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Sleep Monitoring in Adults Using
Wearables and Unobtrusive Technology
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and Carolina Varon

Abstract Sleep is a complex physiological process that plays a fundamental role in
maintaining homeostasis and overall health. It has an internal structure characterized
by sleep stages, which is often affected by either the high demands of the current
24-h society or by different sleep disorders such as sleep apnea. These disturbances
to the regular sleep structure have been strongly associated with reductions in cog-
nitive and behavioral performance, attention deficit, depression, nocturia, memory
loss, snoring, and cardiovascular diseases. Therefore, it is crucial to identify sleep
problems in an early stage before the overall health is compromised in an irreversible
way. Currently, sleep disorders are diagnosed using polysomnography (PSG), which
is the gold-standard sleep test usually recorded in a sleep laboratory. This test is
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often associated with elevated costs and reduced comfort. With this in mind, many
studies have focused on the development of wearables and unobtrusive technologies
that can be used at home and that can monitor sleep during more than one single
night. This chapter discusses unobtrusive state-of-the-art sensors and algorithms for
sleep monitoring in adults, with a special focus on heart rate, respiration, and blood
oxygenation monitoring.

8.1 Physiological Background of Human Sleep

Sleep is a natural, though complex process, which follows an internal architecture of
alternating states. As such, sleep cannot be described by a single state of the body.
Instead, it consists of different sleep stages. These sleep stages are associated with
characteristic patterns at cerebral, cardiac, and respiratory levels. However, sleep
disorders could alter these characteristics. Therefore, the detailed analysis of one’s
sleep architecture could serve the detection of these sleep disorders.

8.1.1 Sleep Stages

Sleep stages and their characteristics were first defined by Rechtschaffen and Kales
(R&K) in 1968 [132]. Later in 2007, the American Academy of Sleep Medicine
(AASM) updated these R&K rules and published a manual for sleep scoring and
associated events [26]. These sleep scoring rules are based on patterns andwave char-
acteristics found in the electroencephalogram (EEG),1 the electrooculogram (EOG),2

and the chin electromyogram (EMG).3 To facilitate the analysis, input signals are
scored in consecutive windows of 30s, which are referred to as epochs [132]. Every
epoch is scored with one of the five sleep stages defined by the AASM. These
stages are Wakefulness (W), Rapid Eye Movement sleep (REM sleep), and non-
REM (NREM) sleep 1, 2, and 3 (respectively N1, N2, and N3). Usually, stages N1
and N2 are referred to as light sleep and N3 as deep sleep [138].

Apart from patterns in the EEG, EOG, and EMG signals, differences in sleep
stages are reflected in the regulation of both branches of the autonomic nervous sys-
tem (ANS), namely, the parasympathetic nervous system (PNS) and the sympathetic
nervous system (SNS) [104]. As such, distinct characteristics can be observed as well
at cardiac, respiratory, and cardiorespiratory levels during NREM and REM sleep.
These characteristics have been exploited for the development of ambulatory systems

1 The EEG captures the electrical activity from the brain, commonly obtained from the scalp using
surface electrodes.
2 The EOG records the electrical signal caused due to the opposite polarity between the front and
back of the eye, which acts as a dipole.
3 The EMG records the electrical activity of the muscles.
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for sleep monitoring. The reason for this is that cardiac and respiratory information
can be extracted from the Electrocardiogram (ECG),4 which can be easily recorded
using wearable and unobtrusive technology. This is exactly the focus of this chapter;
therefore, an overview of these characteristics or physiological changes during sleep
stages is presented next.

8.1.1.1 NREM Sleep

It is very well-known that during NREM sleep, the PNS activity dominates over
the SNS [104]. Compared to wake, the breathing frequency increases, though the
variability is reduced. This is accompanied by a reduction in tidal volume,5 resulting
in a breathingwhich ismore shallow and rapid [57]. Between different NREMstages,
there is no significant difference in tidal volume and breathing frequency; however,
respiration becomes more regular during deep sleep compared to light sleep [57].

Due to the high activity of the PNS during NREM, bradycardia emerges and
the heart rate reaches a minimum during N3 [104, 153]. Additionally, heart rate
variability (HRV) is lower during N3 compared to REM and wake, and regular oscil-
lations can be observed during N3. These oscillations are associated with respiratory
sinus arrhythmia (RSA), which is the modulation of the heart rate (HR) with respi-
ration. Spectral analysis of the tachogram during NREM reveals a decrease in the
low-frequency (LF) band (0.04-0.15Hz) and an increase in the high-frequency (HF)
band (0.15–0.4Hz) of the HRV [165].

8.1.1.2 REM Sleep

REM sleep is characterized by muscle atonia, increased physiological activity, and
the act of dreaming. During this sleep stage, the PNS is more active compared to
the wake. Nevertheless, phasic fluctuations in SNS and PNS activity occur during
REM sleep. As such, important distinctions exist between tonic and phasic REM
sleep epochs [114]. During tonic REM, the SNS activity drops even below NREM
levels, while during phasic REM, the SNS becomes very active and variable [104].
Characteristic rapid eye movements are also only present during phasic periods.

On a respiratory level, both tonic and phasic REM exhibit a decrease in ventilation
due to a reduction in ventilatory drive. In general, the respiratory system becomes
unstable as the depth of breathing becomes highly variable [57].

A general increase in cardiovascular instability is an important feature of REM
sleep. During tonic REM sleep, there is marked bradycardia and hypotension, result-
ing in a decrease in HR and blood pressure (BP) even below levels of NREM sleep.
On the other hand, phasic REM sleep epochs are characterized by great transient
increases in HR and BP, produced by a phasic increase in the SNS [20].

4 The ECG records the electrical activity of the heart.
5 Tidal volume corresponds to the volume of air inspired/expired with each breathing cycle.
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These phasic fluctuations during REM sleep result in the instability of cardiovas-
cular and respiratory parameters. Therefore, REM sleep epochs can exhibit a great
variety in cardiac and respiratory characteristics among each other.As a consequence,
the detection of REM sleep epochs presents a more challenging task for automated
sleep scoring algorithms compared to deep sleep.

8.1.2 Sleep Architecture

For healthy persons, a normal night of sleep consists of five to six cycles, where REM
and NREM phases are alternated with occasional awakenings. A hypnogram is the
visualization of a person’s sleep architecture over time. The hypnogram of a healthy
adult is depicted in Fig. 8.1a. One cycle typically lasts for 90–110min. An initial
wake period is followed by light sleep, where a person transients from N1 to N2.
Thereafter, deep N3 sleep is reached. The cycle is terminated with a phase of REM
sleep. In this fashion, NREM and REM alternate throughout the night,; however,
their relative distribution changes. The duration of NREM sleep decreases and is
compensated by an increase in REM sleep. Within NREM sleep, the portion of N3
will drop, though replaced by lighter N2 sleep. During final cycles, N3 may not even
occur. The average distribution of different sleep stages throughout the night is given
in Table8.1. A longer sleep time will lead to an increase in REM sleep. The effect
of aging will lead to a decrease in total sleep time as awakenings will occur more
often. In patients with obstructive sleep apnea (OSA), the amount of REM and N3
sleep will be heavily affected due to arousals, which result in fragmented sleep. A
hypnogram of an adult with severe OSA is depicted in Fig. 8.1b.

(a) (b)

Fig. 8.1 a Hypnogram of a healthy adult. b Hypnogram of an adult with severe OSA
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Table 8.1 Average sleep stage distribution for a healthy young adult

Sleep stage Wake REM NREM N1 N2 N3

Time in bed 5% 20–25% 75–80% 2–5% 45–55% 13–23%

8.2 Polysomnography at a Sleep Laboratory

The gold-standard test in sleep medicine is polysomnography (PSG). This test is
typically carried out for one night at a sleep laboratory during which several physio-
logical signals are measured while the subject is sleeping with the aim of evaluating
one or more aspects of their sleep. Within the most common purposes of a PSG
study, one can find the evaluation of sleep quality, the identification of sleep stages,
sleep-wake activity, and the diagnosis of sleep disorders such as OSA.

It is still common clinical practice to evaluate the PSG by manual scoring of sleep
stages and events (e.g., apneas) according to the AASM rules. By using multiple
physiological and contextual signals recorded in a PSG, characteristic patterns can
be identified, allowing to score these events. The most common signals recorded
during a PSG test are listed below. In some cases, these signals can vary depending
on the specific sleep laboratory.

EEG: This set of signals is mainly useful in the identification of sleep stages,
and hence helps to determine arousals and the wakefulness of the patient. This is
done by evaluating characteristic waves in different frequency domains: Delta (3Hz
or lower), Theta (3.5–7.5Hz), Alpha (7.5–13Hz), and Beta (14Hz or greater). For
example, Delta activity is observed during N3 sleep, Theta activity is characteristic
of REM sleep, Alpha activity is used as a marker of relaxed wakefulness, and Beta
activity is often observed during wakefulness and drowsiness.

EMG: In a PSG test, the EMG can be obtained from different locations such as
the chin and the limbs. The measurement of chin EMG provides an indication of
muscle tone, which is reduced with sleep onset and is very low during REM sleep
[15], whereas limb EMG can help to identify periodic limb movements, which can
be an additional cause of sleep disturbance [15].

EOG: The potential obtained in this signal provides an objective measurement of
eye movement and is useful in the identification of REM sleep and the sleep onset.
Sleep onset is characterized by slow and rolling eye movements with a symmetric
onset and offset, whereas in REM sleep, sharp rapid eye movements can be observed
which are more asymmetric with a fast onset and a slow offset [15].

ECG: At least 1 ECG lead (commonly lead II) is recorded during PSG. ECG
signals are useful for the identification of cardiac comorbidities but can also provide
information on disturbances of the heart rhythm caused by sleep-related disorders.

