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Preface

We are in the era of big data, and every day, or even every second, a huge amount
of data is being accumulated or collected in our whole world. Such collection of big
data has become possible because of the development of computational technology
and Internet. Now our most important problem is how to get useful information from
such a complex set of data. It is natural to see that statistics plays an essential role
in analyzing such big data. Furthermore, mathematics can provide more and more
techniques and technologies for such purposes.

Another key word that leads today’s world is “AI,” artificial intelligence. This is
naturally based on the machine learning, especially the deep neural network (DNN)
techniques, and is now spreading in vast areas in our daily life. On the contrary,
it has also been pointed out that the theoretical reason why such AI systems work
so efficiently is still not clear. It is believed that mathematics will overcome such a
problem.

These two key terminologies, big data analysis and AI, are now indispensable in
finances and economics in the world. Thus, without mathematics or statistics, we
cannot talk about today’s society.

In these circumstances, we organized the conference, Forum “Math-for-Industry”
2018 (FMfI2018), at Fudan University, Shanghai, China, during November 17–21,
2018, for which the unifying theme was “Big Data Analysis, AI, Fintech, Math in
Finances and Economics.” We are sure that the theme was very timely and made a
big success not only in the industrial mathematics community, but also in industry.
This book is the proceedings of the conference and collects together selected papers
presented there. The topics covered in the conference are spatial financial risks,
foreign exchange markets, option pricing, evolution of copulas, inverse problems
connected to financial mathematics, DNNwith uncertainty quantification, reinforce-
ment learning, estimation error analysis of deep learning, integration of AI to agricul-
ture, functional clothing design, application of singularity theory, history of modern
mathematics in Vietnam, etc.

The contents of this volume also report on productive and successful interac-
tions between industry and mathematicians, as well as on the cross-fertilization and
collaboration that occurred. The book contains excellent examples of the roles of

ix



x Preface

mathematics in our society and, thereby, the importance and relevance of the concept
Mathematics_FOR_Industry.

We would like to thank the participants of the Forum and the members of the
Scientific and Organizing Committees, especially Jin Cheng, Tatsien Li, Shuai Lu,
Wenbin Chen andYuChen of FudanUniversity andDinghuaXu of Shanghai Univer-
sity of Finance and Economics. Without their cooperation and support, we would
never have experienced the great excitement and success of the Forum.Moreover, we
would like to express our sincere gratitude for the great help of the conference secre-
taries, Wei Chen, Seiko Sasaguri and Tsubura Imabayashi, during the preparation
and organization of the Forum, and also for the proceedings.

On behalf of the Editorial Board of the Proceedings of the Forum “Math-for-
Industry” 2018

Fukuoka, Japan
November 2021

Osamu Saeki
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Copula-Based Estimation of Value
at Risk for the Portfolio Problem

Andres Mauricio Molina Barreto and Naoyuki Ishimura

1 Introduction

This paper surveys our recent research on the estimation of Value at Risk (VaR) for
the portfolio problem.

VaR is one of widely usedmeasures of risk in the field of finance. VaR is the loss in
market value over the time horizon T that is exceeded with probability β. Because of
its usefulness and clearness, VaR provides a benchmark factor of the risk and plays a
principal role in the riskmanagement. Classicalmethods such as variance–covariance
are preferably used so far; however, there is enough empirical evidence which shows
that financial returns behave as non-normal distributed random variables with heavy
tails and asymmetry, where VaR is apt to be employed. We refer to Duffie and Pan
(1997) and McNeil et al. (2005), for instance, and the references cited therein.

Here, we estimate VaR in two ways. One is rather standard and is given as a com-
parison and/or reference, whose algorithm is based on well-known ARMA-GARCH
models, combined with Gaussian mixture innovations (see Lee and Lee 2011). This
modelmay perform better than classical approaches such as variance–covariance and
exponentially weighted moving average (EWMA)methods. Using ARMA-GARCH
models can capture effects of high volatility on the returns of portfolio. Implementing
Gaussian mixture innovations can lead to a more accurate VaR forecasting due to
the existence of heavy-tailed and skewed distribution. But it seems that the method
fails to capture the relation between variables when considering portfolio of several
assets.

A. M. Molina Barreto
Graduate School of Commerce, Chuo University, Tokyo 192-0393, Japan
e-mail: ammolinaba@unal.edu.co

N. Ishimura (B)
Faculty of Commerce, Chuo University, Tokyo 192-0393, Japan
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2 A. M. Molina Barreto and N. Ishimura

The other is copula-based method which is the main purpose of this article. Cop-
ulas are well-recognized functions which provide a flexible tool for analyzing the
dependence relation among random variables. Because of its readiness for appli-
cations, copulas are now customarily employed in various settings. They allow the
construction of multivariate distributions even with different margins and depen-
dence structure. See for example Genest and Favre (2007) and McNeil et al. (2005).
It is very natural and desirable that the assets are connected with copulas for VaR esti-
mation. Indeed several attempts have been already undertaken, and much progress
has been made. See for instance (Fantazzini 2008; Krzemienowski and Szymczyk
2016; Prékopa 2012).

In the present article, we consider a portfolio which is composed of two indexes,
namely NASDAQ and Nikkei 225, with the same weight and estimate VaR numer-
ically by the use of both approaches, respectively. Lastly, backtesting shows that
copula-based method works better.

The paper is organized as follows: Sect. 2 gives basic definition and properties
of Value at Risk and copulas. The determination formula of copula-based VaR is
presented in Sect. 3. Empirical study is implemented in Sect. 4. Section5 concludes
with discussion.

2 Preliminary

We briefly make a review on the concept of VaR and copulas for completeness of
our presentation. Hereafter, we confine ourselves to the bivariate case for simplicity.

2.1 Value at Risk

Let X , Y be random variables and the portfolio return Z = λX + (1 − λ)Y (0 <

λ < 1). We then see that VaR for Z with the confidence level β (0 < β < 1) is given
by

VaRβ(Z) := F (−1)
Z (β) = inf{t | FZ (t) ≥ β}, (1)

where FZ (t) denotes the distribution function of Z ; namely, FZ (t) = P(Z ≤ t).
As to empirical studies, for each observed stock price {St }Tt=1, the daily geometric

return rt is expressed as

rt = log
( St
St−1

)
(t = 1, 2, . . . , T ).

VaR represents the maximum expected loss that will not be exceeded with a specified
probability β over a predetermined time horizon T .
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2.2 Copula

Our additional aspect is concerned with the relationship between our two returns X
and Y . It is typical that these variables are assumed to be independent, which makes
the situation simpler. However, it may happen that X and Y are nonlinearly related;
this is the point we take into account, and we suppose that the nonlinear relation is
represented through a copula function. For further details, we refer for instance to
(Durante and Sempi 2016; Joe 1997; Nelsen 2006).

Definition 1 A continuous function C defined on I2 := [0, 1] × [0, 1] and valued in
I := [0, 1] is said to be a copula if the following conditions are satisfied.
(i) For every (u, v) ∈ I

2,

C(u, 0) = C(0, v) = 0,
C(u, 1) = u and C(1, v) = v.

(ii) (the 2-increasing condition) For every (ui , vi ) ∈ I
2 (i = 1, 2) with u1 ≤ u2 and

v1 ≤ v2,
C(u1, v1) − C(u1, v2) − C(u2, v1) + C(u2, v2) ≥ 0.

Next we recall the well-known theorem due to Sklar (1973) in bivariate case.
This could be the most important result of the copula theory. It states that any group
of univariate distribution can be linked with any copula and a valid multivariate
distribution can be defined.

Theorem 1 (Sklar’s theorem) Let H be a bivariate joint distribution function with
margins functions FX and FY ; that is,

lim
x→∞ H(x, y) = FY (y), lim

y→∞ H(x, y) = FX (x).

Then, there exists a copula, which is uniquely determined on Ran FX × Ran FY , such
that

H(x, y) = C(FX (x), FY (y)). (2)

Conversely, if C is a copula and FX and FY are distribution functions, then the
function H defined by (2) is a bivariate joint distribution function with margins FX

and FY .

In our empirical study at §4, Student-t, Plackett, and symmetrized Joe-Clayton
copulas are used.
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3 Determination Formula

Our main analytical observation in this article is about a copula-based VaR. Let X , Y
be nonnegative random variables, whose joint distribution function H is represented
by a copula C with

H(x, y) = P(X ≤ x,Y ≤ y) = C(FX (x), FY (y)),

where FX (x) = P(X ≤ x), FY (y) = P(Y ≤ y) are marginal distribution functions
of X , Y , respectively. We further assume that C has the density c, namely C(u, v) =∫ u
0 ds

∫ v

0 c(s, t)dt , as well as FX , FY have densities fX , fY , respectively.
We consider a portfolio Z = λX + (1 − λ)Y (0 < λ < 1) at the confidence level

β (0 < β < 1) and want to evaluate VaRβ(Z). The determination formula is then
stated as follows.

Theorem 2 VaRβ(Z) can be attained as the unique solution z∗ for the integral
equation

β =
z∗
1−λ∫

0

(
z∗
λ

− 1−λ
λ

y∫

0

c(FX (x), FY (y)) fX (x)dx
)
fY (y)dy,

so that we see that

β =
VaRβ (Z)

1−λ∫

0

(
VaRβ (Z)

λ
− 1−λ

λ
y∫

0

c(FX (x), FY (y)) fX (x)dx
)
fY (y)dy. (3)

This formula itself is easy to understand; indeed, for simplicity, under the ass-
sumption that FZ (z) is continuous and strictly monotone, we observe that VaRβ(Z)

is given by the solution z to the equation

β = P(Z ≤ z) = P(λX + (1 − λ)Y ≤ z),

where the right hand side is reduced to

P(λX + (1 − λ)Y ≤ z)

=
z∫

0

ds

s∫

0

c
(
FX

( t

λ

)
, FY

( s − t

1 − λ

))1
λ
fX

( t

λ

) 1

1 − λ
fY

( s − t

1 − λ

)
dt

=
z

1−λ∫

0

(
z
λ
− 1−λ

λ
y∫

0

c(FX (x), FY (y)) fX (x)dx
)
fY (y)dy.
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It is to be noted that the formula is already employed in numerical research (see
Fantazzini 2008). See also Molina Barreto et al. (2019), where the theorem contains
mistakes and which we have corrected here.

4 Empirical Study

We now turn our attention to empirical analysis of estimating VaR.
The database used for our empirical analysis consists of daily geometric return

obtained from closing prices for the NASDAQ and Nikkei 225 from August 22,
2013, to August 21, 2018, with a total of 1188 trading days. The data is taken from
Yahoo Finance. Table1 contains descriptive statistics, and Fig. 1 presents plots of
both series. The implementation is performed with MATLAB.

Both series present asymmetry and have large kurtosis. In both cases, we can
observe the negative value of asymmetry for both series, indicating the likeliness of
negative returns, and excess of kurtosis shows fatter tails than the normal distribution.
We can also observe the effects of volatility clustering. It would be a good idea to
consider model which is different to normal or t-distributed innovations for each
series.

4.1 Margins Modelling

To specify a model for each series, we consider ARMA(p, q)-GARCH(r, s) model
for asset returns rt (t = 1, 2, . . . , T ) which is given by (see Lee and Lee 2011)

Table 1 Descriptive statistics of daily log-returns of NASDAQ and Nikkei 225

Statistics NASDAQ Nikkei 225

Mean 0.0007 0.0004

Standard deviation 0.0095 0.0130

Minimum −0.0420 −0.0825

Median 0.0011 0.0006

Maximum 0.0415 0.0743

Kurtosis 5.2800 7.8141

Asymmetry −0.6011 −0.1742
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Fig. 1 Daily and absolute returns of NASDAQ and Nikkei 225

rt = a0 +
p∑

i=1

airt−i + εt +
q∑
j=1

b jεt− j , εt = ztσt ,

σ 2
t = c0 +

r∑
i=1

ciε
2
t−i +

s∑
j=1

d jσ
2
t− j .

Here, zt (t = 1, 2, . . . , T ) is a sequence of independent and identically distributed
(i.i.d.) random variables with K component Gaussian mixture density defined as

fη(y) =
K∑
i=1

πi f (y;μi , σi ),

where

f (y;μi , σi ) = 1√
2πσi

exp

{
−1

2

(
y − μi

σi

)2
}

,

and the Gaussian mixture parameter is denoted by η = (π1, . . . , πK , μ1, . . . , μK ,

σ1, . . . , σK ), and its space is
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Fig. 2 Conditional variance and standardized residuals of NASDAQ and Nikkei 225

Ω ⊂ {
η ⊂ [0, 1]K × R

K × (0,∞)K |
K∑
i=1

πi = 1,
K∑
i=1

πiμi = 0,
K∑
i=1

πi (μ
2
i + σ 2

i ) = 1

}
.

For the estimation of parameters {ai , b j }, {ci , d j }, the so-called Gaussian quasi-
maximum-likelihood estimation (QMLE) is utilized. See Lee and Lee (2011) for the
detail. Observe also Palaro and Hotta (2006). The results for marginal models are
given in Table2. In fact, we have fitted twoAR(1)-GARCH(1,1) for both series as ini-
tial models with a two-component Gaussian mixture. This selection was considered
to see there was no autocorrelation nor squared autocorrelation in the residuals. Also
it is usual to consider two or three components for the mixture of normals (here we
only report the case of two). We also performed Ljung Box test Ljung and Box 1978
to infer that the null hypothesis is not rejected from lag 1 to 5. We report these val-
ues at Table2. Finally, we report values for Kolmogorov–Smirnov (KS), Chi-square
goodness-of-fit test (CSG), and Anderson–Darling test used for uniformity test for
the standardized residuals (see Corder and Foreman 2014) (Figs. 2 and 3).
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4.2 Copula-Based Approach

For a copula-based approach, the copulas we employ are the Student-t copula, the
Plackett copula, and the symmetrized Joe-Clayton copula.We recall the the Student-t
copula is given by

C t
ρ,ν(u, v) =

t−1
ν (u)∫

−∞

t−1
ν (v)∫

−∞

1

2π
√
1 − ρ2

(
1 + s2 − 2ρst + t2

ν(1 − ρ2)

)− ν+2
2
dsdt,

where t−1
ν denotes the inverse of the univariate t distribution with ν degrees of free-

dom, and ρ means the linear correlation coefficient.

Table 2 Model parameters of univariate Gaussian mixture ARMA-GARCH

Parameter NASDAQ Nikkei 225

a0 9.7400 × 10−4 8.9296× 10−4

(0.0059) (0.0077)

a1 −0.0340 −0.0333

(0.8277) (0.8046)

c0 1.2871× 10−5 9.0378× 10−6

(5.9042× 10−5) (4.9815× 10−5)

c1 0.1823 0.1600

(0.7352) (05737)

d1 0.6747 0.7965

(1.0831) (0.6252)

π 0.7558 0.6788

(1.9984) (2.5686)

μ1 0.1871 0.1258

(1.2036) (1.1685)

μ2 −0.5793 −0.2658

(6.0994) (4.2117)

σ 2
1 0.5168 0.4309

(1.8917) (2.2835)

σ 2
2 2.0518 2.0984

(8.8077) (9.7640)

Q2(1) 0.9906 0.7243

Q2(5) 0.8659 0.5474

KS 0.2207 0.03806

χ2 0.0888 0.0071

AD 0.0457 0.0083

Standard errors between brackets. Last values correspond to p-values for each test
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Fig. 3 Empirical
distribution of transformed
series ut and vt
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The Plackett copula is given by

Cθ (u, v)

= 1

2(θ − 1)

{
1 + (θ − 1)(u + v) −

(
(1 + (θ − 1)(u + v))2 − 4uvθ(θ − 1)

) 1
2
}
,

for θ > 0, θ 
= 1.
Finally, let λU , λL (∈ (0, 1)) be two parameters, which will turn out to be the

coefficient of upper and lower tail dependence, respectively (see Durante and Sempi
2016; Joe 1997; Nelsen 2006). The Joe-Clayton copula is given by

CJC(u, v; λU , λL)

= 1 −
(
1 − max{(1 − (1 − u)κ)−γ + (1 − (1 − v)κ)−γ − 1, 0}− 1

γ

) 1
κ

,

where κ = 1/ log2(2 − λU ), γ = −1/ log2 λL . The symmetrized Joe-Clayton copula
is now expressed as
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Table 3 Proportion of observations where the portfolio loss exceeded the estimated VaR with
copulas

Model Proportion of violations

λ = 0.05 λ = 0.01

AR(1)-GARCH(1,1) 0.0644(45) 0.0200(14)

SJC-NM 0.0415(29) 0.0057(4)

Plackett-NM 0.0458(32) 0.0100(7)

t-student-NM 0.0443(31) 0.0086(6)

Historical 0.0386(27) 0.0086(6)

Variance–covariance 0.0601(42) 0.0229(16)

CSJC(u, v; λU , λL ) = 1

2
CJC(u, v; λU , λL ) + 1

2
CJC(1 − u, 1 − v; λL , λU ) + u + v − 1.

The estimation for the parameters of the copula was made by inference function for
margins (IFM) method. In a first stage, we compute the parameter for the margins
via ARMA-GARCH with normal mixture distributed innovation. Once the data is
transformed into uniform data, we construct the likelihood function and seek for the
parameters that maximizes this function.

l(θ) =
T∑
t=1

ln c (F1 (r1t ; θ1) , F2 (r2t ; θ2) , . . . , Fn (rnt ; θn)) +
T∑
t=1

n∑
j=1

ln f j
(
r jt ; θ j

)
.

(4)
We again consider the portfolio of equal weight. First we estimate the parameters
using the data from t = 1 to t = 488 as initialwindowand update the parameters each
day as for themarginal distributions as for the copula. Our target is to find the solution
of (3) for VaR at the level β = 0.01 and β = 0.05 concerning the data from t = 489
to t = 1188 (699 days). In Table3, we can observe the proportion of observations
where the loss exceeded confidence level.We then compare the forecast VaRwith the
actual return of the portfolio. However, the computation is highly demanding, and
a Monte-Carlo simulation is preferred. Observing the value of violations, we could
infer that the plain ARMA-GARCH with mixture of normal distributions is not well
enough for this portfolio. But if we consider the effect of nonlinear dependence given
by the copula, the improvement of implementation to the computation of VaR, we
can see an outperform in both level of confidence.We also comparedwith benchmark
models like variance–covariance and EWMA method. In all cases, the model with
Plackett-Normal mixture gives the best results. Data is exhibited in Figs. 4 and 5.
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Fig. 4 One day ahead forecasts of VaR at β = 5% for portfolio of NASDAQ and Nikkei 225 with
Gaussian mixture margins and various copulas
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Fig. 5 One day ahead forecasts of VaR at β = 1% for portfolio of NASDAQ and Nikkei 225 with
Gaussian mixture margins and various copulas
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Table 4 Backtesting for estimated VaR models with copulas

β = 0.05

Model Bin POF CCI Observations Failures

AR-GARCH
NM

Accept Accept Accept 699 45

Historical Reject Reject Accept 699 27

Normal Reject Reject Accept 699 42

SJC-NM Accept Accept Accept 699 29

Plackett-NM Accept Accept Accept 699 32

t-student-NM Accept Accept Accept 699 31

β = 0.01

AR-GARCH
NM

Reject Reject Accept 699 14

Historical Accept Accept Accept 699 6

Normal Reject Reject Accept 699 16

SJC-NM Accept Accept Accept 699 4

Plackett-NM Accept Accept Accept 699 7

t-student-NM Accept Accept Accept 699 6

4.3 Backtesting

To ascertain the outcome of computation, several backtestings are considered. We
here appeal to binomial test (Bin), Kupiec’s POF test (POF), and Christoffersen’s test
(CCI), respectively. See Christoffersen (1998), Kupiec (1995). The result is given in
Table4.

Again, we can infer the proposedmodels with copulas results in better estimations
thanplainARMA-GARCHnormalmixturemodels. Thanks to the property of copula,
we can explain a better nonlinear correlation between the two indexes studied here. In
effect, for extreme losses, copulas give better estimates and pass all the backtestings.

5 Discussions

Estimation ofValue atRisk (VaR) for the portfolio problem is discussed.VaR is one of
well usedmeasures of risk.We consider the portfolio composed ofNasdaq andNikkei
225 indexes, and estimate VaR empirically in two ways. One is a standard method
which is based onARMA-GARCHmodelswithGaussianmixture innovations;while
the other is copula-based approach. Here we remark that a copula function is known
to provide a flexible tool of handling nonlinear dependence between two indexes.
In the evaluation of copula-based VaR, we appeal to the determination formula.
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Implementation shows that compared to the former standard procedure, our copula-
based outcome is indicated to be better.

There needs, however, more evidence to conclude that the copula-based approach
is better in comparison with others. Our on-going research project is focused on
empirical investigations for VaR estimation with various methods.
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Notes on Backward Stochastic
Differential Equations for Computing
XVA

Jun Sekine and Akihiro Tanaka

1 Introduction

Backward stochastic differential equations (BSDEs) have been studied intensively
from both theoretical and application viewpoints. Bismut (1976, 1978) studied
BSDEs related to stochastic control problems, and Pardoux and Peng (1990) intro-
duced general nonlinear BSDEs driven by Brownian motion as a noise process.
After those early pioneering studies and since the late 1990s, the field of mathemat-
ical finance has provided various interesting research topics to develop the theory
and application of BSDEs (e.g., El Karoui et al. 2000). In the present paper, we
are interested in one such recent research topic in mathematical finance, namely the
X-valuation adjustment (XVA) problem. The pricing and hedging methodology for
over-the-counter (OTC) financial derivative securities for practitioners in financial
institutions has been modified since the global financial crisis in 2008. The pre-crisis
pricing was based on the Black–Scholes–Merton paradigm, and

pRN := E [DFr(T )ξT ]

was regarded as the “fair” price of the derivative security (T, ξT ). Here, ξT is a
random variable representing the payoff at the maturity date T ∈ R++(:= (0,∞))

of the derivative security, DFr(T ) := exp
{
− ∫ T

0 r(u)du
}
is a suitable discounting
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factor, where r := (r(t))t≥0 is a risk-free interest rate process and E [(·)] represents
the expectation with respect to the so-called risk-neutral probability measure. By
contrast, the post-crisis pricing formula used by practitioners in financial institutions
is now described as

p̄RN +
∑
x

xVA (1)

for the derivative security (T, ξT ). Here,

p̄RN := E [DFr̄ (T )ξT ] ,

employing r̄ := (r̄(t))t≥0 as a risk-free interest rate process, which is different from
r used in the pre-crisis model,1 and

∑
x

xVA = CVA − DVA + FVA + ColVA + · · ·

represents various valuation adjustments (e.g., credit valuation adjustment, debt val-
uation adjustment, funding valuation adjustment, collateral valuation adjustment).
We may interpret the post-crisis modification as reflecting the following current
situations.

1. The credit risk (default risk) of investors and their counterparties and the liquidity
risk (of assets and cash) arewidely recognized and and now considered seriously.

2. As a consequence of 1, the differences in various interest rates (e.g., risk-free
rate, repo rate, funding rate, collateral rate) can no longer be neglected.

In this paper, we aim to understand the post-crisis pricing formula (1) in a better
way from a theoretical viewpoint. Using BSDEs, which model the value processes
of hedging portfolios, we interpret (1) as an approximate value of the fair price (i.e.,
the replication cost) of a derivative security. Concretely, this paper is organized as
follows.

• In Sect. 2, we prepare a BSDE with a random horizon, where two random times
τ1, τ2 and the progressively enlarged filtration by these random times are intro-
duced, and the horizon is set as τ1 ∧ τ2 ∧ T (T ∈ R++). We review some basic
properties of such a BSDE, that is, the existence of a unique solution and its con-
struction, using a reducedBSDEdefined on a smaller filtration (seeTheorems 1–3).
These results are then used in Sect. 3.

• In Sect. 3, we construct a financial market model that generalizes the model given
byBichuch et al. (2018). On it, we deriveBSDEs for pricing and hedging derivative
securities, which express nonlinear dynamic hedging portfolio values of the seller
and buyer. Here, we model the default time of the hedger (i.e., the seller of a

1 TheLondon InterbankOfferedRate (LIBOR)was a popular choice as the risk-free rate in pre-crisis
models, whereas the Overnight Index Swap (OIS) rate is now recognized as a suitable candidate as
the risk-free rate in post-crisis models.
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derivative security) τ1 and that of her counterparty (i.e., the buyer of the derivative
security) τ2, each of which are defined by random times. The contract between
the hedger and her counterparty expires if the hedger or the counterparty defaults.
Hence, τ1 ∧ τ2 ∧ T is interpreted as the (random) horizon of the contract, where T
is the prescribedfixedmaturity, andwenaturally haveBSDEs considered inSect. 2.

• In Sect. 4, working with the BSDEs introduced in Sect. 3, we obtain the following.

1. An explicit sufficient condition is presented to ensure the non-existence of an
arbitrage opportunity for both the seller and buyer of the derivative security (see
Theorem 4). We note that a rather restrictive condition is necessary to ensure
the existence of an arbitrage-free price (see Remark 14).

2. The pricing formula (1) used by practitioners is interpreted as an approximation
of the theoretical fair price of the derivative security: XVA is regarded as cer-
tain “zeroth” order approximated correction terms (see Theorem 5, Corollary 1,
Proposition 3, and Remark 16). Furthermore, we mention a higher first-order
approximation (see Sect. 4.3).

We intend to write this paper in an expository manner generally: Sect. 2 is devoted
for reviewing known results and some results in Sect. 4 (that is, Theorem 4 and
Propositions 1 and 2) are rather straightforward extensions of existing results of the
closely related work by Bichuch et al. (2015, 2018) and Tanaka (2019). For other
parts, we regard the following as being the contributions of the paper in comparison
with Bichuch et al. (2015, 2018) and Tanaka (2019).

1. The market model is generalized: our model treats

(a) a multiple risky asset model, and
(b) a stochastic factor model that includes a stochastic volatility, a stochastic

interest rate, and a stochastic hazard rate.

2. Different definitions of arbitrages and admissible trading strategies are employed
(see Sect. 3.5). Because we analyze the pricing/hedging problem of derivative
securities by using BSDEs, our choices seem to be natural and clear.

3. For XVA, an interpretation of pricing formula (1) is given as well as its arbitrage-
free property (see Theorem 5, Corollary 1, and Proposition 3 with the following
Remark 16 in Sect. 4.2, and cf. the results in Tanaka 2019).

4. Regarding the lending-borrowing spreads of interest rates as “small parameters,”
the first-order perturbed BSDEs are derived, and the associated approximated
valuation adjustment terms are computed (see Proposition 4 in Sect. 4.3).
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2 BSDE with a Random Horizon in a Progressively
Enlarged Filtration

2.1 Setup

Let (�,F ,P) be a complete probability space, and let W := (W (t))t≥0, W (t) :=
(W1(t), . . . ,Wn(t))

� be an n-dimensional Brownian motion on it. Define the filtra-
tion by

Ft := σ (W (s); s ∈ [0, t]) ∨ N , t ≥ 0,

where N is the totality of null sets. Let E1, E2 be exponentially distributed random
variables, assuming that W , E1, and E2 are mutually independent. Using nonneg-
ative Ft -progressively measurable processes hi := (hi (t))t≥0, (i = 1, 2), define the
random times τ1, τ2 by

τi := inf

⎧⎨
⎩t ≥ 0

∣∣∣
t∫

0

hi (u)du ≥ Ei

⎫⎬
⎭ . (2)

The indicator processes for τi (i = 1, 2), namely

Ni (t) := 1{t≥τi }, t ≥ 0,

are submartingales with respect to the filtration

Ht := σ (N1(s), N2(s); s ∈ [0, t]) , t ≥ 0,

and their Doob–Meyer decompositions are written as

Ni (t) = Mi (t) +
t∫

0

{1 − Ni (s)} hi (s)ds, t ≥ 0

for i = 1, 2, where

Mi (t) := Ni (t) −
t∫

0

{1 − Ni (s)} hi (s)ds, t ≥ 0

(i = 1, 2) are two independent martingales with respect to (Ht )t≥0. Moreover,
(W, M1, M2) remain as martingales with respect to the progressively enlarged filtra-
tion,

Gt := Ft ∨ Ht , t ≥ 0
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(e.g., see Sect. 2.3 of Aksamit and Jeanblanc 2017), which aremutually independent.
Also, we deduce that for 0 ≤ s ≤ t ,

P
(
τi > s

∣∣ Ft
) = P

(
τi > s

∣∣ F∞
) = exp

⎧⎨
⎩−

s∫

0

hi (u)du

⎫⎬
⎭ ,

where F∞ := σ
(∪t≥0Ft

)
. From this, we see that for ds 
 1,

P
(
τi ≤ s + ds

∣∣ τi > s,F∞
) =P (s < τi ≤ s + ds|F∞)

P (τi > s|F∞)

=1 − exp

⎧⎨
⎩−

s+ds∫

s

hi (u)du

⎫⎬
⎭ ≈ hi (s)ds,

and hi is called the hazard rate (or intensity) process for τi . Following Pham (2010),
we employ the notation below.

Notation 1 • F := (Ft )t≥0, G := (Gt )t≥0, and H := (Ht )t≥0.
• P(F) (resp. P(G)): σ -algebra generated by F (resp. G)-predictable measurable
subsets on R+ × �. Equivalently, σ -algebra on R+ × � generated by F-adapted
left-continuous processes.

• O(F) (resp.O(G)): σ -algebra generated by F (resp.G)-optional measurable sub-
sets onR+ × �. Equivalently,σ -algebra onR+ × � generated byF-adapted right-
continuous processes.

• PF (resp. PG): the space of F (resp. G)-predictable processes.
• OF (resp. OG): the space of F (resp. G)-optional processes.
• P (k)

F
: the space of the parametrized processes, f : R+ × � × R

k+ � (t, ω, u) 
→
ft (ω, u) ∈ R, which is P(F) ⊗ B(Rk+)/B(R)-measurable.

• O(k)
F
: the space of the parametrized processes, f : R+ × � × R

k+ � (t, ω, u) 
→
ft (ω, u) ∈ R, which is O(F) ⊗ B(Rk+)/B(R)-measurable.

• Denote by PF,t := {
f 1[0,t]| f ∈ PF

}
, OF,t := {

f 1[0,t]| f ∈ OF

}
, P (k)

F,t :={
f (·)1[0,t]| f ∈ P (k)

F

}
, and O(k)

F,t :=
{
f (·)1[0,t]| f ∈ O(k)

F

}
, for example.

We recall the following basic properties of stochastic processes under the progres-
sively enlarged filtration G.

Lemma 1 (Lemmas 5.1 and 2.1 of Pham 2010).

(1) Any Gt -predictable process (P(t))t≥0 has the expression that

P(t) = p0(t)1{t≤τ1∧τ2}
+p1t (τ1)1{τ1<t≤τ2} + p2t (τ2)1{τ2<t≤τ1} + p1,2t (τ1, τ2)1{t>τ1∨τ2},

where (p0(t))t≥0 ∈ PF,
(
pit (·)

)
t≥0 ∈ P (1)

F
(i = 1, 2) and

(
p1,2t (·, ·)

)
t≥0

∈ P (2)
F

.
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(2) Any Gt -optional process (P(t))t≥0 has the expression that

P(t) = p0(t)1{t<τ1∧τ2}
+p1t (τ1)1{τ1≤t<τ2} + p2t (τ2)1{τ2≤t<τ1} + p1,2t (τ1, τ2)1{t≥τ1∨τ2},

where (p0(t))t≥0 ∈ OF,
(
pit (·)

)
t≥0 ∈ O(1)

F
(i = 1, 2) and

(
p1,2t (·, ·)

)
t≥0

∈ O(2)
F
.

(3) Any Gt -measurable random variable Gt has the expression that

Gt = g0t 1{t<τ1∧τ2}
+ g1t (τ1)1{τ1≤t<τ2} + g2t (τ2)1{τ2≤t<τ1} + g1,2t (τ1, τ2)1{t≥τ1∨τ2},

where g0t is an Ft -measurable random variable,
(
git (·)

)
t≥0 ∈ O(1)

F
(i = 1, 2),

and
(
g1,2t (·, ·)

)
t≥0

∈ O(2)
F
.

Now, on the filtered probability space (�,F ,P,G), we consider the BSDE

−dY (t) = f (t,Y (t), Z(t),U1(t),U2(t)) dt

− Z(t)�dW (t) −U1(t)dM1(t) −U2(t)dM2(t),

t ∈ [0, τ1 ∧ τ2 ∧ T ],
Y (τ1 ∧ τ2 ∧ T ) = φ1(τ1)1{τ1<τ2∧T } + φ2(τ2)1{τ2<τ1∧T } + ξT 1{T<τ1∧τ2}, (3)

where T ∈ R++ := (0,∞) is a fixed terminal time, and the following conditions are
imposed.

Assumption 1 (i) ξT ∈ L2(�,FT ,P).

(ii) For i = 1, 2, φi ∈ OF so that E

[
sup

t∈[0,T ]
|φi (t)|2

]
< ∞.

(iii) f : [0, T ] × � × R × R
n × R

2 → R is PF ⊗ B(R) ⊗ B(Rn) ⊗ B(R2)/B(R)-
measurable and satisfies, with some positive constant Kf > 0,

∣∣ f (t, y, z, u1, u2) − f
(
t, y′, z′, u′

1, u
′
2

)∣∣
≤ Kf

(|y − y′| + |z − z′| + |u1 − u′
1| + |u2 − u′

2|
)

for all(y, z, u1, u2), (y
′, z′, u′

1, u
′
2)

a.e. (t, ω) ∈ [0, T ] × �.
(iv) It holds that

E

⎡
⎣

T∫

0

| f (t, 0, 0, 0, 0)|2 dt
⎤
⎦ < ∞.
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2.2 Existence, Uniqueness, and Construction of Solution

A specific feature of BSDE (3) is that it has the random time horizon τ1 ∧ τ2 ∧ T ,
where τi is the (first) jump time for the martingale Mi (i = 1, 2). As for the definition
of the solution to such a BSDE, we employ the following (cf. Darling and Pardoux
1997 as an example of related work).

Definition 1 Wecall the quadruplet (Y, Z ,U 1,U 2) : [0, T ] × � → R × R
n × R ×

R a solution to BSDE (3) if it satisfies the following conditions.

(a) Y := (Y (t))t∈[0,T ] is a G-adapted RCLL (i.e., right continuous and having left

limit) process (which is an element of OG,T ), and (Z ,U 1,U 2) ∈ (PG,T
)n+2

.
(b) For t ∈ [0, T ], it holds that

Y (t)1{τ1∧τ2≤t} = {
φ1(τ1)1{τ1<τ2} + φ2(τ2)1{τ2<τ1}

}
1{τ1∧τ2≤t},

Z(t)1{τ1∧τ2≤t} =0,

Ui (t)1{τ1∧τ2≤t} =0, i = 1, 2.

(c) For t ∈ [0, T ], it holds that

Y (t) = φ1(τ1)1{τ1<τ2,τ1≤T } + φ2(τ2)1{τ2<τ1,τ2≤T } + ξT 1{τ1∧τ2>T }

+
T∧τ1∧τ2∫
t∧τ1∧τ2

f (s,Y (s), Z(s),U1(s),U2(s)) ds

−
T∧τ1∧τ2∫
t∧τ1∧τ2

{
Z(s)�dW (s) +U1(s)dM1(s) +U2(s)dM2(s)

}
.

Furthermore, we define the following spaces of stochastic processes, namely

S
2
β,T := {

Y ∈ OG,T

∣∣ ‖Y‖2β,T < ∞}
,

H
2,d
β,T :=

{
Z ∈ (PG,T

)d ∣∣ ‖Z‖2β,T < ∞
}

,

letting β ∈ R and denoting

‖Y‖2β,T := E

⎡
⎣

T∫

0

eβt |Y (t)|2dt
⎤
⎦ .

We then obtain the following.

Theorem 1 Under Assumption 1, BSDE (3) admits a unique solution
(Y, Z ,U1,U2) ∈ S

2
β,T × H

2,n+2
β,T for any sufficiently large β > 0.

Proof (Sketch). The method of proof is standard, although the horizon is random,
which is rather “non-standard.” We consider a Picard-type iteration, that is, for a
given

(
Ȳ , Z̄ , Ū 1, Ū 2

) ∈ S
2
β,T × H

2,n+2
β,T , we construct the solution to BSDE
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−dY (t) = f
(
t, Ȳ (t), Z̄(t), Ū1(t), Ū2(t)

)
dt

− Z(t)�dW (t) −U1(t)dM1(t) −U2(t)dM2(t),

t ∈ [0, τ ],
Y (τ ) = ζ, (4)

where we denote

τ0 := τ1 ∧ τ2, τ := τ0 ∧ T,

ζ := φ1(τ1)1{τ1<τ2∧T } + φ2(τ2)1{τ2<τ1∧T } + ξT 1{T<τ1∧τ2}.

Indeed, using the G-martingale representation

M(t) := E

⎡
⎣ζ +

τ∫

0

f
(
u, Ȳ (u), Z̄(u), Ū1(u), Ū2(u)

)
du

∣∣∣∣ Gt

⎤
⎦

= E

⎡
⎣ζ +

τ∫

0

f
(
u, Ȳ (u), Z̄(u), Ū1(u), Ū2(u)

)
du

⎤
⎦

+
t∫

0

φ(u)�dW (u) +
t∫

0

ψ1(u)dM1(u) +
t∫

0

ψ2(u)dM2(u), t ∈ [0, T ]

for some (φ,ψ1, ψ2) ∈ H
2,n+2
β,T (e.g., see Sect. 5.2 of Bielecki and Rutkowski 2004),

we define

Ỹt :=E

⎡
⎣ζ +

τ∫

t∧τ

f
(
u, Ȳu, Z̄u, Ū

1
u , Ū 2

u

)
du

∣∣∣∣ Gt

⎤
⎦ , t ∈ [0, T ],

Z̃ :≡φ, Ũ 1 :≡ ψ1, Ũ 2 :≡ ψ2.

Note that the martingale (Mt )t∈[0,T ] with respect to the right-continuous filtrationG
admits an RCLL modification. Hence,

Ỹ (t) = M(t) −
t∧τ∫

0

f
(
u, Ȳ (u), Z̄(u), Ū1(u), Ū2(u)

)
du

also admits an RCLLmodification, which is denoted by
(
Ỹ (t)

)
t∈[0,T ]

again. Further-

more, we can check the integrability, Ỹ ∈ S
2
β,T . Hence,

(
Ỹ , Z̃ , Ũ1, Ũ2

)
is the solution

to (4). Next, we show that the map
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� : S2β,T × H
2,n+2
β,T � (

Ȳ , Z̄ , Ū1, Ū2
) 
→

(
Ỹ , Z̃ , Ũ1, Ũ2

)
∈ S

2
β,T × H

2,n+2
β,T

is a contraction for sufficiently large β > 0, and using the fixed point theorem for
the contraction map, we conclude that the fixed point of the map � is the solution.

Remark 1 We refer to Sect. 19 of Cohen and Elliott (2015) for the detail of such a
Picard-type iteration argument, where a more general semimartingale BSDE (driven
by Lévy noise) is treated with a fixed constant time horizon.

Actually, we can construct the solution to BSDE (3) on the filtered probability space
(�,F ,P,G), using another reduced BSDE on the smaller filtered probability space
(�,F ,P,F). Assuming

Assumption 2 hi (i = 1, 2) are bounded,

we obtain the following.

Theorem 2 Under Assumptions 1 and 2, the solution (Y, Z ,U1,U2) ∈ S
2
β,T ×

H
2,n+2
β,T has the representation that

Y (t) = Ȳ (t)1{0≤t<τ1∧τ2∧T }

+
{
φ1(τ1)1{τ1<τ2∧T } + φ2(τ2)1{τ2<τ1∧T } + ξT 1{T<τ1∧τ2}

}
1{t=τ1∧τ2∧T },

Z(t) = Z̄(t), (5)

Ui (t) = φi (t) − Ȳ (t), i = 1, 2.

Here,
(
Ȳ , Z̄

) ∈ S
2
β,T × H

2,n
β,T is the solution to a BSDE on (�,F ,P,F), namely

−dȲ (t) = f̄
(
t, Ȳ (t), Z̄(t)

)
dt − Z̄(t)�dW (t), t ∈ [0, T ],

YT = ξT , (6)

where

f̄ (t, y, z) := f (t, y, z, φ1(t) − y, φ2(t) − y)

+{φ1(t) − y} h1(t) + {φ2(t) − y} h2(t).

Remark 2 Similar reduction results for BSDEs (into smaller filtrations) have been
studied by Crépey and Song (2016) and Pham (2010) in more general settings.

Proof (Sketch). Note that BSDE (3) is rewritten as
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−dY (t) = f̃ (t,Y (t), Z(t),U1(t),U2(t)) dt − Z(t)�dW (t)

on {0 ≤ t < τ1 ∧ τ2 ∧ T },
�Y (t) = U1(τ1)1{τ1<τ2∧T } +U2(τ2)1{τ2<τ1∧T },
Y (t) = φ1(τ1)1{τ1<τ2∧T } + φ2(τ2)1{τ2<τ1∧T } + FT 1{T<τ1∧τ2}

on {t = τ1 ∧ τ2 ∧ T }, (7)

where we use �Y (t) := Y (t) − Y (t−) and

f̃ (t, y, z, u1, u2) = f (t, y, z, u1, u2) + u1h1(t) + u2h2(t).

