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Abstract

Aquaculture production has become one of the fastest-growing quality animal
protein-producing enterprises, contributing significantly to satisfying increased
demand for animal protein by providing barely half of all fish and shellfish
consumed directly by humans. As consequences of the intensification of aqua-
culture for meeting the demand, high feed input, reckless use of antibiotics and
drugs/chemicals, water quality deterioration, climate change, poor growth, and
disease outbreak could be a major threat in fish culture. The majority of farmed
fish is lost each year, resulting in significant economic losses owing to disease
outbreaks in diverse culture systems, making farming unprofitable and unsustain-
able in the long run. Metabolomics is a technique for assessing metabolites in a
living system holistically and systematically, and it employs a system biology
approach to evaluate the biochemical processes of complex organisms in terms of
nutrition and health conditions. Metabolomics strives to find biomarkers emblem-
atic of physiological reactions of live samples such as whole organisms, tissues,
and cells to ambient or culture conditions by using metabolite profiles as
fingerprints. We have tried to highlight some of the most current uses of
metabolomic developments in fish nutrition research and health management to
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solve challenges across the entire production cycle of an organism, including
post-harvest quality control.
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13.1 Introduction

Aquaculture production has become one of the fastest-growing animal food-
producing sectors, contributing significantly to fulfilling the growing need for animal
protein by supplying nearly half of all fish and shellfish consumed directly by
people. Fish and fishery products provide an average of 35 calories per capita per
day in terms of high-quality nutritional sources and readily digested animal proteins,
which explains the high consumption (FAO 2020). As a result of its expanding
relevance, the aquaculture industry has faced numerous obstacles in producing safe
and high-quality fish on a long-term basis. Intensification of aquaculture for meeting
the demand, high feed input, water quality deterioration, climate change, poor
growth, and disease outbreak could be a major threat in fish culture. The majority
of farmed fish is lost each year, resulting in significant economic losses owing to
disease outbreaks in diverse culture systems, making farming unprofitable and
unsustainable in the long run. Antibiotics and drugs/chemicals used indiscriminately
in the culture system frequently cause buildup in the aquatic environment, harm to
other creatures, toxicity to the host animal, growth reduction in fish, disruption of the
natural reproductive cycle, and financial loss. Residues buildup in fish tissues,
posing a health risk to humans who eat the fish. Diverse omics technologies, like
genomics, transcriptomics, and proteomics, have been employed to explore the
interactional response between different disease-causing agents and fish hosts in
recent years. Metabolomics, a new and emerging omics technology, has lately been
used to study fish metabolic responses to heavy oil, anoxia, hypoxia, microbial
illnesses, pesticides, zero fish meal, and fish oil-based diets. Greater growth rates of
farmed species, the higher nutritional content of aquafeeds, improved stock health,
and reduced environmental impacts have all been made possible by innovative
technology, many of which have been taken from other disciplines. Metabolomics
has the potential to be a useful method for identifying and characterizing the
metabolomes of any fish or food product. Multiple features of fish can be
investigated and biomarkers for their welfare recognized using a metabolomic
method, assuring sustainable fish growth and thus the quality and safety of aqua
food. Recent metabolomic applications in aquaculture have demonstrated enormous
potential for tackling problems across the entire production line, from hatchery
production to post-harvest quality control. During the last decade, metabolomics
has been implemented in aquaculture with a spectrum of uses in diets and nutrition
(Grandiosa et al. 2018, 2020; Huynh et al. 2018), immunology and disease impacts
(Nguyen et al. 2019, 2020a, b; Nguyen and Alfaro 2020), environmental stress (Huo
et al. 2019; Li et al., 2019; Nguyen and Alfaro 2020), ecotoxicology (Li et al. 2017;
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Nguyen et al. 2018a), and post-harvest handling (Alfaro et al. 2019; Nguyen et al.
2020a, b).

