
Wireless Networks

Choong Seon Hong · Latif U. Khan
Mingzhe Chen · Dawei Chen
Walid Saad · Zhu Han

Federated
Learning
for Wireless
Networks

Wireless Networks

Series Editor

Xuemin Sherman Shen, University of Waterloo, Waterloo, ON, Canada

The purpose of Springer’s Wireless Networks book series is to establish the state
of the art and set the course for future research and development in wireless
communication networks. The scope of this series includes not only all aspects
of wireless networks (including cellular networks, WiFi, sensor networks, and
vehicular networks), but related areas such as cloud computing and big data.
The series serves as a central source of references for wireless networks research
and development. It aims to publish thorough and cohesive overviews on specific
topics in wireless networks, as well as works that are larger in scope than survey
articles and that contain more detailed background information. The series also
provides coverage of advanced and timely topics worthy of monographs, contributed
volumes, textbooks and handbooks.

∗∗ Indexing: Wireless Networks is indexed in EBSCO databases and DPLB ∗∗

More information about this series at http://www.springer.com/series/14180

http://www.springer.com/series/14180

Choong Seon Hong • Latif U. Khan •
Mingzhe Chen • Dawei Chen • Walid Saad •
Zhu Han

Federated Learning
for Wireless Networks

Choong Seon Hong
Department of Computer Science &
Engineering
Kyung Hee University, Seoul, South Korea
Gyeonggi-do
Korea (Republic of)

Latif U. Khan
Department of Computer Science &
Engineering
Kyung Hee University, Seoul, South Korea
Gyeonggi-do
Korea (Republic of)

Mingzhe Chen
Department of Electrical Engineering
Princeton University, Princeton
United States
Princeton, NJ, USA

Dawei Chen
Department of Electrical & Computer
Engineering
University of Houston, TX, United States
Houston, TX, USA

Walid Saad
Bradely Department of Electrical &
Computer Engineering
Virginia Polytechnic Institute and State
University, Blacksburg, United States
Blacksburg, VA, USA

Zhu Han
Department of Electrical & Computer
Engineering
University of Houston, TX, United States
Houston, TX, USA

ISSN 2366-1186 ISSN 2366-1445 (electronic)
Wireless Networks
ISBN 978-981-16-4962-2 ISBN 978-981-16-4963-9 (eBook)
https://doi.org/10.1007/978-981-16-4963-9

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore
Pte Ltd. 2021
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

https://doi.org/10.1007/978-981-16-4963-9

Preface

A remarkable interest in machine learning-based schemes as key enablers for next-
generation intelligent wireless systems has been observed. Most of the existing
learning-based solutions rely on centralized training and inference processes.
However, these machine learning paradigms based on centralized training result in
end users’ privacy leakage and are infeasible due to large bandwidth requirements
for the transfer of the enormous amount of data. Furthermore, these schemes may
violate the strict latency constraints of wireless systems. To address these issues,
training in a distributed machine learning scheme at the network edge can be one
of the promising solutions. Distributed machine learning avoids uploading the end-
devices data to a central server for training; this not only helps preserve privacy
but also reduces network traffic congestion. Federated learning (FL) is one of the
most important distributed learning algorithms. In particular, FL enables devices
to train a shared machine learning model while keeping data locally. However, in
FL, training machine learning models requires communication between wireless
devices and edge servers over wireless links. Therefore, impairments of the wireless
channel, such as interference, uncertainties among wireless channel states, and noise
will significantly affect the FL performance. For instance, the convergence time
of FL is significantly affected by the channel transmission delay. In consequence,
wireless network performance optimization is necessary for wireless FL. On the
other hand, FL can also be used for solving wireless communication problems
and optimizing network performance. The goal of this book is to provide a
comprehensive study of federated learning for wireless networks. The book consists
of three main parts: (a) Fundamentals and Background of Federated Learning for
Wireless Networks, (b) Design and Analysis of Federated Learning Over Wireless
Networks, and (c) Federated Learning Applications in Wireless Networks. The
first part deals with a brief discussion on the fundamentals of federated learning
for wireless networks. In the second part, we comprehensively discuss the design
and analysis of wireless federated learning. Specifically, resource optimization,

v

vi Preface

incentive mechanism, security, and privacy are considered. Moreover, we present
several solutions based on optimization theory, graph theory, and game theory to
optimize the performance of federated learning over wireless networks. In the final
part, we present several applications of federated learning in wireless networks.

Seoul, South Korea Choong Seon Hong
Seoul, South Korea Latif U. Khan
Princeton, NJ, USA Mingzhe Chen
Houston, TX, USA Dawei Chen
Blacksburg, VA, USA Walid Saad
Houston, TX, USA Zhu Han
May 2021

Acknowledgement

This work was supported by the National Research Foundation of Korea(NRF) grant
funded by the Korean government(MSIT) (No. No. 2020R1A4A1018607) and by
the Institute of Information & Communications Technology Planning & Evaluation
(IITP) grant funded by the Korea government(MSIT) (No.2019-0-01287, Evolvable
Deep Learning Model Generation Platform for Edge Computing). Dr. CS Hong
(email:cshong@khu.ac.kr) is the corresponding author.

vii

Contents

Part I Fundamentals and Background

1 Introduction . 3
1.1 Machine Learning for Wireless Networks . 3

1.1.1 Current Challenges . 5
1.1.2 Distributed Machine Learning . 5
1.1.3 Federated Learning Briefing . 6

1.2 Organization of the Book . 8

2 Fundamentals of Federated Learning . 11
2.1 Introduction and History . 11
2.2 Federated Learning Key Challenges . 15

2.2.1 Statistical Heterogeneity. 15
2.2.2 System Heterogeneity . 16

2.3 Key Design Aspects . 16
2.3.1 Resource Allocation . 18
2.3.2 Incentive Mechanism . 18
2.3.3 Security and Privacy . 19

2.4 Federated Learning Algorithms . 20
2.4.1 FedAvg . 20
2.4.2 FedProx . 21
2.4.3 q-Federated Learning . 22
2.4.4 Federated Multi-Task Learning . 22

2.5 Summary . 23

Part II Wireless Federated Learning: Design and Analysis

3 Resource Optimization for Wireless Federated Learning 27
3.1 Introduction . 27
3.2 Wireless Federated Learning: Convergence Analysis

and Resource Allocation . 28
3.2.1 System Model . 29

ix

x Contents

3.2.2 Problem Formulation . 33
3.2.3 Decomposition-Based Solution . 34
3.2.4 Numerical Results . 42

3.3 Wireless Federated Learning: Resource Allocation
and Transmit Power Allocation . 45
3.3.1 Motivation. 45
3.3.2 System Model . 47
3.3.3 Convergence Analysis . 53
3.3.4 Optimization of RB Allocation and Transmit Power

for FL Training Loss Minimization . 55
3.3.5 Numerical Results . 58

3.4 Collaborative Federated Learning . 60
3.4.1 Motivation. 60
3.4.2 Preliminaries and Overview . 61
3.4.3 Communication Techniques for Collaborative

Federated Learning . 65
3.5 Summary . 69

4 Incentive Mechanisms for Federated Learning . 71
4.1 Introduction . 71
4.2 Game Theory-Enabled Incentive Mechanism . 73

4.2.1 System Model . 76
4.2.2 Stackelberg Game-Based Solution . 82
4.2.3 Simulations. 94

4.3 Auction Theory-Enabled Incentive Mechanism . 101
4.3.1 System Model . 103
4.3.2 Auction Mechanism Between BS and Mobile Users 113
4.3.3 Simulations. 120

4.4 Summary . 127

5 Security and Privacy . 129
5.1 Introduction . 129
5.2 Functional Encryption Enabled Federated Learning 130

5.2.1 Federated Learning . 130
5.2.2 All or Nothing Transform (AONT) . 131
5.2.3 Multi-Input Functional Encryption for Inner Product. 132
5.2.4 Threat Model . 134

5.3 Secure Aggregation for Wireless Federated Learning. 134
5.3.1 Participant Pre-processing Mode Updates . 135
5.3.2 Secure Aggregation at Aggregator . 136

5.4 Security Analysis. 138
5.4.1 Security for Encryption . 138
5.4.2 Privacy for Participant . 139

Contents xi

5.5 Implementation and Evaluation . 139
5.5.1 Implementation . 139
5.5.2 Evaluation . 140

5.6 Summary . 141

6 Unsupervised Federated Learning . 143
6.1 Introduction . 143
6.2 Problem Formulation . 144
6.3 Dual Averaging Algorithm . 146

6.3.1 Algorithm Description . 146
6.3.2 Data Labeling Step . 147
6.3.3 DA-Based Centroid Computation Step . 147
6.3.4 Weight Computation via Bin Method. 148
6.3.5 Weight Computation via Self-Organizing Maps 149

6.4 Simulations . 150
6.5 Summary . 152

Part III Federated Learning Applications in Wireless Networks

7 Wireless Virtual Reality . 155
7.1 Motivation . 155
7.2 Existing Works . 156
7.3 Representative Work . 157

7.3.1 System Model . 157
7.3.2 Federated Echo State Learning for Predictions

of the Users’ Location and Orientation . 163
7.3.3 Memory Capacity Analysis . 168
7.3.4 User Association for VR Users . 172
7.3.5 Simulation Results and Analysis . 173

7.4 Summary . 176

8 Vehicular Networks and Autonomous Driving Cars . 179
8.1 Introduction and State of Art . 179
8.2 Vehicular Networks . 181

8.2.1 Selective Model Aggregation . 183
8.2.2 System Model . 184
8.2.3 Contract Formulation . 190
8.2.4 Problem Relaxation and Transformation . 191
8.2.5 Solution to Optimal Contracts . 198
8.2.6 Numerical Results . 199

8.3 Autonomous Driving Cars . 205
8.3.1 System Model and Problem Formulation. 207
8.3.2 Joint Association and Resource Allocation

Algorithm for DFL . 211
8.3.3 Numerical Results . 216

8.4 Summary . 219

xii Contents

9 Smart Industries and Intelligent Reflecting Surfaces . 221
9.1 Smart Industry. 221

9.1.1 System Model and Problem Formulation. 222
9.1.2 Block Successive Upper-Bound

Minimization-Based Solution . 227
9.1.3 Simulations. 228

9.2 Intelligent Reflecting Surfaces . 229
9.2.1 Introduction . 229
9.2.2 Problem Formulation . 231
9.2.3 FL Assisted Optimal Beam Reflection . 233
9.2.4 Simulation . 236

9.3 Summary . 238

References . 241

Part I
Fundamentals and Background

Chapter 1
Introduction

Abstract In this introductory chapter, we provide an overview of machine learning
towards enabling wireless systems. The current challenges in realizing machine
learning-enabled wireless systems are also presented. Additionally, we present
distributed machine learning schemes. Finally, an overview of federated learning
and the organization of the book is presented.

1.1 Machine Learning for Wireless Networks

An unprecedented proliferation of the Internet of Things (IoT) devices is witnessed
in almost every aspect of life. These IoT devices are generating a significant amount
of data that can be used by machine learning models to make the applications
smarter. According to statistics, the worldwide IP traffic will reach 3.3 zettabytes
by end of 2021 [1, 2]. Moreover, the smartphone traffic will exceed the PC
traffic by the same year. The current wireless networks will face higher capacity
demands to handle an enormous amount of traffic. Meanwhile, smart applications
(e.g., extended reality, haptics) will require extremely low latency. To meet the
demands of growing capacity along with low latency for various applications,
there is a need to design a new wireless system. Fifth-generation (5G) wireless
networks were proposed to meet the growing demands of end-users. However,
there are some Internet of Everything (IoE) applications that seem difficult to be
fulfilled by 5G [3–5]. These IoE applications include flying vehicles, haptics, brain-
computer interaction, and extended reality among others. The IoE applications have
diverse requirements in terms of latency, reliability, and user-defined metrics [6].
Therefore, to efficiently enable these applications, there is a need to propose new
wireless systems, namely, the sixth-generation (6G) wireless systems. To efficiently
enable these applications, 6G will rely on complex mathematical models that
are difficult to model using conventional mathematical tools. Additionally, there
might be a lack of mathematical models for some of the components for wireless
systems [7]. On the other hand, to optimally solve various problems (e.g., wireless
resource optimization, computing resource optimization, and caching decision) by
using conventional mathematical optimization, we will face many challenges and

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
C. S. Hong et al., Federated Learning for Wireless Networks, Wireless Networks,
https://doi.org/10.1007/978-981-16-4963-9_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-4963-9_1&domain=pdf
https://doi.org/10.1007/978-981-16-4963-9_1

4 1 Introduction

Artificial
Intelligence

Machine
 Learning (ML)

Spiking
Neural

Networks

Deep
Learning

Neural
Networks

Brain
Inspired

Centralized ML Distributed ML

Fig. 1.1 Artificial intelligence classification

it is difficult to accurately solve these problems. To address the aforementioned
challenges, one can use machine learning.

Machine learning has been applied to many applications in wireless systems.
These applications include self-powered and sustainable multi-access edge comput-
ing [8], intelligent resource slicing for coexistence of enhanced Mobile Broadband
and Ultra Reliable Low Latency Communications [9], intelligent caching for
autonomous driving cars [10], vehicle-RSU association [11], resource management
for network virtualization[12], and edge computing resource management [13],
among others. An overview of artificial intelligence classification is given in
Fig. 1.1. Furthermore, overview of machine learning in enabling 6G systems are
shown in Fig. 1.2. Machine learning algorithms can be deployed at different layers
of the network: physical layer, MAC layer, network layer, and application and
transport layer. Examples of physical layer algorithms and other higher layer
algorithms are link adaptation and mobility management, respectively. Mostly,
machine learning-based algorithms are currently deployed statically. Moreover,
these algorithms are allowed to update themselves as per the network dynamics
for improved performance. From the aforementioned discussions, we can say that
machine learning can be considered an integral part of the next-generation wireless
systems.

1.1 Machine Learning for Wireless Networks 5

Physical layer

MAC layer

Network
layer

Application
and

transport layer

Replace
mathematical
models with

ML

RL-enabled
autonomous

decision
making

ML-enabled
QoS

Optimization

Enable the
intelligent Internet

of Intelligent
Things

Online learning

Predictive resource
allocation

Federated echo
state learning

Centralized DNN
handover

optimization

Multi-hop cellular
networks

Personalized
ML models

Opportunistic
networking

Client-centric networking

Training
data

 Data synthetization with
generative adversarial
network

 Standardized data formats
 Data synthetization with

simulation
 Open datasets

Extended
reality

Autonomous
connected cars Robots

Novel IoE
services

ML
-e

na
ble

d c
ro

ss
 la

ye
r o

pti
mi

za
tio

n ML-as-a-service

decision making
End-to-

Auto Encoder
End

Fig. 1.2 Role of machine learning in 6G [7]

1.1.1 Current Challenges

Most of the previous works on machine learning-based wireless networks used
centralized machine learning [10, 12]. The centralized machine learning is based
on the migration of end-devices data to a centralized server for training. There are
two main issues associated with the centralized machine learning: long training time
for large datasets and privacy leakage.

• C-1: Training a centralized machine learning model for very large datasets (e.g.,
astronomical data [14]) have long training time. Additionally, it might be difficult
to provide large computing power required for training of models for large
datasets within a certain amount of time.

• C-2: The other issue that is faced by centralized machine learning-enabled
wireless systems is privacy leakage due migrating the devices data to the
centralized server for training [15, 16]. End-devices privacy will be leaked in
case of a malicious centralized server or security attack.

1.1.2 Distributed Machine Learning

To solve the aforementioned challenge (C-1), one can use distributed machine
learning. Distributed machine learning performs learning at various geographically
distributed servers. There are two main approaches of distributed machine learning:

6 1 Introduction

data-parallel approach and model-parallel approach [15, 17]. In the data-parallel
approach, the whole data is divided among multiple servers where parallel training
takes place for the same machine learning model. In the model-parallel approach,
various parameters of a typical machine learning model are trained at distributed
servers using exactly the same data. The model-parallel approach can not be used
for most of the scenarios where machine learning model parameters can not be split
up. Therefore, most of the applications will use a data-parallel approach. Moreover,
the data-parallel approach seems more practical because of the different data at
distributed locations. Although the data-parallel approach seems more practical for
large datasets, it does not primarily address the privacy leakage issue (C-2). To
address this limitation, federated learning was introduced in [18] that is based on
enabling on-device machine learning without transferring the end-devices data to
the centralized server for training. Next, we provided a brief overview of federated
learning.

1.1.3 Federated Learning Briefing

In federated learning (overview is given in Fig. 1.3), a set of end-devices perform
training of local learning models. These local learning models are sent to the
centralized aggregation server where aggregation takes place. Then, the aggregation
server sends back the global model to end-devices. This process continues in an
iterative manner for a number of global federated learning rounds until convergence.
It must be noted that federated learning involves iterative interaction between

Edge Node
Smart

Phone

IoT

Sensor

Local

Data set

Global Computation

Latency

Local

Data set

Local Computation

Latency

Local Computation

Energy

Global Computation

Energy

Local Models

Aggregation

1 1

1

2

3

4

Local Learning

Model Schemes

Long Short-term Memory

Convolutional Neural Network

Support Vector Machines

 Naïve Bayes

FedAvg

FedProx

q-FedAvg

FML

Federated

Optimization Algorithms

Local

Data set

22

4 4

∑

Local Model

 Computation Local Model

 Aggregation

∑

Fig. 1.3 Overview of federated learning

1.1 Machine Learning for Wireless Networks 7

end-devices and the aggregation server. Therefore, to enable efficient interaction,
we must employ effective federated optimization scheme. Federated averaging
(FedAvg) is based on computing local learning model updates using some machine
learning scheme[18]. The choice of the local learning model strictly depends
on the target application. We can use convolutional neural network, long-short
term memory, support vector machines, and Naive Bayes, among others [19].
Furthermore, to update the local learning model weights, FedAvg uses stochastic
gradient descent (SGD). In SGD, the weights are updated at end-devices using
partial derivative of loss function w.r.t weights and then multiplied by the learning
rate. The learning rate represents the step size of gradient descent. The SGD is given
by Khan et al. [15].

ω = ω − η
∂F

∂ω
(1.1)

∂F

∂ω
≈ 1

m

∑

i∈B

∂fi

∂ω
, (1.2)

where m denotes the number of elements in a batch. The computed local learning
model weights are averaged by the aggregation server. Finally, the aggregated
weights (i.e., global model) is sent back to the end-devices. Although federated
learning offer advantages, it faces few challenges. These challenges are privacy
issues, computing and communication resource optimization, incentive mechanism,
statistical, and system heterogeneity. A malicious aggregation server or end-device
can infer other end-devices sensitive information using their learning model updates
[16, 20]. Therefore, we must use effective mechanism to truly ensure end-devices
privacy preservation. To address privacy leakage issue, one can use differential
privacy that adds noise to the end-devices learning model updates before sending
it to global aggregation server [21–25]. Other than privacy preservation, there
must be some incentive mechanism for attracting the end-devices to participate
in federated learning process. Such an incentive mechanism can be either based
on game theory, contract theory, or auction theory [26–28]. Furthermore, federated
learning involves iterative exchange of learning model updates between the end-
devices and aggregation server over a wireless channel. Therefore, one must use
efficient wireless resource allocation for federated learning over wireless networks
[29–31]. From the aforementioned discussion, we conclude that it is necessary to
answer the following questions for federated learning over wireless networks.

• How does one propose federated optimization (learning) scheme that can
efficiently handle statistical and system heterogeneity?

• How do we propose an attractive incentive mechanism that will motivate the
end-devices to participate in federated learning?

• How does one enable efficient resource (i.e., computing and communication
resource) optimization to minimize the global convergence time of the global
federated learning model?

8 1 Introduction

• How do we enable federated learning with enhanced privacy in the presence of
a malicious aggregation server?

• How do we enable robust federated learning in case of aggregation server
malfunctioning due to physical damage or security attack?

To answer the above questions, we present several proposals in our book.
Detailed discussion about the proposals with their chapter details is given in
Sect. 1.2.

1.2 Organization of the Book

The goal of this book is to provide a comprehensive study of federated learning
for wireless networks. The book consists of three main parts: (a) Fundamentals
and background of federated learning for wireless networks, (b) design and
analysis of federated learning over wireless networks, and (c) federated learning
applications in wireless networks. The first part deals with a brief discussion on
the fundamentals of federated learning for wireless networks. In the second part,
we comprehensively discuss the design and analysis of wireless federated learning.
Specifically, resource optimization, incentive mechanism, security, and privacy are
considered. Furthermore, we present several solutions based on optimization theory,
graph theory, and game theory to optimize the performance of federated learning
over wireless networks. In the final part, we present several applications of federated
learning in wireless networks. The book chapters are organized as follows:

• Chapter 1. Introduction: In this introductory chapter, we discuss the role of
machine learning towards enabling of wireless systems. The key challenges
pertaining to implementation of centralized machine learning in wireless systems
are also provided. To address the limitations of centralized machine learning,
discussions on how to use a distributed machine learning over wireless networks
are provided. However, current distributed machine learning schemes do not well
tackle the issue of end-devices privacy. Therefore, we present an overview of the
fundamental aspects of privacy-preserving federated learning.

• Chapter 2. Fundamentals of Federated Learning: This chapter introduces
background of machine learning and the key challenges of federated learning.
These key challenges are statistical heterogeneity and system heterogeneity.
Next, we discuss the key design aspects, such as resource allocation, incentive
mechanism, security, and privacy, for federated learning over wireless networks.
Finally, we discuss various federated learning algorithms, such as FedAvg,
FedProx, q-federated learning, and federated multi-task learning.

• Chapter 3. Resource Optimization for Wireless Federated Learning: In this
chapter, we present a joint learning and communication framework for federated
learning over wireless networks. The formulated optimization problems consider
effect of various parameters, such as packet error rate, and transmission latency,
on federated learning performance. Specifically, we present wireless resource

1.2 Organization of the Book 9

allocation and transmit power allocation algorithms for federated learning to opti-
mize its performance. Finally, a novel concept of dispersed federated learning is
presented. Dispersed federated learning is based on enabling the participation
of end-devices with insufficient communication resources in federated learning.
Enabling the participation of more end-devices in federated learning will improve
the performance of federated learning.

• Chapter 4. Incentive Mechanisms for Federated Learning: The purpose
of this chapter is to introduce the incentive mechanism design for federated
learning. An attractive incentive mechanism is necessary for federated learning to
motivate the end-devices participation in federated learning. We present incentive
mechanisms based on Stackelberg game and auction theory.

• Chapter 5. Security and Privacy: This chapter discusses an efficient secure
aggregation method for model updates in federated learning by pre-processing
the model updates from each participant and only encrypting portion of the
processed updates by functional encryption for inner product to protect the whole
parameters, thus achieving efficient aggregation of model update vectors.

• Chapter 6. Unsupervised Federated Learning: This chapter considers unsu-
pervised learning tasks being implemented within the federated learning frame-
work to satisfy stringent requirements for low-latency and privacy of the
emerging applications. Two DA based unsupervised federated learning schemes
are discussed to tackle the problem of non-IID data.

• Chapter 7. Wireless Virtual Reality: This chapter introduces the use of
federated learning for enabling wireless virtual reality applications. Furthermore,
a representative work is presented that focuses on the use of federated learning
for the analysis and predictions of orientation and mobility of virtual reality users
so as to reduce break in presences of virtual reality users.

• Chapter 8. Vehicular Networks and Autonomous Driving Cars: The goal
of this chapter is to provide an overview of vehicular networks. Application
of federated learning for autonomous driving cars is presented. A dispersed
federated learning framework for autonomous cars is proposed. Additionally, an
optimization problem is formulated to minimize the dispersed federated learning
cost that accounts for transmission latency and packet error rate. To solve the
formulated problem, iterative approach is proposed.

• Chapter 9. Smart Industry and Intelligent Reflecting Surfaces: This chapter
presents various IoT applications of federated learning, such as smart industry
and intelligent reflecting surfaces. Representative works for both applications
with rigorous problem formulation and solutions are also presented.

Chapter 2
Fundamentals of Federated Learning

Abstract In this chapter, we provide an overview of the fundamentals of FL.
First, we discuss a brief history of machine learning. Second, we present the key
design challenges for FL over wireless networks. Next, we critically discuss the key
design aspects, such as resource allocation, incentive mechanism design, security,
and privacy of FL over wireless networks. Finally, we critically discuss existing FL
algorithms.

2.1 Introduction and History

The history of machine learning begins in 1943 when the mathematical model of a
neural network was first presented by Walter Pitts and Warren McCulloch [32, 33].
Alan Turing proposed a Turing test for testing the intelligence ability of a machine
in 1950 [34, 35]. The Turing test is based on an interaction of a machine with
humans. A machine will be considered intelligent if it is difficult to distinguish it
from humans. Later, the Dartmouth Workshop was organized by John McCarthy,
Marvin Minsky, Nathaniel Rochester, and Claude Shannon in 1956 and severed
as one of the founding event of artificial intelligence [36]. Lvakhnenko and Lapa
in 1965 perhaps presented the first deep neural network [37]. Followed by this,
Thomas Cover and Peter E. Hart in 1967 proposed a nearest neighbor pattern
algorithm [38]. Fukushima in 1980 proposed a neural network model for a visual
pattern recognition [39]. Terrence Sejnowski and Charles Rosenberg proposed an
architecture, dubbed as NETtalk to construct simplified models for learning human
level cognitive tasks in 1986 [40]. Following NETtalk, NETspeak was proposed
in 1987 as a reimplementation of NETtalk with further suggestions for performance
improvement [41]. In 1986, a generative stochastic artificial neural network, namely,
restricted Boltzmann machine (RBM) was presented by Paul Smolensky to learn
probability distribution over the set of inputs [32]. Next, many works proposed
machine learning algorithms for various applications [32, 42, 43]. Deep learning
gained significant interest from the research community since 2006 [44]. Geoffrey
E. Hinton in 2009 presented deep belief networks which are probabilistic generative
models comprising of multiple layers of stochastic, latent variables [45]. On the

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
C. S. Hong et al., Federated Learning for Wireless Networks, Wireless Networks,
https://doi.org/10.1007/978-981-16-4963-9_2

11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-4963-9_2&domain=pdf
https://doi.org/10.1007/978-981-16-4963-9_2

12 2 Fundamentals of Federated Learning

other hand, recently various projects have been started to propose various popular
neural networks. These projects/networks are GoogleBrain (2012), AlexNet (2012),
DeepFace(2014), DeepMind (2014), OpenAI (2015), Amazon Machine Learning
Platform (2015), ResNet (2015), and U-net (2015) [46].

To train a machine learning model for very large datasets (e.g., astronomical
data), we will face the challenges of high computational power consumption and
long training time [15]. Additionally, there are many scenarios, where migration of
data to a centralized server for training a machine learning model seems difficult
[14, 17, 47]. To address these challenges, one can use a distributed machine
learning [48–50]. Distributed machine learning trains several models at various
geographically distributed servers and combine them to yield a global machine
learning model. Distributed learning schemes can be divided into two main types,
such as data parallel approach and model parallel approach. The data parallel
approach is based on division of data among multiple servers, each server running
the same machine learning model. The model parallel approach is based on using
the same data for all servers but with a different parameters of a machine learning
model. The model parallel approach might not be suitable for various applications
because of non-splitting nature of machine learning model. Although distributed
machine learning algorithms enable fast learning with less training time by running
multiple models on parallel servers, it does not effectively considered the end-
devices privacy issues. Migrating the end-devices data to distributed servers will
result in end-devices privacy leakage. To address this issue, federated learning
was introduced in [18]. Federated learning enables on-device machine learning
without moving the end-devices data to a centralized server for training. Although
federated learning does not migrate end-devices data to the centralized server, it
still has privacy issues [15]. A malicious end-device or aggregation server can
infer some of the end-devices private information, and thus federated learning
suffers from end-devices privacy leakage. To more effectively ensure privacy in
federated learning, one can use various schemes, such as differential privacy and
homomorphic encryption. More details about privacy preservation in federated
learning are given in Chap. 5. Next, we discuss the federated learning process.
Federated learning starts with computing local learning models by the end-devices
using their local datasets. After computing the local learning models, all the end-
devices send their local models to the aggregation server where aggregation takes
place. After global aggregation, the global model is sent back to the end-devices for
updating their local models. It must be noted that there exists significant variations
in the end-devices system parameters (e.g., CPU-cycles/sec) and local datasets.
For an end-device with a certain local dataset and fixed local model iterations, the
local model computation time depends on the device’s computational capacity (i.e.,
CPU-cycles/sec). Therefore, different devices will be having different local model
computation times for fixed local iterations due to their difference in their local
dataset sizes. Additionally, the transmission delay of sending the model parameters
will also be different due to wireless channel uncertainties. How much time does an
aggregation server wait for receiving local learning model parameters from all the
devices? To answer this question, there can be two ways to perform aggregation.

2.1 Introduction and History 13

The first one can be a fixed waiting time before a global aggregation takes place.
The end-devices with delay greater than the deadline will not be able to participate
in the learning process. On the other hand, the aggregation server can use the local
models received before the deadline for aggregation while the other local models
(i.e., received after the deadline) should be used in the next global aggregation
round. Detailed discussions on how to perform federated learning for such scenarios
is given below.

Synchronous Federated Learning
In synchronous federated learning, the global model aggregator waits for a fixed
amount of time prior to performing aggregation of the end-devices local model
updates. All the end-devices involved in synchronous federated learning compute
their local models using their local datasets for a fixed time. Next, all the devices
send their local model updates to the aggregation server. The aggregation server
performs aggregation to yield the global model and send it back all the end-
devices. The sequence diagram of the synchronous federated learning is shown in
Fig. 2.1. Advantages of the synchronous federated learning are easier management
and participation of more devices in learning that will result in improve learning
performance [15, 16]. However, this will be at the cost of using significant amount
of end-devices computational and communication resources. Enabling all the end-

Edge serverClients

Model initialization

1. Initialization

2. Local model
computation

4. Global model
computation

5. Global model
download

3. Local model
transmission

6. Local model
update

N. Global model
download

C-1C-2C-3

(For C-1, C-2, and C-3)

Fig. 2.1 Sequence diagram of synchronous federated learning

14 2 Fundamentals of Federated Learning

devices to finish computation of their local learning models within the deadline,
we will face many challenges. There are significant variations in the local dataset
sizes. Therefore, end-devices with large local datasets must use more computational
resource to compute their local learning models within fixed computation deadline
for a particular number of local iterations. Additionally, more communication
resources will be required for the end-devices having signal-to-interference-plus-
noise-ratio (SINR) values to minimize their transmission delay. The devices whose
summation of local model computation delay and transmission latency more than
waiting time of the aggregation will not be allowed to participate in the federated
learning process. Therefore, how to efficiently use the available communication and
end-devices computation resources to enable participation of more end-devices is
challenging task in synchronous federated learning.

Asynchronous Federated Learning
In asynchronous federated learning (sequence diagram is shown in Fig. 2.2), there
is no fixed deadline for receiving the local learning model updates from end-
devices. All the end-devices computes their local learning model updates using local
datasets and send the local learning model updates to the aggregation server. The
aggregation server performs aggregation of the local learning models from devices.
It must be noted here that asynchronous federated learning differs from synchronous

Edge serverClients

Model initialization

1. Initialization

2. Local model
computation

4. Global model
computation

5. Global model
download

3. Local model
transmission

6. Local model
update

7. Local model
transmission

8. Global model
computation

(For C-1, C-2, and C-3)

C-1C-2C-3

(For C-1 and C-2)

Fig. 2.2 Sequence diagram of asynchronous federated learning

2.2 Federated Learning Key Challenges 15

federated learning in deadline for receiving the local learning model updates from
end-devices. For practical scenarios, the devices (e.g., smart phone) might be
offline some of the time while computing local learning model updates. Generally,
increasing the number of local iterations result in performance improvement [18].
Therefore, the devices that remain offline should continue computing their local
learning models until they get online. Although devices that remain offline are
allowed to participate in federated learning, it will be at the cost of complexity
in management of the federated learning process. Furthermore, participation of
fewer devices in a global federated learning model computation might result in
slow convergence due to the significant data heterogeneity among the end-devices.
For instance, consider CIFAR-100 dataset that have 100 classes. If we divide the
CIFAR-100 dataset among nodes in such a way that every device should get only 1
class of images. In this scenario, participation of 60 devices out of 100 devices will
prolong the convergence time of the global federated learning model. Therefore, it
is necessary to make sure the participation of more devices in federated learning
process.

2.2 Federated Learning Key Challenges

To implement federated learning over wireless networks, there must be successful
interaction between end-devices and aggregation server. At the aggregation server,
aggregation (e.g., averaging in case of FedAvg) of local learning model updates
takes place. However, aggregation of local learning model updates results in weight
divergences. These weight divergences result mainly due to system and statistical
heterogeneity. Therefore, one must carefully address the key challenges of statistical
and system heterogeneity.

2.2.1 Statistical Heterogeneity

Statistical heterogeneity in federated learning refers to the variations in distributions
of the local datasets among the participants of the federated learning. For instance,
consider 5 end-devices randomly having the samples of only two classes of the
MNIST dataset that has images of 10 different classes. In such a scenario, mostly
the devices will be having data from different classes, and thus their data distribution
will be different (i.e., statistical heterogeneity). Statistical heterogeneity signifi-
cantly affect the performance of federated learning. End-devices with statistical
heterogeneity will yield different local learning models whose aggregation at
the global server might cause weight divergences between the end-devices and
aggregation server. FedAvg [18] is based on computing local learning models and
simply averaging them to yield the global model without paying significant attention
to the data heterogeneity issue. To tackle this issue, FedProx was developed that is

16 2 Fundamentals of Federated Learning

based on addition of a weighted proximal term to the local learning model. However,
the weight selection for the proximal term in FedProx is challenging. Therefore,
there is a need propose efficient federated learning schemes to truly tackle statistical
heterogeneity.

2.2.2 System Heterogeneity

System heterogeneity refers to variations in system parameters (e.g., end-devices
operating frequencies (CPU-cycles/Sec) and backup energy). These system param-
eters significantly affect the performance of federated learning. For a synchronous
federated learning, all the devices need to compute their local learning model before
the computation deadline is reached. However, different end-devices has different
local dataset sizes. The devices with less computational resource might not be able
to compute their local learning models within the deadline if the number of local
iterations are high. Therefore, for devices that have less computational resource,
there is a need to run the local model for few iterations. Running a local model
for few local iterations will result in generally less global federated learning model
accuracy [15, 18]. Therefore, the devices with more computational resources are
desirable for participating in federated learning. On the other hand, variations of the
wireless channel will significantly degrade the performance of federated learning.
Devices having low SINR will suffer from high packet error rates, and thus more
performance degradation will occur.

2.3 Key Design Aspects

Overview of federated learning over wireless networks is given in Fig. 2.3. Several
machine learning techniques, such as long short-term memory, convolutional neural
network, and Naive Bayes schemes can be used at each local device. To enable
federated learning, numerous optimization schemes, such as federated averaging
(FedAvg) and FedProx can be used to train non-convex federated learning models
[51]. FedProx is a modified version of FedAvg that captures both statistical and
system heterogeneity among end-devices. FedAvg runs stochastic gradient descent
(SGD) on a set of devices to yield local model weights. Subsequently, an averaging
of the local weights is performed at the edge computing server located at BS.
FedProx has similar steps as FedAvg, but the difference lies in local device
minimizing of objective function that considers the objective function of FedAvg
with an additional proximal term. By doing so, FedProx limits the impact of non-
independent and identically distributed (non-IID) device data on the global learning
model. FedAvg does not guarantee theoretical convergence, while FedProx shows
theoretical convergence.

2.3 Key Design Aspects 17

Edge Node
Smart
Phone

IoT
Sensor

Local
Data set

Global Computation
Latency

Local
Data set

Local Computation
Latency

Local Computation
Energy

Global Computation
Energy

Local Models
Aggregation

Phoneo

1
Edge Node

1

1

2

3

4
Local Learning
Model Schemes

Long Short-term Memory
Convolutional Neural Network

Support Vector Machines
 Naïve Bayes

FedAvg
FedProx

q-FedAvg
FML

Federated
Optimization Algorithms

Local
Data set

22

4 4

∑

Local Model
 Computation Local Model

 Aggregation

∑

Fig. 2.3 Federated learning sequence diagram

In FedAvg and FedProx, all devices are weighted equally in global federated
learning model computation without considering fairness, despite the differences in
the device capabilities (e.g., hardware). To capture such fairness among devices, a
so-called fairness enabled FedAvg algorithm was proposed [52]. Fairness enabled
FedAvg assigns higher weights to devices with poor performance by modifying
the objective function of the typical FedAvg algorithm. To introduce potential
fairness and reduce training accuracy variance, local devices having a high empirical
loss (local loss function) are emphasized by assigning higher relative weight in
the fairness enabled FedAvg. Meanwhile, in [53] an adaptive control scheme was
proposed to adapt the global federated learning aggregation frequency. This adaptive
control scheme offers a desirable tradeoff between global model aggregation and
local model update to minimize the loss function with resource budget constraint.
All of the above-discussed methods are used for a single task global federated
learning model. In real-world IoT systems, it is also of interest to use multi-task
federated learning for handling multiple tasks, whose data is distributed among
multiple edge nodes. A federated multi-task learning scheme was proposed in
[54] by modifying the so-called communication-efficient distributed dual coordinate
ascent (CoCoA) framework. To enable a wide variety of machine learning models,
CoCoA supports objectives for linear reguarlized loss minimization [55]. In CoCoA,
partial results from local computation are effectively combined using optimization
problems primal-dual structure. In each round, CoCoA enables the use of any
arbitrary optimization algorithm on a local dataset to solve a local learning problem
by using distributed optimization for coping with system-level and statistical

18 2 Fundamentals of Federated Learning

heterogeneity. To efficiently enable federated optimization schemes over wireless
networks, there is a need to address few challenges. These challenges are resource
optimization, incentive mechanism design, security, and privacy.

2.3.1 Resource Allocation

Optimization of communication and computation resources is necessary to enable
the main phases of federated learning local computation, communication, and global
computation. When optimizing federated learning computational and communica-
tion resources, the original problem whose goal is to minimize the federated learning
cost function can have a dual formulation without constraints. Moreover, if the
original problem is convex, then dual problem has the same solution. Thus, the
dual problem can be decoupled for obtaining a distributed solution in federated
learning. Computation resources can be either those of a local device or of an edge
server, whereas communication resources are mainly radio resources of the access
network. In the local computation phase, every selected device iteratively performs
a local model update using its dataset. The allocation of local device computational
resources strongly depends on the device energy consumption, local learning time,
and local learning accuracy. Further, the heterogeneity of the local dataset sizes
significantly affects the allocation of local computational resources. Device energy
consumption and local learning time are strongly dependent on the CPU capability.
Increasing the device CPU frequency can increase the energy consumption and
decrease the learning time. Similarly, the local computing latency increases for a
fixed frequency with an increase in local learning accuracy. Evidently, there is a
need to study the tradeoff between computation energy consumption, computational
latency, learning time, and learning accuracy. Moreover, the access network and core
network resources must be allocated optimally during the communication phase.

2.3.2 Incentive Mechanism

The design of mechanisms that incentivize users to participate in FL is a key
challenge. Incentives are possible in different forms, such as user-defined utility
and money-based rewards. Several frameworks such as game theory and auction
theory can be used in the design of FL incentives [26, 56]. One can design an
incentive mechanism using game theory while considering both communication and
computation costs. The communication cost can be defined as the total number of
rounds used for the interactions between the edge server and end-devices, whereas
the computational cost can be the number of local iterations required to compute
the local learning model [16]. For synchronous aggregation, given a fixed number
of global FL rounds between end-devices and edge server, the convergence rate
of the global FL model has a proportional relationship with the number of local

2.3 Key Design Aspects 19

iterations. An increase in the number of local iterations minimizes the local learning
model error and thus, few global FL rounds are required to reach a certain global
FL model accuracy. Therefore, for a fixed global FL model accuracy, an increase
in computational cost reduces communication cost and vice versa. For instance,
consider a incentive mechanism game whose players are the edge server and edge
users. The edge server announces a reward as an incentive to the participating users
while maximizing its benefits in terms of improving global FL model accuracy.
Meanwhile, the edge users maximize their individual utilities to improve their
benefit. One example of a user utility could be the improvement of local learning
model accuracy within the allowed communication time during FL training. An
improvement in the local learning model accuracy of the end-user increases its
incentive from the edge server and vice versa. This process of incentive-based
sharing of model parameters continues until convergence to some global model
accuracy level.

2.3.3 Security and Privacy

Security in federated learning over wireless networks can be divided into devices
physical security and cyber security. Devices physical security refers to physical
access of the end-devices, distributed edge servers and cloud server used for
aggregation of local models. Cyber security deals with end-devices, edge servers,
and the cloud server authentication. Moreover, it takes into account the wireless
security during exchange of learning model parameters between the end-devices
and aggregation server. It is very difficult to restrict the physical access of the end-
devices and edge servers due to their geographically distributed nature. Therefore,
one must propose novel and light weight authentication schemes for end-devices,
edge servers, and the cloud servers. Generally, the computational complexity
of authentication scheme increases by raising its protection against the security
attacks. Therefore, depending on the available computing power, one must design
authentication scheme. There is a need to propose light-weight authentication with
low computational complexity for end-devices, whereas edge aggregation servers
can be installed with authentication schemes of higher complexity because of their
higher computing power than end-devices. Meanwhile, for a cloud server, one can
propose authentication scheme with the highest complexity due to more available
computing power at the cloud among the three players (i.e., end-devices, edge
server, and cloud server).

Federated learning involves iterative exchange of learning model updates
between the end-devices and aggregation servers using wireless channel. Therefore,
an attacker can easily access the learning model parameters. Accessing the local
learning model parameters will results two kind of issues. First one deals with
the end-devices sensitive information leakage, whereas the second one deals with
altering the learning model parameters before aggregation. This alteration of the
local learning model will prolong the global federated learning model convergence.

