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Abstract

Cancer remains one of the fatal diseases in the last century. The mortality rate of
different types of cancer is mainly related to metastasis, where the traveling
cancer cell clusters migrate to other organs and create a micro-metastatic niche.
To date, most of the conventional and approved anticancer drugs belong to the
cytostatic and cytotoxic categories. Cancer cells’ transcriptional and behavioral
plasticity made traditional therapy futile in terms of stopping the spread and
relapse of the disease. The recent emergence of drug-resistant cancers requires
a new class of drug molecules. In this context, the potential of antimetastatic or
migration inhibitory drugs is neither evaluated nor validated correctly. This
chapter will introduce a new class of synthetic drugs that could be used to inhibit
cancer cell migration and discuss their untapped potential as therapeutic agents.
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Migrastatic drugs working against multiple targets could successfully deter the
tumor cells from initiating migration and bypassing the therapeutic effects. In the
future, these new classes of antimetastatic compounds combined with conven-
tional drugs could establish a new and improved treatment regime.
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Introduction

In the last few decades, due to increasing pollution and changing lifestyles, cancer
has become one of the major causes of death. The mass of cancerous cells, a
consortium of heterogeneous population, exert their pathophysiological effects in
many different ways, which are classified as cancerous hallmarks. One of the most
crucial hallmarks of cancer is metastasis happens during the later stages of the tumor
development. During this process, tumor cells from the primary source migrate to the
neighboring organs to presumably establish secondary tumor sites. Metastasis is
assumed to be one of the major reasons for the disease recurrence and cancer-
associated mortality (Tan et al. 2015; Alizadeh et al. 2014). This process includes
invasion of extracellular matrix by the solitary or cluster of cancer cells,
intravasation, extravasation, and colonization of vital organs (Steeg 2006). Numer-
ous studies have proved that cancer cells utilize different migration modes with
plasticity during the invasion of ECM and intravasation, which facilitate their
advancement in the ECM and the bloodstream. Multiple cellular and stromal com-
ponents associated with cell migration, such as the cytoskeleton, matrix-degrading
enzymes, kinases, and adhesion proteins, make the process of metastasis seamless.
During this process, the cells also produce various cellular protrusions, namely,
lamellipodia, invadopodium, and dendritic spine-like structures, to enhance migra-
tion speed and efficiency. Such arrangements play a crucial role in the remodeling
and degradation of the ECM to allow cancerous cells to reach the bloodstream
(Yamaguchi et al. 2005).

Metastasis Modality

Conventionally cancer cell migration mode can be divided into two broad classes,
namely, collective and individual. Collective migration is defined by the migration of
cellular clusters interconnected by adhesion molecules and other communication
junctions. These clusters with leading and following edges penetrate the surrounding
tissues through blunt cellular force supported by secretory and membrane-bound
MMP-mediated degradation of ECM. Once the cell decides to migrate collectively,
cell polarization occurs, leading to the formation of pseudopods. The pseudopods
activate the integrin receptors and recruitment of scaffold proteins, forming nascent
focal adhesions. These focal adhesions further mature and connect with the actin
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filaments. Molecules such as MT1-MMP and uPA/uPAR are recruited to execute the
local proteolysis to break the ECM molecules and generate space for the cells to
move ahead. The group of collectively migrating cells develops dynamic cytoskel-
etal structures which includes actin stress fibers comprising of actin and myosin light
chain. These stress fibers at the leading edge generate the necessary traction force to
move the cellular mass forward. These leader cells remain connected to the other
trailing cells through cell-cell interactions. The trailing edge forces the cell-to-cell
junctions and focal adhesion complexes between, to drag the neighboring cells along
the migration track (Friedl et al. 2004).

On the other hand, migration of individual cancer cells through the ECM is
mainly classified depending on their dependence on protease such as mesenchymal
(protease dependent) and amoeboid (protease independent) migration. These modal-
ities can switch depending on the cellular and environmental cues and the tumor
microenvironment (Gayan et al. 2021; Krakhmal et al. 2015). Such plasticity is an
intrinsic virtue of cancer cells which allows the development of variable modes of
migration, namely, epithelial-mesenchymal transition (EMT), mesenchymal-
epithelial transition (MET), ameboidal-mesenchymal transition (AMT), and
mesenchymal-ameboidal transition (MAT) during metastasis. EMT occurs at the
primary tumor site, where the tumor cells detach from the epithelial layer of the
tumor mass to achieve mobility. Whereas MET, (the counter transition) happens
when the tumor cells stop at another organ and differentiate to establish a secondary
tumor site (Vasiliev and Gelfand 2006). The characteristic features of EMT include
the loss of apicobasal polarity, loss of cell adhesion molecules like E-cadherins, and
cytoskeletal rearrangement for the formation of stress fibers (Micalizzi et al. 2010).
As observed, different key transcription factors including TWIST1, Snail, Slug, and
ZEB1/2 are responsible for initiating EMT (Tsai et al. 2012). Through the EMT
transitions, tumor cells perform intravasation and spread to different tissues and
organs. After reaching the metastatic loci, these migratory cells return to their
epithelial phenotype through MET. This phenomenon occurs through the inhibition
or decrease of the factors directly involved in the EMT (Nguyen et al. 2009).

