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Abstract Speech enhancement is today a growing necessity for a wide range of
applications in which the noise-free speech signal is important and necessary for
the processing to be continued. The main purpose of these speech enhancement
techniques is on a higher level is to remove noise from the speech signal. The
reverberation component in the corrupted speech signal is also removed using the
auto-regressive techniques for better performances. In this paper, unscented Kalman
filtering which is an adaptive algorithm is proposed that executes both denoising
and dereverberation of the speech recorded in adverse conditions. The algorithm
relies on the parameter such as mean and covariance of the state spaces created and
updating the concerned measurements to provide the optimal denoised and dere-
verberated signal. This proposed algorithm is assessed with regard to quality of
speech, intelligibility of speech and performance metrics like the figure of merit
and cross correlation and is also compared with other denoising and dereverberation
techniques. The trial outputs on executing the algorithm using the noisy reverberant
speech exhibit the adequacy of the proposed adaptive enhancement algorithm.

Keywords Speech enhancement - Adaptive algorithm + Denoising -
Dereverberation - Kalman filtering - Auto-regressive filtering - Unscented Kalman
filter - Parameter estimation + Unscented transform + Parameter estimation

1 Introduction

These days, innovation is truly advancing with enormous demand, and the interest for
speech enhancement frameworks is clear. Speech improvement in uproarious rever-
berant conditions, for the audience, is hard and testing. The speech signal is corrupted
by the noise and resonation when caught utilizing an inaccessible mouthpiece [1].
A room impulse response will incorporate segments at long postponements, subse-
quently coming about in resonation and echoes. Reverberation is considered to be a
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convolutive distortion that actuates big haul correlation between successive observa-
tions and can be very time-taking with a resonation time [2]. Noise and reverberation
can be stationary or non-stationary and inconveniently affect both discourse quality
and discourse comprehensibility [2]. Different techniques have been introduced on
speech enhancement.

The Kalman filtering is one of them and is a good and dependable speech improve-
ment algorithm. It utilizes the minimum mean square error wisely [3]. Nonetheless,
admittance to clean speech and added substance commotion data for the state-space
model boundaries for the greater part of the traditional KF-based speech enhance-
ment techniques is needed. In particular, the linear prediction coefficients and the
additive noise variance estimation, which is unrealistic in practical speaking to get
the noisy speech [4, 5]. Also, the authors in [6] proposed that the fundamental cycle
of noise reduction calculation is Kalman filtering. The underlying incentive for KF is
dictated by ASS. To get higher exactness, the following calculation is proposed. From
the outset, the power spectrum of clean speech is assessed from the spectrum by the
KF algorithm. At that point, the acquired power spectrum is filled in for initial value,
and Kalman filter calculation is rehashed. On doing this calculation, we acquired
greater precision of decrease in noise. It can be repeated at 1.5-2.0 occasion times
of constant by taking the noisy speech signal as an input, and fast Fourier transform
(FFT) was done to get power spectrum. Using adaptive spectral subtraction (ASS),
we get estimates of power spectrum, i.e., noise signal power subtracted is subtracted
from mixed signal spectrum [7].

2 Related Works

As per the work done in [8], first a noisy speech signal is given as input, and this
input speech signal is assumed as stationary during each frame and processed using
three algorithms, which are spectral subtraction, Wiener filter and Kalman filters,
and the work suggests that the spectral subtraction can be used only for stationary
signals and real-time signals are non-stationary. The Wiener filter is also suitable
for stationary signals but denies working on musical noise. To oversee these bound-
aries, the paper suggests Kalman filtering. When talking about the UKF algorithm,
it was first proposed in [9, 10]. In [11], the work proposes that most approaches use
the stationary AWGN assumption, but the same of colored noise is believed to be
more useful for speech denoising and speech dereverberation. The Kalman filter,
because of its flexibility, is widely used for signal enhancement. Kalman filter has
a considerable amount of numerical complexity while dealing with colored noise.
Moreover, Kalman filtering is a model-based adaptive method, where speech as well
as noise is modeled as AR processes. Thus, a major issue in Kalman filtering is the
estimation of the AR parameters in the presence of noise. The traditional algorithm
utilizes the EM technique to repeatedly calculate the AR boundaries. Unfortunately,
its computational complexity is high. The method used in our work is built on spectral
subtraction for estimation of AR parameters of clean signal and corresponding noise
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[12]. It is computationally efficient and can be easily implemented. The mathemat-
ical model for the algorithm of the state-space model and Kalman filter equations
was formulated, and the obtained results were compared to the WF method [13, 14].