13.2 Metabolomics

Systems biology is a multidisciplinary method of studying biological processes at
the cellular, tissue, and organism levels. The whole genome, transcriptome, prote-
ome, and metabolome are all studied using “omics” technology. Metabolomics is a
form of omics that focuses on characterizing, identifying, and quantifying small
molecule (<1500 Da) metabolites in the metabolome at high throughput (German
et al. 2005). As a result, metabolomics is frequently employed as a sophisticated
analytical method to get a deeper understanding of the molecular mechanisms
underpinning aquatic creatures’ responses to nutrition, external stresses, infections,
and developmental processes. The metabolome is the collection of all tiny
molecules, metabolites, or chemicals present in a cell, organ, or organism, according
to a formal definition. Tiny molecules include peptides, amino acids, nucleic acids,
carbohydrates, organic acids, vitamins, polyphenols, alkaloids, minerals, and just
about every other chemical that a cell or organism can use, ingest, or make.
Metabolomics identifies biomarkers/chemical signatures indicative of physiological
responses of living samples such as whole organisms, tissues, and cells to ambient or
culture conditions using unique metabolite profiles. Metabolites provide real-time
information on what is going on at the metabolic and physiological levels since they
are the most sensitive to environmental changes (Patti et al. 2012). Unexpected issue
or risk areas can be recognized using biomarkers, and corrective action can be taken
for future management. Though metabolomics in aquaculture is still in its infancy, it
has already found widespread application in a variety of fields and applications,
including mammalian toxicology, plant chemistry, human nutrition, environmental
sciences, food quality, clinical disease diagnostics, and microbial metabolomics, as
well as drug discovery. In recent years, metabolomics in aquaculture has become a
burgeoning topic, assisting aquaculture in achieving its major goal of increasing
production scale while maintaining a high-quality, long-term product. Fish
metabolomic study could aid in the investigation of metabolome changes caused
by disease, crowding, hypoxia, malnutrition, or other environmental conditions such
as pollution, poisons, and temperature fluctuations that might disrupt normal metab-
olism in the body (Fig. 13.1).

13.2.1 Advantages of Metabolomics over Other Omics Technology

Metabolomics has the following advantages over other omics technologies:
• Metabolomics is the study of metabolites, which are the end products of

biological regulating systems that are extremely vulnerable to outside stimuli.
These profiles can be thought of as biological systems’ final response to genetic or
environmental change (Fiehn 2002).
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• In comparison with proteome and transcriptome investigations, metabolomics
often requires less sample preparation and shorter turnaround times from sample
collection to data interpretation, lowering costs.

• Because metabolites have significantly fewer types/classes than genes or proteins
in many species, metabolite data processing is often simpler (Wang et al. 2006;
Lu and King 2009).

• Non-invasive bodily fluids/solids, like plasma and faeces, can be used in
metabolomics research, which may be very useful in fish investigations. Further-
more, without destroying a sample, a variety of analytical procedures can be
applied (Alfaro and Young 2018). When biological material is restricted and/or
several studies are to be performed on a single sample with the goal of data
integration, this is particularly valuable.

• When compared with other “-omic” techniques, metabolomics has several
advantages, the most important of which is its biological proximity to the
system’s phenotype, allowing for quick detection of system perturbations in the
metabolome.

Fig. 13.1 ‘Omics’ cascade depicts the genotype to phenotype continuum and defines genomics,
transcriptomics, proteomics, and metabolomics
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13.3 Basics of Metabolomic Techniques Used in Aquaculture

Metabolomics is a promising method for biomarker discovery since it involves both
focused and non-targeted analysis of endogenous and exogenous small-molecule
metabolites (<1500 Da). Metabolomics is a global metabolic profiling framework
that combines high-resolution analytics (typically NMR and MS) with chemometric
statistical tools like principal component analysis (PCA) and partial least squares
(PLS) to produce a comprehensive picture of both endogenous and xenobiotic
metabolism. Small-molecule biomarkers such as peptides, amino acids, nucleic
acids, carbohydrates, organic acids, vitamins, polyphenols, alkaloids, and inorganic
substances represent the functional phenotype of a cell, tissue, or organism. The
physical and chemical properties of the molecules listed above are extremely
diverse, and they exist in a wide concentration range. Technological breakthroughs
in metabolomics have enabled the separation and identification of these tiny
molecules. These cutting-edge technologies, which include accurate high-resolution
MS, NMR, CE, HPLC, and UPLC technology, can detect metabolites in a matter of
minutes. A number of analytical systems, including NMR, Fourier transform infra-
red spectroscopy (FTIR), and MS coupled to separation techniques, such as NMR,
GC-MS, LC-MS, FT-MS, and UPLC-MS, have been used for metabolomic
applications.