Audio: Recording sounds by using a microphone placed in the neck near the
trachea can be used to detect snoring and other tracheal sounds [15]. Recording
sound in the PSG room (e.g., the audio registration of the video), on the other hand,
can be useful as additional information to verify the nature of arousals and other
events.
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Respiration: A direct measurement of airflow via a pneumotachograph is the
gold-standardmethod tomeasure respiration and define apneas [62]. For thismethod,
the use of a mask is necessary; therefore, it is only used in combination with thera-
peutic positive airway pressure (PAP) devices. In clinical practice, the combination
of a nasal pressure sensor and an oronasal thermistor is the standard used for diag-
nostic PSGs. These measurements are more comfortable for the patient and provide
an approximation of the airflow exchange. The end-tidal CO2 is also an interesting
parameter, this is the concentration of CO2 at the end of an exhaled breath. Reliably
measuring the end-tidal CO2 is, however, difficult. Therefore, transcutaneous CO2

measurements are often used.
Respiratory effort:This is commonlymeasured by belts around the abdomen and

thorax using respiratory inductance plethysmography (RIP). These signals provide
information related to the respiratory effort, and hence also play an important role
when diagnosing breathing-related sleep disorders.

Oximetry: The standard measurement of the blood oxygen saturation (SpO2)
during a PSG is done bymeans of an opticalmeasurement in transmissionmode. This
is typically done with a sensor at the fingertip but can also be measured in alternative
locations (e.g., earlobe). The SpO2 measurement has been defined as a mandatory
signal for quantifying the apnea-hypopnea index (AHI) used tomeasureOSAseverity
[44] (together with respiration and EEG). This measurement is accompanied by
a pulse photoplethysmography (PPG) signal, which also provides cardiac-related
information such as HR.

Body position and behavioral observation: This provides additional diagnostic
information, as some sleep disorders are influenced by the orientation during sleep
[15]. Position can be monitored with sensors, but also by video recording, the latter
being the most common in standard PSG.

The signals listed above are an important source of information that allows to
obtain a complete picture of the person’s physiology during sleep. This facilitates
the task of diagnosing and following up sleep-related conditions. Nevertheless, it has
several disadvantages related to patient comfort, the test cost, and the availability of
sleep laboratory beds. The rather obtrusive sensors that need to be attached to the
patient, combinedwith the unusual sleep setting and possible sensor verification from
the nursing staff, significantly reduce patient comfort during the night. This leads to
a suboptimal setting when aiming to evaluate a typical night of sleep. In addition, the
PSG procedure implies a high cost, not only because of the equipment required for
the recording of the signals and the sleep laboratory installations, but also because
of the need for the test to be supervised and annotated by trained personnel. This
high cost causes a limited number of beds available for PSG studies when compared
to the high prevalence of sleep-related disorders. These limitations have motivated
the development of sleep monitoring systems for home monitoring, which will not
only tackle these challenges but will also allow multiple night monitoring. Devices
for home monitoring have the potential to enable a broader patient screening, early
detection of sleep-related conditions, and a longer follow-up.
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8.3 Wearables and Unobtrusive Technologies for Sleep
Monitoring at Home

8.3.1 Out of Center (Home) Poly(somno)Graphy Devices

Extended home sleep monitoring can be done using PSG-like devices adapted in
size to enable its use at home. These measure a reduced set of the most important
physiological signals from a standard in-lab PSG and can be denominated “Out of
Center” (OOC) PSG portable devices [44]. When no EEG is included for the correct
measurement of sleep, the devices are classified as polygraphy (PG) rather than PSG.

Multiple of these are currently available in themarket and can be classified accord-
ing to the number of signals that are measured. An initial classification scheme based
on this principle was proposed by the AASM in 1994 [40]. An updated AASM clas-
sification scheme was proposed by Collop et al. [44] in 2011, with the aim to better
classify new emerging portable sleep monitoring devices. This classification is done
based on measurements of Sleep, Cardiovascular, Oximetry, Position, Effort, and
Respiratory (SCOPER) parameters. For a review on some of the OOC devices, the
reader is referred to [44, 62].

An example of a PG OOC device is shown in Fig. 8.2. These devices allow to
monitor some of the main PSG signals at the cost of a certain degree of discomfort
for the patient, as most require strapping devices to the chest or head and even using
a nasal cannula. This remaining discomfort can limit the monitoring time and affect
the measurement.

Fig. 8.2 Example of portable PG OOC device for home sleep monitoring. Courtesy of Philips
Respironics, all rights reserved
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The need for an even higher comfort than the one provided by PG OOC devices,
lower cost, and longermonitoring time has led to the recent development ofwearables
and sensors placed around the patient. These sensors not only measure less signals
than an in-lab PSG, but also measure these either in a less obtrusive way or by
applying an indirect measurement of some of the physiological parameters. This has
been accompanied by the development of application-specific algorithms based on
robust signal processing and machine learning techniques, to monitor some of the
main sleep disorders such as OSA.

8.3.2 Home Sleep Monitoring with Unobtrusive Sensors

With the advance andminiaturization of electronics over the last decades, more com-
pact and less obtrusive devices have been developed. These have further enabled the
monitoring of physiological signals in non-clinical settings in the form of wearables
and sensors around the patient. Application-specific integrated circuits have played
a crucial role in the electronics being used for ambulatory healthcare monitoring.

The main areas of wearables and unobtrusive technologies that are available for
sleep-related monitoring in non-clinical settings (i.e., at home) with an increased
comfort include the following: Actigraphy, portable EEG devices, portable ECG
devices and patches, ballistocardiography (BCG) devices, radar-based monitoring,
and capacitively coupled biopotentials. It is worth noting that these technologies
vary in the accuracy of the target measurements and their relevance to specific sleep-
related disorders. These bring different levels of increased comfort, while in some
cases compromising the sensitivity to artefacts caused bymotion, sensor positioning,
and other uncontrolled factors typical in a home setting.

Although important work has been done in the evaluation of the usefulness of
some of these technologies related to specific sleep monitoring purposes, additional
validation is still required in order to assess the performance of these technologies on
their own, or combined with others, and of application-specific algorithms that have
been developed for these. An overview of the different wearable sensor technologies
listed above is provided next.

8.3.2.1 Actigraphy

Actigraphy devices aim to measure the movement from the limbs and/or torso of the
person during sleep. The measurement of movement has been identified as impor-
tant in sleep-related conditions as it can provide information regarding the state of
the person, which can be related to physiological changes [105]. In this way, dif-
ferent types of movements can be identified as normal or abnormal and can give
information which, if correctly analyzed, can aid in specific diagnosis and sleep
characterizations. Parameters that can be estimated from actigraphy measurements
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include sleep quality, latency, duration, efficiency, fragmentation, circadian rhythm,
sleep-wake periods, and activity levels [105].

The AASM indicates in their guidelines that actigraphy is reliable in measuring
sleep for healthy adults [120].Nevertheless, these devices only allow togather general
sleep information, as detailed data of sleep-wake physiology are not included [27]. In
addition, there are several limitations in different areas including sensor placement,
the number of axes and sensors, sensitivity for wake periods [27, 105], data quan-
tification modes, validation, and scoring algorithms. A more detailed description of
these limitations is provided in [105], as well as an overview of the main contributors
to actigraphy scoring algorithms.

The most common measurement of actigraphy is the use of a multi-axial
accelerometer worn around the wrist (i.e., wrist actigraphy). Other locations that
have been studied include the diaphragm, the chest, the leg/ankle, and the trunk
[21, 79]. In addition, some smartphone applications use the information from the
accelerometer included in the phone when the latter is placed on top of the mattress,
but these are expected to be less accurate [27].

Examples of commercially available wrist-based actigraphy devices include the
Apple Watch, Biostrap, Empatica, Fitbit, Garmin Vivosmart, Whoop, Xiaomi, Lark,
and Sleep Tracker. Currently, there is a high number of actigraphywrist-worn devices
in themarket [105, 140], most of whichmeasure at least one additional physiological
parameter, with PPG-based heart rate being the most common one. The main differ-
entiators between actigraphy devices are as follows: (a) the availability of raw data
for the development of new algorithms, (b) the type of scoring algorithm tackling a
specific sleep-related condition, and (c) proper clinical validation against the PSG
gold standard.

8.3.2.2 Portable EEG Devices

In contrast with actigraphy measurements, EEG can provide more physiological
information. The challenge in portable EEG monitoring is that the unobtrusiveness
of these devices is rather limited or implies a compromise in the type of EEG signals
that can be acquired, depending on electrode positioning and electrode-tissue inter-
face. Standard EEG monitoring at the PSG laboratory is performed with glued-on
electrodes. Frontal, central, and occipital derivations are recorded. A full EEG with
a complete “10–20” electrode set is barely performed in sleep labs. Nonetheless, the
reduced electrode set that is used still implies discomfort to the patient and requires
installation by trained personnel.

Because of the lower comfort of using a hat-like device at home during multiple
nights, the difficulty for correct electrode placement, and considering the added
value of monitoring EEG for sleep-related disorders, more compact devices have
been designed. These devices aim to monitor a limited set of EEG data with a
reduced discomfort for the patient. Some of these are available as individually glued
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electrodes [45] and collect one or two EEG channels together with other PSG signals,
but still require training for a correct installation; these could be categorized as OOC
PSG-like devices as described in Sect. 8.3.1.

Other more portable options include the use of headbands [2, 4–6, 9] which
also record EEG signals from a subset of dry electrodes distributed in the band.
Although these collect EEG, not all of them provide the raw data, as some focus on
their functionality as a sleep tracker or “sleep coach”, with the purpose of providing
feedback on the activities previous to sleep, guide respiration exercises, and emit
tones in different frequencies, among other feedbackmechanisms that aim to increase
the quality of sleep.

Hardware implementations with even higher comfort have been studied by acquir-
ing the EEG signals from around-ear [28, 50] and in-ear [69, 82, 113] electrodes.
Some commercial products include these implementations with purposes of produc-
tivity increase [172] or as an application-independent platform [107]. Ear EEG has
even been tested for sleep monitoring purposes. Results indicate that the automatic
sleep scoring using these sensors can reach an accuracy close to that achieved by
manual scoring of scalp EEG [113].

8.3.2.3 Portable ECG Devices and Patches

Portable ECG monitoring has seen a big advancement in the last decade. Holter
monitors that allow to record up to a 12-lead ECG have become smaller, and hence
these could be used as part of a solution to perform sleep monitoring at home.
Similarly, small form-factor PG devices currently offer the capability of monitoring
multiple ECG leads. The main disadvantage in comfort that a Holter or PG device
implies relies on the use of wires connecting individual contact electrodes with the
recorder unit. To overcome this, miniature ECG recorders have been developed in
the form of a chest patch. These allow to conveniently monitor one lead (or few
leads) without the discomfort of using cables by using a relatively small patch as
the one shown in Fig. 8.3. This type of patch can be worn for up to 1 or 2 weeks
and enable a more comfortable way of ECG monitoring, which could be of added
value for home sleep monitoring. Within the available ECG patches in the market,
one can find the MCOT [75] from Biotelemetry inc., Zio XT [157] from iRythm,
and an investigational device from VivaLNK [152], among others.