20 2 Fundamentals of Federated Learning

Another possible impact can either the global federated learning model does not
converge if the attacker continuously perform malicious activity. Therefore, one
must use effective encryption schemes to avoid attacker from accessing and altering
the local learning models.

2.4 Federated Learning Algorithms

Consider a set N of N devices, each is with local dataset Dn of Dn data points. The
goal of the federated learning is to minimize the overall loss function.

minimize
w1,w2,...,wN

1

K

N∑

n=1

kn∑

k=1

fFL(wn, dnk,Θnk), (2.1a)

s.t.w1 = w2 = . . . = wN = z,∀n ∈ N , (2.1b)

where K denotes the total data points of all the N devices involved in federated
learning process. fFL is the loss function that is problem dependent. For instance,
fFL for regression problem can be given by fFL(wn, dnk,Θnk) = 1

2 (dnkwn−Θnk)
2.

2.4.1 FedAvg

FedAvg was introduced in [18] to enable distributed, on-device machine learning
without transferring the end-devices data to the centralized server. The main focus
of the work in [18] was to tackle the devices system and statistical heterogeneity.
FedAvg is based on modification of stochastic gradient descent (SGD). SGD
involves a single batch gradient calculation on a randomly selected client per
communication round, and thus suffers from large number of communication rounds
between the end-devices and aggregation server. We can extend SGD for federated
settings. Federated SGD involves computation of local learning models using single
iteration, that are aggregated to yield the global model. To further improve the
performance of the federated SGD, there is a need to perform multiple local
iterations at all the devices before a global aggregation takes place. For a fixed global
federated learning accuracy, performing multiple local aggregations at end-devices
will reduce the number of communication rounds and vice versa. The summary
of the FedAvg algorithm is given in Algorithm 1. A set of end-devices limited by
a fraction C among all devices is selected to train their local models. These end-
devices compute their local learning models for a fixed number of local iterations
and send their local models to the aggregation server. The aggregation server takes
average of all the received local model updates and send back the global model to
all devices for updating their local models.

2.4 Federated Learning Algorithms 21

Algorithm 1 FedAvg [18]
1: Aggregation Server
2: Weights initialization ω0

3: for t=0, 1,. . . , Global Rounds-1 do
4: Select Ns ← m = max(C.N) clients randomly.
5: for For every device n ∈ Ns , parallel run. do
6: ωt+1

n ← DeviceUpdate(n, ωt
n)

7: ωt+1 ←∑Ns

n=1
kn
K
ωt+1
n

8: end for
9: end for

10: DeviceUpdate(k,ω)
11: B ← Split dk into batches.
12: for e=0, 1, .. , Local iterations-1 do
13: for b ∈ B do
14: ω ← ω − η � l(ω, b)

15: end for
16: end for

2.4.2 FedProx

Although FedAvg has shown empirical success in heterogeneous settings, it still
has few limitations [15]. FedAvg does not fully address the heterogeneity. For
instance, end-devices are not allowed to perform variable amount of training work
(i.e., local iterations). Instead, end-devices in FedAvg with less computational
resource that fails to meet the local model computation deadline are not allowed to
participate in federated learning process. According to [18], an increase in number
of local iterations will reduce global rounds for attaining a certain global accuracy.
However, performing more local iterations for heterogeneous devices may cause
the global federated learning model to diverge. Therefore, one must address this
issue of devices heterogeneity for federated learning. Furthermore, FedAvg does
not provably guarantee theoretical convergence for many practical scenarios [51].
Therefore, it is necessary to propose new federated learning scheme. FedProx was
presented in [57] to account more effectively for the heterogeneity of the federated
learning system. FedProx is based on addition of a proximal term in local learning
model to account more better for the heterogeneity among nodes.

min
ω

hn(ω;ωt) = Fn(ω) + μ

2
‖ ω − ωt ‖2 (2.2)

The addition of a proximal term has two advantages: (a) addresses the devices
heterogeneity issue by restricting the local model to closer to the global model
without the need of manual adjustment using local iteration settings, and (b) it
offers incorporation of variable amount of training works because of the system
heterogeneity. The summary of the FedProx algorithm is shown in Algorithm 2.

22 2 Fundamentals of Federated Learning

Algorithm 2 FedProx [57]
1: Aggregation Server
2: Weights initialization ω0

3: for t=0, 1,. . . , Global Rounds-1 do
4: Select Ns ← m = max(C.N) clients randomly.
5: for For every device n ∈ Ns , parallel run. do
6: Compute ωt+1

n which is a γ t
n-inexact minimizer of: ωt+1

n ≈ min
ω

h(ω;ωt) = Fn(ω) +
μ
2 ‖ ω − ωt ‖2

7: ωt+1 ←∑Ns

n=1
kn
K
ωt+1
n

8: end for
9: end for

2.4.3 q-Federated Learning

FedAvg [18] was based on simple averaging of the local learning model updates at
the aggregation server that might not converge fast for heterogeneous conditions
(i.e., system and statistical heterogeneity). To address these issues of FedAvg,
FedProx was introduced in [57] that is based on addition of a proximal term to
the local learning model to minimize deviation of the local learning from the
global model during the local update step. However, both FedAvg and FedProx
do not take into account the resource fairness issues. For instance, some of the
end-device might not get enough communication resources, and thus will suffer
from performance degradation. Many resource allocation algorithms in literature
focused on maximizing the overall throughput that might result in allocation of less
resources to few nodes. On the other hand, fairness in federated learning can be the
uniformity of accuracy distribution among end-devices. q-fair federated learning
was introduced in [52] to account for the poor performing end-devices. In contrast
to FedAvg [18], q-fair federated learning uses weighted averaging. To introduce
potential fairness and reduce training accuracy variance, local devices having a
high empirical loss (local loss function) are emphasized by assigning higher relative
weight in the q-federated learning.

2.4.4 Federated Multi-Task Learning

Federated learning multi-task learning was proposed in [54] to enable training of
multiple models for various nodes. More specifically, the reason for training the
multiple models for different nodes was to tackle the statistical heterogeneity. Fed-
erated multi-task learning was based on modifying the so-called communication-
efficient distributed dual coordinate ascent (CoCoA) framework. To enable a wide
variety of machine learning models, CoCoA supports objectives for linear reguarl-
ized loss minimization [55]. In CoCoA, partial results from local computation are
effectively combined using optimization problems primal-dual structure. In each

2.5 Summary 23

round, CoCoA enables the use of any arbitrary optimization algorithm on a local
dataset to solve a local learning problem by using distributed optimization for
coping with system-level and statistical heterogeneity.

2.5 Summary

In this chapter, we have discussed the evolution of artificial intelligence. The
key challenges of federated learning, such as statistical heterogeneity and system
heterogeneity, are presented. Next, the key design aspects of federated learning over
wireless networks, such as resource allocation, incentive mechanism design, and
security and privacy, are presented. Finally, we presented an overview of various
federated learning algorithms, such as FedAvg, FedProx, q-federated learning, and
federated multi-task learning.

Part II
Wireless Federated Learning:

Design and Analysis

Chapter 3
Resource Optimization for Wireless
Federated Learning

Abstract This chapter provides an overview of various resources such as com-
putational, communication, and power resources, required for wireless federated
learning. We perform convergence analysis of wireless federated learning. Addi-
tionally, joint resource and power allocation for wireless federated learning are
proposed. Finally, we present a collaborative federated learning framework to
efficiently enable the participation of communication-resource deficient devices in
the federated learning process for performance improvement.

3.1 Introduction

There are two main aspects of federated learning over wireless networks, such
as wireless for federated learning and federated learning for wireless networks.
Wireless for federated learning deals with the optimization of wireless communi-
cation resources for implementing federated learning, whereas federated learning
for wireless deals with using federated learning for implementing various intelligent
network functions (e.g., intelligent edge caching, intelligent transceivers, intrusion
detection, vehicular communication). In this chapter, we focus on the wireless
for federated learning aspect. Federated learning over wireless networks mainly
involves four steps: (a) local model computation, (b) transfer of local learning model
updates from end-devices to the aggregation server, (c) aggregation of local models,
and (d) downloading the global model updates, as shown in Fig. 3.1. To carry
out the above four steps, federated learning uses two kinds of resources, such as
computing resources and wireless resources. The computing resource can be either
local (i.e., at the end-devices) or global (i.e., aggregation server). At the end-devices,
the computing resource such as CPU-cycles/sec determines the local learning model
computation time for a fixed local dataset size and local learning model architecture.
However, devices’ energy consumption increases with an increase in the local
computing resource. Therefore, it is necessary to make a tradeoff between the
local model computing time and energy consumption. On the other hand, federated
learning involves iterative interaction between end-devices and the aggregation
over a wireless channel. Training of a massive number of end-devices using

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
C. S. Hong et al., Federated Learning for Wireless Networks, Wireless Networks,
https://doi.org/10.1007/978-981-16-4963-9_3

27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-4963-9_3&domain=pdf
https://doi.org/10.1007/978-981-16-4963-9_3

28 3 Resource Optimization for Wireless Federated Learning

Local
dataset

Local
model

Local
dataset

Local
model

Base station

∑
Global
model

Local models
aggregation

 Local computational
resource

 Local backup energy for
computing local model

 Transmission power for
sending local model
updates to global server

 Wireless channel
resources

 Global server
computational resource

 Global server backup
energy

 Transmission power for
sending global model to
devices

Fig. 3.1 An overview of resources required for wireless federated learning

federated learning will consume a significant amount of communication resources.
Therefore, one must efficiently perform resource allocation for federated learning
over wireless networks. Furthermore, there might be a possibility of end-devices
not participating in the federated learning process due to insufficient communication
resources. To address this limitation, one can use collaborative federated learning.
In collaborative federated learning, end-devices with insufficient communication
resources sending their local learning model updates to their nearby devices where
local aggregation takes place. Then, the locally aggregated models are sent to the
global aggregation server. Collaborative federated learning will result in significant
performance improvement. Collaborative federated learning will be explained in
more detail later in this chapter.

3.2 Wireless Federated Learning: Convergence Analysis
and Resource Allocation

Although federated Learning enables on-device machine learning, it has few
challenges. In contrast to centralized machine learning, global federated learning
computation time includes not only the end-device computation times but also
the communication time for transferring learning model updates between end-
devices and the aggregation server. The computational time depends on end-devices’
computational capacity (i.e., CPU-cycles/sec) and local data sizes. Moreover,

3.2 Wireless Federated Learning: Convergence Analysis and Resource Allocation 29

communication times primarily depend on end-devices channel gains and learning
model update size. To deploy federated learning over wireless networks, we must
answer the following two questions:

• When UEs should spend more time on local model computation to achieve high
learning accuracy and less communication updates, or vice versa?

• How to strike a balance between two conflicting goals of minimizing federated
Learning time and end-device energy consumption?

To address these questions, we present “Federated Learning over Wireless Net-
works” problem design and analysis, which can be summarized as follows:

• We present federated learning over wireless networks problem that captures two
trade-offs: (i) learning time versus end-device energy consumption by using the
Pareto efficiency model, and (ii) computation versus communication learning
time by finding the optimal learning accuracy parameter.

• Despite the non-convex nature of the formulated problem, we exploit its special
structure and use the variable decomposition approach to split and transform
formulated problem into three convex sub-problems. We show that the first two
sub-problems can be solved separately, then their solutions are used to obtain
the solution to the third sub-problem. By analyzing the closed-form solution to
each sub-problem, we obtain qualitative insights into the impact of the Pareto-
efficient controlling knob to the optimal: (i) computation and communication
learning time, (ii) UE resource allocation, and (iii) learning accuracy. Finally, the
combined solution to all sub-problems can provide the globally optimal solution
to main formulated problem.

• We further provide extensive numerical results to examine the: (i) impact of UE
heterogeneity, (ii) Pareto curve between UE energy cost and system learning
time, and (iii) the impact of the proportion of computation over communication
time on the optimal accuracy level.

3.2.1 System Model

We consider a wireless multi-user system consisting of one base station (BS) and a
set N of N UEs. Each participating UE n stores a local data set Dn, with its size that
is denoted by Dn. Then, we can define the total data size by D = ∑N

n=1 Dn. In an
example of the supervised learning setting, at UE n, Dn defines the collection of data
samples given as a set of input-output pairs {xi, yi}Dn

i=1, where xi ∈ R
d is an input

sample vector with d features, and yi ∈ R is the labeled output value for the sample
xi . The data can be generated through the usage of UE, for example, via interactions
with mobile apps. With these UEs data, several machine learning applications can
be employed for wireless networks such as predicting the BS’s load in the next hours
for dynamic BS load balancing, or predicting the next hovering position of drones
so that their coverage is optimized.

30 3 Resource Optimization for Wireless Federated Learning

In a typical learning problem, for a sample data {xi, yi} with input xi (e.g., the
response time of various apps inside the UE), the task is to find the model parameter
w that characterizes the output yi (e.g., label of BS load, such as high or low, in next
hours) with the loss function fi(w). Some examples of the loss function are fi(w) =
1
2 (x

T
i w − yi)

2, yi ∈ R for linear regression and fi(w) = {0, 1 − yix
T
i w}, yi ∈

{−1, 1} for support vector machine. Hence, the loss function on the data set of UE
n is defined as

Jn(w) := 1

Dn

∑
i∈Dn

fi(w). (3.1)

Then, the learning model is the minimizer of the following global loss function
minimization problem

min
w∈Rd

J (w) :=
∑N

n=1

Dn

D
Jn(w). (3.2)

Federated Learning Over Wireless Networks

In this section, we adapt the Federated Learning framework [58] to the wireless
networks, namely, FEDL, as the following.

1. At the UE side, there are two phases at t th update:
Computation. Each UE n solves its local problem

w(t)
n = arg min

wn∈Rd

Fn

(
wn |w(t−1),∇J (t−1)

)
(3.3)

with a local accuracy1 0 ≤ θ ≤ 1 (i.e., ||∇Fn(w
(t)|| ≤ θ ||∇Fn(w

(t−1)||)).
Communication. All UEs share the wireless environment to transmit w(t)

n and
the gradient ∇J

(t)
n to BS.

2. At the BS, the following information is aggregated

w(t+1) = 1

N

∑N

n=1
w(t)

n (3.4)

∇J (t+1) = 1

N

∑N

n=1
∇J (t)

n (3.5)

and fed-back to all UEs. This process is iterative until a global accuracy 0 ≤ ε ≤
1 is achieved (i.e., ||∇J (w(t)|| ≤ ε||∇J (w(t−1)||)).

1 Here θ = 0 means the local problem is required to be solved optimally, and θ = 1 means no
progress for local problem [58].

3.2 Wireless Federated Learning: Convergence Analysis and Resource Allocation 31

To solve problem (3.2), FEDL uses an iterative approach that requires a number
of global iterations (i.e., communication rounds) to achieve a global accuracy
level ε. In each global iteration, there are interactions between the UEs and BS.
Specifically, a participating UE, in each computation phase, will minimize its
objective Fn(wn) in (3.3) using local training data Dn. Minimizing Fn also takes
multiple local iterations up to an accuracy threshold θ that is common to all UEs.
As in [59], the computation phase is synchronous such that all UEs have to finish
solving their local problems before entering the communication phase to transmit
their updates to the BS by using a wireless medium sharing scheme (e.g., time-
sharing similar to TDMA).
The BS then aggregates the local model parameters and gradients, i.e., wn and the
∇Jn, ∀n, respectively, to update and then broadcast the global model parameters
and gradients, i.e., w and the ∇J according to (3.4) and (3.5), respectively, which
are required for participating UEs to minimize their Fn(wn),2 in the next global
iteration. We see that the BS does not access the local data Dn, ∀n, hence preserving
data privacy.

For strongly convex objective J (w), the global iterations is shown to be [59]

K(ε, θ) = O(log(1/ε))

1 − θ
, (3.6)

which is affected by both global accuracy ε and local accuracy θ . For example,
when ε and θ are small (more accurate), FEDL needs to runs more global iterations.
On the other hand, each global iteration consists of both computation and uplink
communication time. Since the downlink bandwidth is larger than that of uplink
and the BS power is much higher than UE’s transmission power, the downlink time
is negligible compared to the uplink time and thus is not considered in this work.
The computation time, however, depends on the number of local iterations, which is
upper bounded by O(log(1/θ)) for a wide range of iterative algorithms to solve (3.3)
such as gradient descent, coordinate descent, or stochastic dual coordinate descent
[60]. In [59], it is shown that FEDL performance does not depend on which
algorithms are used in the computation phase as long as the convergence time of that
algorithm is upper-bounded by O(log(1/θ)). Denote the time of one local iteration
by Tcmp, then the computation time in one global iteration is v log(1/θ)Tcmp for
some positive constant v that depends on the data size and condition number of the
local problem [60]. Denoting the communication time in one global iteration by
Tcom, the total time of one global iteration of FEDL is defined as

Tglob(Tcmp, Tcom, θ) := Tcom + v log(1/θ)Tcmp. (3.7)

2 One example, from [58], is Fn(wn) = Jn(wn)−
(∇J

(t−1)
n −β1∇J (t−1)

)T
wn+ β2

2 ||wn−w
(t−1)
n ||2

where β1, β2 ≥ 0 are parameters.

32 3 Resource Optimization for Wireless Federated Learning

In this work, we consider a fixed global accuracy ε, so we normalize O(log(1/ε))
to 1 so that K(θ) = 1

1−θ
for ease of presentation. Furthermore, we also normalize

v to 1 since we can absorb v into Tcmp as the upper bound of one local compu-
tation iteration. Thus the upper-bound of FEDL learning time is K(θ) Tglob(θ).
Henceforth, we omit the word “upper-bound” for brevity. In the next sub-sections,
we will present how computation and communication time relate to UEs’ energy
consumption.

Computation Model

We denote the number of CPU cycles for UE n to execute one sample of data
by cn, which can be measured offline [61] and is known as a priori. Since all
samples {xi, yi}i∈Dn

have the same size (i.e., number of bits), the number of CPU
cycles required for UE n to run one local iteration is cnDn. Denote the CPU-cycle
frequency of the UE n by fn. Then the CPU energy consumption of UE n for one
local iteration of computation can be expressed as follows [62]

E
cmp
n (fn) =

∑cnDn

i=1

αn

2
f 2
n = αn

2
cnDnf

2
n , (3.8)

where αn/2 is the effective capacitance coefficient of UE n’s computing chipset.
Furthermore, the computation time per local iteration of the UE n is cnDn

fn
, ∀n. We

denote the vector of fn by f ∈ R
n.

Communication Model

In FEDL, regarding the communication phase of UEs, we consider a time-sharing
multi-access protocol for UEs. We note that this time-sharing model is not restrictive
because other schemes, such as OFDMA, can also be applied to FEDL. The
achievable transmission rate (nats/s) of UE n is defined as follows:

rn = B ln
(
1 + hnpn

N0

)
, (3.9)

where B is the bandwidth, N0 is the background noise, pn is the transmission power,
and hn is the channel gain of the UE n. We assume that hn is constant during the
learning time of FEDL.3 Denote the fraction of communication time allocated to
UE n by τn, and the data size (in nats) of both wn and ∇Jn by sn. Because the

3 We treat the case of random hn by adding the outage probability constraint, e.g., for Rayleigh
fading channel, Pr

(hnpn

N0
< γ

) ≤ ζ where γ is the SNR threshold and ζ is the bounded probability

[63]. This constraint is equivalent to pn ≥ −γN0
log(1−ζ)

and can be integrated to the constraint (3.17)
without changing any insights of the considered problem.

3.2 Wireless Federated Learning: Convergence Analysis and Resource Allocation 33

dimensions of vectors wn and ∇Jn are fixed, we assume that their sizes are constant
throughout the FEDL learning. Then the transmission rate of each UE n is

rn = sn/τn, (3.10)

which is shown to be the most energy-efficient transmission policy [64]. Thus, to
transmit sn within a time duration τn, the UE n’s energy consumption is

Ecom
n (τn) = τnpn = τn pn(sn/τn), (3.11)

where the power function is

pn(sn/τn) := N0

hn

(
e

sn/τn
B − 1

)
(3.12)

according to (3.9) and (3.10). We denote the vector of τn by τ ∈ R
n.

3.2.2 Problem Formulation

Define the total energy consumption of all UEs for each global iteration by Eglob,
which is expressed as follows:

Eglob(f, τ, θ) :=
∑N

n=1
Ecom

n (τn) + log(1/θ)Ecmp
n (fn).

Then, we consider an optimization problem, abusing the same name FEDL, as
follows

FEDL: min. K(θ)
[
Eglob(f, τ, θ) + κ Tglob(Tcmp, Tcom, θ)

]
(3.13)

s.t.
∑N

n=1
τn ≤ Tcom, (3.14)

max
n

cnDn

fn
= Tcmp, (3.15)

f min
n ≤ fn ≤ f max

n , ∀n ∈ N , (3.16)

pmin
n ≤ pn(sn/τn) ≤ pmax

n , ∀n ∈ N , (3.17)

0 ≤ θ ≤ 1. (3.18)

To minimize both UEs’ energy consumption and the Federated Learning time
are conflicting. For example, the UEs can save energy by setting the lowest
frequency level all the time, but this will certainly increase the learning time.
Therefore, to strike the balance between energy cost and learning time, the weight

34 3 Resource Optimization for Wireless Federated Learning

κ (Joules/second), used in the objective as an amount of additional energy cost that
FEDL is willing to bear for one unit of learning time to be reduced, captures the
Pareto-optimal tradeoff between the UEs’ energy cost and the Federated Learning
time. For example, when most of the UEs are plugged in, then UE energy cost is not
the main concern, thus κ can be large.

While constraint (3.14) captures the time-sharing uplink transmission of UEs,
constraint (3.15) defines that the computing time in one local iteration is determined
by the “bottleneck” UE (e.g., with large data size and low CPU frequency). The
feasible regions of CPU-frequency and transmit power of UEs are imposed by
constraints (3.16) and (3.17), respectively. We note that (3.16) and (3.17) also
capture the heterogeneity of UEs with different types of CPU and transmit chipsets.
The last constraint restricts the feasible range of the local accuracy.

3.2.3 Decomposition-Based Solution

We see that FEDL is non-convex due to the constraint (3.15) and several products
of two functions in the objective function. However, in this subsection, we will
characterize its optimal solution by decomposing it into multiple convex sub-
problems.

We consider the first case when θ is fixed, then FEDL can be decomposed into
two sub-problems as follows:

SUB1: min.
∑N

n=1
E

cmp
n (fn) + κTcmp (3.19)

s.t.
cnDn

fn
≤ Tcmp, ∀n ∈ N , (3.20)

f min
n ≤ fn ≤ f max

n , ∀n ∈ N . (3.21)

and

SUB2 : min.
∑N

n=1
Ecom

n (τn) + κTcom (3.22)

s.t.
∑N

n=1
τn ≤ Tcom, (3.23)

pmin
n ≤ pn(sn/τn) ≤ pmax

n , ∀n ∈ N . (3.24)

While SUB1 is a CPU-cycle control problem for the computation time and
energy minimization, SUB2 can be considered as an uplink power control to
determine the UEs’ fraction of time sharing to minimize the UEs energy and
communication time. We note that the constraint (3.15) of FEDL is replaced by an
equivalent one (3.20) in SUB1. We can consider Tcmp and Tcom as virtual deadlines
for UEs to perform their computation and communication updates, respectively.

3.2 Wireless Federated Learning: Convergence Analysis and Resource Allocation 35

It can be observed that both SUB1 and SUB2 are convex problems. We note
that the constant factors K(θ) log(1/θ) and K(θ) of SUB1 and SUB2’s objectives,
respectively, are omitted since they have no effects on these sub-problems’ solu-
tions.

SUB1 Solution

We first propose Algorithm 3 in order to categorize UEs into one of three groups:
N1 is a group of “bottleneck” UEs that always run its maximum frequency, N2 is the
group of “strong” UEs which can finish their tasks before the computational virtual
deadline even with the minimum frequency, and N3 is the group of UEs having the
optimal frequency inside the interior of their feasible sets.

Lemma 3.1 The optimal solution to SUB1 is as follows

f ∗
n =

⎧
⎪⎪⎨

⎪⎪⎩

f max
n , ∀n ∈ N1,

f min
n , ∀n ∈ N2,

cnDn

T ∗
cmp

, ∀n ∈ N3,

(3.25)

T ∗
cmp = max

{
TN1 , TN2 , TN3

}
, (3.26)

where N1,N2,N3 ⊆ N are three subsets of UEs produced by Algorithm 3 and

TN1 = max
n∈N

cnDn

f max
n

(3.27)

TN2 = max
n∈N2

cnDn

f min
n

(3.28)

TN3 =
(∑

n∈N3
αn(cnDn)

3

κ

)1/3

. (3.29)

From Lemma 3.1, first, we see that the optimal solution depends not only on the
existence of these subsets, but also on their virtual deadlines TN1 , TN2 , and TN3 , in
which the longest of them will determine the optimal virtual deadline T ∗

cmp. Second,
from (3.25), the optimal frequency of each UE will depend on both T ∗

cmp and the
subset it belongs to. We note that depending on κ , some of the three sets (not all)
are possibly empty sets, and by default TNi

= 0 if Ni is an empty set, i = 1, 2, 3.
Next, by varying κ , we observe the following special cases.

36 3 Resource Optimization for Wireless Federated Learning

Algorithm 3 Finding N1,N2,N3 in Lemma 3.1

1: Sort UEs such that c1D1
fmin

1
≤ c2D2

fmin
2

. . . ≤ cNDN

fmin
N

2: Input: N1 = ∅, N2 = ∅, N3 = N , TN3 in (3.29)
3: for i = 1 toN do
4: if maxn∈N cnDn

fmax
n

≥ TN3 > 0 and N1 == ∅ then

5: N1 = N1 ∪ {m : cmDm

fmax
m

= maxn∈N cnDn

fmax
n

}

6: N3 = N3 \ N1 and update TN3 in (3.29)
7: end if
8: if ciDi

f min
i

≤ TN3 then

9: N2 = N2 ∪ {i}
10: N3 = N3 \ {i} and update TN3 in (3.29)
11: end if
12: end for

Corollary 3.1 The optimal solution to SUB1 can be divided into four regions as
follows.

(a) κ ≤ minn∈N αn(f
min
n)

3 :
N1 and N3 are empty sets. Thus, N2 = N , T ∗

com = TN2 = maxn∈N cnDn

fmin
n

, and

f ∗
n = f min

n ,∀n ∈ N .

(b) minn∈N αn(f
min
n)

3
< κ ≤ (maxn∈N2

cnDn

fmin
n

)3 :
N2 and N3 are non-empty sets, whereas N1 is empty. Thus, T ∗

cmp =
max

{
TN2, TN3

}
, and f ∗

n = max
{
cnDn

T ∗
cmp

, f min
n

}
,∀n ∈ N .

(c)
(
maxn∈N2

cnDn

fmin
n

)3
< κ ≤

∑
n∈N3

αn

(
cnDn

)3

(
maxn∈N cnDn

fmax
n

)3 :

N1 and N2 are empty sets. Thus N3 = N , T ∗
cmp = TN3 , and f ∗

n =
cnDn

TN3
,∀n ∈ N .

(d) κ >

∑
n∈N3

αn

(
cnDn

)3

(
maxn∈N cnDn

fmax
n

)3 :

N1 is non-empty. Thus T ∗
cmp = TN1 , and

f ∗
n =

⎧
⎨

⎩
f max
n , ∀n ∈ N1

max
{
cnDn

TN1
, f min

n

}
, ∀n ∈ N \ N1

(3.30)

We illustrate Corollary 3.1 in Fig. 3.2 with four regions4 as follows.

4 All closed-form solutions are also verified by the solver IPOPT [65].

3.2 Wireless Federated Learning: Convergence Analysis and Resource Allocation 37

(a) (b) (c)

Fig. 3.2 Solution to SUB1 with five UEs. For wireless communication model, the UE channel
gains follow the exponential distribution with the mean g0(d0/d)

4 where g0 = −40 dB and the
reference distance d0 = 1 m. The distance between these devices and the wireless access point
is uniformly distributed between 2 and 50 m. In addition, B = 1 MHz, σ = 10−10 W, the
transmission power of devices are limited from 0.2 to 1 W. For UE computation model, we set
the training size Dn of each UE as uniform distribution in 5–10 MB, cn is uniformly distributed
in 10–30 cycles/bit, f max

n is uniformly distributed in 1.0–2.0 GHz, f min
n = 0.3 GHz. Furthermore,

α = 2 × 10−28 and the UE update size sn = 25,000 nats (≈4.5 KB). (a) Optimal CPU frequency
of each UE. (b) Three subsets outputted by Algorithm 3. (c) Optimal computation time

(a) Very low κ (i.e., κ ≤ 0.004): Designed for solely energy minimization. In this
region, all UE runs their CPU at the lowest cycle frequency fmin

n , thus T ∗
cmp is

determined by the last UEs that finish their computation with their minimum
frequency.

(b) Low κ (i.e., 0.004 ≤ κ ≤ 0.1): Designed for prioritized energy minimization.
This region contains UEs of both N2 and N3. T ∗

cmp is governed by which subset
has a higher virtual computation deadline, which also determines the optimal
CPU-cycle frequency of N3. Other UEs with light-loaded data, if exist, can run
at the most energy-saving mode f min

n yet still finish their task before T ∗
cmp (i.e.,

N2).
(c) Medium κ (i.e., 0.1 ≤ κ ≤ 1): Designed for balancing computation time

and energy minimization. All UEs belong to N3 with their optimal CPU-cycle
frequency strictly inside the feasible set.

(d) High κ (i.e., κ ≥ 1): Designed for prioritized computation time minimization.
High value κ can ensure the existence of N1, consisting the most “bottleneck”
UEs (i.e., heavy-loaded data and/or low f max

n) that runs their maximum CPU-
cycle in (3.30) (top) and thus determines the optimal computation time T ∗

cmp.
The other “non-bottleneck” UEs either (i) adjust a “right” CPU-cycle to save
the energy yet still maintain their computing time the same as T ∗

cmp (i.e., N3), or
(ii) can finish the computation with minimum frequency before the “bottleneck”
UEs (i.e., N2) as in (3.30) (bottom).

38 3 Resource Optimization for Wireless Federated Learning

SUB2 Solution

Before characterizing the solution to SUB2, from (3.12) and (3.24), we first define
two bounded values for τn as follows

τmax
n = sn

B ln(hnN
−1
0 pmin

n + 1)
, (3.31)

τmin
n = sn

B ln(hnN
−1
0 pmax

n + 1)
, (3.32)

which are the maximum and minimum possible fractions of Tcom that UE n can
achieve by transmitting with its minimum and maximum power, respectively. We
also define a new function gn : R → R as

gn(κ) = sn/B

1 + W
(κN−1

0 hn−1
e

) , (3.33)

where W(.) is the Lambert W -function. We can consider gn(.) as an indirect “power
control” function that helps UE n control the amount of time it should transmit an
amount of data sn by adjusting the power based on the weight κ . This function is
strictly decreasing (thus its inverse function g−1

n (·) exists) reflecting that when we
put more priority on minimizing the communication time (i.e., high κ), UE n should
raise the power to finish its transmission with less time (i.e., low τn).

Lemma 3.2 The solution to SUB2 is as follows

(a) If κ ≤ g−1
n (τmax

n), then

τ ∗
n = τmax

n (3.34)

(b) If g−1
n (τmax

n) < κ < g−1
n (τmin

n), then

τmin
n < τ ∗

n = gn(κ) < τmax
n (3.35)

(c) If κ ≥ g−1
n (τmin

n), then

τ ∗
n = τmin

n , (3.36)

and T ∗
com =∑N

n=1 τ
∗
n .

This lemma can be explained in the view of network economics as follows. If we
interpret the FEDL system as the buyer and UEs as sellers with the UE powers as
commodities, then the inverse function g−1

n (·) is interpreted as the price of energy
that UE n is willing to accept by providing power service for FEDL to reduce the
learning time. There are two properties of this function: (i) the price increases with

3.2 Wireless Federated Learning: Convergence Analysis and Resource Allocation 39

respect to UE power, and (ii) the price sensitivity depends on UEs characteristics,
e.g., UEs with better channel quality can have a lower price, whereas UEs with
larger data size sn will have a higher price. Thus, each UE n will compare its energy
price g−1

n (·) with the “offer” price κ by the system to decide how much power it
is willing to “sell”. Then, there are three cases corresponding to the solutions to
SUB2.

(a) Low offer: If the offer price κ is lower than the minimum price request
g−1
n (τmax

n), UE n will sell its lowest service by transmitting with the minimum
power pmin

n .
(b) Medium offer: If the offer price κ is within the range of an acceptable price

range, UE n will find a power level such that the corresponding energy price
will match the offer price.

(c) High offer: If the offer price κ is higher than the maximum price request
g−1
n (τmin

n), UE n will sell its highest service by transmitting with the maximum
power pmax

n .

Lemma 3.2 is further illustrated in Fig. 3.3, showing how the solution to
SUB2 varies with respect to κ . It is observed from this figure that due to the UE
heterogeneity of channel gain, κ = 0.1 is a medium offer to UEs 2, 3, and 4, but a
high offer to UE 1, and a low offer to UE 5.

While SUB1 and SUB2 solutions share the same threshold-based dependence,
we observe their differences as follows. In SUB1 solution, the optimal CPU-cycle
frequency of UE n depends on the optimal T ∗

cmp, which in turn depends on the

loads (i.e., cnDn

fn
, ∀n) of all UEs. Thus all UE load information is required for

the computation phase. On the other hand, in SUB2 solution, each UE n can
independently choose its optimal power by comparing its price function g−1

n (·)
with κ so that collecting UE information is not needed. The reason is that the
synchronization of computation time in constraint (3.20) of SUB1 requires all UE

(a) (b) .

Fig. 3.3 The solution to SUB2 with five UEs. The numerical setting is the same as that of Fig. 3.2.
(a) UEs’ optimal transmission power (b) UEs’ optimal transmission time

40 3 Resource Optimization for Wireless Federated Learning

loads, whereas the UEs’ time-sharing constraint (3.23) of SUB2 can be decoupled
by comparing with the fixed “offer” price κ .

SUB3 Solution

We observe that the solutions to SUB1 and SUB2 have no dependence on θ so
that the optimal T ∗

com, T ∗
cmp, f ∗, and τ ∗ can be determined based on κ according to

Lemmas 3.1 and 3.2. However, these solutions will affect the third sub-problem of
FEDL, as will be shown in what follows.

SUB3 :
min. K(θ)

[
Eglob(f

∗, τ ∗, θ) + κ Tglob(T
∗
cmp, T

∗
com, θ)

]

s.t. 0 ≤ θ ≤ 1. (3.37)

Lemma 3.3 There exists a unique solution θ∗ of the convex problem SUB3
satisfying the following equation:

1

η
= log

(
e1/θ∗

θ∗) (3.38)

where

η =
∑N

n=1 E
cmp
n (f ∗

n) + κT ∗
cmp∑N

n=1

[
E

cmp
n (f ∗

n) + Ecom
n (τ ∗

n)
]+ κ

[
T ∗
cmp + T ∗

com

] . (3.39)

The convexity and unique solution to SUB3 are illustrated in Fig. 3.4a and b,
respectively. From its definition, η is the fraction of total computation cost (includ-
ing all UE energy and computing time cost) of the computation phase over the
aggregated communication and computation costs. We then have some observations
from Lemma 3.3. First, according to (3.38), it can be shown that 0 < θ∗ < η < 1,

(a) (b) (c)

Fig. 3.4 The solution to SUB3 with five UEs: (a) Convexity of SUB3, (b) Unique θ∗ for each η,
and (c) Impact of κ on η and θ∗. The numerical setting is the same as that of Fig. 3.2

3.2 Wireless Federated Learning: Convergence Analysis and Resource Allocation 41

which is also illustrated in Fig. 3.4b (with two different values of κ) and Fig. 3.4c.
Thus, small computation cost (compared to communication cost) implies small θ∗,
which means UEs need to run a large number of local iterations in the computation
phase to reduce the number of global iterations K(θ∗) due to more expensive
communication cost. Second, the impact of κ on η and θ∗ is illustrated in Fig. 3.4c
as follows.

(a) When κ is small enough such that the energy cost dominates the time cost, e.g.,

κ ≤ 10−3, then η ≈
∑N

n=1 E
cmp
n (f ∗

n)∑N
n=1

[
E

cmp
n (f ∗

n)+Ecom
n (τ∗

n)
] (which approaches to a constant

when κ falls into case a) of Corollary 3.1 and Lemma 3.2). Small values of η in
this case (i.e, η ≤ 0.17) indicate that computation energy is much smaller than
communication energy; thus UEs are better to perform more local computations
and less communications, explaining the corresponding small value of θ∗ (i.e.,
θ∗ ≤ 0.12).

(b) When κ is in a range such that the energy cost is comparable to the time
cost, e.g., 10−3 ≤ κ ≤ 10, increasing κ causes an increase η (because
η < 1), indicating that the computation cost is increasingly more expensive
than communication cost. Thus θ∗ also increases, reflecting FEDL preference
on more communication and less computation.

(c) When κ is large enough such that the energy cost dominates the time cost (i.e.,

κ ≥ 10), then η ≈ T ∗
cmp

T ∗
cmp+T ∗

com
(which approaches to a constant when κ falls

into case d) of Corollary 3.1 and case (c) of Lemma 3.2). Large values of η

in this case (i.e, η ≥ 0.79) indicate that computation time is much larger than
communication time; thus UEs are better to perform less local computations
and more communications, explaining the corresponding large value of θ∗ (i.e.,
θ∗ ≥ 0.53).

FEDL Solution

Theorem 3.1 The globally optimal solution to FEDL is the combined solutions to
three sub-problems SUB1, SUB2, and SUB3.

The proof of this theorem is straightforward. The idea is to use the KKT condition
to find the stationary points of FEDL . Then we can decompose the KKT condition
equations into three groups, each of them matches exactly to the KKT condition of
SUB1, SUB2, and SUB3, which can be solved for unique closed-form solution as
in Lemmas 3.1, 3.2, and 3.3, respectively. Thus this unique stationary point is also
the globally optimal solution to FEDL.

We then have some discussions on the combined solution to FEDL. First, we
see that SUB1 and SUB2 solutions can be characterized independently, which
can be explained that each UE often has two separate processors: one CPU for
mobile applications and another baseband processor for the radio control function.
Second, neither SUB1 nor SUB2 depends on θ because the communication phase

42 3 Resource Optimization for Wireless Federated Learning

in SUB2 is clearly not affected by the local accuracy of the computing problem,
whereas SUB2 considers the computation cost in one local iteration. However, the
solutions to SUB1 and SUB2, which can reveal how much communication cost is
more expensive than computation cost, are decisive factors to determine the optimal
level of local accuracy. Therefore, we can sequentially solve SUB1 and SUB2 first,
then SUB3 to achieve the optimal solutions to FEDL.

3.2.4 Numerical Results

In this subsection, both the communication and computation models follow the
same setting as in Fig. 3.2, except the number of UEs is increased to 50, and all
UEs have the same f max

n = 2.0 GHz, cn = 20 cycles/bit. Furthermore, we define
two new parameters, addressing the UE heterogeneity regarding computation and
communication phases in FEDL, respectively, as follows

Lcmp =
maxn∈N cnDn

fmax
n

minn∈N cnDn

fmin
n

(3.40)

Lcom = maxn∈N τmin
n

minn∈N τmax
n

. (3.41)

We see that higher values of Lcmp and Lcom indicate higher levels of UE het-
erogeneity. For example, Lcmp = 1 (Lcom = 1) can be considered as a high
heterogeneity level due to unbalanced data distributed and/or UE configuration
(unbalanced channel gain distribution) such that UE with their minimum frequency
(maximum transmission power) still have the same computation (communication)
time as those with maximum frequency (minimum transmission power). The level
of heterogeneity is controlled by two different settings. To vary Lcmp, the training

size Dn is generated with the fraction Dmin

Dmax ∈ {1., 0.2, 0.001
}

but the average data
of all UEs is kept at the same value 7.5 MB for varying values of Lcmp. On the other
hand, to vary Lcom, the distance between these devices and the BS is generated such

that dmin

dmax ∈ {1., 0.2, 0.001
}

but the average distance of all UEs is maintained at 26
m for different values of Lcom. Here Dmin and Dmax (dmin and dmax) are minimum
and maximum data size (BS-to-UE distance), respectively. In all scenarios, we fix
Lcmp = 0.3 when varying Lcom and fix Lcom = 0.48 when varying Lcmp.

Impact of UE Heterogeneity

We first examine the impact of UE heterogeneity on SUB1 and SUB2 in Fig. 3.5,
which shows that increasing Lcmp and Lcom enforces the optimal f ∗

n and τ ∗
n having

more diverse values and thus makes increase the computation and communication

3.2 Wireless Federated Learning: Convergence Analysis and Resource Allocation 43

(a) (b) (c) (d)

Fig. 3.5 Impact of UE heterogeneity on SUB1 and SUB2 with κ = 0.07. (a) Impact of Lcmp on
f ∗
n . (b) Impact of Lcmp on T ∗

cmp . (c) Impact of Lcom on τ ∗
n . (d) Impact of Lcom on T ∗

com

(a) (b)

Fig. 3.6 Impact of UE heterogeneity on FEDL. (a) Impact of Lcmp . (b) Impact of Lcom

time T ∗
cmp and T ∗

com, respectively. As expected, we observe that the high level of UE
heterogeneity has a negative impact on the FEDL system, as illustrated in Fig. 3.6a
and b, such that the total cost (objective of FEDL) is increased with a higher value
of Lcmp and Lcom respectively. However, in this setting, when Tcmp is comparable
to Tcom , e.g., 6.2 versus 2.9 s at Lcmp = Lcom = 10, the impact of Lcom on the
total cost is more profound than that of Lcmp, e.g., at κ = (0.1, 1, 10), the total cost
of FEDL increases (1.09, 1.11, 1.10) times and (1.62, 1.40, 1.43) times, when Lcmp

and Lcom are increased from 0.15 to 150, and from 0.31 to 186.8, respectively.
On the other hand, with a different setting such that Tcmp dominates Tcom , e.g.,

80 versus 7.8 s at Lcmp = Lcom = 10, the impacts of Lcmp and Lcom on total cost
are comparable, e.g., at κ = (0.1, 1, 10), the total cost of FEDL increases (1.14,
1.72, 1.65) times and (1.36, 1.21, 1.23) times, when Lcmp and Lcom are increased
from 0.05 to 50, and from 0.17 to 181.42, respectively.