Other modalities of single-cell migration like AMT and MAT are also tightly
regulated through the interaction of tumor cells with the tissue microenvironment but
observed more rarely (Gayan et al. 2021). AMT has the same molecular basis as
MAT, and reversal of conditions leads to AMT. The primary process behind MAT
transition, as explained by Friedl, includes membrane protrusion, reduction in
pericellular proteolysis, the absence of p27 protein, reduced integrin receptors’
activity, and increased GTPase Rho activity A (Friedl 2004). The formation of
membrane protrusion is influenced by the localized polymerization of submembrane
actin filaments. WASP family proteins, LIM-kinase, cofilin, and cortactin are some
of the critical proteins upregulated in invasive and metastatic cancer cells. These are
responsible for actin cytoskeletal reprogramming towards a migratory phenotype
(Sahai 2005; Yamaguchi et al. 2005). These proteins are responsible for the Arp2/3
complex-dependent nucleation for the dendritic/protrusion phenotype developed by
cancer cells. Cortactin and cofilin are required to stabilize these branched filaments/
protrusions (DesMarais et al. 2004). Minimal expression of cell adhesion molecules
such as E-cadherin and α-catenin leads to the increased metastatic potential of the
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tumor. Re-localization of β-catenin to the cell nucleus from cytoplasm is positively
associated with the mesenchymal phenotype required for single cellular migration
(Jiang 2005). The reduced expression of cell adhesion protein directly co-related
with the increased function of matrix metalloproteases (MMPs) which is necessary
for degrading various extracellular matrix proteins to ensure cell motility during
metastasis. Transcription factors including tumor growth factor β (TGFβ) and
epithelial growth factor (EGF) induce MMP production to enhance cell motility
(Xu et al. 2010). Kinases of the Src family, especially c-Src, play a supportive role in
tumor metastasis in colorectal and breast cancers (Summy and Gallick 2003) through
mutations, chromosomal translocation, and epigenetic deregulation mediated
malfunctioning (Cicenas et al. 2018).

Main Text

Current Therapeutic Regime and Problems

The conventional therapeutic approach towards solid tumors and other types of
cancer has been primarily inclined towards cytotoxic drugs paired with surgery
and radiation therapy. These cytotoxic drugs differ in their mode of action and
majorly include anti-metabolites, alkylating agents, topoisomerase, mitotic inhibi-
tors, antibiotics, and lastly corticosteroids (Huang et al. 2017). Alkylating agents
damage the cellular DNA, thereby preventing DNA replication and progression of
the cell cycle. These drugs are commonly used to treat different types of aggressive
cancers, including sarcomas, carcinoma, and lymphomas. A subcategory of
alkylating agents called nitrosoureas includes lomustine and carmustine which can
cross the blood-brain barrier (Gate and Kenneth 2011). Anti-metabolites interfere
with the nucleic acids and replace their nucleotides to inhibit the replication process.
Anthracyclines interfere with DNA synthesis preventing cell reproduction. Topoi-
somerase inhibitors (plant alkaloids) interfere with enzymes such as Topoisomerases
I and II. Mitotic inhibitors inhibit cell division and induce apoptosis. These cytotoxic
drugs are part of the decade-old treatment regime for most aggressive cancers despite
multiple side effects and the eventual development of resistance.

Cytotoxic drugs could not differentiate between normal and target cells; hence
prolonged use of cytotoxic drugs can have toxic side effects on other tissues and
organs of the body (Table 1). Most of these cytotoxic drugs are very efficient in the
late tumor stages. However, they have many significant deleterious effects, including
hair loss, skin rash, anemia, and others. Other minor side effects such as nausea and
vomiting are also common occurrences (Nurgali et al. 2018). Further, there is a risk
of hypersensitivity reactions against various cytotoxic drugs in the system (Ruggiero
et al. 2017).

Along with the patients, many unintended targets such as healthcare workers can
be exposed to these agents. For example, studies reported health workers handling
cytotoxic drugs with increased risk of leukemia and breast cancer. Unintended
exposure to these drugs may also occur during the preparation, administration, and
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transport of the drug along with the disposal of the organic waste. Other sources of
environmental contamination include patient excreta and secretions (Alehashem and
Baniasadi 2018).