We show that if we define (Y, Z ,U 1,U 2) by (5), then it actually satisfies (7). First,
we see that BSDE (6) on (�,F ,P,F) has a unique solution (Ȳ , Z̄) ∈ S

2
β,T × H

2,n
β,T

for any sufficiently large β > 0, recalling that f̄ is a standard driver (e.g., f̄ (t, y, z)
satisfies a globally Lipschitz condition with respect to (y, z)). Next, we can check
that (5) indeed satisfies (7); for example, on {t = τ1 ∧ τ2 ∧ T },

�Y (t) = φ1(τ1)1{τ1<τ2∧T } + φ2(τ2)1{τ2<τ1∧T } + ξT 1{T<τ1∧τ2} − Ȳ (t−)

= φ1(τ1)1{τ1<τ2∧T } + φ2(τ2)1{τ2<τ1∧T } + ξT 1{T<τ1∧τ2}
− (

Ȳ (τ1 ∧ τ2)1{τ1∧τ2≤T } + ξT 1{τ1∧τ2>T }
)

= U1(τ1)1{τ1<τ2∧T } +U2(τ2)1{τ2<τ1∧T }.

Hence, the desired assertion follows as it is easy to see the integrabilities given by
(5), (Y, Z ,U1,U2) ∈ S

2
β,T × H

2,n+2
β,T .

Remark 3 We impose Assumption 2 to simplify the statement of Theorem 2. We
can relax it by employing a different solution space (from S

2
β,T × H

2,n+2
β,T ) associated

with the so-called stochastic Lipschitz BSDEs. For the study of such BSDEs, see El
Karoui and Huang (1997) and Nagayama (2019), for example.

2.3 Markovian Model

Whenwe treat BSDE (3) in a practical application,more-concretemodeling is prefer-
able: In this subsection, we consider BSDE (3) under Assumptions 1 and 2 and the
following setting.

(i) There is a Markovian state variable process X := (X (t))t≥0, which is governed
by the following Markovian forward stochastic differential equation (FSDE),
namely

dX (t) = b(t, X (t))dt + a(t, X (t))dW (t), X (0) ∈ R
d , (8)

on (�,F ,P, (Ft )t≥0), where a : R+ × R
d → R

d×n and b : R+ × R
d → R

d .
(ii) hi (t) := h̃i (X (t)), i = 1, 2, where h̃i : Rd → R+ is bounded.
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(iii) The driver f : [0, T ] × � × R × R
n × R

2 → R of BSDE (3) is written as

f (t, ω, y, z, u1, u2) := g(t, X (t, ω), y, z, u1, u2),

where g : [0, T ] × R
d × R × R

n × R × R → R.
(iv) ξT := 
(X (T )), where 
 : Rd → R.
(v) φi (t) := ϕi (X (t)), i = 1, 2, where ϕi : Rd → R.

In this case, the solution to BSDE (3) can be constructed as follows using the solution
to a second-order parabolic semilinear partial differential equation (PDE).

Theorem 3 Consider the second-order parabolic semilinear PDE

−∂t V (t, x) = Lt V (t, x) + ḡ
(
t, x, V (t, x), a(t, x)�∇V (t, x)

)
,

(t, x) ∈ [0, T ) × R
d ,

V (T, x) = 
(x), (9)

where

Lt V := 1

2
tr
(
aa�(t, ·)∇∇V

) + b�(t, ·)∇V (10)

is the infinitesimal generator for X with the gradient∇V := (
∂x1V, . . . , ∂xd V

)�
and

the Hessian matrix ∇∇V :=
(
∂2
xi x j

V
)
1≤i, j≤d

, and

ḡ(t, x, y, z) := g (t, x, y, z, ϕ1(x) − y, ϕ2(x) − y) +
2∑

i=1

{ϕi (x) − y} h̃i (x).

Suppose that there exists a unique classical solution V ∈ C1,2([0, T ] × R
d) to (9).

Then, the solution to BSDE (3) is represented as

Y (t) = V (t, X (t)) 1{0≤t<τ1∧τ2∧T } +
{
ϕ1 (X (τ1)) 1{τ1<τ2∧T }

+ ϕ2 (X (τ2)) 1{τ2<τ1∧T } + 
 (X (T )) 1{T<τ1∧τ2}
}
1{t=τ1∧τ2∧T },

Z(t) = a (t, X (t))� ∇V (t, X (t)) ,

Ui (t) = ϕi (X (t)) − V (t, X (t)) , i = 1, 2.

Proof (Sketch). Associated with BSDE (6), we consider the (decoupled) forward-
backward stochastic differential equation (FBSDE)



26 J. Sekine and A. Tanaka

dX (t) = b (t, X (t)) dt + a (t, X (t)) dW (t),

X (0) ∈Rd ,

−dȲ (t) = ḡ
(
t, X (t), Ȳ (t), Z̄(t)

)
dt − Z̄(t)�dW (t),

Ȳ (T ) = 
(X (T )). (11)

By the nonlinear Feynman–Kac formula (e.g., see El Karoui et al. 2000 or Zhang
2017), the solution to (11) is expressed as

Ȳ (t) := V (t, X (t)) , Z̄(t) := a (t, X (t))� ∇V (t, X (t)) , t ∈ [0, T ].

The desired assertion follows by using Theorem 2.

Remark 4 In the study of credit risk modeling in mathematical finance, similar tech-
niques, namely the reduction of a BSDE (onto a Brownian filtration) combined with
the (nonlinear) Feynman–Kac formula, have been utilized: see Bichuch et al. (2015),
Bielecki et al. (2005), and Crépey (2015), for example.

3 XVA Calculation via BSDE

In this section, we introduce a “post-crisis” financial market model and a hedger’s
model for pricing OTC financial derivative securities, which generalize those
employed by Bichuch et al. (2015), Bichuch et al. (2018), and Tanaka (2019). We
then derive BSDEs that describe the self-financing hedging portfolio values of the
hedger (seller) and her counterparty (buyer). After preparing mathematical models
of a financial market, a hedger, and her counterparty, we formulate hedging problems
and give the definition of the arbitrage-free price of a derivative security. Throughout
this section, we continue to use the mathematical setup introduced in Sect. 2.

3.1 Non-defaultable/Defaultable Risky Assets

Let T ∈ R++ be a fixed time horizon, and consider a frictionless financial mar-
ket model in continuous time. In it, there are price processes of n non-defaultable
risky assets S := (S1, . . . , Sn)�, Si := (Si (t))t∈[0,T ], one defaultable risky asset
PI := (PI(t))t∈[0,T ] issued by an investor’s firm, and one defaultable risky asset
PC := (PC(t))t∈[0,T ] issued by the firm of a counterparty of the investor. They are
governed by the following stochastic differential equations (SDEs) on (�,F ,P,G):
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dS(t) =diag (S(t)) {σ(t)dW (t) + rD(t)1dt} , S(0) ∈ R
n
++, (12)

dPI(t) =PI(t−) {σI(t)dW (t) − dM1(t) + rD(t)dt} , PI(0) ∈ R++, (13)

dPC(t) =PC(t−) {σC(t)dW (t) − dM2(t) + rD(t)dt} , PC(0) ∈ R++. (14)

Here, σ ∈ (PF,T )n×n , σi ∈ (PF,T )1×n , i ∈ {I,C}, and rD ∈ PF,T , which are assumed
to be bounded, and σ(t, ω) is invertible for a.e. (t, ω) ∈ [0, T ] × �. Furthermore, we
denote diag(x) = (xiδi j )1≤i, j≤n for x := (x1, . . . , xn)� ∈ R

n and1 := (1, . . . , 1)� ∈
R

n .

Remark 5 Weregard the process rD as the risk-free interest rate process in themarket,
which does not contain credit risk spread.2 Define the cash account process BD :=
(BD(t))t≥0 associated with the risk-free rate rD by

dBD(t) = BD(t)rD(t)dt, BD(0) = 1,

or equivalently

BD(t) = exp

⎧⎨
⎩

t∫

0

rD(u)du

⎫⎬
⎭ .

We then see that
Si
BD

, i = 1, . . . , n,
Pj

BD
, j = 1, 2

are G-local martingales. These mean that we are starting with the probability space
(�,F ,P) with a risk-neutral (pricing) probability P,3 not with the real-world (phys-
ical) probability.

The random times τ1 and τ2 defined by (2) are interpreted as the default times of the
investor who issues PI and the counterparty who issues PC , respectively. We solve
(13) as

PI(t) = PI(0)

× exp

⎡
⎣

t∫

0

σI(u)dW (u) +
t∫

0

(
rD(u) + h1(u) − 1

2
|σI(u)|2

)
du

⎤
⎦ {1 − N1(t)} ,

for example. Recall that the price becomes zero when defaults occur, i.e., PI(τ1) = 0.

Remark 6 As concrete examples of PI and PC , we can consider T -maturity zero
coupon bonds without recoveries, namely

2 A typical example of such an interest rate in a real financial market is the OIS rate.
3 More precisely, P is an equivalent martingale measure (EMM). See Remark 13 in Sect. 3.5.
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PI(t) = E

⎡
⎣exp

⎧
⎨
⎩−

T∫

t

(rD(u) + h1(u)) du

⎫
⎬
⎭

∣∣∣∣ Ft

⎤
⎦ {1 − N1(t)} ,

PC(t) = E

⎡
⎣exp

⎧
⎨
⎩−

T∫

t

(rD(u) + h2(u)) du

⎫
⎬
⎭

∣∣∣∣ Ft

⎤
⎦ {1 − N2(t)} .

The volatility terms (σ j (t))t∈[0,T ] ( j ∈ {I,C}) are described by using the (P,Ft )-
Brownian martingale representation: For example, in the j = I case, (σI(t))t∈[0,T ] is
determined to satisfy

E

⎡
⎣exp

⎧
⎨
⎩−

T∫

0

(rD(u) + h1(u)) du

⎫
⎬
⎭

∣∣∣∣ Ft

⎤
⎦

= PI(0) exp

⎧⎨
⎩

t∫

0

σI(s)dW (s) − 1

2

t∫

0

|σI(s)|2ds
⎫⎬
⎭ for t ∈ [0, T ].

3.2 Defaultable Derivative Security

We treat the following derivative security in our financial market model.

Definition 2 A European derivative security is described as

(T, τ1, τ2, ξT , φ1, φ2) ,

where ξT ∈ L2 (�,FT ,P) and φi ∈ {
φ ∈ OF,T

∣∣ E [
supt∈[0,T ] |φ(t)|2] < ∞}

(i =
1, 2). Here,

• τ1 ∧ τ2 ∧ T is the maturity,
• ξT is the payoff at the maturity when no default occurs,
• φ1(τ1) is the payoff at the maturity when the investor defaults,
• φ2(τ2) is the payoff at the maturity when the counterparty defaults.

This means that at the maturity,

H := ξT 1{T<τ1∧τ2} + φ1(τ1)1{τ1<τ2,τ1≤T } + φ2(τ2)1{τ2<τ1,τ2≤T } (15)

is paid to the counterparty (buyer) from the investor (seller, writer).

Remark 7 A typical example of the payoff (ξT , φ1, φ2) is

ξT := h
(
(S(t))t∈[0,T ]

)



Notes on Backward Stochastic Differential Equations for Computing XVA 29

with h : C([0, T ],Rn++) → R and, for i = 1, 2,

φi (t) := ϕi

(
V̂ (t)

)

with some nonlinear (piecewise-linear) ϕi : R → R and

V̂ (t) := E

⎡
⎣exp

⎧⎨
⎩−

T∫

t

rD(u)du

⎫⎬
⎭ ξT

∣∣∣∣ Ft

⎤
⎦ , t ∈ [0, T ]. (16)

(16) is interpreted as the reference value process of the derivative (T, ξT ) with the
payoff ξT at the maturity T in a default-free market. In Bichuch et al. (2018),

ϕ1(v) := v − L I (v − αv)+ and ϕ2(v) := v + LC (v − αv)− (17)

are employed, where x+ := max(x, 0), x− := max(−x, 0) = −min(x, 0), 0 ≤ L I,

LC, α ≤ 1. The constant L I (resp. LC) is called the loss rate upon default of the
investor (resp. the counterparty), and α is called the collateralization level. For a
more detailed explanation, see Sects. 3.2 and 3.4 of Bichuch et al. (2018).

3.3 Dynamic Portfolio Strategy

For hedging purposes, the writer (seller) of the derivative security given in Defini-
tion 2 constructs a dynamic portfolio, which is denoted by

(
π, π I , πC, π f, π r, π col

)
.

Here,
π := (π1, . . . , πn)

� ∈ (PG,T
)n

, π j := (π j (t))t∈[0,T ]

is an investment strategy for the risky assets S := (S1, . . . , Sn)�,

π j := (π j (t))t∈[0,T ] ∈ PG,T , j ∈ {I,C}

are investment strategies for the risky assets PI and PC , respectively, and

π j := (π j (t))t∈[0,T ] ∈ PG,T , j ∈ { f, r, col}

are investment strategies for the cash accounts Bf, Br, and Bcol, which are called the
funding account, the repo account, and the collateral account, respectively. They are
defined by

dBj (t) = Bj (t)
{
r−
j (t)1{π j (t)<0} + r+

j (t)1{π j (t)>0}
}
dt, Bj (0) = 1 (18)
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with r−
j := (r−

j (t))t∈[0,T ] ∈ PF,T , r
+
j := (r+

j (t))t∈[0,T ] ∈ PF,T , and j ∈ { f, r, col},
where r±

f , r±
r and r±

col are called the funding rate, the repo rate, and the collateral
rate, respectively.

Remark 8 The cash account process Bf represents the cumulative amount of cash
that the hedger borrows from (or lends to) her treasury desk. The rate r−

f is called
the funding borrowing rate, and the rate r+

f is called the funding lending rate. The
cash account process Br represents the cumulative amount of cash that the investor
borrows from (or lends to) a repo market. The rate r−

r is called the repo borrowing
rate, which is applied when the hedger borrows money from the repo market and
implements a long position for the non-defaultable risky assets S. The rate r+

r is
called the repo lending rate, which is applied when the hedger lends money to the
repo market and implements a short-selling position for the non-defaultable risky
assets S. The cash account process Bcol represents the cumulative amount of cash
that the investor receives from (or posts to) the counterparty as the collateral of the
derivative security. The rate r−

col is paid by the hedger to the counterparty if he/she
has received the collateral. The rates r+

col is received by the hedger if he/she has
posted the collateral. These rates can differ because different markets.4 may be used
to determine the contractual rates earned by cash collateral.

For r±
f and r±

r , it is natural and realistic to assume that

2ε j :≡ r−
j − r+

j ≥ 0 for j ∈ { f, r}. (19)

For j ∈ { f, r}, denoting the “mid-rate” by

r0j :≡ r−
j + r+

j

2
,

we see that
r±
j ≡ r0j ∓ ε j .

The value process Y := (Y (t))t∈[0,T ] associated with a given dynamic portfolio strat-
egy

(
π, π I, πC, π f, π r, π col

)
is governed by an SDE on (�,F ,P,G), namely

dY (t) = π(t)�dS(t) + π I(t)dPI(t) + πC(t)dPC(t)
+π f(t)dBf(t) + π r(t)dBr(t) + π col(t)dBcol(t),

Y (0) = y,
(20)

subject to

4 For example, the choice of currency (USD, Euro, etc.) We refer the interested reader to Fujii and
Takahashi (2011), where the impact of the choice of currency of collateral is studied.
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Y (t) = π(t)�S(t) + π I(t)PI(t) + π I(t)PI(t)

+ π f(t)Bf(t) + π r(t)Br(t) + π col(t)Bcol(t), (21)

π(t)�S(t) + π r(t)Br(t) = 0, (22)

π col(t)Bcol(t) − αV̂ (t) = 0. (23)

Here, (21) corresponds to the so-called self-financing condition, (22) implies that
the hedger accesses the repo market to purchase/sell non-defaultable risky assets
(stocks), and (23) implies that αV̂ (t) is regarded as the collateral value at time t ,
whereα ∈ [0, 1] is the collateral level,which is the same as the one given inRemark 7.
From (21)–(23), recall that the relations

π r(t) = − Br(t)
−1π(t)�S(t), (24)

π col(t) =Bcol(t)
−1αV̂ (t), (25)

π f(t) =Bf(t)
−1

{
Y (t−) − π I(t)PI(t−) − πC(t)PC(t−) − αV̂ (t)

}
(26)

hold.Hence,wecan interpret that (y,�) ∈ R × (PG,T )n+2,where� := (
π, π I , πC

)
,

is a portfolio strategy that determines the portfolio value process (20), and we some-
times write

Y :≡ Y (y,�),

emphasizing the portfolio strategy (y,�). Combining (20) with (12)–(14), (18), and
(24)–(26), we see that

dY (t) = π(t)�diag (S(t))
[
σ(t)dW (t) + {

rD(t) − rr(t;π r(t))
}
1dt

]

+ π I(t)PI(t−)
[
σI(t)dW (t) − dM1(t) + {

rD(t) − rf(t;π f(t))
}
dt
]

+ πC(t)PC(t−)
[
σC(t)dW (t) − dM2(t) + {

rD(t) − rf(t;π f(t))
}
dt
]

+
{
Y (t) − αV̂ (t)

}
rf(t;π f(t))dt + αV̂ (t)rcol(t;π col(t))dt, (27)

where we denote

r j (t; p) := r−
j (t)1{p<0} + r+

j (t)1{p>0}, j ∈ { f, r, col}.

Remark 9 Suppose that rD ≡ r±
f ≡ r±

r ≡ r±
col. Then, (27) becomes

dY (t) = π(t)�diag (S(t)) σ (t)dW (t) + π I (t)PI(t−) {σI(t)dW (t) − dM1(t)}
+ πC(t)PC(t−) {σC(t)dW (t) − dM2(t)} + rD(t)Y (t)dt,
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which is solved as

Y (y,�)(t) = BD(t)

[
y +

t∫

0

BD(s)−1π(s)�diag (S(s)) σ (s)dW (s)

+
t∫

0

BD(s)−1π I(s)PI(s−) {σI(s)dW (s) − dM1(s)}

+
t∫

0

BD(s)−1πC(s)PC(s−) {σC(s)dW (s) − dM2(s)}
]
. (28)

That is, the discounted value process Y/BD is a local martingale, which is a standard
result shared in a classical framework with “one risk-free rate world.”

For the derivative security given inDefinition2,wecall the portfolio strategy (ŷ, �̂) ∈
R × (PG,T )n+2 that satisfies

Y (ŷ,�̂)

τ1∧τ2∧T = H (29)

the replicating portfolio strategy for the hedger.
Furthermore, for pricing purposes, we next consider a dynamic portfolio strat-

egy
(−π̃ ,−π̃ I ,−π̃C, π̃ f, π̃ r, π̃ col

)
and the associated value process Ỹ of the buyer

(counterparty). We define

dỸ (t) = −π̃(t)�dS(t) − π̃ I(t)dPI(t) − π̃C(t)dPC(t)
+π̃ f(t)dBf(t) + π̃ r(t)dBr(t) + π̃ col(t)dBcol(t),

Ỹ (0) = −ỹ

subject to

Ỹ (t) = −π̃ (t)�S(t) − π̃ I(t)PI (t) − π̃C(t)PC(t)

+ π̃ f(t)Bf(t) + π̃ r(t)Br(t) + π̃ col(t)Bcol(t), (30)

− π̃(t)�S(t) + π̃ r(t)Br(t) = 0, (31)

π̃ col(t)Bcol(t) + αV̂ (t) = 0, (32)

where π̃ ∈ (PG,T
)n

and π̃ i ∈ PG,T for i ∈ {I,C, f, r, col}. Here, as we see in (32),
the collateral value at time t is regarded as −αV̂ (t), the opposite value of that for
the writer (hedger). Because we see that
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π̃ r(t) =Br(t)
−1π̃(t)�S(t),

π̃ col(t) = − Bcol(t)
−1αV̂ (t),

π̃ f(t) =Bf(t)
−1

{
Ỹ (t−) + π̃ I(t)PI (t−) + π̃C(t)PC(t−) + αV̂ (t)

}

from (30)–(32), we regard
(−ỹ,−�̃

) ∈ R × (PG,T
)n+2

with �̃ := (
π̃ , π̃ I, π̃C

)
as

the portfolio strategy, and we rewrite the dynamics of Ỹ :≡ Ỹ (−ỹ,−�̃) as

dỸ (t) = − π̃(t)�diag (S(t))
[
σ(t)dW (t) + {

rD(t) − rr(t;π r(t))
}
1dt

]

− π̃ I(t)PI (t−)
[
σI (t)dW (t) − dM1(t) + {

rD(t) − rf(t;π f(t))
}
dt
]

− π̃C(t)PC(t−)
[
σC(t)dW (t) − dM2(t) + {

rD(t) − rf(t;π f(t))
}
dt
]

+
{
Ỹ (t) + αV̂ (t)

}
rf(t;π f(t))dt − αV̂ (t)rcol(t;π col(t))dt. (33)

Remark 10 We have assumed that the funding rate r±
f,I for the investor (writer) and

the funding rate r±
f,C for the counterparty (buyer) are identical, i.e., r±

f ≡ r±
f,I ≡ r±

f,C ,
which is a restrictive situation.However,without such an assumption, it looks difficult
and complicated to derive an explicit sufficient condition to ensure the no-arbitrage
property (see Theorem 4 and its proof).

Remark 11 Suppose that rD ≡ r±
f ≡ r±

r ≡ r±
col. Using a similar calculation to that

in Remark 9, we solve (33) to see that Ỹ (−y′,−�̃) ≡ −Y (y′,�̃), where the right-hand
side Y (y′,�̃) is given by (28) by letting y := y′ and � :≡ �̃.

If the portfolio strategy (−ỹ,−�̃) ∈ R × (PG,T )n+2 satisfies

Ỹ (−ỹ,−�̃)

τ1∧τ2∧T = −H (34)

for the derivative security given inDefinition 2, thenwe call it the replicating portfolio
strategy for the buyer.

3.4 Deriving BSDE

The replicating portfolio (ŷ, �̂) that satisfies (29) is represented using the solution
to a BSDE. Let

Y+ :≡Y (ŷ,�̂),

U+
1 (t) := − π I(t)PI (t−),

U+
2 (t) := − πC(t)PC(t−),

Z+(t) :=σ(t)�diag (S(t)) π(t) −U+
1 (t)σI (t)

� −U+
2 (t)σC(t)�.
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Recalling
π f(t)Bf(t) = Y+(t) +U+

1 (t) +U+
2 (t) − αV̂ (t),

we see that π f(t) ≥ 0 (resp. ≤ 0) is equivalent to

Y+(t) +U+
1 (t) +U+

2 (t) − αV̂ (t) ≥ 0, (resp. ≤ 0).

Also, recalling

−π r(t)Br(t) = π(t)�diag(S(t))1

= {
Z+(t)� +U+

1 (t)σI (t) +U+
2 (t)σC(t)

}
σ(t)−11,

we see that π r(t) ≥ 0 (resp. ≤ 0) is equivalent to

{
Z+(t)� +U+

1 (t)σI (t) +U+
2 (t)σC(t)

}
σ(t)−11 ≤ 0 (resp. ≥ 0).

Using these relations, we then rewrite (27) as

dY+(t) = − f +
(
t,Y+(t), Z+(t),U+

1 (t),U+
2 (t); V̂ (t)

)
dt

+Z+(t)�dW (t) +U+
1 (t)dM1(t) +U+

2 (t)dM2(t),

where

f + (
t, y, z, u1, u2; v̂

) := f 0 (t, y, z, u1, u2) + α
{
r0f (t)v̂ − r+

col(t)v̂
+ + r−

col(t)v̂
−}

+ εf(t)
∣∣y + u1 + u2 − αv̂

∣∣
+ εr(t)

∣∣{z� + u1σI (t) + u2σC(t)
}
σ(t)−11

∣∣ , (35)

with

f 0
(
t, y, z, u1, u2

) := −r0f (t)y + {
r0r (t) − rD(t)

}
z�σ(t)−11

+ [− {
r0f (t) − rD(t)

} + {
r0r (t) − rD(t)

}
σI (t)σ (t)−11

]
u1

+ [− {
r0f (t) − rD(t)

} + {
r0r (t) − rD(t)

}
σC(t)σ (t)−11

]
u2. (36)

So, we consider the BSDE on the filtered probability space (�,F ,P,G), namely

−dY+(t) = f +
(
t,Y+(t), Z+(t),U+

1 (t),U+
2 (t); V̂ (t)

)
dt

−Z+(t)�dW (t) −U+
1 (t)dM1(t) −U+

2 (t)dM2(t)
for 0 ≤ t ≤ τ1 ∧ τ2 ∧ T,

Y+ (τ1 ∧ τ2 ∧ T ) = H.

(37)
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Using the solution to (37), the replicating portfolio
(
ŷ, �̂

)
that satisfies (29) is

constructed as

ŷ :=Y+(0),

π̂(t) :=diag(St )
−1

(
σ(t)�

)−1 {
Z+(t) +U+

1 (t)σ�
I (t) +U+

2 (t)σ�
C (t)

}
,

π̂ I(t) := − PI (t−)−1U+
1 (t),

π̂C(t) := − PC(t−)−1U+
2 (t)

for 0 ≤ t ≤ τ1 ∧ τ2 ∧ T . Similarly, the replicating portfolio (−ỹ,−�̃) that satisfies
(34) can be represented using the solution to a BSDE. Let

Y− :≡ − Ỹ (−ỹ,−�̃),

U−
1 (t) := − π̃ I(t)PI(t−),

U−
2 (t) := − π̃C(t)PC(t−),

Z−(t) :=σ(t)�diag (S(t)) π̃(t) −U−
I (t)σI (t)

� −U−
2 (t)σC(t)�.

Recalling
−π̃ f(t)Bf(t) = Ỹ−(t) +U−

1 (t) +U−
2 (t) − αV̂ (t),

we see that π f(t) ≥ 0 (resp. ≤ 0) is equivalent to

Y−(t) +U−
1 (t) +U−

2 (t) − αV̂ (t) ≤ 0, (resp. ≥ 0).

Also, recalling

π̃ r(t)Br(t) =π̃(t)�diag(S(t))1

= {
Z−(t)� +U−

1 (t)σI (t) +U−
2 (t)σC(t)

}
σ(t)−11,

we see that π r(t) ≥ 0 (resp. ≤ 0) is equivalent to

{
Z−(t)� +U−

1 (t)σI (t) +U−
2 (t)σC(t)

}
σ(t)−11 ≥ 0 (resp. ≤ 0).

Using these relations, we then rewrite (33) as

dY−(t) = − f −
(
t,Y−(t), Z−(t),U−

1 (t),U−
2 (t); V̂ (t)

)
dt

+Z−(t)�dW (t) +U−
1 (t)dM1(t) +U−

2 (t)dM2(t),
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where

f − (
t, y, z, u1, u2; v̂

) := − f + (
t,−y,−z,−u1,−u2;−v̂

)

= f 0 (t, y, z, u1, u2) + α
{
r0f (t)v̂ + r+

col(t)v̂
− − r−

col(t)v̂
+}

− εf(t)
∣∣y + u1 + u2 − αv̂

∣∣
− εr(t)

∣∣{z� + u1σI (t) + u2σC(t)
}
σ(t)−11

∣∣ . (38)

So, we consider the BSDE on the filtered probability space (�,F ,P,G)

−dY−(t) = f −
(
t,Y−(t), Z−(t),U−

1 (t),U−
2 (t); V̂ (t)

)
dt

− Z−(t)�dW (t) −U−
1 (t)dM1(t) −U−

2 (t)dM2(t)

for 0 ≤ t ≤ τ1 ∧ τ2 ∧ T,

Y− (τ1 ∧ τ2 ∧ T ) = H. (39)

The replicating portfolio
(
−ỹ,−�̃

)
that satisfies (34) is now constructed as

ỹ :=Y−(0),

π̃(t) :=diag(St )
−1

(
σ(t)�

)−1 {
Z−(t) +U−

1 (t)σ�
I (t) +U−

2 (t)σ�
C (t)

}
,

π̃ I(t) := − PI (t−)−1U−
1 (t),

π̃C(t) := − PC(t−)−1U−
2 (t)

for 0 ≤ t ≤ τ1 ∧ τ2 ∧ T , using the solution to (39).

Remark 12 BSDEs (37) and (39) with (15) and (16) can be seen as the system of
BSDEs

−dY±(t) = f ±
(
t,Y±(t), Z±(t),U±

1 (t),U±
2 (t); V̂ (t)

)
dt

− Z±(t)�dW (t) −U±
1 (t)dM1(t) −U±

2 (t)dM2(t),

for 0 ≤ t ≤ τ1 ∧ τ2 ∧ T,

Y± (τ1 ∧ τ2 ∧ T ) =H,

−dV̂ (t) = − rD(t)V̂ (t)dt − �(t)�dW (t) for 0 ≤ t ≤ T,

V̂ (T ) = ξT , (40)

in which
(
Y±, Z±,U±

1 ,U±
2 , V̂ ,�

)
are solutions.
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3.5 Hedging Problem

To study the hedging problem via BSDEs (37) and (39) with (15) and (16), it is
natural to employ the following space of admissible hedging strategies

Aβ,T :=
{(

π, π I, πC
) ∈ (PG,T

)d+2
∣∣∣ (σ�diag(S)π, π IP−

I , πCP−
C

) ∈ H
2,n+2
β,T

}
,

where β > 0 is a fixed (sufficiently large) constant and we denote P−
i (t) := Pi (t−)

for t > 0 and P−
i (0) := Pi (0). We then formulate the minimal superhedging price

(i.e., the maximal price for the writer) and the maximal subhedging price (i.e., the
minimal price for the buyer) as follows.

Definition 3 For the derivative security given in Definition 2,

p̄ := inf
{
y ∈ R

∣∣ −H + Y (y,�)(τ1 ∧ τ2 ∧ T ) ≥ 0 for some (y,�) ∈ R × Aβ,T
}

is called the minimal superhedging price, which is the maximal price of the writer
(seller), and

p := sup
{
y ∈ R

∣∣ H + Ỹ (−y,−�)(τ1 ∧ τ2 ∧ T ) ≥ 0 for some (y,�) ∈ R × Aβ,T

}

is called the maximal subhedging price, which is the minimal price of the buyer. If
there exists �̄ ∈ Aβ,T such that

−H + Y ( p̄,�̄)(τ1 ∧ τ2 ∧ T ) ≥ 0,

then the pair
(
p̄, �̄

)
is called the minimal superhedging strategy, and if there exists

� ∈ Aβ,T such that

H + Ỹ (−p,−�)(τ1 ∧ τ2 ∧ T ) ≥ 0,

then the pair
(
−p,−�

)
is called the maximal subhedging strategy.

Associated with the hedging problem, we give the following definition.

Definition 4 Consider the derivative security given in Definition 2. Suppose that a
writer sells the derivative security with price p ∈ R at time 0. If it holds that

−H + Y (p,�)(τ1 ∧ τ2 ∧ T ) ≥ 0 and P
(−H + Y (p,�)(τ1 ∧ τ2 ∧ T ) > 0

)
> 0

for some � ∈ Aβ,T , then we say that an arbitrage opportunity for the writer occurs.
Similarly, suppose that a buyer purchases the derivative security with price p ∈ R at
time 0. If it holds that

H + Ỹ (−p,−�)(τ1 ∧ τ2 ∧ T ) ≥ 0 and P

(
H + Ỹ (−p,−�)(τ1 ∧ τ2 ∧ T ) > 0

)
> 0
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for some � ∈ Aβ,T , then we say that an arbitrage opportunity for the buyer occurs.
Moreover, if the price p̂ ∈ R at time 0 does not admit arbitrage opportunities for
both writer and buyer, then p̂ is called an arbitrage-free price.

Remark 13 In our financial market model, we assume implicitly that the probability
measureP is anEMM.Hence,P ∼ P0,whereP0 is a real-world (physical) probability
measure given in the same measurable space (�,F). Therefore, in Definition 3, the
P-a.s. statement can be replaced by the P0-a.s. statement. Also, in Definition 4, P
can be replaced by P0 to claim that P0 (· · · ) > 0.

3.6 Markovian Model

The following Markovian model is typical and popularly treated in practice. Let the
coefficients of the market model be described as

σ(t) :=σ̃ (t, F(t)) , rD(t) := r̃D (t, F(t)) ,

σi (t) :=σ̃ j (t, F(t)) , i ∈ {I,C},
h j (t) :=h̃i (t, F(t)) , j ∈ {1, 2},
r0k (t) :=r̃0k (t, F(t)) , εk(t) := ε̃k (t, F(t)) , k ∈ { f, r},

and r±
col(t) :=r̃±

col (t, F(t)) ,

where σ̃ : [0, T ] × R
m → R

n×n , r̃D, σ̃i , h̃ j , r̃0k , ε̃k, r̃
±
col : [0, T ] × R

m → R,
and (F(t))t∈[0,T ] is called the stochastic factor process, which can be interpreted
as a model of economic factors and affects the market model through the coefficients
σ, σi (i ∈ {I,C}), h j ( j = 1, 2), r0k , ε

0
k (k ∈ { f, r}), and r±

col. It is given by the solution
to the SDE

dF(t) = μF (t, F(t)) dt + σF (t, F(t)) dW (t), F(0) ∈ R
m

on (�,F ,P,F), where μF : [0, T ] × R
m → R

m and σF : [0, T ] × R
m → R

m×n .
Let

X� :≡ (
X�
1 , X�

2

) :≡ (
S�, F�)

and define, for x := (x1, x2) ∈ R
n × R

m ,

b(t, x) :=
(
diag(x1)rD(t, x2)

μF (t, x2)

)
, a(t, x) :=

(
diag(x1)σ (t, x2)

σF (t, x2)

)
.

Then, the SDE for X is written as (8) with d = n + m. Furthermore, we set

ξT := 
 (X (T )) and φi (t) := ϕi (V̂ (t)) for i ∈ {1, 2},
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where 
 : Rn+m → R and ϕi : R → R. In this situation, we can apply Theorem 3
to represent the solution to BSDEs (40), using the solutions to the associated PDEs
(see Proposition 2 in Sect. 4).

4 Results

Throughout this section, we always assume that σi (i ∈ {I,C}), σ, σ−1, rD, r
±
j ( j ∈

{ f, r, col}), and hk (k = 1, 2) are bounded. Applying the results in Sect. 2 and a
comparison theorem for BSDEs, the following claims are straightforward to see.

Proposition 1 For any sufficiently large β > 0, there exist unique solutions(
Y±, Z±,U±

1 ,U±
2

) ∈ S
2
β,T × H

2,n+2
β,T to BSDEs (37) and (39) with (15) and (16).

Moreover, the solutions have the representations that

Y±(t) = Ȳ±(t)1{0≤t<τ1∧τ2∧T }

+
{
φ1(τ1)1{τ1<τ2∧T } + φ2(τ2)1{τ2<τ1∧T } + ξT 1{T<τ1∧τ2}

}
1{t=τ1∧τ2∧T },

Z±(t) = Z̄±(t),

U±
i (t) = φi (t) − Ȳ±(t), i = 1, 2. (41)

Here,
(
Ȳ±, Z̄±) ∈ S

2
β,T × H

2,n
β,T are the solutions to BSDEs on (�,F ,P,F), namely

−dȲ±(t) = f̄ ±
(
t, Ȳ±(t), Z̄±(t); V̂ (t), φ1(t), φ2(t)

)
dt − Z̄±(t)�dW (t)

for 0 ≤ t ≤ T,

Ȳ±(T ) = ξT ,

−dV̂ (t) = −rD(t)V̂ (t)dt − �(t)�dW (t) for 0 ≤ t ≤ T,

V̂ (T ) = ξT ,

(42)

where we define

f̄ ± (
t, y, z; v̂, p1, p2

)

:= f ± (
t, y, z, p1 − y, p2 − y; v̂

) + (p1 − y)h1(t) + (p2 − y)h2(t). (43)

In addition to Condition (19), assume that

r−
col ≥ r+

col. (44)

Then, it always holds that

Y− ≤ Y+ and Ȳ− ≤ Ȳ+. (45)
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Proof (Sketch). Using (19) and (44), we see that

f̄ + (
t, y, z; v̂, p1, p2

) − f̄ − (
t, y, z; v̂, p1, p2

)

=α
{
r−
col(t) − r+

col(t)
} |v̂| + 2εf(t)

∣∣y + (p1 − y) + (p2 − y) − αv̂
∣∣

+ 2εr(t)
∣∣{z� + (p1 − y)σI (t) + (p2 − y)σC(t)

}
σ(t)−11

∣∣ ≥ 0.

Hence, (45) follows from a comparison theorem of BSDEs. Other assertions follow
from the results in Sect. 2.

Next, consider the Markovian model given in Sect. 3.6. Then, corresponding to (42),
we have the Markovian system of BSDEs (decoupled FBSDEs)

dX (t) = b(t, X (t))dt + a(t, X (t))dW (t), X (0) ∈ R
n+m,

−dȲ±(t) = ḡ±
(
t, X2(t), Ȳ

±(t), Z̄±(t); V̂ (t), ϕ1(V̂ (t)), ϕ2(V̂ (t))
)
dt

− Z̄±(t)�dW (t),

Ȳ±(T ) =
 (X (T )) ,

−dV̂ (t) = −r̃D(t, X2(t))V̂ (t)dt − �(t)�dW (t),

V̂ (T ) = 
 (X (T )) . (46)

Here, the relation

ḡ±(t, X2(t, ω), y, z; v̂, p1, p2) = f̄ ±(t, ω, y, z; v̂, p1, p2)

holds, and the functions ḡ± : [0, T ] × R
m × R × R

n × R
3 → R are written as

ḡ±(t, x2, y, z; v̂, p1, p2) := ḡ0(t, x2, y, z; p1, p2)
+ α

{
r̃0f (t, x2)v̂ ∓ r̃+

col(t, x2)v̂
± ± r̃−

col(t, x2)v̂
∓}

± ε̃f(t, x2)
∣∣y + (p1 − y) + (p2 − y) − αv̂

∣∣
± ε̃r(t, x2)

∣∣{z� + (p1 − y)σ̃I (t, x2) + (p2 − y)σ̃C(t, x2)
}
σ̃ (t, x2)

−11
∣∣

with

ḡ0(t, x2, y, z; p1, p2) := z� {
(r̃0r − r̃D)σ̃−11

}
(t, x2)

−
{
(2r̃D − r̃0f + h̃1 + h̃2) + (r̃0r − r̃D)(σ̃I + σ̃C)σ̃−11

}
(t, x2)y

+
{
h̃1 − (r̃0f − r̃D) + (r̃0r − r̃D)σ̃I σ̃

−11
}

(t, x2)p1

+
{
h̃2 − (r̃0f − r̃D) + (r̃0r − r̃D)σ̃C σ̃−11

}
(t, x2)p2.

Utilizing Theorem 3, we obtain the following.
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Proposition 2 Denote d := n + m and consider the system of second-order
parabolic semilinear PDEs

−∂t V = {Lt − r̃D(t, x2)} V, (t, x) ∈ [0, T ) × R
d ,

V (T, x) = 
(x),

−∂tU
± =LtU

± + ḡ±(t, x2,U, a�∇U±; V, ϕ1(V ), ϕ2(V )
)
,

(t, x) ∈ [0, T ) × R
d ,

U±(T, x) = 
(x), (47)

where Lt (·) is the infinitesimal generator for X given by (10). Suppose that there
exists a unique classical solution

(
V,U±) ∈ (

C1,2([0, T ] × R
d)
)2

to (47). Then the
solution to BSDE (46) is represented as

Ȳ±(t) = U± (t, X (t)) , Z̄±(t) = (
a∇U±) (t, X (t)) , t ∈ [0, T ].

4.1 Results on Arbitrage

Theorem 4 In addition to Conditions (19) and (44), assume the following:

h1 ≥ r−
f − rD − (

r+
r − rD

)
(σIσ

−11)+ + (
r−
r − rD

)
(σIσ

−11)−,

h2 ≥ r−
f − rD − (

r+
r − rD

)
(σCσ−11)+ + (

r−
r − rD

)
(σCσ−11)−,

(48)

and
r+
f ≥ r−

col. (49)

Then, it holds that p = Y−(0) ≤ Y+(0) = p̄. Hence, for the derivative security given

in Definition 2, any price p ∈ [
Y−(0),Y+(0)

]
at time 0 is arbitrage-free.

Remark 14 The conditions imposed in Theorem 4 to ensure the arbitrage-free prop-
erty look to be rather strong: violating (44), (48), or (49) seems to be realizable
in real situations. Relaxing the arbitrage-free condition by admitting “certain” arbi-
trage opportunitiesmight be an interesting researchdirection for this bilateral hedging
schemewith collateralizations.We refer to Thoednithi (2015) andNie andRutkowski
(2018) as related studies.
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Proof (Sketch). Using (35), (36), (38), and (43), we see that

f̄ ± (
t, y, z; v̂, p1, p2

)

=z� {
(r0r − rD)σ−11

}
(t)

− {
(2rD − r0f + h1 + h2) + (r0r − rD)(σI + σC)σ−11

}
(t)y

+ {
h1 − (r0f − rD) + (r0r − rD)σIσ

−11
}
(t)p1

+ {
h2 − (r0f − rD) + (r0r − rD)σCσ−11

}
(t)p2

+ α
{
r0f (t)v̂ ∓ r+

col(t)v̂
± ± r−

col(t)v̂
∓}

± εf(t)
∣∣y + (p1 − y) + (p2 − y) − αv̂

∣∣
± εr(t)

∣∣{z� + (p1 − y)σI (t) + (p2 − y)σC (t)
}
σ(t)−11

∣∣ .