The work proposed by the authors in [15] is the computer-based algorithms which
are generally used for controlling and monitoring a computer where human, digital
and analog interactions occur. The cyber-physical systems (CPS) scheme is used in
many areas due to its easily available and connectivity features and also offers large
amount of storage and computing resources. However, the limitation of this scheme
is its large energy consumption. As in [16], spectral subtraction method is applied
in the estimation of parameters, musical noise appears in the enhanced speech. To
acquire a Kalman filter output with better audible quality, a conceptual post-filter
is set at the output of the Kalman filter to decrease the musical noise level. The
perceptual filter minimizes signal distortion while constraining the noise spectrum.

3 Methodology

3.1 Flow Process

In the time domain, the distorted speech, d;(¢), is given by dy (t) = Cy (¢) * ri (¥)
+ n (k) where C; (¢) is the clean speech component, 1;(?) is the reverberant speech
component, and n; (¢) is the noise [2]. The time frame index is represented as k.
The algorithm holds each time frame bit on its own. In the limits of the algorithm,
k is introduced as a variable in the equations that involve multiple time frames [2].
Figure 1 explains the flow process of the algorithm.

The clean speech which is downloaded from the database is processed and is
reverberated using the reverb parameters and convolution. The output of the first
block in Fig. 1 is the reverberated speech with some given delay, and the magnitude
of the speech changes according to the coefficient of reverberation taken [17]. The
approach in Eq. 1 is used to do the reverberation process as

Omn)=1n)+a0m—d) @))

Clean Speech
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Reverberation
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Fig.1 Flow process
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where i(n) is the input audio signal, O (n) is the output (echoed) audio signal, d is
the echo delay (in samples), and alpha is the coefficient that governs the amount of
echo fed back. Then, the reverberated signal is then added with a certain amount of
additive white Gaussian noise as shown in Fig. 1. Here, we have the corrupted speech
signal that needs to be denoised and de-reverberated.

The corrupted speech is then taken as k reduced time frames or into k smaller time
frames that are of a specific period which are called the state spaces. For this process
of converting the clear speech signal to state spaces, we use three different windows.
They are the rectangular window, the hamming window and the Gaussian window
[12]. The proposed algorithm treats each time frame or the state space on its own.
Firstly, as in the third block of Fig. 1, each of these frames then undergo the unscented
transform in which the sigma points of the first state space are calculated. Then, the
statistical mean and covariance of the present state are calculated. Then, the two main
steps of the algorithm, the time update and the measurement update steps, are done
for the first state space. Being an auto-regressive algorithm, the same is applied to
all the k state spaces, i.e., the set of time update equations and measurement update
equations given in the following Sect. 3.2 are implemented. The detailed equations
to the above algorithm are also mentioned in the Sect. 3.2.

3.2 Unscented Kalman Filtering

3.2.1 Unscented Transform

The unscented transform (UT) is a method for estimating the mean and covariance
of RV that goes through a nonlinear transformation [3, 18]. Take into consideration
the propagation a RV x into a function y = f{x). Consider X is the mean, and Py is
the covariance of RV x.

Figure 2 explains the steps in the unscented transform step in Fig. 1. The X and P,
depicted in Fig. 2 are the mean the covariance of the random variable x, respectively,

Weighted
sample mean
X i i y
4 Weighted
._’N_—' ] _'.
= 74 covariance
N P
P, Y=J(L+2) vy v ;
{z,}—[i’ T+yfP. X }'\ﬁ:]

Fig. 2 Diagram of UT
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then the sigma points are calculated which are then propagated through non-linear
function. Then, the weighted sample mean and weighted sample covariance are
calculated for further process [19].

To evaluate the mean and variance of y, we initiate a matrix X; of 2L + 1 sigma
vector X;, relating to the following Eqs. 2—4 as shown in Fig. 2.

Xo=% )
X,-=)?+(\/PX(L+>\)',i=1,...,L 3)
X,~:f—l—(w/PX(L—i—)\)v,i=L+1,...,2L &)

where N = o?(L + k) — L. « is a coefficient that governs the sigma point spread
around X and is generally set to a positive minor value (e.g., 1 < a < le —4). k
is a constant that is generally equal to O or 3-L and g is used for integration [20].
The initial information of the distribution of x (for Gaussian distribution 8 = 2 is
ideal), («/ Px(L + x)l. is the ith column of the square root of the matrix. These sigma
vectors undergo transition throughout as in Eq. 5,

yi= f(X)i=0,1,2,... 2L (5)

And using Egs. 5-10, the weighted sample mean and covariance of the posterior
sigma points are used to approximate the mean and covariance of y [21],

2L
DB AR (©)
i=0
2L
Py =3 Wi — My =5 )
With weights W; are
W™ =2/(L+ %) (8)
W = /(L +2) + (1 —a® + ) )

W =W = 1/{2(L+ 1)) (10)
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A diagram representing the steps in unscented transform is depicted in Fig. 1.
Consider that, it varies considerably from the Monte-Carlo sampling methods that
need more sample and orders of magnitude to propagate through a precise distri-
bution of state [22, 23]. The illusionary simple way through with the UT leads to
an approximation that are nearly equal to the third order of Gaussian inputs for all
nonlinearities [ 14, 24]. For non-gaussian inputs, approximation is reduced precisely
to 1% or 2" order and the selection of « and B with the exactness of third order and
other higher order moments are found.