Pareto Optimal Trade-off

We next illustrate the Pareto curve in Fig. 3.7. This curve shows the trade-off
between the conflicting goals of minimizing the time cost K(θ)Tglob and energy
cost K(θ)Eglob, in which we can decrease one type of cost yet with the expense of
increasing the other one. This figure also shows that the Pareto curve of FEDL is

44 3 Resource Optimization for Wireless Federated Learning

(a) (b)

Fig. 3.7 Pareto-optimal points of FEDL. (a) Impact of Lcmp and κ . (b) Impact of Lcom and κ

more efficient when the system has a low level of UE heterogeneity (i.e., small Lcmp

and/or Lcom).

Impact of η

We quantify the impact of η on the optimal θ∗ by varying κ in Fig. 3.8. Similar to
the observations after Lemma 3.3, when κ is very small or very large, the value of η,
which drives the corresponding value of θ∗, is determined by the proportions shown
in Fig. 3.9a or 3.9b, respectively, which also drives the corresponding value of θ∗.
However, in this setting with 50 UEs, when κ is very large, η and θ∗ decrease to
small values, which is in contrast to the scenario with 5 UEs in Fig. 3.4c (i.e, large
η and θ∗ with large κ). The main reason for this difference is that communication
time scales with the increasing number of UEs due to wireless sharing nature, which
makes the time portion small when κ is large, as shown in Fig. 3.9b. The final
observation from Figs. 3.8 and 3.9 is that the higher Lcmp (Lcom), the higher T ∗

cmp

(a) (b)

Fig. 3.8 Impact of κ on η and θ∗

3.3 Wireless Federated Learning: Resource Allocation and Transmit Power. . . 45

(a) (b)

Fig. 3.9 Proportion of computation energy and time

(T ∗
com), and thus higher (lower) portion of computation time, which makes higher

(lower) values of η and θ∗.

3.3 Wireless Federated Learning: Resource Allocation
and Transmit Power Allocation

In this section, we introduce the optimization of resource allocation and transmit
power for FL implemented over wireless networks. In particular, we first provide
a detailed literature review on the optimization of resource management for FL.
Then, we introduce a representative work that jointly optimize wireless resources
such as transmit power, resource block (RB) allocation and user selection for FL
implemented over wireless networks.

3.3.1 Motivation

Standard machine learning approaches require devices to transmit their collected
training data to a parameter sever for training purpose [66]. However, due to privacy
and limited communication resources, it is impractical for all users that participate
in learning to transmit all of their collected data to a parameter sever. This, in turn,
motivates the development of distributed learning frameworks that allow devices
to use individually collected data to train a learning model locally. One of the
most promising of such distributed learning frameworks is FL developed in [67].
FL enables users to collaboratively learn a shared machine learning model while
keeping their collected data on their devices [3, 68–70]. However, to train an FL
algorithm in a distributed manner, the users must transmit the trained parameters

46 3 Resource Optimization for Wireless Federated Learning

over wireless links which can introduce training errors and the inherent unreliability
of wireless links.

Recently, a number of existing works such as in [67] and[18, 71–78] have
studied important problems related to the implementation of FL over wireless
networks. The works in [67] and [71] provided a comprehensive survey on the
design of FL algorithms and introduced various challenges, problems, and solutions
for enhancing FL effectiveness. In [72], the authors developed two update methods
to reduce the uplink communication costs for FL. The work in [18] presented
a practical update method for a deep FL algorithm and conducted an extensive
empirical evaluation for five different FL models using four datasets. An echo state
network-based FL algorithm is developed in [73] to analyze and predict the location
and orientation for wireless virtual reality users. In [74], the authors proposed a
novel FL algorithm that can minimize the communication cost. The authors in [75]
studied the problem of joint power and resource allocation for ultra-reliable low
latency communication in vehicular networks. The work in [76] developed a new
approach to minimize the computing and transmission delay for FL algorithms.
While interesting, these prior works [67] and [18, 71–76] assumed that wireless
networks can readily integrate FL algorithms. However, in practice, due to the
unreliability of the wireless channels and to the wireless resource limitations (e.g.,
in terms of bandwidth and power), FL algorithms will encounter training errors due
to the wireless links [77]. For example, symbol errors introduced by the unreliable
nature of the wireless channel and by resource limitations can impact the quality
and correctness of the FL updates among users. Such errors will, in turn, affect the
performance of FL algorithms, as well as their convergence speed. Moreover, due
to the wireless bandwidth limitations, the number of users that can perform FL is
limited; a design issue that is ignored in [67] and [18, 71–76]. Furthermore, due to
limited energy consumption of each user’s device and strict delay requirement of
FL, not all wireless users can perform FL algorithms. Therefore, one must select
the appropriate users to perform FL algorithms and optimize the performance of
FL. In practice, to effectively deploy FL over real-world wireless networks, it is
necessary to investigate how the wireless factors affect the performance of FL
algorithms. Here, we note that, although some works such as [68] and [31, 77–
83] have studied communication aspects of FL, these works are limited in several
ways. First, the works in [68, 77], and [79] only provided a high-level exposition
of the challenges of communication in FL. Meanwhile, the authors in [31, 78–
82] did not consider the effect of packet transmission errors on the performance of
FL. The authors in [83] developed an analytical model to characterize the effect of
packet transmission errors on the FL performance. However, the work in [83] only
measured the effectiveness of three different scheduling policies and, hence, did not
find optimal user selection and RB allocation to optimize the FL performance.

Next, we introduce a representative work that jointly optimize wireless resources
such as transmit power, RB allocation and user selection to minimize the training
loss of FL.

3.3 Wireless Federated Learning: Resource Allocation and Transmit Power. . . 47

3.3.2 System Model

Consider a cellular network in which one BS and a set U of U users cooperatively
perform an FL algorithm for data analysis and inference. For example, the network
can execute an FL algorithm to sense the wireless environment and generate
a holistic radio environment mapping. The use of FL for such applications is
important because the data related to the wireless environment is distributed across
the network [3] and the BS cannot collect all of this scattered data to implement a
centralized learning algorithm. FL enables the BS and the users to collaboratively
learn a shared learning model while keeping all of the training data at the device of
each user. In an FL algorithm, each user will use its collected training data to train
an FL model. For example, for radio environment mapping, each user will collect
the data related to the wireless environment for training an FL model. Hereinafter,
the FL model that is trained at the device of each user (using the data collected
by the user itself) is called the local FL model. The BS is used to integrate the
local FL models and generate a shared FL model. This shared FL model is used to
improve the local FL model of each user so as to enable the users to collaboratively
perform a learning task without training data transfer. Hereinafter, the FL model that
is generated by the BS using the local FL models of its associated users is called the
global FL model. As shown in Fig. 3.10, the uplink from the users to the BS is used
to transmit the local FL model parameters while the downlink is used to transmit the
global FL model parameters.

Machine Learning Model

In our model, each user i collects a matrix Xi = [
xi1, . . . , xiKi

]
of input data,

where Ki is the number of the samples collected by each user i and each element

Fig. 3.10 The architecture
of an FL algorithm that is
being executed over a
wireless network with
multiple devices and a single
base station

48 3 Resource Optimization for Wireless Federated Learning

xik is an input vector of the FL algorithm. The size of xik depends on the specific
FL task. Our approach, however, is applicable to any generic FL algorithm and
task. Let yik be the output of xik . For simplicity, we consider an FL algorithm with
a single output, however, our approach can be readily generalized to a case with
multiple outputs [72]. The output data vector for training the FL algorithm of user i
is yi = [

yi1, . . . , yiKi

]
. We define a vector wi to capture the parameters related to

the local FL model that is trained by Xi and yi . In particular, wi determines the local
FL model of each user i. For example, in a linear regression learning algorithm,
xT
ikwi represents the predicted output and wi is a weight vector that determines

the performance of the linear regression learning algorithm. For each user i, the
local training problem seeks to find the optimal learning model parameters w∗

i that
minimize its training loss. The training process of an FL algorithm is done in a way
to solve the following optimization problem:

min
w1,...,wU

1

K

U∑

i=1

Ki∑

k=1

f (wi , xik, yik), (3.42)

s. t. w1 = w2 = . . . = wU = g, ∀i ∈ U , (3.42a)

where K =
U∑
i=1

Ki is total size of training data of all users and g is the global FL

model that is generated by the BS and f (wi , xik, yik) is a loss function. The loss
function captures the performance of the FL algorithm. Constraint (3.42a) is used to
ensure that, once the FL algorithm converges, all of the users and the BS will share
the same FL model for their learning task. This captures the fact that the purpose
of an FL algorithm is to enable the users and the BS to learn an optimal global FL
model without data transfer. To solve (3.42), the BS will transmit the parameters g

of the global FL model to its users so that they train their local FL models. Then, the
users will transmit their local FL models to the BS to update the global FL model.
The detailed procedure of training an FL algorithm to minimize the loss function
in (3.42) is shown in Fig. 3.11. In FL, the update of each user i’s local FL model wi

depends on the global model g while the update of the global model g depends on all
of the users’ local FL models. The update of the local FL model wi depends on the
learning algorithm. For example, one can use gradient descent, stochastic gradient
descent, or randomized coordinate descent [72] to update the local FL model. The
update of the global model g is given by Konečnỳ et al. [72]

gt =

U∑
i=1

Kiwi,t

K
. (3.43)

During the training process, each user will first use its training data Xi and yi to
train the local FL model wi and then, it will transmit wi to the BS via wireless
cellular links. Once the BS receives the local FL models from all participating

3.3 Wireless Federated Learning: Resource Allocation and Transmit Power. . . 49

Fig. 3.11 The learning
procedure of an FL algorithm

users, it will update the global FL model based on (3.43) and transmit the global
FL model g to all users to optimize the local FL models. As time elapses, the
BS and users can find their optimal FL models and use them to minimize the loss
function in (3.42). Since all of the local FL models are transmitted over wireless
cellular links, once they are received by the BS, they may contain erroneous symbols
due to the unreliable nature of the wireless channel, which, in turn, will have a
significant impact on the performance of FL. Meanwhile, the BS must update the
global FL model once it receives all of the local FL models from its users and, hence,
the wireless transmission delay will significantly affect the convergence of the FL
algorithm. In consequence, to deploy FL over a wireless network, one must jointly
consider the wireless and learning performance and factors.

Transmission Model

For uplink, we assume that an orthogonal frequency division multiple access
(OFDMA) technique in which each user occupies one RB. The uplink rate of user i
transmitting its local FL model parameters to the BS is given by

cU
i (r i , Pi) =

R∑

n=1

ri,nB
U
Ehi

(
log2

(
1+ Pihi

In + BUN0

))
, (3.44)

where r i = [ri,1, . . . , ri,R
]

is an RB allocation vector with R being the total number

of RBs, ri,n ∈ {0, 1} and
R∑

n=1
ri,n = 1; ri,n = 1 indicates that RB n is allocated to

50 3 Resource Optimization for Wireless Federated Learning

user i, and ri,n = 0, otherwise; BU is the bandwidth of each RB and Pi is the
transmit power of user i; hi = oid

−2
i is the channel gain between user i and the

BS with di being the distance between user i and the BS and oi being the Rayleigh
fading parameter; Ehi (·) is the expectation with respect to hi ; N0 is the noise power
spectral density; In is the interference caused by the users that are located in other
service areas (e.g., other BSs not participating in the FL algorithm) and use RB
n. Note that, although we ignore the optimization of resource allocation for the
users located at the other service areas, we must consider the interference caused
by the users in other service areas (if they are sharing RBs with the considered FL
users), since this interference may significantly affect the packet error rates and the
performance of FL.

Similarly, the downlink data rate achieved by the BS when transmitting the
parameters of global FL model to each user i is given by

cD
i = BD

Ehi

(
log2

(
1+ PBhi

ID + BDN0

))
, (3.45)

where BD is the bandwidth that the BS used to broadcast the global FL model
of each user i; PB is the transmit power of the BS; ID is the interference caused
by other BSs not participating in the FL algorithm. Given the uplink data rate cU

i

in (3.44) and the downlink data rate cD
i in (3.45), the transmission delays between

user i and the BS over uplink and downlink are respectively specified as

lUi (r i , Pi) = Z (wi)

cU
i (r i , Pi)

, (3.46)

lDi = Z (g)

cD
i

, (3.47)

where function Z (x) is the data size of x which is defined as the number of bits that
the users or the BS require to transmit vector x over wireless links. In particular,
Z (wi) represents the number of bits that each user i requires to transmit local FL
model wi to the BS while Z (g) is the number of bits that the BS requires to transmit
the global FL model g to each user. Here, Z (wi) and Z (g) are determined by the
type of implemented FL algorithm. From (3.43), we see that the number of elements
in the global FL model g is similar to that of each user i’s local FL model wi . Hence,
we assume Z (wi) = Z (g).

Packet Error Rates

For simplicity, we assume that each local FL model wi will be transmitted as a single
packet in the uplink. A cyclic redundancy check (CRC) mechanism is used to check
the data errors in the received local FL models at the BS. In particular, C (wi) = 0

3.3 Wireless Federated Learning: Resource Allocation and Transmit Power. . . 51

indicates that the local FL model received by the BS contains data errors; otherwise,
we have C (wi) = 1. The packet error rate experienced by the transmission of each
local FL model wi to the BS is given by Xi et al. [84]

qi (r i , Pi) =
R∑

n=1

ri,nqi,n, (3.48)

where qi,n = Ehi

(
1 − exp

(
−m

(
In+BUN0

)

Pihi

))
is the packet error rate over RB n

with m being a waterfall threshold [84].
In the considered system, whenever the received local FL model contains errors,

the BS will not use it for the update of the global FL model. We also assume that
the BS will not ask the corresponding users to resend their local FL models when
the received local FL models contain data errors. Instead, the BS will directly use
the remaining correct local FL models to update the global FL model. As a result,
the global FL model in (3.43) can be written as

g (a,P ,R) =

U∑
i=1

KiaiwiC (wi)

U∑
i=1

KiaiC (wi)

, (3.49)

where

C (wi) =
{
1, with probability 1 − qi (r i , Pi) ,

0, with probability qi (r i , Pi) ,
(3.50)

a = [a1, . . . , aU] is the vector of the user selection index with ai = 1 indicating
that user i performs the FL algorithm and ai = 0, otherwise, R = [r1, · · · , rU],
P = [P1, · · · , PU],

U∑
i=1

KiaiC (wi) is the total number of training data samples,

which depends on the user selection vector a and packet transmission C (wi),
KiaiwiC (wi) = 0 indicates that the local FL model of user i contains data errors
and, hence, the BS will not use it to generate the global FL model, and g (a,P ,R) is
the global FL model that explicitly incorporates the effect of wireless transmission.
From (3.49), we see that the global FL model also depends on the resource allocation
matrix R, user selection vector a, and transmit power vector P .

Energy Consumption Model

In our network, the energy consumption of each user consists of the energy needed
for two purposes: (a) Transmission of the local FL model and (b) Training of the

52 3 Resource Optimization for Wireless Federated Learning

local FL model. The energy consumption of each user i is given by Pan et al. [85]

ei (r i , Pi) = ςωiϑ
2Z (wi) + Pil

U
i (r i , Pi) , (3.51)

where ϑ is the frequency of the central processing unit (CPU) clock of each user i,
ωi is the number of CPU cycles required for computing per bit data of user i, which
is assumed to be equal for all users, and ς is the energy consumption coefficient
depending on the chip of each user i’s device. In (3.51), ςωiϑ

2Z (wi) is the energy
consumption of user i training the local FL model at its own device and Pil

U
i (r i , Pi)

represents the energy consumption of local FL model transmission from user i to the
BS. Note that, since the BS can have continuous power supply, we do not consider
the energy consumption of the BS in our optimization problem.

Problem Formulation

To jointly design the wireless network and the FL algorithm, we now formulate
an optimization problem whose goal is to minimize the training loss, while
factoring in the wireless network parameters. This minimization problem includes
optimizing transmit power allocation as well as resource allocation for each user.
The minimization problem is given by

min
a,P ,R

1

K

U∑

i=1

Ki∑

k=1

f (g (a,P ,R) , xik, yik), (3.52)

s. t. ai, ri,n ∈ {0, 1} , ∀i ∈ U , n = 1, . . . , R, (3.52a)

R∑
n=1

ri,n = ai, ∀i ∈ U , (3.52b)

lUi (r i , Pi) + lDi ≤ γT, ∀i ∈ U , (3.52c)

ei (r i , Pi) ≤ γE, ∀i ∈ U , (3.52d)
∑
i∈U

ri,n ≤ 1, ∀n = 1, . . . , R, (3.52e)

0 ≤ Pi ≤ Pmax, ∀i ∈ U , (3.52f)

where γT is the delay requirement for implementing the FL algorithm, γE is
the energy consumption of the FL algorithm, and B is the total downlink band-
width. (3.52a) and (3.52b) indicates that each user can occupy only one RB for
uplink data transmission. (3.52c) is the delay needed to execute the FL algorithm
at each learning step. (3.52d) is the energy consumption requirement of performing
an FL algorithm at each learning step. (3.52e) indicates that each uplink RB can
be allocated to at most one user. (3.52f) is a maximum transmit power constraint.

3.3 Wireless Federated Learning: Resource Allocation and Transmit Power. . . 53

From (3.52), we can see that the user selection vector a, the RB allocation matrix
R, and the transmit power vector P will not change during the FL training process
and the optimized a, R, and P must meet the delay and energy consumption
requirements at each learning step in (3.52c) and (3.52d).

From (3.48) and (3.49), we see that the transmit power and resource allocation
determine the packet error rate, thus affecting the update of the global FL model. In
consequence, the loss function of the FL algorithm in (3.52) depends on the resource
allocation and transmit power. Moreover, (3.52c) shows that, in order to perform an
FL algorithm, the users must satisfy a specific delay requirement. In particular, in
an FL algorithm, the BS must wait to receive the local model of each user before
updating its global FL model. Hence, transmission delay plays a key role in the FL
performance. In a practical FL algorithm, it is desirable that all users transmit their
local FL models to the BS simultaneously. From (3.52d), we see that to perform
the FL algorithm, a given user must have enough energy to transmit and update
the local FL model throughout the FL iterative process. If this given user does not
have enough energy, the BS should choose this user to participate in the FL process.
In consequence, in order to implement an FL algorithm in a real-world network,
the wireless network must provide low energy consumption and latency, and highly
reliable data transmission.

3.3.3 Convergence Analysis

To solve (3.52), we first need to analyze how the packet error rate affects the
performance of the FL. To find the relationship between the packet error rates and
the FL performance, we must first analyze the convergence rate of FL. However,
since the update of the global FL model depends on the instantaneous signal-to-
interference-plus-noise ratio (SINR), we can analyze only the expected convergence
rate of FL. Here, we first analyze the expected convergence rate of FL. Then, we
show how the packet error rate affects the performance of the FL in (3.52).

In the studied network, the users adopt a standard gradient descent method to
update their local FL models as done in [72]. Therefore, during the training process,
the local FL model wi of each selected user i (ai = 1) at step t is

wi,t+1 = gt (a,P ,R) − λ

Ki

Ki∑

k=1

∇f
(
gt (a,P ,R) , xik, yik

)
, (3.53)

where λ is the learning rate and ∇f
(
gt (a,P ,R) , xik, yik

)
is the gradient of

f
(
gt (a,P ,R) , xik, yik

)
with respect to gt (a,P ,R).

54 3 Resource Optimization for Wireless Federated Learning

We assume that F (g)= 1
K

U∑
i=1

Ki∑
k=1

f (g, xik, yik) and Fi (g)=
Ki∑
k=1

f (g, xik, yik)

where g is short for g (a,P ,R). Based on (3.53), the update of global FL model g

at step t is given by

gt+1 = gt − λ
(∇F

(
gt

)− o
)
, (3.54)

where o = ∇F
(
gt

) −
U∑
i=1

ai

Ki∑
k=1

∇f (g,xik ,yik)C(wi)

U∑
i=1

KiaiC(wi)

. We also assume that the FL

algorithm converges to an optimal global FL model g∗ after the learning steps.
To derive the expected convergence rate of FL, we first make the following
assumptions, as done in [70, 83].

• First, we assume that the gradient ∇F (g) of F (g) is uniformly Lipschitz
continuous with respect to g [86]. Hence, we have

‖∇F
(
gt+1

)− ∇F
(
gt

) ‖ ≤ L‖gt+1 − gt‖, (3.55)

where L is a positive constant and ‖gt+1 − gt‖ is the norm of gt+1 − gt .
• Second, we assume that F (g) is strongly convex with positive parameter μ, such

that

F
(
gt+1

) ≥ F
(
gt

)+ (gt+1 − gt

)T ∇F
(
gt

)+ μ

2
‖gt+1 − gt‖2. (3.56)

• We also assumed that F (g) is twice-continuously differentiable. Based on (3.55)
and (3.56), we have

μI � ∇2F (g) � LI . (3.57)

• We also assume that ‖∇f
(
gt , xik, yik

)‖2 ≤ ζ1 +ζ2‖∇F
(
gt

) ‖2 with ζ1, ζ2 ≥ 0.

These assumptions can be satisfied by several widely used loss functions such as
the mean squared error, logistic regression, and cross entropy [86]. These popular
loss functions can be used to capture the performance of implementing practical
FL algorithms for identification, prediction, and classification. For future work,
we can investigate how to extend our work for other non-convex loss functions.
The expected convergence rate of the FL algorithms can now be obtained by the
following theorem.

3.3 Wireless Federated Learning: Resource Allocation and Transmit Power. . . 55

Theorem 3.2 Given the transmit power vector P , RB allocation matrix R, user
selection vector a, optimal global FL model g∗, and the learning rate λ = 1

L
, the

upper bound of E
(
F
(
gt+1

)− F (g∗)
)
can be given by

E
(
F
(
gt+1

)− F
(
g∗)) ≤ At

E
(
F
(
g0
)− F

(
g∗))

+ 2ζ1

LK

U∑

i=1

Ki (1 − ai + aiqi (r i , Pi))
1 − At

1 − A
︸ ︷︷ ︸

Impact of wireless factors on FL convergence

, (3.58)

where A = 1 − μ
L

+ 4μζ2
LK

U∑
i=1

Ki (1 − ai + aiqi (r i , Pi)) and E (·) is the expectation
with respect to packet error rate.

Proof See in [29].

In Theorem 3.2, gt+1 is the global FL model that is generated based only on
the local FL models of selected users (ai = 1) at step t + 1. g∗ is the optimal
FL model that is generated based on the local FL models of all uses in an
ideal setting with no wireless errors. From Theorem 3.2, we see that a gap,

2ζ1
LK

U∑
i=1

Ki (1 − ai + aiqi (r i , Pi))
1−At

1−A
, exists between E

(
F
(
gt

))
and E (F (g∗)).

This gap is caused by the packet errors and the user selection policy. As the
packet error rate decreases, the gap between E

(
F
(
gt

))
and E (F (g∗)) decreases.

Meanwhile, as the number of users that implement the FL algorithm increases, the
gap also decreases. Moreover, as the packet error rate decreases, the value of A also
decreases, which indicates that the convergence speed of the FL algorithm improves.
Hence, it is necessary to optimize resource allocation, user selection, and transmit
power for the implementation of any FL algorithm over a realistic wireless network.
Theorem 3.2 can be extended to the case in which each local FL model needs to
be transmitted over a large number of packets by replacing the packet error rate
qi (r i , Pi) in (3.58) with the error rate of transmitting multiple packets to send the
entire local FL model.

3.3.4 Optimization of RB Allocation and Transmit Power
for FL Training Loss Minimization

In this subsection, we introduce how to solve the problem in (3.52). To solve
the problem in (3.52), we must first simplify it. From Theorem 3.2, we can see
that, to minimize the training loss in (3.52), we need to only minimize the gap,

2ζ1
LK

U∑
i=1

Ki (1 − ai + aiqi (r i , Pi))
1−At

1−A
. When A ≥ 1, the FL algorithm will not

56 3 Resource Optimization for Wireless Federated Learning

converge. In consequence, here, we only consider the minimization of the FL
training loss when A < 1. Hence, as t is large enough, which captures the
asymptotic convergence behavior of FL, we have At = 0. The gap can be rewritten
as

2ζ1

LK

U∑

i=1

Ki (1 − ai + aiqi (r i , Pi))
1 − At

1 − A
=

2ζ1
LK

U∑
i=1

Ki (1 − ai + aiqi (r i , Pi))

μ
L

− 4μζ2
LK

U∑
i=1

Ki (1 − ai + aiqi (r i , Pi))

.

(3.59)

From (3.59), we can observe that minimizing 2ζ1
LK

U∑
i=1

Ki (1 − ai + aiqi (r i , Pi))

1−At

1−A
only requires minimizing

U∑
i=1

Ki (1 − ai + aiqi (r i , Pi)). Meanwhile, since

ai =
R∑

n=1
ri,n and qi (r i , Pi) =

R∑
n=1

ri,nqi,n, we have qi (r i , Pi) ≤ 1, when ai = 1,

and qi (r i , Pi) = 0, if ai = 0. In consequence, we have aiqi (r i , Pi) = qi (r i , Pi).
The problem in (3.52) can be simplified as

min
P ,R

U∑

i=1

Ki

(
1 −

R∑

n=1

ri,n + qi (r i , Pi)

)
, (3.60)

s. t. (3.52c)–(3.52f),

ri,n ∈ {0, 1} , ∀i ∈ U , n = 1, . . . , R, (3.60a)

R∑
n=1

ri,n ≤ 1, ∀i ∈ U . (3.60b)

Next, we first use RB allocation matrix R to represent the optimal transmit power for
each user. Then, we find the uplink RB allocation to minimize the FL loss function.

Optimal Transmit Power

The optimal transmit power of each user i can be determined by the following
proposition.

3.3 Wireless Federated Learning: Resource Allocation and Transmit Power. . . 57

Proposition 3.1 Given the uplink RB allocation vector r i of each user i, the
optimal transmit power of each user i, P ∗

i is given by

P ∗
i (r i) = min

{
Pmax, Pi,γE

}
, (3.61)

where Pi,γE satisfies the equality ςωiϑ
2Z (wi) + Pi,γEZ(wi)

cU
i

(
r i ,Pi,γE

) = γE.

Proof See in [29].

From Proposition 3.1, we see that the optimal transmit power depends on the size
of the local FL model Z (wi) and the interference in each RB. In particular, as the
size of the local FL model increases, each user must spend more energy for training
FL model and, hence, the energy that can be used for data transmission decreases.
In consequence, the training loss increases. Hereinafter, for simplicity, P ∗

i is short
for P ∗

i (r i).

Optimal Uplink Resource Block Allocation

Based on Proposition 3.1 and (3.48), the optimization problem in (3.60) can be
simplified as follows

min
R

U∑

i=1

Ki

(
1 −

R∑

n=1

ri,n +
R∑

n=1

ri,nqi,n

)
, (3.62)

s. t. (3.52a), (3.52b), and (3.52e),

lUi

(
r i , P

∗
i

)+ lDi ≤ γT, ∀i ∈ U , (3.62a)

ei
(
r i , P

∗
i

) ≤ γE, ∀i ∈ U . (3.62b)

Obviously, the objective function (3.62) is linear, the constraints are non-linear, and
the optimization variables are integers. Hence, problem (3.62) can be solved by
using a standard Hungarian algorithm [87] . When the optimal RB allocation vector
r∗
i is determined, the optimal transmit power of each device can be determined

by (3.61) and the optimal user selection can be determined by a∗
i =

R∑
n=1

r∗
i,n.

Algorithm 1 summarizes the entire process of optimizing the user selection vector
a, RB allocation matrix R, and the transmit power vector P for training the FL
algorithm.

58 3 Resource Optimization for Wireless Federated Learning

3.3.5 Numerical Results

Next, we use several simulation results to show the performance of the proposed
FL algorithm. In simulations, we consider a circular network area having a radius
r = 500 m with one BS at its center servicing U = 15 uniformly distributed users.
The FL algorithm is simulated by using the Matlab Machine Learning Toolbox for
linear regression and handwritten digit identification. For linear regression, each
user implements a feedforward neural network (FNN) that consists of 20 neurons.
The data used to train the FL algorithm is generated randomly from [0, 1]. The input
x and the output y follow the function y = −2x + 1 + n × 0.4 where n follows a
Gaussian distribution N (0, 1). The loss function is mean squared normalized error.
For handwritten digit identification, each user trains an FNN that consists of 50
neurons using the MNIST dataset [88]. The loss function is cross entropy loss. For
comparison purposes, we use three baselines: (a) an FL algorithm that optimizes
user selection with random resource allocation, (b) an FL algorithm that randomly
determines user selection and resource allocation, which can be seen as a standard
FL algorithm (e.g., similar to the one in [72]) that is not wireless-aware, and (c)
a wireless optimization algorithm that minimizes the sum packet error rates of all
users via optimizing user selection, transmit power while ignoring FL parameters.

In Fig. 3.12, we show how the identification accuracy changes as the number of
iterations varies. From Fig. 3.12, we see that, as the number of iterations increases,
the identification accuracy of all considered learning algorithms decreases first
and, then remains unchanged. The fact that the identification accuracy remains

Number of iterations

0.2

20 40 60 80 100 120

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Id
en

tif
ic

at
io

n
ac

cu
ra

cy

Proposed FL
Baseline a)
Baseline b)
Baseline c)

Fig. 3.12 Identification accuracy as the number of iterations varies

3.3 Wireless Federated Learning: Resource Allocation and Transmit Power. . . 59

Total number of users

0.78

0.8

0.82

0.84

0.86

0.88

0.9

Id
en

tif
ic

at
io

n
ac

cu
ra

cy

Proposed FL
Baseline a)
Baseline b)
Baseline c)

3 6 9 12 15 18

Fig. 3.13 Identification accuracy as the total number of users varies (R = 12)

unchanged demonstrates that the FL algorithm converges. From Fig. 3.12, we can
also see that the increase speed in the value of identification accuracy is different
during each iteration. This is due to the fact that the local FL models that are received
by the BS may contain data errors and the BS may not be able to use them for the
update of the global FL model. In consequence, at each iteration, the number of local
FL models that can be used for the update of the global FL model will be different.
Figure 3.12 also shows that a gap exists between the FL algorithm that optimizes
the wireless factors and baselines (a), (b), and (c). This gap is caused by the packet
errors.

Figure 3.13 shows how the identification accuracy changes as the total number of
users varies. In this figure, an appropriate subset of users is selected to perform the
FL algorithm. From Fig. 3.13, we can observe that, as the number of users increases,
the identification accuracy increases. This is due to the fact that an increase in
the number of users leads to more data available for the FL algorithm training
and, hence, improving the accuracy of approximation of the gradient of the loss
function. Figure 3.13 also shows that the FL algorithm that optimizes wireless
factors improves the identification accuracy by, respectively, up to 1.2%, 1.7%, and
2.3% compared to baselines (a), (b), and (c) as the network consists of 18 users.
The 1.2% improvement stems from the fact that the FL algorithm optimizes the
resource allocation. The 1.7% improvement stems from the fact that the wireless
aware FL algorithm joint considers learning and wireless effects and, hence, it can
optimize the user selection and resource allocation to reduce the FL loss function.
The 2.3% improvement stems from the fact that the proposed algorithm optimizes

60 3 Resource Optimization for Wireless Federated Learning

wireless factors while considering FL parameters such as the number of training
data samples. Figure 3.13 also shows that when the number of users is less than 12,
the value of the identification accuracy increases quickly. In contrast, as the number
of users continues to increase, the identification accuracy increases slowly. This is
because, for a higher number of users, the BS will have enough data samples to
accurately approximate the gradient of the loss function.

3.4 Collaborative Federated Learning

In this section, we first provide a detailed overview of centralized learning (CL),
original FL (OFL), and collaborative FL (CFL) [89], and summarize their advan-
tages, drawbacks, and operation conditions. Then, we introduce four important
performance metrics to quantify the CFL performance over IoT systems. Further,
we introduce several important communication techniques to optimize the CFL
performance metrics. For each communication technique, we first introduce the
motivation for optimizing CFL performance and then present future research
opportunities.

3.4.1 Motivation

Machine learning finds a wide range of applications in wireless networks ranging
from data analytics to network monitoring and optimization [66]. However, cen-
tralized ML requires edge devices to transmit their data to a central controller for
learning. In practical deployments of ML in wireless systems, such as the Internet
of Things (IoT), due to privacy issues and stringent resource (e.g., bandwidth and
power) constraints, edge IoT devices may not be able or willing to share their
collected data with other devices or a central controller. To enable edge devices in a
wireless network in training a shared ML model without data exchanges, federated
learning (FL) was proposed by Google [67].

FL is a distributed ML scheme that allows IoT devices to collaboratively perform
on-device training of a shared ML task while only exchanging model parameters
with a central controller. Keeping the data at IoT devices not only preserves privacy
but may also reduce network congestion. Due to the unique features of FL, a
number of existing works (e.g., see [90, 90–93]), studied its use for wireless network
optimization.

In practice, to implement FL over IoT networks, edge devices must repeatedly
transmit their trained ML models to a central controller via wireless links. Due
to limited wireless resources in an IoT, only a subset of devices can use FL.
Meanwhile, ML models that are transmitted from IoT devices to a central controller
(e.g., a base station) are subject to errors and delays caused by the wireless channel,
which affects the learning performance. Therefore, it is necessary to consider the

3.4 Collaborative Federated Learning 61

optimization of wireless networks to improve FL performance, as pointed out in
[81, 82, 94–96]. This emerging “communications for FL” research area is the key
focus of this work.

Recently, several surveys and tutorials related to FL over wireless networks
appeared in [90] and [77, 97, 98]. First, the works in [77, 90, 97] investigated the
use of FL for communications, rather than the impact of wireless networking on
FL. Moreover, all prior works in [77, 90, 97] and [98] focused on the original FL
from Google in [67] (called original FL hereinafter), which requires all IoT devices
to transmit their ML models to a central controller. Hence, these existing surveys
did not consider the implementation of FL with less or even no reliance on the
central controller. Furthermore, they did not analyze how to use wireless techniques
to optimize FL performance.

Next, we introduce a novel FL framework, dubbed collaborative FL, that
combines collaborative learning with federated learning so as to enable edge
devices to engage in FL without connecting to a central controller. To introduce
this new framework, we first provide a detailed overview on centralized learn-
ing (CL), original FL (OFL), and collaborative FL (CFL), and summarize their
advantages, drawbacks, and usage. Then, we introduce three important performance
metrics to quantify the CFL performance over large-scale wireless networks. We
then introduce several important communication techniques ranging from network
formation, device scheduling, mobility management, and coding to optimize the
CFL performance metrics. For each communication technique, we introduce the
motivation for optimizing the CFL performance and then present an illustrative
example and future research opportunities.

3.4.2 Preliminaries and Overview

Next, we introduce the basic architectures and differences between CL, OFL, and
CFL.

As shown in Fig. 3.14a, CL needs only one ML model located at a base station
(BS) or IoT cloud which works as a central controller. All devices must connect and
send their data to the BS for training this ML model. Then, the BS will transmit the
trained ML model to all devices. Hence, CL only requires the BS to communicate
with all devices once so as to collect all devices’ datasets.

The key advantage of CL is that it enables the BS or cloud to directly find
a globally optimal ML model that minimizes the learning loss function value.
Since the entire training process is completed by the BS, the ML training will
not be affected by wireless network performance. However, imperfect wireless
transmissions may introduce errors to the data used for training. Moreover, CL
requires devices to transmit their collected data to the BS which leads to information
leakage. In addition, significant overhead and resources are needed at the network
and device levels to execute CL.

62 3 Resource Optimization for Wireless Federated Learning

Device a

(a)

Device a

(b

Device a

(c)

Fig. 3.14 Architectures of centralized learning, original FL, and collaborative FL. (a) Architecture
of CL. (b) Architecture of OFL. (c) Architecture of CFL

Original Federated Learning

To maintain privacy, Google’s OFL framework allows each edge device to coopera-
tively train a shared ML model without data transmission. In OFL, both devices and
the BS own an ML model with the same architecture, as shown in Fig. 3.14b. OFL
is trained by an iterative learning process. First, all devices use their local data to
train their local ML models and transmit their trained models to the BS. Then, the
BS aggregates the received ML models, generated a new aggregate ML model, and
transmits it back to all devices. Hereinafter, the ML model that is trained by an edge
device is called local FL model while the ML model generated by the BS is called
global FL model. At convergence, the global FL model will be equal to all local FL
models, which means that devices find a shared FL model and the local FL model
at convergence can be used to analyze all devices’ datasets.

The key advantage of OFL is that it preserves data privacy and can be imple-
mented over devices with less overhead than centralized ML. However, OFL
still requires all devices to transmit their local FL model parameters to a BS.
Hence, imperfect and dynamic wireless transmission will significantly impact the
convergence time and the performance of OFL.

Collaborative Federated Learning

OFL requires all devices to send their local models to a BS, however, in practical IoT
systems, devices may not be able to connect to the BS due to energy limitations or
to a potentially high transmission delay. To overcome this challenge and facilitate
the use of OFL in real-world IoT systems, we propose the concept of CFL using
which devices can engage in FL without connecting to a BS or a cloud.

In CFL, devices that cannot connect to the BS directly can associate with
neighboring users. For example, as shown in Fig. 3.14b, for OFL, device a cannot
connect to the BS and perform FL due to a potentially high transmission delay.

3.4 Collaborative Federated Learning 63

However, in CFL, as shown in Fig. 3.14c, device a can connect to its closest device
for performing FL. CFL is also trained iteratively. First, each device transmits its
trained local FL model to its connected devices or the BS. Then, the BS generates
the global FL model and transmits it to the associated devices. Finally, each device
updates its local FL model based on the local FL models received from other devices
or the BS. In OFL, each device must train its local FL model using gradient descent
(GD) methods while the BS aggregates the local FL models. However, in CFL, each
device must both aggregate the local FL models received from other devices and
train its local FL model.

To show the difference between CFL and OFL, we implemented a preliminary
simulation for a network having one BS and six devices, as shown in Fig. 3.15a. The
local FL model of each device consists of a shallow feedforward neural network
with 50 neurons. The MNIST dataset [88] is used for training the local FL models
at each device and each device has 500 data samples. OFL is used for comparison.
The maximum time used for FL model parameter transmission is set to be 0.23 s.

Figure 3.15b shows how the identification accuracy changes over time. Fig-
ure 3.15b demonstrates that CFL outperforms OFL. This is because, for OFL, only
four devices can participate in FL and the other two devices have a delay larger than
0.23 s. Since CFL allows devices to connect to other devices and the transmission

Device bDevice a

Original FL Collabora ve FL

(a)

50 100 150 200 250

Number of iterations

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
re

di
ct

io
n

ac
cu

ra
cy Collaborative FL

Original FL

230 240 250

0.85

0.9

(b)

Fig. 3.15 Simulation system and result to show the performance of CFL and OFL. In this figure, a
red digit is the distance between two adjacent devices. (a) Simulation system. (b) Simulation result

64 3 Resource Optimization for Wireless Federated Learning

= log
(a)

=
(b)

= 1
(c)

=
(d)

Fig. 3.16 Number of iterations needed to converge for different CFL algorithms with different

topologies. In this figure, O

(
max

((
g0−w∗)4,L4P 2

n

)

ε2

)
is the upper bound of the number of iterations

that a CFL algorithm needs to converge, where n is the number of devices that perform the FL
algorithm, ε is the target accuracy which implies the difference between the optimal FL model
and the FL model at convergence, L is the upper bound of the gradient of the loss function, g0 =
1
n

∑n
i=1 w0

i with w0
i being the initial local FL model of device i, and w∗ is the optimal local FL

model at convergence. (a) Grid topology. (b) Path topology. (c) Complete topology. (d) Complete
topology Star topology

delay between any two neighboring devices is smaller than 0.23 s, six devices can
participate. In fact, CFL can also reduce the energy consumption for device b since
it only needs to transmit its ML model parameters to device a instead of the BS.

The key advantage of CFL is that it enables the devices to perform the FL without
transmitting local FL models to the BS, as shown in Fig. 3.16. Given the overview
of CL, OFL, and CFL, we remark the following:

• Choosing between CL or FL depends on: (a) willingness of data sharing, (b) ML
model data size, and (c) size of the collected data of each device. For example,
when devices agree to share the data and the size of the collected data is smaller
than the ML model data size, CL is recommended.

3.4 Collaborative Federated Learning 65

• Choosing between OFL or CFL depends on: (a) whether the BS performs FL
and (b) the connection and transmission delay between devices and the BS. For
example, if all IoT devices need to implement FL without the BS, then CFL is
more suitable.

• OFL can be considered as a special case of CFL. In a network, if each device
connects to all other devices, CFL is equivalent OFL.

3.4.3 Communication Techniques for Collaborative Federated
Learning

We now overview key techniques that can be used to improve the performance of
CFL over wireless networks.

Network Formation

The first fundamental step towards deploying CFL is to analyze the process of
network formation using which devices can connect to one another to engage in
a CFL task. In CFL, devices can form different network topologies. For example,
IoT devices can form a grid topology for CFL, as shown in Fig. 3.16a. Naturally,
the training complexity and the FL convergence time directly depend on the formed
topology. Hence, for any given network scenario, it will be interesting to investigate
the optimal CFL network topology.

Figure 3.16 shows the upper bound of the number of iterations for CFL con-
vergence when assuming that the upper bound is derived based on the assumption
that each device updates its local FL model using the Lazy Metropolis method.
Figure 3.16 shows that, when the number of links of each device increases, the
number of iterations decreases because having more links increases the frequency
of local FL model sharing.

