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1 Introduction

Groundwater is the most important source of natural resources. It is a vital source
of industries, agriculture, and domestic requirements which want to be carefully
managed for hard rock and drought-prone areas [1]. It has become a reliable source
of water in all climatic regions of the world [2]. Groundwater is the largest available
freshwater resource in the whole world. Aquifer wells provide potable water to 50%
of the world’s population and record 43% of overall irrigation water consumption. In
addition, worldwide 2.5 billion citizens depend entirely on groundwater supplies in
order to meet their everyday needs [3]. In arid and semi-arid climates, with frequent
dry spells and sometimes erratic surface waters (LiamasandMartínez-Santos, 2005),
groundwater is significant. Groundwater is an important medium of water supply in
different regions of theworld, as a result, several studies highlighted different features
of groundwater such as storage potential, hydrogeology, water quality , exposure,
and so on [4–7]. Furthermore, groundwater simulation has become an essential tool
among scientists and engineers working on water management for optimizing and
protecting the development of groundwater. Physically, during the past few years,
simulations have been implemented to simulate and analyze the groundwater envi-
ronment and then take remedial steps in order to allow effective use of the control
of water supplies. These models act as a hydrological variableness framework and
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understand the physical processes within the aquifer. Hydrologists, mechanics, and
environmental engineers use this frequently in computer applications but challenges
range from aquifer protection yield to soil quality and clean-up. Although such
models use data in highly intense, laborious, and expensive ways. As a consequence,
physical models in developed countries are significantly limited because of the lack
of appropriate and high-quality data.

In this paper, we have used ANN for groundwater prediction of four Blocks of
the BANDADistrict of UP. Prediction of groundwater is very important for planning
groundwater administration and water resources in any river basin. Physical-based
models are widely used in groundwater simulation. Wide numbers of numerical
models have already been developed for different areas with different objectives such
as to express provincial groundwater behavior and to understand local hydrological
processes [8–10]. The relevance of the ANN technique in water management ranges
from event-based simulation to real-time simulation. It has been used for rainfall-
runoff simulation, precipitation simulation as well as for stream flows simulation,
evapotranspiration, water quality as well as groundwater [11–13]. In the literature,
comparatively less research on the ANN-based approach in groundwater hydrology
has been used in comparison to surfacewater hydrology. Neural networking practises
are used in groundwater hydrology for the evaluation of the aquifer parameters [14–
20], groundwater quality predictions [17, 21, 22].

2 Study Area

Banda district lies between latitude 25◦00′00” and 25◦59′00” north and longitude
80◦06′00” and 81◦00′00”. The district’s total area is 4460 km2. Baberu is one block
of the Banda district. It consists of 570.41 km2. The area geologically comprises
Precambrian Bundelkhand granites overlain by Vindhyan and quaternary alluvium.
The area is roughly plain apart from some isolated granitic hillocks and the division
of point bars natural levees, and flood plain. It is made up of unconsolidated deposits
of Indo-Gangetic alluvium of recent age comprising silt clay, silt, Kankar, sand and
their admixtures of various grades.
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3 Study Period

The periods for study depend from the time of minimum to the time of maximum
water table elevation as the non-monsoon period and from the time of minimum to
the time of maximum water table elevation as monsoon period. For this purpose,
data have been taken from 1995 to 2016 in northern India and the water year is
considered from November 1 to October 31 next year. The study periods are taken
as non-monsoon periods for the duration of November to May.

4 Materials and Methods

4.1 Ground Water Balance Equation

Rc + Ri + Rr + Rt + Si + I g = Et + T p + Se + Og + �S (1)



380 S. Asghar Moeeni et al.

where
R = Rainfall Recharge;
Rc = Canal seepage Recharge;
Rr = Field irrigation Recharge; Rt = Recharge from pond storage
Ig = inflow from blocks; Et = Evapo-transpiration;
Tp = Groundwater discharge from tube well;
Si, Se = influent and effluent seepage from rivers; Og = outflow to other blocks;

and
�S = change in groundwater storage.
All these parameters are calculated by Central Groundwater norms [Ref].

