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Abstract In recent years, rapid increase in population growth, improper usage of
synthetic fertilizers, organic matter depletion, nutrient imbalance, and land degrada-
tion owing to several anthropogenic activities have significantly exerted consider-
able pressure on agriculture which negatively influences sustainable plant
production. Therefore, it is necessary to sustain the most appropriate levels of
organic matter in degraded soils, which supports sustainable crop production and
maintains nutrient cycling in them. Biochar has been broadly used for sustainable
plant production among different organic matters due to its several advantages such
as mitigating global warming, excellent soil conditioner, and as a potential amend-
ment for various environmental applications over other soil additives. Moreover,
biochar additions in agricultural soils also promoted the seed germination, growth,
biomass, yield, and nutritional qualities of crops grown on biochar amended soils. In
addition to these benefits, biochar also supports soil microorganisms by providing
them habitat due to its porous structure and releases essential nutrients from its
matrix, improving microbial communities. Thus, it is suggested that biochar could
play a vital role in reducing the adverse impacts of climate change and threats to
sustainable crop production.

Keywords Activated carbon · Abiotic stress · Soil amendment · Crop growth · Plant
nutrition · Carbon sequestration

H. M. Tauqeer
Department of Environmental Sciences, University of Gujrat, Gujrat, Pakistan

V. Turan
Institute of Soil Science and Plant Nutrition, Faculty of Agriculture, Bingöl University, Bingöl,
Turkey

M. Farhad
Department of Chemistry, Government College University, Faisalabad, Pakistan

M. Iqbal (*)
Department of Environmental Sciences and Engineering, Government College University,
Faisalabad, Pakistan

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2022
M. Hasanuzzaman et al. (eds.), Managing Plant Production Under Changing
Environment, https://doi.org/10.1007/978-981-16-5059-8_2

21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-5059-8_2&domain=pdf
https://doi.org/10.1007/978-981-16-5059-8_2#DOI


