
Visualizing and Computing Natural
Language Expressions: Through a Typed
Lambda Calculus λ

Harjit Singh

1 Introduction

Church introduced a Lambda operator λ in 1941 and it is a vital tool used in syntax
and semantics. SinceMontague’s times, a typed formation of lambda abstraction has
been popular in linguistics [1].1 Sometimes, a lambda operator can be defined under
lambda expressions to focus on a specific property in a context. It appears such as
(a term = property) and fetching the predicate expressions in a second order logic
and first order logic, respectively [2].2 On the other hand, a lambda calculus is a set
of expressions and rules that produce certain new expressions. In general, a single
typed and monotyped lambda calculus is discussed many times in a literature [3].

However, it is a fact that the first order logic in contrast to a simple typed lambda
calculus allows infinite types of expressions that fundamentally enumerate from the
finite forms.3 Secondly, typed lambda notations are standard in mathematics and

1 It discusses a well-formed system in semantics through a systematic arrangement of typed mech-
anism in terms of natural language expressions that are semantically motivated. It represents the
following

(i) e is a type
(ii) t is a type then
(iii) both <e, t> is a type.
2 See Allwood et al. [2, p. 156].
3 Carpenter [4, p. 40] has pointed out that in a simple typed lambda calculus, each type either

belong to a basic type or a functional type.

Basic type ≤ Typ
(σ → τ) ϵ Typ if σ, τ ϵ Typ
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computer science. At the same time, a single term calculus in itself has denoted a
formal representation of syntactic structures that are somehow different from the
first order and high order logic. On the other hand, we find three schemes when we
seeing the axiomatic nature of a simple typed lambda calculus [4]. The following
schemes are as

(a) α reduction
├ λx.α→ λy. (α [x→y])

∉ Free (α) & y is free for x in α]

(b) β reduction
├ (λx.α) (β) → α [x → β]
[β free for x in α]

(c) η reduction
├ λx.(α (x)) → α

[y

[x ∉ Free (α)]

In the context of a natural language (i.e. English), lambda operator λ resolves
passive and other cases within the propositional functions. It transforms such a func-
tion into one place predicate situation and binds the variables (x, y) in abstraction
to define the expressions in the following way.4

(d) X kicked chaster                <e, t> type  
(kick’ (chester’)) (x)           Propositional Expression
λ x [(kick’ (chester’)) (x)]   Lambda Expression 

Here (d) shows that variable (x) is bound by the lambda operator and it is a
well-formed expression for <e, t> type [5, p. 116].

The paper has a total of five sections. The first section begins with the
basic introduction of lambda calculus. The second section discusses the syntactic
and semantic background of lambda calculus. The third section deals with the
aims/objectives of the study. The fourth section analyzes the natural language expres-
sions concerning lambda abstraction and application. The fifth section concludes the
results and the future research.

4 For more details see Cann [5, p. 116].
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2 Related Works

As already has been pointed out lambda abstraction finds significant during
Montague, and later many semanticists incorporated this into linguistics. It became
a powerful tool to establish formal semantics. The following Fig. 1 shows the
grammatical nature of a lambda expression.

Figure 1 interprets how lambda expression applies in relative clause, predicates
andmany other cases in a natural language. However, a classic instance of the lambda
abstraction usually defines under ‘the proper treatment of quantifiers in English’. See
the Table 1.

Table 1 specifies that syntactic rules on the left handside translate into parallel
with lambda symbol λ that directly controls the NP and VP constitutes [1, 6, p. 350].

In fact, lambda operator/abstraction operator λ is a kind of binder which denotes
the infinite set of individuals in L1. In that case, it shows the characteristic function
of the set and sometimes, it shows the value description with the notation ϕ. On the
other hand, when both lambda operator and value notation removes from the set,
the left part is called β-reduction. Based on such function, almost many predicates
like love, like, kill, eat, see, meet, etc., defines effortlessly [7, pp. 94–95].

Table 2 demonstrates that a predicate ‘like’ can be expressed with various names
(i.e. Mary, John, Bill, Keat, etc.) bind with λ operator. It has a wide range here and
may cover set of individual those who like m = Mary. Secondly, the value notation
ϕ characterizes the set of individuals. And at last, both lambda operator λ and value
notation ϕ can be removed from the set of individuals to form a β-reduction situation.

Fig. 1 Lambda expression λ with grammar

Table 1 Syntax (rules and
interpretations)

Syntactic rules Translation

S → S and S S’1 & S’2

S → S or S S’1 ∨ S’ 2

VP → VP and VP λx (VP’1 (x) & VP’2 (x))

NP → NP or NP λP. (NP’1 (P) & NP’2 (P))
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Table 2 Syntax (categories
and λ operator)

Syntactic categories λ operator

Predicates and variables λx. Likes (m, x)

Predicate (Likes) with set of individuals (De) λx. Likes (x, m)

Value description [λx. φ]

β-reduction Loves (m, h)

3 Aims and Objectives

• To present a general survey on lambda operator λ
• To analysis natural language expressions in syntax and semantics through typed

lambda calculus λ
• To compute results when typed lambda calculus switches from one natural

language to another
• To propose an algorithm based on semantics of typed lambda calculus λ.