As an alternative to ECG patches, there are also solutions based on tight chest
bands and t-shirts that use dry electrodes, which could also be a source of ECGduring
a night of sleep monitoring.

These signals also have the potential to be a source of respiratory activity by
computing the ECG-derived respiration (EDR), when aiming to perform home sleep
monitoring with a reduced subset of signals.
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Fig. 8.3 Example of ECG chest patch

8.3.2.4 Optical Pulse Monitoring: PPG and SpO2

Another way of measuring cardiac activity is by means of an optical pulse readout
using PPG in either transmission or reflection mode. This allows to obtain the pulse
information, hence providing a source of heart rate monitoring. In addition, given
an adequate location of the sensor, the use of the correct wavelengths, and dedicated
algorithms, SpO2 can also be monitored.

Besides the standard finger-based PPG/SpO2 monitors, wearables monitoring
PPG generally have the form factor of a smartwatch or smart bracelet with an
optical readout in the back. There are currently multiple commercial offerings of
smartwatches that monitor PPG, including brands such as Fitbit, Apple, Huawei,
Samsung, Garmin, and Polar among others. Some of these have lately added SpO2

functionality to their offering and are even seeking FDA approval. This addition
could play an important role in home monitoring of sleep-related conditions such
as OSA. A review of developments and challenges of wearable PPG is provided in
[32]. Other investigational devices available in the market that measure PPG signals
include small wearable units such as the ones offered by Byteflies [3], which also
offer units that can be used for ECG monitoring in the form of a patch.

Compared to ECG signals, PPG signals have a less sharp characteristic andmay be
more challenging to processwhen trying to obtain accurate beat-to-beat HR andHRV
metrics, but these have the advantage of potentially enabling SpO2 measurements,
which is of added value in sleep-related conditions.
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Fig. 8.4 Example of pressure-based sensors for heart and respiratory activity

8.3.2.5 Ballistocardiography and Pressure-Based Devices

Another way to obtain cardiac data is via BCG, which aims to monitor small move-
ments or changes in pressure at the body surface (e.g., chest, back, ...) with the aim of
deriving HR and even trying to obtain beat-to-beat HR and HRV. The same principle
can be used to monitor respiratory activity, as this causes a change in pressure of the
torso in the bed, for the case of sleep monitoring.

The advantage of being able to obtain respiratory and cardiac-related signals from
one type of sensor has led to multiple companies offering pressure-based sleepmoni-
toring solutions. The company Beddit (now bought by Apple) offers a piezoelectric-
based sensor [1] that monitors average HR, average breathing rate, and snoring
sounds (recorded via the microphone of the connected smartphone) and provides
metrics of sleep time, bedtime, time to fall asleep, time away from the bed, wake-up
time, and sleep efficiency. Similarly, Withings offers a sleep tracking mat [170] to be
placed under the mattress, which detects snoring, performs heart rate and respiration
rate tracking, and provides a sleep quality assessment within a coaching program.
The company mentions it can also help identify signs of OSA. Another mat-based
solution is offered by Emfit, with a sensor also placed below the mattress that aims to
measure HRV, respiratory activity, and respiratory effort [59]. This sensor is shown
in Fig. 8.4.

BCG setups for heart activity and pressure-based respiratory activity have thus the
advantage of not requiring direct contact with the body. Nevertheless, the extracted
heart activity tends to be less accurate than that of an ECG signal (and even of
PPG signal) due to the motion-based measurement, as opposed to the electrical
or optical-based measurements of the ECG and PPG. In addition, motion during
sleeping can distort the measurements, and patients with high BMI are likely to
cause sensor saturation [72]. The question of whether these unobtrusive signals can
be used for monitoring specific sleep-related conditions needs to be answered with
real-life validation studies.



8 Sleep Monitoring in Adults Using Wearables and Unobtrusive Technology 193

8.3.2.6 Radar-Based Monitoring

A different technology that also aims to monitor the chest movement to extract
respiratory and cardiac activity is the use of radar signals. This technology sends
radiofrequencywaves that are reflected in the person’s skin. The phase of the signal is
modulated by the physiologicalmovement, generating a phase difference between the
emitted and received signals,which is then used to calculate the distance changes. The
waves aremainly pointed to the chest or the back of the torso. Electromagnetic signals
of different frequencies have been used for this purpose, with higher frequency and
power resulting in higher sensitivity to small displacements [123].Carrier frequencies
betweenhundreds ofMHzup tomore than 200GHzhave been used [92].More details
on the use of radar signals for vital signs monitoring can be found in the work of
Kranjec et al. [86], Li et al. [92], and Mercuri et al. [111].

Radar technology has been demonstrated to be able to monitor respiratory and
cardiac activity [91, 123, 128]. It has the advantage of monitoring through non-
metallic obstacles [86] placed relatively far from the subject. Nevertheless, it is
commonly affected by motion artefacts [92], and the acquisition of beat-to-beat HR
is more challenging than when using an ECG signal.

Some radar-based solutions are available commercially, including the S+ device
by ResMed [135], which monitors breathing and movement, and provides a sleep
report based on these measurements. The device has not been tested for the moni-
toring of specific sleep-related conditions at the moment of writing this chapter, but
it is mentioned that it monitors the sleep stages to create a personalized sleep chart.
Similar radar-based devices have been tested with promising results regarding sleep
stage classification [41].

8.3.2.7 Capacitively Coupled Biopotentials: ECG
and Bioimpedance-Based Respiratory Activity

Considering the discomfort of using contact electrodes tomonitor biopotentials (e.g.,
ECG), the capacitively coupled acquisition of these signals is a technology that has
gained interest. The main physiological signals that could be useful in a sleep moni-
toring setting and can be acquired in a capacitively coupledmanner include the capac-
itively coupled ECG (ccECG) and capacitively coupled bioimpedance (ccBIOZ) for
respiration monitoring.

These measurements are done by replacing the skin-electrode galvanic contact
with capacitive coupling, hence enablingmonitoring through clothing and bedsheets.
In this coupling, the skin forms one “plate” of the capacitor, a conductive surface
forms the second “plate” of the capacitor, and any non-conductive materials between
these conductive surfaces form the dielectric. This completes the standard structure
of a capacitor, and hence the connection from the acquisition circuit to the skin
is replaced from a galvanic connection to capacitive coupling. An illustration of a
capacitively coupled electrode interface is shown in Fig. 8.5.
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Fig. 8.5 Illustration of the
structure formed by a
capacitively coupled
electrode interface for
biopotential acquisition

ccECG acquisition has been explored since 1967 [137], but it is only in the last few
decades that it has been more widely explored for a broad number of applications.
These applications include sensors placed in the bathroom seat [19, 83, 97], in a
wheelchair [129], in a car seat [38, 90, 106, 149], in an airplane sea [146, 147], in
an office chair [13, 18, 94, 108], and in a bed [76, 95, 166, 171]. In the field of
sleep monitoring, bed implementations have been tested during multiple hours [89,
95, 162], including comparison against polysomnography signals with reported HR
coverages of up to 98% [89]. An initial evaluation toward the extraction of features
that could be used in the identification of sleep apnea epochs was also done [34].

In the case of ccECG, the signal can be acquired using at least one pair of elec-
trodes, typically accompanied by a third electrode for active noise canceling, denom-
inated driven right leg (DRL). On the other hand, the acquisition of ccBIOZ requires
4 electrodes to perform a “4-point measurement”, in which 2 electrodes are used
to inject a known amount of high-frequency current through the body, while the
remaining 2 electrodes perform a voltage readout. The 4-point measurement has the
advantage that the injected current does not flow through the same electrodes used
for voltage sensing, hence the impedances at the electrode-tissue interfaces are not
included in the measurement.

The acquisition of ccBIOZ has been less studied than the acquisition of ccECG
signals. Within the reported research in this field, Abad [11] explored in 2009 the use
of contactless BIOZ for bioimpedance spectroscopy (BIS) purposes. In this work,
he demonstrated that commercial BIOZ devices are unsuitable for contactless mea-
surements and proposed a multi-frequency current source to be used in ccBIOZ
BIS measurements. With the purpose of measuring both ventilation and HR values,
Macias et al. [103] reported a ccBIOZ system integrated into a car seat. Here, a
4-point measurement was implemented using textile electrodes on the back of the
seat and in the steering wheel (measurements were in galvanic contact at the steering
wheel point). Although both cardiac and respiratory activities were acquired under
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Fig. 8.6 Example of prototypes acquiring ccECGand ccBIOZmeasurements simultaneously. a For
sleep monitoring (covered by a normal bedsheet when in use). b For driver monitoring. Replicated
from [37] with permission from the authors

controlled conditions, it was concluded that the system did not achieve acceptable
performance due to the capacitive behavior of the electrode-tissue interface. A more
recent system integrating both ccECG and ccBIOZ [37] was demonstrated to suc-
cessfully acquire these signals in prototypes in the form factor of a car seat and a
bed mattress. In addition, the system was shown to be able to provide a flexible
interconnection that enables the real-time selection of up to 8 simultaneous ccECG
electrodes (i.e., 4 ccECG channels) from an array of up to 64 electrodes, as a solution
for the varying quality of the ccECG depending on user position. The prototypes pre-
sented in [37] are shown in Fig. 8.6 as an example of the possible implementations
of ccECG and ccBIOZ measurements. It is worth noting that in the specific case of
a mattress with the sensors, the mattress can be covered by normal bed linen and the
patient can wear standard pyjamas, which significantly increases the comfort when
compared to contact-based methods.

Such a multi-electrode approach, together with quality-based signal processing
algorithms [33, 34] and optimizations in the electronic design [35, 36, 96, 155], aims
to overcome the main challenges of capacitively coupled signals: the sensitivity to
motion related to the varying electrode coupling for different positions or body shapes
[17, 46, 167, 175] and the variability of signal quality depending on the electrostatic
charges in the surroundings of the patient [46].