1 Background

In recent years, land degradation, intense agriculture, soil fertility loss, environmen-
tal stresses (heat, drought, salinity, cold, metals), and nutrient imbalance signifi-
cantly decreased sustainable agriculture and plant production owing to a decline in
soil organic matter. Besides, the world’s population dramatically increased during
the last four to five decades which exerted stress on food production (Riaz et al.
2019). Soil nutrient depletion and fertility loss are the key concerns linked with
sustainable food production and food uncertainty owing to extensive land use
(Agegnehu et al. 2017). The applications of inorganic fertilizers have played a
crucial role in enhancing crop and plant production during the last half-century.
However, the use of synthetic fertilizers alone is not a wise solution in maintaining
soil fertility and enhancing crop yield because the chemical fertilizers, particularly,
nitrogen (N) may result in soil degradation and other associated environmental
problems such as the rapid organic matter decomposition of organic matter resulted
in the reduction of soil carbon stocks (Agegnehu et al. 2017). Thus, maintaining the
suitable organic matter in degraded arable lands and ensuring effective biological
nutrient cycling is critical for sustainable plant production and soil management.
After understanding land degradation and environmental issues, research on numer-
ous organic additives such as composts, mulches, manures, and other carbonaceous
additives e.g. biochar has evolved extensively with vital findings on agronomic
benefits, greenhouse gas emissions, carbon sequestration, soil quality, and fertility
as well as a potential soil amendment (Bis et al. 2018). Biochar, a carbon rich porous
material produced through the slow pyrolysis and/or by the combustion, thermolysis,
or gasification of various feedstock such as plant residue (Knicker 2007; Naeem
et al. 2021; Preston and Schmidt 2006), anthropogenic sources (Warnock et al.
2007), forest waste, biomass from energy crops, (Agegnehu et al. 2017) forage
plant biomass (Husk and Major 2011), swine manure (Ren et al. 2020; Tsai et al.
2012), sewage biosolids (Gao et al. 2020; Li et al. 2018; Zhou et al. 2017), empty
fruit bunches (Abdulrazzaq et al. 2015; Yavari et al. 2016, 2019), poultry litter and
manure (Abd El-Mageed et al. 2021; Sehrish et al. 2019; Wang et al. 2015; Chan
et al. 2008; Jin et al. 2016), human manure (Liu et al. 2014), goat manure (Touray
et al. 2014; Tayyab et al. 2018), and paper-mill waste (Hmid et al. 2015), kitchen
waste (Xu et al. 2020a) and rice husks (Islam et al. 2021; Wang et al. 2020a). The
physical and chemical properties of biochar entirely depend upon the feedstock type,
heating rate, pyrolysis conditions, residence time, pressure, design of reaction vessel,
the flow rate of inert gas, and other treatments (sieving, crushing, activation) after
pyrolysis (Joseph and Lehmann 2009; Qambrani et al. 2017). For instance, wood
biomass-derived biochar was relatively more resistant to biodegradation due to
higher lignin content (Windeatt et al. 2014) compared to biochar derived from
crop residues and animal manures (El-Naggar et al. 2018; Singh et al. 2014). The
biochar derived from manure feedstock, however, is thought to be nutrient (Mg, Ca,
and P) rich (Bandara et al. 2020; Cao et al. 2011) accompanied by higher cation
exchange capacity (CEC) and stability (Cely et al. 2015). Previous studies revealed
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that biochar obtained from the chicken manure at different pyrolysis conditions
exhibited dissimilar characteristics of pH, electrical conductivity (EC), N and P
concentrations (Chan et al. 2008; Meier et al. 2017). Additionally, biochar is
drawing attention as potential input in agriculture to support sustainable crop
production and increase yield via improving soil fertility, water holding capacity,
providing essential nutrients, carbon capturing benefits, simultaneously alleviating
the negative consequences of numerous biotic and abiotic stresses, reducing green-
house gas emissions and pollution (Akhtar et al. 2015; Beesley and Dickinson 2011;
Lehmann and Joseph 2015). Moreover, agricultural activities also deteriorate the soil
organic carbon (SOC) day by day. The resilient carbon fraction of biochar enhanced
the total carbon pool in the soil, resultantly improved soil fertility (Niar et al. 2017;
Lorenz and Lal 2014). This SOC plays a key role via maintaining the nutrients (P, N,
K) and water retention and by providing habitat for soil microorganisms that
improve soil structure and support plant growth (Kolton et al. 2011; Lorenz et al.
2007). Land use practices and extreme weather conditions (especially high temper-
atures) are also known to reduce SOC and soil fertility. The addition of biochar as a
soil conditioner is recommended to enhance both SOC and soil fertility. Apart from
this, biochar also increases carbon sequestration and reduces greenhouse gas emis-
sions released from biomass breakdown and thus reduces the global warming issue
(Qambrani et al. 2017). Likewise, biochar may also be utilized as an excellent
adsorbent to remove toxic environmental pollutants from the soil or wastewater
(Yu et al. 2021). The occurrence of numerous functional groups onto the surface of
biochar served as excellent binding sites for the adsorption of toxic heavy metals
such as lead (Pb), cadmium (Cd), and nickel (Ni) consequently prevent their
accumulation in plants (Tauqeer et al. 2021).

Thus, this chapter aims to collect information about the potential applications of
biochar for sustainable plant production after its incorporation into agricultural soils.

2 Benefits of Biochar Additions in Soils

2.1 Soil Quality Improvement

The addition of biochar in soils has a remarkable influence on numerous physical
characteristics of soil such as porosity, texture, depth and structure, surface area,
particle and pore size distribution, and bulk density. This improvement in the
physical traits of soil consequently has a positive influence on water availability at
deeper depths and aeration in the root zones which support plant growth (Chan et al.
2008). Additionally, the different merits of biochar additions in agricultural soils
significantly raised interest in its utilization as a soil conditioner due to an increase in
physical and biological traits of soils such as water and nutrient retention which
further improved plant growth (Riaz et al. 2019). For instance, among nine numer-
ous sorts of biochar each produced from various feedstock (500 �C), miscanthus
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feedstock biochar significantly enhanced soil fine and medium pores, EC, available
water content, CEC and reduced pH, bulk and particle density, and soil-wide pore
(Khan et al. 2017) (Table 1).