Along with the unwanted side effects and unintended contaminations, developing
resistance against those drugs is also becoming a point of concern. The critical factors
influencing the resistance are physical barriers, tumor burden, and tumor heterogene-
ity, TME (tumor microenvironment), TIME (tumor-immune microenvironment), and
therapeutic pressures (Vasan et al. 2019). Cancer heterogeneity caused by genomic
instability, transposition, translocation, microRNA, and epigenetic factors generates
chronic drug resistance and poor prognosis (Mansoori et al. 2017). The tumor’s
heterogeneous microenvironment and the different cells like the immune cells and
stromal cells prevent immune clearance and drug absorption. Immunosuppressive
cancer microenvironment consists of different cellular (Treg cells, natural killer cell,
and tumor-associated macrophages) and acellular components (cytokines and
chemokines) majorly influence the effectiveness of anti-tumor drugs (Sharma et al.
2017). Long-term therapies can also lead to resistance, and it could be an early
adaptive response or resistance acquired after prolonged exposure (Mok et al. 2017).
The adaptive response happens due to negative feedback-mediated activation of the
alternative metabolic pathways or reactivation of the initial ones. Acquired resistance
happens with the emergence and accumulation of new mutations of the target followed
by the diversion of pathways and changes in phenotypes (Vasan et al. 2019).

Drug resistance is the most significant hurdle in cancer treatment and seems to be
an unattainable goal. These disadvantages pose a problem for commonly used
cytotoxic drugs and make it necessary to develop a new genre of drugs targeted
explicitly towards cancer. Recently, a unique class of molecules referred to as
migrastatic is recognized as a potential mode of therapy. Effectivity of cytotoxic or
cytostatic drugs is measured quantitatively through tumor shrinkage, which is
assumed as the main criteria in the current world of cancer therapeutics. With the
emergence of drug resistance cancers, it is proposed that the importance of tumor
shrinkage as the main criteria of drug efficacy should be revisited. The hour needs a
critical understanding of the holistic effect of the used drug and its intended
effectiveness (Fernandes et al. 2019). Deep analysis of the physical properties of
the tumor, dependencies and vulnerabilities, and personalized study of the patient is
required to solve the current problems.

Migrastatics: A New Class of Drugs

Even though metastasis is the deadliest aspect of a tumor, no antimetastatic drugs are
available to date as a treatment modality. The main aim behind developing the
migrastatic molecules is to prevent local and global invasion. The term migrastatic
has been proposed for molecules that target pathways involved in cell migration and
interfere with different modalities of migration, thus inhibiting invasion, extravasa-
tion, and colonization (Gandalovicova et al. 2017). They do not directly affect cell
viability but impede tumor cell dissemination and further migration.
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The dissemination of cancer cells initiated by the destruction of the cell-cell
adhesions followed by the conversion of E-cadherin to N-cadherin provoke cell
migration and invasion. The cadherin switch induces reorganization of actin fila-
ments and degradation of extracellular matrix through matrix metalloproteinases.
Migration of a single cell involves activation of multiple cell and substratum
adhesion molecules along with the change of cell-polarity and cytoskeletal arrange-
ment (Yilmaz and Christofori 2010). Migrastatic drugs are proposed to target
molecular mechanisms that are common and essential in cancer cell migration and
cannot be bypassed. Therefore, the ultimate downstream effectors like actin poly-
merization and contractility are targeted as prime candidates. Cancer cell migration
and invasion culminate in actomyosin contractility and actin polymerization,
irrespective of the migration modality (Gandalovicova et al. 2017).

Inhibitors of these processes from natural sources are available, which has been
proposed in the past as potential migrastatic agents (Table 2) (Gandalovicova et al.
2017) (Gandalovičová et al. 2020). However, many synthetic compounds developed
against such targets can also be classified as migrastatics depending on their func-
tion. This chapter will discuss the potential targets for such synthetic migrastatic
molecules and focus on few therapeutic agents for future experimental evaluation
and validation.

Potential Targets for Migrastatic Compounds

Metastasis is a process that requires different cellular components, including cyto-
skeletal proteins, focal adhesion proteins, and enzymes, which could have been
potential targets for the migrastatic molecules (Fig. 1).