4 Analysis with Typed Lambda Calculus λ

We know that all objects around us identify with certain names, symbols, and terms,
etc. Moreover, they are significant for a natural language considered English, Hindi,
Punjabi, Marathi, Malayalam, etc. It is fascinating and challenging for us to develop
any logical system for such languages. We take English as a formal language to
understand the logical system for its expressions through typed lambda calculus. We
begin with the following proposition.

(i) Bill loves Elysha 

It is a combination of Subject/NP and Predicate/VP where an individual constant
Bill and Elysha respectively around the verb ‘loves’. Here V denotes a verb that has
binary relations and it is called a binary predicate. The ‘loves’ predicate attracts both
arguments, but the first argument is an empty slot intituitvely. The following way
defines this in L1.

Loves (b, e) 
Loves (_____, e)

We can compare the empty situation of ‘loves’ predicate with an abstraction that
requires the formal representation to fill it up. See Table 3.
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Table 3 Propositions with Lambda λ

Proposition Explanation

P1 Bill loves Elysha

Predicate (Binary) Loves (b, e)

Intuition ground (Empty slot) Loves (_____, e)

Abstraction field with λ λ

λ with variable x λx. Loves (x, e)

Table 4 Lambda abstraction

Lambda abstraction (syntax rule) Lambda abstraction (semantics rule)

If α is an expression of type t and u variable of
type σ then [λu] is an expression of type <σ,
t>. We say σ and t as input type and output type
of this expression

If α is an expression of type t and u variable of
type σ then [[λu α]]Mg is that function f from
Dσ into Dt such that for all objects o in Dσf (o)
= [[α]]Mg [u→o]

Adapted from Coppock and Champollion [6, p. 171]

Table 3 shows that a proposition ‘Bill loves Elysha’ has a binary predicate where
the empty slot (_____) is equal to abstraction. It fills up with a lambda operator λ

under the name of a variable x.5

4.1 Lambda Abstraction (Syntax and Semantics)

Furthermore, we must discuss both syntax and semantics-based lambda abstraction
rules.

Table 4, suggests that the input type goes to set of individuals and [λu. α] is the
output expression. At the same time, the semantics rule gives [[λu. α]]M,g expression
if there is an α and the domain of type must be under truth values.

4.2 Lambda Operator λ in Syntax

In syntax, individuals and their truth values and statements with conjunctions,
disjunctions, quantifiers and formulas are TYPE only according to simply-typed
lambda calculus. Thus, each expression carries at least one type of expression. Table
5 induces such expressions formally as.

Of these seven categories, the first is the basic level information about variables
such as x, y, z in a constant form. The second application part dealswithα and β; those
also type expressions. The third part shows that α and β both represent similarity if

5 Note that e denotes entity and t denotes truth values however both e, t used for functional types
such as <e, t>. These functional types also called a set of infinites. They denote individuals and
truth values under the domain. It is represented by De = the domain of individuals and Dt expresses
the truth values in the form of Dt = {1, 0} Coppock and Champollion [6, pp. 167–68].



604 H. Singh

Table 5 Lambda and syntax

Basic
expressions

Application Equality Negation Binary Quantification Lambda
abstraction

Ct, n
(constant)
Vt, n
(variable)

For any
types σ and t
is an
expression of
type <σ, t>
and β is an
expression of
type σ then
[α] (β) is an
expression
of type t

If α and β

are items,
then α = β

is an
expression
of type t

If φ is a
formula,
then so is
¬φ

If φ and �

are
formulas
then so are
¬φ, [φ ∧
�]. [φ v
�], and [φ
↔ �]

If φ is a
formula and u
is a variable of
any type, then
[∀ u φ] and [∃
u φ] are
formulas

If α is an
expression
of type t and
u is a
variable of
type σ then
[λ u α] is an
expression
of type <σ,
t>

Adapted from Coppock and Champollion [6, pp. 180–81]

they are terms. The negation part tells us that if ϕ is a formula then it can appear
with ¬ also. Binary connectives mean that if any formula comes with ϕ ψ then it
can be combined with ∨, ∧, ¬, ↔ like connectives. In quantification, a universal
quantifier∀ and existential quantifier ∃ exist with variables in a formula. On the other
hand, in the lambda abstraction, any t expression binds with a lambda operator λ.