2.2 Soil Physical Properties

The biochar addition in soils increases water-holding capacity (WHC) and decreases
bulk density. This rise in WHC capacity could be attributed to the larger surface area
as well as the highly porous structure of biochar which enhanced water uptake
capacity and hence improved plant growth (Kinney et al. 2012; Laghari et al.
2016). For example, the biochar derived from pine sawdust feedstock at numerous
pyrolysis conditions (400, 500, 600, 700, and 800 �C) were added in desert soil, a
significant improvement in sorghum yield by 32% and 19% was observed at 700 and
400 �C, accordingly, over control. Additionally, WHC of the desert soil was
improved by 16% and 59% which enhanced water use efficiency by 52% and 74%
as well as total soil carbon stock, CEC, and plant nutrient content under 400 and
700 �C treatments (Laghari et al. 2016) (Table 1).

2.3 Soil Chemical Properties

Biochar application also improved the chemical traits of soil such as CEC, soil pH,
soil fertility, and nutrient uptake by the plants (Lehmann and Joseph 2015). Like-
wise, the oxidation process occurring onto biochar surfaces and the abundance of
different negative charge sites increased the CEC of the soil which increases nutrient
retention and subsequently supports plant growth (Cheng et al. 2008; Laird et al.
2010). In contrast, biochar additions to agricultural soils also increased anion
exchange capacity (AEC) of the soil owing to the presence of oxonium functional
groups which reduced the leaching of anionic nutrients (NO3

�, PO4
3�) from the soil

(Lawrinenko and Laird 2015).

2.4 Soil Biological Properties

Soil microorganisms such as fungi, bacteria, algae, nematodes, actinomycetes,
archaea, protozoa, and bacteriophages perform a crucial role in maintaining soil
functions such as soil structure formation and improvement, nutrient cycling, sup-
pression of pathogens and diseases, organic matter decomposition, secretion of plant
growth supporters, and mineralization of organic toxicants (Gorovtsov et al. 2019).
The presence of biochar in agricultural soils elicits the diversity and functioning of
these microorganisms owing to the overall improvement in physicochemical traits of
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Table 1 The influence of biochar applications on different traits of soil and plant

Feedstock type Results References

Cow-bone derived biochar
(application rate ¼ 2.5,
5 and 10% w/w
Pyrolysis conditions ¼
500 �C and 800 �C).

Increased total N, total dissolved organic
carbon, and total P. The application of 2.5
and 5% biochar (500 �C) improved the
activities of alkaline phosphatase and
β-glucosidase, over control. Moreover, a
significant improvement in maize growth,
polyphenol oxidase (PPO), lipid peroxi-
dase (POD), phenylalanine ammonia-
lyase (PAL), chlorophyll, and carotene
contents were observed, over control

Azeem et al. (2021)

Spartina alterniflora
feedstock

The sole and combined application of
biochar with effective micro-organisms
promisingly improved seed germination
rate, stem diameter, plant height, total
biomass, and nutrient uptake by Sesbania
cannabina. Moreover, a remarkable
reduction in salt content and improvement
in total carbon, available P, total N, and
available K, soil NO3

� and NH4
+, micro-

bial biomass carbon, soil enzymes, and
soil fertility was recorded in the sole and
combined treatments of biochar and
effective micro-organisms. Overall, the
integrated use of biochar at 3% and
effective micro-organisms could be an
effective approach for the management of
coastal saline-alkali soil

Cui et al. (2021)

Peanut shells derived
biochar

Biochar utilization in aluminum (Al) and
acid-toxic soil improved nutrients avail-
ability, exchangeable cations (Mg2+,
Ca2+, K+), soil organic matter, N use effi-
ciency, and overall soil quality. Further,
an improvement in the root and shoot
biomass of maize by 44% and 89%,
respectively, were recorded over control.
Results suggested that biochar may use to
improve soil quality and support plant
production through alleviating Al toxicity

