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Abstract. Selecting the appropriate meta-features to represent the
optimization problems was studied previously. However, the research on
the extraction of meta-features for multi-objective problems is lacking. In
this paper, a set of meta-features including a unique meta-feature based
on Pareto front shape and the combination of meta-features are pro-
posed for the multi-objective optimization problems (MOPs). 25 multi-
objective benchmark functions and K-NN algorithm are adopted to
realize the algorithm recommendation for MOPs. Experimental results
show that the meta-features based on Pareto front can properly repre-
sent multi-objective problems and obtain better recommendation perfor-
mance. The algorithm recommendation accuracy is improved once the
combination of meta-features is considered.
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1 Introduction

Multi-objective optimization problems (MOPs) refer to the problems with sev-
eral objectives to be optimized simultaneously, which widely exist in many fields
such as mathematics, physics, engineering and business [1]. Typically, an MOP
[2,3] can be modeled as follows:

minF (z) = (fu(x), f2(2), fs(x), -, fu(2)) (1)
subject to: x € 2 (2)

where = is a decision vector, {2 refers to the feasible search region, R™ is the
objective space, F'(z) : {2 — R™ is an m-dimensional objective vector. Since
the optimization of one objective often leads to the deterioration of at least
one other objective, the optimal solution set z* is a set of tradeoff solutions
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called Pareto optimal solution, where the set of F(z*) is Pareto front (PF)
[4]. Usually, decision makers require an approximation to the PF, so they can
select a final solution from the solution set according to her/his preference.
Therefore, a number of advanced algorithms have been developed for finding
a set of solutions to approximate the PF in a single run. Evolutionary algorithm
(EA) is a random search algorithm which simulates biological natural selection
and evolution. EA has been proven to be helpful for MOP [5], as they process
a set of solutions in parallel, eventually exploiting similarities of solutions by
crossover [6]. Various multi-objective evolutionary algorithms (MOEAs) based
on different evolutionary mechanisms were constantly designed and applied to
solve MOPs successfully, such as decomposition-based MOEA/D [7], NSGA-
III [8], domination-based NSGA-II [9], SPEA2 [10] and index-based IBEA [11],
EMOEA.

It is known that MOPs have different characteristics [12], while MOEAs per-
form different search biases [13]. For example, the domination-based NSGA-II,
SPEA2 have effective performance when dealing with MOPs with two or three
objectives, but the efficiency decreases significantly in tackling many-objective
optimization problems (MaOPs). For a complex new MOP instance, one app-
roach is to train the meta-model using a meta-learning (ML) [14] algorithm and
adaptively recommend appropriate algorithms for the problem. However, the
recommendation process requires prior knowledge about the problem’s charac-
teristics and corresponding algorithm performance, which have huge impact on
the accuracy of algorithmic recommendation system.

Although many ML literatures have proposed and proved the effectiveness
of meta-features [13] for optimization problems, such as meta-features, statisti-
cal meta-features and information theoretic meta-features [15,16], no literatures
have proposed a set of effective meta-features for MOPs to help algorithm recom-
mendation. Therefore, in this paper, we propose a new set of meta-features for
MOPs, which is consist of two components. One is a unique meta-feature based
on the shape and properties of the Pareto front, the other is a meta-feature
combination based on the target space including common meta-features from
statistical features, and geometric measurement features. The proposed meta-
feature set is used for the recommendation algorithm for MOPs. Finally, we
verify that meta-feature based on Pareto front can represent MOPs and realize
algorithm recommendation, and the accuracy of algorithm recommendation will
be improved if we consider both meta-features.

This paper is organized as follows: Sect. 2 introduces the background of the
meta-features and Pareto front geometrical features of MOPs. Section 3 presents
the meta-feature combination proposed in this paper. Section 4 shows the exper-
imental process, setup and result analysis. Section 5 makes conclusions.
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2 Related Background

2.1 Meta-feature

Meta-features are a set of data to characterize problem properties and their
relations with algorithm performance [14]. Identifying the appropriate set of
meta-features is a key challenge and a crucial step for meta-learning task. Limited
literatures [17,18] have proposed the formal definition of meta-feature for single
objective optimization problem. Meta-features are defined as a function f : D —
Ry, calculated by a set of k values extracted from a dataset D. The function f
detailed as

f(D) = o(m(D,h),hs) (3)

According to this function, we can know that the extraction of meta-features is
divided into two steps. The first step m : D — R;C is a characterization measure
[18], it extracts useful fitness information values from a dataset D, the second
step o : R;C — Ry, is a summarization function [18], such as mean, minimum,
maximum, skewness and so on.