13.4 Sample Collection and Preparation for Metabolomic Study

Because the metabolome can vary extremely quickly in response to slight changes in
the environment, extreme caution should be exercised when collecting the sample by
limiting biological, technological, and experimental variability. Collected samples
must be representative of the biology under study and appropriate for the study’s
specific research goals. It’s also crucial to choose the right sample material. Different
tissues (e.g., muscle, gills, liver, and pancreas) go through different metabolic
processes depending on their role. Even after the metabolome has been taken from
the body, it remains in a highly dynamic state in tissues and biological fluids. The
ability to accurately measure the metabolome requires the rapid termination of
enzyme activity. As a result, metabolic processes within samples must be stopped,
or quenched, as quickly as feasible during collection in practically all metabolomic
studies. To avoid enzymatic activity recovery, the conventional strategy for
quenching metabolism in animal tissues is to freeze samples in liquid nitrogen and
store them at or below �80 �C or lyophilize them. The most important aspect of any
metabolomic investigation is sample preparation, and sample preparation techniques
differ depending on the type of biological material obtained and the analytical
platform to be used. Regardless of the method, the metabolite extraction process
should be quick and reliable, with as little sample degradation and metabolite
alteration as possible (Allwood 2013). For efficient sample extraction, while
maintaining the chemical properties of the sample, tissues and cells must be broken
down either by grinding in a liquid N2-cooled mortar and pestle (Rosenblum et al.
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2005; Viant et al. 2005) or by an electric tissue homogenizer directly in the
extraction solvent (Warne et al. 2001; Pears et al. 2005). Methods for metabolite
extraction range from simple one-step solvent extraction to more complex
approaches requiring multiple phases and/or chemical synthesis steps. Sample
preparation and introduction methods for biological samples encompass direct
injection, liquid–liquid extraction (LLE), solid-phase extraction (SPE), supercritical
fluid extraction, accelerated solvent extraction, microwave-assisted extraction, pro-
tein precipitation, and membrane methods such as dialysis or ultracentrifugation.
The different types of solvent extraction method include the following:

1. Using a mixture of methanol, water, and chloroform to extract polar and/or
nonpolar metabolites.

2. Polar metabolite extraction using methanol alone or in combination with water.
3. Perchloric acid is used to retrieve polar metabolites.

There is no single perfect approach to extract all classes of metabolites with high
efficiency due to the enormous range of metabolites found inside tissues, many with
widely varying physical and chemical properties. Perchloric acid is commonly used
to precipitate proteins and extract hydrophilic metabolites for metabolic fingerprint-
ing research. To extract hydrophilic metabolites, polar organic solvents such as
methanol, ethanol, acetonitrile, and acetone are generally combined with water
(Coen et al. 2003; Kim et al. 2004; Stentiford et al. 2005a). Hydrophobic metabolites
can be extracted using chloroform (Choi et al. 2004; Stentiford et al. 2005b).

13.5 Analytical Tools for Measuring Metabolomes

There is currently no one adaptable platform that can analyze all metabolites inside a
sample due to the complexity of metabolites and the high number of metabolites
present. Depending on the aims and scope of the investigation, the type of sample
material collected, the available sample mass, the accessibility of analytical
platforms, and the cost involved, multiple techniques may need to be selected and
used to partially overcome the shortcomings of single-analysis techniques. Nuclear
magnetic resonance (NMR), mass spectrometry (MS), Fourier transform-infrared
spectroscopy (FTIR), and MS coupled to separation techniques, such as NMR,
GC-MS, LC-MS, FT-MS, and UPLC-MS, are the most often used high-throughput
and high-resolution systems for metabolomics studies. While NMR spectroscopy is
best for analyzing bulk metabolites and GC-MS is best for analyzing volatile organic
compounds and derivatized primary metabolites, LC-MS can be used to analyze a
wide range of semipolar molecules, including many secondary metabolites of
interest. LC-MS is a popular instrument because it avoids chemical derivatization.
For the identification and quantification of metabolites, MS-based metabolomics
offers great selectivity and sensitivity, and when combined with improved and high-
throughput separation techniques, the complexity of metabolite separation can be
reduced. MS-based approaches, on the other hand, necessitate a sample preparation
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phase that can result in metabolite loss. To examine the global metabolome, it is
ideal to use various techniques at the same time, such as GC-MS, LC-MS, or NMR.

