
Chapter 4
Incentive Mechanisms for Federated
Learning

Abstract In this chapter, we discuss various components of federated learning that
must be given some incentive in terms of monetary cost or other benefits. We design
incentive mechanism design for federated learning using game theory and auction
theory. Finally, we present extensive numerical results to show the validity of our
proposed incentive mechanisms.

4.1 Introduction

Federated learning can be trained mainly in two different ways, such as (a)
centralized server aggregation-based training, and (b) blockchain-based training, as
shown in Figs. 4.1 and 4.2. Federated learning using centralized server aggregation
involves continuous, iterative interaction between the end-devices and aggregation
server. End-devices use their resources (i.e., computation resource and energy) to
train their local learning models. The locally trained model updates will be sent via
a wireless channel to the aggregation server for global aggregation. Similar to end-
devices, the aggregation server will use its resources (i.e., computation resource and
energy) to perform aggregation. To enable successful interaction among end-devices
and aggregation servers for federated learning requires an attractive incentive
mechanism. End-devices must be provided with benefits in response to their
participation in the federated learning process. On the other hand, blockchain-based
federated learning involves the computation of local models at the end-devices. The
end-devices send their local learning models to their corresponding miners. The
miners perform sharing and cross-verification of learning models to avoid injection
of wrong models. Then, all the miners start computing their consensus algorithms
(e.g., Proof-of-Work). The winning miner that solves the consensus algorithm first,
broadcasts its block to all the miners in the network for updating their blocks.
In blockchain-based federated learning, there is a need to provide an attractive
incentive to both end-devices and miners for their jobs. Therefore, the incentive
mechanism for blockchain-based federated learning will be different than the one
for federated learning based on a centralized aggregation server.
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Fig. 4.2 Overview of rewards in blockchain-based federated learning

Generally, we can categorize incentives into two main types: monetary and
non-monetary [100]. Monetary incentives are based on providing end-devices with
payments as per their participation, whereas non-monetary incentives generally
involve providing end-devices with benefits other than payments. Non-monetary
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incentives in the case of federated learning can be the well-trained global federated
learning model for a large number of end-devices. Unless stated otherwise, the
keyword incentive in this chapter refers to monetary incentive. Next, we present
incentive mechanisms based on game theory and auction theory for federated
learning over wireless networks.

4.2 Game Theory-Enabled Incentive Mechanism

Game theory has proven to be one of the successful tools in enabling/optimizing
various functions/design aspects in wireless networks, such as wireless resource
allocation, computational offloading in edge computing, URLLC/eMBB coexis-
tence, and incentive mechanism design, among others [101–105]. Generally, games
can be divided into (a) cooperative and (b) non-cooperative games. Cooperative
games are based on achieving the equilibrium state for optimizing the overall benefit
via joint decision-making by the various players. On the other hand, the players in
non-cooperative games choose their strategies selfishly without coordination with
other players (Fig. 4.3). A summary of cooperative and non-cooperative games used
for incentive mechanism design in wireless networks is given in Table 4.1.

In federated learning, local computations at the devices and their communication
with the centralized coordinating server are interleaved in a complex manner
to build a global learning model. Therefore, a communication-efficient federated
learning framework [18, 58] requires solving several challenges. Furthermore,
because of limited data per device to train a high-quality learning model, the
difficulty is to incentivize a large number of mobile users to ensure cooperation.
This important aspect in federated learning has been overlooked so far, where the
question is how can we motivate a number of participating clients, collectively
providing a large number of data samples to enable federated learning without
sharing their private data? Note that both participating clients and the server
can benefit from training a global model. However, to fully reap the benefits
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Fig. 4.3 Classification of game theoretic incentive mechanisms
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Table 4.1 Overview of game theoretic incentive mechanisms [106]

Reference Category Game Primary focus

Ho et al. [105] Non-cooperative
game

Stackelberg game Macrocell base station traffic
is admitted by the small cell
base stations for monetary
benefits

Liu et al. [107] Non-cooperative Stackelberg game Incentives are given to femto
cells for sharing their
resource to macrocell base
stations

Poularakis et al. [108] Non-cooperative
game

Stackelberg game Cache-enabled access points
are incentivized for caching
by macrocell base stations

Gao et al. [109] Cooperative game Nash bargaining
game

A cooperative game is
proposed to carryout the
transactions between the
single mobile virtual
network operator and
multiple access points.

Yu et al. [110] Cooperative game Nash bargaining
game

A bargaining framework in
which mobile network
operator bargains with venue
owners sequentially for
determining the deployment
locations of Wi-Fi and how
much to pay.

of high-quality updates, the multi-access edge computing (MEC) server has to
incentivize clients for participation. In particular, under heterogeneous scenarios,
such as an adaptive and cognitive-communication network, the client’s participation
in federated learning can spur collaboration and provide benefits for operators to
accelerate and deliver network-wide services [111]. Similarly, clients, in general, are
not concerned with the reliability and scalability issues of federated learning [112].
Therefore, to incentivize users to participate in the collaborative training, we require
a marketplace. For this purpose, we present a value-based compensation mechanism
to the participating clients, such as a bounty (e.g., data discount package), as per
their level of participation in the crowdsourcing framework. This is reflected in
terms of local accuracy level, i.e., quality of solution to the local subproblem, in
which the framework will protect the model from imperfect updates by restricting
the clients trying to compromise the model (for instance, with skewed data because
of its i.i.d nature or data poisoning) [113]. Moreover, we cast the global loss
minimization problem as a primal-dual optimization problem, instead of adopting
a traditional gradient descent learning algorithm in the federated learning setting
(e.g., FedAvg [18]). This enables (a) proper assessment of the quality of the local
solution to improve personalization and fairness amongst the participating clients
while training a global model, (b) effective decoupling of the local solvers, thereby
balancing communication and computation in the distributed setting.
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The goal of this section is two-fold: First, we formalize an incentive mechanism
to develop a participatory framework for mobile clients to perform federated
learning for improving the global model. Second, we address the challenge of
maintaining communication efficiency while exchanging the model parameters with
a number of participating clients during aggregation. Specifically, communication
efficiency in this scenario accounts for communications per iteration with an
arbitrary algorithm to maintain an acceptable accuracy level for the global model.
In this work, we design and analyze a novel crowdsourcing framework to realize
the federated learning vision. Specifically, our contributions are summarized as
follows:

• A crowdsourcing framework to enable communication -efficient federated
learning. We design a crowdsourcing framework, in which federated learning
participating clients iteratively solve the local learning subproblems for an accu-
racy level subject to an offered incentive. We then establish a communication-
efficient cost model for the participating clients. We then formulate an incentive
mechanism to induce the necessary interaction between the MEC server and the
participating clients for the federated learning in Sect. 4.2.2.

• Solution approach using Stackelberg game. With the offered incentive, the
participating clients independently choose their strategies to solve the local
subproblem for a certain accuracy level in order to minimize their participation
costs. Correspondingly, the MEC server builds a high-quality centralized model
characterized by its utility function, with the data distributed over the partici-
pating clients by offering the reward. We exploit these tightly coupled motives
of the participating clients and the MEC server as a two-stage Stackelberg
game. The equivalent optimization problem is characterized as mixed-Boolean
programming which requires an exponential complexity effort for finding the
solution. We analyze the game’s equilibria and propose a linear complexity
algorithm to obtain the optimal solution.

• Participant’s response analysis and case study. We next analyze the response
behavior of the participating clients via the solutions of the Stackelberg game
and establish the efficacy of our proposed framework via case studies. We
show that the linear-complexity solution approach attains the same performance
as the mixed-Boolean programming problem. Furthermore, we show that our
mechanism design can achieve the optimal solution while outperforming a
heuristic approach for attaining the maximal utility with up to 22% of gain in
the offered reward.

• Admission control strategy. Finally, we show that it is significant to have certain
participating clients to guarantee the communication efficiency for an accuracy
level in federated learning. We formulate a probabilistic model for threshold
accuracy estimation and find the corresponding number of participants required
to build a high-quality learning model. We analyze the impact of the number of
participants in federated learning while determining the threshold accuracy level
with closed-form solutions. Finally, with numerical results, we demonstrate the
structure of the admission control model for different configurations.
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4.2.1 System Model

Figure 4.4 illustrates our proposed system model for the crowdsourcing framework
to enable federated learning. The model consists of a number of mobile clients
associated with a base station having a central coordinating server (MEC server),
acting as a central entity. The server facilitates the computation of the parameters
aggregation, and feedback the global model updates in each global iteration. We
consider a set of participating clients K = {1, 2, . . . , K} in the crowdsourcing
framework. The crowdsourcer (platform) can interact with mobile clients via an
application interface and aims at leveraging federated learning to build a global ML
model. As an example, consider a case where the crowdsourcer (referred to as MEC
server hereafter, to avoid any confusion) wants to build a ML model. Instead of
just relying on available local data to train the global model at the MEC server, the
global model is constructed utilizing the local training data available across several
distributed mobile clients. Here, the global model parameter is first shared by the
MEC server to train the local models in each participating client. The local model’s
parameters minimizing local loss functions are then sent back as feedback and are
aggregated to update the global model parameter. The process continues iteratively,
until convergence.

MEC Server

  Local Models

local training

Global Model

Aggregator

local parameters pass on 

global model
 parameter 

MBS- MUs association
Backhaul

Local data

Participating clients
Platform

Fig. 4.4 Crowdsourcing framework for decentralized machine learning
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Algorithm 4 Federated learning framework

1: Input: Initialize dual variable α0 ∈ R
D , Dk,∀k ∈ K .

2: for Each aggregation round do
3: for k ∈ K do
4: Solve local subproblems (4.5) in parallel.
5: Update local variables as in (4.7).
6: end for
7: Aggregate to update global parameter as in (4.8).
8: end for

Federated Learning Background

For federated learning, we consider unevenly partitioned training data over a large
number of participating clients to train the local models under any arbitrary learning
algorithm. Each client k stores its local dataset Dk of size Dk respectively. Then,
we define the training data size D = ∑K

k=1 Dk . In a typical supervised learning
setting,Dk defines the collection of data samples given as a set of input-output pairs
{xi, yi}Dk

i=1, where xi ∈ R
d is an input sample vector with d features, and yi ∈ R

is the labeled output value for the sample xi . The learning problem, for an input
sample vector xi (e.g., the pixels of an image) is to find the model parameter vector
w ∈ R

d that characterizes the output yi (e.g., the labeled output of the image, such
as the corresponding product names in a store) with the loss function fi(w). Some
examples of loss functions include fi(w) = 1

2 (x
T
i w − yi)

2, yi ∈ R for a linear
regression problem and fi(w) = max{0, 1 − yix

T
i w}, yi ∈ {−1, 1} for support

vector machines. The term xT
i w is often called a linear mapping function. Therefore,

the loss function based on the local data of client k, termed local subproblem is
formulated as

Jk(w) = 1

Dk

∑Dk

i=1
fi(w) + λg(w), (4.1)

where w ∈ R
d is the local model parameter, and g(·) is a regularizer function,

commonly expressed as g(·) = 1
2 ‖·‖2; ∀λ ∈ [0, 1]. This characterizes the local

model in the federated learning setting.