Although ccECG and ccBIOZ signals are likely to provide less coverage (in
terms of time with high signal quality) than their contact-based counterparts, signal
processing and system optimization approaches such as the ones mentioned above
are expected to enable the use of the technology for homemonitoring during extended
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periods of time without a compromise in the patient comfort. This is of added value
when considering themore realistic scenario ofmonitoring at home and the increased
analysis that an unobtrusive monitoring during multiple nights can allow.

8.3.2.8 Multiparametric Devices Dedicated for Sleep Monitoring

Taking advantage of the patch form factor used in some of the latest ECG monitors
as well as other form factors enabled by miniaturized electronics, devices are now
available which aim to combine some of the sensors/techniques mentioned above.
This subsection aims to give a brief overview of the less obtrusive devices currently
available in the market or being developed, which are specifically tailored for sleep
monitoring at home and are significantly different than the PSG-like and PG OOC
devices.

The company Beddr offers a small form-factor device called SleepTuner [23] to
be placed in the forehead, which monitors actigraphy via a 3-axis accelerometer and
uses optical sensors tomonitor PPG (includingPPG-derivedHR) andSpO2.Based on
these sensors, the company’s software performs sleep-related analysiswhich includes
sleep duration, position, and stopped breathing events. Another patch-based solution
is offered by the company Tatch [10], which aims to monitor respiratory effort, flow,
oxygen level, heart rate, body position/movement, and snoring sounds. The company
Onera [7] is currently developing a patch-based solution together with data analytics
to enable the “first at-home medical grade sleep diagnostic patch system”.

The WatchPAT devices offered by Cardio Sleep Solutions [151] allow to monitor
actigraphy, SpO2, chest motion, HR, body position, snoring, and peripheral arterial
tonometry (PAT), which have been demonstrated to be adequate for the detection
of sleep apnea [44]. Other solutions focus solely on the use of applications from
smartphones [8, 136]; these mainly aim to quantify the quality of sleep or provide
an early assessment of risk for sleep-related disorders such as OSA without directly
monitoring physiological signals.

8.4 Machine Learning Algorithms for Sleep Staging
at Home

Sleep scoring standards are developed mainly based on EEG signals. The current
EEG sensor technologies, however, pose a certain level of obtrusiveness. This has
motivated the search for alternative sensors and signals, which allow reliable and
comfortable monitoring of sleep physiology. As a consequence, the development of
novel algorithms for automated sleep staging based on these unobtrusive signals has
been an active topic of research. As described in Sect. 8.3, cardiac and respiratory
signals can indeed be more comfortably acquired by emerging unobtrusive sensor
technologies compared to EEG-based monitoring. Therefore, sleep staging based on
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cardiac and respiratory signals presents the first leap toward home-based sleep moni-
toring. These sleep staging approaches are discussed in the following sections. First,
the focus is on state-of-the-art algorithms, based mainly on ECG and/or RIP signals
extracted from the PSG. Next, an overview of sleep staging algorithms based on data
from wearable or unobtrusive sensor technologies is given with special attention to
stand-alone actigraphy, BCG, and PPG. Finally, an outlook on the signal process-
ing challenges commonly encountered when working with wearable data and future
research in sleep staging is presented.

Algorithms are compared based on the performance of a 3-class classification
task of Wake versus NREM versus REM (WNR). Nevertheless, many studies report
a 2-class sleep staging performance, generally being sleep versus Wake. However,
different ways exist of combining sleep stages, as Wake and REM share some char-
acteristics and one could define “active sleep” (Wake, REM,N1) versus “quiet sleep”
(N2 and N3) [98]). As REM is, therefore, difficult to classify, a 3-class WNR is pre-
ferred for better comparison. Studies in which a 4-class classification task reached
superior performance to 3-class classification are also discussed. Typically, this clas-
sification task is defined as Wake versus REM versus Light sleep versus Deep sleep
(WRLD).

Furthermore, the discussed studies and algorithms have been trained subject inde-
pendent unless mentioned otherwise. This implies that the training data set does not
contain data from subjects which have been included in testing. The studies also
report performances by at least an average accuracy and Cohen’s kappa κ score [43].
As such, algorithmic performances can be compared by equal measures. The aver-
age accuracy is the percentage of epochs correctly classified compared to the gold-
standard annotations. The κ score is a measure of agreement that corrects for the
level of agreement achieved by chance.

8.4.1 State-of-the-art Algorithms Based on Cardiac
and Respiratory Signals

As PSG provides the gold standard for sleep staging, cardiac and respiratory-based
sleep staging algorithms have been developed based on these PSG-derived sig-
nals. It allows direct comparison of all PSG signals without synchronization issues.
Sleep stage annotations are directly applicable and high-quality data is assured, thus
enabling state-of-the-art performances. In general, sleep staging algorithms are built
from a feature extraction phase followed by a classification phase. A multitude of
cardiac and respiratory features have been developed in the literature, typically mod-
eling the ANS variation in the temporal and spectral space.

For a long time, algorithms reaching state-of-the-art performance used a combina-
tion of signals as input. For instance, Harper et al. showed in 1987 that classification
performance can improve when combining modalities [71]. Some earlier studies
explored sleep staging based on single modalities, such as ECG [173] or RIP [101],
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with the advantage of requiring less sensors. However, until 2018, performances of
these studies were indeed inferior compared to co-occurring studies with multimodal
input.

Therefore, these studies published before 2018 and based on a single modality
are not mentioned in this chapter. Although, a complete review on automated sleep
stage scoring was made by Faust et al. [61]. An overview of discussed papers which
reached state-of-the-art performance is found in Table8.2.

In 2006, Redmond and Heneghan tackled the challenging task of sleep staging
based on cardiac and respiratory signals [134]. This was achieved by extraction of
temporal and spectral features of the ECG RR-interval (time elapsed between two
successive R-waves) and of the respiratory effort signal in standard 30s epochs.

Furthermore, EDR features and spectral features from the cross-spectrum of the
RR and EDR were calculated. As such, the feature set consisted of the power in
the LF and HF band of the RR-interval, the EDR, the RR-EDR cross-spectrum, and
the respiratory effort signals. Other features were the LF/HF power ratio of RR,
mean RR, standard deviation of RR, difference between the longest and shortest
RR-interval in the epoch, breath-by-breath correlation, and breath length variation.
These features served as inspiration for subsequent studies. The accuracy and κ score
of the subject-independent algorithm were, respectively, 67% and 0.32 for a 3-class
WNR sleep staging task on healthy subjects. The authors improved the algorithm’s
performance by a linear discriminant classifier model using a time-dependent a priori
probability. The accuracy and κ score then reached 76% and 0.46, respectively [133].

Willemen et al. improved sleep staging performance in 2014 by the combination of
ECG, RIP, and actigraphy [168]. The studywas performed on 36 healthy subjects and
a total of 85 nights. A set of 13 feature groups was defined for an ECG, respiratory
1Hz movement signal, extracted per epoch of 60s. By transformations, a total of
750 features was obtained and subsequently reduced to 40 task-specific features by
forward feature selection. These one-minute epochs were applied for classification,
which is different from other studies that commonly classify sleep per 30 s epochs.
This one-minute window accounts for the slow dynamics of the breathing rate and
heart rate variability, as the HRV Task Force recommends interval lengths of at least
10 times the wavelength of the lowest frequency bound [30]. However, 60 s would
only be a reliable choice for the HF band and too short to be fully reliable in the LF
band. To validate the classified epochs, the 30s epochs of the PSGs hypnogram were
transformed to 60s interval values by a set of decision rules. One RBF-kernel support
vector machine (SVM)was optimized for different binary classification tasks. Three-
class sleep staging of WNR achieved a mean accuracy and kappa of 81% and 0.62,
respectively. It is noted that the study population’s average age was relatively low:
22.1± 3.2 years. Similar results were obtained by Domingues et al., who performed
a similar study [56].

Willemen et al. also developed a sleep staging algorithm for OSA patients [169],
in which RR interbeat interval (IBI) series, the breathing signal, inter breath interval
series, and the inspiration-to-expiration ratio interval series were extracted from
the ECG and respiratory belt signals for 25 subjects. Sixteen feature groups were
extracted from these signals in 60s epochs. This window length was found to achieve
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the best results to distinguish apneic from healthy breathing in a study by de Chazal et
al. [39]. By detrending the first input time series over different intervals and afterward
transforming extracted features, a total of 510 features was defined. A triple layer
validation scheme was constructed to train the classifier parameters, perform feature
selection ,and define a test set. The study obtained an accuracy and κ score of,
respectively, 70% and 0.41 for WNR classification of OSA patients.

Fonseca et al. compared three of their developed sleep staging methods based on
conditional random fields (CRF), hidden Markov models (HMMs), and Bayesian
linear discriminants (LDs) [64]. Features were extracted using windows centered
on non-overlapping epochs of 30 s, where the window length depended on the fea-
ture type. Additionally, they explored the incorporation of time information in their
classifiers and applied their methods on 102 healthy subjects as well as 102 patients
with OSA. In general, the best performing classifier was a CRF boosted with time
information (CRFt). Although, CRFt performed not significantly better than standard
CRF in the case of OSA patients. This can be subscribed to the fact that OSA leads
to the decrease of REM and N3 presence and an increase in sleep fragmentation
due to arousals associated with respiratory events (i.e., apneas) [139]. Therefore, the
presence and progression of their sleep stages might depend more on the occurrence
of disordered breathing events than on a healthy sleep architecture. Three-class sleep
staging of WNR achieved a mean accuracy and κ of, respectively, 81.8% and 0.59
for healthy subjects compared to 77% and 0.50 for OSA patients. On a healthy data
set, the developed CRFt algorithm performs comparable to [168], both forWNR and
WLRD classification tasks. With respect to OSA patients, Fonseca et al. reached a
substantial improvement in performance compared to [168], in which an accuracy
and κ of 70% and 0.41, respectively, was reported. Moreover, the study of Fonseca
et al. included only two out of three modalities, which can be seen as an advantage
for long-term home monitoring.