Cytoskeletal Proteins
Cytoskeletal proteins, namely, the microtubules (MTs), microfilaments (MFs), and
intermediate filaments (IMFs), are involved in many cellular processes, including
migration. Microtubules, the heterodimers of α- and β-tubulins, are consisting of
different isotypes. Different isotypes of tubulin and microtubule-associated proteins
(MAPs) contribute to cancer progression and chemoresistance. Microfilaments are
polymers of actin protein, which exist either as in globular monomers (G-actin) or in
the polymeric filamentous form (F-actin). The continuous turnover between these
two states controls the migration status. An increment in the ratio of globular-
filament actin promotes metastasis in cancerous cells. Actin filaments interact with
myosin to form actin stress fibers, which participate in cancer cell migration.
Intermediate filaments including different polymers, namely, cytokeratin, vimentin,
desmin, glial fibrillary acidic protein, neurofilaments, nuclear lamins, and nestins,
are also involved in cell migration. Epithelial to mesenchymal transition (EMT)
is promoted by reorganization of intermediate filaments, leading to migration,
acquiring a metastatic trait. Another class of cytoskeletal proteins, including cell
adhesion molecules (CAM), catenin, and actin-related proteins, also plays a signif-
icant role in cytoskeletal re-organization (Ong et al. 2020). Direct inhibitors of the
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polymerization and depolymerization process of cytoskeletal protein can be
regarded as potential migrastatics.

Actin-Related Proteins
Seamless turnover of cytoskeletal proteins through polymerization and depolymer-
ization is critical for migration. Several proteins such as Arp2/3, WASP, cofilin, and
others participate and maintain the cytoskeleton turnover rate as required. Arp2/3
nucleates the newly formed actin filament and creates a branched network. Members
from the WASP family (Wiskott–Aldrich syndrome protein) protein help in the
activation of Arp2/3 and actin polymerization (Millard et al. 2004). Cofilin is another
essential regulator of actin dynamic, nucleating actin polymerization. It facilitates

Fig. 1 Components involved in cell migration during metastasis. The figure represents the
migration modalities of cancer cells from the primary site to a secondary site during metastasis.
In the primary tumor site, the tumor cells are bound closely due to the heightened expression of
E-cadherin, N-cadherin, α-catenin, and β-catenin. Gradually, due to the decrease in E-cadherin
expression and β-catenin re-localization, the cells tend to undergo EMT for acquiring a migratory
phenotype. Both collective and single-cell migration are observed during the tumor metastasis. In
single-cell migration, cells undergo MAT and develop migratory protrusion such as lamellopodia
and invadopodia for mobility. Tumor cells secrete MMPs to pass through the dense extracellular
matrix. Besides, proteins such as WASP, cortactin, and LIM kinases are expressed to maintain
mesenchymal phenotype. After reaching the blood vessel, the tumor cells enter the blood vessel
(intravasation) and travel to other nearby organs. The cells leak out through extravasation and reach
the organ to establish as secondary tumor site. Here the cells return to the non-migratory phenotype
via AMT and further MET
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the process of cell migration by interacting with both monomeric and filamentous
actin. LIM kinases are the upstream regulator of cofilin, which phosphorylate, and
inactivate cofilin. Cofilin and LIM kinases have been observed to regulate cancer cell
motility (Zebda et al. 2000). Cortactin can serve as another potential migrastatic
target as it binds and cross-links with actin filament. It directly initiates the nucle-
ation activity of Arp2/3 and stabilizes the newly formed branched actin filament
(Yamaguchi and Condeelis 2007). Tropomyosin binds to the helical groove of the
actin filament and stabilizes the filament actin. Tm5 (hTm5NM1), another isoform of
tropomyosin, recruits myosin II into actin stress fibers. Another isomer, TmBr3,
binds to cofilin and participates in migration (Bryce et al. 2003). Inhibition of these
proteins can disturb the cytoskeletal turnover successfully and, hence, function as a
potential target.

Focal Adhesion Complex Protein
Protein molecules involved in the formation of physical connection between cell-
extracellular matrix or cell-basement membrane are critical regulators of cell migra-
tion. First, of such molecules, integrins (different isoforms of a and b types) mediate
the cellular contact with the ECM components such as fibronectin. Those nascent
structures also recruit other adaptors/scaffold proteins like talin, paxillin, tensin,
p130Cas, and α-actinin to stabilize the focal adhesion complex. Stable focal adhe-
sion complexes generate the necessary contractile force and tension through actin
stress fibers (Nagano et al. 2012). Small molecule inhibitors or active site-specific
antibodies against focal adhesion complex proteins can successfully inhibit their
participation in migration and function as potential migrastatics.