Global Problem At the MEC server, the global problem can be represented as the
finite-sum objective of the form

min
w∈Rd

J (w) where J (w) ≡
∑K

k=1 DkJk(w)

D
. (4.2)

Problems of such structure as in (4.2) where we aim to minimize an average of K

local objectives are well-known as distributed consensus problems [114].
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Solution Framework under Federated Learning We recast the regularized
global problem in (4.2) as

min
w∈Rd

J (w) := 1

D

∑D

i=1
fi(w) + λg(w), (4.3)

and decompose it as a dual optimization problem1 in a distributed scenario [115]
amongst K participating clients. For this, at first, we define X ∈ R

d×Dk as a matrix
with columns having data points for i ∈ Dk,∀k. Then, the corresponding dual
optimization problem of (4.3) for a convex loss function f is

max
α∈RD

G(α) := 1

D

∑D

i=1
−f ∗

i (−αi) − λg∗(φ(α)), (4.4)

where α ∈ R
D is the dual variable mapping to the primal candidate vector, f ∗

i and
g∗ are the convex conjugates of fi and g respectively [116]; φ(α) = 1

λD
Xα. With

the optimal value of dual variable α∗ in (4.4), we have w(α∗) = ∇g∗(φ(α∗)) as
the optimal solution of (4.3) [115]. For the ease of representation, we will use φ ∈
R

d for φ(α) hereafter. We consider that g is a strongly convex function, i.e., g∗(·)
is continuous differentiable. Then, the solution is obtained following an iterative
approach to attain a global accuracy 0 ≤ ε ≤ 1 (i.e., E

[G(α) − G(α∗)
]

< ε).
Under the distributed setting, we further define data partitioning notations for

clients k ∈ K to represent the working principle of the framework. Let us define a
weight vector �[k] ∈ R

D at the local subproblem k with its elements zero for the
unavailable data points. Following the assumption of having fi as (1/γ )-smooth and
1-strongly convex of g to ensure convergence, its consequences is the approximate
solution to the local problem k defined by the dual variables α[k], �[k], characterized
as

max
�[k]∈RD

Gk(�[k];φ, α[k]), (4.5)

where Gk(�[k];φ, α[k]) = − 1
K

−〈∇(λg∗(φ(α))), �[k]〉− λ
2‖ 1

λD
X[k]�[k]‖2 is defined

with a matrix X[k] columns having data points for i ∈ Dk , and zero padded
otherwise. Each participating client k ∈ K iterates over its computational resources
using any arbitrary solver to solve its local problem (4.5) with a local relative θk

accuracy that characterizes the quality of the local solution, and produces a random
output �[k] satisfying

E
[Gk(�

∗[k]) − Gk(�[k])
] ≤ θk

[Gk(�
∗[k]) − Gk(0)

]
. (4.6)

1 The duality gap provides a certificate to the quality of local solutions and facilitates distributed
training.
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Note that, with local (relative) accuracy θk ∈ [0, 1], the value of θk = 1 suggests that
no improvement was made by the local solvers during successive local iterations.
Then, the local dual variable is updated as follows:

αt+1
[k] := αt

[k] + �t
[k],∀k ∈ K. (4.7)

Correspondingly, each participating client will broadcast the local parameter defined
as Δφt

[k] := 1
λD

X[k]�t
[k], during each round of communication to the MEC server.

The MEC server aggregates the local parameter (averaging) with the following rule:

φt+1 := φt + 1

K

∑K

k=1
Δφt

[k], (4.8)

and distributes the global change in φ to the participating clients, which is used to
solve (4.5) in the next round of local iterations. This way we observe the decoupling
of global model parameter from the need of local clients’ data2 for training a global
model.

Algorithm 4 briefly summarizes the federated learning framework as an iterative
process to solve the global problem characterized in (4.3) for a global accuracy level.
The iterative process (S2)–(S8) of Algorithm 4 terminates when the global accuracy
ε is reached. A participating client k strategically3 iterates over its local training data
Dk to solve the local subproblem (4.5) up to an accuracy θk . In each communication
round with the MEC server, the participating clients synchronously pass on their
parameters Δφ[k] using a shared wireless channel. The MEC server then aggregates
the local model parameters φ as in (4.8), and broadcasts the global parameters
required for the participating clients to solve their local subproblems for the next
communication round. Within the framework, consider that each participating client
uses any arbitrary optimization algorithm (such as Stochastic Gradient Descent
(SGD), Stochastic Average Gradient (SAG), Stochastic Variance Reduced Gradient
(SVRG)) to attain a relative θ accuracy per local subproblem. Then, for strongly
convex objectives, the number of iterations is dependent on local relative θ accuracy
of the local subproblem and the global model’s accuracy ε as [58]:

I g(ε, θ) = ζ · log( 1
ε
)

1 − θ
, (4.9)

where the local relative accuracy measures the quality of the local solution as
defined in the earlier paragraphs. Further, in this formulation, we have replaced the
term O(log( 1

ε
)) in the numerator with ζ · log( 1

ε
), for a constant ζ > 0. For fixed

iterations I g at the MEC server to solve the global problem, we observe in (4.9) that

2 Note that we consider the availability of quality of data with each participating client for solving
a corresponding local subproblem. Further related demonstration on dependency of the normalized
data size and accuracy can be found in [117].
3 Fewer iterations might not be sufficient to have an optimal local solution [111].
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a very high local accuracy (small θ ) can significantly improve the global accuracy ε.
However, each client k has to spend excessive resources in terms of local iterations,
I lk to attain a small θk accuracy as

I lk(θk) = γk log

(
1

θk

)

, (4.10)

where γk > 0 is a parameter choice of client k that depends on the data size and
condition number of the local subproblem [58]. Therefore, to address this trade-
off, MEC server can setup an economic interaction environment (a crowdsourcing
framework) to motivate the participating clients for improving the local relative
θk accuracy. Correspondingly, with the increased reward, the participating clients
are motivated to attain better local θk accuracy, which as observed in (4.9) can
improve the global ε accuracy for a fixed number of iterations I g of the MEC
server to solve the global problem. In this scenario, to capture the statistical
and system-level heterogeneity, the corresponding performance bound in (9) for
heterogeneous responses θk can be modified considering the worst-case response of
the participating client as

I g(ε, θk) = ζ · log( 1
ε
)

1 − maxk θk

,∀k ∈ K. (4.11)

Figure 4.5 describes an interaction environment incorporating a crowdsourcing
framework and federated learning setting. In the following section, we will further
discuss in detail the proposed incentive mechanism and present the interaction
between the MEC server and participating clients as a two-stage Stackelberg game.

Fig. 4.5 Interaction environment of federated learning setting under crowdsourcing framework
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Cost Model

Training on local data for a defined accuracy level incurs a cost for the participating
clients. We discuss its significance with two typical costs: the computing cost and
the communication cost.

Computing Cost This cost is related to the number of iterations performed by
client k on its local data to train the local model for attaining a relative accuracy of
θk in a single round of communication. With (4.10), we define the computing cost
for client k when it performs computation on its local data Dk .

Communication Cost This cost is incurred when client k interacts with MEC
server for parameter updates to maintain θk accuracy. During a round of com-
munication with the MEC server, let ek be the size (in bits) of local parameters
Δφ[k], k ∈ K in a floating-point representation produced by the participating client
k after processing a mini-batch [118]. While ek is the same for all the participating
clients under a specified learning setting of the global problem, each participating
client k can invest resources to attain specific θk as defined in (4.10). Although the
best choice would be to choose θk such that the local solution time is comparable
with the time expense in a single communication round, larger θk will induce
more rounds of interaction between clients until global convergence, as formalized
in (4.9).

With the inverse relation of global iteration upon local relative accuracy in (4.9),
we can characterize the total communication expenditure as

T (θk) = Tk

(1 − θk)
, (4.12)

where Tk as the time required for the client k to communicate with MEC server in
each round of model’s parameter exchanges. Here, we normalize ζ > 0 in (4.9)
to 1 as the constant can be absorbed into Tk for each round of model’s parameter
exchanges when we characterize the communication expenditure in (4.12). Using
first-order Taylor’s approximation,4 we can approximate the total communication
cost as T (θk) = Tk · (1 + θk). We assume that clients are allocated orthogonal sub-
channels so that there is no interference between them.5 Therefore, the instantaneous
data rate for client k can be expressed as

Rk = B log2

(

1 + pk|Gk|2
Nk

)

,∀k ∈ K, (4.13)

4 First-order Taylor’s approximation for f (θ) = 1
1−θ

is f (θ) |θ=a= f (a) + f ′(a)(θ − a). For
small θ , the approximation results f (θ) |θ=0= 1 + θ.
5 Note that the scenario of possible delay introduced with interference on poor wireless uplink
channel can affect the local model update time. This can be mitigated by adjusting maximum
waiting time as in [112] at MEC.
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where B is the total bandwidth allocated to the client k, pk is the transmission power
of the client k, |Gk|2 is the channel gain between participating client k and the
base station, and Nk is the Gaussian noise power at client k. Then for client k,
using (4.13), we can characterize Tk for each round of communication with the
MEC server to upload the required updates as

Tk = ek

B log2
(
1 + pk |Gk |2

Nk

) ,∀k ∈ K. (4.14)

(4.14) provides the dependency of Tk on wireless conditions and network connec-
tivity.

Assimilating the rationale behind our earlier discussions, for a participating client
with evaluated Tk , the increase in value of θk (poor local accuracy) will contribute
to a larger communication expenditure. This is because the participating client
has to interact more frequently with the MEC server (increased number of global
iterations) to update its local model parameter for attaining relative θk accuracy.
Further, the authors in [119] have provided the convergence analysis to justify this
relationship and the communication cost model, though with a different technique.

Therefore, the participating client k’s cost for the relative accuracy level θk on
the local subproblem is

Ck(θk) = (1 + θk) ·
(

νk · Tk + (1 − νk) · γk log

(
1

θk

))

, (4.15)

where 0 ≤ νk ≤1 is the normalized monetary weight for communication and
computing costs (i.e., $/ rounds of iteration). A smaller value of relative accuracy
θk indicates a high local accuracy. Thus, there exists a trade-off between the
communication and the computing cost (4.15). A participating client can adjust its
preference on each of these costs with the weight metric νk . The higher value of νk

emphasizes the larger rounds of interaction with the MEC server to adjust its local
model parameters for the relative θk accuracy. On the other hand, the higher value of
(1−νk) reflects the increased number of iterations at the local subproblem to achieve
the relative θk accuracy. This will also significantly reduce the overall contribution
of communication expenditure in the total cost formulation for the client. Note that
the client cost over iterations could not be the same. However, to make the problem
more tractable, according to (9) we consider minimizing the upper-bound of the cost
instead of the actual cost, similar to approach in [111].

4.2.2 Stackelberg Game-Based Solution

In this section, firstly, we present our motivation to realize the concept of federated
learning by employing a crowdsourcing framework. We next advocate an incentive
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mechanism required to realize this setting of decentralized learning model with our
proposed solution approach.

Incentive Mechanism: A Two-Stage Stackelberg Game Approach

The MEC server will allocate rewards to the participating clients to achieve optimal
local accuracy in consideration for improving the communication efficiency of the
system. That means the MEC server will plan to incentivize clients for maximizing
its own benefit, i.e., an improved global model. Consequently, upon receiving the
announced reward, any rational client will individually maximize their own profit.
Such an interaction scenario can be realized with a Stackelberg game approach.

Specifically, we formulate our problem as a two-stage Stackelberg game between
the MEC server (leader) and participating clients (followers). Under the crowd-
sourcing framework, the MEC server designs an incentive mechanism for partic-
ipating clients to attain a local consensus accuracy level6 on the local models while
improving the performance of a centralized model. The MEC server cannot directly
control the participating clients to maintain a local consensus accuracy level and
requires an effective incentive plan to enroll clients for this setting.

Clients (Stage II) The MEC server has an advantage, being a leader with the first-
move advantage influencing the followers for participation with a local consensus
accuracy. It will at first announce a uniform reward rate7 (e.g., a fair data package
discount as $/accuracy level) r > 0 for the participating clients. Given r , at Stage
II, a rational client k will try to improve the local model’s accuracy for maximizing
its net utility by training over the local data with global parameters. The proposed
utility framework incorporates the cost involved while a client tries to maximize its
own individual utility.

Client Utility Model We use a valuation function vk(θk) to denote the model’s
effectiveness that explains the valuation of the client k when relative θk accuracy
is attained for the local subproblem.

Assumption 1 The valuation function vk(θk) is a linear, decreasing function with
θk > 0, i.e., vk(θk) = (1−θk). Intuitively, for a smaller relative accuracy at the local
subproblem, there will be an increase in the reward for the participating clients.

6 It signifies the agreement among the participating clients on the quality of solution at the local
subproblems for building a high-quality centralized learning model.
7 Prominently, two kinds of pricing schemes exist at present following different design goals:
uniform pricing and discriminatory or differentiated pricing [120]. The differentiated pricing
scheme is more efficient, but also requires more information and higher complexity than the
uniform pricing [121, 122]. Therefore, based upon offered motivations and benefits, our proposed
crowdsourcing framework follows a platform-centric model to train a high-quality global model
with low complexity, less information exchange by using the uniform pricing scheme.
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Given r > 0, each participating client k’s strategy is to maximize its own utility
as follows:

max
0≤θk≤1

uk(r, θk) = r(1 − θk) − Ck(θk), (4.16)

given cost Ck(θk) as (4.15). The feasible solution is always restricted to the value
less than 1 (i.e., without loss of generality, for θk > 1, it violates the participation
assumption for the crowdsourcing framework). Therefore, problem (4.16) can be
represented as

max
θk>0

uk(r, θk) = r(1 − θk) − Ck(θk),∀k ∈ K. (4.17)

Also, we have C
′′
k (θk) > 0, which means Ck(θk) is a strictly convex function.

Thus, there exists a unique solution θ∗
k (r),∀k.

MECServer (Stage I) Knowing the response (strategy) of the participating clients,
the MEC can evaluate an optimal reward rate r∗ to maximize its utility. The utility
U(·) of the MEC server can be defined in relation to the satisfaction measure
achieved with the local consensus accuracy level.