Xia et al. (2020)

Woodchips derived biochar The utilization of biochar (at 1%) prom-
isingly improved Arenosols health, vari-
ous microbial groups, and populations,
maize biomass especially root biomass,
and the activities of antioxidants grown
on poorly humus sandy soil

Kocsis et al. (2020)

Cassava straw Applications of N fertilizers coupled with
biochar improved soil quality, morpho-
logical traits of roots and photosynthesis
resultantly increased the yield and yield-
related traits of noodle rice

Ali et al. (2020)

(continued)
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soil as well as the porous structure of biochar which serves as habitat and also
prevent them from predation (Khan et al. 2020; Palansooriya et al. 2019; Warnock
et al. 2007). Moreover, biochar additions to soil also increased carbon-to-nitrogen
(C:N) ratios, dissolved organic carbon (C), and K+ concentrations which support
numerous microbial community structures (Wong et al. 2019). Likewise, biochar
also enhanced the activities of soil enzymes which increase microbial communities
and improved overall soil health (Ramzani et al. 2017; Khan et al. 2020) (Table 1).

2.5 Provision and Retention of Essential Nutrients

Biochar also supports sustainable plant production by providing essential mineral
nutrients to plants as well as microorganisms. Though, biochar increases soil pH
which influences the availability of micronutrients. However, biochar slowly
released micronutrients from its matrix and makes them available for plants

Table 1 (continued)

Feedstock type Results References

Miscanthus and wheat straw
biochar

The provision of wheat straw biochar
improved bacterial abundance, actinomy-
cetes, soil enzymes, soil fertility index,
the geometric mean of enzyme activities
index which resultant in an overall
improvement in the soil quality

Mierzwa-Hersztek
et al. (2017)

Cotton gin trash (pyrolyzed
at 450 �C)

Biochar promisingly improved SOM, the
contents of Ca, P, Mn and K, and EC in
clay loam and sandy loam soils in com-
parison to the rest of the biochar treatment

Zhang et al. (2016)

Wood and manure-derived
biochar treatments

Increased water content in the soil and
plant water use efficiency. Additionally,
improved CEC and total N while reduced
NH4-N leaching

Ajayi et al. (2016);
Abel et al. (2013)

Wood, peanut shell
�chicken manure �wheat
chaff

Enhanced the availability of P up to 208%
while reducing AMF abundance in the
soil

Madiba et al. (2016);
Warnock et al.
(2007)

Wheat straw Improved soil pH, the contents
of SOC, N, and reduced N2O release

Li et al. (2015)

Eucalyptus logs, maize
Stover

Biochar applications significantly
enhanced the contents of total N in the
soil from the atmosphere

Güereña et al. (2015)

Acacia whole tree green
waste

Improved porosity of the soil and aggre-
gate stability

Hardie et al. (2014)

Different biochar prepared
from various feedstock

Improved pH, microbial biomass, micro-
bial habitat, and the contents of P, N, K,
and total carbon.

Thies et al. (2015);
Biederman and
Harpole (2013)
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(Ahmed et al. 2016). Moreover, biochar additions remarkably promoted the grain
quality and yield of Zea mays after Mg and Ca uptake (Major et al. 2010). Likewise,
the application of acidified biochar produced from maize cob (350 �C) promisingly
improved the growth, yield, physiological, chemical, and biochemical traits, antiox-
idants, and anti-nutrients in Chenopodium quinoa grown on drought, salt and Ni
stressed soils. The results suggested that the acidified biochar effectively increased
the bioavailability and aerial transport of nutrients and subsequent accumulation in
quinoa seed (Ramzani et al. 2017).