Enzymes and Signaling Protein
Along with the scaffold proteins, multiple enzymes, including kinases, phosphatase,
and proteases, also play essential role during both collective and single-cell migra-
tion. Signaling proteins like tyrosine kinases, Src kinases, and focal adhesion kinase
(FAK) play a vital role in the substratum integrin-mediated signaling cascades. They
transmit the ECM-derived signal to cellular pathways controlling cell migration
through phosphorylation/dephosphorylation of their targets (Nagano et al. 2012).
Protease enzymes, an essential component behind cancer cell invasion and multi-
drug resistance, could be another candidate for migrastatics. Different classes of
proteases, including matrix metalloproteases, serine, threonine, cysteine, and aspar-
tate, help to degrade and remodel intracellular and extracellular matrix (ECM)
proteins. The secretion of cysteine proteases accomplishes podosome-mediated
degradation of extracellular matrix and invasion. Serine proteases like matriptase
are actively involved in the process of angiogenesis and degradation of extracellular
matrix in some epithelial cancer. Cathepsin–D (Cath-D), an aspartic endo-protease,
stimulating proliferation, angiogenesis, and metastasis, is categorized as a prognostic
marker of breast cancer. Procathepsin D promotes the pro-invasive and
pro-metastatic properties in both tumor and stromal cells (Rakash 2012). Matrix
metalloproteinases (MMP) help to degrade the cell-matrix adhesions, thereby
enabling cancer cells to migrate and invade (Martin et al. 2013). MMPs are also
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involved in the preliminary steps of tumor evolution, which include proliferation of
cancer cells and angiogenesis. MMP induction also helps in invasive growth at the
secondary site (Rakash 2012). Successful inhibition of these enzymes can minimize
the migration potential of cancer cells; hence they can be regarded as potential
targets for migrastatics.

Migration-Specific Small GTPase
During migration, cytoskeletal proteins primarily interact with the motor proteins
(specifically myosin) to generate cell surface contractions. Among different classes
of the myosin superfamily, non-muscle myosin II is known to play a critical role in
cellular adhesion and migration (Vicente-Manzanares et al. 2009). The formation of
the actomyosin couple depends on Ca + 2 efflux and the Rho family of small
GTPase. Ca + 2-dependent functionalization of myosin light chain kinase (MLCK)
leads to phosphorylation of myosin light chain (MLC) and formation of actomyosin
complex (Chi et al. 2014). Small GTPase Rho A can also phosphorylate
Rho-associated protein kinase (ROCK), which further phosphorylates MLC2. The
phosphorylated MLC2 promotes actomyosin interaction followed by myosin
ATPase activation (Pandya et al. 2017). ROCK can also activate LIM kinases
leading to the inhibition of cofilin activity and blocking of actin depolymerization.
Myotonic dystrophy kinase-related Cdc42-binding kinase (MRCK), another effector
of actomyosin interaction, can regulate pathways involved in cancer cell migration
along with ROCK (Kale et al. 2015). Another membrane glycoprotein, gp38
(podoplanin or Aggrus,) controls actomyosin contractility in lymphoid fibroblasts
and influences the migration (Quintanilla et al. 2019). Podoplanin also influences the
cytoskeletal contractility, thus promoting invasive amoeboid morphology in mela-
noma cells (de Winde et al. 2020). These small GTPases play a critical role in
migrational plasticity of cancerous cells and can be asserted as potential target for
migrastatic agents.

Potential Migrastatic Compounds

Various known chemicals and pharmacologically active compounds are available,
which can function specifically against the cell migration pathways and hence could
be classified as migrastatics. Several molecules of natural origin are classified as
migrastatics (Table 2) in previous studies (Gandalovicova et al. 2017;
Gandalovičová et al. 2020). However, synthetic and semi-synthetic inhibitors with
similar purposes have not been studied or classified in detail. Therefore, this chapter
focuses on synthetic and semi-synthetic compounds and ascertains their role
migrastatic (Fig. 2).

Myosin Inhibitor
Blebbistatin, a 1-phenyl-2-pyrrolidinone derivative, inhibits non-muscle myosin II
activity, which is required for force generation and contractility during cell migra-
tion. It binds with the myosin-ADP-Pi complex and inhibits the release of the

3170 S. Gayan et al.



phosphate group. Thus, blebbistatin stabilizes myosin II in an actin-devoid state and
inhibits actomyosin crosslinking (Kovács et al. 2004). Recent reports show that it
inhibits pancreatic adenocarcinoma (Duxbury et al. 2004) and E6 glioma cell
(Ivkovic et al. 2012) invasion. In few studies, blebbistatin (5 μmol/L) impedes cell
division and leads to G0/G1 arrest in mesenchymal stromal cells, which needs to be
studied in depth (Sharma et al. 2014) to avoid un-intended cell death.