In 2018, Li et al. developed a sleep staging algorithm based on a single lead ECG
signal from extensive public data sets [93]. They were able to surpass state-of-the-art
algorithms using a single modality, however, by extraction of respiratory informa-
tion from the ECG. First, the authors derived spectrograms of the cardiorespiratory
coupling in 5min windows centered on each 30s epoch. They applied convolutional
neural networks (CNN) on the spectrograms for subsequent feature extraction (i.e.,
representation learning). Then, the extracted features were combined with hand-
crafted ECG features into an SVM model. With an accuracy and κ of 81.6% and
0.63 for WNR classification, this model is competitive to [64, 168], albeit with the
application of a single modality.

The current state-of-the-art sleep stagingmodel is described by Radha et al. [131],
applying exclusively a single lead ECG signal as an input. A set of 132 handcrafted
HRV features was fed into an Long Short-Term Memory (LSTM) network. This
feature set consisted of time- and frequency-domain features, entropy and regularity
features, and miscellaneous features. To extract the feature vector of a 30s epoch,
a window of 4.5minutes of IBI data centered around this epoch was considered.
The LSTM network type is chosen for its ability to capture long-term temporal
dependencies. To determine the optimal number of LSTM layers and cells per layer,
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18 combinations were trained and compared. The final model consisted of 2.6 · 105
parameters. This potentially involves a substantial time complexity; however, the
study does not mention training time and memory consumption. The model was
validated on 195 healthy subjects and 51 OSA patients. The algorithm reached an
accuracy and κ of 76.5% and 0.63 on the former and 78.5% and 0.60 on the latter
for a 4-class WRLD classification task. Interestingly, authors observed a negative
correlation between performance and age, presumably by changes in autonomic
function [177] and alteration in sleep architecture [148].

8.4.2 Sleep Staging Approaches Based on Wearable
and Unobtrusive Sensor Technologies

The sleep staging algorithms described in the previous section report state-of-the-art
performances, yet these were developed on PSG data. In order to monitor patients at
home, different wearable or unobtrusive sensor technologies were implemented as
described in Sect. 8.3. Among these, actigraphy, BCG, and PPG have played a more
important role in sleep staging research and specific algorithms have been developed.

As actigraphy is purelymotionbased, it is not suitable for refined sleepmonitoring.
Nevertheless, it presents an established method for sleep/wake classification. These
studies are discussed in Sect. 8.4.2.1 and summarized in Table8.3. On the contrary,
BCG enables the recording of multiple physiological signals: cardiac, respiratory,
and movement information. This modality has been explored for sleep staging by
several studies, which are described in Sect. 8.4.2.2. Furthermore, PPG has gained
interest in sleep research as the classic finger-based recording shifted to a smartwatch
configuration. Studies applying PPG in sleep staging are discussed in Sect. 8.4.2.3.
Table8.4 gives an overview of discussed papers on sleep staging approaches based on
BCG and PPG. Other suitable modalities for wearable or unobtrusive sleep staging
such as arterial blood pressure, peripheral arterial tonometry, oximetry, audio, video,
and temperature are discussed in [138]. Furthermore, radar technology for sleep
staging in OSA has been explored by [47].

8.4.2.1 Actigraphy

Actigraphy or activity-based sleep tracking is a reliable and valid methodology for
monitoring sleep-wake and circadian rhythm patterns in healthy adults [99]. The
sleep staging capacity of actigraphy is limited as it is known to overestimate sleep
time. This is because it cannot differentiate motionless periods of wakefulness from
sleep. On the other hand, it presents a potential tool for the unobtrusive screening
of certain sleeping disorders. However, the technology is not able to diagnose sleep
disorders that involve altered motility during sleep such as OSA [126, 142], and per-
formancewill be impacted by disorders altering theANS [66]. Therefore, actigraphy
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Table 8.3 Overview of state-of-the-art sleep/wake classification algorithms based on actigraphy
signals. ACT*: Surrogate actigraphy; LDA: Linear discriminant analysis, QDA: Quadratic discrim-
inant analysis

Author Year Data set Signals Classif. # Subjects Results

Healthy Insomnia Acc. [%] κ

Devot et
al.

2010 Private ECG,
RIP,
ACT

9 9 0 96.1 0.70

ECG,
RIP,
ACT

27 0 27 84.5 0.61

ACT 9 9 0 93.8 0.51

ACT LDA,
QDA

27 0 27 78.0 0.39

Long et
al.

2013 Private RIP,
ACT

LDA 15 15 0 95.7 0.66

Fonseca
et al.

2016 Private ECG,
RIP,
ACT*

15 15 0 93 0.66

ECG,
RIP,
ACT*

40 15 25 87 0.56

RIP,
ACT*

15 15 0 93 0.64

RIP,
ACT*

LDA 40 15 25 85 0.5

is usually combined with cardiac and respiratory signals [55, 56, 168]. Devot et al.
compared sleep staging using cardiac, respiratory, and actigraphy signals to sleep
staging based solely on actigraphy. As expected, they obtained superior results with
the former approach [55]. In order to minimize obtrusive sensors while preserving
classification performance, Long et al. retained the respiratory signal in combination
with actigraphy [100] and achieved comparable results as Devot et al. In [63], a
surrogate actigraphy signal was estimated from body motion artefacts derived from
the ECG and respiratory effort signals. The surrogate signal was combined with RIP
or ECG+RIP in a sleep-wake classifier. This approach achieved similar results as
classification in combination with the reference actigraphy signal, both in a healthy
as mixed population including insomniacs. The authors concluded that in setups
where RIP is the only modality, as it is one of the most applied modalities in home
sleep monitoring, actigraphy posed a significant added value. In case both RIP and
ECG are acquired, the application of actigraphy is redundant.
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8.4.2.2 Ballistocardiography

The following studies have applied a BCG-based bed sensor for sleep staging. Korte-
lainen et al. used commercial Emfit material to configure a BCG system [85]. From
the acquired signal, they extracted the IBI andmovement activity. IBI features trained
a hidden Markov Model for a WNR task, while the motion signal served as an addi-
tional input for wake stage detection. Nine healthy subjects were included in the
study, of which in total 18 sleep recordings were acquired. The three-class WNR
classification task resulted in an accuracy and κ of 79% and 0.44, respectively. It
is noted, however, that the training and test set contain recordings from the same
subjects as a leave-one-out cross-validation (LOOCV) was performed on these 18
recordings. This approach could lead to an overestimation of the subject-independent
classification performance.

In the same year, 2010, a similar study by Migliorini et al. was published [112].
Seventeen recordings from 11 healthy subjects were acquired, using the commercial
Emfit sensor material as well. Similarly, a LOOCV was performed for parameter
optimization. The achieved accuracy scorewas comparable to [85]; however, a higher
κ of 0.55 was reached. As opposed to Kortelainen et al., the authors included features
from the respiratory component, which is inherently present in the BCG signal.

Kurihara andWatanabe implemented a pneumatic system based on an air tube and
pressure sensor to acquire the BCG. They obtained similar sleep stage performances
as Kortelainen et al. using a comparable data set [87].

In 2016, Hwang et al. used a polyvinylidene fluoride sensor for sleep staging in 12
healthy and 13 OSA patients [73]. The motion signal was applied for wake detection,
while information extracted from the respiratory signal was investigated for REM
and deep sleep (N3). The 4-class classification had an average accuracy of 70.9%
and κ of 0.48, where no significant difference was found between the control and
OSA populations. Comparing to a later study of Fonseca et al. [64] in 2018, who also
applied a WRLD classification on OSA patients, the current method reached similar
performance, though by the application of an unobtrusive device.

8.4.2.3 Pulse Photoplethysmography

Studies on wearable PPG sleep staging can be traced back to 2017. Beattie et al. [22]
from Fitbit research performed sleep staging in 60 healthy subjects based on a wrist-
worn device, measuring three-dimensional accelerometry and PPG. The interval
between peaks of the PPGwave was taken as a surrogate for an ECG-derived IBI. As
such, motion, breathing variability, and HRV could be extracted from this modality.
However, the PPG signal is more sensitive to movement artefacts compared to ECG,
especially when worn as wearable at the wrist. Similar to BCG research by [85], no
IBI information could be extracted in periods of heavymotion. In the case of unlikely
sleep architecture patterns, the authors applied a post-processing step by smoothing,
e.g., an isolated wake epoch during a long period of deep sleep is converted to
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the annotation of its surrounding epochs. This assumption is only reasonable when
monitoring healthy subjects. After LOOCV, the overall accuracy was 69% with a κ

of 0.52 for a 4-class WRLD task.
A similar study was published in 2017 by Fonseca et al. [66]. Although, the study

included a larger data set of 152 healthy subjects, fromwhich a validation setwas held
out for testing. Features and machine learning techniques were similar to their earlier
study [65] (later discussed in [64] and described in Sect. 8.4.1), with the exclusion of
respiratory signals. The performance of the current study for both WNR andWRLD
tasks was lower and could partially be subscribed to the reduced number of input
signals. However, as the authors have pointed out themselves, a respiratory rate could
technically be deduced from the PPG signal [88]. This is potentially beneficial, as it
could provide features capturing changes in sympathetic tone, important for detection
of REM [66].

Previous studies have performed sleep staging based onwearable PPG in a healthy
population. However, sleep staging in a pathological population is essential as total
sleep time is an important outcome for severity assessment, e.g., OSA. Uçar et
al. [160] and Casal et al. [31] applied sleep-wake classification in anOSA population.
As data processing becomes more challenging in a pathological population, non-
wearable PPG signals were used in these studies. However, it offers the potential of
integrating these algorithms with signals from wearable devices.

8.4.3 Signal Processing Challenges Presented by Wearable
Systems

The signal processing of wearable data is associated with specific challenges. This
includes sensitivity to motion and synchronization between the wearable device and
PSG system.

First, the presence of motion is ambiguous. On the one hand, movement induces
excessive noise in the overall BCG signal, which impedes the IBI extraction and
HRV analysis. On the other hand, it provides valuable information on the patient’s
sleep architecture, similar to actigraphy. Heavy motion can mainly be subscribed to
wake stages and thereby it compensates for the loss of information regarding HRV.
Moreover, the separation between wake and REM is improved by the inclusion of
motility information, as the cardiac activity presents similar characteristics during
both stages [85].

Furthermore, synchronization between wearable and standard devices is benefi-
cial as it enables quality control of the wearable signal. Comparison of the HR or
respiration rate extracted from both devices can act as a quality indicator. Synchro-
nized signals allow direct comparison of predicted and ground truth hypnograms as
well.