2.6 CO2 Sequestration and Reduction of Greenhouse Gas
Emission

Agriculture contributes its share in releasing the substantial magnitudes of green-
house gases which is an alarming and universal global warming and climate change
issue (Burney et al. 2010). Usually, CO2 is released into the atmosphere by the
microbial decay or burning of agricultural by-products as well as through the
breakdown of organic matter (Smith et al. 2010). Carbon emissions from the soil
are considered as one of the prime signals of land degradation which is a challenging
task for sustainable plant production, biodiversity conservation, and acclimatizing to
climate change (Barrow 2012; Mchunu and Chaplot 2012). The presence of vege-
tation cover is a natural and effective method of CO2 captured from the air via
photosynthesis. The efficacy of this practice for carbon sequestration is inadequate
owing to the instability of captured carbon which returned into the environment as
CO2 through respiration or decomposition (Semida et al. 2019).

As mentioned earlier, biochar additions to agricultural soils may mitigate green-
house gas emissions and combat climate change through a range of mechanisms
(Mohammadi et al. 2020). For instance, inhibition of CO2 and CH4 (particularly
from rice fields), reduced nitrous oxide (N2O) released from agricultural soils,
consequently decreased the use of artificial fertilizers. The improvement in crop
yield are the additional key benefits of biochar applications in agro-ecosystem due to
the improved soil aeration (Mohammadi et al. 2020; Qambrani et al. 2017;
Rogovska et al. 2011; Zhang et al. 2012).

Various microorganisms produced CH4 under anoxic conditions via
methanogenesis. Approximately CH4 is considered 20 times more powerful than
CO2 in absorbing thermal radiation in the earth’s lower troposphere and increased
global warming (Watson et al. 2000). It was observed that after adding biochar in the
soil, a remarkable reduction in CH4 emission was observed (Rondon et al. 2005a).
This reduction in CH4 emission could be due to the porous characteristics of biochar
which increased aeration and reduced the favorable anaerobic environments causing
methanogenesis (Verheijen et al. 2010). In another study, biochar utilization also
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reduced CH4 and CO2 emissions from the rice field (Liu et al. 2011). Thus, biochar
from animal manure may help in this context.

Nitrous oxide is also an important gas having over 300 times more potential than
CO2 in absorbing thermal radiation in the troposphere and causing global warming
(Watson et al. 2000). Primarily, N2O is produced in the soil by numerous microor-
ganisms via denitrification and nitrification. The presence of moisture content in the
soil significantly influenced the production of N2O. For instance, higher moisture
(>70%) levels support anoxic conditions, which promote denitrification, while
reduced moisture (<50%) levels stimulate nitrification. It was reported that the
higher moisture level (up to 80%) produced 8–23 times more N2O in contrast to
lower moisture levels (40%) (Bruun et al. 2011). Similarly, the findings of a study
revealed that the utilization of biochar in the form of charcoal significantly declined
N2O release up to 89% (Yanai et al. 2007). Moreover, over 80% decrease in N2O
emissions from biochar amended soil was observed in the greenhouse, and field
trials in Columbia (Renner 2007) consequently reduced the applications of synthetic
fertilizer. This reduction in N2O emission from the soil could be due to the adsorp-
tion of nitrate (NO3

�) onto the large surfaces of biochar. Additionally, biochar
applications also influence the N transfer and N dynamics which reduced N2O
release (DeLuca et al. 2006; Rondon et al. 2007; Yanai et al. 2007). The presence
of biochar in agricultural soils also supports biological stabilization of inorganic N,
resultantly reduced ammonia volatilization owing to the higher C: N ratios and lower
N content in biochar (Taghizadeh-Toosi et al. 2011).

