observed Markovian
state st at time t . For example, one may use a feedforward neural network ψ(·)
that maps a state st into a K -dimensional feature vector d = ψ(st ), which then
defines Dt = Diag(exp(d)). With Dt alone, the state can only influence the values

1 Here, typographical errors in [10] are corrected by adding “�” in Step 9–10 and removing “¯” in
Step 13. In Step 13–14, theV(xt )+ is the pseudo inverse that will be slightly modified for improving
the stability of Determinantal SARSA.
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of individual actions, while we also allow the state to affect the diversity measure as
well through V.

In Step 2 and Step 5 of Algorithm 1, we need to choose team actions in considera-
tion of the tradeoff between exploration and exploitation. One of popular approaches
is Boltzmann exploration. In Osogami and Raymond (2019), we have shown that,
for determinantal SARSA, the Boltzmann exploration with unit temperature reduces
to sampling from a determinantal point process, which allows efficient (in time poly-
nomial in N ) sampling (Kulesza and Taskar 2012; Qiao et al. 2016; Kulesza and
Taskar 2011). The Boltzmann exploration with general temperature for determinan-
tal SARSA requires sampling from annealed determinantal distributions (Wachinger
and Golland 2015; Belabbas and Wolfe 2009), for which practical sampling algo-
rithm as Markov Chain Monte Carlo is available (Kang 2013; Gillenwater 2014).

3 Avoiding Poor Local Optima

In the experiments of Osogami and Raymond (2019), we have occasionally observed
that determinantal SARSA is trapped into poor local optima.We hypothesize that this
can happen because of the low-rank kernel approximation and the pseudo-inverse
updates. Here, we show how we can avoid such poor local optima.

Our formulation of (1) assumes that the rank of the following N × N positive
semidefinite matrix (kernel)

Lt ≡ VDiag(exp(dt (φ)))V� (8)

is K . This is achieved by the use of the N × K matrixV. However, depending on the
initial values ofV, determinantal SARSAmay fall into the situationwhere the rank of
V (and its submatrix V(x)) becomes smaller than K . Once determinantal SARSA is
trapped into suchVs, it cannot search for parameters on the larger subspace. Namely,
with (6), the parametersV(x) are updated by adding the terms that are proportional to(
V(x)+

)�
. However, because of the property of the pseudo-inverse, we can observe

that

Range (V(x)) = Range
((
V(x)+

)�)
, (9)

whereRange (A) is the range or the image of amatrixA. Thus, determinantal SARSA
may not be able to reach optimal solutions from some initial values. This explains
why determinantal SARSA can be trapped into local optima.

The above observation leads to mitigation techniques by keeping the rank ofV(x)
to be K during the computation. This can be achieved heuristically by adding some
noises to V in the initialization and to the pseudo-inverse V(x)+ in each iteration.

First,wepropose to initializeV using randomspecial orthogonalmatrices (Stewart
1980), A and B, where A is N × N , and B is K × K . Specifically, we initialize V as
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V = AΣ B� + E, (10)

where Σ is an N × K rectangular diagonal matrix in which every diagonal ele-
ment is one, E is a random N × K matrix (in our experiments, and we will sam-
ple each element independently according to the uniform distribution with support
[−0.01, 0.01]). Namely, the matrix V is initialized in a way such that each of its
singular values is one with small noise E . This particular initialization plays a rather
important role in avoiding convergence to poor local optima.

Next, let

V = AΣ B� (11)

be the singular-value decomposition of V. Then, instead of the pseudo-inverse

V(x)+ = BΣ−1 A� (12)

in (6), we let determinantal SARSA use the following “noisy” pseudo-inverse:

V(x)+ ≈ B
(
(1 − εt )Σ−1 + εt M

)
A�, (13)

where Mi j = δi j . We gradually reduce the magnitude of the noise εt over the
iteration t .

4 Experiments

In our experiments, we evaluate the performance of determinantal SARSA with and
without the newmethod of avoiding poor local optimal. We conduct our experiments
on the blocker task (Sallans and Hinton 2001, 2004; Heess et al. 2017; Sallans 2002),
for which we have shown in Osogami and Raymond (2019) that Determinantal
SARSA outperforms baseline methods (Sallans and Hinton 2001, 2004; Heess et al.
2017; Sallans 2002).We closely follow the instances considered inHeess et al. (2017)
andOsogami andRaymond (2019).All of the experiments are carried outwithPython
implementation on a workstation having 48 GB of memory and a 4.0 GHz CPU.

In the blocker task, we control an agent team, consisting of three agents, in
a collaborative manner, where the goal is to let one of the agents reach the end
zone, while two blockers hinder the agents. The field is a grid of four rows and
seven columns. The three agents start at uniformly random positions in the top row.
The two blockers, each occupies three consecutive squares, start at uniformly ran-
dom positions in the bottom row. At each time step, each agent can move one step
in one of the four directions or stay. After all of the agents take actions, each blocker
moves one step to the right or to the left if doing so can block an agent; otherwise,
the blocker stays. If one of the agents reaches the end zone, the agent team receives
+1 reward for that time step. Otherwise, the agent team incurs −1 reward per time
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step. See Heess et al. (2017) and Osogami and Raymond (2019) for more details
about the exact settings. Note that the blocker task is performed on a fully observ-
able environment. In Osogami and Raymond (2019), we also evaluate determinantal
SARSA with stochastic policy tasks, where the environment is partially observable.