MEC Server Utility Model We define x(ε) as the number of iterations required for
an arbitrary algorithm to converge to some ε accuracy. We similarly define I g(ε, θ)

as global iterations of the framework to reach a relative θ accuracy on the local
subproblems.

From this perspective, we require an appropriate utility function U(·) as the
satisfaction measure of the framework with respect to the number of iterations for
achieving ε accuracy. In this regard, use the definition of the number of iterations
for ε accuracy as

x(ε) = ζ · log
(
1

ε

)

.

Due to large values of iterations, we approximate x(ε) as a continuous value, and
with the aforementioned relation, we choose U(·) as a strictly concave function of
x(ε) for ε ∈ [0, 1], i.e., with the increase in x(ε), U(·) also increases. Thus, we
propose U(x(ε)) as the normalized utility function bounded within [0, 1] as

U(x(ε)) = 1 − 10−(ax(ε)+b), a ≥ 0, b ≤ 0, (4.18)

which is strictly increasing with x(ε), and represents the satisfaction of MEC
increase with respect to accuracy ε.

As for the global model, there exists an acceptable value of threshold accuracy
measure correspondingly reflected by xmin(ε). This suggests the possibility of near-
zero utility for the MEC server for failing to attain such value.
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Fig. 4.6 MEC utility U(·) as a function of ε with different parameter values of a, b

Figure 4.6 depicts our proposed utility function, a concave function of x(ε) with
parameters a and b that reflect the required behavior of the utility function defined
in (4.18). In Fig. 4.6, we can observe that a larger value of a means smaller iterations
requirement and larger values of b introduces flat curves suggesting more flexibility
in accuracy. So we can analyze the impact of parameters a and b in (4.18), and set
them to model the utility function for the MEC server as per the design requirements
of the learning framework. Furthermore, in our setting, I g(ε, θ) can be written as

I g(ε, θ) = x(ε)

1 − θ
≤ δ. (4.19)

(4.19) explains the efficiency paradigm of the proposed framework in terms of time
required for the convergence to some accuracy ε. If τ l(θ) is the time per iteration to
reach a relative θ accuracy at a local subproblem and T (θ) is the communication
time required during a single iteration for any arbitrary algorithm, then we can
analyze the result in (4.19) with the efficiency of the global model as

I g(ε, θ) · (T (θ) + τ l(θ)). (4.20)

Because the cost of communication is proportional to the speed and energy
consumption in a distributed scenario [123], the bound defined in (4.19) explains the
efficiency in terms of the MEC server’s resource restriction for attaining ε accuracy.
In this regard, the corresponding analysis of (4.20) is presented in the upcoming
sub-section with several case studies.
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The utility of the MEC server can therefore be defined for the set of measured
best responses θ∗ as

U(x(ε), r|θ∗) = β
(
1 − 10−(ax(ε)+b)

)
− r

∑

k∈K
(1 − θ∗

k (r)),

where β > 0 is the system parameter,8 and r
∑

k∈K(1 − θ∗
k (r)) is the cost spent

for incentivizing participating clients in the crowdsourcing framework for federated
learning. So, for the measured θ∗ from the participating clients at the MEC server,
the utility maximization problem can be formulated as follows:

max
r≥0,x(ε)

U(x(ε), r|θ∗), (4.21)

s.t.
x(ε)

1 − maxk θ∗
k (r)

≤ δ. (4.22)

In constraint (4.22), maxk θ∗
k (r) characterizes the worst-case response for the server-

side utility maximization problem with the bound on permissible global iterations.
Note that MEC adapts admission control strategy (discussed in Sect. 4.2.3) to
improve the number of participants for maximizing its utility. In fact, MEC has to
increase the reward rate to maintain the minimum number of participation (at least
two) to realize the distributed optimization setting in federated learning. In addition
to this, the framework may suffer from slower convergence due to less participation.
Thus, MEC will avoid deliberately dropping the clients to achieve a faster consensus
with (4.22).

Furthermore, using the relationship defined in (4.19) between x(ε) and relative
θ accuracy for the subproblem, we can analyze the impact of responses θ on MEC
server’s utility in a federated learning setting with the constraint (4.11). To be more
specific about this relation, we can observe that with the increased value of (1− θ),
i.e., lower relative accuracy (high local accuracy), the MEC server can attain better
utility due to the corresponding increment in the value of x(ε). Note that in the client
cost problem, x(ε) is treated as a constant provided by the MEC problem, and can
be ignored for solving (4.16).

Lemma 1 The optimal solution x∗(ε) for (4.21) can be derived as δ(1 −
maxk θ∗

k (r)).

Proof See Appendix.

8 Note that β > 0 characterizes a linear scaling metric to the utility function which can be set
arbitrarily and will not alter our evaluation. Equivalently, it can be understood as the MEC server’s
physical resource consignments for the federated learning that reflects the satisfaction measure of
the framework.
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Therefore, for the given θ∗(r), we can formalize (4.21) as

max
r≥0

β
(
1 − 10−(ax∗(ε)+b)

)
− r

∑

k∈K
(1 − θ∗

k (r)). (4.23)

Stackelberg Equilibrium With a solution to MEC server’s utility maximization
problem, r∗ we have the following definition.

Definition 1 For any values of r , and θ , (r∗, θ∗) is a Stackelberg equilibrium if it
satisfies the following conditions:

U(r∗, θ∗) ≥ U(r, θ∗), (4.24)

uk(θ
∗
k , r∗) ≥ uk(θk, r

∗), ∀k. (4.25)

Next, we employ the backward-induction method to analyze the Stackelberg
equilibria: the Stage-II problem is solved at first to obtain θ∗, which is then used
for solving the Stage-I problem to obtain r∗.

Stackelberg Equilibrium: Algorithm and Solution Approach

Intuitively, from (4.19), we see that the server can evaluate the maximum value of
x(ε) required for attaining accuracy ε for the centralized model while maintaining
relative accuracy θth amongst the participating clients. Here, θth is a consensus
on a maximum local accuracy level amongst participating clients, i.e., the local
subproblems will maintain at least θth relative accuracy. So, with the measured
responses θ from the participating clients, the server can design a proper incentive
plan to improve the global model while maintaining the worst-case relative accuracy
maxk θ∗

k as θth for the local model.
Since the threshold accuracy θth can be adjusted by the MEC server for each

round of solution, each participating client will maintain a response towards the
maximum local consensus accuracy θth. This formalizes the client’s selection
criteria [see Remark 1.] which is sufficient enough for the MEC server to maintain
the accuracy ε. We also have the lower bound related with the value of xmin(ε) for
equivalent accuracy εmax while dealing with the client’s responses θ , i.e.,

log

(
1

εmax

)

≤ x(ε)

(1 − θth)
≤ δmax. (4.26)

where δmax is the maximum permissible upper bound to the global iterations.
As explained before and with (4.26), the value of θth can be varied (lowered)

by MEC server to improve the overall performance of the system. For a worst case
scenario, where the offered reward r for the client k is insufficient to motivate it for
participation with improved local relative accuracy, we might have maxk θ∗

k (r) = 1,
i.e., θth = 1, no participation.
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Lemma 2 For a given reward rate r , and Tk which is determined based upon the
channel conditions (4.14), we have the unique solution θ∗

k (r) for the participating
client satisfying following relation:

gk(r) = log(e1/θ
∗
k (r)θ∗

k (r)),∀k ∈ K, (4.27)

for gk(r) ≥ 1, where,

gk(r) =
[

r + νkTk

(1 − νk)γk

− 1

]

.

Proof Because C
′′
k (θk) > 0 for θk > 0, (4.17) is a strictly convex function resulted

as a linear plus convex structure. Therefore, by the first-order condition, (4.17) can
be deduced as

∂uk(r, θk)

∂θk

= 0

⇔ 1

θk

− log

(
1

θk

)

=
[

r + νkTk

(1 − νk)γk

− 1

]

,

⇔ log(e1/θk θk) = gk(r).

(4.28)

We observe that Lemma 2 is a direct consequence of the solution structure derived
in (4.28). Hence, we conclude the proof.

From Lemma 2, we have some observations with the definition of gk(r) for the
response of the participating clients. First, we can show that θ∗

k is larger for the poor
channel condition on a given reward rate. Second, in such scenario, with the increase
in reward rate, say for gk(r) > 2 the participating clients will iterate more during
their computation phase resulting in lower θ∗

k . This will reduce the number of global
iterations to attain an accuracy level for the global problem.

We can therefore characterize the participating client k’s best response under the
proposed framework as

θ∗
k (r) = min

{
θ̂k(r) |

gk(r)=log(e1/θ̂k (r)θ̂k(r))
, θth

}
,∀k. (4.29)

(4.29) represents the best response strategy for the participating client k under our
proposed framework. Intuitively, exploring the logarithmic structure in (4.27), we
observe that the increase in incentive r will motivate participating clients to increase
their efforts for local iteration in one global iteration. This is reflected by a better
response, i.e., a lower relative accuracy (high local accuracy) during each round of
communication with the MEC server.

Figure 4.7 illustrates such strategic responses of the participating clients over
an offered reward for a given configuration. In this scenario, to elaborate the best
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Fig. 4.7 An illustration showing participating clients response over the offered reward rate

response strategy as characterized in (4.29), we have considered four participating
clients with different preferences (e.g., Client 3 being the most reluctant participant).
We observe that Client 3 seeks more incentive r to maintain a comparable accuracy
level as Client 1. Further, we consider the tradeoff between communication cost
and the computation cost as discussed with the relation in (4.15). These costs are
complementary in relation by νk , and for each client k their preferences upon these
costs are also different. For instance, the higher value of νk for client k emphasizes
the increased number of communication with the MEC server to improve the local
relative accuracy θk .

In Figs. 4.8, 4.9, and 4.10, we briefly present the solution analysis to (4.27)
with the impact of channel condition (we define it as communication adversity)
on the local relative accuracy for a constant reward. For this, in Fig. 4.8 we
consider a participating client with the fixed offered reward setting r from uniformly
distributed values of 0.1–5. We use normalized Tk parameter for a client k to
illustrate the response analysis scenario. In Figs. 4.9 and 4.10, Tk is uniformly
distributed on [0.1, 1], and νk is set at 0.6. Intuitively, as in Fig. 4.8, the increase
in communication time Tk for a fixed reward r will influence participating clients
to iterate more locally for improving local accuracy than to rely upon the global
model, which will minimize their total cost. Under this scenario, we observe the
increase in communication cost with the increase in communication time Tk . Thus,
the clients will iterate more locally. However, the trend is significantly affected by
normalized weights νk , as observed in Figs. 4.9 and 4.10. For a larger value of Tk

(poor channel condition) as in the case of Fig. 4.10, increasing the value of νk , i.e.,
clients with more preference on the communication cost in the total cost model
results to higher local iterations for solving local subproblems, as reflected by the
better local accuracy, unlike in Fig. 4.9. In both cases we observe the decrease in
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Fig. 4.8 Solution Analysis (4.27) (Left Y-axis: Relative accuracy, Right Y-axis: Communication
cost): impact of communication adversity on local relative accuracy for a constant reward

Fig. 4.9 Solution Analysis (4.27) (Left Y-axis: Relative accuracy, Right Y-axis: Communication
cost): normalized weight versus relative accuracy for a fair data rate (quality communication
channel)

communication cost upon participation. However, in Fig. 4.10 the communication
cost is higher because of an expensive data rate. Therefore, for a given r , client k

can adjust its weight metrics accordingly to improve the response θk .
In Figs. 4.11, 4.12, and 4.13, we explore such behaviors of the participating

clients through the heatmap plot. To explain better, we define three categories of
participating clients based upon the value of normalized weights νk,∀k, which
are their individual preferences upon the computation cost and the communication
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Fig. 4.10 Solution Analysis (4.27) (Left Y-axis: Relative accuracy, Right Y-axis: Communication
cost): normalized weight versus relative accuracy for an expensive data rate

Fig. 4.11 Case Study: impact of communication cost and offered reward rate r for normalized
weight (preferences), reluctant clients i.e., νk = 0.1. X-axis shows the increase in incentive (r)
value from left-to-right, and the y-axis defines the increase in value of communication expenditure
(top-to-bottom)

cost for the convergence of the learning framework. (i) Reluctant clients with a
lower νk consume more reward to improve local accuracy, even though the value
of Tk is larger (expensive), as observed in Fig. 4.11. (ii) Sensitive clients are more
susceptible towards the channel quality with larger νk , and iterates more locally
within a round of communication to the MEC server for improving local accuracy,
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Fig. 4.12 Case Study: impact of communication cost and offered reward rate r for normalized
weight (preferences), rational clients, νk = 0.7. X-axis shows the increase in incentive (r) value
from left-to-right, and the y-axis defines the increase in value of communication expenditure (top-
to-bottom)

Fig. 4.13 Case Study: impact of communication cost and offered reward rate r for normalized
weight (preferences), sensitive clients, νk = 0.7. X-axis shows the increase in incentive (r) value
from left-to-right, and the y-axis defines the increase in value of communication expenditure (top-
to-bottom)

as observed in Fig. 4.13. (iii) Rational clients, as referred in Fig. 4.12 tend to
balance these extreme preferences (say νk = 0.5 for client k), which in fact would
be unrealistic to expect all the time due to heterogeneity in participating client’s
resources.
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Algorithm 5 MEC server’s utility maximization
1: Sort clients as with r̂1 < r̂2 < . . . < r̂K
2: R = {},A = K, j = K

3: while j > 0 do
4: Obtain the solutions rj to the following problem:

max
r≥r̂1

β
(
1 − 10−(ax∗(ε)+b)

)
− r

∑

k∈A(1 − θ∗
k (r))

5: if rj > r̂j , then R = R ∪ {rj };
6: end if
7: A = A\j ;
8: j = j − 1;
9: end while
10: Return rj ∈ R with highest optimal values in problem (4).