Likewise, a recent field study (24 months) was conducted in Moso bamboo forest
to evaluate the effectiveness of various biochar application rates (0, B5, and B15 Mg
ha�1) on SOC stocks, greenhouse gas emissions, and vegetation carbon stocks.
Results suggested that the maximum SOC stocks were increased up to 66%, while
the greenhouse gas emissions increased by 21%, respectively, in B5 and B15
treatments over control. Moreover, the addition of biochar remarkably reduced
N2O release by 24% in B15, whereas increased CH4 emission by 16% in B5,
respectively, over control. Overall, biochar utilization improved the total ecosystem
carbon stock of the moso bamboo forest by 486% and 252% for B5 and B15
treatments and is recommended as an excellent and effective approach for the
management of forest soils (Xu et al. 2020b). A recent two-year field study also
investigated the potential of biochar as a soil conditioner to combat climate change in
sandy loam soil under the influence of drip irrigation with mulch. Biochar was
prepared from the corn residue and applied in the soil at various rates (Bo, B15, B30,
and B45 t ha�1). The average CH4 reduction by 124% and 132% was observed in
B15 and B30 treatments, respectively over control. Likewise, B30 and B45 treat-
ments improved SOC in the top upper layer (15 cm) by 19% and 37% during the first
growing season and by 12% and 15% during the second growing season. Among all
applied rates, B30 was efficient in reducing CH4 and N2O emissions and improved
corn yields (Yang et al. 2020).

Moreover, the applications of rice straw, bamboo, and wood chip-derived biochar
promisingly reduced CO2 emissions from the paddy (Liu et al. 2011) as well as silt
loam soil (Spokas et al. 2009). Previously, it was observed that the amending
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soybean cropland and Brachiaria humidicola grass stands with biochar (at 20 g kg�1)
eliminate CH4 releases whereas reduced NO2 emissions by 50% and 80% (Rondon
et al. 2005b) (Table 2).

2.7 Heavy Metal Immobilization and Food Safety

In recent years, a lot of research work has been done so far on biochar and its
numerous applications as a potential amendment especially for the removal of heavy
metals and other environmental toxicants from the soil and water owing to its
majestic properties such as alkaline nature, higher CEC, and porosity (Khan et al.
2020; Tauqeer et al. 2021). Results revealed that the combined application of lignin-
derived biochar and arbuscular mycorrhizal fungi (AMF) significantly improved
barley grain and was safer for human consumption grown on Pb contaminated soil
(Khan et al. 2020). A recent study conducted by (Zubair et al. 2021) revealed that the
textile waste biochar coated with chitosan remarkably reduced Cd distribution in
roots and shoots of Moringa oleifera L while improving the overall growth, dietary
parameters, antioxidants as well as soil enzymes over control (Table 3).

3 Sustainable Plant Production under the Influence
of Biochar

This section provides selected studies on the usage of biochar as a potential soil
additive and its influence on sustainable plant production.

3.1 Seed Germination and Plant Growth

Up till now, limited research work on the influence of biochar from different
feedstocks either on improvement or inhabitation of seed germination has been
conducted so far (Semida et al. 2019). For instance, among nine different biochars
(poultry manure, rice straw, vegetable waste, neem leaves, cotton sticks, wheat
straw, domestic waste, citrus leaves, and eucalyptus leaves), the addition of vegeta-
ble waste-derived biochar at 2% w/w significantly improved seed germination of
maize (Qayyum et al. 2015). Amending soil with biochar (0.5, 2.5 kg m�2) enhanced
Amaranthus palmeri, seed sprouting but no influence on Senna obtusifolia and
Digitaria ciliaris (Soni et al. 2014). Similarly, the addition of biochar in sandy soil
increased maize growth by improving leaf osmotic potential and relative water
content as well as photosynthesis. The possible mechanism for this enhanced seed
germination and improved growth is due to the overall improvement in soil quality,
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Table 3 Some selective studies on the immobilization of heavy metals by the virtue of biochar

Feedstock type Pollutant type Results References

Cow-bone derived biochar
(applied at 0%, 2.5%, 5% and
10%, w/w, pyrolysis temper-
ature 500 �C and 800 �C)

Cd and Zn in
mine�smelters
contaminated soil.