In the field of single objective optimization, the extraction technology of
meta-features is very mature. So far, several types of meta-features are pro-
posed to characterize problem, including simple meta-features, statistical meta-
features, information theoretic meta-features [15,16], model based meta-features
[16,19] , landmarking meta-features [20], and so on. However, the focus of the
research is still to choose a set of meta-features suitable for a certain kind of
problem, so that the algorithm recommendation effect of meta-learning is the
best. Many literatures have successfully extracted meta-features and developed
the algorithm recommendation model for the single objective optimization prob-
lem. Fabio Pinto et al. [21] presented a framework to systematically generate
meta-features which are more informative than the non-systematic ones. Adriano
Rivolli et al. [17,18] proposed a tool MFE to solve the problem that the meta-
learning experiment is difficult to reproduce. Jorge Kanda et al. [13] studied the
four groups of meta-features of TSP problem, such as the edge and vertex mea-
sures, the result shows a good solution with a well meta-feature set, though TSP
problem under the different scene; Xianghua Chu et al. [12] proposed an adap-
tive algorithm recommendation system (ARM) based on meta-learning, which
extracted three meta-features, including statistical features, geometric measure-
ment features and landscape features, to represent the target space, and the
experimental results showed high recommendation accuracy.

In spite of the technology and application of meta-feature extraction for
single objective optimization problem are very mature at present, the tech-
nique of feature extraction may not be suitable for multi-objective problems,
because MOPs have more complex characteristics. The optimal solution of the
MOP is not one, but a Pareto solution set composed of many solutions. There-
fore, it is very important to understand the problem from the perspective of
Pareto fronts and Pareto solutions. The existing research on the characteristics of
multi-objective optimization problems focuses on the construction of benchmark
functions and the description of some characteristics of these functions [5,22].
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The purpose is to test the multi-objective algorithm on standard test func-
tions with various characteristics. Different algorithms have different perfor-
mance in solving multi-objective problems with different characteristics. The
current research on the characteristics of multi-objective problems only stops at
the description of language, No literatures describe the systematic meta-feature
extraction and meta-model construction method of MOP. Nevertheless, some
studies [22] have shown that the performance of decomposition-based MOEA
is closely related to the shape of the Pareto front, indicating that there is also
a mapping between the performance of MOEA and some properties specific to
MOP. In this paper, we propose the Pareto geometric features peculiar to MOPs
as meta-features besides the traditional ones.

2.2 Pareto Front Geometrical Features of MOPs

Different from the Pareto optimal front of the single objective problem is a single
point, the Pareto optimal front of the MOPs is a plane mapped by the Pareto
optimal solution set, which can have a wide variety of geometric shapes.

The geometrical features of MOPs’ Pareto Front include convex, concave,
mixed, degenerate, connected [5]. A convex front is one that covers its convex
hull. A convex front is a front that is covered by its convex hull. The linear front
is both convex and concave. A front is mixed if the front has connected subsets
that contain at least two of the three properties strictly convex, strictly concave
and linear. A degenerate front is one that the dimension of it is one dimension
less than that of the objective space, for instance, a front that is a point in a
two objective problem is degenerate.

In this paper, we name the Pareto front geometric feature of MOPs using in
ML as PF-based meta-feature, which is used to represent a unique meta-feature
of multi-objective problems in the meta-learning task.

3 Proposed Meta-features for MOPs

In order to comprehensively capture the characteristics of the problem and high-
light the characteristics of the solution space of the MOPs, we consider two kinds
of meta-features: the first one is the target space-based features applied in meta-
learning studies [12,23] including statistical features and geometric measurement
features. The aim is to characterize the fitness space of MOPs. The other one
is a proposed new meta-feature based on the Pareto front to characterize the
shape and properties of the Pareto front of MOPs.