To solve (4.23) efficiently, with (4.29) θ∗
k (r) = min

{
θ̂k(r) |

gk(r)=log(e1/θ̂k (r)θ̂k(r))
,

θth

}
,∀k, we introduce a new variable zk in relation with consensus on local relative

accuracy θth,

zk =
{
1, if r > r̂k;
0, otherwise,

(4.30)

where

r̂k =
[
g−1

k (log(e1/θthθth))
]

is the minimum incentive value required obtained from (4.29) to attain the local
consensus accuracy θth at client k for the defined parameters νk and Tk .

This means, θk(r) < θth when zk = 1, and θth ≤ θk(r) < 1 when zk = 0. MEC
server can use this setting to drop the participants with poor accuracy. As discussed
before, for the worst case scenario we consider θth = 1.

Therefore, the utility maximization problem can be equivalently written as

max
r,{zk}k∈K

β
(
1 − 10−(ax∗(ε)+b)

)
− r

∑

k∈K

zk · (1 − θ∗
k (r)), (4.31)

s.t. r ≥ 0, (4.32)

zk ∈ {0, 1},∀k. (4.33)

The problem (4.31) is a mixed-Boolean programming, which may require
exponential-complexity effort (i.e., 2K configuration of {zk}k∈K) to solve by the
exhaustive search. To solve this problem with linear complexity, we refer to the
solution approach as in Algorithm 5.
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The utility maximization problem at MEC server can be reformulated as a
constraint optimization problem (4.34–4.35) assuming a fixed configuration of
{zk = 1}k∈K as

max
r≥0

β
(
1 − 10−(ax∗(ε)+b)

)
, (4.34)

s.t. r
∑

k∈K

(1 − θ∗
k (r)) ≤ B, (4.35)

where (4.35) is budget constraint for the problem. The second-order derivative of
function r(1 − θ∗

k (r)) in (4.35) is 2γk(1−νk)νkTk

(r+νkTk)
3 > 0, i.e., the problem (4.34) is a

convex problem and can be solved similarly with Algorithm 5 (line 4–5).

Proposition 1 Algorithm 2 can solve the Stage-I equivalent problem (4.23) with
linear complexity.

Proof As the clients are sorted in the order of increasing r̂k (line 1), for the sufficient
condition r > r̂k resulting zk = 1, the MEC’s utility maximization problem reduces
to a single-variable problem that can be solved using popular numerical methods.

Remark 1 Algorithm 2 can maintain consensus accuracy by formalizing the clients
selection criteria. This is because from (4.30), zk = 1 for θk(r) < θth, and zk = 0
for θth ≤ θk(r) < 1. Thus, MEC server uses this setting to drop the participants with
θk(r) > θ∗

k (r) = θth.

Theorem 1 The Stackelberg equilibria of the crowdsourcing framework are the set
of pairs {r∗, θ∗}.
Proof For any given θ , it is obvious that U(r∗, θ) ≥ U(r, θ),∀r since r∗ is the
solution to the Stage-I problem. Thus, we have U(r∗, θ∗) ≥ U(r, θ∗). In the similar
way, for any given value of r and ∀k, we have uk(r, θ

∗
k ) ≥ uk(r, θk),∀θk . Hence,

uk(r
∗, θ∗

k ) ≥ uk(r
∗, θk). Combining these facts, we conclude the proof being based

upon the definitions of (4.24) and (4.25).

4.2.3 Simulations

In this section, we present numerical simulations to illustrate our results. We
consider the learning setting for a strongly convex model such as logistic regression,
as discussed in Sect. 4.2.1, to characterize and demonstrate the efficacy of the
proposed framework. First, we will show the optimal solution of Algorithm 5
(Algorithm 5) and conduct a comparison of its performance with two baselines. The
first one, named OPT, is the optimal solution of problem (4.23) with an exhaustive
search for the optimal response θ∗. The second one is called Baseline that considers
the worst response amongst the participating clients to attain local consensus θth
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accuracy with an offered price. This is an inefficient scheme but still enables us
to attain feasible solutions. Finally, we analyze the system performance by varying
different parameters and conduct a comparison of the incentive mechanism with
the baseline and their corresponding utilities. In our analysis, the smaller values of
local consensus are of specific interest as they reflect the effectiveness of federated
learning.

1. Settings: For an illustrative scenario, we fix the number of participating clients
to 4. We consider the system parameter β = 10, and the upper bound to the
number of global iterations δ = 10, which characterizes the permissible rounds
of communication to ensure global ε accuracy. The MEC’s utility U(x(ε)) =
1 − 10−(ax(ε)+b) model is defined with parameters a = 0.3, and b = 0. For
each client k, we consider normalized weight νk is uniformly distributed on
[0.1,0.5], which can provide an insight on the system’s efficacy as presented
in Figs. 4.11, 4.12, and 4.13. We characterize the interaction between the MEC
server and the participating clients under homogeneous channel condition, and
use the normalized value of Tk for all participating clients.

2. Reward rate: In Fig. 4.14 we increase the value of local consensus accuracy θth
from 0.2 to 0.6. When the accuracy level is improved (from 0.4 to 0.2), we
observe a significant increase in the reward rate. These results are consistent
with the analysis in section “Stackelberg Equilibrium: Algorithm and Solution
Approach”. The reason is that cost for attaining a higher local accuracy level

Fig. 4.14 Comparison of (a) Reward rate and (b) MEC utility under three schemes for different
values of threshold θth accuracy
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requires more local iterations, and thus the participating clients exert more
incentive to compensate for their costs.

We also show that the reward variation is prominent for lower values of θth,
and observe that scheme Algorithm 2 and OPT achieve the same performance,
while Baseline is not as efficient as others. Here, we can observe up to 22% gain
in the offered reward against the Baseline by other two schemes. In Fig. 4.14b,
we see the corresponding MEC utilities for the offered reward that complements
the competence of the proposed Algorithm 2. We see, the trend of utility against
the offered reward goes along with our analysis.

3. Parametric choice: In Figs. 4.15 and 4.16 we show the impact of parametric
choice adopted by the participating client k to solve the local subproblem [124],
which is characterized by γk . In Fig. 4.15, we see a lower offered reward for
the improved local accuracy level for the participating clients adapting same

Fig. 4.15 For |K| = 4, a = 0.3, b = 0, γk = 1,∀k

Fig. 4.16 For |K| = 4, a = 0.3, b = 0, and γk ∼ U [1, 5]
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Table 4.2 Offered reward rate comparison with randomized γ effect for different (a, b) setting

Threshold accuracy Baseline Algorithm 2 Algorithm 2 Algorithm 2

θth r (0.3,−1) (0.35,−1) 0.65,−1)

0.2 18 5.22 5.22 5.22

0.3 12 3.48 3.48 3.48

0.4 8.99 2.602 2.6 2.61

0.5 7.19 2.79 4.3 2.2

0.6 5.99 2.38 2.87 2.1

0.7 5.13 2.84 3.17 1.9

Table 4.3 Utility comparison with randomized γ effect for different (a, b) setting

Threshold accuracy Algorithm 2 Algorithm 2 Algorithm 2

θth (0.3,−1) (0.35,−1) (0.65,−1)

0.2 8.55 8.79 8.96

0.3 8.41 8.60 8.95

0.4 8.33 8.58 8.94

0.5 8.2 8.73 8.91

0.6 8.18 8.4 8.91

0.7 7.8 8.51 8.86

parameters (algorithms) for solving the local subproblem, in contrast to Fig. 4.16
with the uniformly distributed γk on [1,5] to achieve the competitive utility.

4. Comparisons: In Tables 4.2 and 4.3, we see the effect of randomized parameter
γk for different configuration of MEC utility model U(·) defined by (a, b).
For the smaller values of θth, which captures the competence of the proposed
mechanism, we observe that the choice of (a, b) provides a consistent offered
reward for improved utility from (0.35,−1) to (0.65,−1), which follows our
analysis in section “Incentive Mechanism: A Two-Stage Stackelberg Game
Approach”. For larger values of θth, we also see the similar trend in MEC utility.
For a randomized setting, we observe up to 71% gain in offered reward against
the Baseline, which validates our proposal’s efficacy aiding federated learning.

Our earlier discussion in Sect. 4.2.2 and simulation results explain the signifi-
cance of choosing a local θth accuracy to build a global model that maximizes the
utility of the MEC server. In this regard, at first, the MEC server evokes admission
control to determine θth and the final model is learned later. This means, with the
number of expected clients, it is crucial to appropriately select a proper prior value
of θth that corresponds to the participating client’s selection criteria for training a
specific learning model. Note that, in each communication round of synchronous
aggregation at the MEC server, the quality of local solution benefits to evaluate
the performance at the local subproblem. In this section, we will discuss about
the probabilistic model employed by the MEC server to determine the value of the
consensus θth accuracy.
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We consider the local θ accuracy for the participating clients is an i.i.d and
uniformly distributed random variable over the range [θmin, θmax], then the PDF
of the responses can be defined as fθ (θ) = 1

θmax−θmin
. Let us consider a sequence of

discrete time slots t ∈ {1, 2, . . .}, where the MEC server updates its configuration
for improving the accuracy of the system. Following our earlier definitions, at
time slot t , the number of participating clients in the crowdsourcing framework for
federated learning is |K(t)|, or simply K . We restrict the clients with the accuracy
measure θ(t) ≥ θmax. For K number of participation requests, the total number of
accepted responses N(t) is defined as N(t) = K · Fθ(t)(θ) = K · P [θ(t) ≤ θ ].
We have N(t) = K ·

[
θ(t)−θmin
θmax−θmin

]
. At each time t , the MEC server chooses θ(t)

as the threshold accuracy θth that maximizes the sum of its utility as defined
in (4.18) for the defined parameters a ≥ 0, b ≤ 0 and the total participation,
β

(
1 − 10−(ax(ε)+b)

) + (1 − θ) · N(t), subject to the constraint that the response
lies between the minimum and maximum accuracy measure (θmin ≤ θ(t) ≤ θmax).
Using the definitions in (4.19), for β > 0, the MEC server maximizes its utility for
the number of participation with θ accuracy as

max
θ(t)

β
(
1 − 10−(a·δ(1−θ(t))+b)

)
+ (1 − θ(t)) · N(t),

s.t. θmin ≤ θ(t) ≤ θmax.