So, for δ0, δ1, δ2 ≥ 0, we see that

f̄ + (·, y, z; v̂ + δ0, p1 + δ1, p2 + δ2
) − f̄ + (·, y, z; v̂, p1, p2

)

= {
h1 − (r0f − rD) + (r0r − rD)σIσ

−11
}
δ1

+ {
h2 − (r0f − rD) + (r0r − rD)σCσ−11

}
δ2

+ α
[
r0f δ0 − r+

col

{
(v̂ + δ0)

+ − v̂+} + r−
col

{
(v̂ + δ0)

− − v̂−}]

+ εf
{∣∣p1 + p2 − αv̂ − y + (δ1 + δ2 − αδ0)

∣∣ − ∣∣p1 + p2 − αv̂ − y
∣∣}

+ εr

[∣∣{z� + (p1 − y)σI + (p2 − y)σC
}
σ−11 + {δ1σI + δ2σC } σ−11

∣∣

− ∣∣{z� + (p1 − y)σI + (p2 − y)σC
}
σ−11

∣∣]. (50)

Using the inequality |x + y| − |x | ≥ −|y| and the relation

r+
col

{
(v̂ + δ0)

+ − v̂+} − r−
col

{
(v̂ + δ0)

− − v̂−} ≤ (
r+
col ∨ r−

col

)
δ0,

we see that

(50) ≥ {
h1 − (r0f − rD) + (r0r − rD)σIσ

−11
}
δ1

+ {
h2 − (r0f − rD) + (r0r − rD)σCσ−11

}
δ2 + α

(
r0f − r−

col

)
δ0

− εf (δ1 + δ2 + αδ0) − εr
{|σIσ

−11|δ1 + |σCσ−11|δ2
}

= {
h1 − r−

f + rD + (r0r − rD)σIσ
−11 − εr|σIσ

−11|} δ1

+ {
h2 − r−

f + rD + (r0r − rD)σCσ−11 − εr|σCσ−11|} δ2

+α
(
r+
f − r−

col

)
δ0 ≥ 0, (51)

wherewe use (48) and (49). Consider the systemofBSDEs (42) andwrite the solution
as

Ȳ± (t; ξT , φ1, φ2) , Z̄± (t; ξT , φ1, φ2) t ∈ [0, T ]
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by emphasizing the parameters (ξT , φ1, φ2). Take other payoff parameters(
ξ̃T , φ̃1, φ̃2

)
such that ξ̃T ≥ ξT , φ̃1 ≥ φ1, and φ̃2 ≥ φ2. Using the comparison theo-

rem for BSDEs twice (for V̂ and Ȳ+), and using relations (50) and (51), we deduce
that

Ȳ+
(
ξ̃T , φ̃1, φ̃2

)
≥ Ȳ+ (ξT , φ1, φ2)

and that
Y+

(
ξ̃T , φ̃1, φ̃2

)
≥ Y+ (ξT , φ1, φ2) .

This implies the minimality of Y+(ξT , φ1, φ2) and the equality,

p̄ = Y+(0; ξT , φ1, φ2).

The equality,
p = Y−(0; ξT , φ1, φ2),

can be seen similarly.

Remark 15 We have that for k ≥ 0,

Y± (t; kξT , kφ1, kφ2) ≡ kY± (t; ξT , φ1, φ2) for t ∈ [0, T ].

This positive homogeneity is seen from those of the drivers of BSDEs (42), namely

f̄ ± (
t, ky, kz; kv̂, kφ1, kφ2

) =k f̄ ± (
t, y, z; v̂, φ1, φ2

)
,

−rD(t)
(
kv̂

) =k
{−rD(t)v̂

}
.

See Jiang (2008) for the details.

4.2 Results on XVA

In this subsection, we assume that

εf ∨ εr ≤ ε (52)

with some (small) positive constant ε 
 1. Consider the system of BSDEs
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−dY 0,±(t) = f 0,±
(
t,Y 0,±(t), Z0,±(t),U 0,±

1 (t),U 0,±
2 (t); V̂ (t)

)
dt

− Z0,±(t)�dW (t) −U 0,±
1 (t)dM1(t) −U 0,±

2 (t)dM2(t),

for 0 ≤ t ≤ τ1 ∧ τ2 ∧ T,

Y 0,± (τ1 ∧ τ2 ∧ T ) = H,

−dV̂ (t) = −rD(t)V̂ (t)dt − �(t)�dW (t) for 0 ≤ t ≤ T,

V̂ (T ) = ξT (53)

on (�,F ,P,G), where

f 0,±
(
t, y, z, u1, u2; v̂

)

:= f 0 (t, y, z, u1, u2) + α
{
r0f (t)v̂ ∓ r+

col(t)v̂
± ± r−

col(t)v̂
∓} .

Associated with (53), consider the reduced system of BSDEs

−dȲ 0,±(t) = f̄ 0,±
(
t, Ȳ 0,±(t), Z̄0,±(t); V̂ (t), φ1(t), φ2(t)

)
dt

− Z̄0,±(t)�dW (t) for 0 ≤ t ≤ T,

Ȳ 0,±(T ) = ξT ,

−dV̂ (t) = −rD(t)V̂ (t)dt − �(t)�dW (t) for 0 ≤ t ≤ T,

V̂ (T ) = ξT (54)

on (�,F ,P,F), where

f̄ 0,±
(
t, y, z; v̂, p1, p2

)

:= f 0,±
(
t, y, z, p1 − y, p2 − y; v̂

) + (p1 − y)h1(t) + (p2 − y)h2(t).

We obtain the following.

Theorem 5 Assume Conditions (19) and (44). For (Ȳ±, Z̄±), (Ȳ 0,±, Z̄0,±), which
are solutions to BSDEs (42) and (54), respectively, it holds that

Ȳ− ≤ Ȳ 0,− ≤ Ȳ 0,+ ≤ Ȳ+ (55)

and that ∥∥Ȳ± − Ȳ 0,±∥∥
β,T + ∥∥Z̄± − Z̄0,±∥∥

β,T = O(ε) (56)

as ε → 0 in both + and − cases.

Proof (Sketch). The relation (55) is easily seen from the comparison theorem of
BSDEs. To see (56), we can apply the continuity (and the differentiability) results
with their proofs with respect to parameterized BSDEs, shown in El Karoui et al.
(2000) (see Proposition 2.4 and its proof in El Karoui et al. 2000 for the details).
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Combining Theorems 4 and 5, we see the following.

Corollary 1 Assume Conditions (19), (44), (48), and (49). Then, Y 0,−(0) and
Y 0,+(0) are arbitrage-free prices at time 0 for the derivative security given in Defi-
nition 2.

The above corollary implies that Y 0,±(0) may be regarded as approximated prices
of the derivative security for the writer and her counterparty, which prohibit the
existence of an arbitrage opportunity. Because BSDEs for (Y 0,±, Z0,±) are linear,5

we obtain the closed-form expressions for Y 0,± as follows. Let us introduce the
probability measure P̃T on (�,FT ) by

dP̃T

∣∣
Ft

= E(t)dP
∣∣
Ft

, t ∈ [0, T ],

where

E(t) := exp

[ t∫

0

{
r0r (u) − rD(u)

}
1�(σ (u)−1)�dW (u)

−1

2

t∫

0

{
r0r (u) − rD(u)

}2 ∣∣σ(u)−11
∣∣2 du

]
.

We denote the expectation with respect to P̃T conditioned by Ft by Ẽt [(· · · )] =
Ẽ [(· · · )|Ft ]. Recall that

W̃ (t) := W (t) −
t∫

0

{
r0r (u) − rD(u)

}
σ(u)−11du, t ∈ [0, T ]

is a (P̃T ,F)-Brownian motion by the Maruyama–Girsanov theorem, and on(
�,F , P̃T ,F

)
the risky asset price process S has the dynamics

dS(t) = diag(S(t))
{
σ(t)dW̃ (t) + r0r (t)1dt

}
, S(0) ∈ R

n
++.

Also, we denote

DFr(t, u) := exp

⎧
⎨
⎩−

u∫

t

r(s)ds

⎫
⎬
⎭

for the process r := (r(t))t∈[0,T ]. We then obtain the following.

Proposition 3 The following representation holds:

5 That is, the drivers f 0,±(t, y, z, u1, u2; v̂) are linear with respect to (y, z, u1, u2).
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Ȳ 0,±(t) = V(t) + VA1(t) + VA2(t) + VA3(t) + VA4(t) + VA±
5 (t). (57)

Here,

V(t) :=Ẽt

[
DFr0f (t, T )ξT

]
,

VA1(t) :=Ẽt

⎡
⎣

T∫

t

DFR(t, u)h1(u)φ̂1(u)du

⎤
⎦ ,

VA2(t) :=Ẽt

⎡
⎣

T∫

t

DFR(t, u)h2(u)φ̂2(u)du

⎤
⎦ ,

VA3(t) := − Ẽt

⎡
⎣

T∫

t

DFR(t, u)
{
(r0f − rD)

(
φ̂1 + φ̂2

)}
(u)du

⎤
⎦ ,

VA4(t) :=Ẽt

⎡
⎣

T∫

t

DFR(t, u)
{
(r0r − rD)

(
φ̂1σI + φ̂2σC

)
σ−11

}
(u)du

⎤
⎦ ,

VA±
5 (t) :=αẼt

⎡
⎣

T∫

t

DFR(t, u)
{(
r0f − r±

col

)
V̂+ − (

r0f − r∓
col

)
V̂−

}
(u)du

⎤
⎦ ,

where we define

φ̂i :=φi − V for i = 1, 2, and

R :=rD − (
r0f − rD

) + {
(r0r − rD) (σI + σC) (σ )−11

} + h1 + h2.

Proof Using the representation formula for linear BSDE (e.g., see Proposition 2.2
of El Karoui et al. 2000), we see that

Ȳ 0,±(t) = V̄(t) + VA1(t) + VA2(t) + VA3(t) + VA4(t) + VA±
5 (t),

where

V̄(t) :=Ẽt [DFR(t, T )ξT ] ,

VA1(t) :=Ẽt

⎡
⎣

T∫

t

DFR(t, u)h1(u)φ1(u)du

⎤
⎦ ,

VA2(t) :=Ẽt

⎡
⎣

T∫

t

DFR(t, u)h2(u)φ2(u)du

⎤
⎦ ,
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VA3(t) := − Ẽt

⎡
⎣

T∫

t

DFR(t, u)
{
(r0f − rD) (φ1 + φ2)

}
(u)du

⎤
⎦ ,

VA4(t) :=Ẽt

⎡
⎣

T∫

t

DFR(t, u)
{
(r0r − rD) (φ1σI + φ2σC) σ−11

}
(u)du

⎤
⎦ .

Furthermore, we see that

[
VA1 + VA2 + VA3 + VA4 − VA1 − VA2 − VA3 − VA4

]
(t)

= − Ẽt

⎡
⎣

T∫

t

DFR(t, u)V(u)
{
R(u) − r0f (u)

}
du

⎤
⎦

= − Ẽt

⎡
⎣

T∫

t

DFR(t, u)Ẽu

[
DFr0f (u, T )ξT

] {
R(u) − r0f (u)

}
du

⎤
⎦

=Ẽt

⎡
⎣DFr0f (t, T )ξT

T∫

t

∂

∂u
DFR−r0f

(t, u)du

⎤
⎦

=Ẽt

[
DFr0f (t, T )

{
DFR−r0f

(t, T ) − 1
}

ξT

]

=Ẽt

[{
DFR(t, T ) − DFr0f (t, T )

}
ξT

]
= V̄(t) − V(t),

hence the proof is complete.

Remark 16 Suppose that r0r ≡ r0f ≡ rD holds. In this case, P̃T ≡ P and V ≡ V̂ fol-

low. Furthermore, consider φi (t) := ϕi

(
V̂ (t)

)
, where (17) is employed for i = 1, 2.

Then, in (57), VA3 ≡ VA4 ≡ 0, and −VA1, VA2, and VA±
5 are called the debt val-

uation adjustment (DVA), the credit valuation adjustment (CVA), and the collateral
valuation adjustment (ColVA), respectively, which are popularly used XVA terms
in practice for the valuation adjustment in the pricing of derivative securities. Con-
cretely, DVA, CVA, and ColVA at time t are written as

DVA(t) := − Et

⎡
⎣

T∫

t

DFrD+h1+h2(t, u)h1(u)φ̂1(u)du

⎤
⎦ ,

CVA(t) :=Et

⎡
⎣

T∫

t

DFrD+h1+h2(t, u)h2(u)φ̂2(u)du

⎤
⎦ ,

ColVA±(t) :=
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Et

[ T∫

t

DFrD+h1+h2(t, u)
{(
rD − r±

col

)
αV̂+ − (

rD − r∓
col

)
αV̂−

}
(u)du

]
,

respectively, where we denote Et [(· · · )] := E [(· · · )|Ft ]. Further,

FVA(t) := Et

⎡
⎣

T∫

t

DFrD+h1+h2(t, u)
{
(r0f − rD) (φ1 + φ2)

}
(u)du

⎤
⎦ ,

called the funding valuation adjustment (FVA) at time t , is another popularly used
adjustment term in practice,which reflects the funding cost of uncollateralised deriva-
tives above the risk-free rate of return.Wecan roughly relate theseXVAtermswith the
correction terms in Proposition 3 as follows: Let r0r ≡ rD,6 which implies VA4 ≡ 0.
Further, suppose r0f ≈ rD. Then, we may interpret as

DVA ≈ − VA1,

CVA ≈VA2,

ColVA± ≈VA±
5 ,

and
FVA ≈ VA3,

or
FVA ≈ VA3 + (VA1 + DVA) + (VA2 − CVA) + (

ColVA± − VA±
5

)
.

For other theoretical studies on the valuation adjustments and related interpretation
of XVA used in practice, we refer to Brigo et al. (2020) and the reference therein.
Also, for comprehensive information on XVA issue and expanding-related issues
(e.g., computational issue), see for example Gregory (2015) and Glau et al. (2016),
and the references therein, which are still nonexhaustive.

4.3 Perturbed BSDEs

Aswe see in Theorem5 andCorollary 1, under certain conditions,Y 0,+(t)(< Y+(t)),
which is a zeroth-order approximation of the minimal hedging cost Y+(t), is an
arbitrage-free price for the writer at time t . In this subsection, we try to improve our
hedging strategy by using a first-order approximation. Using the solution to BSDE
(53), consider the linear BSDE

6 In practice, the difference r0r − rD seems to have been usually ignored.
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−dY 1,±(t) = f 0
(
t,Y 1,±(t), Z1,±(t),U 1,±

1 (t),U 1,±
2 (t)

)
dt

+ f 1,±
(
t,Y 0,±(t), Z0,±(t),U 0,±

1 (t),U 0,±
2 (t), V̂ (t)

)
dt

− Z1,±(t)dW (t) −U 1,±
1 (t)dM1(t) −U 1,±

2 (t)dM2(t),

Y 1,±(τ1 ∧ τ2 ∧ T ) = 0 (58)

on (�,F ,P,G), where

f 1,±(t, y, z, u1, u2; v̂) := ±εf(t)
∣∣y + u1 + u2 − αv̂

∣∣
±εr(t)

∣∣{z� + u1σI (t) + u2σC(t)
}
σ(t)−11

∣∣ .

Furthermore, using the solution to BSDE (54), consider the linear BSDE

−dȲ 1,±(t) = f̄ 0
(
t, Ȳ 1,±(t), Z̄1,±(t);φ1(t), φ2(t)

)
dt

+ f̄ 1,±
(
t, Ȳ 0,±(t), Z̄0,±(t); V̂ (t), φ1(t), φ2(t)

)
dt

− Z̄1,±(t)dW (t),

Ȳ 1,±(T ) = 0 (59)

on (�,F ,P,F), where

f̄ 0(t, y, z; p1, p2) := f 0 (t, y, z, p1 − y, p2 − y) ,

f̄ 1,±(t, y, z; v̂, p1, p2) := ± εf(t)
∣∣y + (p1 − y) + (p2 − y) − αv̂

∣∣
± εr(t)

∣∣∣
{
z� + (p1 − y)σI (t) + (p2 − y)σC (t)

}
σ(t)−11

∣∣∣ .

Using a similar technique to that used in the proof of Theorem 5, we can show the
following.

Proposition 4 It holds that for any sufficiently large β > 0,

‖Ȳ± − (
Ȳ 0,± + Ȳ 1,±) ‖β,T + ‖Z̄± − (

Z̄0,± + Z̄1,±) ‖β,T =O(ε2)

as ε → 0, where we assume (52).

Acknowledgements The authors are grateful to an anonymous referee for valuable comments and
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An Overview of Exact Solution Methods
for Guaranteed Minimum Death Benefit
Options in Variable Annuities

Eric R. Ulm

1 Introduction

In his book, “The Calculus of Retirement Income”, Milevsky (2006) describes the
guaranteed minimum death benefit (GMDB) option in variable annuity products. He
describes a gap in the literature with the words, “it is very difficult to obtain a closed-
form solution” for GMDB options and to date not many exist (pg 259). Since that
time, a number of closed-form solutions have been obtained for some specific option
features and some fairly general mortality laws. This paper fills the gap identified
by Milevsky by compiling the methods and solutions that have accumulated in the
literature since this statement was made in 2006.

In its most basic form, a GMDB is a European option with a random exercise time
drawn from the probability density function of an individual’s remaining lifetime.
The underlying is a fund invested in a risky asset. The owner invests a premium X
into the fund. The fund value at any time t is given as St which is typically assumed to
follow a geometric Brownian motion process. The individual can surrender the fund
at any time for the value St . If the individual dies, however, the beneficiary receives
the maximum of St and the strike Xt which is some function of the original premium
and the past behavior of the fund. This is equivalent to the beneficiary receiving the
fund as well as a European option exercisable at the moment of death.

The simplest GMDB to solve is the “Return of Premium” GMDB. In this case,
the strike Xt = X, the original strike. The GMDB is then equivalent to a European put
option with a random exercise time. A “Roll-up” GMDB allows the strike to increase
with time as Xt = Xept . The GMDB is then equivalent to a European put with a strike
level dependent on the random exercise time. Finally, a “Ratchet” GMDB allows the
strike to move upward with time as the fund increases, but not downward. In other
words, the strike at the random exercise time is the maximum of the historical fund
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value. In the case of a continuous ratchet, the strike is the historical maximum and
in the case of a discrete ratchet, it is the historical maximum at all ratchet dates. The
GMDB is then equivalent to a lookback option with a random exercise time.

In addition to the features mentioned above, the owner of the fund has several
“real options”. First, the owner has the right to ask for part or all of the fund value
at any time, called a “surrender” or “lapse”. Second, there are often a number of
funds underlying the option and the owner can choose his allocation and thereby
affect the fund’s expected return and volatility. If these options were traded in a
completemarket, one could assume the real options are exercised optimally in order to
maximum the risk-neutral value of the option. However, the options are not tradeable
in markets, hedging is expensive for ordinary policyholders, and individuals are not
able to fully diversify their own mortality risk. For these reasons, it is often assumed
that individuals make these choices to maximize the present value of their own and
their beneficiary utility (see, for example, Gao and Ulm (2012), Moenig (2012), Gao
and Ulm (2015), and Moenig and Zhu (2018)).

Three main methods have been used to obtain exact solutions to these option
values. First, the value of the option can be determined by taking the integral of
the European option value multiplied by the pdf of the owner’s remaining lifetime.
Second, the partial differential equation satisfied by the option value can be solved.
Third, the option price can be determined using expectations under the risk-neutral
probability measure using a discounted density approach. These three methods will
be discussed in turn in the following sections.

2 The Direct Integration Method

Direct integration was the first method used to obtain exact solutions for GMDB
options. Milevsky and Posner (2001) were the first to solve a specific case of the
GMDB option values. They were interested in the at-the-money values. This is not
as restrictive as itmight seemat first, since nearly all GMDBoptions are issued at-the-
money and the initial option prices can be determined from the at-the-money option
values. These options are typically paid for by deduction of fees as a percentage of
fund.

In particular, they analyze return-of-premium, roll-up, and ratchet GMDB options
with a constant force of mortality (i.e., an exponential distribution for the future
lifetime). They evaluate the integral of the European put prices multiplied by the pdf
of the future lifetime. Assuming a constant morality rate μ, the value of the roll-up
GMDB option can be expressed as:

f =
∫ T

0
Xe(p−r)t N

(
−ξ2

√
t
)
μe−μtdt −

∫ T

0
Xe−qt N

(
−ξ1

√
t
)
μe−μtdt (1)

where p is the roll-up rate, r is the risk-free rate, q is the rate at which fees are
deducted, and T is the maximum time that the option is in effect and
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ξ1 = r − p − q + σ 2

2

σ
and ξ2 = r − p − q − σ 2

2

σ
(2)

The authors replace the cumulative normal functions with their integral defi-
nitions, then reverse the order of integration and take the limit as T → ∞ to
find

f = μX

2(r − p + μ)

⎡
⎣1 − ξ2√

ξ22 + 2(r − p − μ)

⎤
⎦ − μX

2(q + μ)

⎡
⎣1 − ξ1√

ξ21 + 2(q − μ)

⎤
⎦ (3)

This reduces to the return-of-premium formula if p = 0. The authors do not give
explicit expressions for finite values of T, but they are easy to derive from the other
formulas in the paper.

Similarly, the value of a ratchet GMDB option can be expressed as an integral
over the known value of the lookback put option found in Goldman et al. (1979).
The resulting integral is:

f =
∫ T

0
Xe−r t N

(
−ξ2

√
t
)
μe−μtdt −

∫ T

0
Xe−qt N

(
−ξ1

√
t
)
μe−μtdt

+
∫ T

0
ηXe−qt N

(
ξ1

√
t
)
μe−μtdt −

∫ T

0
ηXe−r t N

(
ξ3

√
t
)
μe−μtdt (4)

where

ξ1 = r − q + σ 2

2

σ
; ξ2 = r − q − σ 2

2

σ
; ξ3 = −(r − q) + σ 2

2

σ
; η = σ 2

2(r − q)
(5)

Using the same technique of reversing integration order and letting T → ∞, they
find:

f = μ(1 − η)X

2(r + μ)

⎡
⎣1 − ξ2√

ξ 2
2 + 2(r + μ)

⎤
⎦ − μX

2(q + μ)

⎡
⎣1 − η − ξ1(1 + η)√

ξ 2
1 + 2(q + μ)

⎤
⎦

(6)

This technique could presumably be applied to any GMDB option whose anal-
ogous European option formula contains forms of N

(
c
√
t
)
. A sampling of such

options can be found in the book by Haug (2007). However, most of these solutions
would be of theoretical interest only since no such GMDB options are offered in
the market. To the best of my knowledge, this methodology has not been employed
elsewhere.
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3 The Partial Differential Equation Method

It can be shown that the value of the GMDB option must satisfy a partial differential
equation in time and asset level. The equation that must be satisfied by the value of
the GMDB option, f a(S,t), if S ≤ X, is:

∂ fa
∂t

+ (r − q)S
∂ fa
∂S

+ 1

2
σ 2S2

∂2 fa
∂S2

= [r + μx (t) + λ(S, t)] fa
− [μx (t)]Max(Xt − S, 0) (7)

where λ(S,t) is the (possibly time and level dependent) lapse rate.
The equation can be derived in a number of ways. Milevsky and Salisbury (2001)

derive the equation using standard techniques obtained from the generator of the
diffusion process. It can also be shown that the integral formulation satisfies Eq. (7)
if the individual put options in the integral obey the standard Black–Scholes PDE.
Intuitively, if themarket is complete, the value of the optionmust grow at the risk-free
rate in expectation. This implies that the value of the option when the owner is alive
must grow faster than the risk-free rate to compensate for its reduced value when
the owner is dead producing the first term on the RHS of Eq. (7). The second term
reflects a reduction in the growth of the alive option when there are death benefits
involved.

If the lapse rate and force ofmortality are assumed to be constant, the PDE reduces
to an ODE:

(r − q)S
∂ fa
∂S

+ 1

2
σ 2S2

∂2 fa
∂S2

= [r + μ + λ] fa − μMax(Xt − S, 0) (8)

This equation can be solved straightforwardly in the case of a return of premium
GMDB with appropriate boundary conditions. The solution is given in Ulm (2006)
as:

fa(S, t) =
⎧⎨
⎩

μX

2(r + μ + λ)

⎡
⎣1 − ξ2√

ξ 2
2 + 2(r + μ + λ)

⎤
⎦

− μX

2(q + μ + λ)

⎡
⎣1 − ξ1√

ξ 2
1 + 2(q + μ + λ)

⎤
⎦

⎫⎬
⎭

(
S

X

)m2

S > X (9)

and

fa(S, t) = μX

r + μ + λ
− μX

q + μ + λ

(
S

X

)
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+
⎧⎨
⎩

μX

2(q + μ + λ)

⎡
⎣1 + ξ1√

ξ 2
1 + 2(q + μ + λ)

⎤
⎦

− μX

2(r + μ + λ)

⎡
⎣1 + ξ2√

ξ 2
2 + 2(r + μ + λ)

⎤
⎦

⎫⎬
⎭

(
S

X

)m1

S < X (10)

where

ξ1 = r − q + σ 2

2

σ
; ξ2 = r − q − σ 2

2

σ
;

m1 =
−

(
r − q − σ 2

2

)
+

√(
r − q − σ 2

2

)2 + 2σ 2(r + μ + λ)

σ 2
;

m2 =
−

(
r − q − σ 2

2

)
−

√(
r − q − σ 2

2

)2 + 2σ 2(r + μ + λ)

σ 2
(11)

This clearly reduces to Eq. (3) when λ = 0 and S = X.
This equation can be used to determine optimal surrender and allocation strategies.

Milevsky and Salisbury (2001) solve the PDE in the presence of surrender charges
and find an optimal exercise boundary above which the owner will surrender the
policy and reinstate it at another company as a new at-the-money option. They then
compute the surrender charges necessary to prevent optimal lapsation fromoccurring.

Ulm (2006) solves the PDE in the case where the owner has a risky and risk-free
asset and finds an optimal exercise boundary. Below the boundary, the fund will be
invested entirely in the risk-free account and above the boundary the fund will be
invested entirely in the risky asset.

The analytic solution of the PDE for a roll-up GMDB option under exponential
mortality has been found in Ulm (2008). The solution is quite similar to that in
Eqs. (9)–(11) with some simple redefinitions and is given as:

fa(S, t) =
⎧⎨
⎩

μXept

2(r + μ + λ − p)

⎡
⎣1 − ξ2√

ξ 2
2 + 2(r + μ + λ − p)

⎤
⎦

− μXept

2(q + μ + λ)

⎡
⎣1 − ξ1√

ξ 2
1 + 2(q + μ + λ)

⎤
⎦

⎫⎬
⎭

(
S

Xept

)m2

S > Xept

(12)

and

fa(S, t) = μXept

r + μ + λ − p
− μXept

q + μ + λ

(
S

Xept

)
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+
⎧⎨
⎩

μXept

2(q + μ + λ)

⎡
⎣1 + ξ1√

ξ21 + 2(q + μ + λ)

⎤
⎦

− μXept

2(r + μ + λ − p)

⎡
⎣1 + ξ2√

ξ22 + 2(r + μ + λ − p)

⎤
⎦

⎫⎬
⎭

(
S

Xept

)m1

S < Xept (13)

where

ξ1 = r − q − p + σ 2

2

σ
; ξ1 = r − q − p − σ 2

2

σ
;

m1 =
−

(
r − q − p − σ 2

2

)
+

√(
r − q − p − σ 2

2

)2 + 2σ 2(r + μ + λ − p)

σ 2
;

m2 =
−

(
r − q − p − σ 2

2

)
−

√(
r − q − p − σ 2

2

)2 + 2σ 2(r + μ + λ − p)

σ 2
(14)

Finding analytic solutions only in the case of a constant force of mortality is not as
restrictive as it might seem. It can be shown that any distribution can be approximated
by a sum of exponentials (see Dufresne (2007)). Since the PDE (Eq. (7)) is linear,
the solution for an arbitrary distribution would be the sum of the solutions for the
approximating exponentials. Unfortunately, this methodology seems to work poorly
in practice, requiring a large number of terms for convergence.

Ulm (2008) also finds solutions for three additional mortality laws where μx(t)
is time dependent. First, a solution is obtained for the situation where μ is constant
until time T, at which point everyone dies. The solution is given by:

fa(S, t) = (r + λ − p)Xept

r + μ + λ − p
e−(r+μ+λ−p)(T−t)N (−d2)

− (q + λ)Xept

q + μ + λ

(
S

Xept

)
e−(q+μ+λ)(T−t)N (−d1)

−
⎧⎨
⎩

μXept

2(q + μ + λ)

⎡
⎣1 + ξ1√

ξ21 + 2(q + μ + λ)

⎤
⎦

− μXept

2(r + μ + λ − p)

⎡
⎣1 + ξ2√

ξ22 + 2(r + μ + λ − p)

⎤
⎦

⎫⎬
⎭

(
S

Xept

)m1

N (−d3)

+
⎧⎨
⎩

μXept

2(r + μ + λ − p)

⎡
⎣1 − ξ2√

ξ22 + 2(r + μ + λ − p)

⎤
⎦

− μXept

2(q + μ + λ)

⎡
⎣1 − ξ1√

ξ21 + 2(q + μ + λ)

⎤
⎦

⎫⎬
⎭

(
S

Xept

)m2

N (−d4) S > Xept (15)

and
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fa(S, t) = μXept

r + μ + λ − p
− μXept

q + μ + λ

(
S

Xept

)

+ (r + λ − p)Xept

r + μ + λ − p
e−(r+μ+λ−p)(T−t)N (−d2)

− (q + λ)Xept

q + μ + λ

(
S

Xept

)
e−(q+μ+λ)(T−t)N (−d1)

+
⎧⎨
⎩

μXept

2(q + μ + λ)

⎡
⎣1 + ξ1√

ξ21 + 2(q + μ + λ)

⎤
⎦

− μXept

2(r + μ + λ − p)

⎡
⎣1 + ξ2√

ξ22 + 2(r + μ + λ − p)

⎤
⎦

⎫⎬
⎭

(
S

Xept

)m1

N (d3)

−
⎧⎨
⎩

μXept

2(r + μ + λ − p)

⎡
⎣1 − ξ2√

ξ22 + 2(r + μ + λ − p)

⎤
⎦

− μXept

2(q + μ + λ)

⎡
⎣1 − ξ1√

ξ21 + 2(q + μ + λ)

⎤
⎦

⎫⎬
⎭

(
S

Xept

)m2

N (d4) S < Xept (16)

with additional definitions:

d1 =
ln

(
S

Xept
) +

(
r − q − p + σ 2

2

)
(T − t)

σ
√
T − t

;

d2 =
ln

(
S

Xept
) +

(
r − q − p − σ 2

2

)
(T − t)

σ
√
T − t

;

d3 =
ln

(
S

Xept
) + σ

√
ξ 2
1 + 2(q + μ + λ)(T − t)

σ
√
T − t

;

d4 =
ln

(
S

Xept
) − σ

√
ξ 2
1 + 2(q + μ + λ)(T − t)

σ
√
T − t

(17)

Second, a solution is obtained for the situation where μ is constant until time T,
at which point the option expires worthless. The solution is given by:

fa(S, t) = μXept

q + μ + λ

(
S

Xept

)
e−(q+μ+λ)(T−t)N (−d1)

− μXept

r + μ + λ − p
e−(r+μ+λ−p)(T−t)N (−d2)

−
⎧⎨
⎩

μXept

2(q + μ + λ)

⎡
⎣1 + ξ1√

ξ21 + 2(q + μ + λ)

⎤
⎦

− μXept

2(r + μ + λ − p)

⎡
⎣1 + ξ2√

ξ22 + 2(r + μ + λ)

⎤
⎦

⎫⎬
⎭

(
S

Xept

)m1

N (−d3)
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+
⎧⎨
⎩

μXept

2(r + μ + λ − p)

⎡
⎣1 − ξ2√

ξ22 + 2(r + μ + λ − p)

⎤
⎦

− μXept

2(q + μ + λ)

⎡
⎣1 − ξ1√

ξ21 + 2(q + μ + λ)

⎤
⎦

⎫⎬
⎭

(
S

Xept

)m2

N (−d4) S > Xept

(18)

and

fa(S, t) = μXept

r + μ + λ − p
− μXept

q + μ + λ

(
S

Xept

)

+ μXept

q + μ + λ

(
S

Xept

)
e−(q+μ+λ)(T−t)N (−d1)

− μXept

r + μ + λ − p
e−(r+μ+λ−p)(T−t)N (−d2)

+
⎧⎨
⎩

μXept

2(q + μ + λ)

⎡
⎣1 + ξ1√

ξ21 + 2(q + μ + λ)

⎤
⎦

− μXept

2(r + μ + λ − p)

⎡
⎣1 + ξ2√

ξ22 + 2(r + μ + λ − p)

⎤
⎦

⎫⎬
⎭

(
S

Xept

)m1

N (d3)

−
⎧⎨
⎩

μXept

2(r + μ + λ − p)

⎡
⎣1 − ξ2√

ξ22 + 2(r + μ + λ − p)

⎤
⎦

− μXept

2(q + μ + λ)

⎡
⎣1 − ξ1√

ξ21 + 2(q + μ + λ)

⎤
⎦

⎫⎬
⎭

(
S

Xept

)m2

N (d4) S < Xept

(19)

Finally, a solution is obtained for the DeMoivre’s law of mortality where μx (t) =
1

T−t ; that is, a uniform distribution of deaths between times t and T. The solution is
given by:

fa(S, t) = Xept

(q + λ)(T − t)

(
S

Xept

)
e−(q+λ)(T−t)N (−d1)

− Xept

(r + λ − p)(T − t)
e−(r+λ−p)(T−t)N (−d2)

−
⎧⎨
⎩

Xept

2(q + λ)(T − t)

⎡
⎣1 + ξ1√

ξ21 + 2(q + λ)

⎤
⎦
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− Xept

2(r + λ − p)(T − t)

⎡
⎣1 + ξ2√

ξ22 + 2(r + λ − p)

⎤
⎦

⎫⎬
⎭

(
S

Xept

)m1

N (−d3)

+
⎧⎨
⎩

Xept

2(r + λ − p)(T − t)

⎡
⎣1 − ξ2√

ξ22 + 2(r + λ − p)

⎤
⎦

− Xept

2(q + λ)(T − t)

⎡
⎣1 − ξ1√

ξ21 + 2(q + λ)

⎤
⎦

⎫⎬
⎭

(
S

Xept

)m2

N (−d4) S > Xept

(20)

and

fa(S, t) =
Xept

(
1 − e−(r+λ−p)(T−t)

)

(r + λ − p)(T − t)
−

Xept
(
1 − e−(q+λ)(T−t)

)

(q + λ)(T − t)

(
S

Xept

)

+ Xept

(r + λ − p)(T − t)
e−(r+λ−p)(T−t)N (d2)

− Xept

(q + λ)(T − t)

(
S

Xept

)
e−(q+λ)(T−t)N (d1)

+
⎧⎨
⎩

Xept

2(q + λ)(T − t)

⎡
⎣1 + ξ1√

ξ21 + 2(q + λ)

⎤
⎦

− Xept

2(r + λ − p)(T − t)

⎡
⎣1 + ξ2√

ξ22 + 2(r + λ − p)

⎤
⎦

⎫⎬
⎭

(
S

Xept

)m1

N (d3)

−
⎧⎨
⎩

Xept

2(r + λ − p)(T − t)

⎡
⎣1 − ξ2√

ξ22 + 2(r + λ − p)

⎤
⎦

− Xept

2(q + λ)(T − t)

⎡
⎣1 − ξ1√

ξ21 + 2(q + λ)

⎤
⎦

⎫⎬
⎭

(
S

Xept

)m2

N (d4) S < Xept

(21)

The definitions of the ancillary quantities are the same as in the previous case
with the exception that the parameter “μ” is replaced by “0”.

These results are extended to ratchet GMDB options in Ulm (2014). The PDE is
solved using Laplace transforms. The author finds the following solution in the case
of a constant force of mortality:

fa(S, t) = μ

(μ + r + λ)
X − μ

(μ + q + λ)
S + μ

(μ + r + λ)

X

m1 − 1

(
S

X

)m1

S < X

(22)
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withm1 defined as in Eq. (11). As the GMDB is a continuous ratchet, it is not possible
for the option to be in the range S > X.

As previously noted, the pdf for any arbitrarymortality law can be closely approx-
imated by a sum of exponentials. Ulm (2014) solves the PDE in several additional
cases. First, a solution is obtained for the situation where μ is constant until time T,
at which point everyone dies. The solution is given by:

fa(S, t) = μ

(μ + r + λ)
X + r + λ

(μ + r + λ)
Xe−(μ+r+λ)(T−t)N (−d2)

− μ

(μ + q + λ)
S − q + λ

(μ + q + λ)
Se−(μ+q+λ)(T−t)N (−d1)

+ μ

r + μ + λ

X

m1 − 1

(
S

X

)m1

N (d3) + r + λ

r + μ + λ

X

m2 − 1

(
S

X

)m2

N (d4)

+ q + λ

(μ + q + λ)

σ 2

2(r − q)
Se−(μ+q+λ)(T−t)N (d1)

− r + λ

(μ + r + λ)

σ 2

2(r − q)
X

(
S

X

)2α

e−(μ+r+λ)(T−t)N (d5) S ≤ X (23)

with definitions

α = 1

2
− (r − q)

σ 2
;

d1 =
ln

(
S
X

) +
(
r − q + σ 2

2

)
(T − t)

σ
√
T − t

;

d2 =
ln

(
S
X

) +
(
r − q − σ 2

2

)
(T − t)

σ
√
T − t

;

d3 =
ln

(
S
X

) + σ 2
√

ξ 2
1 + 2(q + μ + λ)(T − t)

σ
√
T − t

;

d4 =
ln

(
S
X

) − σ 2
√

ξ 2
1 + 2(q + μ + λ)(T − t)

σ
√
T − t

;

d5 =
ln

(
S
X

) +
(
−(r − q) + σ 2

2

)
(T − t)

σ
√

(T − t)
; (24)

Second, a solution is obtained for the situation where μ is constant until time T,
at which point the option expires worthless. The solution is given by:

fa(S, t) = μ

(μ + r + λ)
X − μ

(μ + r + λ)
Xe−(μ+r+λ)(T−t)N (−d2)
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− μ

(μ + q + λ)
S + μ

(μ + q + λ)
Se−(μ+q+λ)(T−t)N (−d1)

+ μ

r + μ + λ

X

m1 − 1

(
S

X

)m1

N (d3) + r + λ

r + μ + λ

X

m2 − 1

(
S

X

)m2

N (d4)

− μ

(μ + q + λ)

σ 2

2(r − q)
Se−(μ+q+λ)(T−t)N (d1)

+ μ

(μ + r + λ)

σ 2

2(r − q)
X

(
S

X

)2α

e−(μ+r+λ)(T−t)N (d5) S ≤ X (25)

Finally, a solution is obtained for the situation where μx (t) = 1
T−t ; that is, a

uniform distribution of deaths between times t and T. The solution is given by:

fa(S, t) = X

(r + λ)(T − t)
− Xe−(r+λ)(T−t)

(r + λ)(T − t)
N (−d2) − S

(q + λ)(T − t)

+ Se−(q+λ)(T−t)

(q + λ)(T − t)
N (−d1)

+ X

(r + λ)(T − t)(m1 − 1)

(
S

X

)m1
N (d3) + X

(r + λ)(T − t)(m2 − 1)

(
S

X

)m2
N (d4)

− S

(q + λ)(T − t)

σ 2

2(r − q)
e−(q+λ)(T−t)N (d1)

+ X

(r + λ)(T − t)

σ 2

2(r − q)

(
S

X

)2α
e−(r+λ)(T−t)N (d5) S ≤ X (26)

The definitions of the ancillary quantities are the same as in the previous case
with the exception that the parameter “μ” is replaced by “0”.

The mortality laws analyzed to this point are fairly unrealistic and not descriptive
of human mortality. Ulm (2014) does make significant progress on the solution of
the PDE for the much more realistic Makeham’s law of mortality, defined as:

μ(x) = A + Bcx (27)

with parameters A, B, and c set to values that best reproduce empirical mortality
distributions. The solution in the at-the-money case is:

fa(1, t) = A

r + λ + A
+ (r + λ)e(r+λ+A)(t−a)

r + λ + A

�(1 − (r + λ)b, e
(t − a)/b)

�(1, e
(t − a)/b)

− A

q + λ + A
− (q + λ)e(q+λ+A)(t−a)

q + λ + A

�(1 − (q + λ)b, e
(t − a)/b)

�(1, e
(t − a)/b)

+ e(r+λ+A)(t−a)ee
(t−a)/b

[
r + λ

r − q

(1 − α)σ 2b

2
�

(−(r + λ + A)b, e(t−a)/b
)
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− q + λ

r − q

(1 − α)σ 2b

2
e(r−q)(t−a)�

(−(q + λ + A)b, e(t−a)/b
)

+ 2√
π
e−(r+λ+A)(t−a) 1√

κ + γ

∫ ∞

0
e−u2e−e(t−a)/be

2u2/
σ 2(κ + γ )b

du

− 2√
π

q + λ

r − q

(1 − α)σ 2b

2
e(r−q)(t−a)

×
∞∫

0

e−u2�

(
−(q + λ + A)b, e(t−a)/be

2u2/
σ 2(1 − α)2b

)
du

− 2√
π

r + λ

r − q

ασ 2b

2

∞∫

0

e−u2�

(
−(r + λ + A)b, e(t−a)/be

2u2/
σ 2α2b

)
du

⎤
⎦

(28)

where

α = 1

2
− (r − q)

σ 2
; κ = 2(r + λ)

σ 2
+ α2; γ = 2A

σ 2
;

a = −
ln

[
B

ln(c)

]

ln(c)
; b = 1

ln(c)
;m = B

ln(c)
; (29)

The integrals clearly converge, but are not available in closed form.