The synchronization procedure is usually achieved by alignment of tachograms,
derived from the heartbeats detected in the wearable and from the R-peaks detected
in the ECG signal from the standard device [22, 66]. However, in case of heavy
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Fig. 8.7 Synchronization by artefact patterns of an Emfit BCG signal with a thoracic belt signal
from the PSG. As wearables are sensitive to motion, tachogram-based synchronization might not
always be possible as heartbeat detection might be impeded by large artefacts

motion due to restlessness or sleep disorders (such as OSA), the tachogram is hard to
derive and thereby troubling synchronization. In [72], a method for synchronization
of BCG recordings of OSA patients was proposed, based on artefacts rather than IBI.
First, artefacts were detected in the BCG recordingswithout training the algorithm on
artefact annotations. Then, a segment including several subsequent artefacts defined
the artefact template. Next, a corresponding data pattern was sought in the thoracic
belt of the PSG to align the segments. Figure8.7 displays a notable artefact pattern
found in the BCG signal, which can be linked to a corresponding pattern in the
thoracic belt.

Furthermore, it is noted that the equivalence of tachograms derived from the
ECG and the PPG or BCG device is only valid in the absence of cardiovascular
health problems. For instance, ectopic beats during arrhythmia can be traced by the
ECG. In some cases, these beats do not affect the pumping mechanism of the heart.
Therefore, these ectopics are sometimes not acquired by the BCG or PPG [66, 85].

8.4.4 Future Research in Sleep Staging at Home

On a future prospect, cardiac and respiratory-based sleep staging will be explored
by deep learning networks, as intended by [131]. Currently, deep learning-based
algorithms are more actively developed within the field of EEG-based sleep stag-
ing [122, 156, 159]. This entails an algorithmic pipelinewhere both feature extraction
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and classification are optimized by extensive neural networks. The advantage is the
automated training procedure of the complete pipeline and often superior classifi-
cation performances. However, one of the requirements to properly develop these
algorithms is the availability of large amounts of data. In the field of EEG-based sig-
nal processing, data is often provided by the publicly available Physionet Sleep-EDF
database [68, 81]. Additionally, it contains EOG, EMG, oronasal respiration signals,
and body temperature. Equivalently, the availability of a large data set containing
ECG, respiration, and sleep stage scoring could benefit the development of these
cardiac and respiratory-based algorithms. This would, moreover, allow benchmark-
ing of algorithms, which is currently difficult due to the variety in data sets.

Another potential issue is the suitability of these cardiac and respiratory-based
sleep staging algorithms for real-time applications. At present, most studies focus on
increasing sleep staging performance, which has a theoretical maximum defined by
the inter-rater agreement of 82.6% for 5 sleep stages [141]. The developed algorithms
often require several minutes or more of sleep data for pre- and post-processing or to
include time information. Fewer studies investigate the suitability of algorithms or
design them specifically for real-time applications. Real-time processing is, however,
not necessary for the diagnosis of many sleep disorders, nor do these sleep disorders
pose a threat that requires real-time monitoring. Considering the fact that offline
monitoring is sufficient for these sleep disorders relaxes the constraints of newly
developed wearable hardware as internal algorithmic processing is not a priority. In
contrast, online monitoring is critical in the field of neonatal care. First, it serves to
optimize the timing of nurse intervention so as to minimize the sleep disturbance of
the neonate. This was achieved by sleep staging based on EEG monitoring, though
presenting a non-wearable approach [16]. Second, online monitoring is required
to generate alarms as motor responses often precede changes in vital signs, such
as seizures and apneas. Movements could be real-time detected based on a BCG
approach [77]. As unobtrusiveness and real-time sleep staging are crucial in this
field, research in neonatal care could complement the field of sleep disorders and its
advances in unobtrusive techniques and wearability.

The last challenge concerns the classic 30 s epoch length for annotation, analysis,
and validation. This epoch length was optimized for EEG-based sleep analysis on
paper [102]. At a paper speed of 10mm/s, one page meant a 30s recording, which
served well to visualize spindles and delta waves [51]. The 30s epoch length was
further recommended by the R&Kmanual [132]. The sleep stage annotation of such
an EEG epoch is defined as the sleep stage which comprises the largest portion of
this 30 s. This procedure is efficient for hand scoring and a reasonable approach for
a healthy population, in which sleep stages have a certain stability and persist over
several epochs [138, 145]. Nevertheless, half-minute epochs are less suited for a
population with fragmented sleep (e.g., OSA), which is associated with short-term
awakenings, arousals, and critical respiratory events. As such, classic sleep staging
is less reliable in this population and they might benefit from a smaller time scale in
sleep scoring and sleep analysis [145]. Additionally, the probability distribution of a
short-term epoch over different sleep stages conveys more information than classical
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hypnograms, as proposed in [154]. Therefore, current sleep staging algorithmsmight
not only require further validation and adaptation in a variety of age groups and
disorders, but also a shift in valuing the gold standard.

8.5 Detection, Screening, and Phenotyping of Sleep Apnea
in an Ambulatory Setting

Obstructive sleep apnea is the most common sleep-related breathing disorder, and it
is estimated that worldwide almost 1 billion people are affected by this disorder [25].
However, most of these subjects remain undiagnosed, and consequently untreated.
OSA patients experience repetitive complete or partial cessations of breathing during
the night which are caused by a narrowing of the upper airway. In many countries,
diagnosis of sleep apnea is currently based on manually scoring these events from
an overnight in-hospital polysomnography. The AASM has defined a set of scoring
rules which are considered as the gold standard for scoring OSA [26]. According
to the AASM2012 rules, events are scored if they last longer than 10s. An apnea is
scored when an airflow amplitude decrease of more than 90% occurs, a hypopnea,
on the other hand, only requires a decrease in airflow amplitude of at least 30%, but
accompanied by either an oxygen desaturation of more than 3% or an arousal. The
apnea-hypopnea index is computed as the number of apneas and hypopneas per hour
of sleep. Subjects are diagnosed with OSA if they either have an AHI larger than 5
accompanied with symptoms, or if their AHI is larger than 15, independent of the
presence of symptoms [143].

Many researchers have been developing methods for automated in-home screen-
ing and diagnosis of sleep apnea. In this section, an overviewwill be given ofmethods
using signals that can be easily acquired in a home environment. The methods will
be ordered according to the SCOPER system, which was introduced in Sect. 8.3.1.
A short overview of the use of these five categories of sensors in the diagnosis of
sleep apnea is given below:

1. Sleep: A measurement of sleep, for example, using actigraphy, will enable the
calculation of the hours of sleep; using this measure instead of the recording time
leads to a better estimation of the AHI [120]. These methods were the topic of
Sect. 8.4.

2. Cardiovascular: This category includes ECG, PPG, and PAT as well as all other
measures of the heart rate. Bradycardia can be observed during apneas, followed
by tachycardia when breathing is retaken [70], as can be observed in Fig. 8.8.
Moreover, these signals can be used to derive an estimate of respiration and
detect autonomic arousals.

3. Oximetry: The SpO2 signal is very useful for OSA screening, since apneas often
result in an oxygen desaturation as can be seen from the example in Fig. 8.8.

4. Position:Visual and non-visual measures (e.g., using an accelerometer combined
with a gyroscope [80]) can determine the body position of a subject. Studies have
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Fig. 8.8 Example of a segment with apneic events. From top to bottom, the nasal pressure, SpO2,
and heart rate signals are plotted, with, respectively, the annotated apneic events, oxygen desatura-
tions, and sympathetic activation depicted by the shaded areas

shown that OSA severity can be position dependent. In fact, a higher AHI and
more severe apneas have been observed during supine sleep [124]. Differentiating
between lateral and supine sleep could thus help to improve automated OSA
detection algorithms. No studies, however, propose to use position measurement
on its own for the detection of OSA. Therefore, the analysis of position sensors
will not be discussed further.

5. Effort and Respiration: The reduction in airflow is the primary effect of apneas.
Sensors measuring respiratory effort provide extra information which helps to
differentiate between central and obstructive apneas.

An overview of current research and commercial devices for OSA detection cat-
egorized according to the SCOPER system can be found in [109]. In this review,
sound recording devices were defined as the sixth category, in addition to sleep,
cardiovascular, oximetry, position, effort, and respiratory parameters. In this section,
the focus will be on the detection algorithms, rather than the wearable sensors, which
were already discussed in Sect. 8.3.

Most OSA detection algorithms consist of four main steps: starting with the signal
preprocessing phase, next feature extraction, feature selection, and finally classifi-
cation. Two classification problems are studied: event-based or subject-based clas-
sification. In the case of event-based classification, the goal is to detect all apneic
events within the recording, and this is often done by splitting the recording into
1min windows. Based on the number of windows classified as apneic, the AHI can
be estimated. Subject-based classification, on the other hand, extracts features over
the whole recording which will then be correlated to the AHI and used to predict
the OSA severity category of a patient. In this section, features commonly used
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for either one of those classification tasks in the framework of OSA detection will
be discussed per SCOPER category. Additionally, studies describing automatically
generated features using deep learning will be briefly discussed in Sect. 8.5.5.

8.5.1 Cardiovascular

8.5.1.1 ECG

The effects of apneic events on the ECG signal have been known since the 1980s
[70, 116], but the research into sleep apnea screening using ECG signals really
took a boost in 2000 with the Computers in Cardiology Challenge [115] and the
subsequent release of the Physionet Apnea-ECG database [127]. This data set is still
one of the most used data sets for ECG-based OSA screening. An extensive overview
of ECG-based methods for OSA screening can be found in [60, 110]. The ECG-
based screening approaches proposed in [110] obtain subject-based classification
accuracies of 72–100% and an area under the curve (AUC) of 89–100%.

The used features are generally based either on changes in HR [70] or changes
in respiration, captured using the EDR [116]. The respiration can be extracted from
the ECG since ECG waveform characteristics are altered by respiratory-induced
movements of the chest electrodes and changes in the electrical impedance of the
thoracic cavity. The simplest measure of EDR is the amplitude of the R-waves, but
many more elaborate methods have been proposed. A comparative study of 10 EDR
algorithms is discussed in [164], where it was shown that the EDR signals computed
from changes in theQRS slopes aremost robust in the presence of artefacts, changing
respiratory rates, and different ECG-recording systems.