3.2.2 Unscented Kalman Filter Equations

The UKEF is a clear augmentation of the UT to the recurring assessment, when the
state RV is reclassified due to the addition of the original state and noise variables:
x¢ = [x{ VInl']. The UT sigma point choosing scheme (in Eq. 4) is put in to the
new state random variable to determine the respective sigma matrix, X{ [2]. Then,
the equations are initialized as shown in Egs. 11-14. So, however, no conspicuous
computation of Jacobians is important to execute this calculation. Moreover, the
general number of calculations is a similar request as the EKF.
Initialize with

Xo = E[X,] (11)
A N T

P, =E[<X0—X0><XO—X0> } (12)
X =E[x‘]=[XI00] (13)

A o Py 0 0
PS¢ = E[(Xg - %6) (x5 - %) ] =l or o (14)

0 0 R

Calculation of sigma points:

X = [}21?715(1?71 +y P X —y P/f—l] (15)

The time update equations are given from Eq. 16-20:

Xz\kq = F[Xifls Uk—1, Xllc)fl] (16)
2L
Xy = Z VVi(m)Xz)'c,k\k—l (17

i=0
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Z W [ ikk—1 — Xk ][Xi,k\k—l - Xk] (18)

Yklk—1 = H[Xjf\k,p X;’Z,l] (19)

e =Y W yikuo (20)

The measurement update equation is from Egs. 21-25:

2L
T
Py5,. = ZW Yiate—1 = ¢ Dikw-1 = I ] 2n
i—0
2L
T
Py = Z w [xiki—1 — 2¢ | [yik—1 — 9 ] (22)
i=0
Ki = Pyy Pyl (23)
=%+ Ke(k — 7)) (24)
P = P, — Ky P35, K/ (25)

where x¢ = [xTanT] X = [(Xx)T(X”)T(X”)T]T, y = /(L + 1)), where RVis
the process noise variance, R" is the measurement noise covariance, and W; are the
weights that are calculated in Eq. 4. The measurement is then updated in each time
frame of the speech taken [2]. Then, all the time frames are then augmented to get
back the denoised and dereverberated clean processed speech.

4 Experimental Results

In this section, the simulation results we obtained from the approach detailed in
the above section, i.e., the UKF algorithm are discussed. There were few .wav files
on which we performed the algorithm under various windowed processing like the
rectangular window, hamming window and the Gaussian window. The results we
obtained are plotted as wave forms. There are two wave files on which this algorithm
was performed. Let the names be Speech A.wav and Speech B.wav. The SNR was
precalculated for later use in the comparisons. The waves were then reverberated,
and the observation noise was added to both. The observation noise added to all the
wave forms is additive white Gaussian noise (AWGN).
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After processing the two waveforms through the algorithm and getting the results,
we calculated the parameters such as the figure of merit and the correlation between
SNR of the processed output and the precalculated SNR of the clean speech for
three different number of iterations in the algorithm. A table is given below with the
particular details of the figure of merit and correlation for the above two wave forms.

Tablel shows analysis of the performance metrics FOM and correlation between
the input and the output of the algorithm proposed.

Table 2 shows the comparison between the SNR values for the different
windows—rectangular, hamming and the Gaussian windows used for chopping and
the number of iterations performed on both speech A and speech B.

5 Conclusion

In this project, speech enhancement technique using Kalman filtering has been imple-
mented. The objective was to design an effective method to process a noise invaded
and reverberated speech in adverse environments. We were able to perform the
denoising and dereverberation on the corrupted speech. The proposed algorithm
can be used in the cases of nonlinear systems, where in most of the algorithms, this
is not possible. Also, this algorithm is time-efficient. So, it can be used for mediocre
length speeches. Here, the proposed algorithm, unscented Kalman filtering, uses three
windows—rectangular, hamming and Gaussian for the chopping of the signal before
processing, and from Table 1, the results significantly differ from each window for
every iteration. The performance is slightly increasing with the increasing number
of iterations in any window up to a certain number of iterations. Then, there is fall
in both the performance metrics—figure of merit and the correlation taken in this
report. This is due to the repeated denoising and dereverberation, which causes a
damage to the intelligibility of the desired output. Then, Table 2 compares the SNRs
of the outputs of different windows under different number of iterations.
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Table2 SNR comparison

Speech A.wav Speech B.wav
Window Iterations | 15 30 50 15 30 50
Rectangular 18.15 1823 |17.8 |74 775 7.6
Hamming 18.44 18.56 |18.2 |5.82 583 |5.78
Gaussian 18.31 1842 |18.1 |8.13 8.23 |8.09
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