4 The Discounted Density Method

This approach was pioneered by Gerber et al. (2012). They begin by defining the
“discounted density function” for the value X(τ ) and running maximumM(τ ) for an
exponential stopping time τ distributed with fτ (t) = μe−μt . This function is defined
to be:

f δ
X(τ ),M(τ )(x, y) =

∫ ∞

0
e−δt fX(t),M(t)(x, y)μe

−μt dt (30)

where fx(τ ),M(τ )(x, y) is the pdf of the value and running maximum at time t. This
integral bears a striking resemblance to the density function at an exponential stop-
ping time and can be evaluated using the standard results found, for example, in
Borodin and Salminen (2002). In particular, for a Brownian motion with growth rate
r,

f δ
X(τ ),M(τ )(x, y) = 2μ

σ 2
e−αx−(β−α)y (31)
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where α and β are the negative and positive roots of the quadratic equation:

σ 2

2
x2 + r x − (μ + δ) = 0 (32)

All of the options previously analyzed, as well asmany others, can be expressed as
an expected value of a function of X(τ ) and M(τ ) appropriately discounted. There-
fore, one need to only integrate the option function multiplied by the discounted
density function to get the GMDB values. Gerber et al. (2012) find values for call
options, all-or-nothing call options, put options, all-or-nothing put options, fixed-
strike lookback call options, floating strike lookback put options, fractional floating
strike lookback put options, fixed-strike lookback put options, floating strike look-
back call options, high–low options, up-and-out barrier options, up-and-in barrier
options, down-and-out barrier options, and down-and-in barrier options. Most of
these options are of theoretical interest only as they are not offered in the GMDB
market. The formulas are not reproduced here due to space considerations, but they
can be found in the original paper. They are also able to obtain formulas for options
that expire at time T as well as for DeMoivre’s law mortality.

Gerber et al. (2013) extend these results to situations where the fund process
follows a jump-diffusion Lévy process. They are again able to use results on the
exponential stopping times of such processes to get closed-form solutions for option
prices when the jump sizes are exponentially distributed. They also suggest that
“knock-out” options are a reasonable way to model lapses. This assumes that when
the option is sufficiently out of the money the individual will surrender the policy,
which is the equivalent of the option expiring worthless. As before, the large number
of solutions found in Gerber et al. (2013) will not be reproduced here, and the
interested reader is referred to the original paper.

Siu et al. (2015) extend these results to GMDB options where the fund follows a
regime-switching double-exponential jump-diffusion process. They are able to obtain
closed-form expressions for the Laplace transforms of the option values, which are
then inverted numerically.

5 Extensions of the Analytic Methods to Related Problems

It is sometimes the case in insurance and risk management problems that one is not
only interested in the expected value of a quantity but also the full distribution or
percentiles of the option outcomes. For instance, if an insurance company wishes to
be, say, 99%certain of avoiding bankruptcy then the 99th percentile of the distribution
of outcomes needs to be determined. The PDE approach has been used for these types
of problems, but notmany analytic results are known. The interested reader is directed
to Feng and Volkmer (2012) and Feng and Huang (2016) for details.

Variable annuity contracts can contain other types of riders in addition to guar-
anteed minimum death benefits. These include guaranteed minimum accumulation
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benefits, guaranteed minimum income benefits, guaranteed minimum withdrawal
benefits, and guaranteed lifetime withdrawal benefits, often identified collectively
with GMDBs as GMxBs. The interested reader is referred to Bauer et al. (2008)
or the books by Hardy (2003) or Feng (2018) for descriptions of these riders and
possible methods for determining the option values. Some analytic solutions can be
found in Feng and Volkmer (2016) and Feng and Jing (2017).

6 Conclusions and Future Research Directions

This paper reviewswork to date on analytic solutions forGMDBoptions embedded in
variable annuity contracts. It presents the common solution methods including direct
integration, PDE methods, and discounted density approaches. Analytic solutions
have been obtained to most common GMDB options (as well as many uncommon
ones) when the force of mortality is constant. Only a small number of analytic
solutions have been obtained for more realistic mortality laws, and there is scope
for work in this area. Methodologies have been developed for determining quantiles
and percentiles of the option distribution but very few analytic results have been
obtained with room for further research in this area. Finally, there are almost no
analytic solutions for other types of GMxB options, and there is space in this area for
further research. Table 1 summarizes the strong points and limitations of the methods
considered in this review.

Table 1 Strong points and limitations of the methods considered in this review

Method Papers Strong features Limitations

Direct integration Milevsky and
Posner (2001)

Easy to understand Only used for constant
force of mortality
Only used for
at-the-money options
Only used for geometric
Brownian motion

PDE methods Milevsky and
Salisbury (2001)
Ulm (2006)
Ulm (2008)
Ulm (2014)

Used for many types of
mortality laws
Implied policyholder
options can be
analyzed

Complicated to apply in
practice
Only used for geometric
Brownian motion

Discounted density
methods

Gerber et al. (2012)
Gerber et al. (2013)
Siu et al. (2015)

Solutions can be
obtained for many
option types
Used for processes
other than geometric
Brownian motion

Only used for constant
force of mortality and
DeMoivre’s law
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Mathematical Modeling and Inverse
Problem Approaches for Functional
Clothing Design Based on Thermal
Mechanism

Dinghua Xu and Tingyue Li

1 Background of the IPTMD

Textile materials, like many other materials, should be designed and engineered
to possess specific attributes or properties for different end-user (Xu 2014; Huang
2008). People have the common opinion that The better clothing, the happier life;
the better clothing, the less thermal injury; the smarter clothing, the more upgraded
industries. Compared to other materials, such as metal, plastics, and electronics,
engineering of textile materials presents a much greater challenge, owing to the lack
of the precise relationships between material–processing–structural variables on one
hand and properties/performance on the other hand as well as the nonlinear nature
of the multivariable interactions.

This is however changing, thanks to the efforts of generations of textile scientists.
Within limits, we can now predict the properties and performance of textile materials
by applying theoretical models and empirical relations. Moreover, it would be fur-
ther desirable to quantify thematerial, processing, and structural parameters from the
anticipated end-use requirements. This leads to a class of inverse problems in mathe-
matics, which makes the mathematical research for the textile industry so interesting
and valuable.

Although the end-use requirements of textilematerials include durability, comfort,
protection, tailorability, appearance, etc., the thermal comfort and thermal safety are
the two important factors among all of them. So this paper mainly focuses on the
two kinds of functional clothing, i.e., thermal comfort clothing (TCC) and thermal
protective clothing (TPC).The inverse problemof textilematerials in termsof thermal

D. Xu
Department of Mathematics, College of Sciences, Zhejiang Sci-Tech University,
Hangzhou 310018, Zhejiang Province, People’s Republic of China

D. Xu (B) · T. Li
School of Mathematics, Shanghai University of Finance and Economics, Shanghai 200433,
People’s Republic of China
e-mail: dhxu6708@zstu.edu.cn

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
J. Cheng et al. (eds.), Proceedings of the Forum "Math-for-Industry" 2018,
Mathematics for Industry 35, https://doi.org/10.1007/978-981-16-5576-0_4

67

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-5576-0_4&domain=pdf
mailto:dhxu6708@zstu.edu.cn
https://doi.org/10.1007/978-981-16-5576-0_4


68 D. Xu and T. Li

comfort, particularly thermo-physiological comfort, is a good starting point, as about
50% of textile materials are used for apparel and comfort is the primary concern
of clothing. The thermal protective clothing is essentially an important garment to
protect the human body from thermal damage. Therefore, the TCC and the TPC
design should be considered so that the physical and structural parameters of textiles
are determined to satisfy the thermal comfort index or reduce the thermal injury.

So far many researchers have treated these partial differential equations as direct
problems to find solutions with respect to specific parameters of the human body—
clothing-environment system through different approaches including finite differ-
encemethod, finite volumemethod, finite elementmethod and volume–time–domain
recursive method (Fan et al. 2000, 2004; Li et al. 2004; Fan and Wei 2002; Wu and
Fan 2008; Ye et al. 2008; Du et al. 2009). Few have treated it as an inverse prob-
lem for the TCC/TPC design, viz. to find the desirable material parameters from
the constraints and end-use requirements. The inverse problem of textile material
design (IPTMD) should be professionally treated by mathematicians (Engl et al.
1998; Stuart 2010).

Generally speaking, inverse problems are mathematically ill-posed; that is, their
solutions may not satisfy the requirements of existence, uniqueness or stability. We
are so pleased to see a growing number of mathematicians interested in this problem.
We are witnessing the challenge of deriving well-posed IPTMD through stabilization
algorithms and investigated various numerical methods for the solution. These meth-
ods include regularization methods, quasi-solution methods, direct search methods,
iterative algorithms, and stochastic algorithms (Xu et al. 2010, 2011, 2012, 2013,
2014, 2018; Xu 2014; Chen et al. 2011; Xu and Ge 2012; Xu and Wen 2014; Xu
et al. 2015; Yu and Xu 2015; Yu et al. 2015a, b; Xu and Cui 2016; Ge et al. 2017).

The TCC and TPC design will be mathematically studied by means of heat and
moisture transfer law within the body–clothing–environment system. The mathe-
matical model of the heat and moisture transfer can be deduced to partial differential
equations or fractional-order partial differential equations(PDEs) by means of the
thermal mechanism (Xu et al. 2012, 2014; Xu and Ge 2012; Xu and Wen 2014; Xu
2014; Yu and Xu 2015; Yu et al. 2015a, b; Ge et al. 2017). The reason why we refor-
mulate TCC design based on PDEs model is motivated by classic heat and moisture
transfer process; see Sect. 2. Meanwhile, the reason why we reformulate TPC design
based on fractional PDEs model is motivated by superdiffusion characteristics under
the high environmental temperature; see Sect. 3.

Henceforth, the study in the paper belongs to the direct problems and inverse
problems for partial differential equations (Friedman 1964; Yosida 1999). In this
paper, we progressively make a review on the inverse problems for the TCC and
TPCdesign togetherwith themathematicalmodel of the direct problems. The inverse
problems will be classified as the determination of thickness, thermal conductivity,
and porosity of the clothing system. The techniques developed in this work can be
applied to more complex material designs whether in textiles or other areas. We
believe that this is just the start of fruitful researches in this direction, and it will be
a promising topic in the industrially intelligent manufacturing.
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Nomenclature

Ca(x, t) water vapor concentration in the inter-fiber void space (kg m−3)
C∗
a (x, t) saturatedwater vapor concentration in the inter-fiber void space (kgm−3)

Ce(t) water vapor concentration between outer covering fabrics and surround-
ing (kg m−3)

C1(t) water vapor concentration in outer covering fabrics (kg m−3)
C0(x) initial water vapor concentration in batting (kg m−3)
Cv effective volumetric heat capacity of the fibrous batting (kJ m−3 K−1)
Da diffusion coefficient of water vapor in the air (m2 s−1)
FL(x, t) total heat radiation incident traveling to the left (kJ m−2 s−1)
FR(x, t) total heat radiation incident traveling to the right (kJ m−2 s−1)
RH(x, t) relative humidity of the surroundings (%)
RHb(t) relative humidity in the microclimate area of TCC (%)
RHc(t) relative humidity in the outer environment of TCC (%)
T (x, t) temperature in fabrics (K or ◦C)
Tb(t) temperature in the microclimate area of TCC (K or ◦C)
Te(t) temperature in the outer environment of TCC (K or ◦C)
T0(t) temperature in the outer environment of TPC (K or ◦C)
T1(t) temperature in the human body (K or ◦C)
TI (x) initial temperature in batting (K or ◦C)
�(x, t) total rate of (de)sorption, condensation, freezing and/or evaporation

(kg m−3s−1)
ξ, ξi surface emissivity of the inner and outer covering fabrics (i = 1:inner

fabric; i = 2:outer fabric)
k, ki effective heat conductivity of the fibrous batting (i=1:inner batting,

i=2:outer batting) and inmicroclimate area respectively (kJm−1 K−1 s−1)
κγ thermal conductivity of textile (kJ m−1 K−1 s−1)
λ latent heat of (de)sorption of fibers or condensation of water vapor

(kJ kg−1)
β radiative sorption constant of the fibers (m−1)
σ Boltzmann constant (kJ m−2 K−4 s−1)
ε, εi porosity of the fibrous batting (i=1:inner fabric; i=2:outer fabric)
τ effective tortuosity of the fibrous batting
w1 water vapor resistance of inner and outer fabrics
hc convective vapor transfer coefficient (m s−1)
hi constants dependent on Stefan–Boltzmann constant and the emissivity

of contiguous objects on the contact interface (i = 1: the contact inter-
face between the fabric and the body (W m−2K−4) ; i = 2: the contact
interface between the cold air and the fabric )

pi heat transfer coefficient (i = 1: between the fabric and the body ; i = 2:
between the environment and the fabric).
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2 Mathematical Model of Dynamic Heat–Moisture
Transfer within the TCC System

Heat–Moisture Transfer Model within the TextilesWe consider a clothing model
consisting of a thin inner fabric layer, a thick fibrous batting, and a thin outer fabric
in the body–clothing–environment system; see Fig. 1. The thin inner fabric is close
to human skin and the thin outer fabric is next to the outer environment. We assume
that the fibrous batting is isotropic. See Xu (2014); Fan et al. (2004); Xu and Ge
(2012) for detailed information.

Based on the conservation of heat energy and mass balance, the governed equa-
tions can be described in the form of coupled equations

⎧
⎨

⎩

Cv(x, t)
∂T
∂t = ∂

∂x (k(x, t)
∂T
∂x ) + ∂FL

∂x − ∂FR
∂x + λ(x, t)�(x, t),

∂FL
∂x = βFL − βσT 4(x, t),
∂FR
∂x = −βFR + βσT 4(x, t), (x, t) ∈ �T = (0, L) × (t1, t2).

(1)

All kinds of heat and moisture transfer processes, such as heat conduction, radia-
tion, and sorption flow, are considered in the single layer porous fabric batting in (1).
The first equation describes a dynamicmodel of heat andmoisture transfer with sorp-
tion and condensation rate �(x, t) in porous fabric. The second and third equations
describe the attenuation of the left radiation flux FL(x, t) and the right radiation flux
FR(x, t). The dynamic changes in temperature, moisture concentration, (de)sorption
and thermal radiation as well as the effect of water content on the effective thermal
conductivity are considered in the heat transfer process.

The water vapor concentration in the textile can be described as follows:

ε
∂Ca

∂t
= Daε

τ

∂2Ca

∂x2
− �(x, t), (x, t) ∈ �T . (2)

Fig. 1 Schematic diagram
of the
body–TCC–environment
system
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According to mass conservation, Eq. 2 is derived by the mass balance relationship
for the moisture accumulation.

When the relative humidity reaches 100% or above, condensation or freezing
takes place in fabric and additionally liquid water occurs. The vapor concentration
can be saturated and solely determined by the temperature

� (x, t) =
(
Da

τ

∂2C∗
a (x, t)

∂x2
− ∂C∗

a (x, t)

∂t

)

, (x, t) ∈ �T , (3)

where the saturated water vapor concentration C∗
a (x, t) can be given by

C∗
a (x, t) = 216.5 × Vap (T (x, t)) × 10−6/T (x, t) , (x, t) ∈ �T , (4)

Vap (T ) =
{
1013.25e13.3185s−1.976s2−0.6445s3−0.1299s4 , T � 273.15
1010.5380997−2663.91/T , T > 273.15.

(5)

where s = T − 273.15. The relative humidity RH(x, t) in the interfiber space can
be determined by the relationship

RH (x, t) = T (x, t) × Ca(x, t) × 106

216.5 × Vap(T (x, t))
, (x, t) ∈ �T , (6)

where the vapor pressure Vap(T ) can be obtained from (5).
The dynamic heat andmass transfer model can bemathematically formulated into

the following initial and boundary value problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧
⎨

⎩

Cv(x, t)
∂T
∂t = ∂

∂x (k(x, t)
∂T
∂x ) + ∂FL

∂x − ∂FR
∂x + λ(x, t)�(x, t),

∂FL
∂x = βFL − βσT 4(x, t),

∂FR
∂x = −βFR + βσT 4(x, t), (x, t) ∈ �T ;⎧

⎨

⎩

T (x, t1) = TI(x), x ∈ (0, L),

−k ∂
∂x T (0, t) = p1(Tb(t) − T (0, t)),

k ∂
∂x T (L , t) = p2(Tc(t) − T (L , t)), t ∈ (t1, t2);{

(1 − ξ1)FL(0, t) + ξ1σT 4(0, t) = FR(0, t),
(1 − ξ2)FR(L , t) + ξ2σT 4(L , t) = FL(L , t), t ∈ (t1, t2).

(DP1)

Meanwhile, we consider the moisture transfer Eq. (2) with initial and boundary
conditions

⎧
⎪⎨

⎪⎩

ε ∂Ca
∂t = Daε

τ

∂2Ca
∂x2 − �(x, t), (x, t) ∈ �T ,

Ca(x, t1) = C0(x), x ∈ (0, L),

Ca(L , t) = Ce(t),
Daε

τ

∂Ca
∂x

∣
∣
x=L

= C1(t) −Ca |x=L
w1+(1/hc)

, t ∈ (t1, t2).
(SP)

The above heat transfer problem is called direct problem (in abbreviation DP1).
The water vapor transfer problem is called sideways problem (in abbreviation SP).

Denote
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c1 = ξ1

β
T 4(0, t) − (1 − ξ1) c2,

c2 = 1

(1 − ξ2) β (1 − ξ1) e−βL − βeβL

[

(1 − ξ2) βe−βL

L∫

0

eβx T 4(x, t)dx

+ βeβL

L∫

0

e−βx T 4(x, t)dx + (1 − ξ2) ξ1e
−βLT 4(0, t) + ξ2T

4(L , t)

]

.

In the DP1, based on both the second and the seventh equations, we can derive that

FL(x, t) = −βσeβx

⎡

⎣

x∫

0

e−βyT 4(y, t)dy + c2

⎤

⎦ . (7)

Similarly, both the third and the eighth equations give that

FR(x, t) = βσe−βx

⎡

⎣

x∫

0

eβyT 4(y, t)dy + c1

⎤

⎦ − 2βσT 4(x, t). (8)

In the DP1, we will find T (x, t), (x, t) ∈ �T , and meanwhile in the SP we will
find Ca(x, t), x ∈ [0, L), t ∈ (t1, t2).

Remark 1 (Existence, uniqueness, and stability of the solution to the direct prob-
lems) The well-posedness results for the DP1 can be referred to the papers, for
example, Xu et al. (2014), Yu and Xu (2015).

Remark 2 (Numerical computation for the sidewaysproblems)The stabilizednumer-
ical algorithms need developing for the SP. The numerical results and numerical
examples can be found in Yu et al. (2015a, b).

Remark 3 (Model of heat–moisture transfer within multilayered textiles) A variety
of models can be derived to describe the heat–moisture transfer within multilayered
textiles, for example, we can refer to Xu et al. (2014), Xu (2014).

Remark 4 (Model of heat radiation transfer) If the heat transfer within the textiles
is considered only by heat conductivity and heat radiation, another model can be
formulated as follows:

⎧
⎪⎪⎨

⎪⎪⎩

Cv(x, t)
∂T
∂t = ∂

∂x (k(x, t)
∂T
∂x ), (x, t) ∈ �T ,

T (x, t1) = TI (x), x ∈ (0, L),

−k ∂
∂x T (0, t) = h1(T 4

b (t) − T 4(0, t)), t ∈ (t1, t2),
k ∂

∂x T (L , t) = h2(T 4
c (t) − T 4(L , t)), t ∈ (t1, t2).

(DP2)
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The DP2 can be seen as a simplification of the DP1, and its well-posedness
results were derived via the theorem in the paper (Yang et al. 2008), where a heat
transfer model in composite materials with Stefan–Boltzmann interface conditions
was presented, and the global uniqueness result was derived.

3 Mathematical Model of Dynamic Heat Transfer within
the TPC System

3.1 Fractional Description for Superdiffusion

We consider the heat transfer in firefighter protective clothing during a flash fire
exposure (Chitrphiromstri and Kuznetsov 2005; Song et al. 2008; Elgafy andMishra
2014). The practical experience has taught us that this process will be very different
from the case under low temperature, viz. the high heat and moisture make the
transmission process much faster than the classical case under low temperature.

In recent years, anomalous diffusionwhich deviates the classical Fickian diffusion
has gained considerable attention, duemainly to its successful applications in science
and engineering (Metzler and Klafter 2000; Klafter and Sokolov 2005; Metzler and
Klafter 2004). Anomalous diffusion is characterized through the power law form

〈x2(t)〉 ∼ tα, α �= 1, (9)

and can bemodeled by fractional partial differential equations, where 〈x2(t)〉 denotes
the mean squared displacement. According to the value of the diffusion exponent α,
transport process is distinguished as following relationship

〈x2(t)〉 ∼ tα

⎧
⎨

⎩

subdiffusion/dispersive, 0 < α < 1,
normal diffusion, α = 1,
superdiffusion, α > 1.

Inspired by the model proposed by Fan et al. (2000), Fan and Wei (2002), Fan
et al. (2004), Wu and Fan (2008), Li et al. (2004), and the faster transmission of
superdiffusion (Metzler and Klafter 2000; Metzler et al. 1998), we present a spatial
fractional heat transfer model to describe the faster transmission process instead
of the classical Fourier’s law. Fan’s model has been considered extensively in Du
et al. (2009), Fan et al. (2004), Xu and Ge (2012), Xu (2014), Xu et al. (2013), Xu
et al. (2014), but yet we haven’t found the corresponding spatial fractional model.
In the numerical simulation, the probable cause will be given; that is, the fractional
model goes against the real situation under low temperature because of the faster
transmission.

Figure 2 shows the schematic view of the body–TPC–environment system.
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Fig. 2 Schematic diagram of the body–TPC–environment system

As illustrated in the introduction, the faster transmission process of the situation
forces us to introduce an extra superdiffusion assumption: Heat conduction within
the porous batting is non-Fourier and can be described by the superdiffusion model.

According to continuous time random walk (CTRW) scheme, the following stan-
dard fractional differential equation is derived

∂W

∂t
= Kμ−∞Dμ

x W (x, t) (1 < μ < 2), (10)

where W (x, t) is the pdf of being at a certain position x at time t (called the prop-
agator) and −∞Dμ

x is Weyl operator which in one dimension is equivalent to the
Riesz operator ∇μ (Metzler and Klafter 2000; Metzler et al. 1998); Kμ is a physical
constant.

Different from the relationship (10), the Weyl operator −∞Dμ
x is replaced by

utilizing the Riemann–Liouville differential operator Dγ

0+ (1 < γ < 2) in the fol-
lowing equations because we only consider the problem in a finite domain. The
Riemann–Liouville fractional derivative of order γ (1 < γ � 2) is defined by

Dγ

0+u(x, t) =
⎧
⎨

⎩

1
�(2−γ )

∂2

∂x2

x∫

0

u(s,t)
(x−s)γ−1 ds, 1 < γ < 2,

∂2u
∂x2 , γ = 2.

In the numerical simulation of the fifth section, we observe that it is more appropriate
to choose γ such that 1.5 < γ < 2 in the fractional differential equation, and hence,
the heat transfer in firefighter protective clothing satisfies the superdiffusion law.



Mathematical Modeling and Inverse Problem Approaches … 75

3.2 Mathematical Model for TPC System

Based on the physical and mathematical consideration, the temperature T (x, t) and
heat radiation FL(x, t), FR(x, t) in firefighter protective clothing satisfy the following
partial differential equations

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Cv
∂T
∂t (x, t) = κγ (Dγ

0+T )(x, t)
︸ ︷︷ ︸

heat conduction

+ ∂FL(x, t)

∂x
− ∂FR(x, t)

∂x︸ ︷︷ ︸
heat radiation

+ λ�(x, t)
︸ ︷︷ ︸
phase change

,

(x, t) ∈ � × (0, tf),
∂FL(x,t)

∂x = βFL(x, t) − βσT 4(x, t),
∂FR(x,t)

∂x = −βFR(x, t) + βσT 4(x, t),

(11)

together with the initial condition

T (x, 0) = TI (x), x ∈ �, (12)

the left boundary value conditions

{
−κγ

∂
∂x T (0, t) = p2(T0(t) − T (0, t)), t ∈ [0, tf ],

(1 − ξ1)FL(0, t) + ξ1σT 4(0, t) = FR(0, t),
(13)

and the right boundary value conditions

{
κγ

∂
∂x T (L , t) = p1(T1(t) − T (L , t)), t ∈ [0, tf ],

(1 − ξ2)FR(L , t) + ξ2σT 4(L , t) = FL(L , t),
(14)

where� = (0, L), L is the thickness of firefighter protective clothing, tf is a preestab-
lished time.

The above heat transfer problem (11)–(14) is called direct problem (in abbrevi-
ation DP3). Similar to (7)–(8), the descriptions of FL(x, t) and FR(x, t) in (11)
can be explicitly derived. In the DP3, we will find the temperature distribution
T (x, t), (x, t) ∈ � × [0, tf ].
Remark 5 It is obvious that the classical Fourier’s law is replaced by the fractional
second constitutive relation

q(x, t) = −κγ

(
Dγ−1

0+ T
)

(x, t), 1 < γ < 2,

where q(x, t) is the heat flux due to conduction.

Remark 6 Chitrphiromstri and Kuznetsov (2005) presented a model of heat and
moisture transport in firefighter protective clothing during a flash fire exposure,where
heat radiation is modeled by Beer’s radiation attenuation model
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qrad(x) = qrad(0)e
−αx .

Here, qrad(x) is the incident radiation heat flux from the flame onto the fabric and
α is the extinction coefficient of the fabric. In contrast, the heat radiation in Fan’s
model is simulated by two flux approximation. The two flux approximation is not
limited to the optically thin or optically thick approximations, and it is considered as
the appropriate technique for the very thin fibrous insulation spacers in applications.
The two flux approximation of the heat radiation modeled by Stefan–Boltzmann law
is given by {

∂ FL
∂x = βFL − βσT 4(x, t),

∂ FR
∂x = −βFR + βσT 4(x, t)

with radiation boundary conditions

{
(1 − ξ1)FL(0, t) + ξ1σT 4(0, t) = FR(0, t), 0 < t < tf ,
(1 − ξ2)FR(L , t) + ξ2σT 4(L , t) = FL(L , t), 0 < t < tf .

The radiation conditions stand for the radiative heat transfer at the interface between
the inner thin fabric and the fibrous batting and that between the outer thin fabric and
the fibrous batting (Fan et al. 2004).

Remark 7 λ�(x, t) in (11) describes the phase change in heat and moisture transfer,
which is very complicated in Fan’s model. In Fan’s model, λ�(x, t) is determined
by an empirical equation under low temperature, which may not be valid for the
situation we concern. In Chitrphiromstri and Kuznetsov (2005), the phase change is
modeled by solid-phase continuity equation and gas-phase diffusivity equation. This
thermodynamic process is much more complicated than Fan’s model and leads to
strong coupling of heat and moisture.

Remark 8 The unique existence and conditional stability of the weak solution to the
fractional heat transfer model can be derived by the PDE theory. One can refer to
the paper (Yu et al. 2016). Multilayered TPC models can be referred to the paper
such as Yang et al. (2008), Xu et al. (2014). Various treatment of PDEs and boundary
conditions can be referred to the paper, for exampleYe et al. (2008), Podlubny (1999),
Yu et al. (2016), Ervin and Roop (2006), Jin et al. (2015), Hua and Yu (2013), Du
et al. (2012), Bowles andAgueh (2015), where the theoretical analysis and numerical
implementation can be found for our consideration.
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4 Numerical Computation for the TPC Direct Problems to
Determine the Fractional Order

4.1 Numerical Algorithm

We adopt the shifted Grünwald formula at all time levels for approximating the
fractional derivative (Liu et al. 2005)

Dγ

0+T (xi , tn+1) = 1

hγ

i+1∑

j=0

g j T (xi − ( j − 1)h, tn+1) + O(h).

Here the normalized Grünwald weights are defined by

g0 = 1, g j = (−1) j
γ (γ − 1) . . . (γ − j + 1)

j ! , j = 1, 2, 3, . . . .

Particularly, g0 = 1, g1 = −γ, g2 = γ (γ−1)
2 . Based on the equation of (7)-(8), we

can derive the formulation of ∂FL
∂x , ∂FR

∂x . Denote

�(T (x, t)) = ∂FL
∂x − ∂FR

∂x + λ(x, t)�(x, t)

= −β2σeβx
[
x∫

0
e−βyT 4(y, t)dy + c2

]

+ β2σe−βx

[
x∫

0
eβyT 4(y, t)dy + c1

]

−2βσT 4(x, t) + λ(x, t)�(x, t),

and T n
i , �n

i by T (xi , tn), �(T (xi , tn)) approximately, respectively; thus, we have

Cv
T n+1
i −T n

i
�t = κγ

1
hγ

i+1∑

j=0
g j T (xi − ( j − 1)h, tn+1) + �n+1

i

= κγ
1
hγ

i+1∑

j=0
g j T

n+1
i+1− j + �n+1

i ,

i = 1, 2, . . . , M − 1, n = 0, 1, . . . , N − 1.

Let s = κγ �t
Cvhγ , r = τ

Cv
. We have

T n+1
i − s

(
g0T

n+1
i+1 + g1T

n+1
i + · · · + gi+1T

n+1
0

) = T n
i + r�n+1

i

or

(1 − sg1)T
n+1
1 − sg0T

n+1
2 = T n

1 + r�n+1
1 + sg2T

n+1
0 ,

−sgi T
n+1
1 − sgi−1T

n+1
2 − · · · − sg2T

n+1
i−1 + (1 − sg1)T

n+1
i − sg0T

n+1
i+1

= T n
i + r�n+1

i + sgi+1T
n+1
0 ,

i = 2, 3, . . . , M − 1, n = 0, 1, . . . , N − 1.
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The above equations are expressed in matrix form

AT n+1 = T n + r�n+1 + sT n+1
0 G + sg0T

n+1
M eM−1. (15)

Here A = (Ai j ) is the matrix of coefficients such that

Ai j =
⎧
⎨

⎩

0, when j > i + 1,
1 − sg1, when i = j,
−sgi− j+1, otherwise,

and
T n = [

T n
1 , T n

2 , . . . , T n
M−1

]T
, �n = [

�n
1,�

n
2, . . . , �

n
M−1

]T
,

G = [g2, g3, . . . , gM ]T , eM−1 = [0, 0, . . . , 1]T .

Remark 9 Since the source term � appears in nonlinear form, we can solve it by
iteration methods. Instead, in the numerical simulation we approximate �(T n+1

i ) by
replacing it with the corresponding value at previous time step �(T n

i ), viz.

AT n+1 = T n + r�n + sT n+1
0 G + sg0T

n+1
M eM−1,

which is called an implicit–explicit (IMEX) method. One can prove that the above
scheme is unconditionally stable and has the convergence rate of O (τ + h) under
some reasonable assumptions (Liu et al. 2005).

One can refer toTadjeran et al. (2006) for improving thenumerical accuracy,where
a second-order accurate numerical approximation for a spatial fractional diffusion
equationwas proposed. The approach based on the classical Crank–Nicolsonmethod
combined with spatial extrapolation was used to obtain temporally and spatially
second-order accurate numerical estimates. It was shown that the fractional Crank–
Nicolson method based on the shifted Grünwald formula is unconditionally stable.
One can also obtain higher accuracy by applying predictor–corrector schemes.

4.2 Parameters and Conditions in Numerical Process

The fractional thermal conductivity κγ of textiles will be approximated by the clas-
sical case κ = εκa + (1 − ε)κf (Note that they have different dimensions). In the
simulation, we set

Thermal conductivities: κa = 0.025W · m−1 · K−1, κf = 0.1W · m−1 · K−1,

Thickness: L = 2.5 × 10−3 m, Time: t ∈ [0, 10 h],
Left boundary value condition: T0 = 500 ◦C,
Right boundary value condition: T1 = 37 ◦C,
Initial condition:
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TI (x) = −T0 − T1
L2

x2 + T0,

The physical parameters in equations are given as follows (Yu and Xu 2015):

ε = 0.084, τ = 1.2, β = 8m−1,

Cv = 1715.0kJ · m−3 · K−1,

σ = 5.672 × 10−8kJ · m−2 · K−4 · s−1,

ξ1 = ξ2 = 0.9.

4.3 Numerical Result

In this subsection, the example shows that in high-temperature situation, the fractional
model gives the more realistic results than the classical heat equation. We set T0 =
500 ◦C and T1 = 37 ◦C. As was depicted in the introduction, the higher heat and
humidity force us to use the superdiffusionmodel to simulate the heat transfer process
for firefighter protective clothing during flash fire exposure. In the following, we will
find that the superdiffusion model for this case conforms to the real situation. In
Fig. 3a, the classical order γ = 2.0 is utilized, while the image with fractional order
γ = 1.8 is shown on the right. It is obvious that the second case shows faster diffusion
than the classical case. To clarify this result, we plot several curves in Fig. 4 with
γ = 2.0, 1.9, 1.8, 1.7, 1.6, 1.5, respectively. As expected, the temperature T (x, t)
for fixed t = t10(M = 50, N = 50) drops faster and faster as γ is decreased when
γ > 1.5, which is also valid for fixed x = x10. It seems that γ = 1.5 is a critical
value because the downward trend is no longer maintained when γ ≤ 1.5. Indeed,
we observe that the trend is almost reversed in this case from Fig. 5. The above results
indicate that it is appropriate to choose the fractional order γ such that γ > 1.5,which
remains to be studied.

Remark 10 The superdiffusion model for the high-temperature case gives more rea-
sonable results. On the other hand, the model describes the faster propagation as we
expected.

We are focusing on the high temperature–humidity environment, where the fire-
fighters put on protective clothing near the fire temperature higher than 500oC. It
is hard to predict the lowest environmental temperature, before which the fractional
model is no longer valid because of the complicated physical mechanism and differ-
ent environmental parameters. Much luckily, in the case of example 2, we are sure
to choose the lowest temperature T0 ≥ 270 ◦C, here the fractional model is valid
according to the numerical simulation.
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Fig. 3 T (x, t) with γ = 2.0 and γ = 1.8 under high temperature
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Fig. 4 Temperature for fixed x and t when γ ≥ 1.5
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Fig. 5 Temperature for fixed x and t when γ ≤ 1.5
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(a) Temperature measurements at
sensors in [32]
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Fig. 6 Temperature distribution of measurement and numerical simulation

Remark 11 As depicted in Remark 5, Chitrphiromstri and Kuznetsov (2005) pro-
posed a useful but complicated heat and moisture transfer model for firefighter pro-
tective clothing during a flash fire exposure. We find that the numerical images in
Chitrphiromstri andKuznetsov (2005) and Song et al. (2008) are qualitatively similar
to our numerical results calculated by the simplified fractional model on the same
conditions. See Fig. 6. Hence, it is expected to apply the fractional model to simplify
the coupling phenomena with fewer parameters. To test the validity of the proposed
fractional model or an improved fractional model which will be considered further,
we shall carry out the experimental test on the numerical results observed in this
paper.

In terms of skin burn evaluation,Henriques’ integralmodel (Henriques andMoritz
1947) and Stoll’s burn criterion (Stoll and Chianta 1969) can be used to predict the
time to reach first-, second-, and third-degree burn injures. It is generally believed
that the thermal damage of skin tissues occurs when the temperature of basal surface
reaches 44oC , and the degree of destruction continues to increase as the time prolongs
(Chitrphiromstri and Kuznetsov 2005). Let �(Lbar, t) denote the value of � at the
position of x = Lbar (on the basal surface) during the time interval [0, tf ]. How to
calculate the value of �?

Henriques’ integral is introduced as follows

�(x, t) =
t∫

0

P exp(− 
E

R(T (x, τ ) + 273.15)
)dτ,

where � is the quantitative value of the skin burn, P is the frequency corruption
factor, R is gas constant, and 
E is the skin activation performance. All of their
values can be found in Table 1.
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Table 1 Values of parameters in the Henriques model

T/(◦C) P(1/s) 
E
R /(K)

44 ≤ T < 50 2.185 × 10124 93261.9

T ≥ 50 1.823 × 1051 38836.8
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Fig. 7 Value of �(Lbar, t) on the basel surface with different fraction indexes in the time interval
[0, 30 s]

In Fig. 7, the value of �(Lbar, t) is becoming big as the time increases when
γ = 1.8, 1.9, which indicates that the degree of burn injures is becoming serious.
Due to the fact that the value of �(Lbar, t) depends on the temperature on the basel
surface, the values of �(Lbar, t) with respect to the values of γ are consistent with
the numerical results of temperature for fixed x in Fig. 4.

5 Mathematical Formulation for Inverse Problems for the
TCC/TPC Design

5.1 Mathematical Reformulation of the TCC Inverse
Problems (IP 1)

The mathematical formulation and classification of the IPTMD can be given accord-
ing to the determination of single parameter and multiple parameters. For single-
layered textile, the determined parameters include the thickness L , thermal con-
ductivity k, and porosity ε of textiles. For multiple layered textiles, there are three
parameters to be determined for each layer.

Define an operator equation

y = Gv(u) + η, (16)

where Gv : R3 → R
2 is nonlinear mapping derived from the direct problem DP1 or

DP2, y = (Tb, RHb), v = (Tc, RHc), η is the error of y; u = (L , k, ε) ∈ R
3 is the
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Fig. 8 Schematic diagram of the forward problems

Fig. 9 Schematic diagram of the IPTMD

parameter vector which is related with the textiles and should be determined in the
TCC design.

The forward problems can be described as follows: given u = (L , k, ε) andGv, η,
we will determine y and make sure whether it is belong to the comfort index interval;
see Fig. 8.

IPTMD: Given the environmental temperature and the relative humidity
(Tc(t), RHc(t)), we attend to determine the parameters of the TCC according to the
thermal comfort indexes in the microclimate area, namely temperature (32 ± 1) ◦C,
relative humidity (50 ± 10)%, and wind speed (25 ± 15) cm s−1, respectively; see
Fig. 9 for the schematic diagram of the IPTMD.

By means of solving DP1/DP2 and SP, we should determine optimum u =
(L , k, ε) ∈ R

3 in the body–clothing–environment system to make sure that people
feel thermally comfortable. That is to say, the values of temperature and humidity
in the microclimate area are expected to lie stably in heat–moisture comfort indexes
(intervals).

5.2 Mathematical Reformulation of the TPC Inverse
Problems (IP 2)

How todesign theTPC,which should protect fireworkers fromsuffering from thermal
injures? It has been puzzling researchers and engineers.
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As we all know, fireworkers usually need to stay in a dangerous and high-
temperature environment for a relatively long time. It is of significance to determine
optimally physical parameters, such as thickness, thermal conductivity, density, and
porosity, which can provide a convincing basis and scientific support for choosing
materials and designing the TPC. Actually, we should take more factors into con-
sideration; for example, we are desired to economize the materials and reduce the
weight of TPC as much as possible so that it is beneficial for fireworkers to move
flexibly.

Aiming at the objectives of protecting fireworkers from thermal injuries, we deter-
mine triple thickness parameters simultaneously for the actual requirements of the
TPCweights or prices by solving theminimization problemwith the weighted objec-
tive function.

Let Lout, Lbar, and L lin denote the thickness of the outer shell, the moisture barrier,
and the thermal liner, respectively, and then we denote L1 = Lout, L2 = L1 + Lbar

and L3 = L2 + L lin.
Define

�0 = [0, 0.53), �1 = [0.53, 1), �2 = [1, 104),

which are critical intervals of no injury, the first-degree and the second-degree ther-
mal injury on the basel surface, respectively. That is to say, no injury happens
when �(Lbas, ts) locates in �0 = [0, 0.53) according to the experimental results;
meanwhile first-degree thermal injury occurs when it locates in �1 = [0.53, 1), and
second-degree thermal injury occurs when it locates in �2 = [1, 104) (Chitrphirom-
stri and Kuznetsov 2005).

Therefore, the inverse problem can be formulated to the following optimization
problem.

min p1Lout + p2Lbar + p3L lin (17)

s.t. �(L5, ts; Lout, Lbar, L lin) ∈ �i , (18)

where i = 0, 1, 2; p1, p2 and p3 are the weights, which can be adjusted according
to the actual requirements of fabric layers.

In details for better understanding, when it is required to ensure no thermal injury
on the basal surface, (18) should be �(L5, ts; Lout, Lbar, L lin) ∈ �0. When the ther-
mal injuries can be allowed to the first-degree but less than the second-degree injury,
(18) should be �(L5, ts; Lout, Lbar, L lin) ∈ �1. When the thermal injuries can be
allowed to the second-degree but less than the third-degree injury, (18) should be
�(L5, ts; Lout, Lbar, L lin) ∈ �2.
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6 Computational Strategy for the IPTMD of the TCC/TPC
Design

6.1 Deterministic Case: Least Squares Method and
Regularization Method

By the numerical solution to the DP1/DP2 and SP, we can numerically obtain the
temperature T0(t j ) = T (0, t j ) and humidity C0(t j ) = Ca(0, t j ) in the microclimate
area (x = 0) at any time t j . Relative humidity RH0(t j ) = RH(0, t j ) is henceforth
obtained according to Formula (6). RH0(t j ) is rewritten as RH(0, t j ; u) since it
varies as u. In general, we adopt relative humidity RHA = 50% in the sense of most
comfortable expectation. The objective function of least squares is

J (u) =
n∑

j=1

∣
∣RH(0, t j ; u) − RHA

∣
∣2.