The addition of biochar
significantly reduced Zn
and Cd concentrations in
the roots and shoots of
maize over control

Azeem
et al.
(2021)

Chitosan-coated textile waste
biochar

Cd-polluted soil Amending Cd polluted soil
with the textile waste-
derived biochar coated
with chitosan resulted in
the significant improve-
ment in growth, biomass,
nutritional quality, and soil
enzymology while reduc-
ing Cd in roots, shoots, and
in the soil over control

Zubair
et al.
(2021)

Lignin-derived biochar Pb-acid batteries The utilization of lignin-
derived biochar coupled
with arbuscular mycorrhi-
zal fungi (AMF) reduced
labile Pb concentrations
over control. Additionally,
Pb concentrations in barley
grain were found below the
critical limit and fit for
human consumption

Khan et al.
(2020)

Manure waste Cu-mining Promisingly reduced the
accumulation and uptake of
different heavy metals and
support Brassica napus by
producing excessive
biomass

Gascó
et al.
(2019)

Cymbopogon flexuosus
waste-derived biochar

Coal mining Biochar treatment
improved soil health and
alleviate soil acidity which
supports plant productivity

Jain et al.
(2020)

Eucalyptus wood and sewage
sludge biochar

Zn mining Significantly reduced labile
fractions of Zn, Pb, and Cd

Penido
et al.
(2019)

Miscanthus derived biochar
and zeolite

Ni-polluted soil A significant reduction in
Ni bioavailability and its
accumulation in wheat,
sunflower, and maize were
observed over control

Shahbaz
et al.
(2018a, b,
2019)

Eucalyptus wood biochar Zn mining Results revealed that
biochar additions improved
soil pH and support plant
establishment via improv-
ing germination

Martins
et al.
(2018)

(continued)
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structure, moisture availability as well as the reduction in bulk density (Haider et al.
2015). Thus, biochar addition as an amendment may evoke poor emergence and crop
establishment owing to poor soil conditions.

3.2 Improvement in Physiological Characteristics of Plants

Reportedly, the improvement in crop productivity and growth after biochar addition
reflects the overall enhancement in the physiological traits of plants. For example, an
increase in P availability and its uptake by maize was observed when biochar was
applied with Arbuscular mycorrhiza fungi over other plants (Mau and Utami 2014).
Likewise, an increase in stomatal conductance, chlorophyll fluorescence, and pho-
tosynthetic rate of Abutilon theophrasti was recorded when grown on soil amended
with mixed biochar (Seehausen et al. 2017). The combined applications of biochar
with zeolite (BC75% + ZE25%) considerably improved the physiology, grain yield,

Table 3 (continued)

Feedstock type Pollutant type Results References

Biochar obtained from the
quercus ilex wood

Cu-mining Remarkably reduced the
bioavailability of heavy
metals and their uptake by
the plants

Forján
et al.
(2018)

Dairy manure E-waste recycling
site

Reduction in the bioavail-
ability of Zn, Cu, Pb, and
Cd was observed due to the
improvement in CEC, pH,
and available P

Chen et al.
(2018)

Pine needles, soybean Stover,
wheat straw

Military shooting
range soil

The addition of both
biochar treatments reduced
the labile fractions of Pb
and Cu over control but the
results were more promi-
nent in soybean straw
biochar treatment.

Ahmad
et al.
(2016)

Rice hull Arable land within
the surrounding of
the abandoned
mining area.

The increase in soil pH was
observed subsequently
decreased NH4NO3 frac-
tions as well as accumula-
tion in lettuce

Kim et al.
(2015)

Wheat straw Electroplating area Biochar significantly
immobilized heavy metals
in the soil

Gan et al.
(2012)

Rice husk, straw, and bran Agricultural area-
mining site

Promisingly reduced the
concentrations of Zn, Cd,
and Pb by 83%, 98%, and
72% in pore water

Zheng
et al.
(2012)
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biochemistry, biomass, antioxidant activities in maize and sunflower (Shahbaz et al.
2018b). In another study, the up-gradation in plant water use efficiency, stomatal
pore aperture, membrane stability index, stomatal density, relative water content,
photosynthetic rate, and stomatal conductance were increased in tomato plants
grown in sandy loam soil amended with biochar (Akhtar et al. 2014).