3.1 Target Space-Based Features

As we all know, the algorithm carries out random search in the objective space
of the optimization problem and approaches the optimal solution step by step
according to the specified mechanism. Therefore, the distribution of the objec-
tive space can provide important information about the most appropriate search
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strategy for a particular space. Consistent with the single-objective problem, the
objective function of the MOPs also has statistical characteristics that can be
used to describe each objective space, so we consider the statistical features which
can provide the statistical information of the problem’s target space and are rel-
atively simple to be extracted. We take N data points as a sample, the character-
ization measure is fitness value f(z;), which is calculated by the correspondent
objective function f(z) at the point 7. Table1 shows a set of summarization
function that can almost comprehensively capture the statistical characteristics
of MOPs’ objective space. The mean of fitness value reflects the average level
of it, and represents the average height of fitness space to a certain extent. The
standard deviation of fitness values evaluates the degree to which the fitness
value deviates from the mean and the bumpiness of the surface. Skewness and
kurtosis of fitness values evaluates the symmetry of the surface and its flatness
relative to the normal distribution.

Table 1. Meta-features based on objective space statistical information.

Meta-feature Description
= % Zi\;l fi Mean of fitness values
SD(f) = \/ﬁ SN - F)? Standard deviation of fitness values

n(f(z)=F { [(fi — ?)/Std-(fi)]?)} Skewness of fitness values
Y2 (f(x) =E[(fi — [)*] /(E[(fi = [)?])?  Kurtosis of fitness values

V[ = lg(abs(max(fi) — min(fi))) Altitude of search space

Q1 = 25%quartile of response values The lower quartile of fitness values
Q2 = 50%quartile of response values The median quartile of fitness values
Qs = 75%quartile of response values The upper quartile of fitness values

However, simple statistical features may not be able to capture important
problem surfaces characteristics which are very complex, so we consider another
set of meta-features that can also describe the objective space surfaces charac-
teristics, the geometric measurement features. We uses the gradient value G; of
the ith data point as the characterization measure, G; is calculated as:

Gi:f(xi)—f(ilfi-FA:l}i),i:l,'-' , N (4)

In this equation, x; refers to the position of the point ¢ in D dimension, f(x;)
is the fitness value and Az; is 1% of the domain of the function. As is shown in
the Table 2, we select 5 summarization functions [12] to extract meta-features,
including the gradient-based features and outlier ratio. The first meta-feature
mean of gradient of fitness surface evaluates the steepness and roughness of the
fitness surface based on its rate of change around the sampled data points. The
standard deviation of gradient of fitness surface evaluates the changes in the rate
of change of sample data. Max of gradient of fitness surface is a measure of the
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maximum degree of surface mutation. The outlier ratio evaluated by the Grubbs
Test measures the percentage of extreme values in all response values.

Table 2. Meta-features based on objective space surfaces characteristics.

Meta-feature Description

1G] = % Efil |G| Mean of gradient of fitness surface

MG Median of gradient of fitness surface

SD(|G]) = \/ﬁ Zi\il(\GA — |G])? | Standard deviation of gradient of fitness surface
|Gl e = max {|G1],|G2],- - ,|Gn|} | Max of gradient of fitness surface

OR Outlier ratio

3.2 PF-Based Features

The meta-features from the previous section are the features of MOPs’ objective
space. However, for MOPs, the shape and properties of the Pareto front are also
ever-changing and can provide important information for the recommendation
of the optimal solution algorithm [23]. Unfortunately, the mapping of the Pareto
front can be one-to-one or many-to-one, and the complexity of Pareto front
increases with the increase of targets. So it’s difficult to extract features from
a point of information in the Pareto front. In another way, we can select the
classification attribute as the feature of the Pareto front.

The meta-feature is extracted through One-Hot Encoding. Firstly, we deter-
mine the feature types of the MOPs’ PF, and then the features are transformed
into digital features by the One-Hot Encoding. The reason for this method is
that it can extend the discrete feature value to Euclidean space, and the code
composed of several discrete features corresponds to a point in Euclidean space,
so it will be more reasonable to calculate the distance between features. Meta-
features based on Pareto front geometrical characteristics are shown in Table 3,
the shapes of the Pareto front include concave, convex, linear and mixed. The
continuity of the Pareto front indicates whether the Pareto front is disconnected,
and the dimensional consistency of Pareto front mapping reveals whether degen-
erate solutions are exist in the Pareto front.

Table 3. Meta-features based on Pareto front Geometrical characteristics.