In practical applications, there are somenecessary requirements on textilematerial
design. For example, we hope the clothing be keptmuch thinner and lower cost, sowe
need make limitation on the thickness of porous batting, i.e., the thickness satisfies
L � Lmax or L1 + L2 � Lmax. Similarly, we also hope the clothing be kept much
lighter, that is to say, we have the limitation such as ρ1L1 + ρ2L2 � Kmax.

In order to solve the optimization problems of objective function with constraint
conditions, we employ the regularization method, where we add a penalty term to
the above objective function. Denote Jα(u) by

Jα(u) =
n∑

j=1

∣
∣RH(0, t j ; u) − RHA

∣
∣2 + α ‖ u ‖2∗, (19)

where‖ u ‖∗ is defined according to the practical situation of the vectoru = (L , k, ε).
We call the minimizer u† of the objective function the regularized solution of the

IPTMD if u† satisfies
Jα(u†) = min Jα(u), (20)

where the parameters α is called the regularization parameter. The regularized solu-
tion of the above objective function is exactly the optimal solution which meet both
thermal comfort indexes and above limitation conditions with respect to u.

The minimization problem Jα(u†) = min Jα(u) can be solved by some direct
search methods such as Hooke–Jeeves methods and Golden section method. The
optimal choice of the regularization parameter α can be determined by a prior choice
or posterior choice such as L-curve method (Xu et al. 2013).

Remark 12 The regularization method can be effectively applied to the TPC design
problems; for example, we can refer to Pan et al. (2017), Jiang et al. (2017)
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6.2 Stochastic Case: Bayesian Inference Method and
Maximum Probability Method

When η is random error, the above model

y = Gv(u) + η

is stochastic model, where G : R3 → R
2 is a nonlinear mapping, u ∈ R

3 ia a
random vector with probability density ρ0(u); η is a random noise with probabil-
ity density ρ(η), which is independent of u; y is the observational data. We will
statistically deduce u from the given Gv, η and y.

Bayesian inference method (Xu et al. 2014):
Step 1 Give the prior density ρ0(u) of u.
Step 2 Compute the conditional probability density (likelihood function) ρ(y −

Gv(u)) of y | u.
Step 3 Deduce the posterior density of u by Bayes’ law

ρ y(u) = ρ(y − Gv(u))ρ0(u)
∫

R3

ρ(y − Gv(u))ρ0(u)du
. (21)

Step 4 Compute the point estimate or interval estimate of u.
Denote the potential function by

�(u; y) = − log ρ(y − Gv(u)).

Letμy be measure onR3 with density ρ y ,μ0 be measureR3 with density ρ0, then
Bayes’ theorem may be written as

dμy

dμ0
(u) = e−�(u;y)

∫

R3

d−�(u;y)μ0(du)
.

Consequently, the posterior measureμy is absolutely continuous in prior measure
μ0, the Radon–Nikodym derivative is proportional to likelihood function. Moreover,
we have

Eμy
Gv(u) = Eμ0

(
dμy

dμ0
(u)Gv(u)

)

.

Maximum probability method (Xu and Wen 2014):
Suppose P(u) be the probability of an event thatRH0(t j ) ∈ [40%, 60%], for all j,

when the vector u of fabric is preestablished. We want to find the optimal u, which
has the maximum probability to make the human body feels comfortable. Hence, we
consider the following maximization problem:
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maximize P(u). (22)

Since the objective function P(u) is not continuous, its points achieve maximum
valuemaynot beunique.Let 0 < M � 1be themaximumvalueof P(u). Considering
that the smaller value of‖ u ‖∗ the better the humanbody feels. Therefore, the original
optimization problem (22) can be modified as

minimize ‖ u ‖∗, s.t. P(u) = M. (23)

This objective function is linear and combined with the nonlinear constraint.
Suppose u be the solution to this constrained optimization problem, then we call it
a maximum probability solution with minimum norm.

Using static penalty method, the above-constrained problem can be replaced by
the following unconstrained problem

minimize ‖ u ‖∗ +K × [M − P(u)], (24)

where K is a large positive constant.
Since the objective function of the optimization problem (24) is not continuous,

conventional optimization technique such as gradient-based algorithm is not good
enough to solve the problems involving the probability function. We can employ a
new stochastic method known as particle swarm optimization(in abbreviation PSO)
algorithm to solve the above optimization problem.

The advantages of the PSO algorithm are its capability in searching for the global
optimum and no computation of the complicated gradients. Because of its simplicity
of implementation as well as ability to swiftly converge to a good solution, the
algorithm only requires fitness function for each of the particle, without assumption
such as continuity anddifferentiability,whichmakes it very useful for a discontinuous
function.

Remark 13 The stochastic methods can be effectively applied to the TCC design
problems; for example, we can refer to the reference Xu et al. (2018). Numerical
simulation results can be found in Xu et al. (2013), Xu et al. (2014), Xu and Wen
(2014), Xu (2014), Xu et al. (2015), Yu and Xu (2015), Xu and Cui (2016), Ge et al.
(2017). In the near future, the stochastic methods will be employed to solve the TPC
design problems.

6.3 Computational Examples for IPTMD

In this subsection, we implement computational examples of single parameter deter-
mination and multiple parameters determination for (IP 1).

Figure 10 shows the graph of J (L) with various thicknesses of the fiber, and it
concludes that we can search the uniqueminimum point of J (L) by the dichotomy of
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Fig. 10 J(L)
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the algorithm effectively. Satisfying the accuracy requirement 1 × 10−4, the approx-
imate optimal thickness of the fabric is 2.3413mm.

Figure 11a–c shows the graphs of J (k, L), J (k, ε), J (ε, L) with various param-
eters, respectively. It concludes that it is likely that the heat conductivity k makes
less impact on the value of J than the thickness L and the porosity ε. Therefore, the
problem of the thickness and the heat conductivity determination can be simplified
to the problem of the single parameter determination. Besides, the problem of the
porosity and the heat conductivity determination is similar. Next, we can search the
unique minimum point of J (ε, L) by implementing the appropriate algorithm effec-
tively and obtain the approximate optimal combination of porosity and thickness for
the fabric (0.17, 5mm).

7 Concluding Remarks and Future Studies

The well-posedness results of the DP1, DP2, and DP3 verify the existence, unique-
ness, and stability of solution to the heat–moisture transfer model under suitable
assumptions, which provides a theoretical foundation to the numerical solutions
of the DP1, DP2, and DP3. Numerical simulation is to achieve the distribution
of temperature and water vapor concentration in porous batting, which helps us to
judge whether the body heat–moisture comfort in the microclimate area arrives. This
belongs to the direct problem approaches.

In the view of the inverse problem approaches, i.e., IPTMD, the optimal deter-
mination of the textile parameters u can be reformulated as inverse problems IP1
and IP2, and their numerical solution can achieve the goal of parameter determina-
tion. The numerical results prove the feasibility of the theory and algorithm of the
IPTMD. Moreover, the numeral results confirm rationality of the objective function
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(a) J(L, k) (b) J(ε, k)

(c) J(ε, L)

Fig. 11 Temperature distribution of measurement and numerical simulation

and stability of the algorithm of the IPTMD, which provides theoretical basis to new
TCC/TPC material development. For the future researches, we should continue to
discuss the well-posedness of the inverse problems IP1 and IP2.

For the coupled nonlinear partial differential equations based on the dynamic
heat–moisture transfer process, we will continue to develop more efficient numerical
algorithms for the TCC development. For fractional heat transfer models aiming to
simulate the situation with high temperature and high humidity, we haven’t found a
similar related fractional model in heat and moisture transfer within textiles, which
may be result from the fact that the simulation results go against the real situation
under low temperature. Therefore, we will focus on discussing the phase change,
due to sorption and condensation, in the TPC. We are also interested in the inverse
problems of heat and moisture transfer model for TPC system. In this new context,
the formulation of inverse problems will be very different from the classical model
considered in Xu (2014), Xu et al. (2010), Xu and Ge (2012), Xu et al. (2014),
Xu and Wen (2014) because sweat cannot be neglected and we are more concerned
with thermal damage in this case. The regularity of the weak solution should be
considered. One can refer to Jin et al. (2015) for additional information. The finite
element approximation for the variational formulation reported in the paper also
deserves further consideration.
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We are urgent to derive the statistical inversion of the IPTMD due to the stochastic
characteristics of the environmental temperature–humidity and the interval charac-
teristics of the thermal comfort/safety index, and realize the multi-parameters deter-
mination of multilayer textile materials for the TCC and TPC, respectively. More
practically, we are willing to solve the multiple parameter determination such as
simultaneous determination of thickness, thermal conductivity, and porosity for sin-
gle or multilayer textile materials. Practical software will be developed to implement
numerical simulations of the IPTMD.
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Determinantal Reinforcement Learning
with Techniques to Avoid Poor Local
Optima

Takayuki Osogami and Rudy Raymond

1 Introduction

Reinforcement learning for multiple collaborative agents is important and has many
practical applications. Consider a team that consists of different types of players. In
many cases, to win a game, each type of player must master highly relevant actions
that are necessarily different from the other types of player. For example, players of
a defensive team should guard relevant and diverse areas or relevant and different
types of players of the other team. This is also the case when controllingmany similar
robots to perform a task that cannot be performed by a single one. Training them in a
way they take different and relevant actions can lead to faster and better convergence
to optimal collaboration.

Typical approaches in reinforcement learning, which let each agent take actions
independently of other agents, are therefore not effective. Formulating the learning
as handling the combination of actions as if it is an action of a hypothetical agent can
lead to searching in an exponentially larger action spaces that grow with the number
of agents and therefore does not scale well.

In Osogami and Raymond (2019), we have proposed the use of the determinant of
amatrix to approximate the action-value function in reinforcement learning that takes
into account both relevance and diversity in a natural manner.When each action of an
agent in a particular state is characterized by a feature vector, the length of the feature
vector corresponds to the relevance of that action at that state. Meanwhile, the angle
between two feature vectors represents the diversity between the two corresponding
actions at that state. A set of feature vectors then comprises a parallelotopewhose vol-
ume is determined by the lengths (i.e., relevances) and the angles (i.e., diversities) of
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Increasing the diversity

Fig. 1 The logarithm of the squared volume of the parallelepiped defined by the feature vectors of
actions represents the value of the combination of those actions. The volume of the parallelepiped
is determined by the length of vectors (their relevances) and their angles (their diversities). The
volume can be increased by increasing relevance, diversity, or both

the feature vectors. An example of a parallelotope from three feature vectors in three
dimensions is shown in Fig. 1. The figure also illustrates two ways the volume can be
increased: increasing relevance and increasing diversity. The squared volume of the
parallelotope can be computed from the determinant of theGrammatrix of the feature
vectors. More specifically, the value of a combination of relevant and diverse actions
at a state can be computed from the logarithm of the determinant (log-determinant) of
the principal submatrix of a positive semidefinite matrix (kernel), where the principal
submatrix is specified by the actions, and the kernel depends on the state.

InOsogami andRaymond (2019),we have derived efficient learning rules of deter-
minantal SARSA (state-action-reward-state-action algorithm). Namely, we approx-
imate the action-value function of N agents with an N × N kernel matrix whose
effective dimension is K � N , so that at each iteration the action-value function
can be updated with the additional O(K 3) computational complexity. Determinan-
tal SARSA has been shown to find nearly optimal policies approximately ten times
faster than baseline approaches (Sallans and Hinton 2001, 2004; Heess et al. 2017;
Sallans 2002), where free energy of a restrictedBoltzmannmachine (RBM) is used as
a functional approximator. In this paper, we add theoretical insights and experiments
on how to avoid policies with poor local optima by techniques based on derivation
of the learning rules of determinantal SARSA.

2 Determinantal SARSA

In this section, we review determinantal SARSA, which we have proposed in
Osogami and Raymond (2019). Determinantal SARSA considers the setting with
a team of agents under central control. In the following, an agent team refers to the
team of agents, and a team action refers to the combination of their actions. At each
time t , the agent team makes an observation ot . Let zt ≡ ξ(at−1, rt , ot ) represent the
(features of) observation at time t , which may include the preceding team action at−1
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and reward rt in addition to ot . Let z≤t denote the observations up to t . Depending
on what has been observed (i.e., z≤t ), the agent team takes a team action at . Let
xt ≡ ψ(at ) ∈ {0, 1}N be a binary representation of a team action at (e.g.,, xt may
indicate which subset of N possible actions is taken by the agent team). The agent
team then obtains reward rt+1, and the environment changes its state. The agent team
then makes a partial observation ot+1 of the environment and chooses the next team
action at+1, and this process is continued. The goal of the agent team is to sequentially
choose team actions so that the cumulative reward is maximized.

Given that the agent team has z≤t , performs the action with the binary representa-
tion x, and acts according to the policy under consideration, determinantal SARSA
seeks to learn theQ (action value) function Qθ (z≤t , x) so that it best approximates the
expected cumulative reward. By learning the Q function, one can identify the action
that is optimal at a given state when one follows the policy under consideration from
the next state. This allows one to iteratively improve the policy under consideration.

In determinantal SARSA, the Q function is assumed to have the following form:

Qθ (z≤t , xt ) ≡ α + log detV(xt )Diag(exp(dt (φ)))V(xt )�. (1)

Here, V is an arbitrary N × K matrix for 0 < K ≤ N , and V(xt ) denotes the matrix
consisting of a subset of the rows ofV in a way that the rows ofV(xt ) are indexed by
the elements that are one in xt . Also, Diag(·) denotes the diagonal matrix formedwith
a given vector, dt (φ) is a time-varying K -dimensional vector, and its exponentiation
is elementwise. Here,dt (φ) should be considered as a time-seriesmodel, with param-
eter φ, that outputs a K -dimensional vector. Also, dt (φ) should be differentiable with
respect to φ to allow end-to-end learning. Examples of such dt (φ) include recurrent
neural networks (Hausknecht and Stone 2015), vector autoregressive models, and
dynamic Boltzmann machines (Osogami and Otsuka 2015; Osogami 2017).

To intuitively understand the form of Qθ in (1), consider the case where V is the
identity matrix of order K = N . In this case, Qθ is reduced to

Qθ (z≤t , xt ) = α + dt (φ)� x. (2)

If the i-th element of x indicates whether the i-th action is taken by an agent, the value
of a team action is the sum of the values of individual actions without consideration
of diversity, where dt (φ) represents the value (relevance) of individual actions at time
t . With a non-identity V, determinantal SARSA can take into account the diversity
in actions.

Determinantal SARSA learns all of the parameters θ ≡ (α,V, φ) in an end-to-end
manner. Specifically, at each iteration, determinantal SARSA updates θ according
to

θ ← θ + η
(
rt+1 + ρ Qθ (z≤t+1, xt+1) − Qθ (z≤t , xt )

) ∇θ Qθ (z≤t , xt ), (3)

where we need the gradient∇θ Qθ . In Osogami and Raymond (2019), we have shown
that the gradient can be represented in a computationally convenient form as follows:



96 T. Osogami and R. Raymond

Algorithm 1 Determinantal SARSA (Osogami and Raymond 2019)1

1: Input: Discount factor ρ; learning rate η; initial θ
2: Take initial team-action a0; x0 ← ψ(a0)
3: for t = 0, 1, . . . do
4: Get rt+1 and observe ot+1; zt+1 ← ξ(at , rt+1, ot+1)

5: Take team-action at+1; xt+1 ← ψ(at+1)

6: Dt ← Diag(exp(dt (φ)))

7: Update dt (φ) to dt+1(φ) with zt+1
8: Dt+1 ← Diag(exp(dt+1(φ)))

9: Qt ← α + log detV(xt )Dt V(xt )�
10: Qt+1 ← α + log detV(xt+1)Dt+1 V(xt+1)

�
11: 	t ← rt+1 + ρ Qt+1 − Qt
12: α ← α + η 	t
13: V(xt ) ← V(xt ) + 2 η 	t (V(xt )+)�
14: φ ← φ + η 	t diag

(
V(xt )+ V(xt )

) ∇φdt (φ)

15: end for

∇αQθ (z≤t , x) = 1 (4)

∇V(x̄)Qθ (z≤t , x) = 0 (5)

∇V(x)Qθ (z≤t , x) = 2 (V(x)+)� (6)

∇φQθ (z≤t , x) = diag
(
V(x)+ V(x)

) ∇φdt (φ) (7)

where V(x)+ denotes the pseudo-inverse of V(x), diag(·) denotes the vector formed
with the diagonal elements of a given matrix, and x̄ ≡ 1 − x elementwise.

Algorithm 1 gives a pseudocode of determinantal SARSA. In each iteration of the
for-loop starting at Step 3, after getting reward rt+1 and making an observation ot+1

in Step 4, one takes a team action at+1 in Step 5. Steps 6–8 compute the diagonal
matrix Dt ≡ Diag(exp(dt (φ))) by using the time-series model dt (φ), whose state is
updated in Step 7 on the basis of the input zt . These diagonal matrices are then used
in Steps 9–12 to compute the TD error Δt . The parameters θ ≡ (α,V, φ) are then
updated in Steps 12–14. In Step 14, the gradient ∇φdt (φ) depends on the particular
time-series model under consideration. It is easy to estimate the computational time
to update parameters at each iteration of determinantal SARSA. Since the rank of
V is at most K , the computational complexity of the pseudo-inverse V(xt )+ and the
computation of log detV(xt )DtV(xt )� is O(K 3).

Note that onemayuse determinantal SARSA to the fully observable case by letting
Dt ≡ Diag(exp(dt (φ))) in (1) be static but depend on the fully observed Markovian
state st at time t . For example, one may use a feedforward neural network ψ(·)
that maps a state st into a K -dimensional feature vector d = ψ(st ), which then
defines Dt = Diag(exp(d)). With Dt alone, the state can only influence the values

1 Here, typographical errors in [10] are corrected by adding “�” in Step 9–10 and removing “¯” in
Step 13. In Step 13–14, theV(xt )+ is the pseudo inverse that will be slightly modified for improving
the stability of Determinantal SARSA.
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of individual actions, while we also allow the state to affect the diversity measure as
well through V.

In Step 2 and Step 5 of Algorithm 1, we need to choose team actions in considera-
tion of the tradeoff between exploration and exploitation. One of popular approaches
is Boltzmann exploration. In Osogami and Raymond (2019), we have shown that,
for determinantal SARSA, the Boltzmann exploration with unit temperature reduces
to sampling from a determinantal point process, which allows efficient (in time poly-
nomial in N ) sampling (Kulesza and Taskar 2012; Qiao et al. 2016; Kulesza and
Taskar 2011). The Boltzmann exploration with general temperature for determinan-
tal SARSA requires sampling from annealed determinantal distributions (Wachinger
and Golland 2015; Belabbas and Wolfe 2009), for which practical sampling algo-
rithm as Markov Chain Monte Carlo is available (Kang 2013; Gillenwater 2014).

3 Avoiding Poor Local Optima

In the experiments of Osogami and Raymond (2019), we have occasionally observed
that determinantal SARSA is trapped into poor local optima.We hypothesize that this
can happen because of the low-rank kernel approximation and the pseudo-inverse
updates. Here, we show how we can avoid such poor local optima.

Our formulation of (1) assumes that the rank of the following N × N positive
semidefinite matrix (kernel)

Lt ≡ VDiag(exp(dt (φ)))V� (8)

is K . This is achieved by the use of the N × K matrixV. However, depending on the
initial values ofV, determinantal SARSAmay fall into the situationwhere the rank of
V (and its submatrix V(x)) becomes smaller than K . Once determinantal SARSA is
trapped into suchVs, it cannot search for parameters on the larger subspace. Namely,
with (6), the parametersV(x) are updated by adding the terms that are proportional to(
V(x)+

)�
. However, because of the property of the pseudo-inverse, we can observe

that

Range (V(x)) = Range
((
V(x)+

)�)
, (9)

whereRange (A) is the range or the image of amatrixA. Thus, determinantal SARSA
may not be able to reach optimal solutions from some initial values. This explains
why determinantal SARSA can be trapped into local optima.

The above observation leads to mitigation techniques by keeping the rank ofV(x)
to be K during the computation. This can be achieved heuristically by adding some
noises to V in the initialization and to the pseudo-inverse V(x)+ in each iteration.

First,wepropose to initializeV using randomspecial orthogonalmatrices (Stewart
1980), A and B, where A is N × N , and B is K × K . Specifically, we initialize V as
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V = AΣ B� + E, (10)

where Σ is an N × K rectangular diagonal matrix in which every diagonal ele-
ment is one, E is a random N × K matrix (in our experiments, and we will sam-
ple each element independently according to the uniform distribution with support
[−0.01, 0.01]). Namely, the matrix V is initialized in a way such that each of its
singular values is one with small noise E . This particular initialization plays a rather
important role in avoiding convergence to poor local optima.

Next, let

V = AΣ B� (11)

be the singular-value decomposition of V. Then, instead of the pseudo-inverse

V(x)+ = BΣ−1 A� (12)

in (6), we let determinantal SARSA use the following “noisy” pseudo-inverse:

V(x)+ ≈ B
(
(1 − εt )Σ−1 + εt M

)
A�, (13)

where Mi j = δi j . We gradually reduce the magnitude of the noise εt over the
iteration t .

4 Experiments

In our experiments, we evaluate the performance of determinantal SARSA with and
without the newmethod of avoiding poor local optimal. We conduct our experiments
on the blocker task (Sallans and Hinton 2001, 2004; Heess et al. 2017; Sallans 2002),
for which we have shown in Osogami and Raymond (2019) that Determinantal
SARSA outperforms baseline methods (Sallans and Hinton 2001, 2004; Heess et al.
2017; Sallans 2002).We closely follow the instances considered inHeess et al. (2017)
andOsogami andRaymond (2019).All of the experiments are carried outwithPython
implementation on a workstation having 48 GB of memory and a 4.0 GHz CPU.

In the blocker task, we control an agent team, consisting of three agents, in
a collaborative manner, where the goal is to let one of the agents reach the end
zone, while two blockers hinder the agents. The field is a grid of four rows and
seven columns. The three agents start at uniformly random positions in the top row.
The two blockers, each occupies three consecutive squares, start at uniformly ran-
dom positions in the bottom row. At each time step, each agent can move one step
in one of the four directions or stay. After all of the agents take actions, each blocker
moves one step to the right or to the left if doing so can block an agent; otherwise,
the blocker stays. If one of the agents reaches the end zone, the agent team receives
+1 reward for that time step. Otherwise, the agent team incurs −1 reward per time
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step. See Heess et al. (2017) and Osogami and Raymond (2019) for more details
about the exact settings. Note that the blocker task is performed on a fully observ-
able environment. In Osogami and Raymond (2019), we also evaluate determinantal
SARSA with stochastic policy tasks, where the environment is partially observable.

Aswehave done inOsogami andRaymond (2019),we represent the teamactionat
by a 4 × 7 = 28 dimensional binary vector x, where each element indicates whether
an agent occupies a particular square after taking the team action at ((xt )i = 1) or
not. Likewise, we set Dt ≡ I and α = 0. Hyperparameters of determinantal SARSA
are set as in Osogami and Raymond (2019).

Figure 2 shows the performance of determinantal SARSA without the use of the
technique of avoiding poor local optima. Specifically, the average reward per step is
evaluated for every 40,000 steps (and for every 4000 steps during the initial 40,000

K = 28
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Fig. 2 Performance of determinantal SARSA with various ranks of kernels, where the rank K is
indicated in the leftmost column. The panels in (a) show the mean and the standard deviation, over
20 runs, of the average reward per action. The panels in (b) show the average reward per action for
each of the 20 runs
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steps). The rank K of the kernel is varied as indicated in each row. Figure 2a shows
the mean and the standard deviation, over 20 runs, of the average reward per action.
Figure 2b shows the average reward per action for each of the 20 runs.

We can observe in Fig. 2a that reducing rank K has only a small impact on the
average performance for K ≥ 14. However, a significant degradation in performance

ε = 0
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Fig. 3 Performance of determinantal SARSA with noisy initialization and pseudo-inverse when
K = 7, where the magnitude ε of the noise at every 10,000-th iteration is indicated in the leftmost
column. The panels in (a) show the mean and the standard deviation, over 20 runs, of the average
reward per action. The panels in (b) show the average reward per action for each of the 20 runs
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is observed with K = 7. Figure 2b shows that determinantal SARSA sometimes
converges to poor local optima with K = 7. In particular, it has converged to the
average reward of −1 (the lowest possible average reward) in two out of 20 runs.

Figure 3 shows the performance of determinantal SARSA with K = 7 when the
technique ofmitigating poor local optima is applied. Here, themagnitude of the noise
at the t-th iteration (εt in (13)) is defined to be

εt = ε
t

104 . (14)

Namely, ε0 = 1 and ε104 = ε, where various values of ε are tested as indicated in
the leftmost column in Fig. 3. It suggests that determinantal SARSA can avoid
convergence to poor local optima by the use of noisy gradient with appropriate
magnitude of noise (specifically, 10−3 ≤ ε ≤ 10−2).

5 Conclusion

In Osogami and Raymond (2019), we have introduced determinantal SARSA, which
uses the determinant of a matrix so that both diversity and relevance of team actions
can be taken into account in reinforcement learning. Determinantal SARSA has
been shown to substantially outperform existing methods proposed for coping with
high-dimensional action space in multi-agent reinforcement learning. Determinantal
SARSA can effectively deal with exponentially large team action space. When there
are 2N possible team actions, determinantal SARSA has at most O(N 3) computa-
tional complexity and can have smaller complexity by assuming a low rank structure.

However, we find that determinantal SARSA with low-rank kernels can result in
poor local optima. In this paper, we have proposed techniques of noisy initialization
and noisy pseudo-inverse to avoid the poor local optima in determinantal SARSA.
The results of numerical experiments support the effectiveness of the proposed tech-
niques.
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Surface Denoising Based on Normal
Filtering in a Robust Statistics
Framework

Sunil Kumar Yadav, Martin Skrodzki, Eric Zimmermann,
and Konrad Polthier

1 Introduction

Surface denoising—generally being part of the preprocessing stage in the geome-
try processing pipeline—is designed to remove high-frequency noise corrupting a
geometry. The noise generally arises from scanning or other acquisition processes.
In contrast to smoothing, we are interested in preserving attributes and features of
the geometry like edges and corners. Here, the difficulty lies in distinguishing these
from noise, depending on the intensity of noise and the level of the attributes’ details.

Denoising can therefore be considered as being part of the area of smoothing.
It is used in all applications asking for a cleaned, i.e., noise-free, surface with the
additional property of keeping features. But more importantly, it is recognized as
being a major tool in the preprocessing stage of geometry processing. The reason
is that—besides computer-designed models—the acquisition of real world models
via 3D scanning processes unfortunately adds noise and outliers to the data due
to mechanical limitations and sub-optimal surrounding conditions. These artifacts
influence meshes and point sets alike and have to be removed to obtain a clean model
for further use in different industry applications, e.g., scientific analysis, automotive,
medical diagnosis, rendering, and other geometry processing algorithms like surface
reconstruction, feature detection, computer-aided design, or 3D printing, see (Yadav
et al. 2018b) for applications in medical diagnoses and (Botsch et al. 2010) for a
variety of application scenarios.
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A typical challenge arising in the denoising process is the decoupling of noise and
features of a geometry. This is, because both are high-frequency components of the
geometry in terms of the spectral setting. Other problems arise as noisy geometries
include outliers, which are far away from the underlying ground truth. Furthermore,
the amplitude of noise can be significant when compared to the feature size. To
solve these problems, in both cases—for meshes and point sets—a variety of surface
denoising algorithms have been published. These state-of-the-art methods can be
categorized into:

1. One-stagemethods,where noise components are removedby adjusting the vertex
positions based on curvature information;

2. Two-stage methods, wherein the first stage, surface normals are filtered and
then in the second stage, vertex positions are adjusted according to the filtered
normals.

Two-stagemethods aremore effective in terms of feature preservation aswell as noise
removal and obtain minimum volume shrinkage compared to one-stage methods, see
(Centin and Signoroni 2018; Yadav et al. 2018c, 2019). In the two-stage methods,
surface normal filtering is the key part as it is responsible for both noise removal and
feature preservation. Therefore, several procedures have been published for normal
filtering. Each of these algorithms is effective in different aspects (like robustness
against noise, feature preservation, or detection of outliers). However, there is no
unified theoretical framework available in which we can discuss the benefits and
drawbacks of the normal filtering algorithms and in which we can derive relations
between these methods.

In this paper, we focus on this issue and introduce such a unified framework
making use of robust statistics to derive relations between (both linear and nonlinear)
state-of-the-art surface normal filtering methods. On the basis of these relations, we
discuss the robustness of each algorithm against noise and its respective feature
preservation capability. The presented framework can be used to provide pros and
cons of published methods for the development of new algorithms. Furthermore, it
can serve as a comparison possibility for such new procedures to state-of-the-art
methods on a theoretically sound basis.

1.1 Notation

Throughout the whole paper, we will use the following notation. Let I, J, K denote
index sets as subsets of N. We consider a mesh M = (P, E, F) consisting of a
set of points or vertices P = {pi }i∈I ⊂ R

3 (which will be used in the point set set-
ting as well), (undirected) edges E , and faces F . In general, we will assume that
the mesh M or the point set P is corrupted by noise. The set of normals is given
as N = {n j } j∈J ⊂ S

2, with S2 the two-dimensional unit sphere in R3 and neighbor-
hoods are labeledΩk for k ∈ K . Sometimes we only refer to the neighborhood byΩ

and to its representatives by p, q ∈ Ω without further labels, to simplify the notation



Surface Denoising Based on Normal Filtering in a Robust Statistics Framework 105

where it is unambiguous. The used type of neighborhood will get specified when
necessary and receive a dedicated index set, as it further depends on the context, i.e.,
to which object (points, faces, . . .) we are going to relate it. Consequently, normals
and neighborhoods apply for faces and points depending on whether we discuss the
mesh or point set setting. Let |X | denotes the size of a set X and let ‖v‖ as well as vT

be the Euclidean norm and the transpose of a vector v ∈ R
3, respectively. A surface

area or a vertex, both of high curvature (in comparison with the other elements of the
geometry) will be referred to as a feature of the mesh or the point set, respectively.

1.2 Related Work

In the last two decades, many surface smoothing algorithms have been developed.
Due to the large number of availablemethods, for a comprehensive overviewwe refer
to (Botsch et al. 2010; Centin and Signoroni 2018). Here, we give a short overview
of methods highly related to the robust statistics setting and of the most important
state-of-the-art methods. As stated above, the removal of noise components is equiv-
alent to the removal of high-frequency components. Here, the Fourier transform is a
common tool, allowing efficient implementations of low-pass filters to cut off high
frequencies. It has been generalized to manifold harmonics to be applicable to 2-
manifold surfaces via the eigenfunctions of the Laplace–Beltrami operator of these
surfaces. Its matrix representation encodes the natural vibrations of a triangle mesh
in its eigenvectors and the natural frequencies in its eigenvalues, see (Taubin 1999,
2001a). One drawback is its cost for many applications as the eigenvector decompo-
sition of the Laplace matrix is numerically challenging to compute; see (Vallet and
Levy 2008).

A similar removal of high-frequency components can be achieved by utilizing
the diffusion flow, which dampens high frequencies (instead of cutting them off)
by a multiplication with a Gaussian kernel. It can be computed directly on the
mesh, making it cheaper and hence more practical than the Fourier transform. Let
f (p, t) : R3|P|+1 → R be a given signal with p = (p1, . . . , p|P|)T . The diffusion
equation:

∂ f (p, t)

∂t
= λΔ f (p, t) (1)

describes the change of f over time by a scalar diffusion coefficient λ ∈ Rmultiplied
with its spatial Laplacian Δ f , which can be replaced by the Laplace–Beltrami oper-
ator on manifolds. As the discretization asks for small time steps to be numerically
robust in the integration, the authors of (Desbrun et al. 2001) proposed an implicit
time integration providing unconditional robustness even for large time steps. A
smoothing procedure can be derived from this as update of the vertex positions pi
by a point-wise update scheme
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pi ← pi + hλΔpi ,

with Δpi = −2 Hni ,
(2)

because the Laplace–Beltrami operator on vertices corresponds to the mean cur-
vature. Hence, all vertices pi move in the corresponding normal direction ni by a
magnitude regulated by the mean curvature H . This is known as the mean curvature
flow, see (Desbrun et al. 2001).

The isotropic Laplacian has been extended by a data-dependent diffusion tensor
yielding the anisotropic flow equation:

∂ f

∂t
= div[gσ (‖∇ f ‖)∇ f ], (3)

where f is a signal as in Eq. (1) and gσ (·) is an edge stopping function (anisotropic
weighting function), which is responsible for feature preservation with a user input
parameter σ during denoising operations, see (Perona andMalik 1990; Clarenz et al.
2000). Further examples for the usage of the anisotropic diffusion equation can be
found in (Bajaj and Xu 2003; Hildebrandt and Polthier 2004). The same concept
is extended to the context of point set smoothing by Lange and Polthier (Lange and
Polthier 2005) and to face normal filtering by Tasdizen et al. (Tasdizen et al. 2002).

Another set of denoising techniques consists of two-stage mesh denoising algo-
rithms. Here, at the first stage, face normals are filtered and in the second stage vertex
positions are updated according to the newly computed face normals, see (Taubin
2001b). Face normal filtering is performed by using several linear and nonlinear
filters in order to preserve sharp features (Centin and Signoroni 2018; Yadav et al.
2018c; Yagou et al. 2002, 2003; Ohtake et al. 2002; Belyaev and Ohtake 2001) and
vertex updates are performed by using the edge-face orthogonality (Sun et al. 2007).

Finally, there are several denoising methods utilizing bilateral filtering. It arose
from image processing (Tomasi and Manduchi 1998) and uses a combination of two
different weighting functions: a spatial kernel and a range kernel to preserve fea-
tures and remove noise components. It got adapted to surface denoising for instance
in (Fleishman et al. 2003), where the information of spatial distances and the local
variation of vertex normal vectors are combined for denoising. Bilateral filters are
extended for face normal filtering,where a range kernel (Gaussian function) is defined
based on the normal differences in the neighborhood (Yadav et al. 2019; Zheng et al.
2011). A variation of bilateral filtering is also used extensively in mesh denoising in
order to remove noise and retain sharp features (Jones et al. 2003; Zhang et al. 2015).
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1.3 Face Normal Filtering Versus Vertex Position Filtering

Broadly, surface smoothing algorithms can be divided into two categories, direct ver-
tex position filtering, which is also known as one-stage smoothing and two-stage fil-
tering,which includes (face) normal filtering and vertex position updates as described
above.

Most of the one-stage denoising algorithms (vertex position filtering) follow the
concept of mean curvature flow, which is related to the Laplace–Beltrami operator
and the mean curvature on the surface as shown in Eq. (2) and as discussed above.
Basically, noise components are removed by minimizing the mean curvature on
the surface, where the mean curvature is computed using the area gradient on the
surface. Therefore, minimizing the curvature will result in minimizing the area,
which will lead to volume shrinkage. This applies to most of the anisotropic and
isotropic diffusion-based surface smoothing algorithms. These methods use vertex
position filtering in their minimization. To illustrate this problem, Fig. 1a shows a
noisy model and Fig. 1b shows the result obtained by using the mean curvature flow-
based method of (Hildebrandt and Polthier 2004). More precisely, Fig. 1b shows two
different surfaces, the original surface (green) and the denoised one (yellow). The
difference between these two surfaces is visible due to volume shrinkage during the
minimization.

On the other hand, in two-stage surface denoising, noise removal is performed
based on the face normals. Basically, face normals are treated as signals on the
vertices of the dual graph of the mesh with values in the unit sphere. The face normal
denoising is generally performed by rotating the face normals on the unit sphere
according to the weighted average of the corresponding neighbor face normals (see
Eq. (5) for a formalization). In other words, for noise removal, we operate in the
dual space of the mesh and minimize the variation of face normals. This operation
does not involve the curvature minimization on the vertex positions. Therefore, in
two-stage surface denoising algorithms, volume shrinkage is minimal, as shown in
Fig. 1c, d.

Furthermore, in two-stage surface denoising, noise removal can be performed
also on vertex normals (Fleishman et al. 2003) instead of face normals. However, in
terms of sharp feature preservation, vertex normal filtering will not be as effective as
face normal filtering because of the following reasons:

1. The vertex normals of a mesh are usually derived from face normals. Therefore,
processing face normals will avoid the ill-posedness and increase the robustness
of the algorithm.

2. At a sharp feature, the angle between vertex normals is smaller than the angle
between the face normals. Therefore, face normals are more robust in feature
preservation compared to vertex normals.

As shown in Fig. 1c, d, face normal filtering better preserves sharp features compared
to vertex normal filtering methods. However, in the context of point set surfaces, face
normals are not available and denoising has to be performed using vertex normals.
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(a) Noisy (b) Result [13] (c) Result [23] (d) Result [4]

Fig. 1 A visual comparison between vertex position, vertex normal, and face normal filtering
methods. a shows the noisy block model and b shows the denoised result of the method presented
in Hildebrandt and Polthier (2004), based on mean curvature flow. More precisely, it shows two
different surfaces, the original surface (green) and the denoised one (yellow). The difference between
these two surfaces is visible due to volume shrinkage during theminimization. In contrast, c, d show
the result of the face normal filtering methods (Fleishman et al. 2003) and (Yadav et al. 2018c),
respectively, which do not suffer from volume shrinkage

1.4 Scope

From our discussion in the last section, it is clear that the two-stage surface denoising
algorithms are robust and efficient in terms of noise removal and feature preservation.
Therefore, in this paper, we will cover surface normal filtering (face normal in the
context of mesh surfaces and vertex normals in the context of point set surfaces) in
a robust statistics framework.

In the context of surface denoising, the most challenging task is to decouple sharp
features from noise to treat them appropriately. Robust statistics is an efficient tool
to identify the deviating substructures (outliers) from the bulk data. Here, we will
treat features on the geometry as outliers because we want to deal with features
differently compared to the non-feature areas. Based on this assumption, we derive
relationships between different state-of-the-art methods for surface normal filtering
using the concept of the robust error norm and its corresponding influence functions;
see Sect. 2. We also discuss the robustness of these algorithms within the presented
framework, see Sects. 3 and 4.

2 Robust Statistical Estimation

This paper is concerned with robust statistics handling outliers during statistical data
modeling. The field of robust statistics has developed methods to handle outliers in
the data modeling process, see (Mrázek et al. 2006). These methods describe the
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structure of best fitting the bulk of the data and identifying deviating substructures
(outliers), see (Black and Rangarajan 1996). In this section, we translate the robust
statistics framework to the setting of surface denoising. As explained above, surface
denoising is a preprocessing operation in many geometry processing algorithms,
which removes noise components and retains sharp features. In the robust statistics
framework, surface features can be seen as outliers and methods from robust statics
can identify these, which in turn can be treated differently for feature-preserving
surface denoising, see (Yadav et al. 2019). As stated in the notation, we consider
both a face and a vertex of the surface mesh to be a feature, respectively, if the
corresponding normals of its neighbors have a high variation. Note that this is also
the case for noisy faces and vertices, but not for outliers as they will not have a close
neighborhood.

As reasoned in Sect. 1.4, we focus on two-stagemesh denoising algorithms. Recall
that—as it is mentioned in Sect. 1.1—the surfaceM is corrupted by noise. Therefore,
the vertices P and face normals N contain noise components, too. Let us first assume
that the noise-free surface is represented by M̂ with P̂ and N̂ its vertices and face
normals, respectively. The noisy and noise-free face normals can be related by:

n = n̂ + η, (4)

where η is a random variable representing the noise corrupting the surface. If η is a
zero-mean Gaussian random variable and the surface is flat, then the denoised face
normals can be computed byminimizing the following L2 error to compute themean:

E(n̂) =
∑

n∈Ω

∥∥n̂ − n
∥∥2

, n̂ = 1

|Ω|
∑

n∈Ω

n. (5)

However, in real-life scenarios, the noise η is not always normally distributed and
surfaces have sharp features,which canbe seen as outliers. Therefore, in the following
we will aim at computing an approximation ñ of n̂. To deal with this complicated
situation, we use robust error norms, which lead to the theory of M-estimators, see
Sect. 2.1 for details. An M-estimator of a face normal from noisy normals can be
obtained as the minimum of the following error functional:

Eσ (ñ) =
∑

n∈Ω

ρσ (‖ñ − n‖) , (6)

where ρσ (·) : R → R is a loss function and commonly called ρ-function or error
norm (Black and Rangarajan 1996; Black et al. 1998; Durand and Dorsey 2002) and
the quantity σ is a user input. See Table1 for different choices for ρσ . To minimize
the effect of outliers, the loss function should not grow rapidly. To see the growing
speed of the robust error norm ρσ (·), its derivative is computed, which is referred to
as influence function (ψσ (·)) in robust statics (Winkler et al. 1998). Thus, the loss
function and influence function are related as follows
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ρ ′
σ (x) =: ψσ (x), (7)

where for convenience, let us put x := ‖ñ − n‖.
During mesh denoising, at sharp features, the effect of the influence function

should be minimal. The input parameter x will be related to features, i.e., to the
variation of normals. Therefore, when x → ∞, the influence function should be
zero, that is

lim
x→∞ ψσ (x) = 0.

In our setting, feature values (x) are basically defined by the variation of normals,
which is measured by the differences between the neighboring normals n j and the
central normal ni . However, these differences cannot approach infinity practically
as ni , n j ∈ S

2 for all i, j ∈ I . Therefore, the above equation indicates that for bigger
values of x the influence function should be diminished.