Arp2/3 Inhibitor
Actin-related protein (Arp2/3) complex interacts with existing actin filament and
nucleates the development of branched filament. Small molecules (such as CK-666
and CK-869) bind to Arp2/3 and inhibit it (Nolen et al. 2009). CK-666 interact with
both Arp2 and Arp3 and block their involvement in the activated filament confor-
mation. CK-666 inhibits the migration of glioma cells (U251, LN229, and SNB19)

Fig. 2 Synthetic migrastatic compounds and their targets in migrating tumor cells. The diagram
shows a migrating tumor cell with various molecules present in its cytoplasm and nucleus that are
responsible for maintaining a migratory phenotype and associated gene expression. The presence of
stress fibers and motility protrusions like filopodia is the hallmark of a migrating cancer cell. Here,
16 synthetic migrastatic compounds have been highlighted along with their specific molecular
target in the cancer cell for inhibiting cell migration (as shown using red arrows). These compounds
are divided into three categories based on their target. The first category of compounds acts on
cytoskeletal elements such as actin and myosin. This category includes TR100 and MKT-077 and
Blebbistatin. The second category of migrastatic compounds acts on molecules involved in the
Rho/Rac signaling pathway such as Rho Kinase, ROCK1, and ROCK2 that get activated during
tumor cell migration. This category involves, Fasudil, PT-262, DJ4, Y-27632, and CCT129254. The
third category acts on molecules other than those in the previous two categories. The action is on
molecules such as dopamine receptors, HDAC 3, MLCK, Arp 2/3 complex, and KRS subunit of
ARS multi complex. The compounds in this category are pimozide, MI 192, fenretinide, ML7,
ML9, SL1910, CK666, CK869, and benproperine. The action that each compound performs on the
target has been mentioned in the bracket below each compound
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(Liu et al. 2013). In prostate cancer cells (DU145), CK-666 did not affect the actin
cytoskeletal structure and the mechanical properties of the cells but impaired their
motility (Efremov et al. 2015). C-869 binds to the hydrophobic core of Arp3,
destabilizing the active site (Hetrick et al. 2013). However, inactivation of Arp2/3
is not enough to influence the cell motility in all types of migratory cells, as CK-666
could not inhibit the migration of A2780 ovarian carcinoma cell (Paul et al. 2015).
Another small molecule, Pimozide, belonging to the diphenylbutylpiperidine group
of drugs, targets dopamine receptor D2 (DRD2) to reduce cell migration and the
dissemination of xenograft tumors in the mice (Jandaghi et al. 2016). Pimozide also
interacts with ARPC2 and inhibits actin polymerization, leading to the disappear-
ance of lamellipodia and inhibited migration. It resulted in detectable cytotoxicity
and could be categorized as valuable a migrastatic (Choi et al. 2019).

Similarly, benproperine (Benp), an FDA-approved antitussive drug, can block
tumor cell dissemination in pancreatic and colorectal cancers through ARPC2
binding. In addition, in liver metastasis model, Benp significantly inhibited the
metastasis of colon cancer to the liver (Yoon et al. 2019). Thus, these molecules
can suppress tumor growth and dissemination into the major organs like the liver,
kidney, and colon, as observed in an orthotopic mouse model.

Tropomycin Inhibitor
Development of anti-tropomycin compound targets different isoforms of tropomy-
osin and effective against melanoma, neural crest-derived tumor cell lines, and
neuroblastoma cells. At a sublethal dose of 3 mmol/L, TR-100 impacted the migra-
tion of cancer cells in the 2D and 3D conditions (Stehn et al. 2013). In addition, this
lead compound shows minimal effect on cardiac cells, which is a matter of concern
for anti-actin drugs.