ANN Architecture

For the prediction of groundwater resources, ANN model is proposed the proposed
models have been built usingMATLABThe proposed ANNmodel consists of only a
hidden layer in between input and output layers. Transfer function used on behalf of
the hidden layer is sigmoid whereas used for output layer it is linear. Four different
algorithms Levenberg Marquardt, Gradient Descent, Scaled Conjugate Gradient,
and Bayesian Regularization backpropagation algorithm are used for training. The
proposed model has been trained, tested, and validated with recharge and discharge
and groundwater level data. The block diagram of the proposed two inputs and one
output ANNmodel is shown in Fig. 1. The structure of an ANN is usually prejudiced
by the nervous structure of humans.
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Fig. 1 Actual and predicted
groundwater level through
Levenberg–Marquardt for
Non-Monsoon season

4.2 Levenberg–Marquardt (LM)

The Levenberg–Marquardt technique is a modification of the typical Newton
algorithm for ruling an optimum answer to minimize complexity. It employs
approximation to the Hessian matrix in the subsequent Newton-like weight update

xk+1 = xk−
[
J T J + μI

]−1
J T e (2)

when neural network x is the weights, J of Jacobian matrix minimizes the presenta-
tion criterion, µ of a scalar emphasizes the phase of learning, and e is the vector of
the residual error. When µ is bigger, Eq. 1 is decent in the gradient for a limited
stage scale. The Newton method is faster and more reliable, near to minimum
error, because the objective is to change size. The scalar µ is zeros equation 1
automatically is the Newton method. Newton’s method is quick and more accurate
because of the shifting toward the Newton method quickly. Levenberg–Marquardt
has computational requirements so it can be used for small networks [23].

4.3 Bayesian Regularization (BR)

The Bayesian regularization is an algorithm that mechanically sets optimum stan-
dards in support of the parameter of the point function. The weight and bias of the
network be understood to be a random variable with specified circulation. The benefit
of Bayesian control is that the feature should not surpass the scale of the network.
The effective usage of Bayesian regularization in literature [24].
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4.4 Gradient Descent by Means of Momentum and Adaptive
Learning Rate Back Propagation (GDX)

In order tomeasure the derivative of the output cost function according to the arbitrary
weights and bias of the network, this technique utilizes a standard back propagation
algorithm. This strategy utilizes gradient descent with momentum to control each
variable. With each level of shift, the learning rate is increased if efficiency declines,
one of the simplest and most popular ways to train a network [25].

4.5 Scaled Conjugate Gradient (SCG)

The scaled conjugate gradient (SCG) algorithm [26] determines the quadratic error
calculation in the neighborhood. Moller [26] proved this hypothetical base work
to be the primary order approach for the primary derivative, such as regular back
propagation, and found an important way to obtain a local minimum of second-order
technique in the second derivatives. SCG is a second-order combination of gradient
algorithms that has helped to reduce a multidimensional target function. SCG is
a simple algorithm and employs a scaling method that holds the search through
information iteration away from the time-consuming line [26, 27] has shown that the
SCG approach presents super linear convergence for major problems.

4.6 Criteria for Evaluation

The following statistical indices such as R2 efficiency criteria, root mean square error
(RMSE), Mean Absolute Error (MAE), Mean Square Error (MSE), and coefficient
of correlation (r) were used to evaluate the performance.

5 Results and Discussion

In Babeu Block of BANDA, part of the Yamuna river basin, the purpose of ANN
is to measure the capacity to predict a fluctuation of the groundwater level. The
network has the following input parameters, Recharge and Discharge. In recharge all
the parameters are included like recharge from rainfall, recharge from canal seepage,
recharge from field irrigation, recharge from pond storage and in discharge all the
parameters are included like groundwater discharge from tube well, influent and
effluent seepage from rivers, and for the output parameters, groundwater levels were
taken. The four wells’ groundwater levels were estimated by using the feed-forward
networkwith a backpropagation algorithm.Minimumerrorswere saved in the trained



Simulation of Groundwater level by Artificial Neural Networks … 383

networks. The neural networks of each wells producing maximum value for R2. was
selected as the best network.

For ALIHA well LAT = 25.495 LONG = 80.525

Year Recharge in Ham Discharge in Ham Groundwater level in MBGL

1995 2776.139 74.557 6.53

1996 2594.47 74.63 5.09

1997 2488.79 71.615 5.1

1998 2903.234 71.610 5.28

1999 2352.035 80.709 5.33

2000 3168.478 80.704 7.43

2001 3436.0.904 80.700 4.08

2002 3435.626 80.695 5.73

2003 3137.422 80.535 1.83

2004 4802.41 81.270 5.23

2005 1735.716 81.717 5.3

2006 3301.524 82.368 5.91

2007 2686.633 82.156 5.5

2008 3983.97 82.704 6.09

2009 3155.92 83.233 8.03

2010 3077.607 83.802 7.02

2011 3556.657 109.231 6.05

2012 3294.387 109.784 8.02

2013 3152.837 111.968 6.11

2014 2603.938 113.001 6.5

2015 3019.837 114.034 6.8

2016 3593.046 114.146 8.3

HAM = Hectare Metre, MBGL = Metre Below Groundlevel
For Mural well LAT = 25.51, LONG = 80.562