(4.36)

The Lagrangian of the problem (4.36) is as follows:

L(θ(t), λ, μ) = β
(
1 − 10−(a·δ(1−θ(t))+b)

)
+ (1 − θ(t))·

[
θ(t) − θmin

θmax − θmin

]

+ λ(θ(t) − θmin)

+μ(θmax − θ(t)), (4.37)

where λ ≥ 0 and μ ≥ 0 are dual variables. Problem (4.36) is a convex problem
whose optimal primal and dual variables can be characterized using the Karush-
Khun-Tucker (KKT) conditions [116] as

∂L
∂θ(t)

= ln(10) · (βδa) · 10−(a·δ(1−θ∗(t))+b)

−K ·
[
2θ(t) − θmin

θmax − θmin

]

+ λ − μ = 0, (4.38)

λ(θ(t) − θmin) = 0, (4.39)

ν(θmax − θ(t)) = 0. (4.40)
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Following the complementary slackness criterion, we have

λ∗(θ∗(t) − θmin) = 0, μ∗(θmax − θ∗(t)) = 0, λ∗ ≥ 0, μ∗ ≥ 0. (4.41)

Therefore, from (4.41), we solve (4.36) with the KKT conditions assuming that
θ∗(t) < θmax as an admission control strategy, and find the optimal θ∗(t) that
satisfies the following relation

K = ln(10) · (βδa) · 10−(a·δ(1−θ∗(t))+b) · (θmin − θmax)

1 − 2θ∗(t) + θmin
. (4.42)

(4.42) can be rearranged as

f (θ∗(t)) = ln(10) · (βδa) · 10−(a·δ(1−θ∗(t))+b)

+K ·
[
1 − 2θ∗(t) + θmin

θmax − θmin

]

= 0. (4.43)

To obtain the value of θ∗(t) we will use Netwon-Raphson method [125]
employing an appropriate initial guess that manifests the quadratic convergence of
the solution. We choose θ∗

0 (t) = E(θ(t)) = θmax+θmin
2 as an initial guess for finding

θ∗(t) which follows the PDF fθ (θ) ∼ U [θmin, θmax]. Then the solution method is
an iterative approach as follows:

θ∗
i+1(t) = θ∗

i (t) − f (θ∗
i (t))

βδ2a2 · ln2(10) · 10−(a·δ(1−θ∗
i (t))+b)

. (4.44)

Numerical Analysis: In Figs. 4.17 and 4.18, we vary the number of participating
clients up to 50 with different values of δ. The response of the clients is set to follow
a uniform distribution on [0.1, 0.9] for the ease of representation. In Fig. 4.17, for the
model parameters (a,b) as (0.35,−1), we see θth increases with the increase in the
number of participating clients for all values of δ. It is intuitive and goes along with
our earlier analysis that for the small number of participating clients, the smaller
θth captures the efficacy of our proposed framework. Because it is an iterative
process, the evolution of θth over the rounds of communication will be reflected in
the framework design. Subsequently, the larger upper bound δ exhibits the similar
impact on setting θth, where smaller δ imposes strict local accuracy level to attain
high-quality centralized model. Also due to the same reason, in Fig. 4.18, we see
θth is increasing for the increase in the number of participating clients, however,
with the lower value. It is because of the choice of parameters (a, b) as explained in
section “Incentive Mechanism: A Two-Stage Stackelberg Game Approach”. So the
value of θth is lower in Fig. 4.18.
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Fig. 4.17 Variation of local θth accuracy for different values of δ given the density function,
fθ (θ) ∼ U [0.1, 0.9], |K| = [0, 50], for a = 0.35, b = −1

Fig. 4.18 Variation of local θth accuracy for different values of δ given the density function,
fθ (θ) ∼ U [0.1, 0.9], |K| = [0, 50], for a = 0.45, b = −1.05
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4.3 Auction Theory-Enabled Incentive Mechanism

In a typical wireless system, there are a variety of players, such as end-users, mobile
network operators, and cloud server providers, among others. These players interact
with each other to maximize their own benefits [126]. The benefits can be high
data rate, load balancing, latency minimization, overall system utility maximization,
energy efficiency, and profit maximization. However, enabling interaction among
various players of wireless systems requires some effective business models. One
can use auction theory to enable efficient interaction among the players of wireless
systems. Auction theory enables people how to act in an auction market and
systematically investigate the auction markets [127]. For instance, a mobile network
operator can sell the spectrum resources to end-users for maximizing its profit. On
the other hand, end-users want to increase their own benefits (e.g., data rate). To
model this interaction between a mobile network operator and a set of users, one
can use auction theory where users act as buyers (i.e, bidders) and mobile network
operator as a seller. The description of three main players used in auction theory are
as follows [128]:

• Bidder: In auction theory, a bidder is an entity that wants to buy commodities
from the seller. An example of a bidder in a wireless system is the end-user.

• Seller: A seller denotes the owner of all commodities (e.g., radio resources) of a
wireless system.

• Auctioneer: It refers to the intermediate agent that helps the bidder and seller
in performing auctions. For instance, a base station in a wireless system can
be considered as an auctioneer between the mobile network operator and end-
users. Furthermore, a mobile network operator itself can also act as an auctioneer.
Therefore, depending on the scenario one can choose an auctioneer.

• Commodity: Commodities of a wireless system represent the resources (e.g.,
spectrum, edge computing resource) that are traded between the sellers and
bidders.

In this section, we provide an incentive mechanism design for federated learning
using auction theory. In spite of the many benefits of federated learning, there are
remaining two key challenges of having an efficient federated learning framework.
The first challenge is the economic challenge. Data samples per mobile device are
small to train a high-quality learning model so a large number of mobile users are
needed to ensure cooperation. In addition, the mobile users who join the learning
process are independent and uncontrollable. Here, mobile users may not be willing
to participate in the learning due to the energy cost incurred by model training.
In other words, the base station (BS), which generates the global model, has to
stimulate the mobile users for participation. The second challenge is the technical
challenge. On the one hand, we need users to collectively provide a large number of
data samples to enable federated learning without sharing their private data. On the
other hand, we need to protect the model from imperfect updates. The global loss
minimization problem should enable (a) proper assessment of the quality of the local
solution to improve personalization and fairness amongst the participating clients
while training a global model, (b) effective decoupling of the local solvers, thereby
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balancing communication and computation in the distributed setting. Moreover,
we need to consider wireless resource limitations (such as time, antenna number,
and bandwidth)affecting the performance of federated learning. Besides, the limited
energy of wireless devices is a crucial challenge for deploying federated learning.
Indeed, it is necessary to optimize the energy efficiency for federated learning
implementation because of these resource constraints.

To deal with the above challenges, we model the federated learning service
between the BS and mobile users as an auction game in which the BS is a buyer
and mobile users are sellers. In particular, the BS first initiates and announces a
federated learning task. When each mobile user receives the federated learning
task information, they decide the amount of resources required to participate in
the model training. After that, each mobile user submits a bid, which includes
the required amount of resource, local accuracy, and the corresponding energy
cost, to the BS. Moreover, the BS plays the role of the auctioneer to decide the
winners among mobile users as well as clear payment for the winning mobile
users. In addition, the auction used in this work is a type of combinational auction
[56, 129] since each mobile user can bid for combinations of resources. However,
the proposed auction mechanism allows mobile users sharing the resources at the
BS, which is different from the conventional combinatorial auction. The proposed
mechanism directly determines the trading rules between the buyer (BS) and sellers
(mobile users) and motivates the mobile users to participate in the model training.
Compared with other incentive mechanism approaches (e.g., contract theory) in
which the service market is a monopoly market, where mobile users can only
decide whether or not to accept the contracts, the proposed auction enables mobile
users to bids on any combinations of resources. Moreover, the proposed auction
mechanism can simultaneously provide truthfulness and individual rationality. An
auction mechanism is truthful if a bidder’s utility does not increase when that bidder
makes other bidding strategies, rather than the true value. Revealing the true value
is a dominant strategy for each participating user regardless of what strategies other
users use[130]. An absent-truthfulness auction mechanism could leave the door to
possible market manipulation and produce inferior results [131]. Additionally, if
the value of any bidder is non-negative, an auction process will ensure individual
rationality. The contributions of this section are summarized as follows:

• We propose an auction framework for the wireless federated learning services
market. Then, we present the bidding cost in every user’s bid submitted to the BS.
From the mobile users’ perspective, each mobile user makes optimal decisions
on the amount of resources and local accuracy to minimize weighted sum of
completion time and energy costs while the delay requirement for federated
learning is satisfied. To solve the cost decision problem, a low-complexity
iterative algorithm is proposed.

• From the perspective of the BS, we formulate the winner selection problem in the
auction game as the social welfare maximization problem, which is an NP-hard
problem considering the limitation of the wireless resource. We propose a primal-
dual greedy algorithm to deal with the NP-hard problem of selecting the winning
users and critical value-based payment. We also proved that the proposed auction
mechanism is truthful, individually rational, and computationally efficient.
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• Finally, we carry out the numerical study to show that a proposed auction mech-
anism can guarantee the approximation factor of the integrality to the maximal
welfare that is derived by the optimal solution and outperforms compared with
baseline.

4.3.1 System Model

Preliminary of Federated Learning

Consider a cellular network in which one BS and a set N of N users cooperatively
perform a federated learning algorithm for model learning, as shown in Fig. 4.19.
A summary of all notations used is given in Table 4.4. Each user n has sn local
data samples. Each data set sn = {ank, bnk,1≤k≤sn} where ank is an input and bnk

Local Model

Local Model

Local Model

Global  Model

Auction phases

Federated 
Learning  phases

Set of mobile 
devices

Local Database

1. Federated Learning task

2. Bids

[sub-channel,  antenna, 
local accuracy, cost]

3. Winners list & payment list

4. Global model

5. Updated local models

6. Payment

Fig. 4.19 System model
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Table 4.4 Table of key
notations

Description Notation

Global loss function L(ω)

Computing energy consumption of user n E
comp
n

Computing time of one local iteration of user n T
comp
n

Transmission time of user n T com
n

Transmission energy of user n Ecom
n

Total transmission time of user n T tol
n

Total energy consumption of user n Etol
n

Local accuracy of user n εn

Computing resource of user n fn

Transmission power of user n pn

Antenna number desired by user n An

The real cost of the ith bid of user n Vni

The claimed cost of the ith bid of user n vni

The satisfaction level of the ith bid of user n χni

The winner indicator of the ith bid of user n xni

is its corresponding output. The federated learning model trained by the dataset of
each user is called the local federated learning model, while the federated learning
model at the BS aggregates the local model from all users as the global federated
learning model. We define a vector ω as the model parameter. We also introduce the
loss function ln(ω, ank, bnk) that captures the federated learning performance over
input vector ank and output bnk . The loss function may be different, depending on
the different learning tasks. The total loss function of user n will be

Ln(ω) = 1

sn

sn∑

k=1

ln(ω, ank, bnk). (4.45)

Then, the learning model is the minimizer of the following global loss function
minimization problem

min
ω

L(ω) = 1

S

N∑

n=1

sn∑

k=1

ln(ω, ank, bnk), (4.46)

where S = ∑N
n=1 sn is the total data samples of all users.

To solve the problem in (4.46), we adopt the federated learning algorithm of
[72]. The algorithm uses an iterative approach that requires a number of global
iterations (i.e., communication rounds) to achieve a global accuracy level. In each
global iteration, there are interactions between the users and BS. Specifically, at
a given global iteration t , users receive the global parameter ωt , users computes
�Ln(ω

t ),∀n and send it to the BS. The BS computes [70]

�L(ωt ) = 1

N

N∑

n=1

�Ln(ω
t ), (4.47)
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and then broadcasts the value of�L(ωt ) to all participating users. Each participating
user n will use local training data sn to solve the local federated learning problem is
defined as

min
φn

Gn(ω
t , φn)

= Ln(ω
t + φn) − (

�Ln(ω
t ) − ��L(ωt )

)T
φn,

(4.48)

where φn represents the difference between global federated learning parameter and
local federated learning parameter for user n. Each participating user n uses the
gradient method to solve (4.48) with local accuracy εn that characterizes the quality
of the local solution, and produces the output φn that satisfies

Gn(ω
t , φn) − Gn(ω

t , φ∗
n) < εn(Gn(ω

t , 0) − Gn(ω
t , φ∗

n)). (4.49)

Solving (4.48) also takes multiple local iterations to achieve a particular local
accuracy. Then each user n sends the local parameter φn to the BS. Next, the BS
aggregates the local parameters from the users and computes

ωt+1 = ωt + 1

N

N∑

n=1

φt
n, (4.50)

and broadcasts the value to all users, which is used for next iteration t + 1. This
process is repeated until the global accuracy γ of (4.46) is obtained.

Assume that Ln(ω) is H -Lipschitz continuous and π -strongly convex, i.e.,

πI � �2Ln(ω) � HI ,∀n ∈ N ,

the general lower bound on the number of global iterations is depends on local
accuracy ε and the global accuracy γ as [70]:

Ig(γ, ε) = C1 log(1/γ )

1 − ε
, (4.51)

where the local accuracy measures the quality of the local solution as described in
the preceding paragraphs.