Clearly, CFL yields interesting network formation research questions as fol-
lows:

• Optimal CFL network formation: The optimal CFL network topology depends
on the CFL performance metrics being optimized. Therefore, a fundamental CFL
question is that of network formation: How can the devices interact to form an
optimal network topology that maximizes the various CFL performance metrics
and tradeoffs? To find the optimal CFL network topology, the first step is to
define a proper utility function that jointly considers multiple dependent CFL
performance metrics and network topology. Given the defined utility function,
one must develop network formation algorithms to optimize the utility function.
Both centralzied and distributed solutions can be developed. Centralized solu-
tions such as searching based algorithms may be able to find the globally optimal
network topology. However, the implementation of centralized solutions requires

66 3 Resource Optimization for Wireless Federated Learning

all devices’ information such as locations or wireless channel conditions, which
is impractical for a large-scale and dynamic IoT system. For distributed solutions,
one can adopt a game-theoretic approach, particularly using network formation
games [56]. In network formation games, each device is seen as an individual
agent whose goal is to form a graph with neighboring devices so as to optimize
the CFL performance metrics. The CFL performance (e.g., utility) depends on
the entire graph and decision of all agents which makes the use of game theory
suitable. One unique feature of the CFL network formation game is that it could
be dynamic and requires far-sighted decision making. That is an angle that has
only been studied in limited prior works as discussed in [56].

• Network formation with asynchronous training: Under asynchronous FL
training, IoT devices will update and transmit their local FL models at different
time slots. Due to limited computing and wireless resources, each device may
not want to update its local FL model until it receives all local FL models
of its associated devices. Using asynchronous training can increase local FL
model update frequency and the data rate of each device which reduces the
convergence time. In asynchronous training, the number of devices that need
to transmit the local FL models is time-varying. Hence, the network topology
must be adapted to the changes in the number of devices that must transmit local
FL models. Here, one must determine the frequency with which the network
topology must be updated according to the number of participating devices. Note
that each network topology update will change the wireless resource allocation
and device association schemes so as to improve CFL performance metrics such
as convergence time. However, network topology updates will also introduce
communication overhead such as network state information sharing.

• Network formation with partial network information: In actual IoT, each
device may not completely know the network architecture, device locations, and
network composition. Due to this limited information, the number of devices that
each device can connect to is limited and hence devices may not be able to form
a network topology that satisfies the CFL usage conditions. Therefore, there is
a need to investigate a globally optimal network formation for IoT devices with
partial information. Since most existing complexity results related to network
formation (e.g., see [99]) assume that each device has complete information,
they cannot be used for devices with partial network information. Meanwhile,
due to partial network information, devices may form several unconnected small
device groups. Hence, a multi-layer network formation must be designed. For
example, in the first layer, devices will exchange their local FL model parameters
in their own groups while the local FL model parameters are exchanged over
multiple groups in the second layer. The designed scheme must balance the
communication overheads and training complexity among multiple layers.

3.4 Collaborative Federated Learning 67

Device Scheduling

Due to energy constraints and wireless resource limitations, the number of devices
that can engage in CFL is limited. Hence, an IoT device may update its local FL
model using the local FL models of a subset of devices thus decreasing the CFL
convergence time. Therefore, it is necessary to find an optimal device scheduling
policy that can determine the frequency and which iterations that each device
engages in CFL so as to optimize the CFL performance metrics.

Device scheduling plays an important role in training CFL and it also faces
several interesting research problems:

• Data importance-aware device scheduling: In CFL, the contribution of each
device’s dataset on the update of a local FL model can be seen as the data
importance of that device’s dataset. The data importance of each device depends
on the number of training data samples and the data distribution. For instance,
if a device has a large number of training data samples, its local FL model
will be allocated a large weight within the local FL model update. Since only
a subset of devices can perform FL at each iteration, it is necessary to design
data importance-aware device scheduling policies for improving convergence
speed. In particular, one must first build a data importance model that jointly
considers the number of training data samples, data distribution, and data
uniqueness. Meanwhile, in CFL, devices cannot share data and, hence, each
device may not be able to directly know the data importance of other devices.
Therefore, there is a need to find a method to learn the data importance of other
devices from their transmitted local FL model parameters. In addition, one must
determine the frequency of local FL model update for devices with different data
importance. Note that increasing the update frequency of the devices with high
data importance can improve convergence speed but it also increases the loss
function value.

• Device scheduling for multiple FL tasks: In a wireless network, a device
may perform multiple FL algorithms simultaneously. Therefore, it will be
interesting to design a device scheduling policy that enables devices to efficiently
train multiple FL models and transmit the trained FL models to other devices
simultaneously. Since each FL task has its specific convergence time requirement
and target loss function value, the developed device scheduling policy must
determine which FL model must be trained first and which FL model must be
transmitted first so as to satisfy the requirements of each FL task. Moreover,
since the convergence time of each FL task is different, the designed scheduling
policy must be adapted to the changes in the number of incomplete FL tasks.

• Device scheduling and network formation for mobile devices: In an IoT
system, several devices, such as cars and drones, are mobile. The connections
among different devices and the wireless network performance will change
depending on the mobility of the devices thus affecting the CFL performance.
Meanwhile, device mobility will increase the frequency of devices changing
their connections thus slowing down the CFL training process. Therefore, it is

68 3 Resource Optimization for Wireless Federated Learning

necessary to study device scheduling and network formation for mobile devices.
In OFL, devices will transmit their local FL models to a static BS. However, in
CFL, mobile devices must transmit their local FL models to other mobile devices.
Hence, the devices’ locations and connections are correlated in space (i.e.,
between two connected devices) and time (i.e., between time slots). For example,
for two devices moving in parallel, although the location will be changing, the
distance between the two devices remains constant. As a result, the change of
their locations will not increase the local FL model transmission delay. Therefore,
one must first build a model to capture the effect of spatio-temporal correlation of
device locations and connections on the FL performance metrics. Then, it must
investigate how to use spatio-temporal correlation to optimize device scheduling
and network topology policies and the frequency of changing these policies.

Coding

During the CFL training process, source coding, channel coding, and gradient
coding can be used to improve the FL performance. Source coding is used to
compress the high-dimensional FL model parameters so that they can be represented
by a small number of bits hence reducing the FL parameter transmission delay.
Channel coding is used to protect the transmitted FL model parameters against
the wireless noise and interference thus improving packet error rates and CFL
reliability. Gradient coding is used to encode the gradient descent parameters of
machine learning algorithms so as to improve the ML performance.

Obviously, source, channel, and gradient coding can significantly improve CFL
performance. However, a number of research questions still exists:

• Heterogeneous source coding design: In an IoT system, the wireless transmis-
sion link characteristics of each device will be different (e.g., different data rates).
To efficiently use wireless resources for FL model transmission, each device may
encode its local FL model using different number of bits or different coding
techniques. This type of coding schemes is called heterogeneous source coding.
For example, some devices can use 15 bits to represent their local FL models
while another can use 7 bits to represent its local FL model. Heterogeneous
source coding can significantly reduce the coding energy consumption and
decrease the loss function value. However, in CFL, a device must transmit its
local FL model to multiple devices. Therefore, one must determine the number
of local FL models that each device must encode and the number of bits used to
encode the corresponding local FL models. For example, if a given device must
transmit its local FL model to three devices, then this device can encode a local
FL model and transmit it to three devices. Also, the device can encode two or
three local FL models with different number of bits and then transmit them to
these three devices.

• Gradient coding for avoiding stragglers: Due to limited wireless resources, an
IoT system has devices with extremely high transmission delay or computational

3.5 Summary 69

delay. Such devices (called stragglers) may not be able to complete the local FL
model transmission within the time duration required by the system. If a network
has a large number of stragglers, the number of devices that can perform CFL
will significantly decrease. Therefore, there is a need to design gradient coding
schemes for addressing the problem of stragglers. However, traditional gradient
coding methods require devices to share their dataset with other devices so as to
remove stragglers and hence, they cannot be used for CFL since CFL does not
allow devices to share their data. Hence, one must investigate a novel gradient
coding scheme without data sharing.

3.5 Summary

In this chapter, we have presented a joint learning and communication framework
for federated learning over wireless networks. In first part, we have formulated an
optimization problem that jointly considers user selection and resource allocation
for the minimization of federated learning training loss. To solve this problem,
we have derived a closed-form expression for the expected convergence rate of
the FL algorithm that considers the limitations of the wireless medium. Based on
the derived expected convergence rate, the optimal transmit power is determined
given the user selection and uplink resource block allocation. Then, the Hungarian
algorithm is used to find the optimal user selection and RB allocation so as
to minimize the FL loss function. Simulation results have shown that the joint
federated learning and communication framework yields significant improvements
in the performance compared to existing implementations of the FL algorithm that
does not account for the properties of the wireless channel.

In the next part, we have formulated a Federated Learning over wireless network
as an optimization problem that captures both trade-offs, such as (i) between
computation and communication latencies determined by learning accuracy level,
and thus (ii) between the Federated Learning time and user equipment energy
consumption. By decomposing the problem into three sub-problems with convex
structure, we then characterized how the computation and communication latencies
of mobile devices affect to various trade-offs between the user equipment energy
consumption, system learning time, and learning accuracy parameter, and also
quantified the impact of user equipment heterogeneity on the system cost. In the
final part, we have presented a novel collaborative federated learning framework that
enables the participation of end-devices having limited communication resources
for performance improvement. Collaborative federated learning has shown per-
formance improvement in terms of learning accuracy. Therefore, one can use
collaborative federated learning for various IoT applications.

Chapter 4
Incentive Mechanisms for Federated
Learning

Abstract In this chapter, we discuss various components of federated learning that
must be given some incentive in terms of monetary cost or other benefits. We design
incentive mechanism design for federated learning using game theory and auction
theory. Finally, we present extensive numerical results to show the validity of our
proposed incentive mechanisms.

4.1 Introduction

Federated learning can be trained mainly in two different ways, such as (a)
centralized server aggregation-based training, and (b) blockchain-based training, as
shown in Figs. 4.1 and 4.2. Federated learning using centralized server aggregation
involves continuous, iterative interaction between the end-devices and aggregation
server. End-devices use their resources (i.e., computation resource and energy) to
train their local learning models. The locally trained model updates will be sent via
a wireless channel to the aggregation server for global aggregation. Similar to end-
devices, the aggregation server will use its resources (i.e., computation resource and
energy) to perform aggregation. To enable successful interaction among end-devices
and aggregation servers for federated learning requires an attractive incentive
mechanism. End-devices must be provided with benefits in response to their
participation in the federated learning process. On the other hand, blockchain-based
federated learning involves the computation of local models at the end-devices. The
end-devices send their local learning models to their corresponding miners. The
miners perform sharing and cross-verification of learning models to avoid injection
of wrong models. Then, all the miners start computing their consensus algorithms
(e.g., Proof-of-Work). The winning miner that solves the consensus algorithm first,
broadcasts its block to all the miners in the network for updating their blocks.
In blockchain-based federated learning, there is a need to provide an attractive
incentive to both end-devices and miners for their jobs. Therefore, the incentive
mechanism for blockchain-based federated learning will be different than the one
for federated learning based on a centralized aggregation server.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
C. S. Hong et al., Federated Learning for Wireless Networks, Wireless Networks,
https://doi.org/10.1007/978-981-16-4963-9_4

71

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-4963-9_4&domain=pdf
https://doi.org/10.1007/978-981-16-4963-9_4

72 4 Incentive Mechanisms for Federated Learning

Local
dataset

Local
model

Local
dataset

Local
model

Base station

Local model
computation reward

How does one incentivizes the
massive number of IoT devices with

system and data heterogeneity?

Fig. 4.1 Overview of rewards in centralized aggregation-based federated learning

Local model and
global model

computation reward

Mining reward

2
2

3

Block
generation4

5

66

Local model
computation 1Local model

computation 1
Global model
computation 7 Global model

computation 7

1. Local model computation

2. Local model upload

3. Cross-verification

4. Block generation

5. Block propagation

7. Global model computation

6. Block download

How do we provide rewards to
different kinds of miners, such as
static (e.g., edge servers), moving
(e.g., autonomous cars), and flying

How to incentivize end-devices with
heterogeneity?

(e.g., UAVs)?

Fig. 4.2 Overview of rewards in blockchain-based federated learning

Generally, we can categorize incentives into two main types: monetary and
non-monetary [100]. Monetary incentives are based on providing end-devices with
payments as per their participation, whereas non-monetary incentives generally
involve providing end-devices with benefits other than payments. Non-monetary

4.2 Game Theory-Enabled Incentive Mechanism 73

incentives in the case of federated learning can be the well-trained global federated
learning model for a large number of end-devices. Unless stated otherwise, the
keyword incentive in this chapter refers to monetary incentive. Next, we present
incentive mechanisms based on game theory and auction theory for federated
learning over wireless networks.

4.2 Game Theory-Enabled Incentive Mechanism

Game theory has proven to be one of the successful tools in enabling/optimizing
various functions/design aspects in wireless networks, such as wireless resource
allocation, computational offloading in edge computing, URLLC/eMBB coexis-
tence, and incentive mechanism design, among others [101–105]. Generally, games
can be divided into (a) cooperative and (b) non-cooperative games. Cooperative
games are based on achieving the equilibrium state for optimizing the overall benefit
via joint decision-making by the various players. On the other hand, the players in
non-cooperative games choose their strategies selfishly without coordination with
other players (Fig. 4.3). A summary of cooperative and non-cooperative games used
for incentive mechanism design in wireless networks is given in Table 4.1.

In federated learning, local computations at the devices and their communication
with the centralized coordinating server are interleaved in a complex manner
to build a global learning model. Therefore, a communication-efficient federated
learning framework [18, 58] requires solving several challenges. Furthermore,
because of limited data per device to train a high-quality learning model, the
difficulty is to incentivize a large number of mobile users to ensure cooperation.
This important aspect in federated learning has been overlooked so far, where the
question is how can we motivate a number of participating clients, collectively
providing a large number of data samples to enable federated learning without
sharing their private data? Note that both participating clients and the server
can benefit from training a global model. However, to fully reap the benefits

Game theoretic incentive
mechanism

Non-cooperative game-based
design

Stackelberg game-based
design

Nash bargaining game-based
design

design
Cooperative game-based

Fig. 4.3 Classification of game theoretic incentive mechanisms

74 4 Incentive Mechanisms for Federated Learning

Table 4.1 Overview of game theoretic incentive mechanisms [106]

Reference Category Game Primary focus

Ho et al. [105] Non-cooperative
game

Stackelberg game Macrocell base station traffic
is admitted by the small cell
base stations for monetary
benefits

Liu et al. [107] Non-cooperative Stackelberg game Incentives are given to femto
cells for sharing their
resource to macrocell base
stations

Poularakis et al. [108] Non-cooperative
game

Stackelberg game Cache-enabled access points
are incentivized for caching
by macrocell base stations

Gao et al. [109] Cooperative game Nash bargaining
game

A cooperative game is
proposed to carryout the
transactions between the
single mobile virtual
network operator and
multiple access points.

Yu et al. [110] Cooperative game Nash bargaining
game

A bargaining framework in
which mobile network
operator bargains with venue
owners sequentially for
determining the deployment
locations of Wi-Fi and how
much to pay.

of high-quality updates, the multi-access edge computing (MEC) server has to
incentivize clients for participation. In particular, under heterogeneous scenarios,
such as an adaptive and cognitive-communication network, the client’s participation
in federated learning can spur collaboration and provide benefits for operators to
accelerate and deliver network-wide services [111]. Similarly, clients, in general, are
not concerned with the reliability and scalability issues of federated learning [112].
Therefore, to incentivize users to participate in the collaborative training, we require
a marketplace. For this purpose, we present a value-based compensation mechanism
to the participating clients, such as a bounty (e.g., data discount package), as per
their level of participation in the crowdsourcing framework. This is reflected in
terms of local accuracy level, i.e., quality of solution to the local subproblem, in
which the framework will protect the model from imperfect updates by restricting
the clients trying to compromise the model (for instance, with skewed data because
of its i.i.d nature or data poisoning) [113]. Moreover, we cast the global loss
minimization problem as a primal-dual optimization problem, instead of adopting
a traditional gradient descent learning algorithm in the federated learning setting
(e.g., FedAvg [18]). This enables (a) proper assessment of the quality of the local
solution to improve personalization and fairness amongst the participating clients
while training a global model, (b) effective decoupling of the local solvers, thereby
balancing communication and computation in the distributed setting.

4.2 Game Theory-Enabled Incentive Mechanism 75

The goal of this section is two-fold: First, we formalize an incentive mechanism
to develop a participatory framework for mobile clients to perform federated
learning for improving the global model. Second, we address the challenge of
maintaining communication efficiency while exchanging the model parameters with
a number of participating clients during aggregation. Specifically, communication
efficiency in this scenario accounts for communications per iteration with an
arbitrary algorithm to maintain an acceptable accuracy level for the global model.
In this work, we design and analyze a novel crowdsourcing framework to realize
the federated learning vision. Specifically, our contributions are summarized as
follows:

• A crowdsourcing framework to enable communication -efficient federated
learning. We design a crowdsourcing framework, in which federated learning
participating clients iteratively solve the local learning subproblems for an accu-
racy level subject to an offered incentive. We then establish a communication-
efficient cost model for the participating clients. We then formulate an incentive
mechanism to induce the necessary interaction between the MEC server and the
participating clients for the federated learning in Sect. 4.2.2.

• Solution approach using Stackelberg game. With the offered incentive, the
participating clients independently choose their strategies to solve the local
subproblem for a certain accuracy level in order to minimize their participation
costs. Correspondingly, the MEC server builds a high-quality centralized model
characterized by its utility function, with the data distributed over the partici-
pating clients by offering the reward. We exploit these tightly coupled motives
of the participating clients and the MEC server as a two-stage Stackelberg
game. The equivalent optimization problem is characterized as mixed-Boolean
programming which requires an exponential complexity effort for finding the
solution. We analyze the game’s equilibria and propose a linear complexity
algorithm to obtain the optimal solution.

• Participant’s response analysis and case study. We next analyze the response
behavior of the participating clients via the solutions of the Stackelberg game
and establish the efficacy of our proposed framework via case studies. We
show that the linear-complexity solution approach attains the same performance
as the mixed-Boolean programming problem. Furthermore, we show that our
mechanism design can achieve the optimal solution while outperforming a
heuristic approach for attaining the maximal utility with up to 22% of gain in
the offered reward.

• Admission control strategy. Finally, we show that it is significant to have certain
participating clients to guarantee the communication efficiency for an accuracy
level in federated learning. We formulate a probabilistic model for threshold
accuracy estimation and find the corresponding number of participants required
to build a high-quality learning model. We analyze the impact of the number of
participants in federated learning while determining the threshold accuracy level
with closed-form solutions. Finally, with numerical results, we demonstrate the
structure of the admission control model for different configurations.

76 4 Incentive Mechanisms for Federated Learning

4.2.1 System Model

Figure 4.4 illustrates our proposed system model for the crowdsourcing framework
to enable federated learning. The model consists of a number of mobile clients
associated with a base station having a central coordinating server (MEC server),
acting as a central entity. The server facilitates the computation of the parameters
aggregation, and feedback the global model updates in each global iteration. We
consider a set of participating clients K = {1, 2, . . . , K} in the crowdsourcing
framework. The crowdsourcer (platform) can interact with mobile clients via an
application interface and aims at leveraging federated learning to build a global ML
model. As an example, consider a case where the crowdsourcer (referred to as MEC
server hereafter, to avoid any confusion) wants to build a ML model. Instead of
just relying on available local data to train the global model at the MEC server, the
global model is constructed utilizing the local training data available across several
distributed mobile clients. Here, the global model parameter is first shared by the
MEC server to train the local models in each participating client. The local model’s
parameters minimizing local loss functions are then sent back as feedback and are
aggregated to update the global model parameter. The process continues iteratively,
until convergence.

MEC Server

 Local Models

local training

Global Model

Aggregator

local parameters pass on

global model
 parameter

MBS- MUs association
Backhaul

Local data

Participating clients
Platform

Fig. 4.4 Crowdsourcing framework for decentralized machine learning

4.2 Game Theory-Enabled Incentive Mechanism 77

Algorithm 4 Federated learning framework

1: Input: Initialize dual variable α0 ∈ R
D , Dk,∀k ∈ K .

2: for Each aggregation round do
3: for k ∈ K do
4: Solve local subproblems (4.5) in parallel.
5: Update local variables as in (4.7).
6: end for
7: Aggregate to update global parameter as in (4.8).
8: end for

Federated Learning Background

For federated learning, we consider unevenly partitioned training data over a large
number of participating clients to train the local models under any arbitrary learning
algorithm. Each client k stores its local dataset Dk of size Dk respectively. Then,
we define the training data size D = ∑K

k=1 Dk . In a typical supervised learning
setting, Dk defines the collection of data samples given as a set of input-output pairs
{xi, yi}Dk

i=1, where xi ∈ R
d is an input sample vector with d features, and yi ∈ R

is the labeled output value for the sample xi . The learning problem, for an input
sample vector xi (e.g., the pixels of an image) is to find the model parameter vector
w ∈ R

d that characterizes the output yi (e.g., the labeled output of the image, such
as the corresponding product names in a store) with the loss function fi(w). Some
examples of loss functions include fi(w) = 1

2 (x
T
i w − yi)

2, yi ∈ R for a linear
regression problem and fi(w) = max{0, 1 − yix

T
i w}, yi ∈ {−1, 1} for support

vector machines. The term xTi w is often called a linear mapping function. Therefore,
the loss function based on the local data of client k, termed local subproblem is
formulated as

Jk(w) = 1

Dk

∑Dk

i=1
fi(w) + λg(w), (4.1)

where w ∈ R
d is the local model parameter, and g(·) is a regularizer function,

commonly expressed as g(·) = 1
2 ‖·‖2; ∀λ ∈ [0, 1]. This characterizes the local

model in the federated learning setting.

Global Problem At the MEC server, the global problem can be represented as the
finite-sum objective of the form

min
w∈Rd

J (w) where J (w) ≡
∑K

k=1 DkJk(w)

D
. (4.2)

Problems of such structure as in (4.2) where we aim to minimize an average of K
local objectives are well-known as distributed consensus problems [114].

78 4 Incentive Mechanisms for Federated Learning

Solution Framework under Federated Learning We recast the regularized
global problem in (4.2) as

min
w∈Rd

J (w) := 1

D

∑D

i=1
fi(w) + λg(w), (4.3)

and decompose it as a dual optimization problem1 in a distributed scenario [115]
amongst K participating clients. For this, at first, we define X ∈ R

d×Dk as a matrix
with columns having data points for i ∈ Dk,∀k. Then, the corresponding dual
optimization problem of (4.3) for a convex loss function f is

max
α∈RD

G(α) := 1

D

∑D

i=1
−f ∗

i (−αi) − λg∗(φ(α)), (4.4)

where α ∈ R
D is the dual variable mapping to the primal candidate vector, f ∗

i and
g∗ are the convex conjugates of fi and g respectively [116]; φ(α) = 1

λD
Xα. With

the optimal value of dual variable α∗ in (4.4), we have w(α∗) = ∇g∗(φ(α∗)) as
the optimal solution of (4.3) [115]. For the ease of representation, we will use φ ∈
R

d for φ(α) hereafter. We consider that g is a strongly convex function, i.e., g∗(·)
is continuous differentiable. Then, the solution is obtained following an iterative
approach to attain a global accuracy 0 ≤ ε ≤ 1 (i.e., E

[G(α) − G(α∗)
]
< ε).

Under the distributed setting, we further define data partitioning notations for
clients k ∈ K to represent the working principle of the framework. Let us define a
weight vector �[k] ∈ R

D at the local subproblem k with its elements zero for the
unavailable data points. Following the assumption of having fi as (1/γ)-smooth and
1-strongly convex of g to ensure convergence, its consequences is the approximate
solution to the local problem k defined by the dual variables α[k], �[k], characterized
as

max
�[k]∈RD

Gk(�[k];φ, α[k]), (4.5)

where Gk(�[k];φ, α[k]) = − 1
K

−〈∇(λg∗(φ(α))), �[k]〉− λ
2 ‖ 1

λD
X[k]�[k]‖2 is defined

with a matrix X[k] columns having data points for i ∈ Dk , and zero padded
otherwise. Each participating client k ∈ K iterates over its computational resources
using any arbitrary solver to solve its local problem (4.5) with a local relative θk
accuracy that characterizes the quality of the local solution, and produces a random
output �[k] satisfying

E
[Gk(�

∗[k]) − Gk(�[k])
] ≤ θk

[Gk(�
∗[k]) − Gk(0)

]
. (4.6)

1 The duality gap provides a certificate to the quality of local solutions and facilitates distributed
training.

4.2 Game Theory-Enabled Incentive Mechanism 79

Note that, with local (relative) accuracy θk ∈ [0, 1], the value of θk = 1 suggests that
no improvement was made by the local solvers during successive local iterations.
Then, the local dual variable is updated as follows:

αt+1
[k] := αt

[k] + �t
[k],∀k ∈ K. (4.7)

Correspondingly, each participating client will broadcast the local parameter defined
as Δφt

[k] := 1
λD

X[k]�t
[k], during each round of communication to the MEC server.

The MEC server aggregates the local parameter (averaging) with the following rule:

φt+1 := φt + 1

K

∑K

k=1
Δφt

[k], (4.8)

and distributes the global change in φ to the participating clients, which is used to
solve (4.5) in the next round of local iterations. This way we observe the decoupling
of global model parameter from the need of local clients’ data2 for training a global
model.

Algorithm 4 briefly summarizes the federated learning framework as an iterative
process to solve the global problem characterized in (4.3) for a global accuracy level.
The iterative process (S2)–(S8) of Algorithm 4 terminates when the global accuracy
ε is reached. A participating client k strategically3 iterates over its local training data
Dk to solve the local subproblem (4.5) up to an accuracy θk . In each communication
round with the MEC server, the participating clients synchronously pass on their
parameters Δφ[k] using a shared wireless channel. The MEC server then aggregates
the local model parameters φ as in (4.8), and broadcasts the global parameters
required for the participating clients to solve their local subproblems for the next
communication round. Within the framework, consider that each participating client
uses any arbitrary optimization algorithm (such as Stochastic Gradient Descent
(SGD), Stochastic Average Gradient (SAG), Stochastic Variance Reduced Gradient
(SVRG)) to attain a relative θ accuracy per local subproblem. Then, for strongly
convex objectives, the number of iterations is dependent on local relative θ accuracy
of the local subproblem and the global model’s accuracy ε as [58]:

I g(ε, θ) = ζ · log(1
ε
)

1 − θ
, (4.9)

where the local relative accuracy measures the quality of the local solution as
defined in the earlier paragraphs. Further, in this formulation, we have replaced the
term O(log(1

ε
)) in the numerator with ζ · log(1

ε
), for a constant ζ > 0. For fixed

iterations I g at the MEC server to solve the global problem, we observe in (4.9) that

2 Note that we consider the availability of quality of data with each participating client for solving
a corresponding local subproblem. Further related demonstration on dependency of the normalized
data size and accuracy can be found in [117].
3 Fewer iterations might not be sufficient to have an optimal local solution [111].

80 4 Incentive Mechanisms for Federated Learning

a very high local accuracy (small θ) can significantly improve the global accuracy ε.
However, each client k has to spend excessive resources in terms of local iterations,
I l
k to attain a small θk accuracy as

I l
k(θk) = γk log

(
1

θk

)
, (4.10)

where γk > 0 is a parameter choice of client k that depends on the data size and
condition number of the local subproblem [58]. Therefore, to address this trade-
off, MEC server can setup an economic interaction environment (a crowdsourcing
framework) to motivate the participating clients for improving the local relative
θk accuracy. Correspondingly, with the increased reward, the participating clients
are motivated to attain better local θk accuracy, which as observed in (4.9) can
improve the global ε accuracy for a fixed number of iterations I g of the MEC
server to solve the global problem. In this scenario, to capture the statistical
and system-level heterogeneity, the corresponding performance bound in (9) for
heterogeneous responses θk can be modified considering the worst-case response of
the participating client as

I g(ε, θk) = ζ · log(1
ε
)

1 − maxk θk
,∀k ∈ K. (4.11)

Figure 4.5 describes an interaction environment incorporating a crowdsourcing
framework and federated learning setting. In the following section, we will further
discuss in detail the proposed incentive mechanism and present the interaction
between the MEC server and participating clients as a two-stage Stackelberg game.

Fig. 4.5 Interaction environment of federated learning setting under crowdsourcing framework

4.2 Game Theory-Enabled Incentive Mechanism 81

Cost Model

Training on local data for a defined accuracy level incurs a cost for the participating
clients. We discuss its significance with two typical costs: the computing cost and
the communication cost.

Computing Cost This cost is related to the number of iterations performed by
client k on its local data to train the local model for attaining a relative accuracy of
θk in a single round of communication. With (4.10), we define the computing cost
for client k when it performs computation on its local data Dk .

Communication Cost This cost is incurred when client k interacts with MEC
server for parameter updates to maintain θk accuracy. During a round of com-
munication with the MEC server, let ek be the size (in bits) of local parameters
Δφ[k], k ∈ K in a floating-point representation produced by the participating client
k after processing a mini-batch [118]. While ek is the same for all the participating
clients under a specified learning setting of the global problem, each participating
client k can invest resources to attain specific θk as defined in (4.10). Although the
best choice would be to choose θk such that the local solution time is comparable
with the time expense in a single communication round, larger θk will induce
more rounds of interaction between clients until global convergence, as formalized
in (4.9).

With the inverse relation of global iteration upon local relative accuracy in (4.9),
we can characterize the total communication expenditure as

T (θk) = Tk

(1 − θk)
, (4.12)

where Tk as the time required for the client k to communicate with MEC server in
each round of model’s parameter exchanges. Here, we normalize ζ > 0 in (4.9)
to 1 as the constant can be absorbed into Tk for each round of model’s parameter
exchanges when we characterize the communication expenditure in (4.12). Using
first-order Taylor’s approximation,4 we can approximate the total communication
cost as T (θk) = Tk · (1 + θk). We assume that clients are allocated orthogonal sub-
channels so that there is no interference between them.5 Therefore, the instantaneous
data rate for client k can be expressed as

Rk = B log2

(
1 + pk|Gk|2

Nk

)
,∀k ∈ K, (4.13)

4 First-order Taylor’s approximation for f (θ) = 1
1−θ

is f (θ) |θ=a= f (a) + f ′(a)(θ − a). For
small θ , the approximation results f (θ) |θ=0= 1 + θ.
5 Note that the scenario of possible delay introduced with interference on poor wireless uplink
channel can affect the local model update time. This can be mitigated by adjusting maximum
waiting time as in [112] at MEC.

82 4 Incentive Mechanisms for Federated Learning

where B is the total bandwidth allocated to the client k, pk is the transmission power
of the client k, |Gk|2 is the channel gain between participating client k and the
base station, and Nk is the Gaussian noise power at client k. Then for client k,
using (4.13), we can characterize Tk for each round of communication with the
MEC server to upload the required updates as

Tk = ek

B log2

(
1 + pk |Gk |2

Nk

) ,∀k ∈ K. (4.14)

(4.14) provides the dependency of Tk on wireless conditions and network connec-
tivity.

Assimilating the rationale behind our earlier discussions, for a participating client
with evaluated Tk , the increase in value of θk (poor local accuracy) will contribute
to a larger communication expenditure. This is because the participating client
has to interact more frequently with the MEC server (increased number of global
iterations) to update its local model parameter for attaining relative θk accuracy.
Further, the authors in [119] have provided the convergence analysis to justify this
relationship and the communication cost model, though with a different technique.

Therefore, the participating client k’s cost for the relative accuracy level θk on
the local subproblem is

Ck(θk) = (1 + θk) ·
(
νk · Tk + (1 − νk) · γk log

(
1

θk

))
, (4.15)

where 0 ≤ νk ≤1 is the normalized monetary weight for communication and
computing costs (i.e., $/ rounds of iteration). A smaller value of relative accuracy
θk indicates a high local accuracy. Thus, there exists a trade-off between the
communication and the computing cost (4.15). A participating client can adjust its
preference on each of these costs with the weight metric νk . The higher value of νk
emphasizes the larger rounds of interaction with the MEC server to adjust its local
model parameters for the relative θk accuracy. On the other hand, the higher value of
(1−νk) reflects the increased number of iterations at the local subproblem to achieve
the relative θk accuracy. This will also significantly reduce the overall contribution
of communication expenditure in the total cost formulation for the client. Note that
the client cost over iterations could not be the same. However, to make the problem
more tractable, according to (9) we consider minimizing the upper-bound of the cost
instead of the actual cost, similar to approach in [111].

4.2.2 Stackelberg Game-Based Solution

In this section, firstly, we present our motivation to realize the concept of federated
learning by employing a crowdsourcing framework. We next advocate an incentive

4.2 Game Theory-Enabled Incentive Mechanism 83

mechanism required to realize this setting of decentralized learning model with our
proposed solution approach.

Incentive Mechanism: A Two-Stage Stackelberg Game Approach

The MEC server will allocate rewards to the participating clients to achieve optimal
local accuracy in consideration for improving the communication efficiency of the
system. That means the MEC server will plan to incentivize clients for maximizing
its own benefit, i.e., an improved global model. Consequently, upon receiving the
announced reward, any rational client will individually maximize their own profit.
Such an interaction scenario can be realized with a Stackelberg game approach.

Specifically, we formulate our problem as a two-stage Stackelberg game between
the MEC server (leader) and participating clients (followers). Under the crowd-
sourcing framework, the MEC server designs an incentive mechanism for partic-
ipating clients to attain a local consensus accuracy level6 on the local models while
improving the performance of a centralized model. The MEC server cannot directly
control the participating clients to maintain a local consensus accuracy level and
requires an effective incentive plan to enroll clients for this setting.

Clients (Stage II) The MEC server has an advantage, being a leader with the first-
move advantage influencing the followers for participation with a local consensus
accuracy. It will at first announce a uniform reward rate7 (e.g., a fair data package
discount as $/accuracy level) r > 0 for the participating clients. Given r , at Stage
II, a rational client k will try to improve the local model’s accuracy for maximizing
its net utility by training over the local data with global parameters. The proposed
utility framework incorporates the cost involved while a client tries to maximize its
own individual utility.

Client Utility Model We use a valuation function vk(θk) to denote the model’s
effectiveness that explains the valuation of the client k when relative θk accuracy
is attained for the local subproblem.

Assumption 1 The valuation function vk(θk) is a linear, decreasing function with
θk > 0, i.e., vk(θk) = (1−θk). Intuitively, for a smaller relative accuracy at the local
subproblem, there will be an increase in the reward for the participating clients.

6 It signifies the agreement among the participating clients on the quality of solution at the local
subproblems for building a high-quality centralized learning model.
7 Prominently, two kinds of pricing schemes exist at present following different design goals:
uniform pricing and discriminatory or differentiated pricing [120]. The differentiated pricing
scheme is more efficient, but also requires more information and higher complexity than the
uniform pricing [121, 122]. Therefore, based upon offered motivations and benefits, our proposed
crowdsourcing framework follows a platform-centric model to train a high-quality global model
with low complexity, less information exchange by using the uniform pricing scheme.

84 4 Incentive Mechanisms for Federated Learning

Given r > 0, each participating client k’s strategy is to maximize its own utility
as follows:

max
0≤θk≤1

uk(r, θk) = r(1 − θk) − Ck(θk), (4.16)

given cost Ck(θk) as (4.15). The feasible solution is always restricted to the value
less than 1 (i.e., without loss of generality, for θk > 1, it violates the participation
assumption for the crowdsourcing framework). Therefore, problem (4.16) can be
represented as

max
θk>0

uk(r, θk) = r(1 − θk) − Ck(θk),∀k ∈ K. (4.17)

Also, we have C
′′
k (θk) > 0, which means Ck(θk) is a strictly convex function.

Thus, there exists a unique solution θ∗
k (r),∀k.

MECServer (Stage I) Knowing the response (strategy) of the participating clients,
the MEC can evaluate an optimal reward rate r∗ to maximize its utility. The utility
U(·) of the MEC server can be defined in relation to the satisfaction measure
achieved with the local consensus accuracy level.

MEC Server Utility Model We define x(ε) as the number of iterations required for
an arbitrary algorithm to converge to some ε accuracy. We similarly define I g(ε, θ)

as global iterations of the framework to reach a relative θ accuracy on the local
subproblems.

From this perspective, we require an appropriate utility function U(·) as the
satisfaction measure of the framework with respect to the number of iterations for
achieving ε accuracy. In this regard, use the definition of the number of iterations
for ε accuracy as

x(ε) = ζ · log

(
1

ε

)
.

Due to large values of iterations, we approximate x(ε) as a continuous value, and
with the aforementioned relation, we choose U(·) as a strictly concave function of
x(ε) for ε ∈ [0, 1], i.e., with the increase in x(ε), U(·) also increases. Thus, we
propose U(x(ε)) as the normalized utility function bounded within [0, 1] as

U(x(ε)) = 1 − 10−(ax(ε)+b), a ≥ 0, b ≤ 0, (4.18)

which is strictly increasing with x(ε), and represents the satisfaction of MEC
increase with respect to accuracy ε.

As for the global model, there exists an acceptable value of threshold accuracy
measure correspondingly reflected by xmin(ε). This suggests the possibility of near-
zero utility for the MEC server for failing to attain such value.

4.2 Game Theory-Enabled Incentive Mechanism 85

Fig. 4.6 MEC utility U(·) as a function of ε with different parameter values of a, b

Figure 4.6 depicts our proposed utility function, a concave function of x(ε) with
parameters a and b that reflect the required behavior of the utility function defined
in (4.18). In Fig. 4.6, we can observe that a larger value of a means smaller iterations
requirement and larger values of b introduces flat curves suggesting more flexibility
in accuracy. So we can analyze the impact of parameters a and b in (4.18), and set
them to model the utility function for the MEC server as per the design requirements
of the learning framework. Furthermore, in our setting, I g(ε, θ) can be written as

I g(ε, θ) = x(ε)

1 − θ
≤ δ. (4.19)

(4.19) explains the efficiency paradigm of the proposed framework in terms of time
required for the convergence to some accuracy ε. If τ l(θ) is the time per iteration to
reach a relative θ accuracy at a local subproblem and T (θ) is the communication
time required during a single iteration for any arbitrary algorithm, then we can
analyze the result in (4.19) with the efficiency of the global model as

I g(ε, θ) · (T (θ) + τ l(θ)). (4.20)

Because the cost of communication is proportional to the speed and energy
consumption in a distributed scenario [123], the bound defined in (4.19) explains the
efficiency in terms of the MEC server’s resource restriction for attaining ε accuracy.
In this regard, the corresponding analysis of (4.20) is presented in the upcoming
sub-section with several case studies.

86 4 Incentive Mechanisms for Federated Learning

The utility of the MEC server can therefore be defined for the set of measured
best responses θ∗ as

U(x(ε), r|θ∗) = β
(

1 − 10−(ax(ε)+b)
)

− r
∑

k∈K
(1 − θ∗

k (r)),

where β > 0 is the system parameter,8 and r
∑

k∈K(1 − θ∗
k (r)) is the cost spent

for incentivizing participating clients in the crowdsourcing framework for federated
learning. So, for the measured θ∗ from the participating clients at the MEC server,
the utility maximization problem can be formulated as follows:

max
r≥0,x(ε)

U(x(ε), r|θ∗), (4.21)

s.t.
x(ε)

1 − maxk θ∗
k (r)

≤ δ. (4.22)

In constraint (4.22), maxk θ∗
k (r) characterizes the worst-case response for the server-

side utility maximization problem with the bound on permissible global iterations.
Note that MEC adapts admission control strategy (discussed in Sect. 4.2.3) to
improve the number of participants for maximizing its utility. In fact, MEC has to
increase the reward rate to maintain the minimum number of participation (at least
two) to realize the distributed optimization setting in federated learning. In addition
to this, the framework may suffer from slower convergence due to less participation.
Thus, MEC will avoid deliberately dropping the clients to achieve a faster consensus
with (4.22).

Furthermore, using the relationship defined in (4.19) between x(ε) and relative
θ accuracy for the subproblem, we can analyze the impact of responses θ on MEC
server’s utility in a federated learning setting with the constraint (4.11). To be more
specific about this relation, we can observe that with the increased value of (1 − θ),
i.e., lower relative accuracy (high local accuracy), the MEC server can attain better
utility due to the corresponding increment in the value of x(ε). Note that in the client
cost problem, x(ε) is treated as a constant provided by the MEC problem, and can
be ignored for solving (4.16).

Lemma 1 The optimal solution x∗(ε) for (4.21) can be derived as δ(1 −
maxk θ∗

k (r)).

Proof See Appendix.

8 Note that β > 0 characterizes a linear scaling metric to the utility function which can be set
arbitrarily and will not alter our evaluation. Equivalently, it can be understood as the MEC server’s
physical resource consignments for the federated learning that reflects the satisfaction measure of
the framework.

4.2 Game Theory-Enabled Incentive Mechanism 87

Therefore, for the given θ∗(r), we can formalize (4.21) as

max
r≥0

β
(

1 − 10−(ax∗(ε)+b)
)

− r
∑

k∈K
(1 − θ∗

k (r)). (4.23)

Stackelberg Equilibrium With a solution to MEC server’s utility maximization
problem, r∗ we have the following definition.

Definition 1 For any values of r , and θ , (r∗, θ∗) is a Stackelberg equilibrium if it
satisfies the following conditions:

U(r∗, θ∗) ≥ U(r, θ∗), (4.24)

uk(θ
∗
k , r

∗) ≥ uk(θk, r
∗), ∀k. (4.25)

Next, we employ the backward-induction method to analyze the Stackelberg
equilibria: the Stage-II problem is solved at first to obtain θ∗, which is then used
for solving the Stage-I problem to obtain r∗.