Aswehave done inOsogami andRaymond (2019),we represent the teamactionat
by a 4 × 7 = 28 dimensional binary vector x, where each element indicates whether
an agent occupies a particular square after taking the team action at ((xt )i = 1) or
not. Likewise, we set Dt ≡ I and α = 0. Hyperparameters of determinantal SARSA
are set as in Osogami and Raymond (2019).

Figure 2 shows the performance of determinantal SARSA without the use of the
technique of avoiding poor local optima. Specifically, the average reward per step is
evaluated for every 40,000 steps (and for every 4000 steps during the initial 40,000

K = 28

80000 240000 400000
# actions

−1.0

−0.9

−0.8

−0.7

av
e.

 re
w

ar
d 

pe
r a

ct
io

n

80000 240000 400000
# actions

−1.0

−0.9

−0.8

−0.7
av

e.
 re

w
ar

d 
pe

r a
ct

io
n

K = 21

80000 240000 400000
# actions

−1.0

−0.9

−0.8

−0.7

av
e.

 re
w

ar
d 

pe
r a

ct
io

n

80000 240000 400000
# actions

−1.0

−0.9

−0.8

−0.7

av
e.

 re
w

ar
d 

pe
r a

ct
io

n

K = 14

80000 240000 400000
# actions

−1.0

−0.9

−0.8

−0.7

av
e.

 re
w

ar
d 

pe
r a

ct
io

n

80000 240000 400000
# actions

−1.0

−0.9

−0.8

−0.7

av
e.

 re
w

ar
d 

pe
r a

ct
io

n

K = 7

80000 240000 400000

# actions

−1.0

−0.9

−0.8

−0.7

av
e.

 re
w

ar
d 

pe
r a

ct
io

n

(a) Average

80000 240000 400000

# actions

−1.0

−0.9

−0.8

−0.7

av
e.

 re
w

ar
d 

pe
r a

ct
io

n

(b) Samples

Fig. 2 Performance of determinantal SARSA with various ranks of kernels, where the rank K is
indicated in the leftmost column. The panels in (a) show the mean and the standard deviation, over
20 runs, of the average reward per action. The panels in (b) show the average reward per action for
each of the 20 runs
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steps). The rank K of the kernel is varied as indicated in each row. Figure 2a shows
the mean and the standard deviation, over 20 runs, of the average reward per action.
Figure 2b shows the average reward per action for each of the 20 runs.

We can observe in Fig. 2a that reducing rank K has only a small impact on the
average performance for K ≥ 14. However, a significant degradation in performance

ε = 0
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Fig. 3 Performance of determinantal SARSA with noisy initialization and pseudo-inverse when
K = 7, where the magnitude ε of the noise at every 10,000-th iteration is indicated in the leftmost
column. The panels in (a) show the mean and the standard deviation, over 20 runs, of the average
reward per action. The panels in (b) show the average reward per action for each of the 20 runs
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is observed with K = 7. Figure 2b shows that determinantal SARSA sometimes
converges to poor local optima with K = 7. In particular, it has converged to the
average reward of −1 (the lowest possible average reward) in two out of 20 runs.

Figure 3 shows the performance of determinantal SARSA with K = 7 when the
technique ofmitigating poor local optima is applied. Here, themagnitude of the noise
at the t-th iteration (εt in (13)) is defined to be

εt = ε
t

104 . (14)

Namely, ε0 = 1 and ε104 = ε, where various values of ε are tested as indicated in
the leftmost column in Fig. 3. It suggests that determinantal SARSA can avoid
convergence to poor local optima by the use of noisy gradient with appropriate
magnitude of noise (specifically, 10−3 ≤ ε ≤ 10−2).

5 Conclusion

In Osogami and Raymond (2019), we have introduced determinantal SARSA, which
uses the determinant of a matrix so that both diversity and relevance of team actions
can be taken into account in reinforcement learning. Determinantal SARSA has
been shown to substantially outperform existing methods proposed for coping with
high-dimensional action space in multi-agent reinforcement learning. Determinantal
SARSA can effectively deal with exponentially large team action space. When there
are 2N possible team actions, determinantal SARSA has at most O(N 3) computa-
tional complexity and can have smaller complexity by assuming a low rank structure.

However, we find that determinantal SARSA with low-rank kernels can result in
poor local optima. In this paper, we have proposed techniques of noisy initialization
and noisy pseudo-inverse to avoid the poor local optima in determinantal SARSA.
The results of numerical experiments support the effectiveness of the proposed tech-
niques.
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