Meta-feature | Description

SPF The shapes of Pareto front

CPF The continuity of the Pareto front

DCPF The dimensional consistency of Pareto front mapping
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4 Experimental Validation and Results

4.1 Experimental Process

To verify the two types of meta-features we used can well capture the charac-
teristics of MOPs, we apply the framework of adaptive recommendation system
from Chu’s study [12], which has been proved that it can provide better ranking
success rate and optimization problem efficiency in the case of extracting the
features based on the target space and using the K-NN learning algorithm to
learn. Figure 1 shows this framework.

| Multi-objective
problem 1

Multi-objective
problem 2

Multi-objective

problemn

New multi-
objective

problem x

Meta-features extraction
Performance of
MOEAs
Meta-features
import
| —
Recommendation system

| export
Meta-learner - ——] Recommended MOEA
construction Meta-model |

Fig. 1. Adaptive recommendation system framework.

—_— e — — ]

In this study, the problem repository is composed of four problem suites
with 25 benchmark functions: DTLZ1-9, WFG1-8, ZDT1-6 and MW1-2. Six
representative MOEAs of three types, MOEA /D, NSGA-III, NSGA-II, SPEA2,
eMOEA, and IBEA were selected as the algorithm repository. The performance
of the MOEAs we selected is measured by the algorithm ideal ranking for each
multi-objective benchmark function. The algorithm ideal ranking of a multi-
objective benchmark function is determined by the average result of Inverted
Generational Distance (IGD), which is a performance indicator obtained by each
algorithm runs 10 times on this problem. The smaller the value of IGD, the
higher the ranking. Since the more meta-features extracted does not mean the
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better effect, the combination of meta-features is considered in this paper. Firstly,
we test the PF-based meta-feature separately, and use the meta-classifier to
train meta-model which can recommend the best algorithm ranking for a new
problem. Then the recommendation results of its combination with target space-
based meta-features in the Sect.3 are studied. Besides, we also consider the
influence of the combination of meta-features on the recommendation results of
different problem dimensions (30-dimension, 40-dimension and 50-dimension).
Spearman’s rank correlation coefficient (SRCC) and hit ratio are used as indexes
to evaluate the performance of the meta-model by leave-one-out cross validation
method. SRCC can evaluates the consistency between the recommended ranking
and the ideal ranking. The hit ratio can measure the percentage of exact matches
between the ideal and recommended best performance in all problems.

Since K-NN has shown its high efficiency in algorithm selection problems
[12,13], we choose KNN algorithm for training meta-model. K-NN is based on
some distance measurement to find the k examples closest to the target in the
training set, and uses “voting method” to classify the new examples based on
the type of k nearest neighbor examples. Many literatures [12,13] show that K
= 3 has the best effect, so 3-NN is finally selected for classification prediction.

4.2 Experimental Setup

To ensure fairness and unbiased, the following measures are taken in this paper:

1) All the experiments are implemented in MATLAB 2017b with Intel Core i7
2.6 GHz and 16.0 GB RAM.

2) the parameter setting of the MOEAs is the default in the PlatEMO [25].

3) The sample size of the benchmark function is set as 1000, the objective num-
ber of each benchmark function is set as 2.

4) The population number and number of iterations of each algorithm are set to
100 and 10,000 respectively, and each algorithm runs 10 times independently.

5) The ideal ranking of algorithm performance of the six algorithms on 25 bench-
mark functions is obtained through experiments on the PlatEMO [25].

4.3 Experimental Results and Evaluation

In this paper, we obtained the ideal ranking of 6 MOEAs for each MOP bench-
mark function of 30 dimensions, 40 dimensions and 50 dimensions respectively
to measure MOEAs performance. Take the 50-dimensional result in Table4 as
an example, the optimal algorithm data of each benchmark function is indicated
in bold. For experimental results from 50-dimension, NSGA-II algorithm has the
best performance for benchmark functions DTLZ 2, 3, 5, 6, 9, WFG 4, 5, 6, 7,
8 and ZDT 2, which may be related to the feature that their Pareto fronts are
convex and continuous. For the test problems DTLZ 1, DTLZ 8 and WFG 3,
where the Pareto front shape is linear and continuous, the MOEAS based on
decomposition have the best performance. According to the data, many such
relationships can be found, which further indicates that the Pareto front shape
can provide information about the optimal performance algorithm.
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Table 4. IGD of the six MOEAs on 25 benchmark functions for 50-dimension.