13.6 Nuclear Magnetic Resonance (NMR)

Nuclear magnetic resonance (NMR) is a spectroscopic analytical technique that can
uniquely identify and quantify a wide range of organic substances in the micromolar
range. It identifies atomic nuclei’s distinctive spin characteristics. When nuclei with
specific magnetic properties are submerged in a magnetic field, they align with (low
energy state) or against (high energy state) the field. The application of extremely
particular radio frequency pulses to the nuclei causes a “spin flip,” which is a change
in the energy state (Savorani et al. 2013). Nuclear shielding is a tiny change in the
intensity of the applied magnetic field caused by the existence of other nuclei and
chemical bonds surrounding a nucleus. A chemical shift occurs when nuclei within a
metabolite absorb radiation at slightly different frequencies as a result of this
shielding. The sample’s distinct spectrum or “fingerprint” is created by combining
all of these various frequencies. Furthermore, more sophisticated spin interactions
under varied pulse settings can reveal a wealth of information about a molecule’s
chemical bonding and composition. NMR’s main benefit is that it is largely
automated and nondestructive, allowing samples to be used for further research
while also providing extremely reliable and repeatable readings. Separation of
metabolites before detection is not required, and just a minimal amount of sample
preparation is required, saving both money and time. Metabolite fingerprinting,
profiling, and metabolic flux analysis have all been done with it. The limited
sensitivity of NMR makes it unsuitable for the investigation of large numbers of
low-abundance metabolites, which is a fundamental restriction for comprehensive
metabolite profiling. NMR can be particularly valuable in drug discovery and
development since it offers extensive information about a compound’s structural
alteration as a result of metabolism.

13.7 Mass Spectrometry

Mass spectrometry (MS) is a technique for determining the molecular weights of
compounds. Molecules in a test sample are transformed into gaseous ions, which are
then separated and identified in a mass spectrometer based on their mass-to-charge
(m/z) ratio. The mass spectrum is a graph showing the ions’ (relative) abundances at
different m/z ratios. The ion source, mass analyzer, and detector are the three parts of
a mass spectrometer (Glish and Vachet 2003). Different steps involved in all mass
spectrometers include:

1. Production of ions in the gas phase.
2. Acceleration of the ions to a specific velocity in an electric field.
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3. Separation of the ions in a mass analyzer.
4. Detection of each species of a particular m/z ratio.

Electron ionization and electrospray ionization are the most often utilized ioniza-
tion procedures in metabolomics research (Lei et al. 2011). MS can be used to
analyze biological materials either directly without prior metabolite separation or
after chromatographic separation. Direct MS techniques are quick; however, they
have low ionization efficiency and ion suppression. MS-based metabolomic
techniques often require the separation of metabolites by chromatography or elec-
trophoresis before MS detection to reduce the complexity of the sample matrix and
improve the sensitivity and selectivity of the analysis. The most often used
procedures for this purpose are gas chromatography (GC), liquid chromatography
(LC), and capillary electrophoresis (CE). These instruments are referred to as
hyphenated platforms when they are used together (GC-MS, LC-MS, and
CE-MS). MS approaches can have exceptionally high sensitivity or at least detection
limits.

13.8 Fourier Transform Infrared (FTIR)

The vibrational fingerprints of wide metabolite functional groups can be measured
using Fourier transform-infrared (FTIR) spectroscopy, a type of vibrational spec-
troscopy that uses lower resolution devices (Moore et al. 2014). In metabolic
fingerprinting and metabolomics research, FTIR is a typical analytical tool. Because
distinct absorption bands may be ascribed to individual molecular bonds, FTIR
spectra can be used as a fingerprint to offer extensive information on the chemical
structure and composition of substances. Infrared radiation is transmitted through a
sample in IR spectroscopy. The sample absorbs some of the IR radiation, and some
of it passes through (transmitted). The resulting spectrum depicts the sample’s
molecule absorption and transmission, resulting in a molecular fingerprint. The
FTIR technique is faster than other procedures, requires a small sample size with
minimal or no preparation, does not require the use of solvents, and is more cost-
effective.