Stackelberg Equilibrium: Algorithm and Solution Approach

Intuitively, from (4.19), we see that the server can evaluate the maximum value of
x(ε) required for attaining accuracy ε for the centralized model while maintaining
relative accuracy θth amongst the participating clients. Here, θth is a consensus
on a maximum local accuracy level amongst participating clients, i.e., the local
subproblems will maintain at least θth relative accuracy. So, with the measured
responses θ from the participating clients, the server can design a proper incentive
plan to improve the global model while maintaining the worst-case relative accuracy
maxk θ∗

k as θth for the local model.
Since the threshold accuracy θth can be adjusted by the MEC server for each

round of solution, each participating client will maintain a response towards the
maximum local consensus accuracy θth. This formalizes the client’s selection
criteria [see Remark 1.] which is sufficient enough for the MEC server to maintain
the accuracy ε. We also have the lower bound related with the value of xmin(ε) for
equivalent accuracy εmax while dealing with the client’s responses θ , i.e.,

log

(
1

εmax

)
≤ x(ε)

(1 − θth)
≤ δmax. (4.26)

where δmax is the maximum permissible upper bound to the global iterations.
As explained before and with (4.26), the value of θth can be varied (lowered)

by MEC server to improve the overall performance of the system. For a worst case
scenario, where the offered reward r for the client k is insufficient to motivate it for
participation with improved local relative accuracy, we might have maxk θ∗

k (r) = 1,
i.e., θth = 1, no participation.

88 4 Incentive Mechanisms for Federated Learning

Lemma 2 For a given reward rate r , and Tk which is determined based upon the
channel conditions (4.14), we have the unique solution θ∗

k (r) for the participating
client satisfying following relation:

gk(r) = log(e1/θ∗
k (r)θ∗

k (r)),∀k ∈ K, (4.27)

for gk(r) ≥ 1, where,

gk(r) =
[

r + νkTk

(1 − νk)γk
− 1

]
.

Proof Because C
′′
k (θk) > 0 for θk > 0, (4.17) is a strictly convex function resulted

as a linear plus convex structure. Therefore, by the first-order condition, (4.17) can
be deduced as

∂uk(r, θk)

∂θk
= 0

⇔ 1

θk
− log

(
1

θk

)
=
[

r + νkTk

(1 − νk)γk
− 1

]
,

⇔ log(e1/θk θk) = gk(r).

(4.28)

We observe that Lemma 2 is a direct consequence of the solution structure derived
in (4.28). Hence, we conclude the proof.

From Lemma 2, we have some observations with the definition of gk(r) for the
response of the participating clients. First, we can show that θ∗

k is larger for the poor
channel condition on a given reward rate. Second, in such scenario, with the increase
in reward rate, say for gk(r) > 2 the participating clients will iterate more during
their computation phase resulting in lower θ∗

k . This will reduce the number of global
iterations to attain an accuracy level for the global problem.

We can therefore characterize the participating client k’s best response under the
proposed framework as

θ∗
k (r) = min

{
θ̂k(r) |

gk(r)=log(e1/θ̂k (r)θ̂k(r))
, θth

}
,∀k. (4.29)

(4.29) represents the best response strategy for the participating client k under our
proposed framework. Intuitively, exploring the logarithmic structure in (4.27), we
observe that the increase in incentive r will motivate participating clients to increase
their efforts for local iteration in one global iteration. This is reflected by a better
response, i.e., a lower relative accuracy (high local accuracy) during each round of
communication with the MEC server.

Figure 4.7 illustrates such strategic responses of the participating clients over
an offered reward for a given configuration. In this scenario, to elaborate the best

4.2 Game Theory-Enabled Incentive Mechanism 89

Fig. 4.7 An illustration showing participating clients response over the offered reward rate

response strategy as characterized in (4.29), we have considered four participating
clients with different preferences (e.g., Client 3 being the most reluctant participant).
We observe that Client 3 seeks more incentive r to maintain a comparable accuracy
level as Client 1. Further, we consider the tradeoff between communication cost
and the computation cost as discussed with the relation in (4.15). These costs are
complementary in relation by νk , and for each client k their preferences upon these
costs are also different. For instance, the higher value of νk for client k emphasizes
the increased number of communication with the MEC server to improve the local
relative accuracy θk .

In Figs. 4.8, 4.9, and 4.10, we briefly present the solution analysis to (4.27)
with the impact of channel condition (we define it as communication adversity)
on the local relative accuracy for a constant reward. For this, in Fig. 4.8 we
consider a participating client with the fixed offered reward setting r from uniformly
distributed values of 0.1–5. We use normalized Tk parameter for a client k to
illustrate the response analysis scenario. In Figs. 4.9 and 4.10, Tk is uniformly
distributed on [0.1, 1], and νk is set at 0.6. Intuitively, as in Fig. 4.8, the increase
in communication time Tk for a fixed reward r will influence participating clients
to iterate more locally for improving local accuracy than to rely upon the global
model, which will minimize their total cost. Under this scenario, we observe the
increase in communication cost with the increase in communication time Tk . Thus,
the clients will iterate more locally. However, the trend is significantly affected by
normalized weights νk , as observed in Figs. 4.9 and 4.10. For a larger value of Tk
(poor channel condition) as in the case of Fig. 4.10, increasing the value of νk , i.e.,
clients with more preference on the communication cost in the total cost model
results to higher local iterations for solving local subproblems, as reflected by the
better local accuracy, unlike in Fig. 4.9. In both cases we observe the decrease in

90 4 Incentive Mechanisms for Federated Learning

Fig. 4.8 Solution Analysis (4.27) (Left Y-axis: Relative accuracy, Right Y-axis: Communication
cost): impact of communication adversity on local relative accuracy for a constant reward

Fig. 4.9 Solution Analysis (4.27) (Left Y-axis: Relative accuracy, Right Y-axis: Communication
cost): normalized weight versus relative accuracy for a fair data rate (quality communication
channel)

communication cost upon participation. However, in Fig. 4.10 the communication
cost is higher because of an expensive data rate. Therefore, for a given r , client k
can adjust its weight metrics accordingly to improve the response θk .

In Figs. 4.11, 4.12, and 4.13, we explore such behaviors of the participating
clients through the heatmap plot. To explain better, we define three categories of
participating clients based upon the value of normalized weights νk,∀k, which
are their individual preferences upon the computation cost and the communication

4.2 Game Theory-Enabled Incentive Mechanism 91

Fig. 4.10 Solution Analysis (4.27) (Left Y-axis: Relative accuracy, Right Y-axis: Communication
cost): normalized weight versus relative accuracy for an expensive data rate

Fig. 4.11 Case Study: impact of communication cost and offered reward rate r for normalized
weight (preferences), reluctant clients i.e., νk = 0.1. X-axis shows the increase in incentive (r)
value from left-to-right, and the y-axis defines the increase in value of communication expenditure
(top-to-bottom)

cost for the convergence of the learning framework. (i) Reluctant clients with a
lower νk consume more reward to improve local accuracy, even though the value
of Tk is larger (expensive), as observed in Fig. 4.11. (ii) Sensitive clients are more
susceptible towards the channel quality with larger νk , and iterates more locally
within a round of communication to the MEC server for improving local accuracy,

92 4 Incentive Mechanisms for Federated Learning

Fig. 4.12 Case Study: impact of communication cost and offered reward rate r for normalized
weight (preferences), rational clients, νk = 0.7. X-axis shows the increase in incentive (r) value
from left-to-right, and the y-axis defines the increase in value of communication expenditure (top-
to-bottom)

Fig. 4.13 Case Study: impact of communication cost and offered reward rate r for normalized
weight (preferences), sensitive clients, νk = 0.7. X-axis shows the increase in incentive (r) value
from left-to-right, and the y-axis defines the increase in value of communication expenditure (top-
to-bottom)

as observed in Fig. 4.13. (iii) Rational clients, as referred in Fig. 4.12 tend to
balance these extreme preferences (say νk = 0.5 for client k), which in fact would
be unrealistic to expect all the time due to heterogeneity in participating client’s
resources.

4.2 Game Theory-Enabled Incentive Mechanism 93

Algorithm 5 MEC server’s utility maximization
1: Sort clients as with r̂1 < r̂2 < . . . < r̂K
2: R = {},A = K, j = K

3: while j > 0 do
4: Obtain the solutions rj to the following problem:

max
r≥r̂1

β
(

1 − 10−(ax∗(ε)+b)
)

− r
∑

k∈A(1 − θ∗
k (r))

5: if rj > r̂j , then R = R ∪ {rj };
6: end if
7: A = A\j ;
8: j = j − 1;
9: end while

10: Return rj ∈ R with highest optimal values in problem (4).

To solve (4.23) efficiently, with (4.29) θ∗
k (r) = min

{
θ̂k(r) |

gk(r)=log(e1/θ̂k (r)θ̂k(r))
,

θth

}
,∀k, we introduce a new variable zk in relation with consensus on local relative

accuracy θth,

zk =
{

1, if r > r̂k;
0, otherwise,

(4.30)

where

r̂k =
[
g−1
k (log(e1/θthθth))

]

is the minimum incentive value required obtained from (4.29) to attain the local
consensus accuracy θth at client k for the defined parameters νk and Tk .

This means, θk(r) < θth when zk = 1, and θth ≤ θk(r) < 1 when zk = 0. MEC
server can use this setting to drop the participants with poor accuracy. As discussed
before, for the worst case scenario we consider θth = 1.

Therefore, the utility maximization problem can be equivalently written as

max
r,{zk}k∈K

β
(

1 − 10−(ax∗(ε)+b)
)

− r
∑

k∈K
zk · (1 − θ∗

k (r)), (4.31)

s.t. r ≥ 0, (4.32)

zk ∈ {0, 1},∀k. (4.33)

The problem (4.31) is a mixed-Boolean programming, which may require
exponential-complexity effort (i.e., 2K configuration of {zk}k∈K) to solve by the
exhaustive search. To solve this problem with linear complexity, we refer to the
solution approach as in Algorithm 5.

94 4 Incentive Mechanisms for Federated Learning

The utility maximization problem at MEC server can be reformulated as a
constraint optimization problem (4.34–4.35) assuming a fixed configuration of
{zk = 1}k∈K as

max
r≥0

β
(

1 − 10−(ax∗(ε)+b)
)
, (4.34)

s.t. r
∑

k∈K
(1 − θ∗

k (r)) ≤ B, (4.35)

where (4.35) is budget constraint for the problem. The second-order derivative of
function r(1 − θ∗

k (r)) in (4.35) is 2γk(1−νk)νkTk
(r+νkTk)

3 > 0, i.e., the problem (4.34) is a
convex problem and can be solved similarly with Algorithm 5 (line 4–5).

Proposition 1 Algorithm 2 can solve the Stage-I equivalent problem (4.23) with
linear complexity.

Proof As the clients are sorted in the order of increasing r̂k (line 1), for the sufficient
condition r > r̂k resulting zk = 1, the MEC’s utility maximization problem reduces
to a single-variable problem that can be solved using popular numerical methods.

Remark 1 Algorithm 2 can maintain consensus accuracy by formalizing the clients
selection criteria. This is because from (4.30), zk = 1 for θk(r) < θth, and zk = 0
for θth ≤ θk(r) < 1. Thus, MEC server uses this setting to drop the participants with
θk(r) > θ∗

k (r) = θth.

Theorem 1 The Stackelberg equilibria of the crowdsourcing framework are the set
of pairs {r∗, θ∗}.
Proof For any given θ , it is obvious that U(r∗, θ) ≥ U(r, θ),∀r since r∗ is the
solution to the Stage-I problem. Thus, we have U(r∗, θ∗) ≥ U(r, θ∗). In the similar
way, for any given value of r and ∀k, we have uk(r, θ

∗
k) ≥ uk(r, θk),∀θk . Hence,

uk(r
∗, θ∗

k) ≥ uk(r
∗, θk). Combining these facts, we conclude the proof being based

upon the definitions of (4.24) and (4.25).

4.2.3 Simulations

In this section, we present numerical simulations to illustrate our results. We
consider the learning setting for a strongly convex model such as logistic regression,
as discussed in Sect. 4.2.1, to characterize and demonstrate the efficacy of the
proposed framework. First, we will show the optimal solution of Algorithm 5
(Algorithm 5) and conduct a comparison of its performance with two baselines. The
first one, named OPT, is the optimal solution of problem (4.23) with an exhaustive
search for the optimal response θ∗. The second one is called Baseline that considers
the worst response amongst the participating clients to attain local consensus θth

4.2 Game Theory-Enabled Incentive Mechanism 95

accuracy with an offered price. This is an inefficient scheme but still enables us
to attain feasible solutions. Finally, we analyze the system performance by varying
different parameters and conduct a comparison of the incentive mechanism with
the baseline and their corresponding utilities. In our analysis, the smaller values of
local consensus are of specific interest as they reflect the effectiveness of federated
learning.

1. Settings: For an illustrative scenario, we fix the number of participating clients
to 4. We consider the system parameter β = 10, and the upper bound to the
number of global iterations δ = 10, which characterizes the permissible rounds
of communication to ensure global ε accuracy. The MEC’s utility U(x(ε)) =
1 − 10−(ax(ε)+b) model is defined with parameters a = 0.3, and b = 0. For
each client k, we consider normalized weight νk is uniformly distributed on
[0.1,0.5], which can provide an insight on the system’s efficacy as presented
in Figs. 4.11, 4.12, and 4.13. We characterize the interaction between the MEC
server and the participating clients under homogeneous channel condition, and
use the normalized value of Tk for all participating clients.

2. Reward rate: In Fig. 4.14 we increase the value of local consensus accuracy θth
from 0.2 to 0.6. When the accuracy level is improved (from 0.4 to 0.2), we
observe a significant increase in the reward rate. These results are consistent
with the analysis in section “Stackelberg Equilibrium: Algorithm and Solution
Approach”. The reason is that cost for attaining a higher local accuracy level

Fig. 4.14 Comparison of (a) Reward rate and (b) MEC utility under three schemes for different
values of threshold θth accuracy

96 4 Incentive Mechanisms for Federated Learning

requires more local iterations, and thus the participating clients exert more
incentive to compensate for their costs.

We also show that the reward variation is prominent for lower values of θth,
and observe that scheme Algorithm 2 and OPT achieve the same performance,
while Baseline is not as efficient as others. Here, we can observe up to 22% gain
in the offered reward against the Baseline by other two schemes. In Fig. 4.14b,
we see the corresponding MEC utilities for the offered reward that complements
the competence of the proposed Algorithm 2. We see, the trend of utility against
the offered reward goes along with our analysis.

3. Parametric choice: In Figs. 4.15 and 4.16 we show the impact of parametric
choice adopted by the participating client k to solve the local subproblem [124],
which is characterized by γk . In Fig. 4.15, we see a lower offered reward for
the improved local accuracy level for the participating clients adapting same

Fig. 4.15 For |K| = 4, a = 0.3, b = 0, γk = 1,∀k

Fig. 4.16 For |K| = 4, a = 0.3, b = 0, and γk ∼ U [1, 5]

4.2 Game Theory-Enabled Incentive Mechanism 97

Table 4.2 Offered reward rate comparison with randomized γ effect for different (a, b) setting

Threshold accuracy Baseline Algorithm 2 Algorithm 2 Algorithm 2

θth r (0.3,−1) (0.35,−1) 0.65,−1)

0.2 18 5.22 5.22 5.22

0.3 12 3.48 3.48 3.48

0.4 8.99 2.602 2.6 2.61

0.5 7.19 2.79 4.3 2.2

0.6 5.99 2.38 2.87 2.1

0.7 5.13 2.84 3.17 1.9

Table 4.3 Utility comparison with randomized γ effect for different (a, b) setting

Threshold accuracy Algorithm 2 Algorithm 2 Algorithm 2

θth (0.3,−1) (0.35,−1) (0.65,−1)

0.2 8.55 8.79 8.96

0.3 8.41 8.60 8.95

0.4 8.33 8.58 8.94

0.5 8.2 8.73 8.91

0.6 8.18 8.4 8.91

0.7 7.8 8.51 8.86

parameters (algorithms) for solving the local subproblem, in contrast to Fig. 4.16
with the uniformly distributed γk on [1,5] to achieve the competitive utility.

4. Comparisons: In Tables 4.2 and 4.3, we see the effect of randomized parameter
γk for different configuration of MEC utility model U(·) defined by (a, b).
For the smaller values of θth, which captures the competence of the proposed
mechanism, we observe that the choice of (a, b) provides a consistent offered
reward for improved utility from (0.35,−1) to (0.65,−1), which follows our
analysis in section “Incentive Mechanism: A Two-Stage Stackelberg Game
Approach”. For larger values of θth, we also see the similar trend in MEC utility.
For a randomized setting, we observe up to 71% gain in offered reward against
the Baseline, which validates our proposal’s efficacy aiding federated learning.

Our earlier discussion in Sect. 4.2.2 and simulation results explain the signifi-
cance of choosing a local θth accuracy to build a global model that maximizes the
utility of the MEC server. In this regard, at first, the MEC server evokes admission
control to determine θth and the final model is learned later. This means, with the
number of expected clients, it is crucial to appropriately select a proper prior value
of θth that corresponds to the participating client’s selection criteria for training a
specific learning model. Note that, in each communication round of synchronous
aggregation at the MEC server, the quality of local solution benefits to evaluate
the performance at the local subproblem. In this section, we will discuss about
the probabilistic model employed by the MEC server to determine the value of the
consensus θth accuracy.

98 4 Incentive Mechanisms for Federated Learning

We consider the local θ accuracy for the participating clients is an i.i.d and
uniformly distributed random variable over the range [θmin, θmax], then the PDF
of the responses can be defined as fθ (θ) = 1

θmax−θmin
. Let us consider a sequence of

discrete time slots t ∈ {1, 2, . . .}, where the MEC server updates its configuration
for improving the accuracy of the system. Following our earlier definitions, at
time slot t , the number of participating clients in the crowdsourcing framework for
federated learning is |K(t)|, or simply K . We restrict the clients with the accuracy
measure θ(t) ≥ θmax. For K number of participation requests, the total number of
accepted responses N(t) is defined as N(t) = K · Fθ(t)(θ) = K · P [θ(t) ≤ θ].
We have N(t) = K ·

[
θ(t)−θmin
θmax−θmin

]
. At each time t , the MEC server chooses θ(t)

as the threshold accuracy θth that maximizes the sum of its utility as defined
in (4.18) for the defined parameters a ≥ 0, b ≤ 0 and the total participation,
β
(
1 − 10−(ax(ε)+b)

) + (1 − θ) · N(t), subject to the constraint that the response
lies between the minimum and maximum accuracy measure (θmin ≤ θ(t) ≤ θmax).
Using the definitions in (4.19), for β > 0, the MEC server maximizes its utility for
the number of participation with θ accuracy as

max
θ(t)

β
(

1 − 10−(a·δ(1−θ(t))+b)
)

+ (1 − θ(t)) · N(t),

s.t. θmin ≤ θ(t) ≤ θmax.

(4.36)

The Lagrangian of the problem (4.36) is as follows:

L(θ(t), λ, μ) = β
(

1 − 10−(a·δ(1−θ(t))+b)
)

+ (1 − θ(t))·
[
θ(t) − θmin

θmax − θmin

]
+ λ(θ(t) − θmin)

+μ(θmax − θ(t)), (4.37)

where λ ≥ 0 and μ ≥ 0 are dual variables. Problem (4.36) is a convex problem
whose optimal primal and dual variables can be characterized using the Karush-
Khun-Tucker (KKT) conditions [116] as

∂L
∂θ(t)

= ln(10) · (βδa) · 10−(a·δ(1−θ∗(t))+b)

−K ·
[

2θ(t) − θmin

θmax − θmin

]
+ λ − μ = 0, (4.38)

λ(θ(t) − θmin) = 0, (4.39)

ν(θmax − θ(t)) = 0. (4.40)

4.2 Game Theory-Enabled Incentive Mechanism 99

Following the complementary slackness criterion, we have

λ∗(θ∗(t) − θmin) = 0, μ∗(θmax − θ∗(t)) = 0, λ∗ ≥ 0, μ∗ ≥ 0. (4.41)

Therefore, from (4.41), we solve (4.36) with the KKT conditions assuming that
θ∗(t) < θmax as an admission control strategy, and find the optimal θ∗(t) that
satisfies the following relation

K = ln(10) · (βδa) · 10−(a·δ(1−θ∗(t))+b) · (θmin − θmax)

1 − 2θ∗(t) + θmin
. (4.42)

(4.42) can be rearranged as

f (θ∗(t)) = ln(10) · (βδa) · 10−(a·δ(1−θ∗(t))+b)

+K ·
[

1 − 2θ∗(t) + θmin

θmax − θmin

]
= 0. (4.43)

To obtain the value of θ∗(t) we will use Netwon-Raphson method [125]
employing an appropriate initial guess that manifests the quadratic convergence of
the solution. We choose θ∗

0 (t) = E(θ(t)) = θmax+θmin
2 as an initial guess for finding

θ∗(t) which follows the PDF fθ (θ) ∼ U [θmin, θmax]. Then the solution method is
an iterative approach as follows:

θ∗
i+1(t) = θ∗

i (t) − f (θ∗
i (t))

βδ2a2 · ln2(10) · 10−(a·δ(1−θ∗
i (t))+b)

. (4.44)

Numerical Analysis: In Figs. 4.17 and 4.18, we vary the number of participating
clients up to 50 with different values of δ. The response of the clients is set to follow
a uniform distribution on [0.1, 0.9] for the ease of representation. In Fig. 4.17, for the
model parameters (a,b) as (0.35,−1), we see θth increases with the increase in the
number of participating clients for all values of δ. It is intuitive and goes along with
our earlier analysis that for the small number of participating clients, the smaller
θth captures the efficacy of our proposed framework. Because it is an iterative
process, the evolution of θth over the rounds of communication will be reflected in
the framework design. Subsequently, the larger upper bound δ exhibits the similar
impact on setting θth, where smaller δ imposes strict local accuracy level to attain
high-quality centralized model. Also due to the same reason, in Fig. 4.18, we see
θth is increasing for the increase in the number of participating clients, however,
with the lower value. It is because of the choice of parameters (a, b) as explained in
section “Incentive Mechanism: A Two-Stage Stackelberg Game Approach”. So the
value of θth is lower in Fig. 4.18.

100 4 Incentive Mechanisms for Federated Learning

Fig. 4.17 Variation of local θth accuracy for different values of δ given the density function,
fθ (θ) ∼ U [0.1, 0.9], |K| = [0, 50], for a = 0.35, b = −1

Fig. 4.18 Variation of local θth accuracy for different values of δ given the density function,
fθ (θ) ∼ U [0.1, 0.9], |K| = [0, 50], for a = 0.45, b = −1.05

4.3 Auction Theory-Enabled Incentive Mechanism 101

4.3 Auction Theory-Enabled Incentive Mechanism

In a typical wireless system, there are a variety of players, such as end-users, mobile
network operators, and cloud server providers, among others. These players interact
with each other to maximize their own benefits [126]. The benefits can be high
data rate, load balancing, latency minimization, overall system utility maximization,
energy efficiency, and profit maximization. However, enabling interaction among
various players of wireless systems requires some effective business models. One
can use auction theory to enable efficient interaction among the players of wireless
systems. Auction theory enables people how to act in an auction market and
systematically investigate the auction markets [127]. For instance, a mobile network
operator can sell the spectrum resources to end-users for maximizing its profit. On
the other hand, end-users want to increase their own benefits (e.g., data rate). To
model this interaction between a mobile network operator and a set of users, one
can use auction theory where users act as buyers (i.e, bidders) and mobile network
operator as a seller. The description of three main players used in auction theory are
as follows [128]:

• Bidder: In auction theory, a bidder is an entity that wants to buy commodities
from the seller. An example of a bidder in a wireless system is the end-user.

• Seller: A seller denotes the owner of all commodities (e.g., radio resources) of a
wireless system.

• Auctioneer: It refers to the intermediate agent that helps the bidder and seller
in performing auctions. For instance, a base station in a wireless system can
be considered as an auctioneer between the mobile network operator and end-
users. Furthermore, a mobile network operator itself can also act as an auctioneer.
Therefore, depending on the scenario one can choose an auctioneer.

• Commodity: Commodities of a wireless system represent the resources (e.g.,
spectrum, edge computing resource) that are traded between the sellers and
bidders.

In this section, we provide an incentive mechanism design for federated learning
using auction theory. In spite of the many benefits of federated learning, there are
remaining two key challenges of having an efficient federated learning framework.
The first challenge is the economic challenge. Data samples per mobile device are
small to train a high-quality learning model so a large number of mobile users are
needed to ensure cooperation. In addition, the mobile users who join the learning
process are independent and uncontrollable. Here, mobile users may not be willing
to participate in the learning due to the energy cost incurred by model training.
In other words, the base station (BS), which generates the global model, has to
stimulate the mobile users for participation. The second challenge is the technical
challenge. On the one hand, we need users to collectively provide a large number of
data samples to enable federated learning without sharing their private data. On the
other hand, we need to protect the model from imperfect updates. The global loss
minimization problem should enable (a) proper assessment of the quality of the local
solution to improve personalization and fairness amongst the participating clients
while training a global model, (b) effective decoupling of the local solvers, thereby

102 4 Incentive Mechanisms for Federated Learning

balancing communication and computation in the distributed setting. Moreover,
we need to consider wireless resource limitations (such as time, antenna number,
and bandwidth)affecting the performance of federated learning. Besides, the limited
energy of wireless devices is a crucial challenge for deploying federated learning.
Indeed, it is necessary to optimize the energy efficiency for federated learning
implementation because of these resource constraints.

To deal with the above challenges, we model the federated learning service
between the BS and mobile users as an auction game in which the BS is a buyer
and mobile users are sellers. In particular, the BS first initiates and announces a
federated learning task. When each mobile user receives the federated learning
task information, they decide the amount of resources required to participate in
the model training. After that, each mobile user submits a bid, which includes
the required amount of resource, local accuracy, and the corresponding energy
cost, to the BS. Moreover, the BS plays the role of the auctioneer to decide the
winners among mobile users as well as clear payment for the winning mobile
users. In addition, the auction used in this work is a type of combinational auction
[56, 129] since each mobile user can bid for combinations of resources. However,
the proposed auction mechanism allows mobile users sharing the resources at the
BS, which is different from the conventional combinatorial auction. The proposed
mechanism directly determines the trading rules between the buyer (BS) and sellers
(mobile users) and motivates the mobile users to participate in the model training.
Compared with other incentive mechanism approaches (e.g., contract theory) in
which the service market is a monopoly market, where mobile users can only
decide whether or not to accept the contracts, the proposed auction enables mobile
users to bids on any combinations of resources. Moreover, the proposed auction
mechanism can simultaneously provide truthfulness and individual rationality. An
auction mechanism is truthful if a bidder’s utility does not increase when that bidder
makes other bidding strategies, rather than the true value. Revealing the true value
is a dominant strategy for each participating user regardless of what strategies other
users use[130]. An absent-truthfulness auction mechanism could leave the door to
possible market manipulation and produce inferior results [131]. Additionally, if
the value of any bidder is non-negative, an auction process will ensure individual
rationality. The contributions of this section are summarized as follows:

• We propose an auction framework for the wireless federated learning services
market. Then, we present the bidding cost in every user’s bid submitted to the BS.
From the mobile users’ perspective, each mobile user makes optimal decisions
on the amount of resources and local accuracy to minimize weighted sum of
completion time and energy costs while the delay requirement for federated
learning is satisfied. To solve the cost decision problem, a low-complexity
iterative algorithm is proposed.

• From the perspective of the BS, we formulate the winner selection problem in the
auction game as the social welfare maximization problem, which is an NP-hard
problem considering the limitation of the wireless resource. We propose a primal-
dual greedy algorithm to deal with the NP-hard problem of selecting the winning
users and critical value-based payment. We also proved that the proposed auction
mechanism is truthful, individually rational, and computationally efficient.

4.3 Auction Theory-Enabled Incentive Mechanism 103

• Finally, we carry out the numerical study to show that a proposed auction mech-
anism can guarantee the approximation factor of the integrality to the maximal
welfare that is derived by the optimal solution and outperforms compared with
baseline.

4.3.1 System Model

Preliminary of Federated Learning

Consider a cellular network in which one BS and a set N of N users cooperatively
perform a federated learning algorithm for model learning, as shown in Fig. 4.19.
A summary of all notations used is given in Table 4.4. Each user n has sn local
data samples. Each data set sn = {ank, bnk,1≤k≤sn} where ank is an input and bnk

Local Model

Local Model

Local Model

Global Model

Auction phases

Federated
Learning phases

Set of mobile
devices

Local Database

1. Federated Learning task

2. Bids

[sub-channel, antenna,
local accuracy, cost]

3. Winners list & payment list

4. Global model

5. Updated local models

6. Payment

Fig. 4.19 System model

104 4 Incentive Mechanisms for Federated Learning

Table 4.4 Table of key
notations

Description Notation

Global loss function L(ω)

Computing energy consumption of user n E
comp
n

Computing time of one local iteration of user n T
comp
n

Transmission time of user n T com
n

Transmission energy of user n Ecom
n

Total transmission time of user n T tol
n

Total energy consumption of user n Etol
n

Local accuracy of user n εn

Computing resource of user n fn

Transmission power of user n pn

Antenna number desired by user n An

The real cost of the ith bid of user n Vni

The claimed cost of the ith bid of user n vni

The satisfaction level of the ith bid of user n χni

The winner indicator of the ith bid of user n xni

is its corresponding output. The federated learning model trained by the dataset of
each user is called the local federated learning model, while the federated learning
model at the BS aggregates the local model from all users as the global federated
learning model. We define a vector ω as the model parameter. We also introduce the
loss function ln(ω, ank, bnk) that captures the federated learning performance over
input vector ank and output bnk . The loss function may be different, depending on
the different learning tasks. The total loss function of user n will be

Ln(ω) = 1

sn

sn∑

k=1

ln(ω, ank, bnk). (4.45)

Then, the learning model is the minimizer of the following global loss function
minimization problem

min
ω

L(ω) = 1

S

N∑

n=1

sn∑

k=1

ln(ω, ank, bnk), (4.46)

where S =∑N
n=1 sn is the total data samples of all users.

To solve the problem in (4.46), we adopt the federated learning algorithm of
[72]. The algorithm uses an iterative approach that requires a number of global
iterations (i.e., communication rounds) to achieve a global accuracy level. In each
global iteration, there are interactions between the users and BS. Specifically, at
a given global iteration t , users receive the global parameter ωt , users computes
�Ln(ω

t),∀n and send it to the BS. The BS computes [70]

�L(ωt) = 1

N

N∑

n=1

�Ln(ω
t), (4.47)

4.3 Auction Theory-Enabled Incentive Mechanism 105

and then broadcasts the value of �L(ωt) to all participating users. Each participating
user n will use local training data sn to solve the local federated learning problem is
defined as

min
φn

Gn(ω
t , φn)

= Ln(ω
t + φn) − (�Ln(ω

t) − ��L(ωt)
)T

φn,

(4.48)

where φn represents the difference between global federated learning parameter and
local federated learning parameter for user n. Each participating user n uses the
gradient method to solve (4.48) with local accuracy εn that characterizes the quality
of the local solution, and produces the output φn that satisfies

Gn(ω
t , φn) − Gn(ω

t , φ∗
n) < εn(Gn(ω

t , 0) − Gn(ω
t , φ∗

n)). (4.49)

Solving (4.48) also takes multiple local iterations to achieve a particular local
accuracy. Then each user n sends the local parameter φn to the BS. Next, the BS
aggregates the local parameters from the users and computes

ωt+1 = ωt + 1

N

N∑

n=1

φt
n, (4.50)

and broadcasts the value to all users, which is used for next iteration t + 1. This
process is repeated until the global accuracy γ of (4.46) is obtained.

Assume that Ln(ω) is H -Lipschitz continuous and π -strongly convex, i.e.,

πI � �2Ln(ω) � HI ,∀n ∈ N ,

the general lower bound on the number of global iterations is depends on local
accuracy ε and the global accuracy γ as [70]:

Ig(γ, ε) = C1 log(1/γ)

1 − ε
, (4.51)

where the local accuracy measures the quality of the local solution as described in
the preceding paragraphs.

In (4.51), we observe that a very high local accuracy (small ε) can significantly
boost the global accuracy γ for a fixed number of global iterations Ig at the BS to
solve the global problem. However, each user n has to spend excessive resources in
terms of local iterations, I ln to attain a small value of εn. The lower bound on the
number of local iterations needed to achieve local accuracy εn is derived as [70]

I ln(εn) = ϑn log

(
1

εn

)
, (4.52)

106 4 Incentive Mechanisms for Federated Learning

where ϑn > 0 is a parameter choice of user n that depends on parameters of Ln(ω)

[70]. In this section, we normalize ϑn = 1. Therefore, to address this trade-off, the
BS can set up an economic interaction environment to motivate the participating
users to enhance local accuracy εn. Correspondingly, with the increased payment,
the participating users are motivated to attain better local accuracy εn (i.e., smaller
values), which as noted in (4.51) can improve the global accuracy γ for a fixed
number of iterations Ig of the BS to solve the global problem. In this case, the
corresponding performance bound in (4.51) for the heterogeneous responses εn can
be updated to catch the statistical and system-level heterogeneity regarding the worst
case of the participating users’ responses as:

Ig(γ, εn) = � log(1/γ)

1 − maxn εn
,∀n. (4.53)

Computation and Communication Models for Federated Learning

The contributed computation resource that user n contributes for local model
training is denoted as fn. Then, cn denotes the number of CPU cycles needed for the
user n to perform one sample of data in local training. Thus, energy consumption of
the user for one local iteration is presented as

Ecom
n (fn) = ζcnsnf

2
n , (4.54)

where ζ is the effective capacitance parameter of computing chipset for user n. The
computing time of a local iteration at the user n is denoted by

T
comp
n = cnsn

fn
. (4.55)

It is noted that the uplink from the users to the BS is used to transmit the parameters
of the local federated learning model while the downlink is used for transmitting the
parameters of the global federated learning model. In this section, we just consider
the uplink bandwidth allocation due to the relation of the uplink bandwidth and
the cost that user experiences during learning a global model. We consider the
uplink transmission of an OFDMA-based cellular system. A set of B = {1, 2, ..., B}
subchannels each with bandwidth W . Moreover, the BS is equipped with A antennas
and each user equipment has a single antenna (i.e., multi-user MIMO). We assume
A to be large (e.g., several hundreds) to achieve massive MIMO effect which scales
up traditional MIMO by orders of magnitude. Massive MIMO uses spatial-division
multiplexing. In this section, we assume that the BS has perfect channel state
information (CSI) and the channel gain is perfectly estimated, similar to [132, 133].

4.3 Auction Theory-Enabled Incentive Mechanism 107

Then, the achievable uplink data rate of mobile user n is expressed as [133, 134]:

rn = bnW log2

(
1 + (An − 1)pnhn

bnWN0

)
, (4.56)

where pn is the transmission power of user n, hn is the channel gain of peer to peer
link between user and the BS, N0 is the background noise, An is the number of
antennas the BS assigns to user n, and bn is the number of sub-channels that user n
uses to transmit the local model update to the BS.

We denote σ as the data size of a local model update and it is the same for all
users. Therefore, the transmission time of a local model update is

T com
n (pn,An, bn) = σ

rn
. (4.57)

To transmit local model updates in a global iteration, the user n uses the amount of
energy given as

Ecom(pn, fn,An, bn) = T compn = σpn

rn
. (4.58)

Hence, the total time of one global iteration for user n is denoted as

T tol
n (pn, fn,An, bn, εn)

= log

(
1

εn

)
T

comp
n (fn) + T com

n (pn,An, bn).
(4.59)

Therefore, the total energy consumption of a user n in one global iteration is denoted
as follows

Etol
n (pn, fn,An, bn, εn)

= log

(
1

εn

)
E

comp
n (fn) + Ecom

n (pn,An, bn).
(4.60)

Auction Model

As described in Fig. 4.19, the BS first initializes the global network model. Then,
the BS announces the auction rule and advertises the federated learning task to the
mobile users. The mobile users then report their bids. Here, mobile user n submits
a set of In of bids to the BS. A bid Δni denotes the ith bid submitted by the mobile
user n. Bid bni consists of the resource (sub-channel number bni , antenna number
Ani , local accuracy level εni) and the claimed cost vni for the model training. Each

108 4 Incentive Mechanisms for Federated Learning

mobile user n has its own discretion to determine its true cost Vni , which will be
presented in Sect. 4.3.1. Let xni be a binary variable indicating the bid Δni wins or
not. After receiving all the bids from mobile users, the BS decides winners and then
allocates the resource to the winning mobile users. The winning mobile users join
the federated learning and receive the payment after finishing the training model.

Remark In each bid, the bidder declares the requested resources, the local accuracy,
and the corresponding cost. And the cost is calculated before submitting bids.
Therefore, the cost corresponding to the requesting resources can be included in
the bid during the bidding process.

Following we discuss one practical usage of our proposed auction scheme in
federated learning. Let’s consider a concrete example of a mobile phone keyboard
such as Gboard (Google Keyboard). A large amount of local data will be generated
when users interact with the keyboard app on their mobile devices. Suppose that
Google server wants to train a next-word prediction model based on users’ data. The
server can announce the learning project to users through the app and encourage
their participation. If a user wants to know more about this project, the app will
display an interface to submit the bids and calculate the expected cost. If the user
is interested in learning, he/she will download apps, calculate cost and submit the
bids through the interface. Once the BS receive all bids in certain time, the BS will
start the training process by broadcasting an initial global model to all the winning
users. On behalf of the user, the app will download this global model and upload the
model updates generated by the training on the user’s local data. After finishing the
model training project, the BS will give users rewards (e.g., money) based on the
bid it wins.

Deciding Mobile Users’s Bid

To transmit the local model update to the BS, mobile users need sub-channels
and antenna resources. However, given the maximum tolerable time of federated
learning, there is a correlation between resource and corresponding energy cost.
In this section, we present the way mobile users decide bids. Specially, for bid
Δni , mobile user n calculates transmission power pni , computation resource fni
and cost vni corresponding to a given sub-channel number bni and antenna number
Ani . However, for simplicity, the process to decide mobile users’ bid is the same for
every submitted bid. Thus, we remove the bid index i in this section. The energy
cost of mobile user n is defined after user n solve the weighted sum of completion
time and total energy consumption in the submitted bid, which is given as

P1 : min
fn,pn,An,bn,εn

I n0

(
Etol

n (pn, fn, εn) + ρT tol
n (pn, fn, εn)

)
(4.61a)

s.t. I n0 T
tol
n (pn, fn,An, bn, εn) ≤ Tmax, (4.61b)

4.3 Auction Theory-Enabled Incentive Mechanism 109

fn ∈ [f min
n , f max

n], (4.61c)

pn ∈ (0, pmax
n], (4.61d)

εn ≤ (0, 1], (4.61e)

An ∈ (0, Amax
n], (4.61f)

bn ∈ (0, bmax
n], (4.61g)

where f max
n and pmax

n are the maximum local computation capacity and maximum
transmit power of mobile user n, respectively. Amax

n and bmax
n are the maximum

antenna and maximum sub-channel that mobile user n can request in each bid,
respectively. Amax

n and bmax
n are chosen by mobile user n. In0 = C1 log(1/γ)

1−εn
is the

lower bound of the number global iterations corresponding to local accuracy εn.
Note that the cost to the mobile user cannot be the same over iterations. ρ is the
weight. However, to make the problem more tractable, we consider minimizing
the approximated cost rather than the actual cost, similar to approach in [111].
Constraint (4.61b) indicates delay requirement of federated learning task.

According to P1, the maximum number of antennas and sub-channels are always
energy efficient, i.e., the optimal antenna is An = Amax

n , bn = bmax
n and ε∗

n, p
∗
n, f

∗
n

are the optimal solution to:

P2 : min
fn,pn,εn

I n0

(
Etol

n (pn, fn, εn) + ρT tol
n (pn, fn, εn)

)

s.t. I n0 T
tol
n (pn, fn, εn) ≤ Tmax,

fn ∈ [f min
n , f max

n],
εn ∈ (0, 1],
pn ∈ (0, pmax

n].

(4.62)

Because of the non-convexity of P2, it is challenging to obtain the global optimal
solution. To overcome the challenge, an iterative algorithm with low complexity is
proposed in the following subsection.

Iterative Algorithm

The proposed iterative algorithm basically involves two steps in each iteration. To
obtain the optimal, we first solve (P2) with fixed εn, and then εn is updated based on
the obtained fn, pn in the previous step. In the first step, we consider the first case

110 4 Incentive Mechanisms for Federated Learning

Algorithm 6 Optimal uplink power transmission
1: Calculate φ(pmax

n)

2: Calculate pmin
n so that In0 T

tol
n (pmin

n) = Tmax

3: if φ(pmax
n < 0) then

4: p∗
n = pmax

n

5: else
6: p1 = max(0, pmin

n) and p2 = pmax
n

7: while (p2 − p1 ≤ ε) do
8: pu = (p1 + p1)/2
9: if φ(pu) ≤ 0 then

10: p1 = pu

11: else
12: p2 = pu

13: end if
14: end while
15: p∗

n = (p1 + p2)/2
16: end if

when εn is fixed, and P2 becomes

P3 : min
fn,pn,εn

I n0

(
Etol

n (pn, fn, εn) + ρT tol
n (pn, fn, εn)

)

s.t. I n0 T
tol
n (pn, fn, εn) ≤ Tmax,

fn ∈ [f min
n , f max

n],
pn ∈ (0, pmax

n].

(4.63)

P3 can be decomposed into two sub-problems as follows.

Optimization of Uplink Transmission Power

Each mobile user assigns its transmission power by solving the following problem:

P3a : min
pn

f (pn)

s.t. I n0 T
tol
n (pn, fn, εn) ≤ Tmax,

pn ∈ (0, pmax
n],

fn, εn are given.

(4.64)

where f (pn) = σ(1+ρ)pn

bnW log2(1+ (An−1)pnhn
bnWN0

)
.