4.3 Lambda Operator λ in Semantics

Model and assignment function determine the natural language expressions by
mapping the semantic values in Lλ. Further, we say that <D, I> both are necessary
for M as a model that assigns the semantic values.6 The following way describes this
in L1.

L1 = M <D, I> 
D = De Dt

I = assignment function 
D = Domain for individuals that represent through the types e

D = Domain for truth values t

Table 6 shows that the first slot is for basic expressions with a non-logical constant
and a variable. The second one is about the application of α and β expressions in
the context of type. The third ‘equality slot’ discusses the truth value of α and β if
they belong to the same type. The fourth ‘negation slot’ tell us that the ϕ formula
translates into a ¬ϕ form. The fifth slot is the (negative, conjunctive, junction, etc.)

6 Remember that in a model M = <D, I>, D is the domain for a set of individuals which interpretes
with De and Dt describes the truth values in the form of {0, 1}.
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Table 6 Lambda and semantics

Basic
expressions

Application Equality Negation Binary
connectives

Quantification Lambda
abstraction

If α is a non
logical
constant then
[[α]]Mg= 1 (α)]

If α is an
expression
of type <σ,
t> and β is
an
expression
of type σ

then [[α
([[β]]Mg =
[[α]]Mg =
([[β]]Mg)

If α and
β related
with
same
type
then [[α
= β]]Mg

= 1

If φ is a
formula,
then
[[¬φ]]Mg =
1 iff
[[φ]]Mg = 0

If φ and �

are
formulas,
then [[φ ∧
�]]Mg = 1
iff [[φ]]Mg

= 1 and
[[�]]Mg =
1

If φ is a
formula and v
is a variable
the t type [[∀
v. φ]]Mg = 1
iff for all o ε

D:
[[φ]]Mg [v → o]

If α is an
expression of
type t and u
us a variable
of type σ then
[λ u α]Mg is
that function f
from Dσ into
Dt such that
for all objets o
in Dσ f (o) =
[[α]]Mg [σ → o]

Adapted from Coppock and Champollion [6, pp. 187–88]

binary connectives formedbywffs. The sixth ‘quantification slot’ dealswith universal
and existential quantifiers, and the last seventh slot shows the lambda λ as a binder
for types [7, 8, pp. 170–88].

5 Discussions and Results

Based on the above lambda abstraction λ in Tables 5 and 6, we take as input to
compare two different languages to see the actual output. The first abstraction rule
in syntax begins with usual expressions and ends with the lambda λ. It is suffi-
cient to generalize the formal syntactic representations in both languages here.
Secondly, abstraction rule in semantics has similar categorization and it computes
such languages.

We see Tables 7 and 8 where both languages (English and Punjabi) have 1:1
correspondance in syntax and semantics of lambda calculusλ. Moreover, two natural
languages are going to map in the same way. In other words, we argue that any ‘y’
kind of a natural language gets generated by formal language ‘xs’ . However, double
complex and compound predicates, reduplicated forms and mainly addressing notes
are typical instances that will discuss by following intention and intuition-based
research and applications [8, 9].
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Chart 1

Start with assumption of 
type e, t for all objects

Search the abstraction 
slots

Fill up abstraction slots with a lambda operator 
λ

Allow lambda 
operator λ as binder

Maintain model and 
assignment function in L1
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Step 1: Objects with <e, t/et>

Under step 1 we take two sets of common nouns (CNs) and proper nouns (PNs)
with a single predicate ‘loves’. AGR refers to another name such as arguments of both
CNs and PNs that represent either e type or t type in a discourse [10, 11].
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Step 2: Slots (______)

According to step 2, it shows that an external or a front AGR place must
be an empty slot in a predicate ‘loves’. Such slot finds with CNs and PNs sets.

Step 3: Slots with lambda operator λ

Step 3 determines that the empty slots in CNs and PNs are abstraction places that
fills up with a lambda operator λ. We add this operator in front of each empty slot.
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Step 4: Lambda operator λ as binder for variables x

In step 4, we argue that a lambda operator λ binds x variable in the same slot.
Because it is difficult to select each name separately for the same function here.

Step 5: Model and assignment functions

The step 5 defines the formal representation with a model (M) that contains (D)
and (I) function assignment as g. Any set of individuals, as appears in step 1, is a part
of e, t/et domain which directly links with truth values (1, 0).

6 Conclusion

We understand that a language like English has a formal representation. Small and
simple statements in any natural language are expressions that are nothing but a set
of finite or infinite types. We find that a lambda operator λ describes such infinite
sets better because it takes all types of expressions (equality-based, negation-based,
and so on) in the form of a type and binds them to avoid repeating any name. It also
frames syntax and semantics of a natural language. Following such observations, a
proposed algorithm helps us to analyze small CNs and PNs individual sets.
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