Inhibitors of Rho-Kinase (ROCK)
Fasudil (1-(5-isoquinolinesulfonyl)-homopiperazine) is the first developed inhibitor
of Rho-kinase, (Yamaguchi et al. 2006) and inhibits the progression of tumor in the
syngeneic peritoneal dissemination model, lung metastasis model, and the breast
cancer orthotopic model. The prodrug Fasudil gets converted to 1-(hydroxy-5-
isoquinoline sulfonyl-homopiperazine) (fasudil-OH) after the cellular entry and
interacts with the phosphate loop of Rho-kinase. The prodrug showed more potency
in inhibiting the migration of MDA-MB-231 and HT1080 cells (Ying et al. 2006). It
also successfully inhibited the migration of urothelial cancer cells (5637 and
UM-UC-3) (Abe et al. 2014) and breast cancer cell (MDA MB 231) (Guerra et al.
2017). Another ROCK kinase inhibitor Y-27632, a pyridine derivative, inhibits
actomyosin contraction (Uehata et al. 1997) and disrupts tumor cell motility and
chemotaxis in human prostate cancer cell lines (Somlyo et al. 2000). Y27632
treatment also reduced in vitro and in vivo breast cancer migration to bone (Liu
et al. 2009). However, in a contradictory report, ROCK inhibition is observed to
promote migration of breast cancer cells (MCF-7) in both 2D and 3D environments
(Yang and Kim 2014). Y27632 blocked the migration of human tongue squamous
cell carcinoma cells (Tca8113 and CAL-27) (Wang et al. 2016). Similarly, another
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ROCK kinase inhibitor, PT-262 (7-chloro-6-piperidin-1-yl-quinoline-5,8-dione), a
derivative of 5,8-quinolinediones, induces cytoskeletal remodeling. It inhibits
ROCK-mediated phosphorylation of the MLC and formation of stress fibers, thus
inhibiting migration of lung carcinoma cells. In A549 lung carcinoma cells, PT-262
is found to be more effective than Y27632 or H-1152 (Tsai et al. 2011). Another
inhibitor of ROCK RKI-1447 binds to the ATP site of ROCK 1 and selectively
inhibits the phosphorylation of ROCK substrates such as MLC-2 and MYPT-1. It is
seen to inhibit tumor growth and initiates tumor regression in ErbB2-driven breast
cancer mouse model. It inhibits migration and mammosphere formation of breast
cancer cells (MDA-MB-231 and MDA-MB-468) and lung cancer cell line (H-1299)
(Patel et al. 2012). A multikinase inhibitor DJ4 {(5Z)-2–5-(1H-pyrrolo[2,3-b] pyr-
idine-3-ylmethylene)-1,3-thiazol-4(5H)-one} selectively inhibits the Rho-kinases,
ROCK1, and ROCK2 in addition to myotonic dystrophy kinase-related Cdc42-
binding kinases (MRCKα and MRCKβ). DJ4 significantly blocked the formation
of stress fibers and inhibited cell migration in non-small-cell lung cancer (A549,
CCL-185; H522, CRL-5810; H23, CRL-5800; H2126, CCL-256; H460, HTB-177),
melanoma (A375M, CRL-1619), pancreatic cancer (PANC-1, CRL-1469), breast
cancer (MDAMB-231, HTB-26), and glioblastoma (U251) cell lines. Combined
inhibition of ROCK and MRCK has a much potent effect in inhibiting metastasis
compared to the inhibition of either kinase individually, which may hold DJ4 as a
more promising migrastatic drug across a broad spectrum of cancer types (Kale et al.
2015). CCT129254 and AT13148 are another class of AKT inhibitors that also
inhibits ROCK 1 and ROCK 2. They impair both amoeboid and mesenchymal
modes of invasion in melanoma cells and inhibit cell proliferation (Sadok et al.
2015).

Actin Filament-Related Inhibitor
Inhibition of actin polymerization through synthetic and semi-synthetic molecules
emerges as a critical approach for migrastatic. A synthetic actin inhibitor MKT-077
(1-ethyl-2-[[3-ethyl-5-(3-methyl-2(3H)-benzothiazolylidene)-4-oxo-2-thiazolidinylidene]
methyl]-pyridinium chloride) shows antitumor activity in cancer cell lines like colon
carcinoma (CX-1), breast carcinoma (MCF-7), pancreatic carcinoma (CRL142O)
(Koya et al. 1996). It crosslinks with actin leading to the bundling of the actin
filament and thus blocking membrane ruffling. In Ras-transformed neoplastic cells, it
has the advantage of binding with p45 and p75 but not in normal parental cells
(Tikoo et al. 2000). The semi-synthetic derivatives of Latrunculin, C-17 hydroxyl,
and thiazolidinone nitrogen, inhibitors of actin polymerization, successfully modu-
late the binding affinity of G-actin. They exhibit anti-invasive effects in breast
carcinoma (MDA MB 231 and MCF-7 cells) (Khanfar et al. 2010).