4.3 Auction Theory-Enabled Incentive Mechanism 111

Algorithm 7 Optimal local accuracy

1: Initialize εn = ε
(0)
n , set j = 0

2: repeat
3: Calculate ε∗

n = α1
(ln 2)ξ j

4: Update ξ (j+1) = γ1 log2(1/εn)+γ2
1−εn

5: Set j = j + 1
6: until |H(ξ(n+1))|/|H(ξ(n))| < ε2

Note that f (pn) is quasiconvex in the domain [135]. A general approach to the
quasiconvex optimization problem is the bisection method, which solves a convex
feasibility problem each time [116]. However, solving convex feasibility problems
by an interior cutting-plane method requires O(κ2/α2) iterations, where κ is the
dimension of the problem [135]. On the other hand, we have

f ′(pn) = σ log2(1 + θnpnhn) + σ(1+ρ)pnθnhn
ln 2(1+θnpnhn)

bnW(log(1 + θnpnhn))2 , (4.65)

where θn = (An−1)
WN0

. Then, we have

φ(pn) = σ log2(1 + θnpnhn) + σ(1 + ρ)pnθnhn

ln 2(1 + θnpnhn)
(4.66)

is a monotonically increasing transcendental function and negative at the starting
point pn = 0 [135]. Therefore, in order to obtain the optimal power allocation pn as
shown in Algorithm 6, we follow a low-complexity bisection method by calculating
φ(pn) rather than solving a convex feasibility problem each time.

Optimization of CPU Cycle Frequency and Number of Antennas

P3b : min
fn

In0 log

(
1

εn

)
cnsn

(
ζf 2

n + ρ/fn

)

s.t. I n0

(
log

(
1

εn

)
cnsn

fn
+ T com

n

)
≤ Tmax,

fn ∈ [f min
n , f max

n],
pn, εn are given.

(4.67)

P3b is the convex problem, so we can solve it by any convex optimization tool.

112 4 Incentive Mechanisms for Federated Learning

Algorithm 8 Iterative algorithm
1: Initialize a feasible solution pn, fn, εn and set j = 0.
2: repeat
3: With ε

(j)
n obtain the optimal p(j+1)

n , f
(j+1)
n of problem P2 :

4: With p
(j+1)
n , f

(j+1)
n obtain the optimal ε(j+1)

n of problem P2 :
5: Set j = j + 1
6: until Objective value of P2 converges

In the second step, P2 can be simplified by using fn and pn calculated in the first
step as:

P4 : min
εn

γ1 log2(1/εn) + γ2

1 − εn
(4.68a)

s.t. T tol
n ≤ Tmax, (4.68b)

where γ1 = a
(
E

comp
n + T

comp
n

)
and γ2 = a

(
Ecom

n + T com
n

)
. The constraint (4.68b)

is equivalent to T com
n ≤ ϑ(εn), where ϑ(εn) = 1−εn

m
Tmax + cnsn log2 εn

fn
. We have

ϑ(εn)
′′ < 0, and therefore, ϑ(εn) is a concave function. Thus, constraint (4.68b)

can be equivalent transformed to εmin
n ≤ εn ≤ εmax

n , where ϑ(εmin
n) = ϑ(εmax

n) =
T com
n . Therefore, εn is the optimal solution to

P5 : min
εn

γ1 log2(1/εn) + γ2

1 − εn

s.t. εmin
n ≤ εn ≤ εmax

n .

(4.69)

Obviously, the objective function of P5 has a fractional in nature, which is
generally difficult to solve. According to [70, 136], solving P5 is equivalent to
finding the root of the nonlinear function H(ξ) defined as follows

H(ξ) = min
εmin
n ≤εn≤εmax

n

γ1 log2(1/εn) + γ2 − ξ(1 − εn) (4.70)

Function H(ξ) with fixed ξ is convex. Therefore, the optimal solution εn can be
obtained by setting the first-order derivative of H(ξ) to zero, which leads to the
optimal solution is ε∗

n = γ1
(ln 2ξ) . Thus, similar to [70], problem P5 can be solved by

using the Dinkelbach method in [136] (shown as Algorithm 7).

Convergence Analysis

The algorithm that solves problems P2 is given in Algorithm 4, which iteratively
solves problems P3 and P4. Since the optimal solution of problem P3 and P4 is
obtained in each step, the objective value of problem P2 is non-increasing in each

4.3 Auction Theory-Enabled Incentive Mechanism 113

step. Moreover, the objective value of problem P2 is lower bounded by zero. Thus,
Algorithm 4 always converges to a local optimal solution.

Complexity Analysis

Because of the non-convexity of P2, it is challenging to obtain the global optimal
solution. To overcome the challenge, an iterative algorithm with low-complexity
is proposed in the following subsection. In particular, to solve the general energy-
efficient resource allocation problem P2 using Algorithm 3, the major complexity in
each step lies in solving problems P3 and P4. To solve problem P3, the complexity is
O(Le log2(1/ε1)), where ε1 is the accuracy of solving P3 with the bisection method
and Le is the number of iterations for optimizing fn and pn. To solve problem
P4, the complexity is O(log2(1/ε2)) with accuracy ε2 by using the Dinkelbach
method [136]. As a result, the total complexity of the proposed Algorithm 4 is HeS,
where He is the number of iterations for problems P3 and P4 and S is equal to
O(Le log2(1/ε1)) + O(log2(1/ε2)).

After deciding the bids, the mobile users submit bids to the BS. The following
section describes the auction mechanism between the BS and mobile users for
selecting winners, allocating bandwidth and deciding on payment.

4.3.2 Auction Mechanism Between BS and Mobile Users

After receiving all bids submitted by mobile users, the BS decides a set of winners
by solving the problem (P6), aiming to maximize social welfare. The BS’s aim is to
achieve social welfare because the BS needs to incentive mobile users to participate
in learning. Here, the BS’s freedom in designing the incentive mechanism is the
payment determination, which can force participant mobile users to be truthful.
Moreover, if the BS wants to select winners to maximize its utility, the BS needs to
know the distribution of mobile users’ private information in advance[129], which
is assumed to be unavailable in our work. In case the prior distribution of mobile
users’ private information is not available, worst-case analysis can be applied, but
that method could lead to overly pessimistic results [129].

Problem Formulation

In bid Δni that mobile user n submits to the BS includes the number of subchannels
bni , the number of antennas Ani , local accuracy εni , and claimed cost vni . The utility
of one bid is the difference between the payment gni and the real cost Vni .

Uni =
{
gni − Vni, if bid Δni wins,

0, otherwise.
(4.71)

114 4 Incentive Mechanisms for Federated Learning

The payment that the BS pays for winning bids is
∑

n,i gni . As we described in
Sect. 4.3.1, high local accuracy will significantly improve the global accuracy for a
fixed number of global iterations. The utility of the BS is the difference between the
BS’s satisfaction level and the payment for mobile users. The satisfaction level of
the BS to bid Δni is measured based on the local accuracy that mobile user n can
provide in the ith bid and is defined as follows

χni = τ

εni
. (4.72)

Thus, the total utilities of the system or the social welfare is

∑

n,i

(χni − vni)xni . (4.73)

If mobile users truthfully submit their cost, Vni = vni , we have the social welfare
maximization problem defined as follows:

P6 : max
x

∑

n,i

(χni − vni)xni (4.74a)

s.t.
∑

n

xnibni ≤ Bmax, (4.74b)

∑

n

xniAni ≤ Amax, (4.74c)

∑

i

xni ≤ 1,∀n, (4.74d)

xni = {0, 1}, (4.74e)

where (4.74b) and (4.74c) indicate the bandwidth resource (i.e., sub-channels) and
the antennas limitation constraints of the BS, respectively. Then, (4.74d) shows that
a mobile user can win at most one bid and (4.74e) is the binary constraint that
presents whether bid Δni wins or not.

Problem P6 is a minimization knapsack problem, which is known to be NP-
hard. This implies that no algorithm is able to find out the optimal solution of P6
in polynomial time. It is also known that a mechanism with Vickrey-Clarke-Groves
(VCG) payment rule is truthful only when the resource allocation is optimal. Hence,
using VCG payment directly is unsuitable due to the problem P6 is computationally
intractable. To deal with the NP-hard problem, we proposed the primal-dual based
greedy algorithm. The following economic properties are desired.

Truthfulness An auction mechanism is truthful if and only if for every bidder n

can get the highest utility when it reports true value.

4.3 Auction Theory-Enabled Incentive Mechanism 115

Individual Rational If each mobile user reports its true information (i.e., cost and
local accuracy), the utility for each bid is nonnegative, i.e., Uni ≥ 0.

Computation Efficiency The problem can be solved in polynomial time.
Among these three properties, truthfulness is the most challenging one to

achieve. In order to design a truthful auction mechanism, we introduce the following
definitions.

Definition 1 (Monotonicity) If mobile user n wins with the bid Δni =
{vni, 1/εni, bni, Ani}, then mobile user n can win the bid with Δnj =
{vnj , 1/εnj , bnj , Anj } � Δni = {vni, 1/εni, bni, Ani}.

The notation � denotes the preference over bid pairs. Specifically, Δnj =
{vnj , 1/εnj , bnj , Anj } � Δni = {vni, 1/εni, bni, Ani} if εnj < εni for vnj =
vni, bnj = bni, Anj = Ani or vnj < vni, bnj < bni, Anj < Ani for εnj = εni . The
monotonicity implies that the chance to obtain a required bundle of resources can
only be enhanced by either increasing the local accuracy or decreasing the amount
of resources required or decreasing the cost.

Definition 2 (Critical Value) For a given monotone allocation scheme, there exists
a critical value cni of each bid Δni such that ∀n, i(χni −vni) ≥ cni will be a winning
bid, while ∀n, i(χni − vni) < cni is a losing bid.

In our proposed mechanism, the difference between the satisfaction based on local
accuracy and cost of one bid can be considered as the value of that bid. Therefore,
the critical value can be seen as the minimum value that one bidder has to bid to
obtain the requested bundle of resources. With the concepts of monotonicity and
critical value, we have the following lemma.

Lemma 4.1 An auction mechanism is truthful if the allocation scheme is monotone
and each winning mobile user is paid the amount that equals to the difference
between the satisfaction based on the local accuracy and the critical value.

Proof Similar Lemma 1 and Theorem 1 in [130].

In the next subsection, we propose a primal-dual greedy approximation algorithm
for solving problem P6. The algorithm iteratively updates both primal and dual
variables and the approximation analysis is based on duality property. As the result,
we firstly relax 1 ≥ xni ≥ 0 of P6 to have the linear programming relaxation (LPR)
of P6. Then, we introduce the dual variable vectors y, z and t corresponding to
constraints (4.74b), (4.74c) and (4.74d) and we have the dual of problem LPR of P6
can be written as

P7 : max
y,z,t

∑

n∈N
yn + zBmax + tAmax (4.75a)

s.t. yn + zAni + tBni ≥ qni,∀n, i, (4.75b)

yn ≥ 0,∀n, (4.75c)

z, t ≥ 0. (4.75d)

116 4 Incentive Mechanisms for Federated Learning

In Sect. 4.3.2, we devise an greedy approximation algorithm and Sect. 4.3.2, a
theoretical bound is achieved for the approximation ratio of the proposed algorithm.

Approximation Algorithm Design

In this section, we use a greedy algorithm to solve problem P6 The main idea of the
greedy algorithm is to allocate the resource to bidders with the larger normalized
value. The winner selection process is described in the Algorithm 4. The process
consists 3 steps:

Step 1: Based on the bid’s value and the weighted sum of requested resources,
each bid Δni calculates the normalized value. The bid’s value is defined as the
difference between the satisfaction level of the BS and the cost declared in this
bid, qni = χni − vni . The weighted sum of different types of resources declared
in this bid is defined as sin = ηbBn + ηaAn, where ηb, ηa are the weights. The
normalized value of the bid is defined as the ration between the value of this bid
and the weighted sum of requested resources, and is denoted as

q̄ni = qni

sni
.

Step 2: The bid with maximum q̄ni wins the bidding.
Step 3: Delete user n from the list of bidders. Then go back to Step 2 until either

one of the following termination conditions is satisfied:

(i) The BS has not enough resource to satisfy the demand;
(ii) All the mobile users win one bid.

Approximation Ratio Analysis

In this subsection, we analyze approximation ratio of Algorithm 10. Our approach
is to use the duality property to derive a bound for approximation algorithm. We
denote the optimal solution and the optimal value of LPR of P6 as x∗

ni and OPf .
Furthermore, let OP and ϕ as the optimal value of P6 and the primal value of P6
obtained by Algorithm 10. Our analysis consists of two steps. First, Theorem 4.1
shows that Algorithm 10 generates a feasible solution to P7, and Proposition 1
provides approximation factor.

Theorem 4.1 Algorithm 10 provides a feasible solution to P7.

Proof We discuss the following three cases:

• Case 1: mobile user μ wins, i.e., μ ∈ U and bμiμ = maxi′∈Iμ
{qμi′ }. Then we

have yμ = qμiμ ≥ qμi′ ,∀i′ ∈ Iμ. Thus, constraint (4.75b) is satisfied for all
mobile users in U .

4.3 Auction Theory-Enabled Incentive Mechanism 117

Algorithm 9 The Greedy approximation algorithm
1: Input: (B,A, χ, v, Bmax, Amax)

2: Output: solution x
3: U = ∅, x = 0
4: ∀n : yn = 0, ψ = 0;
5: ϕ = 0, B = 0, A = 0;
6: sin = ηbBni + ηaAni ;
7: qkj = χni − vni ;
8: for n ∈ N do
9: in = arg maxi{qni};

10: end for
11: κ = max sni

sni′
;

12: while N �= ∅ do
13: μ = arg maxn∈N qni

snin
;

14: if B + bμiμ <= Bmax and A + aμiμ <= Amax then
15: xμiμ = 1; yμ = qμiμ ;
16: ϕ = ϕ + qμiμ ;
17: ψ =

∑
n∈U qnin∑
n∈U snin

;

18: U = U ∪ {μ} and N = N \ {μ}
19: else
20: break;
21: end if
22: end while
23: ψ̄ = κψ ;
24: z = ηbψ̄ , t = ηaψ̄

• Case 2: mobile user μ loses the auction, i.e., μ ∈ N \ U . According to the while
loop, it is evident that

qnin

snin
>

qμiμ

sμiμ
,∀n ∈ U .

Therefore, ψ >
qμiμ
sμiμ

. Thus,

ψ̄ ≥ κ
qμiμ

sμiμ
≥ qμiμ

sμiμ
.

In addition, we have

qμiμ ≥ qμi′ and κ >
sμiμ

sμi′
,∀i′ �= iμ.

Therefore,

ψ̄ ≥ qμi′

nμi′
,∀i′ �= iμ.

118 4 Incentive Mechanisms for Federated Learning

Therefore, we have

ηbψ̄Bin + ηaψ̄Ain ≥ qin,∀i′ �= iμ.

or

zCin + tAin ≥ qin,∀i′ �= iμ.

Therefore, constraint (4.75b) is also satisfied for all mobile users in N \ U .

Proposition 1 The upper bound of integrality gap α between P6 and its relaxation
and the approximation ratio of Algorithm 10 are 1 + κΥ

Υ−S
, where Υ = ηbBmax +

ηaAmax, S = maxn,i sni .

Proof Let OP and OPf be the optimal solution for P6 and LPR of P6. We can
obtain the following:

OP ≤ OPf ≤
N∑

n=1

yn + zBmax + tAmax

≤
N∑

n=1

yn + ψ̄(ηbBmax + ηaAmax)

≤
∑

n∈N
qnin + ψ̄(ηbBmax + ηaAmax)

≤
(
∑

n∈N
qnin

)(
1 + (ηbBmax + ηaAmax)κ

ηbBmax + ηaAmax − S

)

≤ ϕ

(
1 + Υ κ

Υ − S

)
,

Therefore, the integrality α is given as

OPf /OP

≤ OPf /ϕ

≤
(

1 + κΥ

Υ − S

)
.

The approximation ratio is

OP/ϕ ≤ OPf /ϕ ≤
(

1 + κΥ

Υ − S

)
.

4.3 Auction Theory-Enabled Incentive Mechanism 119

Payment

Then we will find the critical value which is the minimum value a bidder has to
bid to win the requested bundle of resources. In this section, we consider the bid
combinations submitted by mobile user n as the combinations of bids submitted
by virtual bidders, in which each virtual bidder can submit one bid. Therefore, the
number of virtual bidders corresponding to mobile user n is equal to the number
of bids In that mobile user n submits. Denote by m the losing mobile user with
the highest normalized value if mobile user n is not participating in the auction.
Accordingly, the minimum value mobile user n needs to place is qmim

smim
snin , where

im and in are the indexes of highest normalized value bids of mobile user m and n,
respectively. Thus, the payment of winning mobile user n in the pricing scheme is
gnin = χnin − qmim

smim
snin .

Properties

Now, we show that the winner determination algorithm is monotone and the
payment determined for a winner mobile user is the difference between the local
accuracy-based satisfaction and the critical value of its bid. From line 13 of the
Algorithm 10, it is clear that a mobile user can increase its chance of winning by
increasing its bid. Also, a mobile user can increase its chance to win by decreasing
the weighted sum of the resources. Therefore, the winner determination algorithm
is monotone with respect to mobile user’s bids. Moreover, the value of a winning
bidder is equals to the minimum value it has to bid to win its bundle, i.e., its
critical value. This is done by finding the losing bidder m who would win if
bidder n would not participate in the auction. Thus, the proposed mechanism has
a monotone allocation algorithm and payment for the winning bidder equals the
difference between the local accuracy-based satisfaction and the critical value of its
bid. We conclude that the proposed mechanism is a truthful mechanism according
to Lemma 4.1.

Next, we prove that the proposed auction mechanism is individually rational. For
any mobile user n bidding its true value, we consider two possible cases:

• If mobile user n is a winner with its bid ith, its payment is

Uni = gni − vni

= (χni − qmim

smim

sni − vni

=
(
χni − vni

sni
− qmim

smim

)
sni

=
(
qni

sni
− qmim

smim

)
sni ≥ 0

120 4 Incentive Mechanisms for Federated Learning

where m the losing bidder with the highest normalized valuation if n does not
participate in the auction and the last inequality follows from Algorithm 10.

• If mobile user n is not a winner. Its utility is 0.

Therefore, the proposed auction mechanism is individually rational.
Finally, we show that the proposed auction mechanism is computationally

efficient. We can see that in Algorithm 10, the while-loop (lines 12–22) takes at
most N times, linear to input. Calculating the payment takes at most N(N−1) times.
Therefore, the proposed auction mechanism is computationally efficient. Therefore,
the time complexity of Algorithm 10 is O(N2).

4.3.3 Simulations

In this section, we provide some simulation results to evaluate the proposed
mechanism. The parameters for the simulation are set the following. The required
CPU cycles for performing a data sample cn is uniformly distributed between
[10, 50] cycles/bit [70]. The size of data samples of each mobile user is sn =
80 × 106. The effective switched capacitance in local computation is ξ = 10−28

[70]. We assume that the noise power spectral density level N0 is −174dBm/Hz,
the sub-channel bandwidth is W = 15 kHz and the channel gain is uniformly
distributed between [−90,−95] dB [132]. In addition, the maximum and minimum
transmit power of each mobile user is uniformly distributed between [6, 10] mW
and between [0, 2] mW, respectively. The maximum and minimum computation
capacity is uniformly distributed between [3, 5] GHz and between [10, 20] Hz,
respectively. We also assume that the total number of sub-channels and antennas
of the BS are 100 and 100, respectively.

Firstly, we use the iterative Algorithm 8 to perform the characteristic of
evaluating bids when ρ = 1. The maximum number of sub-channels Bmax

n and
antennas Amax

n for mobile user n to request in each bid vary from 10 to 50.
Figure 4.20 shows the accuracy level that mobile user n requires to provide increases
when the maximum number of sub-channels Bmax

n and antennas Amax
n increase.

In particular, when the sub-channels and antennas are both 50, the local accuracy
0.92 while when the sub-channels and antennas are both 10, the local accuracy
0.81. This is because the transmission time and transmission cost decrease when
wireless resources increase. It requires less global round to satisfy the learning task
performance. Therefore, the local accuracy increases or . As shown in Fig. 4.21,
the energy cost decreases when the number of sub-channels and antennas increases.
This is because mobile user n can keep low contributing CPU cycle frequency and
transmission rate while guaranteeing the delay constraint.

Figures 4.22 and 4.23 present the cost of one bid of the mobile user and
local accuracy, respectively, when the weight ρ varies from 1 to 9. As shown in
Figs. 4.22 and 4.23, when ρ increases, the local accuracy decreases and the energy
cost increases. This is because when ρ increases, the objective focuses more on

4.3 Auction Theory-Enabled Incentive Mechanism 121

Fig. 4.20 Changes local
accuracy when the maximum
number sub-channels and
antennas in one bid vary

Fig. 4.21 Changes in energy
cost when the maximum
number sub-channels and
antennas in one bid vary

minimizing the time completion of one global round. It requires more computation
resources as well as better quality of data (low local accuracy).

In the following, we evaluate the performance of the proposed auction algorithm.
To compare with the proposed algorithm, we use four baselines:

• Optimal Solution: P6 is solved optimally.
• Fixed Price Scheme [137]: In this scheme, price vector f = {fb, fa} is the price

mobile users need to pay for the resource. In this scheme, the mobile users are
served in a first-come, first-served basic until the resources are exhausted. The
mobile user can get the resource when the valuation of mobile user’s bid is at least
Fni = Bnifb+Anifa which is the sum of the fixed price of each resource in their
bid. We consider three kinds of price vector: linear price (fi = fo×ηi, i = a, b),
sub-linear price vector (fi = fo ×η0.85

i , i = a, b) [137], and a super-linear price
vector (fi = fo × η1.15

i , i = a, b) [137]. Here, we call fo as the basic price.
Unless specified otherwise, we choose fo = 0.01.

122 4 Incentive Mechanisms for Federated Learning

Fig. 4.22 Local accuracy v.s. ρ

Fig. 4.23 Energy cost v.s. ρ

• Reward-based greedy auction [138].
• Maximum utility of the BS.

Figure 4.24 reports the performance of the optimal solution, the lower bound,
and the proposed greedy scheme. The lower bound is determined by the fractional
optimal solution divided by gap when the number of mobile users varies from 20 to
100 with a step size of 20. We note that with the number of mobile users increasing,
all schemes produce higher social welfare. This is because there are more chances
to choose winning bids with a higher value. Although the social welfare obtained
through the proposed greedy scheme is lower than through optimal solution and
much higher than the lower bound.

4.3 Auction Theory-Enabled Incentive Mechanism 123

Fig. 4.24 Social welfare vs. users

Fig. 4.25 Social welfare vs. users

Figure 4.25 shows the social cost achieved by the proposed greedy scheme, the
maximum utility of the BS, reward-based greedy auction, and fixed linear scheme
when the number of mobile users varies 20–100 with the step size of 20. We can
see that the proposed greedy scheme can provide much higher social welfare than
the baseline. When the number of users is 100, the social welfare obtained by a
proposed greedy algorithm is approximately 16% higher than the one obtained by
the maximum utility of BS. The result is that our proposed algorithm focuses on
maximizing social welfare. In addition, when the number of users is 100, the social

124 4 Incentive Mechanisms for Federated Learning

welfare obtained by the proposed greedy algorithm is approximately 4 times and 15
times higher than the one obtained by the reward-based Greedy Auction and fixed
linear price scheme, which ignores the wireless resource limitation when deciding
the winning bids.

Since the fixed price scheme heavily depends on the prices of resources, the next
experiment helps us to decide whether the fixed-price vector or the performance
of the proposed mechanisms is better when we change the basic price fo between
[0.01, 0.31] with the step is 0.03. Figures 4.26, 4.27, and 4.28 show that the social

Fig. 4.26 Social welfare for ηa = 1, ηb = 0.5

Fig. 4.27 Social welfare for ηa = 1, ηb = 1

4.3 Auction Theory-Enabled Incentive Mechanism 125

Fig. 4.28 Social welfare for ηa = 1, ηb = 2

Fig. 4.29 Normalized ratio for ηa = 1, ηb = 0.5

welfare of fixed price firstly increases and then decreases and equal to 0 when the
initial price increases. This is because when the basic price becomes too high, the
sum of the price is higher than the valuation of the resources claimed in a bid.
Moreover, the social welfare achieved by linear, sublinear, and superlinear price
schemes is lower than by the proposed greedy scheme. This proves our proposed
auction scheme outperforms the fixed price scheme.

In Figs. 4.29, 4.30, and 4.31, we observe the metrics: social welfare, resource
utilization and percentage of five schemes: greedy proposed scheme and fixed price

126 4 Incentive Mechanisms for Federated Learning

Fig. 4.30 Normalized ratio for ηa = 1, ηb = 1

Fig. 4.31 Normalized ratio for ηa = 1, ηb = 2

schemes with other baselines. We perform in terms of the ratio with the proposed
greedy scheme. Among these schemes, the optimal solution is the highest in terms
of all metrics. Compared with the proposed scheme, the fixed price can utilize more
resources and more mobile users but provides less social welfare. This is due to the
fact that the fixed price mechanism heavily depends on the prices of the resources.
In addition, the resource utilization of our proposed scheme is competitive to the

4.4 Summary 127

one of the maximum utility of the BS scheme and the reward-based greedy auction
scheme. Furthermore, the proposed scheme provides more social welfare.

4.4 Summary

In this chapter, we have proposed two incentive mechanisms, such as Stackelberg
game-based incentive mechanism and the auction theory-based incentive mecha-
nism, for federated learning. In the first part, we have designed and analyzed a novel
crowdsourcing framework to enable federated learning. An incentive mechanism
has been established to enable the participation of several devices in federated
learning. In particular, we have adopted a two-stage Stackelberg game model
to jointly study the utility maximization of the participating clients and edge
computing server interacting via an application platform for building a high-quality
learning model. We have incorporated the challenge of maintaining communication
efficiency for exchanging the model parameters among participating clients during
aggregation. Further, we have derived the best response solution and proved the
existence of Stackelberg equilibrium. We have examined the characteristics of
participating clients for different parametric configurations. Additionally, we have
conducted numerical simulations and presented several case studies to evaluate
the framework’s efficacy. Through a probabilistic model, we have designed and
presented numerical results on an admission control strategy for the number of
client’s participation to attain the corresponding local consensus accuracy. In the
second part, we formulated the incentive problem between the BS and mobile users
in the federated learning service market as the auction game with the objective
of maximizing social welfare. Then, we presented the method for mobile users to
decide the bids submitted to the BS so that mobile users can minimize the energy
cost. We also proposed the iterative algorithm with low complexity. In addition, we
proposed a primal-dual greedy algorithm to tackle the NP-hard winner selection
problem. Finally, we showed that the proposed auction mechanism guarantees
truthfulness, individual rationality, and computation efficiency. Simulation results
demonstrated the effectiveness of the proposed mechanism where social welfare
obtained by our proposed mechanism is 400% larger than by the fixed price scheme.
The model in our work can be extended to multi BS when users are one a large
area. One BS can not cover the whole area. In that case, one BS performs edge
aggregations of local models which are transmitted from devices in proximity.
When each BS achieves a given learning accuracy, updated models at the edge are
transmitted to the cloud or macro base station for global aggregation. Intuitively, this
hierarchical model can help to reduce significant communication overhead between
device users and the cloud via edge model aggregations and reduce the latency. In
addition, through the coordination by the edge servers in proximity, more efficient
communication and computation resource allocation among device users can be
achieved. Moreover, we can consider the hierarchical auction mechanism consisting
of two hierarchical auction models. i.e. a single-seller multiple-buyer model where

128 4 Incentive Mechanisms for Federated Learning

the lower stage is between BS and mobile users and the higher stage is between
the cloud and base stations. Another direction is the case which there are many base
stations from different organizers who are interested in using the data from the set of
users to train similar types of machine learning models. In that situation, there may
be a competition of base stations. This will make base stations’ decision-making
different from our work. Therefore, we can also consider it as future work.

Appendix

A.1 KKT Solution

The utility maximization problem in (4.21) is a convex optimization problem whose
optimal solution can be obtained by using Lagrangian duality. The Lagrangian
of (4.21) is

L(r, x(ε), λ) = β
(

1 − 10−(ax(ε)+b)
)

− r
∑

k∈K
(1 − θ∗

k (r))

+ λ
[
δ(1 − maxk θ∗

k (r) − x(ε)
]

(A.1)

where λ ≥ 0 is the Lagrangian multiplier for constraint (4.22).
By taking the first-order derivative of (A.1) with respect to x(ε) and λ, KKT
conditions are expressed as follows:

∂L
∂x(ε)

= aβe−(a(x(ε))+b) − λ ≤ 0, if x(ε) ≥ 0. (A.2)

∂L
∂λ

= [δ(1 − maxk θ∗
k (r)) − x(ε)

] ≥ 0, if λ ≥ 0. (A.3)

By solving (A.2), the solution to the utility maximization problem (4.21) is

x∗(ε) = − ln(λ/aβ) − b

a
. (A.4)

From (A.3), the Lagrangian multiplier λ is as

λ∗ = aβe[aδ(1−maxk θ∗
k (r))+b]. (A.5)

Thus, from (A.4) and (A.5) the optimal solution to the utility maximization
problem (4.21) is

x∗(ε) = δ(1 − maxk θ∗
k (r)). (A.6)

Chapter 5
Security and Privacy

Abstract Federated learning allows data to be locally trained in their device and
only send model updates to the central server for aggregation. But the security
of model updates in the aggregation should also be carefully addressed. Existing
works mainly focus on secure multiparty computation or differential privacy, which
depends on heavy encryption or brings low accuracy. In this chapter, we discuss
an efficient secure aggregation method for model updates in federated learning by
pre-processing the model updates from each participant and only encrypting portion
of the processed updates by functional encryption for inner product to protect the
whole parameters, thus achieving efficient aggregation of model update vectors.

5.1 Introduction

The emerging Internet of Things (IoT) has connected a large volume of IoT devices,
which will produce a vast amount of data in edge networks. According to the
survey [139] by Statista, the total data volume of connected IoT devices worldwide
is forecast to reach 79.4 zettabytes (ZBs) by 2025. The massive data will provide
more possibility and chance for research and applications. For example, machine
learning algorithms [140] will consume and dispose huge volumes of data to learn
complex patterns about people and events to make predictions, which relies on the
availability of an enormous amount data for training.

Traditional machine learning needs the data to be centrally trained in center
servers. However, in real life, the data are scattered across different devices and
organizations and cannot be easily integrated under practical constraints [141]. For
instance, in different commercial banks, rather than each bank creating their own
predictive models to predict the economic trends, each bank wants to establish a
model learned over the whole statement. Nevertheless, the users’ privacy does not
allow them to share the data to others to construct a global predictive model.

Federated learning (FL) [142] can address these privacy issues by allowing
participants to locally train the model using the local computing resources, and
the participants only need to send the model updates to the central server for
global model update. The central server, called aggregator, will merge the model

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
C. S. Hong et al., Federated Learning for Wireless Networks, Wireless Networks,
https://doi.org/10.1007/978-981-16-4963-9_5

129

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-4963-9_5&domain=pdf
https://doi.org/10.1007/978-981-16-4963-9_5

130 5 Security and Privacy

parameters from different participants and send the aggregated parameters back to
the participants for the next epoch training. The implementation of FL for model
training at local participants can efficiently use the bandwidth of the network and
protect the privacy of the raw data of participants. However, FL also faces some
security risks, such as inference attack [143] and inversion attack [144], which can
derive private information from local model updates. Therefore, it is necessary to
design a secure aggregation scheme for the server to compute the weighted sum of
the model updates from participants without leaking certain users’ privacy.

To tackle such security issues and realize the secure aggregation of the model
updates from participants, some work utilizes differential privacy (DP) [22, 145] to
prevent the FL server from identifying the owner of a local update. The DP in FL
will add certain noises to the local model updates, which may lower the performance
of the resulting model. Some other methods [146] are based on secure multiparty
computation (SMC). SMC computes a multiparty sum where no participant reveals
its update clearly, which is mainly based on the cryptography methods, such as
secret sharing, additive masking [147] and homomorphic encryption [148, 149]
(e.g., the Paillier cryptosystem). These mechanisms may cause large encryption
overhead and high data transmission cost. Meanwhile, there are also some hybrid
methods [150, 151] combining the differential privacy and the SMC protocol to
protect the model updates in FL.

This chapter aims to design an efficient secure aggregation scheme for model
update in FL. The key insights are two-fold: First, the model updates of each
participant are protected by matrix transformation, all or nothing transform. In
this manner, the attacker cannot learn anything about the model updates without
having obtained all the information of the transformed results. So we can protect
the security of model updates by encrypting only a small portion of the transformed
results. Second, we use the multi-input functional encryption for inner product to
encrypt a small portion of transformed model updates, while the aggregator can
precisely decrypt the aggregated encrypted portion of model update from the inner
product, thus recovering aggregated model update vector with the unencrypted
portion. Our design well suits the features of functional encryption for inner product
and secure aggregation. Meanwhile, the linear transformation and encryption are
quite efficient, which require small amount of computation.

5.2 Functional Encryption Enabled Federated Learning

5.2.1 Federated Learning

Federated learning [16] is a learning process in which the data owners collabora-
tively train a model, in which process any data owner does not expose its data to
others.

5.2 Functional Encryption Enabled Federated Learning 131

We assume a standard federated learning, in which data is distributed across
multiple participants P j and cannot be shared. We use the neural network as the
underlying machine learning model. The distributed learning process is performed
in synchronous update rounds over a set of participants, in which a weighted average
of the j participant model updates, with each weight set as ηj , is applied to the
model.

At the participant side, each participant performs the local training based on the
loss function, and transmit the model updates Wj to the aggregator.

At the aggregator side, the local model update parameters are aggregated, and
the global model parameters ωg,t are updated at each global aggregation iteration t

as follows:

ωg,t+1 = ωg,t +
∑

j

ηjWj,t (5.1)

where Wj,t is the model parameter update for each participant j at iteration t . The
FL training process is iterated till the global loss function converges, or a desirable
accuracy is achieved.

The secure aggregation in FL involves high-dimensional vectors Wj,t based on
the training results from the participants’ data. However, the aggregator does not
need to get the individual’s updates but to compute the element-wise weighted sum∑

j ηj ·Wj,t of these update vectors. Hence, FL needs a secure aggregation scheme
to compute the weighted sum while ensuring that the single user’s privacy will not
be leaked. There is also a need for FL to process high dimensional vectors and be
communication efficient.

5.2.2 All or Nothing Transform (AONT)

AONT [152] transforms data into the encoded format, and it is hard to invert the
encoded format back to the original data unless all of the encoded output is known.
Stinson [153] defines linear AONT as follows, which can maintain the property of
AONT while reducing the computational complexity.

Given a positive integer n, a finite field Fq with order q, a function π which
maps an input of n-tuple (x1, · · · , xn) to an output of n-tuple, i.e., (y1, . . . , yn),
where xi, yi ∈ Fq and 1 ≤ i ≤ n, we say π is a linear (n, q)−AONT , if it satisfies
the following conditions:

• π is a bijection;
• Each yi (1 ≤ i ≤ n) is an Fq -linear function of x1, . . . , xi, . . . , xn (1 ≤ i ≤ n);
• If any n − 1 out of n output values y1, . . . , yi , . . . , yn are fixed, any input value

xi (1 ≤ i ≤ n) is completely undetermined.

132 5 Security and Privacy

An n×n encoding matrix for the linear (n, q)-AONT can be constructed as [153]:

M =

⎛

⎜⎜⎜⎜⎜⎝

1 0 · · · 0 1
0 1 · · · 0 1
...
...
. . .

...
...

0 0 · · · 1 1
1 1 · · · 1 λ

⎞

⎟⎟⎟⎟⎟⎠
.

Each element in M is chosen from the finite field Fq , where q = pk , and p is a
prime number and k is a positive integer. λ ∈ Fq such that

λ /∈ {(n − 1)mod p, (n − 2)mod p} . (5.2)

5.2.3 Multi-Input Functional Encryption for Inner Product

Functional encryption [154] allows users to learn specific functions of the encrypted
data without learning any information about the plain text. Both functional encryp-
tion (FE) and homomorphic encryption (HE) can compute over encrypted data, but
the difference between FE and HE is that FE can directly learn a function of what
the ciphertext is encrypting, while HE also needs to decrypt the ciphertext to get the
computed result.

For any function f from a class F, a functional decryption key skf can be
computed such that, given any ciphertext c with underlying plaintext x, using skf , a
user can efficiently compute f (x), but does not get any additional information about
plaintext x.

However, the input can be large, the functional encryption can be extended to
multi-input functional encryption (MIFE). For example, there are n participants
which can generate ciphertexts En(x1), En(x2), · · · , En(xn), one can use a secret
key skf to retrieve f (x1, · · · , xn) without knowing any plaintext xi .

Although there are several different types of functional encryption, such as
identity-based encryption schemes, attribute-based encryption schemes and inner
product functional encryption (IPFE) schemes, etc. We consider the MIFE schemes
for the inner-product functionality where the plaintexts are vectors and the encrypted
data can be used along with an evaluation key to compute the inner product of the
said vectors with weight vector y = (y1, y2, · · · , yn), as shown in Fig. 5.1.

We choose IPFE for the reason that the weighted aggregation process of the
model updates from each participant in FL at the aggregator is similar to the
calculation of the inner product between input vectors x and y. Also the IPFE is
efficient due to the linear encryption. But there exists a problem that the result of the
inner product is a scalar, while the aggregated result of model updates is a vector.
To address this problem, before each participant performs the IPFE, we will apply
an all or nothing transform described in Sect. 5.2.2 to the model updates, thus the

5.2 Functional Encryption Enabled Federated Learning 133

Fig. 5.1 Multi-input inner product

vector can be protected by partially encrypted. Then the aggregator can recover
the aggregated vectors from the inner product and the transformation results. We
now present our construction of a MIFE scheme for FL, which is derived from the
construction in [155]. Suppose the inner product function defined by the weight
vector y is fy (x) = ∑n

i=1 (xi · yi), where n denotes the total number of input
sources. The construction of Multi-input Functional Encryption for Inner Product
is defined as follows:

1. SetUp(λ): Takes as input the security parameter, and generates prime-order group
G := (G, p, g) ←− GGen(1λ), and H a full domain function onto G

2. It also
generates the encryption keys si ←− Z

2
p, for i = 1, 2, · · · , n. Then, the public

parameters master public key mpk consist of (G, p, g,H). The encryption keys
are eki = si for i = 1, 2, · · · , n, and the master secret key is msk = ((eki)i).

2. Key Distribute(G, eki): The Trusted Party will distribute the encryption keys to
each participant.

3. Encrypt(eki , xi ,): Each participant takes the value xi as input to encrypt, under
the key eki = si and the label . It computes [u] := H() ∈ G

2, and outputs the
ciphertext [ci] = [uT si + xi] ∈ G;

4. Decrypt Key Generate(msk,(y)): The Trusted Party takes the msk = (si)i and
the weight vector y as input, and outputs the functional decryption key dky =
(y,d) = (y,

∑
i si · yi) ∈ Z

n
p × Z

2
p;

5. Decrypt(dky, , ([ci])i∈[n]): The aggregator takes a functional decryption key
dky = (y,d), a label , and ciphertexts as inputs. It then computes [u] := H(),
[α] =∑i[ci] ·yi −[u] ·d, and eventually solves the discrete logarithm to extract
and return α.

Let x, y ∈ Z
n
p, we can calculate:

[α] =∑i[ci] · yi − [uT] · d =∑i[uT si + xi] · yi − [uT] ·∑i yisi =∑i[uT] ·
siyi +∑i[xi] · yi − [uT] ·∑i yixi = [∑i siyi], which well suits the pre-defined
inner product function for weight vector y: fy (x) =∑n

i=1 (xi · yi).

134 5 Security and Privacy

5.2.4 Threat Model

Here, we mainly consider about two kinds of adversaries in our scheme:

• Outside adversaries. During transmission, the model parameters of the par-
ticipant may be eavesdropped by the outside adversaries. Although the model
updates are vectors, others can still perform inference attack to learn individual’s
private information.

• Inside adversaries. In FL, the curious aggregator may try to obtain the model
update parameters of the individual through the process of secure aggregation,
and participants may conduct colluding attack with the aggregator to learn about
the single participant’s private parameters.

• Assumptions. We assume that there is a secure key distribution protocol for
trusted party to distribute keys to the aggregator and participants. We also
assume that the communication between participants and aggregator is secure,
for the transmitted data cannot be modified. Among the total number of n

participants, we assume that at least the number of d participants are non-
colluding participants.

5.3 Secure Aggregation for Wireless Federated Learning

We suppose that each participant P j holds its own data Dj . When participant
receives the query Q from the aggregator in one epoch, by training the local data,
the participant will get the model update Wj and send it to the aggregator A.

To protect the model updates Wj from each participant P j , we will apply the
matrix transform AONT and multi-input functional encryption for inner product.
The traditional multi-input functional encryption will only output the inner product
of input vector and the weight vector, and the result of inner product is a scalar. But
in FL, the result of secure aggregation is a high-dimensional vector for machine
learning. To solve this problem, we apply the AONT to protect model updates
Wj. The AONT transform can ensure that by encrypting partial information of
transformed Wj, the security of the whole Wj can be guaranteed. So we only
need to put the partial information of transformed Wj from multi-participant as
the encrypted element of the input vector of functional encryption, and then set the
weight of each participant’s model as the weight vector of functional encryption.
Afterwards, the encrypted portion and unencrypted portion of the transformed Wj

can be weightedly aggregated separately at aggregator. At last, the aggregator
can perform the reverse AONT on the weighted sum to recover the element-wise
aggregated model update vector of the participants. The process is described in
Algorithm 10. We will show it detailedly below.