In (4.51), we observe that a very high local accuracy (small ε) can significantly
boost the global accuracy γ for a fixed number of global iterations Ig at the BS to
solve the global problem. However, each user n has to spend excessive resources in
terms of local iterations, I l

n to attain a small value of εn. The lower bound on the
number of local iterations needed to achieve local accuracy εn is derived as [70]

I l
n(εn) = ϑn log

(
1

εn

)

, (4.52)
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where ϑn > 0 is a parameter choice of user n that depends on parameters of Ln(ω)

[70]. In this section, we normalize ϑn = 1. Therefore, to address this trade-off, the
BS can set up an economic interaction environment to motivate the participating
users to enhance local accuracy εn. Correspondingly, with the increased payment,
the participating users are motivated to attain better local accuracy εn (i.e., smaller
values), which as noted in (4.51) can improve the global accuracy γ for a fixed
number of iterations Ig of the BS to solve the global problem. In this case, the
corresponding performance bound in (4.51) for the heterogeneous responses εn can
be updated to catch the statistical and system-level heterogeneity regarding the worst
case of the participating users’ responses as:

Ig(γ, εn) = � log(1/γ )

1 − maxn εn

,∀n. (4.53)

Computation and Communication Models for Federated Learning

The contributed computation resource that user n contributes for local model
training is denoted as fn. Then, cn denotes the number of CPU cycles needed for the
user n to perform one sample of data in local training. Thus, energy consumption of
the user for one local iteration is presented as

Ecom
n (fn) = ζcnsnf

2
n , (4.54)

where ζ is the effective capacitance parameter of computing chipset for user n. The
computing time of a local iteration at the user n is denoted by

T
comp
n = cnsn

fn

. (4.55)

It is noted that the uplink from the users to the BS is used to transmit the parameters
of the local federated learning model while the downlink is used for transmitting the
parameters of the global federated learning model. In this section, we just consider
the uplink bandwidth allocation due to the relation of the uplink bandwidth and
the cost that user experiences during learning a global model. We consider the
uplink transmission of an OFDMA-based cellular system. A set of B = {1, 2, ..., B}
subchannels each with bandwidthW . Moreover, the BS is equipped withA antennas
and each user equipment has a single antenna (i.e., multi-user MIMO). We assume
A to be large (e.g., several hundreds) to achieve massive MIMO effect which scales
up traditional MIMO by orders of magnitude. Massive MIMO uses spatial-division
multiplexing. In this section, we assume that the BS has perfect channel state
information (CSI) and the channel gain is perfectly estimated, similar to [132, 133].
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Then, the achievable uplink data rate of mobile user n is expressed as [133, 134]:

rn = bnW log2

(

1 + (An − 1)pnhn

bnWN0

)

, (4.56)

where pn is the transmission power of user n, hn is the channel gain of peer to peer
link between user and the BS, N0 is the background noise, An is the number of
antennas the BS assigns to user n, and bn is the number of sub-channels that user n

uses to transmit the local model update to the BS.
We denote σ as the data size of a local model update and it is the same for all

users. Therefore, the transmission time of a local model update is

T com
n (pn,An, bn) = σ

rn
. (4.57)

To transmit local model updates in a global iteration, the user n uses the amount of
energy given as

Ecom(pn, fn,An, bn) = T compn = σpn

rn
. (4.58)

Hence, the total time of one global iteration for user n is denoted as

T tol
n (pn, fn,An, bn, εn)

= log

(
1

εn

)

T
comp
n (fn) + T com

n (pn,An, bn).
(4.59)

Therefore, the total energy consumption of a user n in one global iteration is denoted
as follows

Etol
n (pn, fn,An, bn, εn)

= log

(
1

εn

)

E
comp
n (fn) + Ecom

n (pn,An, bn).
(4.60)

Auction Model

As described in Fig. 4.19, the BS first initializes the global network model. Then,
the BS announces the auction rule and advertises the federated learning task to the
mobile users. The mobile users then report their bids. Here, mobile user n submits
a set of In of bids to the BS. A bid Δni denotes the ith bid submitted by the mobile
user n. Bid bni consists of the resource (sub-channel number bni , antenna number
Ani , local accuracy level εni) and the claimed cost vni for the model training. Each
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mobile user n has its own discretion to determine its true cost Vni , which will be
presented in Sect. 4.3.1. Let xni be a binary variable indicating the bid Δni wins or
not. After receiving all the bids from mobile users, the BS decides winners and then
allocates the resource to the winning mobile users. The winning mobile users join
the federated learning and receive the payment after finishing the training model.

Remark In each bid, the bidder declares the requested resources, the local accuracy,
and the corresponding cost. And the cost is calculated before submitting bids.
Therefore, the cost corresponding to the requesting resources can be included in
the bid during the bidding process.

Following we discuss one practical usage of our proposed auction scheme in
federated learning. Let’s consider a concrete example of a mobile phone keyboard
such as Gboard (Google Keyboard). A large amount of local data will be generated
when users interact with the keyboard app on their mobile devices. Suppose that
Google server wants to train a next-word prediction model based on users’ data. The
server can announce the learning project to users through the app and encourage
their participation. If a user wants to know more about this project, the app will
display an interface to submit the bids and calculate the expected cost. If the user
is interested in learning, he/she will download apps, calculate cost and submit the
bids through the interface. Once the BS receive all bids in certain time, the BS will
start the training process by broadcasting an initial global model to all the winning
users. On behalf of the user, the app will download this global model and upload the
model updates generated by the training on the user’s local data. After finishing the
model training project, the BS will give users rewards (e.g., money) based on the
bid it wins.

Deciding Mobile Users’s Bid

To transmit the local model update to the BS, mobile users need sub-channels
and antenna resources. However, given the maximum tolerable time of federated
learning, there is a correlation between resource and corresponding energy cost.
In this section, we present the way mobile users decide bids. Specially, for bid
Δni , mobile user n calculates transmission power pni , computation resource fni

and cost vni corresponding to a given sub-channel number bni and antenna number
Ani . However, for simplicity, the process to decide mobile users’ bid is the same for
every submitted bid. Thus, we remove the bid index i in this section. The energy
cost of mobile user n is defined after user n solve the weighted sum of completion
time and total energy consumption in the submitted bid, which is given as

P1 : min
fn,pn,An,bn,εn

I n
0

(
Etol

n (pn, fn, εn) + ρT tol
n (pn, fn, εn)

)
(4.61a)

s.t. I n
0 T tol

n (pn, fn,An, bn, εn) ≤ Tmax, (4.61b)
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fn ∈ [fmin
n , fmax

n ], (4.61c)

pn ∈ (0, pmax
n ], (4.61d)

εn ≤ (0, 1], (4.61e)

An ∈ (0, Amax
n ], (4.61f)

bn ∈ (0, bmax
n ], (4.61g)

where fmax
n and pmax

n are the maximum local computation capacity and maximum
transmit power of mobile user n, respectively. Amax

n and bmax
n are the maximum

antenna and maximum sub-channel that mobile user n can request in each bid,
respectively. Amax

n and bmax
n are chosen by mobile user n. In

0 = C1 log(1/γ )
1−εn

is the
lower bound of the number global iterations corresponding to local accuracy εn.
Note that the cost to the mobile user cannot be the same over iterations. ρ is the
weight. However, to make the problem more tractable, we consider minimizing
the approximated cost rather than the actual cost, similar to approach in [111].
Constraint (4.61b) indicates delay requirement of federated learning task.

According to P1, the maximum number of antennas and sub-channels are always
energy efficient, i.e., the optimal antenna is An = Amax

n , bn = bmax
n and ε∗

n, p
∗
n, f

∗
n

are the optimal solution to:

P2 : min
fn,pn,εn

I n
0

(
Etol

n (pn, fn, εn) + ρT tol
n (pn, fn, εn)

)

s.t. I n
0 T tol

n (pn, fn, εn) ≤ Tmax,

fn ∈ [fmin
n , fmax

n ],
εn ∈ (0, 1],
pn ∈ (0, pmax

n ].

(4.62)

Because of the non-convexity of P2, it is challenging to obtain the global optimal
solution. To overcome the challenge, an iterative algorithm with low complexity is
proposed in the following subsection.

Iterative Algorithm

The proposed iterative algorithm basically involves two steps in each iteration. To
obtain the optimal, we first solve (P2) with fixed εn, and then εn is updated based on
the obtained fn, pn in the previous step. In the first step, we consider the first case
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Algorithm 6 Optimal uplink power transmission
1: Calculate φ(pmax

n )

2: Calculate pmin
n so that In

0 T tol
n (pmin

n ) = Tmax

3: if φ(pmax
n < 0) then

4: p∗
n = pmax

n

5: else
6: p1 = max(0, pmin

n ) and p2 = pmax
n

7: while (p2 − p1 ≤ ε) do
8: pu = (p1 + p1)/2
9: if φ(pu) ≤ 0 then
10: p1 = pu

11: else
12: p2 = pu

13: end if
14: end while
15: p∗

n = (p1 + p2)/2
16: end if

when εn is fixed, and P2 becomes

P3 : min
fn,pn,εn

I n
0

(
Etol

n (pn, fn, εn) + ρT tol
n (pn, fn, εn)

)

s.t. I n
0 T tol

n (pn, fn, εn) ≤ Tmax,

fn ∈ [fmin
n , fmax

n ],
pn ∈ (0, pmax

n ].

(4.63)

P3 can be decomposed into two sub-problems as follows.

Optimization of Uplink Transmission Power

Each mobile user assigns its transmission power by solving the following problem:

P3a : min
pn

f (pn)

s.t. I n
0 T tol

n (pn, fn, εn) ≤ Tmax,

pn ∈ (0, pmax
n ],

fn, εn are given.

(4.64)

where f (pn) = σ(1+ρ)pn

bnW log2(1+ (An−1)pnhn
bnWN0

)
.
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Algorithm 7 Optimal local accuracy

1: Initialize εn = ε
(0)
n , set j = 0

2: repeat
3: Calculate ε∗

n = α1
(ln 2)ξ j

4: Update ξ (j+1) = γ1 log2(1/εn)+γ2
1−εn

5: Set j = j + 1
6: until |H(ξ(n+1))|/|H(ξ(n))| < ε2

Note that f (pn) is quasiconvex in the domain [135]. A general approach to the
quasiconvex optimization problem is the bisection method, which solves a convex
feasibility problem each time [116]. However, solving convex feasibility problems
by an interior cutting-plane method requires O(κ2/α2) iterations, where κ is the
dimension of the problem [135]. On the other hand, we have

f ′(pn) = σ log2(1 + θnpnhn) + σ(1+ρ)pnθnhn

ln 2(1+θnpnhn)

bnW(log(1 + θnpnhn))2
, (4.65)

where θn = (An−1)
WN0

. Then, we have

φ(pn) = σ log2(1 + θnpnhn) + σ(1 + ρ)pnθnhn

ln 2(1 + θnpnhn)
(4.66)

is a monotonically increasing transcendental function and negative at the starting
point pn = 0 [135]. Therefore, in order to obtain the optimal power allocation pn as
shown in Algorithm 6, we follow a low-complexity bisection method by calculating
φ(pn) rather than solving a convex feasibility problem each time.

Optimization of CPU Cycle Frequency and Number of Antennas

P3b : min
fn

In
0 log

(
1

εn

)

cnsn

(
ζf 2

n + ρ/fn

)

s.t. I n
0

(

log

(
1

εn

)
cnsn

fn

+ T com
n

)

≤ Tmax,

fn ∈ [fmin
n , fmax

n ],
pn, εn are given.

(4.67)

P3b is the convex problem, so we can solve it by any convex optimization tool.
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Algorithm 8 Iterative algorithm
1: Initialize a feasible solution pn, fn, εn and set j = 0.
2: repeat
3: With ε

(j)
n obtain the optimal p(j+1)

n , f
(j+1)
n of problem P2 :

4: With p
(j+1)
n , f

(j+1)
n obtain the optimal ε(j+1)

n of problem P2 :
5: Set j = j + 1
6: until Objective value of P2 converges

In the second step, P2 can be simplified by using fn and pn calculated in the first
step as:

P4 : min
εn

γ1 log2(1/εn) + γ2

1 − εn

(4.68a)

s.t. T tol
n ≤ Tmax, (4.68b)

where γ1 = a
(
E

comp
n + T

comp
n

)
and γ2 = a

(
Ecom

n + T com
n

)
. The constraint (4.68b)

is equivalent to T com
n ≤ ϑ(εn), where ϑ(εn) = 1−εn

m
Tmax + cnsn log2 εn

fn
. We have

ϑ(εn)
′′ < 0, and therefore, ϑ(εn) is a concave function. Thus, constraint (4.68b)

can be equivalent transformed to εmin
n ≤ εn ≤ εmax

n , where ϑ(εmin
n ) = ϑ(εmax

n ) =
T com

n . Therefore, εn is the optimal solution to

P5 : min
εn

γ1 log2(1/εn) + γ2

1 − εn

s.t. εmin
n ≤ εn ≤ εmax

n .

(4.69)

Obviously, the objective function of P5 has a fractional in nature, which is
generally difficult to solve. According to [70, 136], solving P5 is equivalent to
finding the root of the nonlinear function H(ξ) defined as follows

H(ξ) = min
εmin
n ≤εn≤εmax

n

γ1 log2(1/εn) + γ2 − ξ(1 − εn) (4.70)

Function H(ξ) with fixed ξ is convex. Therefore, the optimal solution εn can be
obtained by setting the first-order derivative of H(ξ) to zero, which leads to the
optimal solution is ε∗

n = γ1
(ln 2ξ)

. Thus, similar to [70], problem P5 can be solved by
using the Dinkelbach method in [136] (shown as Algorithm 7).