Benchmark | MOEAD NSGA-II NSGA-IIT |IBEA SPEA2 eMOEA
function

DTLZ1 1.3820e+2 |1.3419e+2 |2.4903e+2 |1.2311e4-2|1.2921e+2 |1.7297e+42
DTLZ2 2.8348e—2 |1.7646e—2 3.5810e—2 |2.5657e—2 |2.1053e—2 |9.0678e—2
DTLZ3 3.7114e+2 |3.3828e+2 6.2927e+2 |3.6210e+2 |3.4927e+2 |5.3858e+2
DTLZ4 5.2775e—1 |3.0988¢e—1 |4.1815e—2|3.8568e—1 |9.4148e—2 |2.8794e—1
DTLZ5 3.0556e—2 |1.7965e—2 3.4749e—2 |2.5436e—2 [2.0218e—2 |1.0335e—1
DTLZ6 1.6959e+1 |8.8287e+0|1.0816e+1 |9.0258e+0 |1.0243e+1 |1.5907e+1
DTLZ7 8.1595e—1 |7.8510e—2 |2.0468e—1 |5.7889e—2 |1.2362e—1 |7.2861le—1
DTLZS8 NaN (NaN)|1.6596e—1 |1.5116e—1 |NaN (NaN) NaN (NaN) |NaN (NaN)
DTLZ9 1.6629e+1 |6.4314e4-0|7.7523e4+0 |7.1369e40 |7.2025e40 |1.1439e+1
WFG1 1.5047e+0 |1.0463e+0 [1.1879e+0 |9.4770e—1 |1.0947e+0 |1.2010e+0
WFG2 3.1789e—1 |1.0846e—1 |1.1682e—1 |1.1242e—1 |1.1807e—1 |1.9480e—1
WFG3 2.9008e—1 [1.1325e—1 |1.4112e—1 |9.6788e—2 |1.2120e—1 |1.5086e—1
WFG4 2.4521e—1 |8.2535e—2 9.3848e—2 |9.4766e—2 |8.5879¢—2 |1.4315e—1
WFG5 1.6671le—1 |5.5367e—2 |6.8498e—2 |6.7162e—2 |5.928%9e—2 |1.0669e—1
WFG6 2.3195e—1 |8.8982e—2 1.1974e—1 |9.9508e—2 |1.0070e—1 |1.3485e—1
WFG7 3.7602e—1 |4.2815e—2 6.0185e—2 |5.9616e—2 [4.6995e—2 |1.0329e—1
WFGS 2.6282e—1 |1.2818e—1 |1.4241e—1 |1.3408e—1 |1.3208e—1 |1.7850e—1

ZDT1 4.8669e—1 |5.0774e—2 |1.0124e—1 |3.1166e—2 |5.7299e—2 |1.6325e—1
ZDT2 6.834le—1 |9.1844e—2 2.258le—1 |4.6176e—1 |9.4580e—2 |1.2176e+0
ZDT3 4.8648e—1 |5.5911e—2 |9.4073e—2 |2.6406e—2 |7.2564e—2 |1.6750e—1
ZDT4 7.6528e+1 |6.1339e+1 |8.2208e+1 |6.7255e+1 |5.4032e+1|2.0289¢e+-2
ZDT5 1.0041e+1 |2.3197e—1 |5.3910e—1 |2.8128e+0 |1.6152e—1 6.8829e—1
ZDT6 3.7091e4+-0 |3.0061e+0 |3.9115e4+0 |2.7027e+03.4060e+0 |5.2363e+0
MW1 NaN (NaN)|NaN (NaN) |[NaN (NaN) |NaN (NaN) |[NaN (NaN) |NaN (NaN)
MW2 5.5339e—1 |3.7704e—1 |5.017le—1 |3.6892e—1 |1.7557e—1 |9.6832e—1

First, PF-based features are used to extract meta-features from multi-
objective benchmark functions to help build the meta-model, Table5 lists the
average SRCC and hit ratio for three different problem dimensions. SRCC [26]
is a metric used to assess the consistency between a recommended ranking and
a real ranking. SRCC is defined as:

N
pi=1-6 Zd?,a /(N/(N? - 1)) ()

where d; , is the Manhattan distance between the recommended rank and ideal
rank of algorithms a; N is the number of algorithms. If p is equal to 1, that
means the results are very consistent, the prediction is more accurate. Hit ratio
is the ratio between the number of correctly predicted labels in test cases and the
number of all test cases. The best result is shown in bold. From the experimental
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results, the overall average recommendation accuracy is more than 60%, indi-
cating that the MOEAs recommendation method based on Pareto front features
has achieved initial success. In Table 5, the highest SRCC 72% occurred in algo-
rithm recommendation for 40-dimensional problems, and the highest hit ratio
76% also occurred in algorithm recommendation for 40-dimensional problems,
that is, 19 optimal algorithms could be selected from 25 benchmark functions.