OSA detection algorithms typically use statistical, frequency-domain, and non-
linear features extracted from both the HR and the EDR. Recently, measures of
cardiovascular interactions have also been identified as relevant for OSA detection.

Statistical features: Different time-domain features of the RR-interval time
series6 and EDR have been proposed by De Chazal et al. [48] and are often used in
the literature. An overview of these features can be found in Table8.5.

Frequency-domain features: Multiple methods have been applied to extract fre-
quency information from the heart rate, but the power spectral density and wavelet
decomposition [29] are the most popular. Often the power in the standard HRV
frequency bands is considered: very low-frequency range (0.003–0.04Hz), low-
frequency range (0.04–0.15Hz), and the high-frequency range (0.15–0.4Hz).

Nonlinear features: An overview of nonlinear parameters used on cardiores-
piratory signals for sleep apnea detection is given in [165]. Analysis of the sample
entropy of the HRV signal has shown a reduced complexity for apneic subjects com-
pared to controls [12]. This can be linked to the cyclic pattern of bradycardia and
tachycardia during apneas. Detrended fluctuation analysis has also been applied on

6 Time differences between consecutive R-peaks in the ECG.
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Table 8.5 Overview of commonly used ECG time-domain features

RR

Mean μrr

Standard deviation σrr

Serial correlation coefficients (of order k) rk =

m∑

i=1

(rri − μrr )(rri+k − μrr )

m∑

i=1

(rri − μrr )
2

NN50 # adjacent RR-intervals that differ more than
50 ms

pNN50 pNN50= NN50
m

Standard deviation of interbeat intervals SDSD = σrd , with rdi = rri+1

Root mean square of interbeat differentials RMSSD =
√
E(rd2i )

Allan factor A(T)= E[(Ni+1(T )−Ni (T ))2]
2E[Ni+1(T )]

with Ni (T )= # beats in the i th window of T
seconds

EDR

Mean μedr

Standard deviation σedr

the HRV of apneic subjects, but only slight changes in long-term control mechanisms
of the heart rate could be observed [165].

Cardiorespiratory interactions: The HRV is modulated by respiration through
the mechanisms called respiratory sinus arrhythmia. It has been observed that the
information shared between respiration and HRV decreases during apneas and these
reductions have been used as features to detect apneas [163]. An overview of different
methods to estimate the RSA from the HRV and a respiratory measurement (e.g., the
EDR or a respiratory belt) can be found in [118].

8.5.1.2 PPG

From the PPG signal, the pulse rate (PR) can be extracted as an alternative for the
HR. All features proposed for the HR could, therefore, also be estimated from the
PR. Moreover, decreases in the amplitude fluctuation of the PPG (DAP) have been
linked to vasoconstriction due to sympathetic arousals at the end of apneas. The use
of these DAP events has been studied for the detection of OSA in children [67].
Additionally, characteristics of the PPG waveform such as pulse amplitude, width,
and slope transit time have been linked to respiration and their behavior can be useful
for sleep apnea detection [53].
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8.5.1.3 PAT

The peripheral arterial tonometry [144] sensor was developed for the detection of
sleep apnea. It is based on a pulsatile plethysmography signal measured on the finger
which can capture vasoconstriction and tachycardia related to apneas. Decreases in
PAT amplitude of 33% in combination with a tachycardia of 15% were used in [144]
for the detection of apneas.

8.5.1.4 Contactless Cardiovascular Measurements

Several contactless alternatives for ECG recording have been tested for sleep apnea
detection. In [34], a multi-channel contactless capacitively coupled electrocardiog-
raphy embedded in a mattress was proposed. The ECG-based apnea features defined
in [163] were extracted from ccECG signals of healthy volunteers. The HR features
achieved high similarity to the features extracted from the reference ECG signal.
Signal morphology features, on the other hand, showed lower similarity with the ref-
erence resulting in problems with the EDR extraction. The similarity in HR features
shows the potential of ccECG sensors for the detection of sleep apnea.

Ballistocardiography has also been studied in sleep apnea subjects. In [178], for
instance, Zink et al. optimized the algorithm for BCG beat-to-beat detection in a
sleep apnea population and obtained a correlation coefficient R2 of 0.95 between
the beat-to-beat cycle lengths extracted from the BCG and ECG. Whereas Hwang
et al. investigated the correlation between the oxygen desaturation index (ODI, see
Sect. 8.5.2) and HR features extracted from three different BCG sensors [74].

Researchers have also focused on extracting heart rate from radar or infrared (IR)
video recordings next to the breathingmovements. Zhu et al. have validated IR-based
heart rate monitoring in sleep apnea subjects and discussed the open challenges in
this field [176].

8.5.2 Oximetry

The SpO2 signal has been widely studied for sleep apnea screening since it can
easily be acquired in a home environment. In clinical practice, the SpO2 signal is
often characterized by simple statistics such as the ODI, which counts the number
of times a desaturation larger than 4% occurs per hour of sleep, or time spent below
an oxygenation level of 90% (T90). It has been shown that these simple parameters
can reliably confirm moderate to severe OSA, but that a negative test result does not
rule out mild OSA [158]. Therefore, researchers have been developing a range of
more elaborate SpO2 parameters in order to detect subtle changes due to apneas. In
[158], four categories of commonly used SpO2 parameterswere defined: desaturation
characteristics, time series variables, frequency spectrum variables, and nonlinear
variables.
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Fig. 8.9 Overviewof desaturation characteristicswhich can be extracted fromoxygen desaturations

Desaturation characteristics: The desaturation characteristics include the desat-
uration depth, duration, and area. These can be computed compared to a baseline
level or another reference point. Additionally, these parameters can be calculated on
subparts of the desaturation event, e.g., on the downward and upward part separately.
Some studies also considered desaturation slopes or higher order derivatives of the
signals [54]. In Fig. 8.9, an overview of these features is given for an example oxygen
desaturation.

Time series analysis variables: These parameters include statistical measures
that can be computed over the full SpO2 signal or window based. These statis-
tics include the following: the mean, minimum, quantile values, standard deviation,
higher order statistical moments, and cumulative time spent below certain SpO2

values (e.g., T90) [158].
Frequency spectrum variables: Studies have shown that OSA subjects have

an unstable or overly sensitive respiratory control system [58]. Therefore, instead
of going back to a stable breathing pattern after an apnea, often another apnea is
triggered. As such, apneas tend to be grouped together, as can be seen from Fig. 8.10.
When the apneas follow each other closely, a periodic pattern of desaturations can
occur as is shown in the lower right plot of Fig. 8.10. Different studies have used the
power in the 0.01–0.033Hz frequency band to capture this periodicity [158]. Other
measures of the PSD have been proposed, such as wavelets [117], autocorrelation
analysis, or the use of phase rectified signal averaging (PRSA) [54].

Nonlinear analysis variables: The recurrent desaturations during the night also
cause the SpO2 signals to have a higher irregularity, variability, and complexity. These
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Fig. 8.10 Example SpO2 signal of a subject with an AHI of 39.4 in which the apneas (*) are
grouped together. In the lower right plot, a 5min apneic segment is shown in which periodicity can
be observed in the SpO2 signal, whereas the left plot shows no periodicity during normal sleep

can, respectively, be measured using the sample entropy, central tendency measure,
and Lempel-Ziv complexity [14].

Terrill et al. concluded in their review [158] that the studies which obtained the
best OSA detection results used features from multiple of these four categories.
These categories thus contain complementary information. However, includingmore
than three to four features in the classifier did not lead to a significant increase in
performance. SpO2-based OSA screening methods typically obtain accuracies of
80–95%with an AUC of 90–95%, depending on the used features, data set, and AHI
threshold [158].

8.5.3 Effort and Respiration

8.5.3.1 Airflow

The AASM rules for visuals scoring of apneic events rely mainly on the airflow
measured using an oronasal thermal andnasal pressure sensor [26]. Therefore, several
researchers have developed methods for the automatic detection of sleep apnea on
these signals. All drops in peak signal amplitude of more than 90% are scored as
apneas, whereas drops of more than 30% could represent a hypopnea. These drops
are relative to pre-event baseline breathing which is defined as “the mean amplitude
of stable breathing and oxygenation in the 2min preceding onset of the event or the
mean amplitude of the 3 largest breaths in the 2min preceding onset of the event”
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[26]. This baseline can be difficult to define for subjects with high AHIs and its
definition is ambiguous to be translated into algorithms. Moreover, breathing and
movement artefacts will further complicate this baseline extraction for automated
algorithms [42]. Therefore, Ciołek et al. proposed a robust airflow envelope tracking
using nonlinear filters. Using this reliable baseline, rule-based methods can then be
applied to detect apneas and hypopneas when a decrease in airflow amplitude larger
than a predefined threshold is observed.

These rule-based methods, however, have as disadvantage that they cannot dif-
ferentiate if hypopneas are associated with arousals or desaturations. Therefore,
more elaborate respiratory features have been proposed in order to capture changes
that might have a correlation with arousals or desaturations. Koley et al. proposed
statistical features of the respiratory amplitudes and intervals over windows of 8 s
[84]. Additionally, they extracted the area and length of the respiratory curve and
frequency-domain features using the PSD. In this study, the deviation of each of the
feature values from the subject’s mean values was also considered.

8.5.3.2 Respiratory Effort

Similar processing methods can be applied to respiratory effort signals obtained by
RIP abdominal and thoracic belts. Despite the absence of airflow during obstructive
apneas, the respiratory effort is still present, which challenges the detection of apneas
whenusing this signalmodality.However,when the effort ismeasured in combination
with other modalities like airflow or SpO2, it can be used to differentiate between
central and obstructive events [119]. When both the abdominal and thoracic belts
are monitored, the thoracoabdominal paradox7 [26] can also be used as marker for
apneic events.

Amore extensive overview ofmethods using airflow and respiratory effort signals
to detect OSA can be found in [110, 161]. The methods based on respiration reported
in [110] obtained subject-based classification accuracies of 82–96% and an AUC of
88–90%.

8.5.3.3 Contactless Measures of Respiration

A lot of research has been conducted toward contactless sensors to measure respi-
ratory effort. Respiratory movements can be extracted by pressure sensors in the
mattress. An example of such a sensor is the Emfit, discussed in Sect. 8.3.2.5. In
[72], the use of this sensor for the detection of sleep apnea was investigated. Rather
than focusing on the breathing cessations, this study used unsupervised learning (i.e.,

7 During obstructive apneas, the respiratory effort signals from the thoracic and abdominal belts are
often out of phase, and this phenomenon is called the thoracoabdominal paradox.
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clustering) to detect breathing distortions in the respiratory signal which are linked
to arousals and large chest movements when breathing is regained. The amount of
breathing distortions could be correlated to the AHI.