Convergence Analysis

The algorithm that solves problems P2 is given in Algorithm 4, which iteratively
solves problems P3 and P4. Since the optimal solution of problem P3 and P4 is
obtained in each step, the objective value of problem P2 is non-increasing in each
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step. Moreover, the objective value of problem P2 is lower bounded by zero. Thus,
Algorithm 4 always converges to a local optimal solution.

Complexity Analysis

Because of the non-convexity of P2, it is challenging to obtain the global optimal
solution. To overcome the challenge, an iterative algorithm with low-complexity
is proposed in the following subsection. In particular, to solve the general energy-
efficient resource allocation problem P2 using Algorithm 3, the major complexity in
each step lies in solving problems P3 and P4. To solve problem P3, the complexity is
O(Le log2(1/ε1)), where ε1 is the accuracy of solving P3 with the bisection method
and Le is the number of iterations for optimizing fn and pn. To solve problem
P4, the complexity is O(log2(1/ε2)) with accuracy ε2 by using the Dinkelbach
method [136]. As a result, the total complexity of the proposed Algorithm 4 is HeS,
where He is the number of iterations for problems P3 and P4 and S is equal to
O(Le log2(1/ε1)) + O(log2(1/ε2)).

After deciding the bids, the mobile users submit bids to the BS. The following
section describes the auction mechanism between the BS and mobile users for
selecting winners, allocating bandwidth and deciding on payment.

4.3.2 Auction Mechanism Between BS and Mobile Users

After receiving all bids submitted by mobile users, the BS decides a set of winners
by solving the problem (P6), aiming to maximize social welfare. The BS’s aim is to
achieve social welfare because the BS needs to incentive mobile users to participate
in learning. Here, the BS’s freedom in designing the incentive mechanism is the
payment determination, which can force participant mobile users to be truthful.
Moreover, if the BS wants to select winners to maximize its utility, the BS needs to
know the distribution of mobile users’ private information in advance[129], which
is assumed to be unavailable in our work. In case the prior distribution of mobile
users’ private information is not available, worst-case analysis can be applied, but
that method could lead to overly pessimistic results [129].

Problem Formulation

In bid Δni that mobile user n submits to the BS includes the number of subchannels
bni , the number of antennas Ani , local accuracy εni , and claimed cost vni . The utility
of one bid is the difference between the payment gni and the real cost Vni .

Uni =
{

gni − Vni, if bid Δni wins,

0, otherwise.
(4.71)
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The payment that the BS pays for winning bids is
∑

n,i gni . As we described in
Sect. 4.3.1, high local accuracy will significantly improve the global accuracy for a
fixed number of global iterations. The utility of the BS is the difference between the
BS’s satisfaction level and the payment for mobile users. The satisfaction level of
the BS to bid Δni is measured based on the local accuracy that mobile user n can
provide in the ith bid and is defined as follows

χni = τ

εni

. (4.72)

Thus, the total utilities of the system or the social welfare is

∑

n,i

(χni − vni)xni . (4.73)

If mobile users truthfully submit their cost, Vni = vni , we have the social welfare
maximization problem defined as follows:

P6 : max
x

∑

n,i

(χni − vni)xni (4.74a)

s.t.
∑

n

xnibni ≤ Bmax, (4.74b)

∑

n

xniAni ≤ Amax, (4.74c)

∑

i

xni ≤ 1,∀n, (4.74d)

xni = {0, 1}, (4.74e)

where (4.74b) and (4.74c) indicate the bandwidth resource (i.e., sub-channels) and
the antennas limitation constraints of the BS, respectively. Then, (4.74d) shows that
a mobile user can win at most one bid and (4.74e) is the binary constraint that
presents whether bid Δni wins or not.

Problem P6 is a minimization knapsack problem, which is known to be NP-
hard. This implies that no algorithm is able to find out the optimal solution of P6
in polynomial time. It is also known that a mechanism with Vickrey-Clarke-Groves
(VCG) payment rule is truthful only when the resource allocation is optimal. Hence,
using VCG payment directly is unsuitable due to the problem P6 is computationally
intractable. To deal with the NP-hard problem, we proposed the primal-dual based
greedy algorithm. The following economic properties are desired.

Truthfulness An auction mechanism is truthful if and only if for every bidder n

can get the highest utility when it reports true value.



4.3 Auction Theory-Enabled Incentive Mechanism 115

Individual Rational If each mobile user reports its true information (i.e., cost and
local accuracy), the utility for each bid is nonnegative, i.e., Uni ≥ 0.

Computation Efficiency The problem can be solved in polynomial time.
Among these three properties, truthfulness is the most challenging one to

achieve. In order to design a truthful auction mechanism, we introduce the following
definitions.

Definition 1 (Monotonicity) If mobile user n wins with the bid Δni =
{vni, 1/εni, bni, Ani}, then mobile user n can win the bid with Δnj =
{vnj , 1/εnj , bnj , Anj } � Δni = {vni, 1/εni, bni, Ani}.

The notation � denotes the preference over bid pairs. Specifically, Δnj =
{vnj , 1/εnj , bnj , Anj } � Δni = {vni, 1/εni, bni, Ani} if εnj < εni for vnj =
vni, bnj = bni, Anj = Ani or vnj < vni, bnj < bni, Anj < Ani for εnj = εni . The
monotonicity implies that the chance to obtain a required bundle of resources can
only be enhanced by either increasing the local accuracy or decreasing the amount
of resources required or decreasing the cost.

Definition 2 (Critical Value) For a given monotone allocation scheme, there exists
a critical value cni of each bid Δni such that ∀n, i(χni −vni) ≥ cni will be a winning
bid, while ∀n, i(χni − vni) < cni is a losing bid.

In our proposed mechanism, the difference between the satisfaction based on local
accuracy and cost of one bid can be considered as the value of that bid. Therefore,
the critical value can be seen as the minimum value that one bidder has to bid to
obtain the requested bundle of resources. With the concepts of monotonicity and
critical value, we have the following lemma.

Lemma 4.1 An auction mechanism is truthful if the allocation scheme is monotone
and each winning mobile user is paid the amount that equals to the difference
between the satisfaction based on the local accuracy and the critical value.

Proof Similar Lemma 1 and Theorem 1 in [130].

In the next subsection, we propose a primal-dual greedy approximation algorithm
for solving problem P6. The algorithm iteratively updates both primal and dual
variables and the approximation analysis is based on duality property. As the result,
we firstly relax 1 ≥ xni ≥ 0 of P6 to have the linear programming relaxation (LPR)
of P6. Then, we introduce the dual variable vectors y, z and t corresponding to
constraints (4.74b), (4.74c) and (4.74d) and we have the dual of problem LPR of P6
can be written as

P7 : max
y,z,t

∑

n∈N
yn + zBmax + tAmax (4.75a)

s.t. yn + zAni + tBni ≥ qni,∀n, i, (4.75b)

yn ≥ 0,∀n, (4.75c)

z, t ≥ 0. (4.75d)
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In Sect. 4.3.2, we devise an greedy approximation algorithm and Sect. 4.3.2, a
theoretical bound is achieved for the approximation ratio of the proposed algorithm.

Approximation Algorithm Design

In this section, we use a greedy algorithm to solve problem P6 The main idea of the
greedy algorithm is to allocate the resource to bidders with the larger normalized
value. The winner selection process is described in the Algorithm 4. The process
consists 3 steps:

Step 1: Based on the bid’s value and the weighted sum of requested resources,
each bid Δni calculates the normalized value. The bid’s value is defined as the
difference between the satisfaction level of the BS and the cost declared in this
bid, qni = χni − vni . The weighted sum of different types of resources declared
in this bid is defined as si

n = ηbBn + ηaAn, where ηb, ηa are the weights. The
normalized value of the bid is defined as the ration between the value of this bid
and the weighted sum of requested resources, and is denoted as

q̄ni = qni

sni

.

Step 2: The bid with maximum q̄ni wins the bidding.
Step 3: Delete user n from the list of bidders. Then go back to Step 2 until either

one of the following termination conditions is satisfied:

(i) The BS has not enough resource to satisfy the demand;
(ii) All the mobile users win one bid.

Approximation Ratio Analysis

In this subsection, we analyze approximation ratio of Algorithm 10. Our approach
is to use the duality property to derive a bound for approximation algorithm. We
denote the optimal solution and the optimal value of LPR of P6 as x∗

ni and OPf .
Furthermore, let OP and ϕ as the optimal value of P6 and the primal value of P6
obtained by Algorithm 10. Our analysis consists of two steps. First, Theorem 4.1
shows that Algorithm 10 generates a feasible solution to P7, and Proposition 1
provides approximation factor.

Theorem 4.1 Algorithm 10 provides a feasible solution to P7.

Proof We discuss the following three cases:

• Case 1: mobile user μ wins, i.e., μ ∈ U and bμiμ = maxi′∈Iμ
{qμi′ }. Then we

have yμ = qμiμ ≥ qμi′ ,∀i′ ∈ Iμ. Thus, constraint (4.75b) is satisfied for all
mobile users in U .
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Algorithm 9 The Greedy approximation algorithm
1: Input: (B,A, χ, v, Bmax, Amax)

2: Output: solution x
3: U = ∅, x = 0
4: ∀n : yn = 0, ψ = 0;
5: ϕ = 0, B = 0, A = 0;
6: si

n = ηbBni + ηaAni ;
7: qkj = χni − vni ;
8: for n ∈ N do
9: in = argmaxi{qni};
10: end for
11: κ = max sni

sni′
;

12: while N �= ∅ do
13: μ = argmaxn∈N qni

snin
;

14: if B + bμiμ <= Bmax and A + aμiμ <= Amax then
15: xμiμ = 1; yμ = qμiμ ;
16: ϕ = ϕ + qμiμ ;
17: ψ =

∑
n∈U qnin∑
n∈U snin

;

18: U = U ∪ {μ} and N = N \ {μ}
19: else
20: break;
21: end if
22: end while
23: ψ̄ = κψ ;
24: z = ηbψ̄ , t = ηaψ̄

• Case 2: mobile user μ loses the auction, i.e., μ ∈ N \ U . According to the while
loop, it is evident that

qnin

snin

>
qμiμ

sμiμ

,∀n ∈ U .

Therefore, ψ >
qμiμ

sμiμ
. Thus,

ψ̄ ≥ κ
qμiμ

sμiμ

≥ qμiμ

sμiμ

.

In addition, we have

qμiμ ≥ qμi′ and κ >
sμiμ

sμi′
,∀i′ �= iμ.

Therefore,

ψ̄ ≥ qμi′

nμi′
,∀i′ �= iμ.
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Therefore, we have

ηbψ̄Bin + ηaψ̄Ain ≥ qin,∀i′ �= iμ.

or

zCin + tAin ≥ qin,∀i′ �= iμ.

Therefore, constraint (4.75b) is also satisfied for all mobile users in N \ U .
Proposition 1 The upper bound of integrality gap α between P6 and its relaxation
and the approximation ratio of Algorithm 10 are 1 + κΥ

Υ −S
, where Υ = ηbBmax +

ηaAmax, S = maxn,i sni .

Proof Let OP and OPf be the optimal solution for P6 and LPR of P6. We can
obtain the following:

OP ≤ OPf ≤
N∑

n=1

yn + zBmax + tAmax

≤
N∑

n=1

yn + ψ̄(ηbBmax + ηaAmax)

≤
∑

n∈N
qnin + ψ̄(ηbBmax + ηaAmax)

≤
(

∑

n∈N
qnin

) (

1 + (ηbBmax + ηaAmax)κ

ηbBmax + ηaAmax − S

)

≤ ϕ

(

1 + Υ κ

Υ − S

)

,

Therefore, the integrality α is given as

OPf /OP

≤ OPf /ϕ

≤
(

1 + κΥ

Υ − S

)

.

The approximation ratio is

OP/ϕ ≤ OPf /ϕ ≤
(

1 + κΥ

Υ − S

)

.



4.3 Auction Theory-Enabled Incentive Mechanism 119

Payment

Then we will find the critical value which is the minimum value a bidder has to
bid to win the requested bundle of resources. In this section, we consider the bid
combinations submitted by mobile user n as the combinations of bids submitted
by virtual bidders, in which each virtual bidder can submit one bid. Therefore, the
number of virtual bidders corresponding to mobile user n is equal to the number
of bids In that mobile user n submits. Denote by m the losing mobile user with
the highest normalized value if mobile user n is not participating in the auction.
Accordingly, the minimum value mobile user n needs to place is qmim

smim
snin , where

im and in are the indexes of highest normalized value bids of mobile user m and n,
respectively. Thus, the payment of winning mobile user n in the pricing scheme is
gnin = χnin − qmim

smim
snin .