Year Recharge in HAM Discharge in HAM Groundwater level in MBGL

1995 7082.457428 190.2115222 4.3

1996 6618.994941 190.410659 3.9

1997 6349.392655 182.7041859 2.1

1998 7406.700558 182.6928576 4.7

1999 6000.488148 205.9046163 3.1

2000 8083.388163 205.8932881 2.42

2001 8768.194147 205.8819598 2.6

2002 8764.93384 205.8706316 9.65

(continued)
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(continued)

Year Recharge in HAM Discharge in HAM Groundwater level in MBGL

2003 8004.157891 205.4621211 0

2004 12,251.87134 207.3352643 1.33

2005 4428.140221 208.4777991 2.87

2006 8422.813025 210.1386775 8.52

2007 6854.111735 209.5955874 5.97

2008 10,163.88281 210.9957958 5.95

2009 8051.360821 212.3960043 5.36

2010 7851.559325 213.7962128 6.3

2011 9073.706649 278.6707427 6.13

2012 8404.605956 280.0800508 3.6

2013 8043.484473 285.6519149 2.34

2014 6643.138717 288.287559 3.31

2015 7704.17571 290.923203 5.33

2016 9166.541755 291.2091086 2.26

For Patwan well LAT = 25.59 LONG = 80.56

Year Recharge in HAM Discharge in HAM Groundwater level in MBGL

1995 13,691.21989 367.7011551 4.3

1996 12,795.29261 368.0861097 7.2

1997 12,274.11981 353.1885944 6.5

1998 14,318.01985 353.1666955 7.9

1999 11,599.64652 398.0377444 6.3

2000 15,626.13626 398.0158455 6.52

2001 16,949.94645 397.9939467 7.87

2002 16,943.64389 397.9720479 8.74

2003 15,472.97486 397.1823492 0

2004 23,684.30256 400.8033545 7.93

2005 8560.113787 403.012008 11.66

2006 16,282.28428 406.2226805 11.05

2007 13,249.80092 405.1728238 16.6

2008 19,647.97613 407.8795908 17.35

2009 15,564.22365 410.5863577 17.52

2010 15,177.98396 413.2931247 17.5

2011 17,540.5379 538.7031909 14.8

2012 16,247.08788 541.4275485 11.3

2013 15,548.99775 552.1986145 5.67

(continued)
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(continued)

Year Recharge in HAM Discharge in HAM Groundwater level in MBGL

2014 12,841.96536 557.2936233 10.25

2015 14,893.07416 562.3886321 15.55

2016 17,719.99904 562.9413209 13.65

For Baberu well LAT = 25.54 LONG = 80.71

Year Recharge in HAM Discharge in HAM Groundwater level in MBGL

1995 4581.922195 123.0553666 3.15

1996 4282.089958 123.1841961 1.95

1997 4107.673562 118.1985734 2.5

1998 4791.687917 118.1912447 2.05

1999 3881.953419 133.2078507 2.15

2000 5229.463927 133.200522 2.89

2001 5672.492038 133.1931933 2.65

2002 5670.382817 133.1858646 1.85

2003 5178.206727 132.921583 1.45

2004 7926.220778 134.1333936 1.95

2005 2864.739275 134.8725445 3.46

2006 5449.051313 135.9470325 5.62

2007 4434.196323 135.595686 5.2

2008 6575.418306 136.5015363 6.37

2009 5208.744171 137.4073867 5.5

2010 5079.484671 138.313237 5.25

2011 5870.140175 180.2831396 2.75

2012 5437.272439 181.1948768 3.65

2013 5203.64865 184.7995363 2.84

2014 4297.709523 186.5046389 3.93

2015 4984.136373 188.2097414 4.45

2016 5930.198882 188.394705 4.32

For ALIHA Well, all recharge and discharge data were calculated according to
the groundwater estimation committee norms. In the year 2002, recharges were the
most, i.e., 3435.626 and the dischargeswere themost in the year 114.146. ForMurwal
well, maximum recharge was found in the year 2008, that is, 10,163.88281 HAM
and maximum discharge was found in the year 2016 that is 291.2091086 HAM. For
Patwan well, maximum recharge was found in the year 2004, that is, 23,684.30256
HAM and maximum discharge was found in the year 2016, that is, 562.9413209
HAM. For Baberu well, maximum discharge was found in the year 2016, that is,
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188.394705. HAM and maximum recharge were found in the year 2004 that is
7926.220778 HAM.