Kagawa et al. [78] proposed a system in which two Doppler radars are installed
underneath the mattress in order to measure thoracic and abdominal effort. The
system was tested for the detection of sleep apnea, a rule-based algorithm including
the detection of paradoxical breathing showed promising results.

In [176], it was shown that the breathing rate can also be extracted accurately
from IR video recordings in OSA subjects.

Castro et al. [37] proposed to measure the respiration using a capacitively coupled
bioimpedance sensor embedded in a mattress. This system, however, still needs to
be tested on OSA subjects.

8.5.4 Sound

Snoring is one of the most common symptoms of OSA, and differences in acous-
tic characteristics of snoring have been observed between OSA patients and simple
snorers [150]. Moreover, due to apneas, subjects often make grasping and chok-
ing sounds. Researchers have developed acoustic features that can be used for the
automatic detection of sleep apnea using sound recordings. Solà-Soler et al. have
proposed snore intensity, pitch, frequency, and spectral envelope parameters [150].
Their study showed that the snore-to-snore variability of these features was increased
inOSA subjects.Moreover, multiscale entropy [24] of audio recordings has also been
shown to be useful to detect apneas.

8.5.5 Automatically Generated Features Using Deep
Learning

All features mentioned before are handcrafted, they are extracted based on previous
knowledge of the effect apneas have on the signals. The signals might, however,
contain more information than these features. Therefore, more and more researchers
have moved toward automatic feature extraction using deep learning, avoiding the
challenging task of feature engineering. In [121], 21 studies detecting sleep apnea
using deep learning were compared. Most studies were based on the ECG signal,
but also SpO2 and respiration were considered. The convolutional neural network
(CNN)was themost popular network. It is, however, not clear if this is the best choice
since some studies suggested that recurrent neural networks (RNNs) outperformed
CNN [121]. The included ECG-based methods report global screening accuracies of
79.5–100%.
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8.5.6 Multimodal OSA Detection

Since the scoring rules for sleep apnea are based both on a reduction in airflow and
the presence of oxygen desaturation, the combination of respiration and oximetry
has frequently been studied [119, 161]. Moreover, cardiac signals are often added
to capture the presence of arousals. Xie et al. [174] investigated the combination
of SpO2 and ECG-based features. They concluded that the SpO2-based classifier
outperformed theECG-based one and that only a slight increase in performance could
be obtained when both feature sets were combined. Similar results were obtained in
our own study when PPG features were added to a SpO2-based classifier [53]. Behar
et al., on the other hand, tested the combination of oximetry, sound, and actigraphy.
When comparing the different modalities, oximetry outperformed the other two with
a classification accuracy of 85.1%, but an increase in performance of 3.3% was
obtained when all three modalities were combined.

8.5.7 Comparison of Methods and Modalities

When comparing the OSA detection performances which are reported by studies
using different modalities, automatic classification using respiratory signals obtained
lower performances than ECG and SpO2-based methods. Although, manual scoring
of OSA is mainly based on respiration. This might be due to a higher noise level in
the respiratory signals [110].

ECG-based methods seem to outperform other modalities in single sensor appli-
cations. But this might be due to the fact that many ECG-based algorithms use public
data sets, such as the Apnea-ECG database, which are less distorted by noise and
might be easier to classify [110]. When different modalities are compared on the
same data set, the SpO2 signal performs best most of the times [53, 174]. In order
to validate the potential added value of deep learning compared to feature-based
algorithms, comparative studies on more challenging data sets than the Apnea-ECG
data set should be performed.

Another observation is the fact that combining different sensor modalities often
does not result in a relevant improvement of performance, probably because one of
the sensors performs quite well and dominates the analysis [110]. When SpO2-based
methods are combined with other modalities, they tend to dominate the performance
[53, 174]. Not all apneic events can, however, be detected using the SpO2 signal
since the AASM rules allow scoring apneas when no desaturation is present and
hypopneas with only an arousal [26]. Therefore, sometimes the SpO2 remains stable
during apneas. For the databases used in [54], 11.5% of annotated apneas could
not be linked to an oxygen desaturation larger than 1%. Therefore, further research
should be conducted to bettermerge differentmodalities in order to detect apneas that
were missed by individual modalities. Additionally, combining different modalities
improves the classification of apneas into event subtypes (central vs. obstructive)
[119].
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Although the Apnea-ECG database has stimulated the research into apnea detec-
tion methods greatly, most of the recordings only contain ECG signals. The database
can, therefore, not be used to develop multimodal algorithms nor can it be used to
compare the performances of different modalities. Moreover, the control group was
composed of healthy subjects, instead of subjects with other sleep-related complaints
which are seen in the sleep lab. Papini et al. have shown in their study [125] a drop in
accuracy of 15% and a drop in sensitivity of 30% for algorithms trained on the apnea-
ECG data set which were tested on a database including a wider spectrum of sleep
disorders. These results show that the performance of apnea detection algorithms is
strongly dependent on the data set used to train the algorithm. Therefore, one should
consider the target population for which the application is being developed and train
on a similar data set with the same pretest probability to have OSA.

Next to the Apnea-ECG data set, the National Sleep Research Resource (NSRR)
[49] also provides PSG data sets, of which the Sleep Heart Health Study (SHHS)
[130] has been used the most for the automatic detection of sleep apnea. This data
set, however, was recorded in the general population, whereas sleep experts advise
against OSA screening in the general population, but rather advise to screen groups
with a high pretest probability in order to ensure a high post-test probability [44].

The availability of large public data sets, ideally including wearable data recorded
simultaneously with the gold-standard PSG, is even more important for algorithms
based on deep learning. These algorithms are completely data-driven and their per-
formance tends to improve if more data is available.

Another important factor when comparing different algorithms is the used testing
method. In order to obtain a fair generalization performance, the test set should be
patient independent. However, studies often do not mention specifically if subject
independence of the test setwas imposed [121]. Especially for cardiovascular signals,
the classification performance can increase significantly if part of the data from a
test set patient was included in the training set since cardiovascular features can be
highly patient dependent.

8.5.8 Future of Sleep Apnea Screening: Beyond the AHI?

Most of the studies developing automated screening algorithms for OSA validate
their methods based on the AHI, which is used to define OSA severity in clinical
practice. The AHI, however, only takes into account the number of apneas, but not
their severity. This might explain why the AHI does not correlate well with the
sleepiness of patients nor with cardiovascular outcome [52]. Moreover, when an
AHI cutoff of 15 events per hour of sleep is considered, prevalences of up to 50%
can be observed in middle-aged male populations [25]. Therefore, researchers are
searching for alternatives for the AHI in order to better phenotype OSA subjects and
prioritize them for treatment.
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In [58], Eckert reviews phenotypic approaches for OSA, with a focus on the
PALM8 score. This score describes four traits causingOSA: an impaired upper airway
anatomy, a low respiratory arousal threshold, an unstable ventilatory control system,
and ineffective upper airway dilator muscles. According to the most dominant trait,
other treatments could be proposed. Measures of each of the causes were defined
based on gold-standard PSG and PAP drops, but should still be tested on wearable
measurements.

In [52, 158], on the other hand, SpO2 severity parameters are proposed which
correlate better than the AHI with the cardiovascular risk of OSA subjects.

This area of research is promising to enhance the phenotyping of OSA subjects,
and in the future, these developed parameters could also be extracted fromwearables
in a home environment.

8.6 Conclusion

Sleep monitoring used to be a clearly defined domain based on EEG analysis. Bring-
ing sleep monitoring to a home environment resulted in the emergence of a multitude
of sensors and sleep staging algorithms.Within this chapter, unobtrusive state-of-the-
art sensors and algorithms for sleep monitoring in adults were discussed as alterna-
tives to the costly and uncomfortable in-hospital PSG. These novel technologies have
the potential to enable a broader patient screening, early detection of sleep-related
conditions, and a long-term follow-up at home.

Recently developed wearables and sensors placed around the patient were intro-
duced, which measure PSG signals in a less obtrusive way or apply indirect measure-
ments of the physiological parameters. The focus was on devices monitoring heart
rate, respiration, and blood oxygenation, but actigraphy and portable EEG devices
were also briefly discussed. An important aspect of these recently developed devices
is that, although these provide increased comfort and a higher amount of data, the
acquired data is of variable quality. This is caused by both the use of these tech-
nologies in an uncontrolled environment, as well as by the inherent characteristics
of the technologies. In order to be able to exploit these solutions optimally, it is
of high importance that research around this topic also includes the development
and evaluation of algorithms for an automatic assessment of the quality of the data,
as well as compensation methods for data of intermediate quality. Moreover, these
novel devices require the development of application-specific algorithms for sleep
monitoring.

The evaluation and comparison of sleep staging algorithms depend on many
parameters, apart from studied population and algorithmic details. It includes sen-
sor types, applied input signals, and mutual combinations. In general, good perfor-
mances have been achieved based on solely the cardiac signal, being ECG or PPG,

8 PALM is an acronym for the measured parameters for each of the four studied traits: Pcrit, arousal
threshold, loop gain, and muscle responsiveness.
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as it conveys respiratory information as well. The latest state-of-the-art sleep staging
algorithms are furthermore based on deep learning techniques, which are expected
to become even more important for future implementations. However, a validation
of wearable or unobtrusive signals is often lacking. Therefore, the field of sleep
staging at home would benefit from the development of algorithms that consider the
limitations of wearable/unobtrusive data from the start.

Obstructive sleep apnea is the most common sleep-related breathing disorder, and
it, however, often remains undiagnosed. Therefore, researchers have been developing
OSA detection algorithms using signals that can be easily acquired in a home envi-
ronment. ECG and SpO2-based algorithms have obtained themost promising results.
However, most of the studies did not include experiments at home. These algorithms
should thus be further tested on signals acquired unobtrusively from a home envi-
ronment. Moreover, not much performance gain has been shown from multimodal
algorithms, and smarter ways to combine different signal modalities should thus be
investigated.
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