Properties

Now, we show that the winner determination algorithm is monotone and the
payment determined for a winner mobile user is the difference between the local
accuracy-based satisfaction and the critical value of its bid. From line 13 of the
Algorithm 10, it is clear that a mobile user can increase its chance of winning by
increasing its bid. Also, a mobile user can increase its chance to win by decreasing
the weighted sum of the resources. Therefore, the winner determination algorithm
is monotone with respect to mobile user’s bids. Moreover, the value of a winning
bidder is equals to the minimum value it has to bid to win its bundle, i.e., its
critical value. This is done by finding the losing bidder m who would win if
bidder n would not participate in the auction. Thus, the proposed mechanism has
a monotone allocation algorithm and payment for the winning bidder equals the
difference between the local accuracy-based satisfaction and the critical value of its
bid. We conclude that the proposed mechanism is a truthful mechanism according
to Lemma 4.1.

Next, we prove that the proposed auction mechanism is individually rational. For
any mobile user n bidding its true value, we consider two possible cases:

• If mobile user n is a winner with its bid ith, its payment is

Uni = gni − vni

= (χni − qmim

smim

sni − vni

=
(

χni − vni

sni

− qmim

smim

)

sni

=
(

qni

sni

− qmim

smim

)

sni ≥ 0
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where m the losing bidder with the highest normalized valuation if n does not
participate in the auction and the last inequality follows from Algorithm 10.

• If mobile user n is not a winner. Its utility is 0.

Therefore, the proposed auction mechanism is individually rational.
Finally, we show that the proposed auction mechanism is computationally

efficient. We can see that in Algorithm 10, the while-loop (lines 12–22) takes at
mostN times, linear to input. Calculating the payment takes at mostN(N−1) times.
Therefore, the proposed auction mechanism is computationally efficient. Therefore,
the time complexity of Algorithm 10 is O(N2).

4.3.3 Simulations

In this section, we provide some simulation results to evaluate the proposed
mechanism. The parameters for the simulation are set the following. The required
CPU cycles for performing a data sample cn is uniformly distributed between
[10, 50] cycles/bit [70]. The size of data samples of each mobile user is sn =
80 × 106. The effective switched capacitance in local computation is ξ = 10−28

[70]. We assume that the noise power spectral density level N0 is −174dBm/Hz,
the sub-channel bandwidth is W = 15 kHz and the channel gain is uniformly
distributed between [−90,−95] dB [132]. In addition, the maximum and minimum
transmit power of each mobile user is uniformly distributed between [6, 10] mW
and between [0, 2] mW, respectively. The maximum and minimum computation
capacity is uniformly distributed between [3, 5] GHz and between [10, 20] Hz,
respectively. We also assume that the total number of sub-channels and antennas
of the BS are 100 and 100, respectively.

Firstly, we use the iterative Algorithm 8 to perform the characteristic of
evaluating bids when ρ = 1. The maximum number of sub-channels Bmax

n and
antennas Amax

n for mobile user n to request in each bid vary from 10 to 50.
Figure 4.20 shows the accuracy level that mobile user n requires to provide increases
when the maximum number of sub-channels Bmax

n and antennas Amax
n increase.

In particular, when the sub-channels and antennas are both 50, the local accuracy
0.92 while when the sub-channels and antennas are both 10, the local accuracy
0.81. This is because the transmission time and transmission cost decrease when
wireless resources increase. It requires less global round to satisfy the learning task
performance. Therefore, the local accuracy increases or . As shown in Fig. 4.21,
the energy cost decreases when the number of sub-channels and antennas increases.
This is because mobile user n can keep low contributing CPU cycle frequency and
transmission rate while guaranteeing the delay constraint.

Figures 4.22 and 4.23 present the cost of one bid of the mobile user and
local accuracy, respectively, when the weight ρ varies from 1 to 9. As shown in
Figs. 4.22 and 4.23, when ρ increases, the local accuracy decreases and the energy
cost increases. This is because when ρ increases, the objective focuses more on
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Fig. 4.20 Changes local
accuracy when the maximum
number sub-channels and
antennas in one bid vary

Fig. 4.21 Changes in energy
cost when the maximum
number sub-channels and
antennas in one bid vary

minimizing the time completion of one global round. It requires more computation
resources as well as better quality of data ( low local accuracy).

In the following, we evaluate the performance of the proposed auction algorithm.
To compare with the proposed algorithm, we use four baselines:

• Optimal Solution: P6 is solved optimally.
• Fixed Price Scheme [137]: In this scheme, price vector f = {fb, fa} is the price

mobile users need to pay for the resource. In this scheme, the mobile users are
served in a first-come, first-served basic until the resources are exhausted. The
mobile user can get the resource when the valuation of mobile user’s bid is at least
Fni = Bnifb +Anifa which is the sum of the fixed price of each resource in their
bid. We consider three kinds of price vector: linear price (fi = fo ×ηi, i = a, b),
sub-linear price vector (fi = fo ×η0.85i , i = a, b) [137], and a super-linear price
vector (fi = fo × η1.15i , i = a, b) [137]. Here, we call fo as the basic price.
Unless specified otherwise, we choose fo = 0.01.
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Fig. 4.22 Local accuracy v.s. ρ

Fig. 4.23 Energy cost v.s. ρ

• Reward-based greedy auction [138].
• Maximum utility of the BS.

Figure 4.24 reports the performance of the optimal solution, the lower bound,
and the proposed greedy scheme. The lower bound is determined by the fractional
optimal solution divided by gap when the number of mobile users varies from 20 to
100 with a step size of 20. We note that with the number of mobile users increasing,
all schemes produce higher social welfare. This is because there are more chances
to choose winning bids with a higher value. Although the social welfare obtained
through the proposed greedy scheme is lower than through optimal solution and
much higher than the lower bound.
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Fig. 4.24 Social welfare vs. users

Fig. 4.25 Social welfare vs. users

Figure 4.25 shows the social cost achieved by the proposed greedy scheme, the
maximum utility of the BS, reward-based greedy auction, and fixed linear scheme
when the number of mobile users varies 20–100 with the step size of 20. We can
see that the proposed greedy scheme can provide much higher social welfare than
the baseline. When the number of users is 100, the social welfare obtained by a
proposed greedy algorithm is approximately 16% higher than the one obtained by
the maximum utility of BS. The result is that our proposed algorithm focuses on
maximizing social welfare. In addition, when the number of users is 100, the social
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welfare obtained by the proposed greedy algorithm is approximately 4 times and 15
times higher than the one obtained by the reward-based Greedy Auction and fixed
linear price scheme, which ignores the wireless resource limitation when deciding
the winning bids.

Since the fixed price scheme heavily depends on the prices of resources, the next
experiment helps us to decide whether the fixed-price vector or the performance
of the proposed mechanisms is better when we change the basic price fo between
[0.01, 0.31] with the step is 0.03. Figures 4.26, 4.27, and 4.28 show that the social

Fig. 4.26 Social welfare for ηa = 1, ηb = 0.5

Fig. 4.27 Social welfare for ηa = 1, ηb = 1
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Fig. 4.28 Social welfare for ηa = 1, ηb = 2

Fig. 4.29 Normalized ratio for ηa = 1, ηb = 0.5

welfare of fixed price firstly increases and then decreases and equal to 0 when the
initial price increases. This is because when the basic price becomes too high, the
sum of the price is higher than the valuation of the resources claimed in a bid.
Moreover, the social welfare achieved by linear, sublinear, and superlinear price
schemes is lower than by the proposed greedy scheme. This proves our proposed
auction scheme outperforms the fixed price scheme.

In Figs. 4.29, 4.30, and 4.31, we observe the metrics: social welfare, resource
utilization and percentage of five schemes: greedy proposed scheme and fixed price



126 4 Incentive Mechanisms for Federated Learning

Fig. 4.30 Normalized ratio for ηa = 1, ηb = 1

Fig. 4.31 Normalized ratio for ηa = 1, ηb = 2

schemes with other baselines. We perform in terms of the ratio with the proposed
greedy scheme. Among these schemes, the optimal solution is the highest in terms
of all metrics. Compared with the proposed scheme, the fixed price can utilize more
resources and more mobile users but provides less social welfare. This is due to the
fact that the fixed price mechanism heavily depends on the prices of the resources.
In addition, the resource utilization of our proposed scheme is competitive to the
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one of the maximum utility of the BS scheme and the reward-based greedy auction
scheme. Furthermore, the proposed scheme provides more social welfare.

4.4 Summary

In this chapter, we have proposed two incentive mechanisms, such as Stackelberg
game-based incentive mechanism and the auction theory-based incentive mecha-
nism, for federated learning. In the first part, we have designed and analyzed a novel
crowdsourcing framework to enable federated learning. An incentive mechanism
has been established to enable the participation of several devices in federated
learning. In particular, we have adopted a two-stage Stackelberg game model
to jointly study the utility maximization of the participating clients and edge
computing server interacting via an application platform for building a high-quality
learning model. We have incorporated the challenge of maintaining communication
efficiency for exchanging the model parameters among participating clients during
aggregation. Further, we have derived the best response solution and proved the
existence of Stackelberg equilibrium. We have examined the characteristics of
participating clients for different parametric configurations. Additionally, we have
conducted numerical simulations and presented several case studies to evaluate
the framework’s efficacy. Through a probabilistic model, we have designed and
presented numerical results on an admission control strategy for the number of
client’s participation to attain the corresponding local consensus accuracy. In the
second part, we formulated the incentive problem between the BS and mobile users
in the federated learning service market as the auction game with the objective
of maximizing social welfare. Then, we presented the method for mobile users to
decide the bids submitted to the BS so that mobile users can minimize the energy
cost. We also proposed the iterative algorithm with low complexity. In addition, we
proposed a primal-dual greedy algorithm to tackle the NP-hard winner selection
problem. Finally, we showed that the proposed auction mechanism guarantees
truthfulness, individual rationality, and computation efficiency. Simulation results
demonstrated the effectiveness of the proposed mechanism where social welfare
obtained by our proposed mechanism is 400% larger than by the fixed price scheme.
The model in our work can be extended to multi BS when users are one a large
area. One BS can not cover the whole area. In that case, one BS performs edge
aggregations of local models which are transmitted from devices in proximity.
When each BS achieves a given learning accuracy, updated models at the edge are
transmitted to the cloud or macro base station for global aggregation. Intuitively, this
hierarchical model can help to reduce significant communication overhead between
device users and the cloud via edge model aggregations and reduce the latency. In
addition, through the coordination by the edge servers in proximity, more efficient
communication and computation resource allocation among device users can be
achieved. Moreover, we can consider the hierarchical auction mechanism consisting
of two hierarchical auction models. i.e. a single-seller multiple-buyer model where
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the lower stage is between BS and mobile users and the higher stage is between
the cloud and base stations. Another direction is the case which there are many base
stations from different organizers who are interested in using the data from the set of
users to train similar types of machine learning models. In that situation, there may
be a competition of base stations. This will make base stations’ decision-making
different from our work. Therefore, we can also consider it as future work.

Appendix

A.1 KKT Solution

The utility maximization problem in (4.21) is a convex optimization problem whose
optimal solution can be obtained by using Lagrangian duality. The Lagrangian
of (4.21) is

L(r, x(ε), λ) = β
(
1 − 10−(ax(ε)+b)

)
− r

∑

k∈K

(1 − θ∗
k (r))

+ λ
[
δ(1 − maxk θ∗

k (r) − x(ε)
]

(A.1)

where λ ≥ 0 is the Lagrangian multiplier for constraint (4.22).
By taking the first-order derivative of (A.1) with respect to x(ε) and λ, KKT
conditions are expressed as follows:

∂L
∂x(ε)

= aβe−(a(x(ε))+b) − λ ≤ 0, if x(ε) ≥ 0. (A.2)

∂L
∂λ

= [
δ(1 − maxk θ∗

k (r)) − x(ε)
] ≥ 0, if λ ≥ 0. (A.3)

By solving (A.2), the solution to the utility maximization problem (4.21) is

x∗(ε) = − ln(λ/aβ) − b

a
. (A.4)

From (A.3), the Lagrangian multiplier λ is as

λ∗ = aβe[aδ(1−maxk θ∗
k (r))+b]. (A.5)

Thus, from (A.4) and (A.5) the optimal solution to the utility maximization
problem (4.21) is

x∗(ε) = δ(1 − maxk θ∗
k (r)). (A.6)
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