For ALIHA Well

See Figs. 1, 2, 3 and 4.

Fig. 2 Scatter diagram for
actual and predicted
groundwater level for R2 =
0.88 for testing

Fig. 3 Actual and predicted
groundwater level through
Bayesian Regularization for
Non-Monsoon season

Fig. 4 Scatter diagram for
actual and predicted
groundwater level for R2 =
0.85 for testing
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For Baberu well

See Figs. 5 and 6.

For Murwal Well

See Figs. 7 and 8.

For Patwan Well

See Figs. 9 and 10.

Fig. 5 Actual and Predicted
groundwater level through
Bayesian Regularization for
Non-Monsoon season

Fig. 6 Scatter diagram for
actual and predicted
groundwater level for R2 =
0.77 for testing
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Fig. 7 Actual and predicted
groundwater level through
Levenberg- Marquardt for
Non-Monsoon season

Fig. 8 Scatter diagram for
actual and predicted
groundwater level for R2 =
0.94 for testing

6 Conclusion

The function of the artificial neural network of feed-forward back propagation into
groundwater prediction has been investigated in this research paper. Input and output
data are grouped into hydro-geological well classes and the LM, SCG, BR and GD
have been trained for each well sheet. The findings demonstrate explicitly that the
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Fig. 9 Actual and predicted
groundwater level through
Levenberg-–Marquardt for
Non-Monsoon season

Fig. 10 Scatter diagram for
actual and predicted
groundwater level for R2 =
0.96 for testing

LM algorithmworks well for all four wells. Results demonstrate that the ANNmodel
is capable of predicting the virtual physical structure’s complex response. A major
advantage of this ANN technique is that it can provide good predictions by means
of limitations of groundwater data (Table 1).
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Table 1 Comparison of performance of models developed for all wells, training, testing and
validation

For Aliha well

LM BR GDX SCG

Evaluation
criteria

Epoch TRNG TST VALI TRNG TST VALI TRNG TST VALI TRNG TST VALI

R2 2000 0.88 0.85 0.85 0.85 0.83 0.54 0.34 0.22 0.16 0.86 0.83 0.72

MAE 2000 0.38 0.40 0.41 0.55 0.67 1.0 5.18 7.37 13.2 0.66 0.74 0.79

MSE 2000 0.64 0.79 0.77 0.80 0.90 4.29 39.31 81.27 205.9 1.24 1.18 1.73

RMSE 2000 0.80 0.89 0.81 0.89 0.95 2.07 6.27 9.01 14.3 1.17 1.08 1.31

For Murawal well

R2 2000 0.94 0.74 0.73 0.88 0.71 0.7 0.88 0.87 0.8 0.77 0.7 0.69

MAE 2000 0.45 0.14 0.14 0.85 1.17 1.32 0.89 0.78 1.71 2.56 1.17 1.4

MSE 2000 0.64 8.6 8.6 1.16 4.02 2.6 1.26 1.16 4.32 10.5 2.8 8.6

RMSE 2000 0.8 2.9 2.9 1.08 2.0 1.6 1.12 1.07 2.09 3.17 1.69 2.9

For Baberu well

R2 2000 0.82 0.78 0.73 0.77 0.78 0.70 0.57 0.51 0.34 0.72 0.67 0.63

MAE 2000 0.59 0.51 0.71 1.11 1.15 0.52 1.77 1.17 9.9 0.67 0.83 0.84

MSE 2000 0.85 0.87 0.97 2.1 2.5 1.38 6.81 2.13 14.0 0.97 1.31 1.47

RMSE 2000 0.92 0.93 0.98 1.4 1.6 1.17 2.6 1.46 11.9 0.98 1.14 1.21

For Patwan Well

R2 2000 0.98 0.96 0.75 0.722 0.721 0.51 0.67 0.455 0.44 0.88 0.86 0.84

MAE 2000 0.41 0.80 1.55 2.40 0.51 5.18 24.39 4.47 5.5 1.57 1.9 1.71

MSE 2000 0.89 1.36 15.9 9.39 0.87 50.3 8.8 105.7 66.3 4.2 6.62 6.1

RMSE 2000 0.94 1.16 3.9 3.06 0.93 7.09 29.78 1.46 8.14 2.0 2.57 2.4

LM = Levenberg Marquardt Algorithm, BR = Bayesian Regularization Algorithm, GDX = Gradient Discent Algorithm,
SCG = Scaled Conjugate Gradient Algorithm
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