Equation (6) can be extended to take into account spatial weights in local neigh-
borhoods using the following formulation:

Eσ,σd (ñ) =
∑

n∈Ω

ρσ (‖ñ − n‖) fσd (d), (8)

where the function fσd (d):R → R is an isotropic weighting factor, which takes the
spatial distance d between the considered geometry elements as the input argument
and is responsible for smoothing out high-frequency components of the geometry.
The term σd controls the width of the spatial kernel and generally depends on the
resolution (sampling density) of the given geometry. In case of mesh denoising, the
distance is computed between the centroid of neighboring faces and the processed
central face. For point set denoising, the term d is computed between neighboring
vertices and the processed central vertex.

Throughout the whole paper, concerning the error functionals, we are going
to ignore constant factors in the arguments for both the isotropic (σd ) and the
anisotropic (σ ) case. This is to focus on the qualitative differences between the
presented methods rather than on smaller variations.

2.1 M-estimators

M-estimators are collections of different robust error norms to handle outliers. Any
estimator defined by Eq. (6) is called an “M-estimator.” The name comes from the
generalized maximum likelihood concept, which can be deduced from Eq. (6), when
−ρσ (x) is the likelihood function. Then, minimizing the energy Eσ (·) of Eq. (6)
will be equivalent to the maximum likelihood estimate (Chu et al. 1998; Hampel
et al. 2005). As motivated above, in general, the robust estimators should have the
following two properties:
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1. The error norm ρσ (x) should not grow rapidly.
2. The influence function ψσ (x) = ρ ′

σ (x) should be bounded.

For an efficient mesh denoising procedure, the influence function should be a re-
descending function, i.e., ψσ (x) → 0 when x → ∞. In this case, the corresponding
error norm ρσ (x) is called re-descending influence error norm (Hampel et al. 2005).

In general, surface normal (i.e., face and vertex normal) filtering is performed by
computing weighted averages of neighboring normals; see Eq. (11). The weighting
functions are vital for feature-preserving normal filtering, and they can be either linear
or nonlinear. Here, we will formulate the relationship between weighting function,
robust error norm, and the corresponding influence function.

From Eq. (3), we know that the anisotropic diffusion is controlled by an edge
stopping function, which is represented by gσ (x). In this paper, we termed it as
anisotropicweighting function.Equation (6) canbeminimizedusinggradient descent
to update the surface normal:

nt+1 = nt + λ∇Eσ (x) = nt + λ
∑

n∈Ω

∇ρσ (‖ñ − n‖), (9)

where t is the iteration number and λ represents the step size. Here, ρσ is inter-
preted as a concatenation, taking the norm of a vector as argument, while the norm
receives (ñ) ∈ R

3 as argument. The complete function then maps from R
3 to R.

The differentiation let us consider the gradient of ρσ as a natural generalization of
the derivative in the one-dimensional case. Following the reasoning of Jones et al.
(2003), also adapted by Zheng et al. (2011), we adapt the procedure introduced in
Tomasi andManduchi (1998) for signal processing to the context of mesh processing
by feeding the normal distance x—as defined above—into the error norm ρσ and
a spatial distance into the spatial weighting function fσ . This analogy motivates us
to analyze the following well-established relation from signal processing [consider
for a specific derivation (Black and Rangarajan 1996, Sects. 4.1 and 5.3) and more
generally (Hampel et al. 2005; Huber 1981),

gσ (x) = ρ ′
σ (x)

x
=: ψσ (x)

x
. (10)

Applications of this relation in image and geometry processing can be found in Jones
et al. (2003), Black et al. (1998), Durand and Dorsey (2002).

Theweighting function gσ (x) should capture the anisotropic behavior of themesh
or the point set, respectively, and should be chosen based on the above relations in
the robust statistics framework. Table1 consists of several well-knownM-estimators
with their robust error norms, their influence functions, and their corresponding
anisotropic weighting functions.

Equation (5) shows an example of an estimator with a quadratic error norm
(ρσ (x) = x2). This norm grows rapidly, and its influence function (ψσ (x) = 2x) is
unbounded (non-re-descending) as shown inTable1. Therefore, the quadratic estima-
tor is very sensitive to outliers and not useful in feature-preserving mesh denoising.



112 S. K. Yadav et al.

Table 1 M-estimators

Error norm ρσ (x) Error norm ρσ (x) Influence
function
ψσ (x) = ρ′

σ (x)

Weighting
function
gσ (x) = ψσ (x)

x


 L2-norm (Black et al. 1998),
independent of σ , ρσ (x) = x2


 Truncated L2-norm (Black and
Rangarajan 1996)

ρσ (x) =
{
x2 |x | <

√
σ

σ otrw.


 L1-norm (Hampel et al. 2005),
independent of σ , ρσ (x) = |x |


 Truncated L1-norm (Hampel et al.

2005) ρσ (x) =
{

|x | |x | < σ

σ otrw.


 Huber’s minimax (Huber 1981)

ρσ (x) =
{

x2
2σ + σ

2 |x | < σ

|x | otrw.


 Lorentzian-norm (Black et al.

1998) ρσ (x) = log
[
1 + 1

2

( x
σ

)2]


 Gaussian norm (Black and
Rangarajan 1996)

ρσ (x) = 1 − e

(
− x2

σ2

)


 Tukey’s norm (Beaton and Tukey
1974) ρσ (x) ={

x2

σ 2 − x4

σ 4 + x6

3σ 6 |x | < σ
1
3 otrw.

The quadratic error norm can be truncated in order to convert it into a re-
descending influence error norm. The second row of Table1 shows the truncated
quadratic error norm that has a re-descending influence function ψσ (x) with a
bounded error norm ρσ (x). However, the behavior of ψσ (x) is linearly increasing
within the range of the user input σ , which is not desired for feature preservation.

As shown in Table1, the L1 error norm (ρσ (x) = |x |, third row) and Huber’s
minimax error norm (fifth row) do not have re-descending influence functions even
though they are bounded by a nonzero constant value. These two perform better in
terms of separating outliers compared to the (truncated) quadratic error norm.

The other error norms listed in Table1, which include the truncated L1 error
norm as well as the Lorentzian, Gaussian, and Tukey’s norms have re-descending
influence functions. Among all re-descending influence error norms, the truncated L1
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and Tukey’s error norm cut off the influence function’s response strictly while the
other norms have a nonzero influence function on a larger interval.

3 Face Normal Filtering in the Robust Statistics
Framework

In this section, we will discuss state-of-the-art methods for face normal filtering
utilizing the robust statistics framework andM-estimators as described above. Based
on the relationship between the robust error norm, the influence function, and the
weighting function as established in Eq. (10), we will discuss the robustness and
effectiveness of state-of-the-art methods for removing noise and preserving features.

The face normals N of a triangulated meshM can be seen as graph signals on the
graph induced by the dual mesh ofMwith values in the unit sphere. The centroid of
each face fi is denoted by ci , which can be treated as the vertex position on the dual
mesh. In general, the filtered face normal ñi corresponding to a noisy face normal ni
can be computed using the following equation:

ñi = 1

ω

∑

j∈Ωi

gσ

(∥∥ni − n j

∥∥2
)
fσd (

∥∥ci − c j
∥∥2

)n j , (11)

where ω =
∥∥∥
∑

j∈Ωi
gσ (

∥∥ni − n j

∥∥2
) fσd (

∥∥ci − c j
∥∥2

)n j

∥∥∥ ensures ñi to be of unit

length. The termΩi represents the mesh neighborhood around the i th triangle, which
can be combinatorial or a geometrical disk of some (user-defined) radius. The above
equation represents a general formula for face normal filtering and follows the error
functional presented in Eq. (8). The efficiency of this approach heavily depends on
the choice of the weighting functions gσ (·) and fσd (·).

In the following, we will present several state-of-the-art approaches for these
choices. The listed algorithms use different input arguments for the robust error
functionals. Common choices are the Euclidean distance of normals

∥∥ni − n j

∥∥, the
angle between two normals ∠(ni , n j ), or the quantity arccos(ni · n j ). We will stick
to the notation used in the respective original paper in the following discussion.
However, note that these input arguments are related. In particular, we obtain

cos(∠(ni , n j )) = ni · n j

‖ni‖
∥∥n j

∥∥ = ni · n j ⇒ ∠(ni , n j ) = arccos(ni · n j ).

by the Euclidean scalar product because all normals considered are of unit length.
Furthermore, (by the law of cosines) it is
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∥∥ni − n j

∥∥2 = ‖ni‖2 + ∥∥n j

∥∥2 − 2 · ‖ni‖ · ∥∥n j

∥∥ · cos(∠(ni , n j ))

= 2 − 2 cos(∠(ni , n j ))

⇒ ∠(ni , n j ) = arccos

(
1 −

∥∥ni − n j

∥∥2

2

)
.

3.1 Unilateral Normal Filtering

Unilateral normal filtering performs noise removal from noisy normals using a single
anisotropic kernel function. From our setup in Eq. (8), it is clear that the unilateral
normal filtering algorithms are using gσ (x) as anisotropic weighting function while
the spatial filter will be equal to one, i.e., fσd (d) ≡ 1. These methods are effective
against low intensity of noise and enhance sharp features. However, they are not
robust against moderate or high levels of noise because of the unavailability of the
spatial filter fσd (d).

(a) Belyaev and Ohtake (2001) introduce nonlinear diffusion of face normals to
enhance the features of the geometry. Their algorithm uses the following weighting
function:

gσ (x) = exp

(
− x2

σ 2

)
. (12)

Thisweight is a nonlinear function, and the input argument is encoding the directional
curvature. It is given as

x = ∠(ni , n j )

d
,

where ∠(ni , n j ) denotes the angle between ni and n j , the term d = ∥∥ci − c j
∥∥ rep-

resents the distance between the centroids (as presented above) of the central face
and its neighboring face, and ni , n j ∈ N are faced normals of the central face and
its neighboring face, respectively. The term σ is a user input to better adapt the algo-
rithm to the given geometry. It is chosen based on the amount of noise, curvature, and
the resolution of the geometry. The directional curvature x measures the similarity
between neighboring normals. In the robust statistics framework, by using Eq. (10),
we can deduce the used error norm as

ρσ (x) =
x∫

0

x ′gσ (x ′)dx ′ = σ 2

2

(
1 − exp

(
− x2

σ 2

))
. (13)

Similarly, the influence function can be derived as
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ψσ (x) = xgσ (x) = x exp

(
− x2

σ 2

)
, lim

x→∞ ψσ (x) = 0. (14)

The above two equations indicate that this algorithm applies the Gaussian error norm
(second last row of Table1), which has a re-descending influence function andmakes
the algorithm robust against outliers. However, the spatial smoothing function fσd (·)
is not used in this algorithm, which reduces the robustness of the algorithm against
significant noise.
(b) Yagou et al. (2002) apply mean and median filtering to face normals. Mean fil-
tering of normals is performed by simply uniformly averaging neighboring normals.
Therefore, the anisotropic weighting function gσ (x) ≡ 1 leads to an error norm and
influence function of

ρσ (x) =
∫ x

0
x ′gσ (x ′)dx ′ = x2 and ψσ (x) = xgσ (x) = x, (15)

respectively. From the equation above, it is clear that mean filtering follows the
quadratic error norm (ρσ (x) = x2, gσ (x) = 1) (the first row in Table1) and it has
an unbounded influence function (limx→∞ ψσ (x) = ∞), whichmakes the algorithm
sensitive to outliers and produces feature blurring. This method uses the triangle area
as a weighting function, i.e., in the notation of Eq. (8), it computes fσd (d) for a given
face fi as area( fi ). However, this makes the algorithm only insensitive to irregular
sampling.

On the other hand, median filtering is estimated using the L1 error norm (Hampel
et al. 2005). Therefore, the corresponding error norm and influence function can be
derived as

ρσ (x) = |x | and ψσ (x) = ρ ′
σ (x) =

{
1 |x | �= 0

undefined x = 0.
(16)

By using the relation fromEq. (10), the anisotropic weighting function can bewritten
as

gσ (x) = ψσ (x)

x
=

{
1
|x | |x | �= 0

undefined x = 0.
(17)

In this algorithm, the input x is given by the Euclidean distance of the neighboring
normal n j ∈ N to the central normal ni , i.e., x = ∥∥ni − n j

∥∥. The L1-norm is better
compared to the quadratic error norm in terms of robustness to outliers. However,
the corresponding influence function is not re-descending (see Table1) and produces
a constant value for outliers.

Weighted median filtering is applying a spatial weighting function to provide
higher weights to closer points compared to distant points; see (Yagou et al. 2002).
This weighting function is truncating the effect of local neighboring faces. Therefore,
the weighted median follows a truncated L1-norm and its corresponding influence
function can be derived as
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ψσ (x) = ρ ′
σ (x) =

⎧
⎪⎨

⎪⎩

0 |x | < σ

sign(x) 0 < |x | ≤ σ

undefined x = 0

. (18)

By using the relation fromEq. (10), the anisotropic weighting function can bewritten
as

gσ (x) = ψσ (x)

x
=

⎧
⎪⎨

⎪⎩

0 |x | < σ
sign(x)

x 0 < |x | ≤ σ

undefined x = 0

. (19)

The truncated L1-norm has a re-descending influence function, which enhances the
feature preservation capability of the algorithm compared to mean and median fil-
tering.

From the influence functions of the L1-norm and the truncated L1-norm, it is clear
that these norms are capable of feature preservation during the process of face normal
filtering. However, these influence functions and their corresponding anisotropic
weighting functions are not well-defined at x = 0, which is not desirable.

(c) Huber (1981) proposes a slight modification of the weighting function before
mentioned to overcome the issue of not being well-defined at x = 0. He suggests

ρσ (x) =
{

x2

2σ + σ
2 |x | < σ

|x | otrw.
. (20)

This modified error norm is commonly known as Huber’s minimax norm (see fifth
row in Table1). The corresponding influence and anisotropic weighting functions
can be derived as

ψσ (x) =
{

x
σ

|x | < σ

sign(x) otrw.
, gσ (x) =

{
1
σ

|x | < σ
sign(x)

x otrw.
. (21)

The above equation indicates that Huber’s minimax norm has a re-descending
influence function and has a well-defined anisotropic weighting function. This
norm is widely used in image processing applications but has—to the best of our
knowledge—not been used for face normal filtering yet and is therefore not included
in Table2.

(d) Yadav et al. (2018c) introduced a face normal filtering technique using a box
filter as the anisotropic weighting function

gσ (x) =
{
1 |x | < σ

0.1 otrw.
, with x = ∠(ni , n j ), (22)
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where ∠(ni , n j ) denotes the angle between the central normal ni and it neighboring
normal n j . The corresponding error norm and influence function can be derived as

ρσ (x) =
x∫

0

x ′gσ (x ′)dx ′ =
{
x2 |x | < σ

0.1(x2 + 9σ 2) otrw.
, (23)

ψσ (x) = xgσ (x) =
{
x |x | < σ

0.1x otrw.
. (24)

From the above error norm and influence function, we can see that this filtering is
using an error norm quite similar to the truncated quadratic error norm (see second
row in Table1) for the computation of the element-based normal voting tensor. The
corresponding influence function is neither bounded nor re-descending, but the out-
lier effect will be quite minimal. This is because of the downscaling of the argument
in the influence function for bigger x . Therefore, the algorithm is able to preserve
sharp features. However, it is less robust against high noise intensities because of the
non-re-descending and unbounded influence function.

(e) Shen et al. (2004) introduced the fuzzy vector median-based surface smoothing
algorithm, which is quite similar to the algorithm of (Belyaev and Ohtake 2001)
(explained in paragraph a) in the beginning of this section). The anisotropicweighting
function gσ (x) is a Gaussian function as given in Eq. (12) and the input x is given as

x = ∥∥n j − nvd

∥∥ ,

where n j represents neighboring normals to the processed central face fi and the
term nvd performs vector directionalmedian filtering on the normal vectors including
the central normal ni . Vector directional median filtering is an extension of median
filtering for multivariate data, see (Trahanias and Venetsanopoulos 1993), and can
be computed as

nvd = argmin
n

∑

j∈Ωvd

∠(n, n j ), (25)

where ∠(n, n j ) denotes the angle between n and n j and the set Ωvd = Ωi ∪ {i}
consists of indices of the neighbor normals n j together with the index i of the central
normal ni .

The corresponding influence function will be re-descending as shown in Eqs. (13)
and (14). The input argument of gσ (x) is the Euclidean difference between the
neighboring normals and their median. Thismethod performswell in terms of feature
preservation but is not robust during noise removal because of the unavailability of
the spatial filter. As it is clear from Eqs. (3), the anisotropic weighting function gσ (x)
is similar to the edge stopping function in the diffusion process.
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(f) Tasdizen et al. (2002) apply—based on the relationship between bilateral filtering
and nonlinear diffusion (Barash 2002)—the diffusion of face normals for filtering by
using theGaussian function as anisotropicweighting function.Curvature information
is used as input x in this algorithm. Similar to the method of (Belyaev and Ohtake
2001), from Eqs. (12), (13), and (14), it can be derived that this method also follows
the Gaussian error norm and has a bounded, re-descending influence function, which
helps preserving sharp features. However, due to the unavailability of the spatial filter,
this algorithm is not robust against significant noise.
(g) Centin et al. (2018) also introduce a face normal diffusion method using the
following anisotropic weighting function

gσ (x) =
{
1 |x | < σ

σ 2

(σ−x)2+σ 2 otrw.
, where x = κ · �avg. (26)

The term κ represents curvature information computed at each face by averaging the
curvature at the corresponding vertices and �avg represents the average edge length
computed over the entire geometry. The corresponding influence function can be
derived as

ψσ (x) = xgσ (x) =
{
x |x | < σ

xσ 2

(σ−x)2+σ 2 otrw.
. (27)

The above influence function is bounded and re-descending, which makes this algo-
rithmeffective in termsof feature preservation.Thismethod falls somewhere between
the Lorentzian error norm (decaying of gσ (x) for x ≥ σ ) and Huber’s minimax error
norm (constant gσ (x) for x < σ ). Due to the absence of a spatial filter, this algorithm
is not robust against high intensities of noise.

3.2 Bilateral Normal Filtering

Bilateral normal filtering is one of the most effective and robust approaches for
denoising of normals. In contrast to unilateral normal filtering, theweighting function
in bilateral normal filtering consists of two different Gaussian kernels. As above, one
kernel carries the anisotropic nature and is commonly known as range filter (we
termed it anisotropic weighting function gσ (x)) while the other kernel is known as
spatial kernel (given as fσd (d) in Eq. (8)) and is isotropic in nature.

(a) Zheng et al. (2011) define these kernels as:

gσ (x) = exp

(
− x2

2σ 2

)
and fσd (d) = exp

(
− d2

2σ 2
d

)
, (28)

where σd is the average distance between neighboring faces and the central face. The
input arguments x and d are defined as:
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x = ∥∥ni − n j

∥∥ and d = ∥∥ci − c j
∥∥ ,

where ci and c j are the centroids of the central face fi and the neighboring face f j ,
respectively.

In the robust statistics framework, our main focus is the anisotropic weighting
function gσ (x), its corresponding error norm, and the corresponding influence func-
tion because gσ (x) is responsible for feature preservation. From Eqs. (12), (13),
and (14), it is clear that the method of (Zheng et al. 2011) has a re-descending
influence function (second last row of Table1). Thereby, this algorithm is capable
of preserving sharp features effectively and removes noise better compared to the
algorithms mentioned above because of the utilized spatial filter fσd (d).

(b) Zhang et al. (2015) describe a procedure of guided mesh normal filtering follow-
ing the Gaussian error norm and uses the same spatial filter as the method of (Zheng
et al. 2011) presented above. The guided mesh normal is based on a joint bilateral
filter, where an anisotropic weighting function (range kernel) works on the guidance
signal. That is, the input variable x is defined as:

x = ∥∥Gi − G j

∥∥ , (29)

whereGi andG j are the guidance normals, which are computed by averaging similar
normals in the respective neighborhood.

(c) Yadav et al. (2019) introduce a bilateral normal filtering using the following
anisotropic weighting function:

gσ (x) =
{

1
2

[
1 − (

x
σ

)
2
]2 |x | ≤ σ

0 otrw.
, where x = ∥∥ni − n j

∥∥ . (30)

The above function is known as Tukey’s biweight function (Beaton and Tukey 1974).
The spatial filter fσd (d) is a Gaussian function similar to that used in the method
of (Zheng et al. 2011) as described above. In the robust statistics framework, the
corresponding influence function and error norm can be derived as

ψσ (x) = xgσ (x) =
{

x
2

[
1 − (

x
σ

)
2
]2 |x | < σ

0 otrw.
, (31)

ρσ (x) =
x∫

0

x ′gσ (x ′)dx ′ =
{

x2

σ 2 − x4

σ 4 + x6

3σ 6 |x | < σ
1
3 otrw.

. (32)

From the influence function and error norm, it is clear that Tukey’s biweight function
is more robust compared to the Gaussian function in terms of feature preservation
because it strictly cuts off outliers with respect to the user-chosen parameter σ . Also,
the Gaussian spatial filter helps to remove noise components effectively.
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4 Point Set Surface Denoising in the Robust Statistics
Framework

In this section, we will shift our focus slightly. Instead of an input meshM, we will
now consider a point set sample (PSS) of a surface as input. Thus, we are only given
vertices P = {pi }i∈I ⊆ R

3 with corresponding normals N = {ni }i∈I , i.e., compared
to the above we cannot use edges to induce connectivity between the vertices nor
can we use the area of faces as weighting terms in the filtering process.

Despite these challenges, a multitude of procedures and algorithms has been pro-
posed for the denoising of PSS. This is mostly due to two advantages of PSS over
meshes. First, point sets are often the raw output of 3D acquisition devices and pro-
cesses. Thus, if an algorithm is available toworkon aPSS, it canbedirectly—possibly
even on site—applied to the acquired data. Second, as there is no connectivity infor-
mation in the point set, no such data has to be stored, which amounts to significantly
lower storage costs compared to meshes. Furthermore, no topological problems—
like non-manifold edges or fold-overs—and no numerical problems—like slivers—
are introduced as the PSS only gives an implicit handle on the underlying surface
geometry.

In the following, we will focus on adaptations of face normal filtering algorithms
from meshes to point sets as well as on original methods proposed directly in the
PSS setting. Note that any method on point sets can easily be applied to the meshed
setting by simply disregarding the edge and face connectivity information.

4.1 Unilateral Normal Filtering

As for meshes, we will first focus on unilateral normal filtering procedures. These do
not use a specific spatial filter, i.e., fσd (d) ≡ 1. This makes them less robust against
moderate or high levels of noise.

(a)Öztireli et al. (2009) introduced amodification of themoving least squares (MLS)
procedure (Alexa et al. 2003) aiming at the integration of feature preservation into the
MLSpipeline. Their core objective is an iterativeminimization and can be understood
as iterative trilateral filtering, as it makes use of three types of weights. The first one
is isotropic in nature and appears as C3 continuous polynomial approximation of the
Gaussian, i.e.,

fi (p) =
(
1 − ‖p − pi‖

h2i

2)4

(33)

where the argument p is some point (not necessarily from P), as the objective is
an implicit, signed distance function. The value hi is a weight adapting the local
density, chosen within a range from 1.4 to 4 as experimentally evaluated by the
authors (Öztireli et al. 2009). For the second weighting term—using the height
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over an estimated hyperplane at p and thus capturing both isotropic and anisotropic
quantities—the authors discuss M-estimators and include the Gaussian error norm
and its respective Gaussian error weight, see Eq. (12), into their optimization prob-
lem. The arguments are

d = yi − η̃k−1(pi ) and σd = hi
2

,

with yi the heights of the samples pi taken over the local least-squared best fitting
hyperplane, and η̃k−1 the corresponding local approximation. The value for σd is set
fix throughout the whole paper by the authors. The third and final weighting terms
are anisotropic and make use of a Gaussian function with arguments

x = ∥∥∇ηk(p) − ni
∥∥ and σ ∈ R,

where η is an implicit, signed distance function as main objective, p some point at
which we want to evaluate the function η, ni the normal at sample point pi , and σ a
parameter that regulates the sharpnesswhere typical choices range from 0.5 up to 1.5.
This last weighting term penalizes the deviation of normals when we reach sharp
features. The influence function and error normare ofGaussian nature and are derived
in Eqs. (14) and (13). The assembled combination yields a robust implicit surface
definition via MLS, which can represent both smooth surface patches and sharp
features and was coined robust implicit MLS (RIMLS). Similar to Method (Belyaev
andOhtake 2001), this algorithm is capable of retaining and enhancing sharp features.
However, the unavailability of a spatial filter fσd (d)makes the algorithm less effective
against moderate and high levels of noise.

(b)Mattei andCastrodad (2016) start their paperwith the assertion that the principal
component analysis (PCA) operation for the estimation of local reference planes is
not robust. They proceed to construct a moving robust PCA (MRPCA). Their main
ingredient of interest in the given context is a minimization problem, which makes
use of anisotropic weights determined via the Gaussian weight function as given in
Eq. (12) with arguments

x = arccos(ni · n j ) and σ ∈ R,

where ni , n j are the unit normals at the considered point pi and at one of its neigh-
bors p j (with a k-nearest neighborhood utilized). Furthermore, σ is a bandwidth
parameter affecting the reconstruction of sharp features. The authors propose values
of σ ∈ (π/12, π/6). Using this anisotropic weight function yields the Gaussian error
norm along with its re-descending influence function as given in Eqs. (14) and (13).
Similar to (Belyaev and Ohtake 2001), this algorithm is capable of retaining and
enhancing sharp features. However, the unavailability of a spatial filter fσd (d)makes
the algorithm less effective against moderate and high levels of noise.
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4.2 Bilateral Normal Filtering

We will now turn to bilateral normal filtering procedures for PSS. These use two
different weighting kernels. As for meshes, one kernel carries the anisotropic nature
while the other one of isotropic behavior.

(a) Li et al. (2009) presented one of the first approaches applying bilateral filtering
to PSS. The authors first estimate the likelihood �i that a given sample point pi ∈ P
is close to the underlying surface geometry. They propose to compute �i based on
the MLS technique of (Alexa et al. 2003). The normal denoising utilizes the bilateral
filtering scheme, which includes a Gaussian weighting (following Eq. (12)) as a
spatial filter fσd (d) with the following input arguments in the isotropic setting

d = ∥∥pi − p j

∥∥ and σd = r

2
,

and another Gaussian weighting function gσ (x) in the anisotropic setting with fol-
lowing input arguments

x = arccos(ni · n j ) and σ ∈ R,

the latter chosen to be the standard deviation of the normal variation given in x . Here, r
is the radius of the enclosing sphere of the geometric neighborhoodΩi . Observe that
the values presented here differ from those given in (Li 2009), because we adjust
them to fit the Gaussian given in Eq. (12). Lastly, the closeness of the point pi to the
underlying surface, measured by �i , the feature intensity, and the bilateral filtering
for normals are used in a final sample point filtering step to remove noise from the
PSS. The mentioned method follows the Gaussian error norm similar to the bilateral
normal filtering of (Zheng et al. 2011). As shown in Eq. (14), the applied anisotropic
weighting function gσ (x) has a re-descending and bounded influence function, which
makes the algorithm robust in terms of feature preservation and also the availability
of the spatial filter fσd (d) ensures the effectiveness toward different levels of noise.

(b) Zheng et al. (2017) proposed a four-stage method for point set denoising. It
consists of sharp feature detection, multiple normals computation, guided normal
filtering, and point updating. Concerning the feature detection, the authors provide
a two-step procedure: feature candidate detection and feature point selection. The
former is to find the global feature structure and utilizes the framework of robust
statistics. Namely, after a first computation of normals using PCA, the normal simi-
larity is evaluated via the Gaussian weight function, see Eq. (12), with arguments

x = ∥∥ni − n j

∥∥ and σ ∈ R,

with a user-given angle-threshold σ , which ranges from 0.05 to 0.3 in the experi-
ments of the authors, ni the normal at the considered point and n j the normal at one
of its neighbors, while using the k-nearest neighbors as neighborhood notion. In con-



Surface Denoising Based on Normal Filtering in a Robust Statistics Framework 123

trast to the single normal used in the normal similarity described above, the authors
of (Zheng et al. 2017) attach bundles—a multitude of normals—to every point. A
comparable approach is then chosen to estimate averaged normals utilizing spatial
weights evaluated once more via the Gaussian weight function (12) with arguments

d = ∥∥pi − p j

∥∥ and σd ∈ R,

with σd ranging from 0.1 to 0.5 in the authors’ experiments. Finally, both weightings
are combined in the actual bilateral normal filtering. This method is an extension
of guided mesh normal filtering (Zhang et al. 2015), which we have mentioned in
Eq. (29). From the explanation for guided mesh normal filtering in Sect. 3.2, it is
clear that this method also follows the Gaussian error norm along with a bounded
and re-descending influence function and has similar robustness in terms of feature
preservation and noise removal. The computation of guided normals makes this
algorithm slightly better compared to bilateral normal filtering.

(c) Park et al. (2013) proposed a three-staged point set filtering approach including
feature detection, normal re-calculation, and a point position update. Their feature
detection tensor, adaptive sub-neighborhood, and point update all use the Gaussian
weighting function given in Eq. (12), where for the first two, the arguments are of
anisotropic nature given as

x =
√
s2 + cκ2 and σ ∈ R,

with a prescribed constant c, σ set by the authors to the neighborhood range, which
is 4δwith δ the arithmeticmean of all distances of the points to their closest neighbors
respectively. The value s represents the arc-length on the tangent plane and κ the
curvature obtained by the circle, which goes through both the center point pi and its
considered neighbor p j and which is also tangent to the attached normals ni and n j .
These normals are calculated via an initial normal estimation following (Hoppe et al.
1992). To compute the feature detection tensor, the method uses a Gaussian function
as the anisotropic weighting, which has a re-descending influence function ψσ and a
derived Gaussian error norm ρσ as given in Eqs. (14) and (13), respectively. In terms
of feature sensitivity, it will be as effective as MRPCA. However, this algorithm is
not robust against moderate and high levels of noise.

(d) Digne and de Francis (2017) proposed an extension of the bilateral filtering
on meshes to points via a parallel implementation of (Fleishman et al. 2003) using
points. The whole procedure consists of a point update using non-oriented normals
and utilizes Gaussian weights, Equation (12), twice, with isotropic

d = ∥∥pi − p j

∥∥ and σd = 1

3
r,

and anisotropic arguments
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x = ∣∣ni · (p j − pi )
∣∣ and σ = 1

3
r ′,

with user-given radii r and r ′. If these are not given, the authors use a heuristic and
set r = �

√
20/|P|, where � denotes the size of the bounding box and |P| the number

of vertices. The values σd and σ are set to be equal in this case. The point pi is the one
considered to be updated and p j represents one of its neighbors within a geometrical
neighborhood Ωi . The weights determined by fσd measure the spatial distance, and
those by gσ evaluate the distance of neighbors to the plane spanned by the point pi
and its normal. As the weights are of Gaussian nature, we can derive the influence
function and Gaussian error norm given in Eqs. (14) and (13). In terms of feature
preservation and noise removal, this algorithmwill be as effective as bilateral normal
filtering (Zheng et al. 2011) as both of them are using same robust error norm with
a slightly different input argument.

(e) Zheng et al. (2018) propose an iterative two-staged denoising algorithmwhich—
in contrast to most methods—smooths out smaller features while preserving larger
ones. The iterative normal filtering (with initial normals obtained via (Hoppe et al.
1992) and the following point position update (solved iteratively via gradient descent)
make use of the Gaussian weighting, Equation (12), with the isotropic arguments

d = ∥∥pi − p j

∥∥ and σd ∈ R

and the anisotropic arguments

x = ∥∥ni − n j

∥∥ and σ ∈ R,

where σd ∈ [0.01, 0.5] and σ ∈ [0.1, 0.5] given in the authors’ experiments, pi
the considered point, p j representing its neighbor (k-nearest neighbors are used),
and ni , n j the respective normals. Consequently, the evaluation is similar and on the
one hand uses spatial distances of points while on the other hand using closeness
of normals. The used Gaussian weights yield the influence function and Gaussian
error norm given in Eqs. (14) and (13), which make this algorithm robust in terms
of feature preservation and noise removal. One of the key benefits of this algorithm
is that by adjusting the parameter σ , different levels of features can be smoothed
out effectively. An even more robust version, utilizing the same weighting terms as
given above, is discussed in (Yangxing et al. 2019).

(f) Yadav et al. (2018a) offer an extension of (Yadav et al. 2018c) to point sets. The
proposed iterative scheme consists of the following three stages: normal filtering,
feature detection, and vertex update. The first two make use of a similar box filter as
given in Eq. (22), here given as

gσ (x) =
{
1 x ≤ σ

0 otrw.
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with input arguments

x = arccos(ni · n j ) and σ ∈ R,

where ni , n j are unit-length normals and σ is an angle threshold for the neighbor
selection (chosen by the user). The deviation from the weighting defined in (Yadav
et al. 2018c) is because vertex normals are more sensitive to noise compared to
face normals. Similar to the influence function and error norm derived in Eqs. (24)
and (23), the anisotropic weights given above yield an influence function of

ψσ (x) = xgσ (x) =
{
x |x | < σ

0 otrw.

and an error norm of

ρσ (x) =
x∫

0

x ′gσ (x ′)dx ′ =
{
x2 |x | < σ

0 otrw.
.

The latter is a version of the truncated quadratic error norm, see the second row of
Table1. In contrast to (Yadav et al. 2018c), the influence function is both bounded and
re-descending (ψ → 0 when x → ∞). The impact of outliers is therefore kept small
as it scales down for larger arguments x and feature preservation is yielded. However,
the performance of this algorithm is not optimal in the presence of moderate and high
levels of noise due to the unavailability of a spatial filter fσd (d).

Discussion: Local versus Global Weighting Note that out of the methods for point
set surface denoising presented here, only (Öztireli et al. 2009) utilizes a local vertex-
basedweightσd . In contrast,methods (Li 2009; Zheng et al. 2017;Digne and de Fran-
chis 2017; Zheng et al. 2018) use global weighting terms σd . While localized terms
can capture features on a finer level, they are harder to calibrate than global parame-
ters. Furthermore, an implicit assumption ofmany algorithms is a noisy but uniformly
dense sampling as input. Handling non-uniform densities requires additional work,
see (Skrodzki et al. 2018). Finally, if the features of the input geometry are of com-
parable size, a global parameter is sufficient to capture them while still removing
noise. Hence, most algorithms reduce to simple global parameters.

5 Experiments and Results

In this section, we present experimental results regarding the state-of-the-art methods
as listed in the previous sections, which are using different robust error norms. We
have chosen two different models (CAD and CAGD) with different levels of noise.
Figure2 shows the Nicola model corrupted with a moderate level of Gaussian noise



126 S. K. Yadav et al.

(standard deviation σn = 0.2�e, where �e is the average edge length). Using this
model, we show the capability of feature preservation with the usage of different
error norms. As shown in Fig. 2, the L2-norm is not effective in terms of feature
preservation (blurred eye region) because of the linear influence function and also as
it is not bounded. The truncated L2-norm preserves features in the eye region better
compared to the L2-norm as it has a truncated linear influence function. Figure2e,
f shows the outputs of using the Gaussian norm without and with spatial filter,
respectively. The Gaussian error norm has a re-descending influence function, which
makes the algorithm more effective compared to the L2 related norms. The spatial
filter is helping to remove noise effectively (eye and nose regions). Huber’s minimax
(Fig. 2e) and theGaussian error norm (Fig. 2g) have quite similar outputs as they have
re-descending influence functions and do not use spatial filters. Figure2h shows the
output of using Tukey’s error norm, which has a sharper cut-off in the influence
function compared to the Gaussian error norm. Therefore, feature preservation is
better compared to other norms mentioned and the spatial filter is helping to remove
noise components effectively.

Figure3 shows the robustness of the mentioned norm against high level of noise.
The Fandisk model is corrupted with a Gaussian noise (σn = 0.3�e) in random direc-
tion.As it is shown, L2 andHuber’sminimax norms are able to remove the noise com-
ponents effectively but feature preservation is not effective. In case of the Gaussian
error norm, the spatial filter removes different components of noise including low-
frequency ripples. However, the truncated L2-norm is able to remove low-frequency
components by introducing an additional processing step (binary optimization) in
the pipeline. The algorithm (Yadav et al. 2019) uses Tukey’s error norm, which helps
to preserve features effectively and the spatial filter removes the noise components.

6 Conclusion

In this paper, we unified state-of-the-art methods for normal filtering in surface
denoising using the robust statistics framework.Wediscussed differentM-estimators,
which are the main tools of robust statistics. These tools are defined by a robust error
norm and a corresponding influence function, respectively. Based on the properties of
the influence function (bounded and re-descending) and of the anisotropic weighting
function, we discussed the robustness of state-of-the-art methods in terms of feature
preservation and feature enhancement (see Table2). Furthermore, we have shown
that the introduction of spatial filters along with anisotropic filters will improve the
robustness of the algorithm in terms of noise removal. The robust statistics framework
not only provides a platform to bring new insight into the field of surface denoising
and clarify the relation between different methods in the field. It can also be used
for new methods to combine the advantages of the known filtering techniques. The
application of robust statistics is not limited to surface denoising, and it can be
used effectively in other areas of the field of geometry processing. Corresponding
applications of this powerful tool are left as further research.
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(a) Original (b) Noisy

(c) L2-norm (Yagou et al. 2002) (d) Truncated L2-norm (Yadav et al. 2018c)

(e) Gaussian-norm (Belyaev and Ohtake 2001) (f) Gaussian-norm with spatial fil-
ter (Zheng et al. 2011)

(g) Huber’s minimax (Centin and Signoroni 2018) (h) Tukey’s-norm (Yadav et al. 2019)

Fig. 2 Nicola model corrupted with a Gaussian noise (σn = 0.2le) in random direction. Images
c–h show the results produced by state-of-the-art methods, which are using different robust error
norms (see Table1)
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(a) Original (b) Noisy

(c) L2-norm (Yagou et al. 2002) (d) Truncated L2-norm (Yadav et al. 2018c)

(e) Gaussian-norm (Belyaev and Ohtake 2001) (f) Gaussian-norm with spatial fil-
ter (Zheng et al. 2011)

(g) Huber’s minimax (Centin and Signoroni 2018) (h) Tukey’s-norm (Yadav et al. 2019)

Fig. 3 Fandiskmodel corrupted with a Gaussian noise (σn = 0.3�e) in random direction. c –h show
the results produced by state-of-the-art methods, which are using different robust error norms (see
Table1). The black curve highlights sharp edge information in the geometries and is detected using
a dihedral angle threshold of θ = 70◦
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Table 2 Overview on the discussed methods. For each method, we present the authors, year,
citation, which input is processed (PSS or meshes), what error norm is used and whether a spatial
weighting is applied. Furthermore, we collect the assessments from the above sections how the
different methods perform in terms of feature preservation and noise removal
Method Section Input Error norm Spatial

weights
Feature
preservation

Noise removal

Belyaev and
Ohtake (2001)

3.1 a Mesh Gaussian No Good Ok

Yogou et al.
(2002)

3.1 b Mesh L1 and L2 No Ok Ok

Yadav et al.
(2018c)

3.1 d Mesh Truncated L2 No Good Ok

Shen and
Barner (2004)

3.1 e Mesh Gaussian No Good Ok

Tasdizen et al.
(2002)

3.1 f Mesh Gaussian No Good Ok

Centin and
Signoroni
(2018)

3.1 g Mesh Huber’s
minimax�

No Excellent Ok

Zheng et al.
(2011)

3.2 a Mesh Gaussian Gaussian Good Good

Zhang et al.
(2015)

3.2 b Mesh Gaussian Gaussian Good Good

Yadav et al.
(2019)

3.2 c Mesh Tukey’s Gaussian Excellent Good

Öztireli (2009) 4.1 a PSS Gaussian Gaussian Good Good

Mattei and
Castrodad
(2016)

4.1 b PSS Gaussian No Good Ok

Li et al. (2009) 4.2 a PSS Gaussian Gaussian Good Good

Zheng et al.
(2017)

4.2 b PSS Gaussian Gaussian Good Good

Park et al.
(2013)

4.2 c PSS Gaussian No Good Ok

Digne and
Franchis
(2017)

4.2 d PSS Gaussian Gaussian Good Good

Zheng et al.
(2018)

4.2 e PSS Gaussian Gaussian Good Good

Yadav et al.
(2018a)

4.2 f PSS Truncated L2 No Good Ok

� The error norm used in method (Centin and Signoroni 2018) is not equivalent to Huber’s minimax.
However, the utilized weighting term closely resembles the function gσ (x) of Huber’s minimax,
see Table 1 and the discussion in Sect. 3.1g
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Unique Continuation on a Sphere for
Helmholtz Equation and Its Numerical
Treatments

Yu Chen and Jin Cheng

1 Introduction

Unique continuation means that if the solution of a partial differential equation van-
ishes on a “small” domain, itmust vanish on thewhole connected domain. The unique
continuation properties of elliptic equations witness increasing attentions, and there
have been many remarkable results, with the focus ranging from conditions on coef-
ficients to requirements on data set (see e.g., (Daniel 2007; Isakov 2001; Vessella
2007; Saut andScheurer 2017;Alexander Logunov andEugeniaMalinnikova 2018)).
Several new aspects on unique continuation problem have also been considered, one
of which is called the partial unique continuation. In some cases, the measured data
for unique continuation can be on an analytic submanifold, e.g., on an analytic curve
for harmonic functions (Cheng and Yamamoto 1998; Cheng et al. 1998) and wave
equations (Cheng et al. 2005, 2002), along hypersurfaces for wave equations (Cheng
et al. 1999) and second-order anisotropic hyperbolic systems (Cheng et al., 2005).
In other cases, for some strong coupled partial differential systems, the known data
is only available for part of the components of the solutions, which leads to the
associated unique continuation problems (Wang et al. 2017).