5.3 Secure Aggregation for Wireless Federated Learning 135

5.3.1 Participant Pre-processing Mode Updates

After the participants receive the training request from the server, they will train
their local database to minimize the loss function. Then the local model updates of
each participant will be obtained as a response to the aggregator. Before sending
the model updates to the aggregator, some preprocessing will be conducted to the
model updates to protect the security of these parameters:

First, we use all or nothing transform (AONT) to preprocess the model updates
from each participant. For model updates Wj of participant P j , it can be depicted

as: Wj =
(
w

j

1 , w
j

2 , · · · , wj
m

)T
. Use linear (m, q)-AONT matrix described in

Sect. 5.2.2 to process the message we can get Uj = M · Wj :

Uj =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u
j

1 = w
j

1 + w
j
m

u
j

2 = w
j

2 + w
j
m

· · · · · ·
u
j

m−1 = w
j

m−1 + w
j
m

u
j
m = w

j

1 + w
j

2 + · · · + w
j

m−1 + λ · wj
m.

(5.3)

AONT, known as all-or-nothing protocol, is an encryption mode which allows the
data to be understood only if all of it is known. We use the linear AONT to reduce
the computation complexity while maintaining the property of AONT. Therefore,
after being processed by linear (m, q)-AONT, others cannot learn anything in W

j
i ,

unless they know all the information in Uj .
The inverse transform of Eq. (5.3) to recover the original model updates Wj is:

Wj =

⎧
⎪⎪⎨

⎪⎪⎩

w
j
i = u

j
i − γ ·

(
u
j

1 + u
j

2 + · · · + u
j

m−1 − u
j
m

)
,

f or 1 ≤ i ≤ m − 1

w
j
m = γ

(
u
j

1 + u
j

2 + · · · + u
j

m−1 − u
j
m

)
,

(5.4)

where γ = (m − 1 − λ)−1.
We can see from the inverse transform shown in Eq. (5.4) that the reconstruction

of each element of the model updates Wj is associated with each element in Uj .
Then we can encrypt the element ujm in Uj as one input of multi-input functional
encryption mentioned in Sect. 5.2.3 with the key distributed by trusted party.

136 5 Security and Privacy

Algorithm 10 Secure federated learning

1: Input: LFL := Machine learning algorithms to be trained; SP := set of participants; Wj := the
model updates from participant j ; ηj := the weight for Wj ; n − d + 1:= minimum number of
aggregated replies;

2: Output: Trained global model G;
3: for each P j ∈ SP do
4: A queries P j with LFL

5: P j trains local data and obtains model updates Wj

6: P j performs AONT transform: Uj = M · Wj

7: P j partially encrypts Enf e(u
j
m) in Uj and sends Uj to A

8: end for
9: A aggregates at least n − d + 1 encrypted model updates Uj;

10: A requires decryprtion key based on weight vector η;
11: A computes

∑
j ηjW

j from aggregated Uj;

12: A updates G with
∑

j ηjW
j;

13: Return G;

The partially encrypted Uj can be depicted as

Uj =

⎛

⎜⎜⎜⎜⎜⎝

u
j

1

u
j

2
· · ·

u
j

m−1

u
j
m

⎞

⎟⎟⎟⎟⎟⎠
→

⎛

⎜⎜⎜⎜⎜⎜⎝

u
j

1

u
j

2
· · ·

u
j

m−1

En
j
f

(
u
j
m

)

⎞

⎟⎟⎟⎟⎟⎟⎠
. (5.5)

Each participant P j will send the transformed and partially encrypted
model updates Uj to the aggregator. We assume that there are n participants
with model updates: U1,U2, · · · ,Uj, · · · ,Un. The encrypted multi-input
vector of functional encryption can be depicted as En1

f

(
u1
m

)
, En2

f

(
u2
m

)
, · · · ,

En
j
f

(
u
j
m

)
, · · · , Ennf

(
unm
)
.

5.3.2 Secure Aggregation at Aggregator

Because we assume that at least d participants are non-colluding, after the aggrega-
tor collects at least n − d + 1 model updates Uj from participants, it can aggregate
and decrypt the model updates to update the global model and send updated global
model parameters to the participants to support next epoch training.

5.3 Secure Aggregation for Wireless Federated Learning 137

The aggregator receives a set of U model updates from participants ST hres
P , where

|ST hres
P | = p ≥ n − d + 1. For each update Uj in U (1 ≤ j ≤ p), we first need to

aggregate and decrypt the encrypted u
j
m:

En1
f

(
u1
m

)
, En2

f

(
u2
m

)
, · · · , En

j
f

(
u
j
m

)
, · · · , En

p
f

(
u
p
m

)

Aggregate−−−−−−→ fη

(
u1
m, u

2
m, · · · , upm

)

=
〈
u1
m|| · · · ||upm, η1|| · · · ||ηp

〉

=
∑

i

uim · ηi

(5.6)

where η = (
η1, η2, · · · , ηp

)
is the weight vector for aggregation according to the

training model or set by the aggregator.
At last, the aggregator can aggregate with the unencrypted portion(

u
j

1, u
j

2, · · · , ujm−1

)
(1 ≤ j ≤ p) and the decrypted aggregated portion

fη

(
u1
m, u

2
m, · · · , upm

)
from p participants to recover the final weighted aggregated

model updates
∑

j ηjW
j =

(∑
j ηjw

j

1 ,
∑

j ηjw
j

2 , · · · ,
∑

j ηjw
j
m

)
:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

p∑

j=1

ηjw
j
i =

p∑

j=1

ηju
j
i − γ

p∑

j=1

ηj

m−1∑

k=1

u
j
k

+γfy
(
u1
m, u

2
m, · · · , upm

)
(1 ≤ i ≤ m − 1)

p∑

j=1

ηjw
j
m = γ

⎛

⎝
p∑

j=1

ηj

m−1∑

k=1

u
j
k − fy

(
u1
m, u

2
m, · · · , upm

)
⎞

⎠ .

(5.7)

As we can see from Eq. (5.7), the aggregator can reconstruct the weighted sum of
each participant’s model updates without knowing the information of the individual
due to the features of AONT and multi-input functional encryption. Because the
aggregator can only learn the weighted sum of ujm from each participant, and without
this part, the aggregator cannot learn anything about the original model updates
Uj . Meanwhile, the small amount of encryption and the linear operation ensure the
efficiency of our scheme. At last, the whole progress procedure of one epoch in
federated learning is shown in Fig. 5.2.

138 5 Security and Privacy

Fig. 5.2 Framework of Secure Aggregation in one epoch

5.4 Security Analysis

5.4.1 Security for Encryption

In each participant, linear AONT and functional encryption are utilized to protect
the model update vector. We will first demonstrate that by applying linear AONT
transformation to the vector, others must obtain the whole transformed vector to
obtain the original vector. So we can encrypt partial information of the transformed
vector to protect the whole original vector. Then we will demonstrate that the multi-
input functional encryption [155] chosen to partially encrypt the transformed vector
can ensure the security of the data.

First, we prove the security of linear AONT. For a linear (n, q) − AONT [153],
the input vector V = (v1 v2 · · · vn)

T and the resulting vector U =
(u1 u2 · · · un)

T , from U = M · V , we can get:

{
ui = vi + vn, f or i = 1, 2, · · · , n − 1

un = v1 + v2 + · · · + λvn.
(5.8)

Inversely, by analyzing output vector U = (u1 u2 · · · un)
T , we can obtain the input

vector V = (v1 v2 · · · vn)
T :

{
vi = ui − γ (u1 + u2 + · · · + un−1 − un) , 1 ≤ i ≤ n − 1

vn = γ (u1 + u2 + · · · + un−1 − un) ,
(5.9)

5.5 Implementation and Evaluation 139

where γ = (n − 1 − λ)−1. From the aforementioned equations, we can see that in
order to obtain the value of any one of the input vector V = (v1 v2 · · · vn)

T , all the
generated transformed vector must be obtained.

Therefore, we can ensure the security of the input vector V by encrypt small
portion of the transformed vector U . The encryption method we choose is multi-
input functional encryption [154], which has been proved to be secure in terms of
indistinguishability under the Decisional Diffie–Hellman assumption. What we have
done to this method is to add a key distribution method for multi-participant in the
FL to encrypt their model updates, which will not change the encryption security.

In conclusion, the encryption we use is secure. For the outside adversaries,
although they can eavesdrop transmitted information, they still cannot learn any
information of the original model updates from the transformed model updates.

5.4.2 Privacy for Participant

For curious participants who may conduct colluding attack with aggregator, we
assume that at least d participants are non-colluding and the total number of
participants is n. Therefore, the aggregator need to aggregate at least n−d+1 model
updates from the participant to update the global model to defend against colluding
attack. Because the decryption key for the multi-input functional encryption is
generated based on weight vector which is detailedly described in Sect. 5.2.3, we
can set a threshold for trusted party who will only response the decryption key to the
request in which the non-zero element in the weight vector is no less than n−d +1.
In this way, the scheme can defend against the participants colluding attack.

The curious aggregator may want to obtain the private information of some
certain user. But the aggregator can only learn the aggregated value of at least
n − d + 1 participants based on the setting above. Although the aggregator can
learn some information about the transformed model updates Uj from individual
participant, due to the feature of AONT, without knowing all the information about
the transformed vector Uj , the curious aggregator cannot learn any information
about the original model updates Wj of this participant.

5.5 Implementation and Evaluation

5.5.1 Implementation

We train a convolutional neural network (CNN) to classify the CIFAR10 dataset
of images. The model contains convolutional layers, fully connected layer, max
pooling layer, normalization layer and dropout layer with the cross entropy loss.
We conduct the experiments with 100 participants, in each epoch, the aggregator

140 5 Security and Privacy

randomly chooses a subset of participants to train the model with learning rate as
0.0001 and batch size as 32. Our scheme is implemented in Keras with Tensorflow
backend.

The experiment is performed on a local machine, equipped with an Intel Core i7
and 16G RAM, running Ubuntu 16.04.

As for encryption based secure aggregation, we compare the efficiency of
our functional encryption (FE) based scheme with the prevalent homomorphic
encryption (HE) based scheme for federated learning. The baseline (Base) scheme
is FL without the encryption method.

5.5.2 Evaluation

Figure 5.3 shows the accumulated training time as epoch increases in FL. We
can see from this figure that our functional encryption based secure aggregation
scheme (FE) does not bring to much time overhead compared to the unencrypted
federated learning (Base). It also performs better than the homomorphic encryption
based scheme. When the epoch is 60, the simulated training time of FE based
scheme is about 3 min longer than the baseline, while that of HE based scheme is
about 8 min longer than the baseline. This is because, the homomorphic encryption
need to decrypt the ciphertexts after aggregated at the sever, while the functional
encryption will directly obtain the weighted functional result of the ciphertexts from

Fig. 5.3 Training time

5.6 Summary 141

participants. In our scheme, the aggregator will only additionally perform the inverse
AONT which is a linear transformation to obtain the weighted aggregated model
updates vector. Also, the homomorphic encryption itself consumes much time than
functional encryption.

For the data to be transmitted during the FL progress, our scheme need to transmit
the partially encrypted model updates from participants to the aggregator and send
the weight vector to the Trusted Party to request the corresponding functional
decryption key at each epoch (see Fig. 5.2), which will not increase the throughput
of the network too much, thus saving bandwidth. Whereas in the scheme applying
threshold homomorphic encryption, after the aggregator summed up at least n−d+1
model updates from participants, he/she will also need to send this aggregated
encrypted model updates to each participant requesting partial decryption to defend
against collusion attacks. Then after collecting the partially decrypted aggregated
model updates, the aggregator can compute the final weighted summed updates. So
the HE based scheme will have more (n − d + 1) × m data transmission than our
scheme in each training epoch.

5.6 Summary

Currently, a large volume of IoT devices generate huge amounts of data in edge
networks, which can open up many research and applications for machine learning.
However, traditional machine learning requires data to be sent to a server and
centrally trained, which will cause the waste of the bandwidth and expose privacy
of individuals. Federated learning allows data to be locally trained in their device
and only send model updates to the central server for aggregation. But the security
of model updates in the aggregation should also be carefully addressed. Existing
works mainly focus on secure multiparty computation or differential privacy, which
depends on heavy encryption or brings low accuracy. In this chapter, we discuss
an efficient secure aggregation scheme for model update in FL. We combine the
all or nothing transform and multi-input functional encryption, which well suit the
weighted aggregation feature of FL and solve the problem of vector aggregation
of multi-input functional encryption. Meanwhile, the small amount of linear
encryption and transformation will bring small overhead. Security analysis and
experimental evaluation confirm that this scheme ensure the security of aggregation
of FL with an acceptable overhead.

Chapter 6
Unsupervised Federated Learning

Abstract In this chapter, we consider unsupervised learning tasks being imple-
mented within the federated learning framework to satisfy stringent requirements
for low-latency and privacy of the emerging applications. The discussed algorithm
is based on Dual Averaging (DA), where the gradients of each agent are aggregated
at a central node. While having its advantages in terms of distributed computation,
the accuracy of federated learning training reduces significantly when the data
is nonuniformly distributed across devices. Therefore, this chapter discusses two
weight computation algorithms, with one using a fixed size bin and the other with
self-organizing maps (SOM) that solves the underlying dimensionality problem
inherent in the first method.

6.1 Introduction

Traditionally, machine learning, which consists of training and inference phases, is
done at the centralized cloud computing, which can sustain more heavy computa-
tions than edge devices. However, nowadays imbuing edge devices with intelligence
gives ability to train models locally, while providing privacy, security, regulatory
and economic benefits. Recently proposed federated learning [58] allows mobile
edge devices, with limited computational resources, such as mobile phones and
IoT devices, to learn a global model for prediction, while only perform training
with local data [156]. Given the fact that prediction is done at the edge, stringent
requirements in low-latency applications can be met.

Clustering is one of the fundamental tasks in data analysis and signal processing,
and plays an important role in various applications such as social network analysis,
image and video processing and autonomous driving. These tasks are usually carried
out at central servers and require the collected data to be transmitted from individual
nodes/agents. While previous works on federated learning have only considered
supervised learning with neural networks, the goal of this work is to propose
a framework that supports unsupervised learning under the federated learning
architecture.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
C. S. Hong et al., Federated Learning for Wireless Networks, Wireless Networks,
https://doi.org/10.1007/978-981-16-4963-9_6

143

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-4963-9_6&domain=pdf
https://doi.org/10.1007/978-981-16-4963-9_6

144 6 Unsupervised Federated Learning

Despite its advantages, there are few challenges that must be overcome before
federated learning can be deployed in a large scale. The first challenge is unpre-
dictable users, or processing agents, behaviors such as the unreliable device
connectivity, interrupted execution, difference in convergence time for local train-
ing, which was considered in [157–159]. The second problem is the imbalance
in collected data across the network, i.e., particular sensors may have limited
observations of certain events, which imposes significant statistical challenges in the
learning process. Several works have analyzed and attempted to resolve the problem.
Reference [54] has proposed to learn separate models for each node through a multi-
task learning framework. However, this approach creates additional communication
bandwidth overhead, which the authors attempt to resolve. Reference [160] has
shown that accuracy of federated learning reduces significantly, by up to 55%, for
neural networks trained for highly skewed non-IID data. To resolve this issue, small
subsets of data are globally shared among all edge devices. Experimental results
have shown that sharing only 5% of local data can increase prediction accuracy by
30%. However, the approach is not applicable for unsupervised learning due to the
absence of data labels.

Therefore, the unsupervised learning scheme under the federated learning frame-
work needs to be considered. Here, assume processing agents in the network store
non-identically distributed data sets. The algorithm relies on modifying the dual
averaging (DA) algorithm [161], which is based on weighted gradient aggregation at
the central node. However, proper weights need to be determined to reflect the non-
IID nature of the observed data at the agents. Two methods are given to overcome
this problem. The first scheme uses fixed size bins over the data to determine how
much data is in a certain bin. However, the number of weights that needs to be
computed grows exponentially with respect to the dimension of the data. The second
method which exploits the mapping property of self-organizing maps (SOM) is
utilized to tackle the curse of dimensionality problem.

6.2 Problem Formulation

A typical federated learning procedure is shown in Fig. 6.1. At the initial step, a
subset of agents is selected and a pretrained model is downloaded to the agents
(top left). Next, the agents compute an updated model based on their local data (top
right). After training, the model updates are sent from the selected agents back to
the server (bottom right) and the server aggregates these models to construct an
improved global model by simple averaging or other techniques (bottom left). This
process continues until convergence or until the desired level of prediction accuracy
is reached. Notice that in practical implementations of big models, whole model is
not transmitted to the server but rather, only structural updates are sent.

6.2 Problem Formulation 145

∑

Fig. 6.1 Unsupervised federated learning procedure

Assume the network consists of a set J = {1, . . . , J } of data collecting and
processing agents.1 The j th agent can send information about certain parameters
to the centralized server. Parameter update is done at the server and is based on
a convex combination of parameters that are received. To model this weighting
process, let w ∈ R

J be a vector containing nonnegative weights that is associated
with how much emphasis should be placed on the estimated parameter for each
agent, with [w]j > 0 denoting that a connection exists between the j th node and
centralized server. It is assumed that w is a stationary stochastic vector, so that
wT 1J = 1. It is shown in Sect. 6.4 that proper weighting is crucial to guarantee
good performance and proper determination of it is described in the sequel.

Assume that sensor node j observes a set of data Xj := {xjn, n ∈ Nj } with
Nj = {1, . . . , Nj } being a set of neighboring nodes, where xjn ∈ R

q denotes the
nth observation at the j th node and q denotes the data dimension. Each observation
is assumed to be drawn from one class Ck with k ∈ {1, . . . , K} � K, where
K denotes total number of classes and assumed to be known a priori, or can be

1 Uppercase (lowercase) bold face letters indicate matrices (column vectors). Superscript H denotes
Hermitian, T denotes transposition. 1M denotes an M × 1 vector, containing 1 in all of its entries.
〈·, ·〉 denotes the inner product operator. ‖a‖ denotes the 2 norm of a.

146 6 Unsupervised Federated Learning

estimated by various algorithms [162], e.g. the elbow method, average silhouette
method or gap statistic method.

The goal is to assign each observation point to a particular cluster and estimate
the cluster centroid. Presented below considers hard assignment scheme, i.e., each
point only belongs to one cluster; however, it can easily be cast into a soft clustering
scheme where each point is assigned to a cluster with a certain probability. Denote
the centroid of cluster Ck as mk ∈ R

q , and the membership label as μjnk ∈ {0, 1}, so
μjnk = 1 if xjn is assigned to Ck and μjnk = 0, otherwise. The clustering problem
can be formulated as

min
μjnk,mk

∑

j∈J

∑

k∈K

∑

n∈Nj

1

2
μjnk‖mk − xjn‖2

s.t.
∑

j∈J μjnk = 1, k ∈ K, n ∈ Nj ,

μjnk ∈ {0, 1}, j ∈ J , k ∈ K, n ∈ Nj ,

(6.1)

where the Euclidean distance between cluster centroids and corresponding assigned
data points is minimized and the constraints describe hard assignment.

6.3 Dual Averaging Algorithm

In this section, dual averaging algorithm is described. In addition, two methods for
weights computation, i.e. bin methods and self-organizing maps, are discussed as
well.

6.3.1 Algorithm Description

Prior to clustering, all agents conduct simple data analysis and send statistics to
server, that decides which weight each agent will have in a certain region of
the data space. Next, network runs an iterative algorithm similar to the k-means
algorithm, which consists of the following steps. First, cluster initialization using
k-means++ [163] is done. This is followed by an iterative algorithm consisting of
two steps. The first step is data labeling, where data points are assigned to specific
cluster at each node. Inspired by simulated annealing, the proposed algorithm uses
distance perturbation, which may avoid local minima and results in better clustering
performance. The second step computes data centroids via the proposed DA based
method, where weighted gradients are combined at the central node. Each step is
described in the sequel.

6.3 Dual Averaging Algorithm 147

6.3.2 Data Labeling Step

A simple way to solve (6.1) for a suboptimal μjnk is to employ the following
procedure. After all agents have updated their respective centroids, each data point
from the locally observed dataset at each agent is assigned to a specific cluster based
on the distance from that agent’s centroid, i.e. μjnk = 1 if k = arg min ‖xjn−m(t1)

jk ‖
and μjnk = 0 otherwise. However, inspired by Selim and Alsultan [164], it is
modified as

μjnk =
{

1, if k = arg min(1 + ξ
t1
)‖xjn − m(t1)

k ‖,
0, otherwise,

(6.2)

where ξ is random variable drawn from uniform distribution ξ ∼ U(0; ξmax)

between 0 and ξmax. ξ
t1

‖xjn − m(t1)
jk ‖ in (6.2) can be interpreted as a perturbation

term on the distance between centroid mjk and point xjn. Setting ξmax to a large
value leads to stronger perturbation and as a result, there is a higher chance to avoid
local minima in (6.1), but at the cost of requiring more iterations for the algorithm
to converge.

6.3.3 DA-Based Centroid Computation Step

A modified DA subgradient based method is introduced herein. Given μjnk from
step (6.2), at (inner iteration) time step t2 of the algorithm, each node calculates a
gradient g(t2)jk of local objective function

∑
n∈Nj

1
2‖mk − xjn‖2 as

g(t2)jk =
∑

n∈Nj

μjnk(m
(t2)
k − xjn). (6.3)

Next, the DA generates a sequence of iterates {m(t2)
k , z(t2)jk }∞t2=1 at the central node

using the update equations

z(t2+1)
k = z(t2)k +

∑

j∈J
[w]jg(t2)jk , (6.4a)

m(t2+1)
k = arg min〈z(t2+1)

k ,mk〉 + α(t2)‖mk‖2, (6.4b)

where z(t2)k can be seen as accumulated gradient for cluster k at iteration t2. First term
on the right-hand side of (6.4b) is the first-order approximation of the objective and
the second is a regularization term to turn the problem into strictly convex form,
which prevents the solution from being unbounded. α(t2) is nonincreasing positive
sequence and acts as regularization parameter and has to be carefully selected.

148 6 Unsupervised Federated Learning

Notice that (6.4a) is different from that of the conventional DA algorithm in which
weighting of g(t2)jk is now performed. The proposed method can also be viewed
as a combination of stochastic gradient descent (SGD) with minibatch gradient
aggregation [165]. Similar to the latter, the data at each agent can be viewed as
randomly selected data subset and the gradient is computed based on this subset.
Hence the data at the agent is similar to a minibatch. In addition, the gradients
from different agents are convexly combined at the central node during the centroid
update step, which is the main difference between the proposed method and existing
techniques. A data driven approach is used to compute the weights used in the above
convex combination and it is described in the following subsection.

6.3.4 Weight Computation via Bin Method

Consider the scenario shown in Fig. 6.2, where 3 sensor nodes observe data points
from 16 clusters indicated by different colors. It is clear that each agent in the
figure only has partial observations of the entire dataset. It is intuitive to weigh the
gradients g(t2)jk ,∀j that correspond to each cluster by the number of points that are
observed at agent j . In particular, it can be seen that agent 1 will have the highest
weight for the cluster at the bottom left of the grid in Fig. 6.2, while agents 2 and 3
will have zero weight as this cluster is not observed by those agents. Unfortunately,
weights cannot be computed in this fashion because the data labels remain unknown
before clustering is done. Therefore, it is proposed to assign the weights by dividing
the data space into a grid with uniform-sized bins as shown in Fig. 6.2 and calculate
the number of points falling into a particular bin (a region of the grid) at each node.
The number of points for each bin is sent to the central server from each agent so
that the weight for each particular bin at each agent can be computed as the number
of points falling in that bin at that agent divided by the total number of points in
that bin from all agents. This guarantees that 1TJw = 1 so that the algorithm will
converge, which will be shown in later publication. The above approach, however,

-10 0 10
-10

-5

0

5

10
agent 1

-10 0 10
-10

-5

0

5

10
agent 2

-10 0 10
-10

-5

0

5

10
agent 3

Fig. 6.2 Unbalanced data sets observed at different agents

6.3 Dual Averaging Algorithm 149

suffers from the curse of dimensionality. For instance, in Fig. 6.2, the data dimension
q = 2 and the number of bins required equals 10q .

6.3.5 Weight Computation via Self-Organizing Maps

Self-organizing maps (SOM) [166], which is often used to produce a low-
dimensional representation of the input space of training samples, can be used
to resolve the curse of dimensionality problem. SOM consists of set of neurons M
with its coordinate vector pm ∈ R

q,m ∈ M = {1, . . . ,M}. Hence, the entire SOM
is parameterized by Pj � [p1, · · · ,pM]. Typically, training process consists of the
following steps. (0) All neurons are initialized with small values of their weights.
(1) For each data point, the neurons compute the distance to the data point and the
closest neuron is declared as the winner. (2) The winning neuron determines the
neighborhood of excited neurons and these neurons adjust their individual weights
towards the data point. (3) Neurons decrease neighborhood radius and learning rate.
These steps are repeated at each sensor until convergence and data map is obtained.
Example of evolution of SOM training is shown on Fig. 6.3.

After Pj has been constructed from the local data observed at the j th agent, the
proposed algorithm will send this back to the central server to form the aggreated
SOM P � [P1, · · · ,Pj]. P will then be sent back to each node and each vector
inside P will be used as a centroid for the bin similar to the one discussed in
Sect. 6.3.4. The number of points falling into each bin is then calculated and
the corresponding weights for the gradients in (6.4a) can be found. The overall
scheme is summarized in Algorithm 11. Due to space limitation, only a brief
discussion concerning the convergence of the proposed algorithm is given herein.
The convergence rate of the centroid computation step (inner loop) is O(

γ
T
), where

γ is a parameter that depends on the regularization parameter α(t2) and Euclidean
distance between the initialized and optimal variable. T denotes the total number
of iterations in the inner loop. Global convergence of the algorithm (outer loop) is
similar to those of standard k-means, and probabilistic convergence upper bound
can be computed based on [167, 168].

Fig. 6.3 Self-organizing maps training

150 6 Unsupervised Federated Learning

Algorithm 11 DA-based unsupervised federated learning
1: Input: μjnk , mk , k ∈ K, j ∈ J , n=1 . . . Nj ;
2: Each node j : Train SOM Pj and send it to server;
3: Server combines received models and send it to nodes;
4: Each node calculates number of points falling in the bin and sent it to server to determine

gradient weight w;
5: Initialize m(0)

k via k-means++, send it to nodes; t1 =0;

6: while ∀j ∈ J :∑k

∑
n μ

(t1)
jnk − μ

(t1−1)
jnk �= 0 do

7: Each node j : assign labels μ(t1)
jnk based on (6.2).

8: z(0)k = 0, select α(t2); t2 = 0;

9: while ‖m(t2)
k − m(t2−1)

k ‖ ≤ εglo do

10: Each node j : send g(t2)jk to server; z(t2+1)
k by (6.4a);

11: Server computes z(t2+1)
k by (6.4a), m(t2+1)

k by (6.4b) and send it back to nodes;
12: end while
13: t1 = t1 + 1;
14: end while

6.4 Simulations

In the following figures, the algorithms are labeled as UFLBin and UFLSOM. The
centralized k-means algorithm is used as the performance benchmark, with all using
the initialization and perturbation techniques described in Sect. 6.2. In addition,
uniform gradient weighting, labeled as UFLUni is used for comparison to show
the benefit of proper weighting.

Data are generated at random from K = 16 classes, with vectors from each class
generated from a symmetric Gaussian distributions with means m1 =[−7.5,−7.5]T,
m2 = [−7.5,−2.5]T, m3 = [−7.5, 2.5]T, m4 = [−7.5, 7.5]T, m5 = [−2.5,−7.5]T,
m6 = [−2.5,−2.5]T, m7 = [−2.5, 2.5]T, m8 = [−2.5, 7.5]T, m9 = [2.5,−7.5]T,
m10 = [2.5,−2.5]T, m11 = [2.5, 2.5]T, m12 = [2.5, 7.5]T, m13 = [7.5,−7.5]T, m14 =
[7.5,−2.5]T, m15 = [7.5, 2.5]T, m16 = [7.5, 7.5]T similar to Fig. 6.2. Each cluster
contains 50 points. The network consists of J = 5 sensing agents that are placed
randomly and observe data according to energy detector for Rayleigh fading with a
probability P(dj ,SNRj) = 1 − exp(−αSNRj

dj
). dj is the distance between the j th

agent and the data points, and SNRj is the signal-to-noise ratio in linear scale at the
j th agent. α is an observation parameter and is set to 0.025 in the simulations.

Convergence results are shown in Fig. 6.4. It is clear that the proposed algorithms
take relatively the same number of global iterations (indexed by t1 in Algorithm 11)
to converge. It can be observed that the convergence rate is similar to that
of a centralized k-means algorithm. Clustering performance vs. SNR is shown
in Fig. 6.5, where four metrics are used, namely, objective value, variation of

6.4 Simulations 151

0 5 10 15 20 25 30 35 40 45 50

Global Iteration

0.5

1

1.5

2

2.5

3

3.5
O
bj

ec
tiv

e

k-means, SNR=4dB
UFLBin, SNR=4dB
UFLSOM, SNR=4dB
UFLUni, SNR=4dB
k-means, SNR=10dB
UFLBin, SNR=10dB
UFLSOM, SNR=10dB
UFLUni, SNR=10dB

Fig. 6.4 Convergence of the proposed algorithms

0 5 10 15 20
SNR, dB

0

0.5

1

1.5

2

2.5

O
bj

ec
tiv

e k-means
UFLBin
UFLSOM
UFLUni

(a)

0 5 10 15 20
SNR, dB

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

V
ar

ia
tio

n
In

de
x

k-means
UFLBin
UFLSOM
UFLUni

(b)

0 5 10 15 20
SNR, dB

0.98

0.982

0.984

0.986

0.988

0.99

0.992

0.994

0.996

0.998

1

R
an

d
In

de
x

k-means
UFLBin
UFLSOM
UFLUni

(c)

0 5 10 15 20
SNR, dB

0.85

0.9

0.95

1

A
dj

us
te

d
R

an
d

In
de

x

k-means
UFLBin
UFLSOM
UFLUni

(d)

Fig. 6.5 Performance of proposed algorithms. (a) Performance of objective value. (b) Perfor-
mance of VI. (c) Performance of RI. (d) Performance of ARI

information (VI), Rand Index (RI) and Adjusted Rand Index (ARI). First metric
reflects accuracy of centroid estimation, while the other three describes correctness
of data labels. Both UFLBin and UFLSOM perform better than UFLUni and close
to k-means in terms of objective. Hence, the proposed algorithms are able to achieve
superior performance, while the SOM based method requires less signaling than the
bin method. Overall, the proposed methods have been shown to achieve good results
compared to uniform gradient weighting and the centralized k-means.

152 6 Unsupervised Federated Learning

6.5 Summary

In this chapter, we consider unsupervised learning tasks being implemented within
the federated learning framework to satisfy stringent requirements for lowlatency
and privacy of the emerging applications. Two DA based unsupervised federated
learning schemes are discussed to tackle the problem of non-IID data. The first one
uses a bin method that suffers from the curse of dimensionality problem, while the
second can overcome this problem, albeit incurring slightly more computations. The
proposed methods have been shown to achieve good results compared to uniform
gradient weighting and the centralized k-means.

Part III
Federated Learning Applications

in Wireless Networks

Chapter 7
Wireless Virtual Reality

Abstract This chapter introduce the use of federated learning (FL) for wireless
virtual reality (VR) applications. In particular, we first explain why we use to use
FL for wireless VR applications. Then, we provide a detailed literature review of
using FL for VR applications. We then introduce a representative work that focuses
on the use of FL for the analysis and predictions of orientation and mobility of VR
users so as to reduce break in presences of VR users.

7.1 Motivation

Deploying virtual reality (VR) applications over wireless networks is an essential
stepping stone towards flexible deployment of pervasive VR applications [3, 169,
170]. However, to enable a seamless and immersive wireless VR experience, it is
necessary to introduce novel wireless networking solutions that can meet stringent
quality-of-service (QoS) requirements of VR applications [171, 172]. In wireless
VR, any sudden drops in the data rate or increase in the delay can negatively impact
the users’ VR experience (e.g., due to interruptions in VR video streams). Due
to such an interruption in the virtual world, VR users will experience breaks in
presence (BIP) events that can be detrimental to their immersive VR experience.
While the fifth-generation (5G) new radio supports operation at high frequency
bands as well as flexible frame structure to minimize latency, the performance of
communication links at high frequencies is highly prone to blockage. That is, if an
object blocks the wireless link between the BS and a VR user, the data rate can drop
significantly and lead to a BIP. In addition to wireless factors such as delay and data
rate, behavioral metrics related to each VR user such as the user’s awareness can
also induce BIP. Awareness is defined as each wireless VR user’s perceptions and
actions in its individual VR environment. Therefore, to minimize the BIP of VR
users, it is necessary to jointly consider all of the wireless environment and user-
specific metrics that cause BIP, such as link blockage, user location, user orientation,
user association, and user awareness.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
C. S. Hong et al., Federated Learning for Wireless Networks, Wireless Networks,
https://doi.org/10.1007/978-981-16-4963-9_7

155

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-4963-9_7&domain=pdf
https://doi.org/10.1007/978-981-16-4963-9_7

156 7 Wireless Virtual Reality

7.2 Existing Works

Recently, several works have studied a number of problems related to wireless
VR networks [173–182]. The work in[173] developed a multipath cooperative
route scheme to enable VR wireless transmissions. In [174], the authors develop
a framework for mobile VR delivery by leveraging the caching and comput-
ing capabilities of mobile VR devices. The authors in [175] study the problem
of supporting visual and haptic perceptions over wireless cellular networks. A
communications-constrained mobile edge computing framework is proposed in
[176, 177] to reduce wireless resource consumption. The work in [178] proposes a
concrete measure for the delay perception of VR users. The authors in [179] present
a scheme of proactive computing and high-frequency, millimeter wave (mmWave)
[183] transmission for wireless VR networks. In [180], the authors design several
experiments for quantifying the performance of tile-based 360◦ video streaming
over a real cellular network. The works in [181, 182] studied the problem of 360◦
content transmission. However, most of these existing works do not provide a
comprehensive BIP model that accounts for the transmission delay, the quality of
VR videos, VR application type, and user awareness. Moreover, the prior art in
[173–182] does not jointly consider the impact of the users’ body movements when
using mmWave communications.

To address this challenge, machine learning techniques can be used to predict the
users’ movements and proactively determine the user associations that can minimize
BIP. However, in prior works on machine learning for user movement predictions
[184–189], the data for each user’s movement must be collected by its associated
BS. However, in real mobile VR scenarios, users will move and change their
association and the data related to their movement is dispersed across multiple BSs.
In such scenarios, the BSs may not be able to continuously share collected user data
among each other, due to the high overhead of data transmission. Moreover, sending
all the information to a centralized processing server will cause very large delays
that cannot be tolerated by VR applications. Thus, centralized machine learning
algorithms such as in [185–189] will not be useful to predict real-time movements
of the VR users. To this end, a distributed learning framework that can be trained
by the collected data at each BS is needed.

Recently, a number of existing works such as in [67, 72, 74, 75] studied impor-
tant problems related to the implementation of distributed learning over wireless
networks. While interesting, these prior works [67, 72, 74, 75] that focus on the
optimization of the performance of distributed learning algorithms such as federated
learning do not consider the use of distributed learning to optimize the performance
of wireless networks. In particular, these existing works [67, 72, 74, 75] do not
consider the use of distributed learning algorithms to predict users’ orientations and
locations to reduce the BIP of wireless VR users.

7.3 Representative Work 157

7.3 Representative Work

Next, we introduce a novel framework for minimizing BIP within VR applications
that operate over wireless networks [73]. In particular, we first introduce a mathe-
matical model of a new BIP metric that jointly considers VR application type, the
delay of VR video and tracking information transmission, VR video quality, and
the users’ awareness. To minimize the BIP of wireless VR users, we introduce a
federated ESN [66, 190] learning algorithm that enables BSs to locally train their
machine learning algorithms using the data collected from the users’ locations and
orientations. Then, the BSs can cooperatively build a learning model by sharing
their trained models to predict the users’ locations and orientations. Based on these
predictions, we perform fundamental analysis to find an efficient user association
for each VR user that minimizes the BIP.

7.3.1 System Model

Consider a cellular network that consists of a set B of B BSs that service a set
U of U VR users. In this model, BSs act as VR controllers that can collect the
tracking information related to the users’ movements via VR sensors and use the
collected data to generate the VR videos for their associated users, as shown in
Fig. 7.1. In particular, the uplink is used to transmit tracking information such as
users’ locations and orientations from the VR devices to the BSs, while the downlink
is used to transmit VR videos from BSs to VR users. For user association, the VR
users can associate with different BSs for uplink and downlink data transmissions.
Different from prior works such as in [171, 174–176, 178–181] that assume the
VR users to be static, we consider a practical scenario in which the locations and
orientations of the VR users will impact the VR application performance.

Sub-6 GHz

mmWave

Fig. 7.1 The architecture of a wireless VR network. In this architecture, the Sub-6 GHz uplink is
used to transmit tracking information and the mmWave downlink is used to transmit VR videos

158 7 Wireless Virtual Reality

Transmission Model

We consider both uplink and downlink transmission links between BSs and VR
users. The VR users can operate at both mmWave and sub-6 GHz frequencies
[191–193]. The VR videos are transmitted from BSs to VR users over the 28 GHz
band. Meanwhile, the tracking information is transmitted from VR devices to their
associated BSs over a sub-6 GHz frequency band. This is due to the fact that sub-6
GHz frequencies with limited bandwidth cannot support the large data rates required
for VR video transmissions. However, it can provide reliable communications for
sending small data sized users’ tracking information.

Let (xit , yit) be the Cartesian coordinates for the location of user i at time t

and S be the data size of each user’s tracking information, including location and
orientation. S depends on the VR system (i.e., HTC Vive [194] or Oculus [195]).
The data rate for transmitting the tracking information from VR user i to BS j is
given by:

cUL
ij (xit , yit) = FULlog2

⎛

⎜⎜⎝1+ Pugij d
−β
ij (xit , yit)

∑
k∈Ui

Pugkj d
−β
kj (xkt , ykt)+ρ2

⎞

⎟⎟⎠, (7.1)

where FUL is the bandwidth of each subcarrier, UUL
j is the number of VR users

associated with BS j over uplink, Ui is the set of VR users that use the same
subcarriers with user i, Pu is the transmit power of each VR user (assumed equal
for all users), gij is the Rayleigh channel gain, dij is the distance between VR user
i and BS j , and ρ2 is the noise power.

In the downlink, antenna arrays are deployed at BSs to perform directional
beamforming over the mmWave frequency band. For simplicity, a sectored antenna
model [196] is used to approximate the actual array beam patterns. This simplified
antenna model consists of four parameters: the half-power beamwidth φ, the
boresight direction θ , the antenna gain of the mainlobe Q, and the antenna gain
of the sidelobe q. Let ϕij be the phase from BS j to VR user i. The antenna gain of
the transmission link from BS j to user i is:

Gij =
{
Q, if

∣∣ϕij − θj
∣∣ � φ

2 ,

q, if
∣∣ϕij − θj

∣∣ > φ
2 .

(7.2)

Since the VR device is located in front of the VR user’s head, the mmWave link
will be blocked, if the user rotates. Let χit be the orientation of user i at time t and
ϑ be the maximum angle using which BS j can directly transmit VR videos to a
user without any human body blockage. φ′

ij denotes the phase from user i to BS j .

7.3 Representative Work 159

(a) (b)

(c)

LoS link NLoS link

NLoS link

Fig. 7.2 VR video transmission over LoS/NLoS links. (a) LoS links. (b) NLoS links caused by
the user’s own body. (c) NLoS links caused by other user’s body

For user i, the blockage effect, bi (χit), caused by its own body can be given by:

bi (χit) =
⎧
⎨

⎩
1, if

∣∣∣ϕ′
ij − χit

∣∣∣ � ϑ,

0, if
∣∣∣ϕ′

ij − χit

∣∣∣ > ϑ.
(7.3)

We assume that each VR user’s body constitutes a single blockage area and nijt
represents the number of VR users located between user i and BS j at time t . If
there are no users located between user i and BS j that block the mmWave link, i.e.,
(bi (χit) + nij = 0, then, as shown in Fig. 7.2a), the communication link between
user i and BS j is line-of-sight (LoS). If the mmWave link between user i and BS j

is blocked by the user i’s own body (as shown in Fig. 7.2b, bi (χit) = 1) or blocked
by other users located between user i and BS j (as shown in Fig. 7.2c, +nij > 0),
then the communication link between user i and BS j is said to be non-line-of-sight
(NLoS). From (7.3), we can see that bi (χit) and nij can be directly determined by
the users’ orientations and locations.

Considering path loss and shadowing effects, the path loss for a LoS link and a
NLoS link between VR user i and BS j in dB will be given by Semiari et al. [196]:

hLoS
ij (xit , yit) =10�LoS log

(
dij (xit , yit)

)

+ 20 log

(
d0fc4π

ν

)
+ μσLoS ,

(7.4)

160 7 Wireless Virtual Reality

hNLoS
ij (xit , yit) =10�NLoS log

(
dij (xit , yit)

)

+ 20 log

(
d0fc4π

ν

)
+ μσNLoS ,

(7.5)

where 20 log
(
d0fc4π

ν

)
is the free space path loss. Here, d0 represents the reference

distance, fc is the carrier frequency and ν is the light speed. �LoS and �NLoS
represent the path loss exponents for the LoS and NLoS links, respectively. μσLoS

and μσNLoS represent Gaussian random variables with zero mean, respectively.
σLoS and σNLoS represent the standard deviations for LoS and NLoS links in dB,
respectively. The downlink data rate of VR video transmission from BS j to user i
is given by:

cDL
ij

(
xit , yit , bi (χit) , nij

)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

FDLlog2

(
1 + PBGij

10
hLoS
ij

/
10
ρ2

)
, if bi (χit) + nij = 0,

FDLlog2

(
1 + PBGij

10
hNLoS
ij

/
10
ρ2

)
, if bi (χit) + nij > 0,

(7.6)

where FDL is the bandwidth allocated to each user and PB is the transmit power
of each BS j which is assumed to be equal for all BSs. Since the downlink uses
mmWave links, we assume that, due to directivity, interference in (7.6) can be
neglected, as done in [197].