Table 5. The SRCC and hit ratio results of using only PF-based features

Performance indicators | 30-D 40-D 50-D
SRCC 0.62 £+ 0.04 1 0.72 4+ 0.02 | 0.67 = 0.03
Hit ratio 0.60 £ 0.02 1 0.76 4+ 0.02 | 0.68 &+ 0.02

Table 6. The SRCC and hit ratio results of using two types of features

Performance indicators | 30-D 40-D 50-D
SRCC 0.62 £ 0.03]0.72 &= 0.02 | 0.74 £ 0.02
Hit ratio 0.64 £+ 0.02|0.76 £ 0.02|0.72 + 0.02

In addition to Pareto-based features, whether combining other features, such
as those based on target space, can contribute to the improvement of accuracy
remains to be studied. Therefore, we used the target space-based features in
the Sect.3 combined with PF-based features to extract meta-features for the
multi-objective benchmark function. The results are shown in Table 6, its overall
average recommendation accuracy is also over 60%. Figure 2 shows the line chart
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Fig. 2. The performance of the recommendation using three types of features in three
dimensions.
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Fig. 4. Hit ratio values under different meta-features.

of average SRCC and hit ratio values under different dimensions. It can be seen
that the change of problem dimension will affect the final recommendation result
of the problem, and this influence may be positive.

In Fig. 3, when the dimensions are in 30 and 40 dimensions, the combination
of Pareto-based features and other problem features as meta-features will not
have much impact on the final prediction accuracy, but for 50 dimensions, it
improves the prediction accuracy. In Fig.4, the combined meta-features help
improve the hit ratio of the predicted problem. In general, although the Pareto-
based meta-features can produce better results for problem recommendation,
the combined meta-features perform better than the Pareto-based meta-features
alone, which indicates that the Pareto-based and the target space-based meta-
features should be considered simultaneously when extracting features for multi-
objective problems.



Meta-feature Extraction for Multi-objective Optimization Problems 443

5 Conclusion

Meta-feature extraction is a challenging frontier topic in algorithm selection and
recommendation. Its goal is to select the features that can represent the prob-
lem and map them with the algorithm performance that can solve the problem,
so as to improve the accuracy of recommendation. In the research of single-
objective problem, feature extraction and algorithm recommendation have been
very mature, and there is no systematic literature to extract features and rec-
ommend appropriate algorithms for MOPs. In this paper, we propose a unique
meta-feature based on Pareto shape and properties for MOPs, carry out exper-
iment on 25 multi-objective benchmark functions and use K-NN algorithm to
realize the algorithm recommendation of extracting PF-based features for MOPs.
In the experimental process, we also considered the combination of features based
on PF and target space.

The contributions of this paper summarized as follows: 1) We introduce
the meta-learning of machine learning field to the algorithm selection of multi-
objective problem, which expands the new perspective of solving multi-objective
problems; 2) We verify that the shape of the Pareto fronts can provide effective
information for the algorithm recommendation of multi-objective problems; 3)
We propose the PF-based features peculiar to MOPs for meta-learning pro-
cesses, which can reduce the space-time complexity of feature extraction under
the premise of no significant reduction in recommendation accuracy; 3) The
result of our experiment proves that PF-based meta-features can represent MOPs
and realize algorithm recommendation. Simultaneously, if the combination of
PF-based meta-features and target space-based meta-features is considered, the
accuracy of algorithm recommendation will be improved, indicating that the
combination of those features can more comprehensively characterize the features
of MOPs. This provides more possibilities for multi-objective feature extraction
engineering field.

Although the prospect of feature extraction for multi-objective problems is
good at present, there is still room for progress. For example, the target space of
the MOP also has some features that the single-objective problem does not have,
such as multimodal, deceptive. How to represent these features and whether they
can be used to extract meta-features remains to be studied.
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