There are a lot of applications of the unique continuation property. It providesways
tomake use of the partial information of the solution (local information), to determine
the other information of the solution (global information). These include recover-
ing an unknown boundary from partial measurement (Aparicio and Pidcock 1996;
Bukhgeim etal. 1998; Isakov 1993), identification of unknown time-varying bound-
aries (Vessella 2007), and obtaining global field from local interior measurement.
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Relatively less investigated is the numerical realization of the unique continuation
problem. In (Shuai et al. 2012) the numerical algorithms for line unique continuation
of Helmholtz equation is provided based on the constructive proof of line unique
continuation. The domain unique continuation is numerically considered in (Burman
et al. 2018) based on optimal control using stabilized finite element method. The ill-
posedness and the numerical errors would significantly affect the performance and
accuracy of the numerical computation and give rise to difficulties in it. The stability
does not hold even for external extension problem of analytic functions. Therefore,
the conditional stability is crucial, with which we can construct stable solutions and
reliable algorithms by, say, Tikhonov regularization (Cheng and Yamamoto 2000).

In this paper, we focus on the numerical unique continuation of elliptic equations
on a sphere. The Helmholtz equation is mainly considered, which can be applied to
inverse scattering problems. We will obtain the conditional stability and provide the
numerical algorithm that generates convergent solutions, together with the numerical
examples to illustrate the method. One direct application of practical significance is
that the scatteringfield on thewhole sphere canbe recoveredbypartialmeasurements,
which can be further utilized to determine the scatterer.

2 Main Results

Recall that in an inverse scattering problem, we determine the object or medium from
the measurement outside, say, the far field pattern on a sphere. In a more practical
situation, the measured data may be given only in an open set of the sphere. Then, it
would be helpful if the field on the whole sphere could be recovered (see Fig. 1).

Fig. 1 Sketch of unique
continuation with data on
part of the outside sphere
(the dark patch) in an
obstacle scattering problem
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Suppose that SR = {
x ∈ R

3
∣∣ |x | = R} is the sphere and� is an open set on SR .We

denote � a bounded domain with smooth boundary and assume that SR ⊂ � ⊂ R
3.

Then, the extension problem is to obtain u on SR with

�u + k2u = 0, in �, (1)

u = f, on �. (2)

The main result on the conditional stability is stated in the following.

Theorem 1 [Conditional stability] Suppose that g = u |∂�, which satisfies

‖g‖L2(∂�) ≤ M, (3)

then there exist constants C(M,�, �) and α ∈ (0, 1), which are independent of u,
such that

‖u|SR‖C(SR) ≤ C(M,�, �)‖ f ‖α
C(�). (4)

As consequences of the above estimate, we have the following corollaries on unique
continuation.

Corollary 1 [Unique continuation in a simply connected domain] Suppose that� is
a simply connected domain and BR ⊂ � where BR = {

x ∈ R
3
∣∣ |x | ≤ R}. If f = 0,

then u = 0 in �.

Corollary 2 [Unique continuation on a sphere] Suppose that � is not a simply
connected domain such that BR

⋂
� �= BR. If f = 0, then we have u = 0 on SR,

but we may have u �= 0 in �.

Note that in the present case, the values of solution are only given on an open set
of the sphere, i.e., a two dimensional surface rather than an open set in R

3. Unlike
the Cauchy problems for elliptic equations, no Neumann derivatives are given.

Proof of Theorem 1. Without loss of the generality, we assume that k2 is not the
eigenvalue of Laplace operator in �. The solution u(x) can be represented by the
single layer potential as

u(x) =
∫

∂�

�(x, y)μ(y)dS(y), x ∈ � where �(x, y) = eik|x−y|

|x − y| ,

where μ(y) is called the single layer potential density function.
By using spherical coordinates

(x, y, z) = (r sin θ cosφ, r sin θ sin φ, r cos θ)
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and

(r, θ, φ) = (
√
x2 + y2 + z2, arctan

√
x2 + y2

z
, arctan

y

x
),

we have the representation of u on SR ,

u(R, θ, φ) =
∫

∂�

�(x(R, θ, φ), y)μ(y)dS(y).

Without loss of generality, we assume � = {(x, y, z)(θ, φ)|0 < a1 < θ < a2 <

π, 0 < b1 < φ < b2 < 2π}. The problem thus becomes: from u(R, θ, φ), (θ, φ) ∈
(a1, a2) × (b1, b2) to find u(R, θ, φ), (θ, φ) ∈ (0, π) × (0, 2π).

Let z1 = θ1 + iθ2, z2 = φ1 + iφ2 ∈ C. One can construct an analytic function of
two complex variables as

W (z1, z2) =
∫

∂�

�((R, z1, z2), y)μ(y)dS(y). (5)

It is easy to verify that there exists a constant δ, which depends on dist (SR, ∂�),
such that W (z1, z2) is analytic in U1 ×U2 in C2, where

U1 = {z1| − δ < �z1 < 2π + δ;−δ < �z1 < δ}, (6)

U2 = {z2| − δ < �z2 < π + δ;−δ < �z2 < δ}. (7)

�ζ and �ζ denote the real and imaginary parts of ζ ∈ C, respectively. From the
integral representation formula (5), it can be verified that

W (θ, φ) = u(R, θ, φ), for θ, φ ∈ R.

Denote the segments

l1 = {z1|a1 ≤ �z1 ≤ b1; �z1 = 0} ⊂ U1,

l2 = {z2|a2 ≤ �z2 ≤ b2; �z2 = 0} ⊂ U2,

and consider the domain V1 × V2 in C2 where V1 = U1\l1, V2 = U2\l2, the charac-
teristic boundary of V1 × V2 is

(∂U1 ∪ l1) × (∂U2 ∪ l2).

By maximum principle, the maximum for the absolute value of an analytic function
can only be reached on the characteristic boundary unless it is a constant.

Definition 1 μ j (ζ ), ( j = 1, 2) is called the harmonic measure for Uj and l j if it
satisfies
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�μ j (ζ ) = 0, ζ ∈ Uj\l j (8)

μ j (ζ ) = 0, ζ ∈ ∂Uj (9)

μ j (ζ ) = 1, ζ ∈ l j (10)

One has the following properties of the harmonic measure, for details of which we
refer to, e.g., (Friedman and Vogelius 1989; Kellogg 1953).

Lemma 1 There exists a unique solution μ j to (8)-(10), and 0 < μ j < 1, for z j ∈
Vj . For every point z∗ in Vj , there exists a real harmonic function ν j , which is defined
in the neighborhood of z∗, such that μ j + iν j is holomorphic in this neighborhood
domain.

According to (5), it can be proved by standard technique in PDE that

|W (z1, z2)| ≤ C(∂�, SR)M ≡ M1, (z1, z2) ∈ U1 ×U2. (11)

On l1 × l2,

|W (z1, z2)| = |u(R, θ, φ)| = | f |, for z1 = θ; z2 = φ.

Denote
ε = max

z1∈l1;z2∈l2
|W (z1, z2)| = ‖ f ‖C(�). (12)

Consider the function

U (z1, z2) = W (z1, z2) exp{(1 − μ1(z1)μ2(z2)) ln ε + μ1(z1)μ2(z2) lnM1}.

We now prove that

|U (z1, z2)| � |U (z1, z2)|C(∂V1×∂V2) = M1ε. (13)

In fact, the equality in (13) is readily seen by noticing that max(z1,z2)∈∂U1×∂U2 |U | =
M1, max(z1,z2)∈l1×l2 |U | = ε and the maximum principle of a holomorphic function.
The inequality can be proved by assuming that there exists ζ ′ = (ζ1, ζ2) ∈ U1 ×
U2\l1 × l2 such that

|U (ζ ′)| = max
ζ∈U 1×U 2

|U | > max
ζ∈∂V1×∂V2

|U | = M1ε. (14)

Fix ζ1 and denote μ′
1 = μ1(ζ1). Let ω ⊂ V2 be a simply connected domain which

contains ζ2. For the harmonicμ2(z2) inω, there exists a holomorphic function�(z2)
in ω such that �(z2) := μ2(z2) + iν2(z2) due to Lemma 1. Let

V (z2) = W (ζ1, z2) exp{(1 − μ′
1�(z2)) ln ε + μ′

1�(z2) lnM1}.
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It is readily seen that V (z2) is a holomorphic function in ω which reaches maximum
at the interior point ζ2. Therefore, the maximum principle for a holomorphic function
implies

|V (z2)| = constant, z2 ∈ ω.

Subsequently,
|U (ζ1, z2)| = constant, z2 ∈ ω.

By repeating the above steps for ζ ′
2 ∈ ω that differs from ζ2 and considering that

�(z2) ∈ C(Ū2), we can extend the constant value area until we have

|U (ζ1, z2)| = |U (ζ1, ζ2)| = constant, z2 ∈ U2.

Similarly, we have

|U (z1, z2)| = |U (ζ1, z2)| = |U (ζ1, ζ2)|, (z1, z2) ∈ U1 ×U2,

which contradicts (14) and (13) is true.
Therefore, we arrive at the stability result

|W (z1, z2)| ≤ M1−μ1(z1)μ2(z2)
1 εμ1(z1)μ2(z2).

Since on the real axis the harmonic measureμ1(x) ≥ μ1(2π) > 0,∀x ∈ [b1, 2π ]
and μ1(x) ≥ μ1(0) > 0,∀x ∈ [0, a1], there exists a constant α1 ∈ (0, 1) depending
on U1 and l1 such that μ1(x) > α1,∀x ∈ l1. Similarly, there exists a constant α2 ∈
(0, 1) such that μ2(x) > α2,∀x ∈ l2. Denote α = α1α2, we finally have

‖u|SR‖C(SR) ≤ C(M,�, �)‖ f ‖α
C(�). (15)

Corollary 3 Suppose that g = u |∂�, which satisfies

‖g‖L2(∂�) ≤ M, (16)

then there exist constants C(M,�, �) and α ∈ (0, 1), which are independent of u,
such that

‖u|SR‖L2(SR) ≤ C(M,�, �)‖ f ‖α
L2(�). (17)

Proof According to Sobolev embedding theorem and interpolation theorem (Adams
Robert et al. 2003; Hebey Emmanuel 2000), we have

‖ f ‖C(�) ≤ C1‖ f ‖H 2(�) ≤ C2‖ f ‖1/2L2(�)
‖ f ‖1/2H 4(�)

. (18)

Since BR ⊂ � (∂BR = SR), it can be seen from single layer potential representation
that ‖ f ‖1/2H 4(�)

≤ C3(M, ∂�, �). Therefore,
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‖ f ‖C(�) ≤ C4(M,�, �)‖ f ‖1/2L2(�)
. (19)

Considering that ‖u|SR‖L2(SR) ≤ C3(SR)‖u|SR‖C(SR) and combining (4), we
arrive at (17).

3 Numerical Method and Examples

The unique continuation can be numerically realized by recovering the single-layer
potential density function, that is, to solve the integral equation with analytical inte-
gral kernel.We consider theminimumnorm solution in finite dimensional test spaces.
Denote the test space on ∂� as Vn = span{v j }nj=1. Here we can choose v j the stan-
dard basis for spherical polynomials based on the Legendre polynomials and associ-

ated Legendre functions. It holds that Vn ⊂ Vn+1 ⊂ H 1(∂�) and
∞⋃

n=1

Vn is dense in

L2(∂�).

Algorithm

We choose {x1, x2, ..., xm} ∈ � and construct the matrix A as

A = [Ai j ], Ai j =
∫

∂�

�(xi , y)v j (y)dS(y), (i = 1, 2, ...,m; j = 1, 2, ..., n).

Find theminimumnormsolution ξ̃ to the equation Aξ = b,whereb = ( f (x1), f (x2),
..., f (xm))T . The approximation solution can then be constructed as

ũ(x) = �(x) · ξ̃ ,

where

�(x) =
(∫

∂�

�(x, y)v1(y)dS(y), ...,
∫

∂�

�(x, y)vn(y)dS(y)

)
.

In practical implementation, a singular value tolerance may need to be introduced
in computation of Moore–Penrose pseudoinverse to ensure the boundness of the
solution. Then, singular values of A that are smaller than the tolerance will be treated
as zero.

We interpret the above discrete form in terms of interpolation spaces to facilitate
the error estimate. Denote Kμ = ∫

∂�
�(x, y)μ(y)dS(y) with K being the integral

operator. The above discrete form Aξ = b can be viewed in the interpolation space
as K̂μn = f̂ , where μn(y) = ∑n

j=1 ξ̃ jv j (y),
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K̂μn =
m∑

i=1

ϕi (x)
∫

∂�

⎛

⎝�(xi , y)
n∑

j=1

ξ̃ jv j (y)

⎞

⎠ dS(y), f̂ =
m∑

i=1

ϕi (x) f (xi ).

ϕi (x) are taken as the basis of piecewise constant function space. The class of piece-
wise constant functions on � is dense in L2(�). The approximation solution can
be written in operator form as �(x) · ξ̃ = Kμn . Let μ0 be the exact solution to
Kμ0 = f , which also indicates K̂μ0 = f̂ .

Based on Corollary 3 and the denseness of test spaces forμ, we have the following
error estimate for the solution ũ = Kμn .

Theorem 2 [Convergence] Suppose that ‖μ0‖L2(∂�) ≤ M, there exist constants C,
α∈ (0, 1) and ε(n) such that,

‖ũ(x) − u(x)‖L2(SR) ≤ C(�, SR, M)(ε(n))α, (20)

where limn→∞ ε(n) = 0.

Proof For the residual we have

‖Kμn − f ‖L2(�) ≤ ‖Kμn − K̂μn‖L2(�) + ‖K̂μn − f̂ ‖L2(�) + ‖ f̂ − f ‖L2(�)

where ‖Kμn − K̂μn‖L2(�) and ‖ f̂ − f ‖L2(�) converge as m increases due to the
denseness of the interpolation space on �. The remaining term can be estimated as

‖K̂μn − f̂ ‖L2(�) = inf
μ∈Vn

‖K̂μ − f̂ ‖L2(�) ≤ ‖K̂ Pnμ0 − f̂ ‖L2(�)

≤ ‖K̂ Pnμ0 − K̂μ0‖L2(�) + ‖K̂μ0 − f̂ ‖L2(�).

Due to the denseness of the test space for Vn (the standard spherical polynomial space
here) in L2(∂�), we have ‖Pnμ0 − μ0‖∂� ≤ C1(M,�)ε(n), where limn→∞ ε(n) =
0. Therefore,

‖K̂ Pnμ0 − K̂μ0‖L2(�) ≤ ‖K̂‖‖Pnμ0 − μ0‖L2(∂�) ≤ C2(SR,�, M)ε(n),

and ‖ũ − f ‖L2(�) ≤ C3(SR,�, M)ε(n).
Moreover, since μn is the minimum norm solution and a singular value tolerance

constant is introduced,μn is bounded and depends on K which further depends on SR
and �. Then, ‖ũ‖L2(∂�) = ‖(Kμn)|∂�‖L2(∂�) ≤ C4(SR,�, M) and the conditional
stability of unique continuation can therefore be applied. According to (4) and the
residual on �, we arrive at the convergence (20) on SR .
Example 1 We now give numerical results to demonstrate the applicability of the
proposed method. The first example considers the Helmholtz equation with exact
solution u = cos(πx) cos(πy) cos(π z) (k = √

3π) and the radius of the sphere R =
0.9. The data on the uniformly spaced 25 × 25 (m = 252) grid on the patch (θ, φ) ∈
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(a) Exact solution (b) Reconstructed solution (c) Absolute error

Fig. 2 Unique continuation of Helmholtz equation with exact solution

(a) Exact solution (b) Reconstructed solution (c) Absolute error

Fig. 3 Unique continuation of Helmholtz equation with exact solution (back view)

[0.1π, 0.45π ] × [0, 0.45π ] was assumed to be known. On the auxiliary boundary
for μ we use the sphere harmonic basis with order n̂ = 20 (n = (n̂ + 1)2).

The result is displayed in Fig. 2. Figure2b gives the reconstructed solution where
the data is given on the black patch. The result on the other semisphere is shown in
Fig. 3. From the absolute error shown in Fig. 2c, we can see that the reconstructed
result coincides with the exact solution well at least in the front hemisphere which
contains the measurement patch, with the absolute error being less than 0.1. The
error on the other semisphere is large. This is because the stability is of Hölder-type,
and from the proof of Theorem 1, we can see that the exponent α depends on the
harmonic measure which becomes lower when getting further from the data area.

Example 2 The second example is the unique continuation of the far field of sound-
soft peanut scattering of one incident planewave in homogeneousmedium,withwave
number k = √

3π and direction ξ = (−1/
√
2, 0,−1/

√
2). The Sommerfeld radia-

tion condition is imposed. The scattered field us(x) corresponding to the incoming
wave ui (x) = eikx ·ξ satisfies

u(x) = eikx ·ξ + us(x).

The far field pattern u∞ is defined as the first coefficient in the asymptotic expansion
of us :

us(x) = eik|x |

|x | u∞
(

x

|x |
)

+ O

(
1

|x |2
)

.
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(a) Exact far field (b) Reconstructed far field (c) Absolute error

Fig. 4 Unique continuation of far field of a sound-soft scattering problem

(a) Exact far field (b) Reconstructed far field (c) Absolute error

Fig. 5 Unique continuation of far field of a sound-soft scattering problem (back view)

The sound-soft obstacle is axial symmetry and is described through its radial distance
in terms of the polar angle θ by

r(θ) = 0.5
(
cos2 θ + 0.3 sin2 θ

)1/2
.

The direct scattering field and the corresponding far field are obtained by the
Galerkin’s method, for details of which we refer to (Atkinson 1982; Lin 1985; Colton
David L and Kress Rainer 1998).

The data on the uniformly spaced 18 × 18 (m = 182) grid on the patch (θ, φ) ∈
[0.2π, 0.6π ] × [1.0π, 1.5π ] was assumed to be known. On the auxiliary boundary
for μ, we use the sphere harmonic basis with order n̂ = 10, i.e., n = (n̂ + 1)2.

Figure4b is the reconstructed solution where the data on the black patch is known.
Since the solution is complex valued, we give the distribution of its norm |us | on the
sphere. The result on the opposite hemisphere is given in Fig. 5. From the absolute
error distribution shown in Figs. 4c and 5c, we can see that the reconstructed result
coincides with the true value well in the front hemisphere, the error on the back hemi-
sphere is relatively large which can also be explained by the stability of the problem.

Remark 1.Note that though the scatteringfield is numerically obtained, it is calculated
through single or double layer potentials and therefore satisfies Helmholtz equation.
Accordingly, the unique continuation property with the numerical method are still
valid.

Remark 2. Here we carry out the reconstruction of far field pattern and have not
considered the inverse scattering problem.
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The above examples illustrate the applicability of the numerical method. We note
that the reconstruction error relies on the choices of the measurement area and the
discretization on the auxiliary surface. The details of the performance regarding this
method will be discussed in our forthcoming paper.

4 Conclusion

Unique continuation provides ways to infer information from local to global. The
conditional stability of unique continuation on a sphere obtained in this paper makes
it possible to design reliable numerical algorithms and estimate errors. The present
method can also be extended to unique continuation problems of other elliptic equa-
tions. The main results together with the corresponding numerical method show
potentials in applications in inverse problems and optimal design problems. One
such topic of interest is the inverse scattering problem with partial far field measure-
ment.
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Huberization Image Restoration
Model from Incomplete Multiplicative
Noisy Data

Xiaoman Liu and Jijun Liu

1 Introduction

Image processing can be roughly divided into three different kinds, namely image
deblurring, image enhancement, and image restoration, with the main purpose of
obtaining the clearer image from its noisy measurement. For a bounded connected
domain Ω ⊂ IR2 (a rectangle in general Aubert and Vese 1997), let f (x) be the
gray function of an image defined in Ω . In general, we are given gδ(x), the noisy
blurred picture of f (x), due to the blurring process and the unavoidable errors in
measurements. Such a blurring process can be modeled by

gδ(x) =
∫

IR2

k(x, y) f ( y)d y + ξ := K[ f ](x) + ξ, x ∈ Ω, (1)

where we define f ( y) ≡ 0 in IR2 \ Ω for this blurring procedure with known point
spread function (PSF) k(x, y), while ξ ∈ Ω is the additive noise describing the effect
of random processes that occur in nature, such as white Gaussian noise (Zhu and Liu
2015; Hintermüller and Rincon-Camacho 2010; Guo et al. 2009; Clason et al. 2010).

The optimization scheme is one of the classical ways to the reconstruction of
f (x) based on the model (1) with additive noise, which minimizes the Tikhonov
cost functional

J0( f ) = 1

2
‖K[ f ] − gδ‖2L2(Ω) + αL[ f ] (2)

with some penalty term L[ f ] and the regularization parameter α > 0, where the
operator L represents the priori regularity image f . In this work, we fix Gaussian
blurring function k(x, y) with corresponding blurring operator K being the Dirac
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impulse function δ(x − y), and it follows thatK is an identity operator I, i.e., consid-
ering the image restoration only from relative random noise contaminations without
any blurring process.

By now, there already exist extensive work for image restoration using noisy mea-
surement with absolute error. However, if the noisy level depends on the amplitude
of the signal, which is represented by the relative error, the restoration becomes more
complicated since the high frequencies of the images will be contaminated seriously.
Let noise ξ be the random noise by multiplying σ times on the image, i.e.,

gσ (x) = f (x) + σ · f (x), x ∈ Ω, (3)

which is called relative random noise or multiplicative noise. σ is relative noise level.
Generally, the given noisy measurement data of the image gσ may be incomplete,

leading to non-unique reconstruction of the desired image in principle. In this case,
we can only find some approximate reconstruction in terms of the insufficient noisy
data. Additionally, in many engineering configurations, instead of the spatial noisy
data gσ

m,n for each pixelΩm,n , the practical measurement data may be the incomplete
frequency data, which are specified at finite number of discrete frequencies within
some band-limited interval. For example, in magnetic resonance imaging (MRI), the
data collected by an MR scanner are, roughly speaking, in the frequency domain
(called K -space data) rather than in the spatial domain. For this stage, the model (2)
should be replaced by

Jα( f ) = 1

2
‖PF ◦ f − P ◦ ĝσ‖2L2(S) + αL[ f ], (4)

where F is the two-dimensional Fourier transform converting into frequency data
f̂ (ω) := F ◦ f (x) ∈ Ω ′ ⊂ C2,P ◦ ĝσ = P ◦ ( f̂ + f̂ · σ) ∈ S is the partial Fourier
data with multiplicative noise, and P is the linear sampling operator, projecting the
full frequency data into a lower-dimensional space S ⊂ Ω ′. Although it has been
proven that for some special images, the image can be reconstructed exactly at almost
probability 1 as the solution to some l1 minimization problem using incomplete
frequency data (Candès et al. 2006), the reconstruction for general images using
band-limited frequency data is still very hard, forwhichwe should keep some balance
between the insufficiency of measurement data, denoising, and edge-preserving.

For different forms of penalty termL[ f ] such as ‖ f ‖l1 , ‖ f ‖l1−2 , ‖ f ‖lq (q ∈ (0, 1))
and ‖∇ f ‖l2 (Hintermüller and Rincon-Camacho 2010; Guo et al. 2009; Clason et al.
2010; Tibshirani 1996; Yin et al. 2008), there have been thoroughly researches on
image restoration based onminimizing (2), which denoise the additive absolute noise
verywell. In compressive sensing (CS) theory, the l1 penalty term represents the spar-
sity of image. There are lots of researches about the evolution of l1-norm inCS theory,
like truncated norm denoted as lt,1 and l1−2 (Ma et al. 2017). In (Fan et al. 2016),
the authors proposed a CS recovery model by considering a non-convex smoothed
function to approximate the rank, denoted as a low-rank regularization. On the other
hand, the function f is often of some sharp jumps representing the edges of an image.
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So it is natural to cooperate this a-priori requirement into the reconstructionmodel by
also introducing the total variation (TV) penalty term | f |T V := ‖∇ f ‖l1 (Rudin et al.
1992). In the recent works, the norm-based regularization of the gradient of the image
hasmany evolutions.Hintermüller andWuexpanded the scopeof solvers for lq -norm-
based gradient of the image called TVq -regularization (Hintermüller and Wu 2013).
They proposed method considered a Huberization of the non-Lipschitz lq -norm and
combined a reweighting technique for handling the non-convexity with primal-dual
semi-smooth Newton methods for image restoration (Chan et al. 1999; Hintermüller
and Stadler 2003; Kunisch 2004; Hintermüller and Stadler 2006). Bredies introduced
a novel concept of total generalized variation (TGV) of a function u and developed
the mathematical theory in Bredies et al. (2010). It is equivalent to TV in terms of
edge preservation and noise removal, while it can also be applied in imaging situ-
ations where the assumption that the image is piecewise constant is not valid. His
group also proposed TGV can be applied for image denoising and deblurring onMRI
image reconstruction (Knoll et al. 2011).

To this end, we define the general solution of (4) as a minimizer of the cost
functional with two penalty terms: one is the standard TV penalty term ensuring the
edge-preserving of the image, and the other is thewavelet transform penalty (Zhu and
Shi 2013) guaranteeing the sparsity of the image based on the compressed sensing
(CS) technique (Candès et al. 2006; Donoho 2006). More precisely, only considering
the denoising process, i.e.,K ≡ I (identity operator), we construct several functionals

J ( f ) := 1

2
‖PF ◦ f − P ◦ ĝσ‖2L2(S) + α1‖Ψ ◦ f ‖l1 + α2| f |T V , (5)

where Ψ is wavelet operator. For a signal f expanded by f = 〈 f, ψm,n〉IRN×N

(Daubechies et al. 2004), we call f sparse under the orthogonal base {ψm,n : m, n =
1, · · · , N }.

It is well known that both ‖ · ‖l1 and | · |T V are not differentiable at zero point. To
overcome this difficulty in numerical implementations, lots of the research add some
small perturbation β > 0 which is introduced to make the absolute value function
differentiable. Consider the l1-norm of the gradient of the image with Charbonnier
smooth approximation (Aubert and Kornprobst 2006), i.e., TV penalty term defined
by | f |T V,β = ‖∇ f ‖l1,β = ∑N

m,n=1 φβ(|∇ f |) where

φβ(s) =
√
s2 + β, (6)

The method by adding the positive threshold β is called the Charbonnier smooth
approximationwith Charbonnier function (6). Even though the Charbonnier function
has performed almost the same as the Huber function and better than the Green
function approximation (Huber 1964), it has the worst theoretical approximation
(Kalmoun 2018). Huber function is non-quadratic but convex which is defined as
following

φε(s) =
{

s2

2ε , |s| ≤ ε,

|s| − ε
2 , |s| > ε,

(7)
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where ε > 0 is a small parameter. It is used as a smooth approximation of l1-norm in
Madsen and Nielsen (1993), denoted as ‖ f ‖l1,ε = ∑N

m,n=1 φε( f ). The most useful
advantage by using Huber approximation is that it could smooth small-scale noise
by the quadratic function part for arguments below a threshold ε, while preserving
discontinuities at edge regions by the linear function part above the threshold. In this
paper, we consider the unconstraint cost functional

Jα,ε( f ) := 1

2
‖PF ◦ f − P ◦ ĝσ‖2L2(S) + α1‖Ψ ◦ f ‖l1,ε + α2| f |T V,ε (8)

with α := (α1, α2) > 0 as the penalty parameters, small perturbation ε > 0 to make
two penalty terms differentiable.

The paper is organized as follows. In Sect. 2, an efficient algorithm for the dou-
ble regularizing optimizing model with Huberization l1 penalty and TV penalty is
proposed. In Sect. 3, some real magnetic resonance imaging (MRI) images are used
to test in the numerical experiments, and it is to demonstrate effectiveness of our
method in image restoration with high-level relative random noise from incomplete
frequency data. Finally, the conclusion is given in Sect. 4.

2 The Algorithm for the Double Regularizing Image
Restoration Model

Suppose f ∈ IRN 2×1 is a vector formed by stacking the columns of an N × N two-
dimensional image array fm,n(m, n = 1, · · · , N ). In compressive sensing (CS),Ψ ◦
f is a vector meaning the sparse representation for image f (xm,n) := fm,n ∈ IRN×N

with respect to orthogonal wavelet basis ψ , i.e., (Ψ ◦ f )l := 〈 fm,n, ψm,n〉 where
l := l(m, n) = (n − 1)N + m, l = 1, · · · , N 2. To recover a sparse image signal, the
basesψm,n can be constructed in terms of one-dimensional discretewavelet transform
(DWT), which constructs four two-dimensional function families and each function
family is generated from the one-dimensional scaling function and mother wavelet
function (Mallat 2009). In this work, we choose Danbechies wavelet bases as the
wavelet operator. Let K = ‖Ψ ◦ f ‖l0 be the number of nonzero elements inΨ ◦ f , R
denotes K × N 2 (K � N 2) measurement matrix such that R f = ĝσ , where ĝσ is an
observed frequency data vector. Unfortunately, the l0 decoder is generally NP-hard,
so a common substitute for solving the minimizing ‖ · ‖0 problem is the well-known
basis pursuit problem (Chen et al. 2001), i.e., we use the l1 norm instead of l0. Then
to recover f from observed frequency data, ĝσ is equivalent to solve the following
constrained optimization problem

min
f

‖Ψ ◦ f ‖l1 , s.t. R f = ĝσ . (9)
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In compressed sensing (CS) theory, R is a partial Fourier matrix, i.e., R = PFt ,
P ∈ IRK×N 2

is consisted of K � N 2 rows of the identity matrix, Ft := F ⊗ F is a
two-dimensional discrete Fourier matrix with components

(F)m,n = e−i 2πN n(m+ N
2 ), m, n = 0, · · · , N − 1. (10)

With the recent research (Liu and Liu 2019), the unconstrained version of problem
(9) with adding TV regularizing term is

min
f

{
1

2
‖PFt f − Pĝσ‖2l2 + α1‖Ψ ◦ f ‖l1 + α2| f |T V

}
, (11)

where P is the samplingmatrix consisting of only K < N rows of the identity matrix
I , α1, α2 > 0 are positive parameters that determine the trade-off among the fidelity
term, i.e., the wavelet sparsity term and TV penalty term, and ‖ · ‖l2 denotes the
Euclidean norm.

Since the second and the third terms in (11) are not Frechet differentiable at
point f = 0, by the standard arguments (Liu and Zhu 2014; Zhu and Shi 2013), the
approximation with Charbonnier function is used to differentiate. However, the used
regularization with Charbonnier approximation isC∞. In this paper, we approximate
them by Huber function (Huber 1964) which is Lipschitz-C1 only. Huber function
has confirmed its best theoretical approximation with an overall better performance
in terms of both the quality of the estimated (Kalmoun 2018) and the speed of conver-
gence. It is a piecewise function defined in (7) with introducing some small threshold
ε > 0, and it is easy to find that it is non-quadratic but convex.Huber function consists
of a quadratic function for arguments below a threshold ε (for smoothing small-scale
noise) and of a linear function above the threshold ε (for preserving discontinuities).
So the unconstrained functional with Huberization regularizing terms is as follows

Jα,ε( f ) = 1

2
‖PFt f − Pĝσ‖2l2 + α1‖Ψ ◦ f ‖l1,ε + α2| f |T V,ε, (12)

where

‖Ψ ◦ f ‖l1,ε =
N∑

m,n=1

φε

(
(Ψ ◦ f )l(m,n)

)
(13)

| f |T V,ε =
N∑

m,n=1

φε

(|∇m,n f |
)
, (14)

where l(m, n) = (n − 1)N + m, and operator∇m,n f = (∇x1
m,n f,∇x2

m,n f
)
, |∇m,n f | =√

(∇x1
m,n f )2 + (∇x2

m,n f ))2 with two components defined as
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∇x1
m,n f =

{
fm+1,n − fm,n, if m < N ,

f1,n − fm,n, if m = N ,
∇x2

m,n f =
{
fm,n+1 − fm,n, if n < N ,

fm,1 − fm,n, if n = N

form, n = 1, · · · , N due to the periodic boundary condition for f . Hence, our image
restoration problem is finally reformulated as the following unconstraint problem

{
f ∗ := argmin

f
Jα,ε( f ),

Jα,ε( f ) = 1
2‖PFt f − Pĝσ‖2l2 + α1‖Ψ ◦ f ‖l1,ε + α2| f |T V,ε .

(15)

The image restoration using incomplete frequency data based on TV-L2, l1-L2 or
TV-L1 models has been studied for a long time, mainly focused on the efficient itera-
tion algorithms for yielding the local minimizer of the cost functional (Hintermüller
and Rincon-Camacho 2010; Zhu et al. 2014). The conjugate gradient method (CGM)
(Lustig et al. 2007), gradient project method (Figueiredo et al. 2007), fixed-point
continuation method (Hale et al. 2011), split Bregman method (Goldstein and Osher
2009), fast alternating minimization method (Zhu and Chern 2011), the operator-
splitting algorithm (OS) (Ma et al. 2008), and fast iterative shrinkage-thresholding
algorithm (FISTA) (Beck andTeboulle 2009) are all the efficient approaches to image
restoration. Although there already exist several better algorithms recently for find-
ing the local minimizer of the cost functional such as half-quadratic approximation
(Yin et al. 2015) and alternating direction method (ADM) (Yang et al. 2010), the
direct iteration schemes for multiregularizating model are required further studied
to decrease the memory space and computational costs. In the following numeri-
cal implementation, we compared the proposed algorithm with ADM for TVl1-L2

model in order to demonstrate ours is practical feasible and promising. The ADM is
an algorithm based on the classic augmented Lagrangian method (ALM). The con-
vergence of the ADM for the step length was established in the context of variational
inequality (Yang et al. 2010).

According to the Bregman iteration method which is established on the theory of
Bregman distance (Brègman 1967), to solve the optimization problem for yielding
f (k+1) which is implemented by solving its Euler–Lagrange equation (Sun and Yuan
2006), i.e., the iteration framework of Bregman iteration is

{
ĝ(k+1) ← ĝσ + (

Pĝ(k) − PFt f (k)
)
,

f (k+1) ← argmin
f

{α1‖Ψ ◦ f ‖l1,ε + α2| f |T V,ε + 1
2‖PFt f − Pĝ(k+1)‖2l2}. (16)

In order to solve the Euler–Lagrange equation of (12), we need the derivatives of
data-matching term and each penalty term with respect to the vector f ∈ IRN 2×1.

The derivative of data-fitting term in (12) is easy, since the first term is a quadratic
function of f . Let us compute the Huberization penalty terms. Firstly, we give the
gradient of Huber function, i.e.,

φ′
ε(s) =

{ s
ε
, |s| ≤ ε,
s
|s| , |s| > ε.

(17)
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Based on (17), the derivative of sparsity penalty term is as follows

∂

∂ f j ′(m ′,n′)
‖Ψ ◦ f ‖l1,ε =

N∑
m,n=1

φ′
ε((Ψ ◦ f ) j (m,n)) · ∂

∂ f j ′(m ′,n′)
(Ψ ◦ f ) j (m,n)

=
N 2∑
j=1

a j (m,n)[ f ]
(

Ψ ◦ ∂

∂ fm ′,n′
f

)
j (m,n)

=
N 2∑
j=1

a j (m,n)[ f ]Ψ T (Ψ ◦ f ) j (m,n)

∂

∂ fm ′,n′
f

= a j ′(m ′,n′)[ f ] f j ′(m ′,n′), (18)

To this end, we notice that for any fixed l ∈ {1, 2, · · · , N 2}, we have
∂

∂ fl
‖Ψ ◦ f ‖l1,ε = al[ f ] fl . (19)

Now, consider the TV penalty term. By the representations in our recent work
(Liu and Liu 2019), the derivative is in fact for the variable vector f j is as follows

∂

∂ f j ′(m ′,n′)
| f |T V,ε =

N∑
m,n=1

φ′
ε(|∇m,n f |) · ∂

∂ f j ′(m ′,n′)
|∇m,n f |

=
N 2∑
j=1

b j (m,n)[ f ] · ∇m,n f

|∇m,n f | · ∂

∂ f j ′(m ′,n′)

(∇x1
m,n f

∇x2
m,n f

)

=
N 2∑
j=1

b j (m,n)[ f ]
|∇m,n f | · ∇m,n f ·

(
(Dr ) j (m,n), j ′(m ′,n′)
(Dc) j (m,n), j ′(m ′,n′)

)

=
N 2∑
j=1

(
(Dr ) j, j ′ , (Dc) j, j ′

) · (∇m,n f )
T · b j [ f ]

|∇m,n f |

=
N 2∑
j=1

((Dr ) j, j ′ , (Dc) j, j ′)
b j [ f ]

|∇m,n f |
N 2∑
k=1

(
(Dr ) j,k
(Dc) j,k

)
fk . (20)

where Dr := I ⊗ D, Dc := D ⊗ I with identity matrix I and circulant matrix D :=
circulant(−1, 0, 0, · · · , 0, 1) ∈ IRN×N . Fixed the index as l, the above derivative is
rewritten as follows
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∂

∂ fl
| f |T V,ε =

N 2∑
j,k=1

((Dr ) j,l , (Dc) j,l) · ((Dr ) j,k, (Dc) j,k)
T

· b j [ f ]
|∇(

mod[ j,N ],int
[

j−1
N

]
+1

) f | fk

=
(

(Dr )1,l

d1[ f ] ,
(Dr )2,l

d2[ f ] , · · · ,
(Dr )N 2,l

dN 2 [ f ]
)
Dr f

+
(

(Dc)1,l

d1[ f ] ,
(Dc)2,l

d2[ f ] , · · · ,
(Dc)N 2,l

dN 2 [ f ]
)
Dc f. (21)

Combining (19) and (21), the first-order condition for (12) is as follows

⎧⎨
⎩

∇ f
1
2‖PFt f − Pĝσ‖2l2 = F∗

t P
∗(PFt f − Pĝσ ),

∇ f ‖Ψ ◦ f ‖l1,ε := A[ f ] f,
∇ f | f |T V,ε := B[ f ] f,

(22)

where
{
A[ f ] := diag(a j (m,n)[ f ]),
B[ f ] := DT

r Λ[ f ]Dr + DT
c Λ[ f ]Dc := B1[ f ] + B2[ f ]

with

a j (m,n)[ f ] :=
{

(Ψ ◦ f ) j (m,n)

ε
, |(Ψ ◦ f ) j (m,n)| ≤ ε,

(Ψ ◦ f ) j (m,n)

|(Ψ ◦ f ) j (m,n)| , |(Ψ ◦ f ) j (m,n)| > ε,

b j (m,n)[ f ] :=
{ |∇m,n f |

ε
, |∇m,n f | ≤ ε,

1, |∇m,n f | > ε,

d j (m,n)[ f ] :=
∣∣∣∣∇(mod[ j,N ],int

[
j−1
N

]
+1)

f

∣∣∣∣
b j (m,n)[ f ] = |∇m,n f |

b j [ f ]

Λ[ f ] := diag
(

1
d1[ f ] ,

1
d2[ f ] , · · · , 1

dN2 [ f ]
)

for j = 1, · · · , N 2 which defined as j := j (m, n) = (n − 1)N + m for m, n =
1, · · · , N . Notice, the specified B1[ f ], B2[ f ] are N 2 × N 2 symmetric positive def-
inite matrices.

With (22) and input frequency data ĝσ := ĝ(k+1), we know that f (k+1) could be
solved by the nonlinear Euler–Lagrange equation of the model (12),

F∗
t P

∗(PFt f − Pĝ(k+1)) + α1A[ f ] f + α2B[ f ] f = 0, (23)

that is
F∗
t P

∗PFt f + α1A[ f ] f + α2B[ f ] f = F∗
t P

∗Pĝ(k+1). (24)
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To solve numerically (24) is not a easy task because of the presence of the nonlinear
term A[ f ] and diffusivity coefficient Λ[ f ] in B[ f ]. Using the fixed-point iteration
scheme proposed by Vogel and Oman (Vogel and Oman 1996) could change (24) to
a linear equation:

F∗
t P

∗PFt f
(k+1) + α1A[ f (k)] f (k+1) + α2B[ f (k)] f (k+1) = F∗

t P
∗Pĝ(k+1). (25)

Let C := α1A[ f (k)] + α2B[ f (k)] ∈ CN 2×N 2
, then (25) could be rewritten as

C f (k+1) + F∗
t P

∗PFt f
(k+1) = F∗

t P
∗Pĝ(k+1). (26)

Multiply both sides of (26) by the two-dimensional discrete Fourier matrix Ft and
obtain

FtC f (k+1) + P∗PFt f
(k+1) = P∗Pĝ(k+1). (27)

According to the fast algorithm in Liu and Zhu (2014), A[ f (k)] is diagonal and
B[ f (k)] is block circulate with circulate blocks (BCCB) (Vogel 2002). Denoted

C = circulant(C1,C2, · · · ,CN )

:= bccb

⎛
⎜⎜⎜⎝

c11 c21 · · · cN1
c12 c22 · · · cN2
...

...
. . .

...

c1N c2N · · · cNN

⎞
⎟⎟⎟⎠ = bccb(Ċ).

where C j = circulant(c j
1, c

j
2, · · · , c j

N ). Then using the property in Vogel (2002),
i.e.,

FtC f (k+1) = DFt f
(k+1),

where D ∈ CN 2×N 2
is a diagonal matrix with components D j, j = (FtĊ) j , j =

1, · · · , N 2. Therefore, (27) becomes

(D + P∗P)Ft f
(k+1) = P∗Pĝ(k+1). (28)

Since P∗P is a diagonal matrix because of the definition, Ft f (k+1) is easily obtained
by (28), so is f (k+1).