13.9 Applications of Metabolomics in Nutritional Management

Aquaculture confronts a daunting task in improving feed appropriateness and
supporting global fish production growth. Aquaculture, as a burgeoning animal
protein-producing business, must evolve dramatically to improve its reliability to
meet world demand for fish, while catch fisheries production has nearly stagnated in
recent decades (FAO 2020). Because of its well-balanced nutrients and high digest-
ible proteins, high-quality fish meal (FM) is used as a primary nutritional ingredient
in the majority of cultured fish. Overreliance on fishmeal (FM) in aquafeed
formulations, on the other hand, is seen as one of the primary impediments to the
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aquaculture sector’s long-term viability, due to supply shortages and price disparities
(Van Vo et al. 2015). As a result, aquaculture nutritionists around the world are
working hard to identify nutritionally adequate and sustainable alternatives to
fishmeal (FM) for fish feed formulation. As a result, feed components derived
from terrestrial crops have been thoroughly investigated as FM alternatives (Hardy
2010). As a result, aquaculture must compete for terrestrial feedstuff with cattle, the
fuel industry, and direct human consumption, raising concerns about aqua farming’s
impact on world food security (Troell et al. 2014). Furthermore, greater levels of
plant protein sources in the diet resulted in growth retardation, lowered immunity,
altered intestinal architecture, and oxidative stress (Ng et al. 2019; Xu et al. 2016).
Some supplements/functional additives are used in the feed mix to address this issue.
By interfering with digestion and intestinal function, added nutrients should not
harm fish growth and physiology (Krogdahl et al. 2015). As a result, precise
characterization of alternative feed ingredients/supplements is required to fully
comprehend their impact on fish metabolism and suitability for optimal growth
and immunity. The traditional method of evaluating new feed formulations is first
determining the analytical composition and digestibility of the feed, followed by
examining its impact on fish growth, feed consumption, and other zootechnical
characteristics. However, while these traditional approaches are useful for
demonstrating the major impact of feedstuffs and feed on fish growth, they may be
insufficient for understanding the influence of feeds on fish metabolism and the
mechanisms that underpin it. At the level of genes, transcripts, proteins, and
metabolites, omics technologies allow a novel holistic view of a biological system.
Nutrigenomic techniques, which study the relationship between nutrients and spe-
cific gene expression, have grown in importance in recent years, leading to novel
discoveries such as the regulation of genes involved in protein, lipid, and carbohy-
drate metabolism in fish that have given plant-based diets (Panserat et al. 2009a, b;
Geay et al. 2011). Nutrigenomics, on the other hand, has the same limitations as
transcriptome methods. What happens is partly unknown because post-
transcriptional changes and protein functions are not explored. Proteomics has
been utilized to better understand the molecular pathways that fish use to respond
to external stimuli, such as nutritional supplements, and these discoveries can be
utilized to improve feed formulation and optimization. Metabolomics, on the other
hand, focuses on a global set of metabolites within the biological system and
provides data on metabolic activities. By combining a feeding trial with
metabolomic investigations of tissues and biofluids, new insights into feed and
nutrient effects could be gained. Metabolomics was utilized as a system biology
approach to investigate the effects of dietary nutrients on fish growth by comparing
the metabolite profiles of various tissues from different dietary regimens (Schock
et al. 2012a, b; Abro et al. 2014a, b; Wagner et al. 2014a, b). Metabolomics can be
used to figure out how a particular diet affects fish physiology. It aids in the selection
of the appropriate feeds for optimal growth, based on their compatibility with fish
metabolism, to maintain a positive link between product quality and feed conversion
efficiency. Metabolomics is intended specifically to analyze metabolic reactions to
nutritional deficits or excesses, and it may provide in-depth mechanistic insights to
help build optimal feeding regimens (Table 13.1).
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13.10 Metabolomics in the Management of Fish Health