3.3 Crop Yield

Biochar applications in agricultural soils increased crop yield however, this increase
mainly depends on several factors such as soil type, soil pH, fertilizer application,
dosage, and feedstock of biochar and crop species (Jeffery et al. 2011). It was
observed that the application of biochar at various rates (10, 15, 20 t ha�1) not
only improved the maize grain, water use efficiency, nutrient uptake, and yield when
grown on arid sandy soil (Uzoma et al. 2011). Likewise, the yield components of
sunflower were remarkably increased under the influence of biochar addition
(Furtado et al. 2016). This improved yield could be due to several factors associated
with biochar such as the increase in soil specific surface area, CEC, water and
nutrient retention on to the large surfaces of the biochar, porosity as well as liming
behavior which overall support plant growth (Zubair et al. 2021). Moreover, overall
improvement in soil features resulted in the enhancement of spinach biomass,
antioxidants enzymes in spinach leaves, soil enzymes, and sandy soil health (Khan
et al. 2017).

3.4 Stress Alleviation by the Virtue of Biochar

During the last decades, numerous studies have proven that biochar not only
enhances crop yield under ordinary circumstances but also supports plant establish-
ment under adverse environments such as drought, salinity, heat, and pollution
(Haider et al. 2015; Pressler et al. 2017; Shaaban et al. 2018). It has been reported
that biochar addition alleviates drought stress and improved plant growth by increas-
ingWHC consequently promote plant growth (Hafeez et al. 2017; Haider et al. 2015;
Liu et al. 2016). Likewise, biochar can also nullify the adverse effects of salt stress
by adsorbing Na+ thereby promote crop production (Akhtar et al. 2015; Kim et al.
2016). Additionally, when biochar was used as an additive for decreasing the
bioavailability of heavy metals and their accumulation by different plants, significant
results were found (Shahbaz et al. 2018a, b; Shahbaz et al. 2019). Biochar additions
remarkably reduced Pb, Ni, and Cd concentrations by adsorbing them onto its larger
inner surfaces, or via ion exchange resultantly support plant production under heavy
metal stress (Khan et al. 2020; Shahbaz et al. 2018a, b, 2019; Zubair et al. 2021).
Apart from this, biochar is also known to improve and support plant establishment
under heat stress by increasing WHC which increases plant water uptake and
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alleviates heat stress from the plants (Busscher et al. 2011; Karhu et al. 2011).
Additionally, biochar also provides essential mineral nutrients by releasing them
from its matrix and make available them for plant uptake which further improved
nutritional quality and crop production (Taghizadeh-Toosi et al. 2012).

4 Conclusion and Way Forward

In recent years, biochar applications have myriad benefits such as increased soil pH,
CEC, overall soil structure, and SOC, which significantly improved crop production,
their nutritional quality under various biotic and abiotic stresses. Similarly, biochar
additions to agricultural soils also reduced the transport of toxic pollutants via
binding them onto its larger surfaces which support plant growth and enhance
crop yield from degraded soils. Moreover, biochar also controls greenhouse gas
emissions and increases carbon sequestration from the atmosphere, resultantly
supports plant production under changing climatic conditions. Thus, biochar has a
strong potential as an amendment and a soil conditioner that supports plant produc-
tion from degraded soils. Besides these advantages, we provide some additional
guidelines for future studies on exploring the potential of biochar in agricultural
soils. Reportedly, biochar utilization promisingly influences the structure and diver-
sity of microbial diversity in soil. However, scarce literature is available concerning
the influence of biochar additions on particular functions performed by microorgan-
isms and their gene functions linked with nitrogen and carbon cycling. Though,
biochar addition significantly improved various traits of soil that support plant
growth. However, it requires a lot of biomass to produce biochar for long-term
field-scale experiments that potentially support plant production. Thus, it is neces-
sary to study the interaction of biochar with other suitable mineral fertilizers to
prevent the depletion of organic matter in the soil.
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