Due to the input frequency data that have the degeneration with relative random
noise, we consider to use the spatial filter as the preprocessing step before iteration.
Based on the fast algorithm in Liu and Zhu (2014) to solve minimizer of Jα,ε( f ), we
could obtain the minimizer of functional Jα,ε( f ) with preprocessing on data

g̃(ω) = F ◦ g̃(x) := F ◦ [Gτ ∗ g(x)], (29)
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where τ is the standard deviation of the spatial filter with the filtering window size T .
That means we use the discrete form g̃σ

m ′,n′ instead of ĝσ
m ′,n′ . Let f̃ ∗ be the minimizer

of functional Jα,ε( f ) with preprocessing. Then the fast algorithm process for the
minimizing problem (15) with preprocessing can be described in algorithm.With the
preprocessing step, it could avoid the aliasing frequency and make the reconstructed
image clearly.

In the next section, we describe numerical experiments that demonstrate that
the proposed algorithm is very efficient for MRI image restoration with high-level
relative random noise.

3 Numerical Experiments

In this section, the performance of algorithm in solving model (15) for TVl1-L2

MRI image restoration is evaluated. The proposed method is compared with the fast
iteration algorithm in Liu and Zhu (2014).

The signal-to-noise ratio (SNR) and relative error (ReErr) are used to measure
the quality of the reconstructed images. The definitions of SNR and ReErr are given
as follows:

SNR = 20 lg

(
‖ f ‖2l2

‖ f − f (k)‖2l2

)
, ReErr = ‖ f (k) − f ‖2l2

‖ f ‖2l2
, (30)

Algorithm A fast scheme for Huberization image restoration model

Input: frequency noisy data {ĝσ
m′,n′ : m′, n′ = 1, · · · , N }, sampling matrix P ∈ IRN2×N2

,
parameters K0, α, ε, τ and filtering window size T .
Preprocessing: g̃σ

m′,n′ = F ◦ [Gτ ∗ F−1 ◦ ĝσ
m′,n′ ].

Do the iteration from k = 0, 1, . . . with ĝ(0) = 0, f (0) = 0 ∈ IRN2×1.
While k < K0
{ Compute:

PF f (k),
ĝ(k+1) ← g̃σ + (Pĝ(k) − PFt f (k)),
P∗Pĝ(k+1), P∗P,D,
f (k+1) by (28). }

End while
f̃ ∗ := f (K0).

End

where f (k) and f are the reconstructed and original images, respectively. The CPU
time is used to evaluate the speed ofMRI restoration. All numerical implementations
are performed inMATLAB R2017b on a laptop with 1.6GHz Intel Core i5 processor
and 8 GB of memory.
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Fig. 1 a Original image; b sampling mask: 22 × 2 lines; c 22 × 4 lines; d 22 × 6 lines

Firstly, we yield the full noisy data gσ
m,n from the exact image fm,n by the scheme

gσ
m,n = fm,n + σ × rand(m, n) × fm,n,

where m, n = 1, · · · , N , and rand(m, n) are the random numbers in [−1, 1]. Then
the input frequency data are ĝσ

m ′,n′ = F ◦ gσ
m,n . It is easy to see that this is a relative

random noise in spatial domain.
The choice strategy of double regularizing parameters is proposed in the recent

paper (Liu and Liu 2019). In this work, it will not be introduced in detail. Let
α1 = 0.001, α2 = 0.001, and ε = 0.01 are in reconstruction tests. In the follow-
ing numerical tests, the radial sampling method with K sampling lines is used as
sampling matrix P . The sampling ratio is K/N 2. The stopping criterion is the max-
imum iteration number K0 = 100. The Gaussian filter is be chosen as the filter in
preprocessing.

Example 1 [Reconstruction for phantom image with different parameters]
We use a 256 × 256 smooth piecewise phantom image shown in Fig. 1a as the initial
image f . We test the fast algorithm with radial sampling method with 22 × 2, 22 ×
4, 22 × 6 lines shown in Fig. 1b–d, i.e., the sampling ratio is 18.76%, 34.97%,

49.68%, respectively. The other parameters are the same above, i.e., α1 = α2 =
0.001, ε = 0.01, K0 = 100. The noisy image Fig. 2a is being added relative noise
level σ = 0.5, i.e., added 50% relative random noise on the initial image. The first
line in Fig. 2 is the reconstruction test under 22 × 2 sampling lines, while the sec-
ond and third lines are under 22 × 4 and 22 × 6 sampling lines, respectively. So the
restoration image under different samplingwithout preprocessing is shown in Fig. 2b.
And Fig. 2c, d is the images using the proposed algorithmwith the standard deviation
of the Gaussian filter τ = 3 and filtering window size T = 3, 5, respectively.

Denote the parameters ofGaussianfilter as a pair array (τ, T ).Wedo the numerical
experiments under proposed algorithm with different preprocessing. The test results
are shown in Table1, with the best one in bold. From the these data, even though the
CPU time is bigger (that because of the preprocessing step), the SNR in proposed
algorithm is much bigger than the compared method in Liu and Zhu (2014), and
relative error is smaller than the one without preprocessing. It is clearly that the
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Fig. 2 Reconstructions from 50% noisy image under 22 × 2, 22 × 4, 22 × 6 sampling lines. From
left to right: a noisy image; b restoration image without preprocessing; c with preprocessing τ = 3
and filter window T = 3; d with preprocessing τ = 3 and filter window T = 5

restoration images in Fig. 2c, d have clearer edges and areas than Fig. 2b. In addition,
the more sampling lines are, the clearer the restoration image is.

Now, let noise level be σ = 0.7, 0.9, i.e., added 70%, 90% relative random noise
on the same brain image, respectively (shown in the second, third line in Fig. 3a).
The sampling method is the radial sampling with 22 × 6 sampling lines, and other
parameters are the same as above. The restoration images in compared and proposed
method are shown in the second and third lines in Fig. 3b–d. The partial results data
are shown in Table2, with the best one in bold.

From the results, it is clear that the compared method could not reconstruct the
multiplicative noisy data even though the sampling ratio is big enough, while the
proposed method could do better, especially to the edge-preservations and areas
recognition. On the other hand, the optimal filter parameters are not the same. Hence,
the choice of standard deviation and filter window size could be one of the future
works.

Example 2 [Comparison for MRI image restoration with relative random noise]
Nowdifferent size ofmagnetic resonance imaging (MRI) images are shown in thefirst
line of Fig. 4. There are 256 × 256MR brain image, 256 × 256 brain section bitmap,
512 × 512 articular born image, 220 × 220 internal organs image, and 220 × 220
blood vessels image. In real application, the patients could not stay in the nuclear
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Table 1 Test data of 50% relative noisy image with 22 × 2, 22 × 4, 22 × 6 sampling in compared
method and proposed method with filter parameters (τ, T ), with the best one in bold

Paras/22 × 2 SNR(dB) ReErr CPU time(s)

without 8.8409 0.3614 3.8322

(3, 3) 11.0048 0.2817 3.2184

(3, 5) 9.6254 0.3302 3.2426

(5, 3) 10.8662 0.2862 3.2536

(5, 5) 9.5368 0.3335 3.1957

Paras/22 × 4 SNR(dB) ReErr CPU time(s)

without 6.9877 0.4473 4.0658

(3, 3) 11.0416 0.2805 3.2675

(3, 5) 9.5856 0.3317 3.2370

(5, 3) 10.9192 0.2845 3.2513

(5, 5) 9.3566 0.3405 3.2380

Paras/22 × 6 SNR(dB) ReErr CPU time(s)

without 6.2300 0.4881 4.8800

(3, 3) 10.6467 0.2935 3.6304

(3, 5) 9.6451 0.3294 3.7328

(5, 3) 10.6293 0.2941 4.2108

(5, 5) 9.3391 0.3412 4.3454

Fig. 3 Reconstructions from 50%, 70%, 90% noisy image under 22 × 6 sampling lines. From left
to right: a noisy image; b restoration image without preprocessing; c with preprocessing τ = 3 and
filter window T = 3; d with preprocessing τ = 3 and filter window T = 5
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Table 2 Test data of 50%, 70%, 90% relative noisy image with 22 × 6 sampling in compared
method and proposed method with filter parameters (τ, T ), with the best one in bold

Paras/50% noise SNR(dB) ReErr CPU time(s)

without 6.2300 0.4881 4.8800

(3, 3) 10.6467 0.2935 3.6304

(3, 5) 9.6451 0.3294 3.7328

(5, 3) 10.6293 0.2941 4.2108

(5, 5) 9.3391 0.3412 4.3454

Paras/70% noise SNR(dB) ReErr CPU time(s)

without 4.2459 0.6133 4.2390

(3, 3) 9.6967 0.3275 4.1380

(3, 5) 9.2002 0.3467 4.1169

(5, 3) 9.7378 0.3259 4.3043

(5, 5) 9.0231 0.3539 4.1071

Paras/90% noise SNR(dB) ReErr CPU time(s)

without 1.9137 0.8023 4.0034

(3, 3) 8.4034 0.3800 4.1857

(3, 5) 8.7580 0.3648 4.1252

(5, 3) 8.3189 0.3838 3.9400

(5, 5) 8.5200 0.3749 4.0363

medicine instrumentation for a long time. So the sampling data are partial noisy data
which collected in a little time.

We added 90% relative random noise on it to simulate the MRI and the other
parameters are the same, i.e., the parameters α1 = α2 = 0.001, ε = 0.01, and using
radial sampling method with 22 × 6 lines. The second line in Fig. 4 is the noisy
MRI images. By using the proposed algorithm with preprocessing step, the recon-
structed images are obtained shown in the third line of Fig. 4. From the figures, it is
easy to know that even though the details of each image in the third line of Fig. 4
are not reconstructed clearer, the patterns are much efficient to be recognized from
multiplicative noisy images.

On the other hands, we compared the proposed algorithm with the fast algorithm
called reconstruction frompartial Fourier data (RecPF) based on alternating direction
method (ADM),which is themain efficient scheme for image restoration today (Yang
et al. 2010). We added 90% relative random noise on the MRI brain images Fig. 5a,
respectively, i.e., the noisy images are shown in Fig. 5b. The parameters are the same
as the one chosen in Yang et al. (2010), and the algorithm for RecPF is downloaded
in their Web site. In order to compare the proposed algorithm, we only modified
the RecPF algorithm with adding the preprocessing step, i.e., the same parameters
as above (τ = 3 and filter window T = 5). Figure5c, d are the reconstructions by
RecPF and ours.

The SNR for MRI brain images by RecPF is 11.1761 dB and 11.7596 dB, while
the SNR by our proposed scheme is 12.5751 dB and 12.4399 dB, respectively. Even
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Fig. 4 Reconstructions from 90% noisy images under 22 × 6 sampling lines. From up to bottom:
initialMRI images, noisy images, reconstructed imageswith preprocessing τ = 3, and filterwindow
T = 5

Fig. 5 Reconstructions from 90% noisy image under 22 × 6 sampling lines. From left to right: a
initial MRI brain images; b 90% noisy images; c restored image by RecPF; d restored image by
the proposed scheme
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though the sampling chosen 22 × 6 lines to guarantee that there are more efficient
frequency data are used, the reconstructed image by RecPF has large error occurred
in both the interior part and the edge of the image, i.e., the reconstructed image could
not be seen as an effective and feasible result. Anyway, the reconstructed image by
the proposed algorithm with small error and noise point could be the effective and
efficient one. It shows that the proposed algorithm with preprocessing step is more
efficiently to image restoration even though the noise pollution is huge.

4 Conclusion

We added a preprocessing step before iteration to restore the MRI image from lim-
ited incomplete data with high-level relative random noise. We changed the TVl1-L2

image restoration model into the perturbed version by adding a positive parameter
ε. Bregman iteration was used to solve the modified model with double Huberiza-
tion penalty terms. The proposed method was compared with fast algorithm using
two FFTs and one preprocessing step. A smooth piecewise image and some MRI
images with high-level relative random noise are employed to test in the numerical
experiments. The results demonstrate that the proposed method is very efficient to
reconstruct image with this kind of multiplicative noise by using limited noisy data.

Notes and Comments: This work is supported by the National Natural Science Foun-
dation of China (Grant No. 11531005, 11871149), the Natural Science Foundation
of Jiangsu Province (Grant No. BK20210380).
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A Brief Review of Some Swarming
Models Using Stochastic Differential
Equations

Linh Thi Hoai Nguyen, Ton Viet Ta, and Atsushi Yagi

1 Introduction

This study is motivated by the spectacular swarm behavior of animals in the natu-
ral world. Our objective is twofold. The first one is to get understanding about the
dynamics of swarming in nature. The second one is using information acquired from
the study of biological swarming to design artificial/information systems, such as
reactive robotic systems, cellular networks, collision-avoiding systems for automo-
biles.

Animal swarming is known as one of typical self-organization observed phe-
nomenon that is coherently performed by integration of interactions among con-
stituent individuals in biological systems: fish schooling, bird flocking, and mammal
herding. It has attracted the interests of researchers from diverse fields including
biology, physics, mathematics, computer engineering.

Let us recall some studies in the literature. Empirical study on animal swarming
has been done in (Aoki 1982; Breder 1951, 1959; Cullen et al. 1965; Huth andWissel
1992; Keenleyside 1995; Parrish and Viscido 2005). Based on experimental results,
Camazine et al. presented the three basic behavioral rules among individuals in a
group (Camazine et al. 2001). Their insight is that these local rules can altogether
create the coherent behavior of animal swarms. As for the theoretical approach, we
want to quote (D’Orsogna et al. 2006; Oboshi et al. 2002; Olfati-saber 2006; Vicsek
et al. 1995). Vicsek et al. (1995) introduced a simple difference model, assuming that
each particle is driven with a constant absolute velocity and the average direction
of motion of the particles in its neighborhood together with some random perturba-
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tion. Oboshi et al. (2002) presented another difference model in which an individual
selects one basic behavioral pattern from four based on the distance between it and its
nearest neighbor. Meanwhile, Olfati-Saber (2006) and D’Orsogna et al. (2006) inde-
pendently constructed deterministic differential models using a generalized Morse
and attractive/repulsive potential functions, respectively.

In our study, we use the stochastic differential equation (SDE) model approach.
Such a model can describe the animal’s behavior precisely. Moreover, an SDEmodel
is tractable for making numerical simulations. In this paper, we will use the Euler
scheme for stochastic differential equations which has been introduced by Kloeden
and Platen (2005).

Let us now review our work in this direction. An SDE model describing the
process of schooling is presented in Uchitane et al. (2012), where we use the three
behavioral rules proposed in Camazine et al. (2001). We then utilized the model
for developing quantitative arguments on fish schooling in Nguyen et al. (Nguyen
et al. 2014). The paper (Nguyen et al. 2016) is devoted to studying obstacle-avoiding
patterns and cohesiveness of fish school. A foraging model is recently studied in Ta
and Nguyen (2008). The result of some of these papers is preliminarily presented in
the first author’s Doctoral Dissertation (Nguyen 2014).

The group cohesiveness, which is a quantity measuring the internal strength of
animal swarm or group, has already been introduced since the 1930s. Moreno and
Jennings (1937) defined cohesiveness as the forces holding the individuals within
the group to which they belong. Not until 1950 was a systematic theory of group
cohesiveness constructed by Festinger et al. (1950). Their definition of cohesiveness
is “We shall call the total field of forces which act on members to remain in the
group the ‘cohesiveness’ of the group.” Gross and Martin (1952) claimed that this
definition is inadequate, and they proposed an alternative definition as the resistance
of a group to disruptive forces. Carron (1980) defined cohesiveness to be the adhesive
property of a group. The study during long years seems to show that it is not an easy
problem to define a concept of the cohesiveness precisely and consistently. It has
been conceptualized in various ways, but each was based on intuitive assumptions
and interpretations.

Experimental study shows that animal benefits from forming a swarm. The work
of Gotmark et al. (1986) shows that the foraging success of gulls (Larus ridibundus)
increaseswith flock size up to at least eight birds. InBerdahl et al. (2013), experiments
in a shallow tank with a school of 2n-golden shiner fish (Notemigonus crysoleucas)
(n = 1, 2, . . . , 6)were performed. In the experiments, thefish tracked their preferred,
darker regions of a circular patch (darkest at its center and transitioning to the brightest
light levels) andmoved at a constant speed in the tank. It was shown that when school
size increased, so did the time-averaging darkness level at the locations of the fish.
In other words, large schools track to a target better than smaller ones. However, this
benefit of swarming for foraging does not increase forever as a function of swarm
size. Experimental evidence on zebrafish demonstrates that the responsiveness of
fish school to food smell decreases as school size exceeds an optimal value (Steele
et al. 1991).
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The aim of this paper is to give a unified framework for our study on the stochastic
differential equations models for describing the swarming behavior in the mentioned
above studies. Even though in our previous work, we use the term “fish schooling”
instead of “animal swarming,” we want to emphasize that our models work well for
swarming of animal in general. Therefore, in this paper, we use the term “animal
swarming” to refer to the phenomena under consideration.

The outline of the paper is as follows. In Sect. 2, we firstly review the general
stochastic differential equation model for describing the movement of individual
animals together with their mates. The external force factor in the general model
is then made specified to adapt to different environments: the free space, the space
with obstacle, and the space with both obstacles and food resource. The particular
rules for these environments are presented precisely in Sects. 2.2, 2.3, and 2.4. In
Sect. 3, we present our numerical study on the three models. The paper ends with
some conclusion remarks.

The highlights of the paper are as follows.

• A scientific definition for swarm cohesiveness which is an internal property char-
acterizing the strength of animal swarm is introduced. A method for numerically
measuring swarm cohesiveness is proposed.

• On the basis of avoiding obstacle model, we find that there are four clear avoiding
patterns, i.e., Rebound, Pullback, Pass and Reunion, Separation. Furthermore, the
emerging patterns changes when one control parameter is tuning while the other
parameters are kept constant.

• The relationships between swarm cohesiveness, obstacle-avoiding patterns and
model parameters are investigated. This shows that swarm cohesiveness can be
measured quantitatively through obstacle-avoiding patterns.

• Bymeans of numerical simulation, we verify the experimental studies that animals
benefit from swarming for foraging. More precisely, one single individual could
hardly find the food resource, while a group of individuals together forming a
swarm has better ability to reach the food resource. The probability of successful
foraging increases as the number of individuals in the group increases to some
critical size. After that, the success probability starts to decrease.

2 Model Equations

2.1 General Model

We have introduced the SDE model
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dxi (t) = vidt + σidwi (t), i = 1, 2, . . . , N ,

dvi (t) =
[
−α

N∑

j=1, j �=i

(
r p

‖xi − x j‖p
− rq

‖xi − x j‖q
)

(xi − x j )

−β
N∑

j=1, j �=i

(
r p

‖xi − x j‖p
+ rq

‖xi − x j‖q
)

(vi − v j )

+Fi (t, xi , vi )
]
dt, i = 1, 2, . . . , N ,

(1)

for describing the process of swarming of N -individual system. In building up such a
stochastic differential equationmodel, we have referred to the individual’s behavioral
rules introduced by Camazine et al. ((Camazine et al., 2001, Chap. 11)).We have also
referred to the idea due to Reynolds (1987). For the details, the reader can consult
the paper (Uchitane et al. 2012).

Each individual is regarded as a moving particle in the Euclidean spaceRd , where
d = 2 or 3. The unknown xi (t) and vi (t) are stochastic processes with values in R

d

denoting the position and velocity of the i th individual at time t , respectively.
The first equation of (1) is a stochastic one concerning xi . The noise term

σi dwi here models a degree of uncertainty in the individuals’ behavior that reflects
both the imperfect information-gathering ability and the imperfect execution of
the individual’s actions. In fact, {wi (t), t � 0} (i = 1, 2, ..., N ) are independent
d-dimensional Brownian motions defined on a complete probability space with fil-
tration (Ω,F , {Ft }t�0,P) satisfying the usual conditions.

The second equation is a deterministic one on vi , where 1 < p < q < ∞ are fixed
exponents, r > 0 is a fixed distance, and α, β are positive coefficients for interaction
between individuals and velocity matching, respectively. Each one tries to adjust its
position relative to others in the group by repulsive or attractive forces depending on
whether the distance to each of its neighbor is less than or greater than the critical
distance r . It also attempts to match its velocity to those of the others.

In order to model the attractive and repulsive force, we use a generalization of
the Van der Waals force in molecular physics, which is a distance-dependent inter-
action between atoms and molecules. The exponent p is concerned with the range of
attraction among individuals. If p is small, then the attractive force reaches a wide
range beyond the critical distance r . In contrast, if p is large, then the attraction is
available only in a neighborhood of the disk of radius r .

Finally, the functions Fi (t, xi , vi ) denote external forces at time t which are given
functions defined for (xi , vi ) with values in Rd .

From the model equation, we have that

N∑

i=1

dvi =
N∑

i=1

Fi (t, xi , vi )dt. (2)

That is, the sum of increments of all velocities equals to that of all external forces.
In the following subsections, we discuss specialized models in different environ-

ments.
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2.2 Model in Free Space

For this model, we let the group of animal move in the unbounded, continuous
and homogeneous space Rd . We take Fi (t, xi , vi ) = −kvi which is usually used to
present the resistance in physical particle systems. For example in the case of fish
schooling, this force describes the friction force from the water resulting from fish
movement.

Furthermore, if we initialize the system from no transport, namely the initial
velocities of all individuals in the group are zeros, then from (2),

N∑

i=1

dvi = −c

(
N∑

i=1

vi

)

dt.

Consequently,
∑N

i=1 dvi decays exponentially as t → ∞ and the system converges
to a steady state.

In the realworld, the environment surrounding animals often include some compo-
nents such as obstacles and food resources. In those situations, animals exhibit more
complex, parallel movements while avoiding obstacles and finding food resource.
We deal with these behavioral rules in the next two subsections.

2.3 Avoiding Obstacle Model

We want to study (1) from the viewpoint of pattern formation. Pattern formation is
observed very often in self-organizing systems. What is interesting is, as generally
known, that a single mechanism of self-organization can create various patterns by
parameter tuning or template regulation. We shall show that the pattern solutions of
(1) also have this nature.

As we can observe easily in the natural world that when a group of individuals
is tackled by obstacles, the individuals will react quickly to avoid collision with
the obstacle. In order to study this behavior using our SDE model, we set a global
obstacle in the space where individuals move and then investigate obstacle avoidance
patterns performed by the group. In addition to the individual–individual interaction
rules, a behavioral rule to avoid collision with the obstacle is included.

Let us consider a spherical obstacle in the R
d space with central point xC and

radius ρ > 0. Therefore, the individuals can move in the domain

Ω = {x ∈ R
d : ‖x − xC‖ > ρ}.

The surface of the obstacle is denoted by S = {x ∈ R
d : ‖x − xC‖ = ρ}.
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The obstacle avoiding rule is that each individual executes an action for avoiding
collision with the obstacle according to a reflection law of velocity with distance-
depending weights. The rule for avoiding obstacles is included in the external forces.

Fi (t, xi , vi ) = −γ

(
RP

‖xi − yi‖P
+ RQ

‖xi − yi‖Q

)

(vi − ui ),

where R is the critical distance to the obstacle and 1 < P < Q < ∞ are fixed expo-
nents, and γ > 0 is a constant. The vector ui is the reflection vector of the velocity
vi from the surface S of the obstacle. It means that if the individual “sees” the
obstacle lying on its moving line, and the distance to the obstacle is less than R, it
will promptly react for matching its velocity to the reflection vector ui to avoid the
obstacle. Meanwhile, if the distance is larger than R, the reaction is less strong.

The rule for specifying the reflection vector ui is shown in Fig. 2a for the two-
dimensional space and Fig. 2b for the three-dimensional space. Note that in the case
where xC lying on the ray with origin xi and direction vi , ui is simply the vector −vi
starting from the intersection point of the ray with S.

Now, let consider a plane obstacle W , for example, a wall. We specify a plane
V that contains the position xi (t), velocity vi (t) and orthogonal to the obstacle. Let
l = W ∪ V be the intersection line of the two plane. Then specifying reflection vector
ui of vi from the obstacle W becomes to specify the reflection vector of vi from the
line l in the two-dimensional space V (Fig. 2b).

2.4 Foraging Model

We now review a model of the foraging behavior of a group of animals in a noisy
environment with obstacles and a food resource. The location of the food resource
is fixed in space. The initial position of the individuals is separated from the food
resource by obstacles. The separation means that the individuals cannot move to the
food resource along any straight lines connecting initial positions to the location of
food resource.

We introduce a local rule for foraging as follows. Each individual is sensitive to
the gradient of potential formed by the smell of food and has a tendency to move
upwards.

Let f (x) be the density function of the food resource defined on the whole domain
space Ω . The food resource impacts the movement of individual through its smell.
Let U (x) denotes the smell from food resource at position x . It satisfies an elliptic
equation (diffusion equation) in Ω under the Neumann boundary condition on ∂Ω:

⎧
⎨

⎩

−cΔU + aU = f (x), x ∈ Ω,
∂U

∂n
= 0, x ∈ ∂Ω.

(3)
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Here the notation Δ denotes the Laplace operator Δu = ∑d
k=1

∂2u
∂x2k

; c > 0 is the

diffusion constant, a > 0 is the declining rate of U (x). The parameters c and a can
also be functions of position x and time t . In the Neumann boundary equation, n
denotes the (typically exterior) normal to the boundary ∂Ω . The boundary condition
ensures that the domain is perfectly insulated; that is, the food smell cannot pass
through the boundary of the domain.

Food smell will guide individuals move toward food’s location along its concen-
tration gradient. More precisely, we model the food resource’s influence through the
external force Fi (i = 1, 2, . . . , N ) as

Fi (xi , vi ) = k∇U (xi ), i = 1, 2 . . . N , (4)

where k > 0 is the smell attractive coefficient and∇ is the gradient notation. Consider
C1 potential function u : Rd → R,

∇u(x) =
(

∂u

∂x1
,

∂u

∂x2
, . . . ,

∂u

∂xd

)

, x ∈ R
d .

This force pushes individuals toward the maximum of the potential.
For a technical point, we included a parameter vmax to restrict the maximum

speed of individual. If the magnitude of the velocity vi exceeds vmax, we will rescale
it to magnitude vmax while preserving its direction. This is reasonable because each
species has a tolerance of speed that cannot be exceeded. That is,

v̂i (t) =
⎧
⎨

⎩

vi (t), if‖vi (t)‖ � vmax,

vi (t)

‖vi (t)‖vmax otherwise.

3 Numerical Study on Swarming Models

3.1 Swarm Cohesiveness

In this subsection, we review our scientific definition of swarm cohesiveness which
characterizes the strength of the group to form and maintain their swarm against
noises (Nguyen et al. 2016).

Before going any further, we need some concrete notion of swarming, how can
we judge if the group has formed a swarm or not. We introduce such notation using
the language of graph theory.

Definition 1 (ε-graph) Let ε > 0 be a fixed length. Define G(t, V (t), E(t)) be a
time-dependent graph. The graph vertice set V (t) at time t is all the positions of
particles, xi (t), 1 � i � N . Two vertices xi (t) and x j (t) are connected by an edge
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in E(t) if ‖xi (t) − x j (t)‖ � ε. This graph is called the ε-graph of the group at time
t .

We also denote by Nε(t) the number of connected components of the graph.
The mathematical definition of swarming with distance ε and tolerance speed

difference θ is defined as

Definition 2 (ε, θ -Swarming) For a given length ε > 0 and a tolerance θ > 0, the
group is said to be in ε, θ -swarming if there exists a time T > 0 such that for all
t � T ,

Nε(t) = 1,

σVS(t) =
√
√
√
√ 1

N

N∑

i=1

‖vi (t) − v̄(t)‖2 � θ,

where v̄(t) = 1
N

N∑

i=1
vi (t) is the average of all velocities of individuals at time t .

It is observed that ε, θ -swarming can be formed easily provided that noise mag-
nitudes σi (t) are not too large.

Figure1a demonstrates the evolution of forming swarm according to time. The
fourth graph depicts the variance of velocity and swarm diameter which is defined
as

δS(t) = sup
1≤i≤N

‖xi (t) − x̄(t)‖, 0 < t < ∞,

where x̄(t) = 1
N

∑N
i=1 xi (t) is the center of the group at time t .

It is well known that all biological dynamical systems evolve under stochastic
forces. It is therefore essential to understand and investigate the influence of noise in
the dynamics. In some cases, the noise simply blurs the dynamicswithout quantitative
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effects. However, in a nonlinear dynamical system, the noise drastically changes the
corresponding deterministic dynamic behavior of the system.

We are now ready to state the scientific definition for swarm cohesiveness that
is an internal property characterizing the strength of swarming.

Definition 3 (Swarm cohesiveness) Swarm cohesiveness is the ability of a group of
animal to form and maintain the ε, θ -swarming structure against the noise imposed
on the swarm. In other words, how far the group maintains ε, θ -swarming as the
magnitudes of the noises increase.

This definition is given in a quantitative form. When ε and θ are specified, it is
possible to quantitativelymeasure the cohesiveness of a group bymeans of numerical
methods. Let us next give two examples.

Example 1 Consider a group of 50 individuals moving inR2. The parameters are set
as p = 4, q = 5, α = 4, β = 1. The external force functions are taken as Fi = −vi
for i = 1, 2, . . . , N . Initial positions xi (0) are randomly located in a suitably small
domain with null initial velocities vi (0) = 0 for all i = 1, 2, . . . , N . The magnitude
σi = σ is a control parameter of simulation.

We pick out 20 different trajectories of the Wiener process. For each value σ ,
numerical computations for the solution xi (t) and vi (t) are performed in 20 trials
corresponding to these trajectories.

Set ε = r = 0.5 and θ = 0.5. It is examinedwhether or not the states (xi (t), vi (t)),
i = 1, 2, . . . , N are in ε, θ -swarming by fixing T = 15. The algorithm for checking
if a group form a swarming for a given parameter set is described in Algorithm 1.

Starting with sufficiently small σ then increase it with increment step 0.001.
When the ε, θ -swarming structure is broken down at least for one sample trajectory
of the Wiener process, the group considered to lose the ability to swarm. The swarm
cohesiveness is the largest value of σ such that the group is still in ε, θ -swarming.

Using this method, we can specify the effect of the model parameters on swarm
cohesiveness. We also examine the effect of exponential p and critical radius r on
swarm cohesiveness.

For numerical simulation on the effect of p, we tune p as p = 2, 3, 3.62, 4,
keeping the relation q = p + 1 and other parameters as set as above.

In order to calculate swarm cohesiveness according to r , we tune r from 0.5, 0.6
to 0.7 and take ε = r , p = 4, q = 5.

The result is shown in Table1. The exponent p, as explained in Sect. 2, shows a
degree of range how far the attraction is effective. It is therefore very natural that
as p decreases, the attraction range extends and enhances the cohesiveness of the
group. The cohesiveness is also enhanced as the critical distance increases.
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Table 1 Dependence of swarm cohesiveness on model parameters

p 2 3 3.62 4

Cohesiveness 0.063 0.056 0.055 0.051

r 0.5 0.6 0.7

Cohesiveness 0.051 0.053 0.054

Algorithm 1 Swarming Check
1: procedure Swarming Check Algorithm(σ )

Input: d, N , p, r, α, β, c, ε, θ ,
κ: numbers of trials,
[T0, T1]: interval for checking swarming condition
Output: swarmingcheck=true/false

2: swarmingcheck=true
3: for k = 1 : κ do
4: if ∃t ∈ [T0, T1] such that Nε(t) � 1 or σVS(t) � θ then
5: swarmingcheck=false
6: Escape from for loop
7: end if
8: end for
9: end procedure

Example 2 In this numerical example, we calculate the swarm cohesiveness in three-
dimensional space when turning only one parameter N , p, while keep all the others
constant as α = 2, β = 1, c = 0.5, T = 2.5 (i.e., from step 2500), ε = 0.5, θ =
0.01. We use a recursive midpoint-liked algorithm (Algorithm 2) to specify the
swarm cohesiveness with 20 arbitrary trails corresponding to different realizations
of noises for each parameter set. The two endpoints of the segment to find the swarm
cohesiveness are a = 0, b = 0.2, and error threshold δ = 0.0002. The numerical
result is shown in Fig. 1b.

Algorithm 2 Finding Cohesivness
1: procedure Finding Cohesivness Algorithm(startpoint,endpoint,threshold)

Input: d, N , p, r, α, β, c, ε, θ ,
startingpoint = 0,
endpoint: SwarmingCheck(endpoint) = f alse
threshold: allowed error
Output: Swarm cohesiveness

2: σ = (startpoint + endpoint)/2
3: if (endpoint − startpoint) � 2 ∗ threshold then
4: if SwarmingCheck(σ ) == true then
5: Swarmcohesiveness = σ

6: else
7: Swarmcohesiveness = startpoint
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8: end if
9: else
10: if SwarmingCheck(σ ) == true then
11: startpoint = σ

12: else
13: endpoint = σ

14: end if
15: Finding Cohesivness(startpoint,endpoint,threshold)
16: end if
17: end procedure

Remark 1 From the above two examples, we see that the swarm cohesiveness
increases as critical distance r increases or power p decreases. It is interesting that
the cohesiveness increases as the population size increases to some optimal value,
and then start to decrease when N excesses that value. This can be explained as
follows. It will take more time for a more crowded group of individuals get to the
swarming state. Therefore, as we fix the allotted time from which the conditions for
swarming must be satisfied, the cohesiveness decreases.

In the following subsection, we show that swarm cohesiveness can be measured
quantitatively through obstacle avoidance patterns.

3.2 Obstacle Avoiding Behavioral Patterns

We find that there are clear four avoidance patterns and that the emerging pattern
changes depending on parameter tuning.

Figure3a shows the numerical results for p = 2, 3, 3.62, 4 in two-dimensional
case. Four different kinds of avoiding patterns are found.Wewill call them, Rebound
(Pattern I), Pullback (Pattern II), Pass and Reunion (Pattern III), and Separation
(Pattern IV), respectively. Let us describe these four patterns of swarming.

• Pattern I (Rebound): The individuals keep swarming throughout the obstacle-
avoiding process and the swarm rebounds off the obstacle. In order to keep swarm
structure, they change their directions after the swarm touch the obstacle.

• Pattern II (Pullback): The individuals are once separated while approaching the
obstacle and stay around the surface of the obstacle for a while. They then pullback
off the obstacle to reform a swarm structure.

• Pattern III (Pass and Reunion): The individuals pass the obstacle by splitting to
move along the obstacle surface. After passing it, they reunite into a single swarm.

• Pattern IV (Separation): It is similar to Pattern III. But, after passing the obstacle,
the subgroups have their own directions.

As mentioned above, p is expected to measure a degree of attraction range.
Thereby, if the range is long, then the swarm acts as a single living thing. On the
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contrary, if it is short, then the swarm is easily separated by the obstacle. Tuning the
parameter p yields in this way a clear change of patterns in avoiding the obstacle as
a swarm. We also choose critical distance r as a tuning parameter. For this case, as
r increases, the patterns change gradually in the reverse order.

In the preceding subsection, we have already verified that when other parameters
are fixed, the swarm cohesiveness increases as p decreases. When p = 2, the swarm
has very strong cohesiveness and rebounds off the obstacle. When p = 3, the swarm
has still strong cohesiveness and can keep swarming but the individuals are spread
on the surface. When p = 3.7, the swarm cohesiveness becomes weak and the group
can no longer keep swarm structure but it is strong enough to reunite the members
into a swarm. When p = 4, the group cannot keep swarming and is separated into
two subgroups after passing the obstacle.

If these interpretations are reasonable, we can use obstacle avoidance patterns
in order to measure the swarm cohesiveness easily. More precisely, we can quickly
categorize it into four classes. Next, we will investigate more precisely the relations
of p, q, r , and the obstacle avoidance patterns.

Example 3 We set the parameters as follows, d = 2, N = 20, α = β = γ = 1. The
exponent p is tuned from 2 to 8 keeping always the relation q = p + 1 and σi = 0 for
all i . The critical distance is set by r = 0.5, and the radius of the obstacle is ρ = 1.2.
By performing preliminary computations, we first set a stationary state which is in
r, 10−6-swarming whose center is 5 (length distance unit) far from the center of the
obstacle. The initial velocities are vi (0) = (1.75, 0) for all i . The parameters for
obstacle avoidance are set as P = p, Q = q, R = r . The swarm is oriented toward
the obstacle, and after a while, the individuals strike on it.

In Nguyen et al. (2014), we show that as the critical distance increases, the school
diameter also increases. However, the school diameter will also affect the school
pattern when avoiding obstacle. Therefore, in our numerical simulation to demon-
strate the effect of critical radius r to the swarm cohesiveness, we change the radius of
obstacle according to the change of critical distance. More precisely, after getting the
equilibrium position of fish in a swarm for each simulation that is r, 10−6-swarming,
we take obstacle radius equal to 2/3 of swarm diameter. The distance between the
centers of the swarm and the obstacle is 8. In the initial time, all individuals have the
same velocity with length 4 and the same direction as the vector which connects the
center of school and center of the obstacle. Common parameters are taken as in the
simulation for the effect of power p. Besides, p = 3.

The numerical result is given in Table2.

Relationship betweenbehavior patterns, swarmcohesiveness andmodel param-
eters

Emerging patterns (patterns I, II, III, IV) can be achieved just by tuning one
parameter while keeping all others constant. Moreover, the relationships between
model parameters, swarm cohesiveness, and behavioral patterns are shown in the
diagram below.
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Table 2 Different patterns can be achieved just by tuning one parameter while keeping all others
constant

p [1.001,2.100] [2.101,3.371] [3.372,3.497] [3.498,8]]

Pattern I II III IV

r [0.2, 0.3] [0.4, 0.5] [0.6, 2.0] [2.1, 2.8]

Pattern IV III II I

• p, q increase ⇒ cohesiveness decreases ⇒ behavioral pattern index increases,
• r increases ⇒ cohesiveness increases ⇒ behavioral pattern index decreases.

3.3 Foraging Advantage

This subsection presents a numerical result that is consistent with many observations
on foraging process of swarm in the real world.

Consider the moving of animals on the ground. In our simulations, we restrict
the space for individuals moving in to be the rectangle domain D = [0, 7] × [0, 4]
whose boundary are wall obstacles. Inside this domain, we put three obstacles

Ob1 = [2, 2.5] × [1.75, 4]
Ob2 = [4.5, 5] × [0, 2.5]
Ob3 = {(x, y) ∈ R

2 : x = 2.25 + 0.25 cos θ, y = 1.75 + 0.25 sin θ, θ ∈ [−π, 0]}.

The third obstacle is the below half of the circle centered at [2.25, 1.75] with radius
0.25. It is put right after the first obstacle to make one block. Therefore, the area
where the individuals can move in is the domain

Ω = D\(Ob1 ∪ Ob2 ∪ Ob3).

By the Neumann condition, smell also cannot pass the boundary ∂Ω .
The initial position of the individuals is taking randomly on a small rectangle

on the upper left corner of the domain Ω . Figure2c (left) shows the environmental
configuration of the simulations.

We set the moving environment, food resource, and initial positions of individual
as in Sect. 2.4. There is a circle food resource centered at C = (5.5, 0.1) with radius
0.04. Precisely, we specify the food resource function as

f (x) =
{
50, ifx ∈ {y ∈ R

2 : ‖x − C‖ � 0.04}
0 else.
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Food

(c) (left) Configuration of the foraging model simu-
lation. The position of the individuals at the initial
time is taken randomly in the small upper-left rect-
angle. (right) Food smell potential function
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Fig. 2 Reflection rules in 2D, 3D, and environment setting for foraging model

The coefficients for specifying the smell emitting from food in (3) are c = 0.1,
a = 0.2. The food coefficient in (4) is taken k = 20.

We say that the group successes in finding the food resource if all the individuals
pass the secondobstaclewithin the allotted time T = 300, that is before the 300,000th
iterative is reached, aswe take the step size for discrete schemeΔt = 0.001. Figure3b
illustrates an evolution of finding food resource.

Other parameters are set as α = 2, β = 1, γ = 5, p = P = 3, q = Q = 5, r =
0.1, R = 0.3, σ = 0.001, vmax = 0.8.

The numerical result is shown in Fig. 3c. We can see that animals can enjoy a
swarming advantage when finding food resources. A single individual hardly finds
the food resource. The probability of successful foraging increases as the population
increases to some optimal value and decreases as population size exceeds that value.
This result agrees with many experimental observations (Berdahl et al. 2013; Got-
mark et al. 1986; Steele et al. 1991). The existence of such an optimal value may be
explained by swarm cohesiveness (see Remark 1). Furthermore, the averaging time
for successful foraging at that optimal value is also the smallest.
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4 Conclusion

We proposed some SDEs describing the swarming of animals in different environ-
ments.We introduced the so-called ε, θ -swarming for quantitatively defining swarm-
ing and a scientific notion of cohesivenesswhich characterizes the internal strength of
the swarm. We observed four obstacle-avoiding patterns. Moreover, there are close
relationships between these patterns, swarm cohesiveness, and model parameters.
Also by numerical study, we confirmed that animals can enjoy foraging advantages
while forming swarms.

Our results may have important implications for the development of technologies,
such as swarm robotics, with applications in the detection of explosives, landmines,
or people in search-and-rescue operations. Theymaybe used for computer animation,
visualizing information or optimization.

One interesting problem is to extend themodel to describe predator–prey systems,
in which the predators apply an attack strategy for foraging while the prey chooses an
escape strategy for survival. Empirical observations show that animals benefit from
swarming behaviors when foraging and escaping enemies. It is possible to construct
effective attack strategies and escape strategies using mathematical models. This is
left for a future work.
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