Fish health is an important part of aquaculture welfare that is influenced by any
negative changes in the environment, such as stress and sickness caused by pathogen
infection (Segner et al. 2012; FAO 2016). Disease management is also a significant
concern for long-term aquaculture operations. Metabolomics has shown great prom-
ise in better understanding disease susceptibility and host-pathogen interactions
(Solanky et al. 2005; Guo et al. 2014; Ma et al. 2015; Peng et al. 2015), disease
characterization (Stentiford et al. 2005a, b; Southam et al. 2008), and treatment
efficacy determination (Cheng et al. 2016; Su et al. 2014). The host’s energy
metabolism, osmotic control, oxidative stress, cell signalling pathways, and respira-
tory processes are all affected by pathogen exposure. A changed metabolic profile
can be utilized to determine an organism’s health condition and can aid in under-
standing pathogenesis and immune response. Metabolomics has been applied com-
prehensively in several aspects of health management, including the metabolic
response of shrimp to pathogen invasion (Wu et al. 2017a, b; Ning et al. 2019),
toxicity and environmental stress (Li et al. 2017; Chen et al. 2019; Xiao et al. 2019),
and super-intensive grow-out conditions (Schock et al. 2013). The hepatopancreas of
white leg shrimp L. vannamei infected with the microsporidian Enterocytozoon
hepatopenaei (EHP) revealed downregulation of that energy metabolism pathway,
according to a study (Ning et al. 2019). In the EHP-infected groups, 49 unique
metabolites were discovered, which could be employed as a biomarker to distinguish
between EHP-challenged and healthy groups. Nguyen et al. (2021) looked at the
metabolic responses of penaeid shrimp to Vibrio parahaemolyticus caused acute
hepatopancreatic necrosis disease (AHPND). GC-MS was used to produce the
hemolymph metabolome of Penaeus vannamei challenged with
V. parahaemolyticus and control shrimp (not exposed to the pathogens). The
examination of the pathways revealed Infection with V. parahaemolyticus produces
major changes in amino acid metabolism, the TCA cycle, and gluconeogenesis
pathways, as well as their intermediates. TCA cycle intermediates such as
cis-aconitic acid, citric acid, fumaric acid, isocitric acid, and succinic acid were
found to be upregulated, which is generally associated with a high metabolic rate,
higher energy demand, and an immunological response (Nguyen et al. 2018b, c,
2018b, c; Song et al. 2019). Increased glucose, which may be used as an energy
source to maintain immunological response, was seen in the hepatopancreas of
Litopenaeus vannamei infected with WSSV and aberrant amino acid and fatty acid
metabolism (Wu et al. 2017a, b). Solanky et al. (2005) compared the metabolite
profiles of plasma collected from Atlantic salmon challenged with virulent
A. salmonicida to saline-injected and unfed control groups using NMR-based
metabolomics. Different NMR spectra (metabolite profiles) were detected for each
of these groups, and distinct metabolites were found. For the identification of
infected and noninfected persons, a metabolomic-based technique can be developed.
In a minimal-exchange, superintensive, and biofloc system, Schock et al. (2013)
used NMR-based metabolomic approaches to evaluate the condition of shrimp
health throughout the whole production cycle, from the nursery phase through
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harvest. Tissue-specific metabolic alterations were discovered, primarily in the areas
of energy metabolism and nitrogen detoxification. Guo et al. (2014) employed a GC/
MS-based metabolomic technique to find biomarkers that differentiated life from
death in crucian carps infected with Edwardsiella tarda. The most important
metabolites distinguishing survival from death in these E. tarda infected fish were
increased unsaturated fatty acid production, particularly palmitic acid, and decreased
fructose and mannose metabolism, particularly D-mannose. The metabolic pathways
linked to antibiotic resistance have been widely studied using metabolomics (Jiang
et al. 2019; Liu et al. 2019; Zhang et al. 2019; Li et al. 2020).

13.11 Conclusion

Metabolomics is a powerful, new science with a lot of potential in aquaculture
because it provides a global view of metabolism by identifying many metabolites
involved in biological responses of organisms exposed to various circumstances like
nutrition, environment, and disease. An improved understanding of metabolic path-
way variation aids in the identification of biomarkers and the development of
effective nutritional and health management methods that support optimum growth
and long-term aquaculture output.
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