MLCK Inhibitor
MLCK-mediated phosphorylation of the myosin II influences its activity which leads
to contraction, motility, and cytoskeletal remodeling. MLCK inhibitors such as ML-7
and ML-9 inhibit the phosphorylation of myosin regulatory light chain and activation
of myosin II which prevents migration of rat prostatic adenocarcinoma (R-3327-AT-1)
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(Tohtong et al. 2003) and human glioma cells (U251MG) (Gillespie et al. 1999).
ATPR (retinoid 4-amino-2-trifluoromethyl-phenyl ester), a synthetic retinoic acid
derivative, downregulates the expression of MLCK and phosphorylation of MLC
protein through the p38-MAPK pathway inhibiting the migration of breast cancer
cells (MDAMB 231) (Wang et al. 2013). Another synthetic analog of all trans retinoic
acid (ATRA) known as 4-HPR or fenretinide hinders migration of human liver cancer
cells (HepG2) by inhibiting the activation and expression of MLCK (Zhang et al.
2018). Two synthetic derivatives of curcumin, ST03 (1,2-bis[(3E,5E)-3,5-bis
[(2-chlorophenyl)methylene]-4-oxo-1-piperidyl]ethane-1,2-dione) and ST08 ([4-[(E)-
[(5E)-1-[2-[(3E,5E)-3,5-bis[(4-hydroxyazonylphenyl)methylene]-4-oxo-1-piperidyl]-
2-oxoacetyl]-5-[(4-hydroxyazonylphenyl)methylene]-4-oxo3-piperidylidene]methyl]
phenyl] azinic acid), exhibit migrastatic properties by inhibiting migration of the breast
(MDA-MB-231) and ovarian cancer cell lines (PA-1) (Koroth et al. 2019).

Protein Enzyme Inhibitor
Synthetic inhibitors of cellular enzymes can also act as migrastatic molecules. For
example, an inhibitor of histone deacetylase 3 (HDAC3), MI-192, is involved in
tubulin’s epigenetic regulation and microtubules’ stabilization. It inhibits the migration
of adult glioma cell (U251 and KNS42) spheroids embedded in collagen (Harmer et al.
2019). SL-1910 (N, N-dialkylthiazolo [5,4-b] pyridine-2-amine), a novel potent
migrastatic drug, directly interacts with KRS (Lysyl-tRNA Synthetase). KRS, a
Class II aminoacyl-tRNA synthetase, gets phosphorylated and stabilizes laminin
receptor (67LR) in the laminin signaling pathway to stimulate cell migration.
SL-1910 inhibits breast cancer cell migration in both in vitro (MDA MB-231) and
in vivo 4 T1 xenograft metastasis models without detectable toxicity (Lee et al. 2021).

Probable Problems with Migrastatic Candidates as Anticancer Drugs

Irrespective of the successful preliminary reports, migrastatic compounds may have
few drawbacks that need to be addressed before embracing them as a potential
anticancer drug. Rigorous evaluation of these compounds needs a detailed analysis
of their effect on different aspects of cellular behavior, including cell division,
migration, cell-cell interaction, and others. Additionally, a functional model for metas-
tasis is needed to assess their impact on migration pathways. Such a model should
indeed recapitulate the cancer cell plasticity and include different modes of migration.
Traditional 2D cell cultures that cannot incorporate such vast modalities should be
replaced with advanced 3D and microfluidics models. The successful development of
human-relevant 3D tumor models and tumor-on-chip is required to fill this gap.

Developing ideal xenograft models to screen migrastatics would be the next
technical hurdle. Another problem would be the identification of predictable bio-
markers and quantitative measures to analyze the expected effects. Developing
advanced imaging tools to study the impact of drugs and monitoring metastasis in
the in vivo model will be another matter of concern (Kale et al. 2015).

While choosing a target, all the undesirable effects of inhibiting the target should be
kept in mind so that it does not cause harm to the cancer patient. As migrastatic drugs
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will be targeting cancer cell migration, the intermittent application will be anticipated.
So, the requirement of low cytotoxicity should be a point of concern compared to
conventional cytotoxic drugs (Gandalovicova et al. 2017). As migrastatic drugs will be
targeting actin polymerization and cellular contractility without any specificity, the
non-cancerous cell can also be a bystander target. Cells involved in migration such as
stem cells, lymphocytes, macrophages, dendritic cells, fibroblasts, and others could be
the unintended target for such molecules. Depending on the nature of the inhibitors
(targets involved in the collective or single-cell migration), the “bystander effect” can
be assumed and utilized to measure the toxicity score. For example, potential inhib-
itors of collective migration can inhibit typical wound healing within a cancer patient
and delay the fibroblast-mediated scar tissue formation. Deregulation in cell migration
may also lead to pathological conditions like inflammation (Pijuan et al. 2019).

Furthermore, such inhibitors may hamper other critical biological processes like
gastrulation, organogenesis, neurogenesis, tissue homeostasis, and immune cell traffick-
ing, which must be considered and weighed judiciously against the risk of metastasis.

Future Perspective and Conclusion

Migrastatics are a new class of drugs that primarily targets actin polymerization and
contractility, the significant proponents of all kinds of cancer cell migration. The
purpose of introducing migrastatic is not to completely replace cytotoxic or cytostatic
drugs but rather to use them in synergy with other drugs. The therapeutic stratagem of
combinatorial therapy using migrastatics with other traditional anticancer drugs might
prove more effective in treating cancer while reducing chemoresistance and side effects.
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