Break in Presence Model

In a VR application, the notion of a BIP represents an event that leads the VR
users to realize that they are in a fictitious, virtual environment, thus ruining their
immersive experience. In other words, a BIP event transitions a user from the
immersive virtual world to the real world [198]. For wired VR, BIP can be caused
by various factors such as hitting the walls/ceiling, loss of tracking with the device,
tripping on wire cords, or talking to another person from the real world [198].
For wireless VR, BIP can be also caused by the delay of VR video and tracking
information transmission, the quality of the VR videos received by the VR users,
and inaccurate tracking information received by BSs.

To model such BIP, we jointly consider the delay of VR video and tracking
information transmission and the quality of the VR videos. We first define a vector

li,t

(
cDL
ij

(
xit , yit , bi (χit) , nij

)) = [
li1,t , . . . , liNL,t

]
that represents a VR video

that user i received at time t with lik,t ∈ {0, 1}. lik,t = 0 indicates that pixel k is
not successfully received by user i, and lik,t = 1, otherwise. We also define a vector

mi,t (GA) = [
mi1,t , . . . , miNL,t

]T that represents the weight of the importance of

7.3 Representative Work 161

each pixel constructing a VR video, where mik,t ∈ [0, 1] and GA represents a VR
application such as an immersive VR game or a VR video. mik,t = 1 indicates that
pixel k is one of the most important elements for the generation of GA. The value
of mik,t depends on the compression used for the VR video. In each VR application
GA, a number of pixels can be compressed at the BS and recovered by the user and,
hence, these pixels are not important. However, the pixels that cannot be compressed
by the BS are important and must be transmitted to the VR users. Therefore, each
pixel will have different importance and mik,t ∈ [0, 1]. Then, the BIP of VR user i
caused by the wireless transmission will be given by:

ωit

(
xit , yit , χit , a

UL
i,t , a

DL
i,t

)
=
1{

A

aUL
ij,t

cUL
ij (xit ,yit)

+ D(li,t)
aDL
ik,t

cDL
ik

>γD ∨ li,tmi,t (GA)<γQ

}.

(7.7)

where cDL
ik is short for cDL

ik (xit , yit , bi (χit) , nik). Meanwhile, li,t is simplified

for li,t

(
aDL
ik,t c

DL
ik (xit , yit , bi (χit) , nik)

)
, respectively, 1{x} = 1 if x is true, and

otherwise, we have 1{x} = 0. 1{x} ∨ 1{y} = 1 as y or x is true, 1{x} ∨ 1{y} = 0,

otherwise. aUL
i,t =

[
aUL
i1,t , . . . , a

UL
iB,t

]
is a vector that represents user i’s uplink

association with aUL
ik,t ∈ {0, 1} and

∑
k∈B

aUL
ik,t = 1. Similarly, aDL

i,t =
[
aDL
i1,t , . . . , a

DL
iB,t

]

is a vector that represents user i’s downlink association with aDL
ik,t ∈ {0, 1} and∑

k∈B
aDL
ik,t = 1. γD and γQ represent the target delay and video quality requirements,

respectively. In (7.7), A represents the data size of the tracking information,
A

cUL
ij (xit ,yit)

represents the time used for tracking information transmission from

user i to BS j , D
(
li,t
(
cDL
ik (xit , yit , bi (χit) , nik)

))
represents the data size of a

VR video, and
D
(
li,t
(
cDL
ik (xit ,yit ,bi (χit),nik)

))

cDL
ik (xit ,yit ,bi (χit),nik)

represents the transmission latency for

sending the tracking information from BS k to user i. For simplicity, hereinafter, ωit

is referred as ωit

(
xit , yit , χit , a

UL
i,t , a

DL
i,t

)
. (7.7) shows that if the delay of VR video

and tracking information transmission exceeds the target delay threshold allowed
by VR systems or the quality of the VR video cannot meet the video requirement,
users will experience a BIP (ωit=1). From (7.7), we can also see that, the BIP of
user i caused by wireless transmission depends on user i’s location, orientation,
VR applications, and user association. (7.7) captures the BIP caused by wireless
networking factors such as transmission delay and video quality. Next, we define
a BIP model that jointly considers wireless transmission, the VR application type,

162 7 Wireless Virtual Reality

and the users’ awareness. The BIP of user i can be given by Chung et al. [199]:

Pi

(
xit , yit , GA, χit , a

UL
i,t , a

DL
i,t

)
= 1

T

T∑

t=1

(
GA + ωit + GAωit + εi + εGA|i + εB

)
,

(7.8)

where εi is user i’s awareness, εGA|i is the joint effect caused by user i’s awareness
and VR application GA, and εB is a random effect. εi , εGA|i , and εB follow
a Gaussian distribution [199] with zero mean and variances σ 2

i , σ 2
GA|i , and σ 2

B ,

respectively. In (7.8), the value of Pi

(
xit , yit , GA, χit , a

UL
i,t , a

DL
i,t

)
quantifies the

average number of BIP that user i can identify during a period. From (7.8), we
can see that, as the VR application for user i changes, the BIP value will change.
For example, a given user watching VR videos will experience fewer BIP compared
to a user engaged in an immersive first-person shooting game. This is due to the
fact that in an immersive game environment, users are fully engaged with the virtual
environment, as opposed to some VR applications that require the user to only watch
VR videos. In (7.8), we can also see that the BIP depend on the users’ awareness.
This means that different users will have different actions and perceptions when they
interact with the virtual environment and, hence, different VR users may experience
different levels of BIP.

Problem Formulation

From (7.8), we can see that the BIP of each user depends on this user’s location,
orientation, and selected BSs. By using an effective learning algorithm to predict
the users’ locations and orientations, the BSs can proactively determine the users’
association to improve the downlink and uplink data rates and minimize BIP for
each VR user. The BIP minimization problem is:

min
aUL
i,t ,a

DL
i,t

∑

i∈U
Pi

(
x̂it , ŷit , GA, χ̂it , a

UL
i,t , a

DL
i,t

)
(7.9)

s. t. Uj � V, ∀j ∈ B, (7.9a)

aUL
ij,t , a

DL
ij,t ∈ {0, 1} , ∀i ∈ U ,∀j ∈ B, (7.9b)

∑
j∈B

aUL
ij,t = 1,

∑
j∈B

aDL
ij,t = 1, ∀i ∈ U , (7.9c)

where x̂it , ŷit , and χ̂it are the predicted locations and orientation of user i at
time t , which depend on the actual historical locations and orientation of user i.
Uj is the number of VR users associated with BS j over downlink and V is the
maximum number of users that can be associated with each BS. (7.9b) and (7.9c)

7.3 Representative Work 163

show that each user can associate with only one uplink BS and one downlink BS.
From (7.9), we can see that the BIP of each user will depend on the user association
as well as the users’ locations and orientations. Meanwhile, the user association
depends on the locations and orientations of the VR users. If the BSs perform
the user association without knowledge of the locations and orientations of the
users, the body blockage between the user-BS transmission links can potentially
be significant, thus increasing the BIP of each user. Therefore, the BSs must use
historical information related to the users’ locations and orientations to determine
the user association. As the users’ locations and orientations will continuously
change as time elapses, BSs must proactively determine the user association to
reduce the BIP of VR users. In consequence, it is necessary to introduce a machine
learning algorithm to predict the users’ locations and orientations in order to
determine the user association and minimize BIP of VR users. In the previous
defined model, the user association changes as the users’ location and orientation
vary with time. Consequently, each BS that connects to a given VR user can only
collect partial information about this user’s locations and orientation. However, a BS
cannot rely on partial information to predict each user’s location and orientation.
Moreover, since a given VR user will change its association, the data pertaining
to this VR user’s movement will be located at multiple BSs. Hence, traditional
centralized learning algorithms that are implemented by a given BS cannot predict
the entire VR user’s locations and orientations without knowing the user’s data
collected by other BSs. To overcome the challenges mentioned previously, we
introduce a distributed federated learning framework that can predict the location
and orientation of each VR user as the training data related to each user’s locations
and orientations is located at multiple BSs.

7.3.2 Federated Echo State Learning for Predictions
of the Users’ Location and Orientation

Federated learning is a decentralized learning algorithm that can operate by using
training datasets that are distributed across multiple devices (e.g., BSs). For our
system, one key advantage of federated learning is that it can allow multiple BSs to
locally train their local learning model using their collected data and cooperatively
build a learning model by sharing their locally trained models. Compared to existing
federated learning algorithms [54] that use matrices to record the users’ behavior
and cannot analyze the correlation of the users’ behavior data, we propose an ESN-
based federated learning algorithm that can use an ESN to efficiently analyze the
data related to the users’ location and orientation. The ESN based FL algorithm
enables the BSs to collaboratively generate a global ESN model to predict the whole
set of locations and orientations for each user without transmitting the collected
data to other BSs. However, if the BSs use the centralized learning algorithms
for the orientation and location predictions, the BSs must use the data collected

164 7 Wireless Virtual Reality

from all BSs to train the algorithm. ESNs have two unique advantages: simple
training process and the ability to analyze time-dependent data [66]. Since the
data that is related to the orientation and locations of the users is time-dependent
and the users’ orientation and locations will change frequently, we must use ESNs
that can efficiently analyze time-dependent data and converge quickly to obtain
the prediction results on time and determine the user association. Next, we first
introduce the components of the federated ESN learning model. Then, we explain
the entire procedure of using our federated ESN learning algorithm to predict the
users’ locations and orientation.

Components of Federated ESN Learning Algorithm

A federated ESN learning algorithm consists of five components: (a) agents, (b)
input, (c) output, and (d) local ESN model, which are specified as follows:

• Agent: In our system, we need to define an individual federated ESN learning
algorithm to predict the location and orientation of each VR user. Meanwhile,
each user’s individual federated ESN learning algorithm must be implemented
by all BSs that have been associated with this user. Each BS j must implement
U learning algorithms to predict the locations and orientations of all users.

• Input: The input of the federated ESN learning algorithm that is implemented
by BS j for the predictions of each VR user i is defined by a vector υij =[
υij,1, · · · ,υij,T

]T that represents the information related to user i’s location
and orientation where υij,t = [ξij1,t , . . . , ξijNx,t

]
represents user i’s information

related to location and orientation at time t . This information includes user i’s
locations, orientations, and VR applications. Nx is the number of properties that
constitute a vector υij,t . The input of the proposed algorithm will be combined
with the ESN model to predict users’ orientation and locations. BSs will use these
predictions to determine user associations.

• Output: For each user i, the output of the federated ESN learning algorithm
at BS j is a vector yij,t = [

ŷij t+1, . . . , ŷij t+Y

]
of user i’s locations and

orientations where ŷij t+k = [
x̂it+k, ŷit+k, χ̂it+k

]
with x̂it+k and ŷit+k being

the predicted location coordinates of user i at time t + k and χ̂it+k being the
estimated orientation of user i at t + k. Y is the number of future time slots that
a federated ESN learning algorithm can predict. The predictions of the locations
and orientations can be used to determine the user’s association.

• Local ESN model: For each BS j , a local ESN model is used to build the
relationship between the input of all BSs and the predictions of the users’ location
and orientation, as shown in Fig. 7.4. The local ESN model consists of the input
weight matrix W in

j ∈ R
NW×T , recurrent matrix W j ∈ R

NW×NW , and the output

weight matrix W out
j ∈ R

Y×(NW+T). The values of W in
j and W j are generated

randomly. However, the output weight matrix W out
j need to be trained according

to the inputs of all BSs.

7.3 Representative Work 165

Fig. 7.3 Architectures of
deep ESN models. (a) A
series ESN model. (b) A
parallel ESN model

(a)

(b)

We introduce three ESN models: single ESN model, series ESN model, and
parallel ESN model. In the single ESN model, an ESN is directly connected to the
input and output. Moreover, as shown in Fig. 7.3, series and parallel ESN models
connect single ESN models in series and parallel, respectively. Each ESN model has
its own advantage for our problem. In particular, a single ESN model can converge
faster than a series ESN model and a parallel ESN model. A parallel ESN model
has a larger memory capacity than a series ESN model. A series ESN model can
decrease the prediction errors in the training process.

166 7 Wireless Virtual Reality

Fig. 7.4 The implementation of the ESN based federated learning. Here, the data is located at the
BSs and the learning model W out

j that is trained by each BS’s collected data is the local model

ESN Based Federated Learning Algorithm for Users’ Location
and Orientation Predictions

Next, we explain the entire procedure of training the proposed ESN-based federated
learning algorithm. Our purpose of training ESN is to find an optimal output weight
matrix in order to accurately predict the users’ locations and orientations, as shown
in Fig. 7.4.

To introduce the training process, we first explain the state of the neurons in
ESN. The neuron states of the proposed algorithm implemented by BS j for the
predictions of user i are:

μj,t = W jμj,t−1 + W in
j υij,t . (7.10)

Based on the states of neurons and the inputs, the ESN can estimate the output,
which is:

ŷij,t = W out
j,t

[
υij,t

μj,t

]
. (7.11)

From (7.11), we can see that, in order to enable an ESN to predict the users’
locations and orientations, we only need to adjust the value of the output weight
matrix. However, each BS can collect only partial data for each user and, hence,
we need to use a distributed learning algorithm to train the ESNs. To introduce the
distributed learning algorithm, we first define two matrices which are given by:

H j =
⎡

⎢⎣
υij,1 μj,1

...

υij,T μj,T

⎤

⎥⎦ and Ej = [eij,1, . . . , eij,T
]
, (7.12)

7.3 Representative Work 167

where eij,t is the desired locations and orientations of each VR user, given the ESN
input υij,t . Then, the training purpose can be given as follows:

min
W out

1

2

⎛

⎝
B∑

j=1

∥∥∥W outH T
j − Ej

∥∥∥
2

⎞

⎠+ λ

2

∥∥W out
∥∥. (7.13)

(7.13) is used to find the optimal global output weight matrix W out according to
which the BSs can predict the entire users’ locations and orientations without the
knowledge of the users’ data collected by other BSs. From (7.13), we can see
that, each BS j needs to adjust its output weight matrix W out

j and find the optimal
output weight matrix W out. After the learning step, we have W out

j = W out, which
means that when the learning algorithm converges, the local model of each BS will
converge to the global model.. A standard update policy of W out

j for the augmented
Lagrangian problem in (7.13) is given by Scardapane et al. [200]:

W out
j,t+1 =ς−1

[
I − HT

j

(
ςI + H jH

T
j

)
HT

j

]

×
(
HT

j Ej − nj,t + ςW out
t

)
,

(7.14)

where ς is the learning rate and W out
t is the optimal output weight matrix that the

ESN model of each BS needs to find. From (7.14), we can see that W out
j,t+1 is the

output weight matrix that is generated at BS j . W out
j,t+1 can only be used to predict

partial locations and orientations given the users’ data collected by BS j . W out
j,t+1 is

different from the output weight matrices of other BSs. The optimal output weight
matrix is given by:

W out
t+1 = BςŴ

out
t+1 + Bn̂t

λ + ςB
, (7.15)

where Ŵ
out
t+1 and n̂

out
t+1 can be calculated as follows:

Ŵ
out
t+1 = 1

B

B∑

j=1

W out
j,t+1, n̂t = 1

B

B∑

j=1

nj,t . (7.16)

From (7.14) to (7.16), we can see that the global output weight matrix W out is based
on (7.15) and (7.16) while the local output weight matrix W out

j is based on (7.14).
In (7.14), nj,t is the deviation between the output weight matrix W out

j,t+1 of each BS
j and the optimal output weight matrix W out

t+1 that the ESN model of each BS needs

168 7 Wireless Virtual Reality

to converge, which is given by:

nj,t+1 = nj,t + γ
(
W out

j,t+1 − W out
t+1

)
. (7.17)

W out
t+1 is the global optimal output weight matrix that can be used to predict the

entire locations and orientations of a given user. This means that using W out
t+1, each

BS can predict the entire user’s locations and orientations as the BS only collects
partial data related to the user’s locations and orientations. As time elapses, W out

j,t+1
will finally converge to W out

t+1. In consequence, all of BSs can predict the entire
locations and orientations of each user. To measure the convergence, we define two
vectors which can be given by rj,t = W out

j,t − W out
t and sj,t = W out

t − W out
t−1. As∥∥rj,t+1

∥∥ � γA or
∥∥sj,t

∥∥ � γA, the proposed algorithm converges. γA is determined
by the BSs. Since the minimization function in (7.13) is a convex function, the BSs
are guaranteed to find an optimal output weight matrix that satisfy

∥∥rj,t+1
∥∥ � γA

or
∥∥sj,t

∥∥ � γA. As γA increases, the accuracy of the predictions and the number
of iterations decrease. Therefore, BSs need to jointly account for the time used for
training ESN and the prediction accuracy to determine the value of γA. In fact, the
ESN As the learning algorithm converges, each BS can use its own ESN to predict
the entire location and orientation of each VR user. According to these predictions,
BSs can determine the user association to minimize the BIP of VR users.

7.3.3 Memory Capacity Analysis

To improve the prediction accuracy of the proposed algorithm, we analyze the
memory capacity of the proposed ESN model. The memory capacity quantifies
the ability of each ESN to record the historical locations and orientations of each
VR user. As the memory capacity of the ESNs increases, the ESNs can record
more historical data related to users’ locations and use this information to achieve
better prediction1 for the users’ locations and orientations. The analysis of the ESN
memory capacity will be used for the choice of the ESN models for the predictions
of the users’ locations and orientations. Next, we derive closed-form expressions
of the memory capacity of the three ESN models that we described in Sect. 7.3.2,
namely, the single ESN model, the parallel ESN model, and the series ESN model.
Note that, our previous work [201] analyzed the memory capacity for a centralized
parallel ESN model. In contrast, here, we analyze the memory capacity for three
ESN models used for federated learning.

1 Here, as the size of the recorded data increases, the ESNs can use more historical data to build
a relationship between historical orientations and locations, and future orientations and locations.
Hence, the ESN prediction accuracy improves.

7.3 Representative Work 169

We assume that the input of each ESN model at time t is mt and the output of
each ESN model is zt . Then, the memory capacity of each ESN model is given by:

M =
∞∑

k=1

Cov2(mt−k, zt)

Var(mt)Var(zt)
, (7.18)

where Cov and Var represent the covariance and variance operators, respectively.

In (7.18), Cov2(mt−k,zt)
Var(mt−k)Var(zt)

captures the correlation between the ESN input mt−k at

time t − k and the ESN output zt at time t . Cov2(mt−k,zt)
Var(mt−k)Var(zt)

= 1 indicates that mt−k

and zt are related which means that the output zt includes the information of mt−k

and, hence, the ESN can record input mt−k at time t . Cov2(mt−k,zt)
Var(mt)Var(zt)

= 0 indicates that
mt−k and zt are unrelated, which means that zt does not include any information
related to mt−k and, hence, the ESN cannot record mt−k . In consequence, M

represents the total number of historical input data that each ESN can record. The
recurrent matrix W in each ESN model is given by:

W l =

⎡

⎢⎢⎢⎣

0 0 · · · w
w 0 0 0

0
. . . 0 0

0 0 w 0

⎤

⎥⎥⎥⎦ , (7.19)

and the input weight matrix is given by W in =
[
win

1 , . . . , win
NW

]T
. We also define a

matrix that will be used to derive the memory capacity of the ESNs, which can be
given by:

V =

⎡

⎢⎢⎢⎢⎣

win
1 win

NW
· · · win

2

win
2 win

1 · · · win
3

...
... · · · ...

win
NW

win
NW−1 · · · win

1

⎤

⎥⎥⎥⎥⎦
. (7.20)

Based on the above definitions, we can invoke our result from [190, Theorem 2] to
derive the memory capacity of single ESN model, which can be given as follows.

Corollary 7.1 (Single ESN Model) Given the recurrent matrix W and the input
matrix W in that guarantees the matrix V regular, the memory capacity of the single
ESN model is:

M = NW − 1 + w2NW . (7.21)

Proof Given the input stream vector m...t = [m1, . . . , mt−1,mt], we can calculate
the activations μj,t using (7.10). The output weight matrix of the ESN model

170 7 Wireless Virtual Reality

can be given by W out = R−1pk , where R = E

[
μt

(
μt

)T] represents the

covariance matrix with μt = [
μ1,t , . . . , μNW ,t

]
and pk = E

[
μtmt−k

]
. Assume

that win
NW ...1 =

[
win

NW
,win

NW−1, . . . , w
in
1

]
and rotk

(
win

NW ...1

)
is an operator that

rotates vector win
NW ...1 by k positions to the right. We have W out = (1 −

w2NW)wkA−1rotk(win
1...NW

), where A = V TΓ 2V with Γ = (
1, w, . . . , wNW−1

)
.

Based on W out, we can the covariance of the output with the k-slot delayed input,
which is given by Cov(zt , mt−k) = (1 − w2NW)w2kσ 2ζk . We can also obtain
Var(zt) = E [zt zt] = (1 − w2NW)w2kσ 2ζk . Since Var(mt) = σ 2, we have

M =∑∞
k=1

Cov2(mt−k,zt)
Var(mt)Var(zt)

= NW − 1 + w2NW .

From Corollary 7.1, we can see that the memory capacity of the single ESN model
depends on the number of neurons and values of the recurrent matrix. Corollary 7.1
also shows that the memory capacity of the single ESN model will not exceed
NW . That means the single ESN model based federated learning algorithm can only
record NW locations or orientations.

Next, we derive the memory capacity of the parallel ESN model, which can be
given by the following theorem.

Theorem 7.1 (Parallel ESN) Given a parallel ESN model during which L ESN
models are parallel connected with each other, each ESN model’s input weight
matrix W in that guarantees the matrix V regular and recurrent matrix W , then
the memory capacity of each parallel ESN can be given by:

M = NW − 1 + w2NW . (7.22)

Proof See in [73]

Theorem 7.1 shows that the memory capacity of a parallel ESN model is similar
to the memory capacity of a single ESN. Hence, adding multiple ESN models will
not increase the memory capacity. This is due to the fact that, in a parallel ESN
model, there is no connection among the ESNs, as shown in Fig. 7.3b. Therefore,
the input of the parallel ESN model will separately connect to each single ESN and,
hence, the parallel ESN models do not need to use more neurons to record the input
data compared to the single ESN model. Theorem 7.1 also shows that the memory
capacity of a parallel ESN depends on the number of neurons in each ESN model
and the values of the recurrent weight matrix of each ESN model. Accordingly, we
can increase the value of output weight matrix and the number of neurons in each
ESN model to increase the memory capacity of the parallel ESN models. As the
memory capacity of the parallel ESN models increases, BSs can record more users’
data to predict the users’ locations and orientations accurately. Next, we derive the
memory capacity of the series ESN model.

Theorem 7.2 (Series ESNModel) Given a series ESN model during which L ESN
models are series connected with each other, a recurrent matrix W of each ESN

7.3 Representative Work 171

model, and each ESN model’s input weight matrix W in that guarantees the matrix
V regular, the memory capacity of each series ESN model is:

M =
(

1 − w2NW

)L−1 (
NW − 1 + w2NW

)
. (7.23)

Proof See in [73].

From Theorem 7.2, we can see that the memory capacity of each series ESN model
is smaller than the memory capacity of a single ESN or a series ESN. Theorem 7.2
also shows that the memory capacity of each series ESN model decreases as the
number of ESN models L increases. Thus, it would be better to use a single ESN
model or a parallel ESN model to predict the users’ locations and orientations.

Theorems 7.1 and 7.2 derive the memory capacities of the parallel ESN model
and the series ESN model with single input. Next, we formulate the memory
capacity of a single ESN model given multiple inputs, which is given by the
following theorem.

Theorem 7.3 (Multi-Input Single ESN) Consider a single ESN with a recurrent
matrix W , input vector mt = [m1t , . . . , mKt], the input weight matrix W in that
guarantees the matrix V regular, the memory capacity of each single ESN is

M =
(∑K

l=1 σ
2
l∑K

k=1
∑K

n=1 ρknσkσn

)2 (
NW − 1 + w2NW

)
, (7.24)

where ρkn represents the correlation coefficient between input mkt and mnt .

Proof See in [73].

From Theorem 7.3, we can observe that the correlation among input elements
in vector mt will affect the memory capacity of each ESN model. In particular, as
the correlation of the input data increases, the memory capacity of the ESN model
increases. This is because the ESN can use more input data to predict the users’
locations and orientations, hence improving the predictions accuracy. Therefore, it
would be better to jointly predict the users’ locations and orientations.

Theorems 7.1–7.3 allow each BS to determine its ESN model, the number of
neurons NW in each ESN model, and the values of the recurrent matrix W as the size
of the data collected by each BS changes. A parallel ESN model has a larger memory
capacity compared with the series ESN model and is more stable than the single
ESN model, and, hence, a parallel ESN model can record more historical data to
predict the users’ orientations and locations so as to improve the prediction accuracy.
As the prediction accuracy is improved, the BSs can determine the user association
more accurately. Hence, the BIP of the users can be minimized. Therefore, we use
the parallel ESN model in our proposed algorithm.

172 7 Wireless Virtual Reality

7.3.4 User Association for VR Users

Based on the analysis presented in Sects. 7.3.2 and 7.3.3, each BS can predict the
users’ locations and orientations. Next, we explain how to use these predictions to
find the user association for each VR user. Given the predictions of the locations
and orientations, the BIP minimization problem in (7.9) can be rewritten as follows:

min
aUL
i,t ,a

DL
i,t

∑

i∈U
Pi

(
x̂it , ŷit , GA, χ̂it , a

UL
i,t , a

DL
i,t

)
. (7.25)

We use the reinforcement learning algorithm given in [202] to find a sub-optimal
solution of the problem in (7.25). In the reinforcement learning algorithm given in
[202], the actions are the user association schemes, the states are the strategies of
other BSs, and the output is the estimated BIP. Hence, this reinforcement learning
algorithm can learn the VR users state and exploit different actions to adapt the user
association according to the predictions of the users’ locations and orientations.
After the learning step, each BS will find a sub-optimal user association to service
the VR users. To simplify the learning process and improve the convergence speed,
we first select the uplink user association scheme. This is because as the uplink user
association is determined, the BSs that the users can associate in downlink will be
determined, as follows:

Proposition 7.1 Given the predicted location and orientation of user i at time t as
well as the uplink user association aUL

i∗,t , the downlink cell association for a VR user
i is:

aDL
ik,t =1{

D
(
li,t

(
aDL
ik,t

cDL
ik

))

aDL
ik,t

cDL
ik

�γD− A

aUL
i∗,t cUL

i∗ (x̂it ,ŷit)

}

∧ 1{
li,t

(
aDL
ik,t c

DL
ik

)
mi,t (GA)�γQ

},

(7.26)

where cDL
ik

(
x̂it , ŷit , bi

(
χ̂it

)
, nik

)
is short for cDL

ik and aDL
ik,t is the downlink user

association obtained in (7.26). cUL
i∗ (xit , yit) is the uplink data rate of user i.

Proof For downlink user association, each VR user i needs to find a BS that
can guarantee the transmission delay and VR video quality. Since we have deter-
mined the user association over uplink, the maximum time used for VR video
transmission can be given by γD − A

aUL
i∗,t cUL

i∗ (x̂it ,ŷit)
. Consequently, user i needs to

connect with a BS that can satisfy the transmission delay requirement of user

i, i.e.,
D
(
li,t

(
aDL
ik,t c

DL
ik (x̂it ,ŷit ,bi(χ̂it),nik)

))

aDL
ik,t c

DL
ik (x̂it ,ŷit ,bi(χ̂it),nik)

� γD − A

aUL
i∗,t cUL

i∗ (x̂it ,ŷit)
. Moreover, user i

needs to associate with a BS that can meet the requirement of VR video quality,

i.e., li,t

(
aDL
ik,t c

DL
ik

(
x̂it , ŷit , bi

(
χ̂it

)
, nik

))
mi,t (GA) � γQ. Thus, if BS k can

7.3 Representative Work 173

satisfy the conditions:
D
(
li,t

(
aDL
ik,t c

DL
ik (x̂it ,ŷit ,bi(χ̂it),nik)

))

aDL
ik,t c

DL
ik (x̂it ,ŷit ,bi(χ̂it),nik)

� γD − A

aUL
i∗,t cUL

i∗ (x̂it ,ŷit)
and

li,t

(
aDL
ik,t c

DL
ik

(
x̂it , ŷit , bi

(
χ̂it

)
, nik

))
mi,t (GA) � γQ, user i can associate with it. This

completes the proof.

From Proposition 7.1, we can see that the user association of each user i depends
on user i’s location and orientation. Proposition 7.1 shows that, for each user i, the
uplink user association will affect the downlink user association. This is due to the
fact that the VR system has determined the total transmission delay of each user.
As a result, when the uplink user association is determined, the uplink transmission
delay and the requirement of the downlink transmission delay will be determined.

7.3.5 Simulation Results and Analysis

For our simulations, we consider a circular area with radius r = 500 m, U = 20
wireless VR users, and B = 5 BSs distributed uniformly. To simulate blockage,
each user is considered as a two-dimensional point. For simplicity, we ignore the
altitudes of the BSs and the height of the users. If blockage points are located
between a user and its BS, the communication link will be considered to be NLoS.
Real data traces for locations are collected from 50 students at the Beijing University
of Posts and Telecommunications. The locations of each student is collected every
hour during 9:00 a.m.–9:00 p.m. For orientation data collection, we searched 25
videos related to a first-person shooter game from youTube. Then, we input these
VR videos to HTC Vive devices. The HTC Vive developer system can directly
measure the movement of the VR videos using HTC Vive devices. We arbitrarily
combine one user’s locations with one orientation for each VR user. In simulations,
a parallel ESN model is used for the proposed algorithm due to its stability and
large memory capacity. The other system parameters are listed in Table 7.1. For
comparison purposes, we consider the deep learning algorithm in [187] and the
ESN algorithm in [188], as two baseline schemes. The deep learning algorithm in
[187] is a deep autoencoder that consists of multiple layers of restricted Boltznann
machines. The centralized ESN-based learning algorithm in [188] is essentially a
single layer ESN algorithm. The input and output of the centralized ESN and deep
learning algorithms are similar to the proposed algorithm. However, for the deep
learning algorithm and the centralized ESN algorithm, each BS can use only its
collected data to train the learning model. Both the centralized and deep learning
algorithms are trained in an offline manner. All statistical results are averaged over
a large number of independent runs.

Figures 7.5 and 7.6 show the predictions of the VR users’ locations and
orientations as time elapses. To simplify the model training, the collected data
related to locations and orientations are mapped to [−0.5, 0.5]. The orientation
and location of each user are, respectively, mapped by the function χit

360◦ − 0.5 and

174 7 Wireless Virtual Reality

Table 7.1 System
parameters

Parameters Values Parameters Values

PB 30 dBm d0 5 m

PU 10 dBm fc 28 GHz

σ −94 dBm c 3 × 108 m/s

FUL 10 Mbit �LoS,�NLoS 2, 2.4

FDL 10 Mbit μσLoS , μσNLoS 5.3, 5.27

NW 30 GA 11

β 2 γD 10 ms

M 15 dB γQ 0.8

m 0.7 dB σi
2 0.193

φ 30◦ A 50 kbits

Y 10 T 5

γ 0.5 λ 0.005

w 0.98 L 3

V 10 ϑ 2

σ 2
GA|i 0.151 σB

2 0.05

z
zmax

− 0.5 where z =
(
x̂it+ŷit∑
n=1

n

)
× ŷit . From Figs. 7.5 and 7.6, we observe that the

proposed algorithm can predict the users’ locations and orientations more accurately
than the centralized ESN and deep learning algorithms. Figure 7.6b and c also show
that the prediction error mainly occurs at time slot 8–12. This is due to the fact that
the proposed algorithm can build a learning model that predicts the entire locations
and orientations of each user. In particular, the output weight matrices of all ESN
algorithms implemented by each BS will converge to a common matrix. Hence, BSs
can predict the entire locations and orientations of each VR user.

Figure 7.7 shows how the total BIP of all VR users changes as the number of BSs
varies. From Fig. 7.7, we can see that, as the number of BSs increases, the total BIP
of all VR users decreases. That is because as the number of BSs increases, the VR
users have more connection options. Hence, the blockage caused by human bodies
will be less severe, thereby improving the data rates of VR users. Figure 7.7a also
shows that the proposed algorithm can achieve up to 16% and 26% reduction in
the number of BIP, respectively, compared to centralized ESN algorithm and deep
learning algorithm for a network with 9 BSs. These gains stem from the fact that
the centralized ESN and deep learning algorithms can partially predict the locations
and orientation of each VR user as they rely only on the local data collected by
a BS. In contrast, the proposed algorithm facilitates cooperation among BSs to
build a learning model that can predict the entire users’ locations and orientations.
Figure 7.7b shows that the proposed algorithm using a parallel ESN model can
achieve up to 8% and 14% gains in terms of the total BIP of all users compared to
the proposed algorithm with a single ESN model and with a series model. Clearly,
compared to a single ESN, using a parallel ESN model can increase the stability
of the proposed algorithm. Meanwhile, the memory capacity of a parallel model is

7.3 Representative Work 175

10 12 14 16 18 20
Time (hour)

-0.4

-0.2

0

0.2

0.4

0.6

T
he

 lo
ca

tio
ns

 o
f a

 g
iv

en
 u

se
r Real locations

Locations predicted by the proposed algorithm

(a)

10 12 14 16 18 20
Time (hour)

-0.4

-0.2

0

0.2

0.4

0.6

T
he

 lo
ca

tio
ns

 o
f a

 g
iv

en
 u

se
r Real locations

Locations predicted by the centralized ESN

(b)

10 12 14 16 18 20
Time (hour)

-0.4

-0.2

0

0.2

0.4

0.6

T
he

 lo
ca

tio
ns

 o
f a

 g
iv

en
 u

se
r Real locations

Locations predicted by the deep learning

(c)

Fig. 7.5 Predictions of the VR users’ locations as time elapses

larger than a series ESN model thus improving the prediction accuracy and reducing
BIP for users.

In Fig. 7.8, we show how the total BIP of all VR users changes with the number of
VR users. This figure shows that, with more VR users, the total BIP of all VR users
increases rapidly due to an increase in the uplink delay, as the sub-6 GHz bandwidth
is shared by more users. Figure 7.8 also shows that the gap between the proposed
algorithm and the centralized ESN algorithm decreases as more VR users are present
in the network.. Clearly, with more VR users, it becomes more probable that a user
located between a given VR user and its associated BS blocks the mmWave link.
Thus, as the number of users increases, more VR users will receive their VR videos
over NLoS links and, the total BIP significantly increases.

In Fig. 7.9, we show the CDF for the VR users’ BIP for all three algorithms.
Figure 7.9 shows that the BIP of almost 98% of users resulting from the considered
algorithms will be larger than 10. This is due to the fact that the BIP will also be
caused by other factors such as VR applications and user’s awareness. In Fig. 7.9, we
can also see that the proposed algorithm improves the CDF of up to 38% and 71%
gains at a BIP of 25 compared to the centralized ESN and deep learning algorithms,

176 7 Wireless Virtual Reality

2 4 6 8 10 12

Time slot

-0.5

0

0.5

T
he

 o
rie

nt
at

io
ns

 o
f a

 g
iv

en
 u

se
r Real orientations

Orientations predicted by the proposed algorithm

(a)

2 4 6 8 10 12
Time slot

-0.5

0

0.5

T
he

 o
rie

nt
at

io
ns

 o
f a

 g
iv

en
 u

se
r

Real orientations
Orientations predicted by the centralized ESN

(b)

2 4 6 8 10 12
Time slot

-0.5

0

0.5

T
he

 o
rie

nt
at

io
ns

 o
f a

 g
iv

en
 u

se
r Real orientations

Orientations predicted by the deep learning

(c)

Fig. 7.6 Predictions of the VR users’ orientations as time elapses

respectively. These gains stem from the fact the ESNs are effective at analyzing the
time related location and orientation data and, hence, they can accurately predict the
users’ locations and orientations.

7.4 Summary

In this chapter, we have introduced the use of FL for wireless VR applications.
In particular, we have first introduced the advantages of using FL for wireless
VR applications. Then, we have provided a detailed literature review of the use
of machine learning for wireless VR applications. We then have introduced a
representative work that focuses on the development of a novel framework for
minimizing BIP within VR applications that operate over wireless networks. To this
end, we have developed a BIP model that jointly considers the VR applications,
transmission delay, VR video quality, and the user’s awareness. We have then
formulated an optimization problem that seeks to minimize the BIP of VR users

7.4 Summary 177

1 2 3 4 5 6 7 8 9

Number of BSs

250

300

350

400

T
ot

al
 B

IP
s

of
 a

ll
V

R
 u

se
rs

Federated ESN learning algorithm
Centralized ESN algorithm
Deep learning algorithm

(a)

1 3 5 7 9

Number of BSs

260

280

300

320

340

360

380

400

420

T
ot

al
 B

IP
s

of
 a

ll
V

R
 u

se
rs

The proposed algorithm using a parallel ESN model
The proposed algorithm using a single ESN model
The proposed algorithm using a series ESN model

(b)

Fig. 7.7 Total BIP experienced by VR users as the number of BSs varies

by predicting users’ locations and orientations, as well as determining the user
association. To solve this problem, we have developed a novel federated learning
algorithm based on echo state networks. The proposed federated ESN algorithm
enables the BSs to train their ESN with their locally collected data and share these
models to build a global learning model that can predict the entire locations and
orientations of each VR user. To improve the prediction accuracy of the proposed
algorithm, we derive a closed-form expression of the memory capacity for ESNs to
determine the number of neurons in each ESN model and the values of the recurrent

178 7 Wireless Virtual Reality

10 20 30 40 50

Number of VR users

300

350

400

450

T
ot

al
 B

IP
s

of
 a

ll
V

R
 u

se
rs

Federated ESN learning algorithm
Centralized ESN algorithm
Deep learning algorithm

Fig. 7.8 Total BIP of all VR users as the number of VR users varies

1 5 10 15 20 25 30 40

Number of BIPs

0

0.2

0.4

0.6

0.8

1

C
D

F

Federated ESN learning
Centralized ESN algorithm
Deep learning algorithm

Fig. 7.9 CDFs of the BIP resulting from the different algorithms

weight matrix. Using these predictions, each BS can determine the user association
in both uplink and downlink. Simulation results have shown that, when compared to
the centralized ESN and deep learning algorithms, the proposed approach achieves
significant performance gains of BIP.

Chapter 8
Vehicular Networks and Autonomous
Driving Cars

Abstract In this chapter, we discuss the role of federated learning for vehicular
networks. Due to the high mobility of autonomous cars, there might not be seamless
connectivity of the end-devices within cars with the roadside units, and thus
traditional federated learning might not work well. To overcome this challenge,
we introduced a dispersed federated learning framework for autonomous driving
cars. We formulate a dispersed federated learning cost optimization problem and
proposed an iterative scheme. Finally, we present extensive simulation results to
validate the proposal.

8.1 Introduction and State of Art

Federated learning has been proposed by Google as a distributed machine learning
paradigm to push the computation of artificial intelligence (AI) applications into
more and more end devices while protecting the privacy of end users [142]. In
federated learning, a central server sends an initialized global deep neural network
(DNN) model to clients as the first step. Based on the initialized global DNN model,
clients separately train local DNN models with their local data as the second step.
Instead of directly sending their local data, clients send the trained local DNN
models back to the central server as the third step. The above steps are repeated
in multiple rounds until the training accuracy of the global DNN model meets the
requirement of the central server. Due to the above advantages, federated learning
has been applied to many application scenarios, such as financial applications [142],
virtual keyboard applications [203], Internet of Things [141], and electronic health
applications [204].

Vehicular edge computing (VEC) is a fast-developing vehicular technology,
where vehicles and roadside servers at the network edge contribute communication,
computation, storage and data resources to close proximity of vehicular users
[13, 205–207]. With the rapid penetration of intelligent connected vehicles (ICV),
there is an urgent need to study federated learning in VEC as an important technical
framework to meet the ever-increasing demands of AI applications in vehicular
networks. In the following section, we consider image classification as a typical AI

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
C. S. Hong et al., Federated Learning for Wireless Networks, Wireless Networks,
https://doi.org/10.1007/978-981-16-4963-9_8

179

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-4963-9_8&domain=pdf
https://doi.org/10.1007/978-981-16-4963-9_8

180 8 Vehicular Networks and Autonomous Driving Cars

application in VEC [208]. As we know, the images captured from on-board cameras
usually contain sensitive information with individual privacy of the vehicular clients.
Using federated learning in VEC is beneficial in exploiting vehicular images for
DNN training while protecting their privacy. For example, the vehicular clients use
on-board cameras to capture images, which are classified and labeled by automatic
labeling technology [209]. After that, the vehicular clients are selected by the central
server to participate in federated learning in a supervised fashion and generate global
and local DNN model updates.

The major challenge of federated learning in VEC is two folds. On the one
hand, the diversity of image quality may cause severe loss of the accuracy of
model aggregation. In VEC, the captured images generally suffer from motion
blur, noise, and distortions [210], especially motion blur that is usually with
different levels for different vehicular clients. During local training, the local DNNs
are tuned according to the local images, and therefore, only work with the best
accuracy under the specific statistics of the motion blur. As a result, the overall
accuracy of the aggregated global DNN model will severely degrade if inappropriate
local DNN models are involved. On the other hand, the diversity of computation
capability has an impact on the efficiency of model aggregation. The difference
in computation capability leads to different latency of training local DNN models.
For synchronization, the central server performs model aggregation only after
receiving all the local DNN models. This means that the vehicular clients with low
computation capability hinder the efficiency of model aggregation [16].

To improve the performance of model updates, the authors in [211] design a
greedy algorithm to find out as many clients with high computation capability
and good wireless channel condition as possible. Under bandwidth and time
limitation, the authors in [212] design a heuristic algorithm to assign the clients
who are willing to upload their local data to a central server. The uploaded data
is constructed for approximately independent and identically distributed (i.i.d.),
which increases the classification accuracy. In these studies, it is not practical to
assume that the clients contribute their resources without the compensation of the
cost of consuming resources. Accordingly, the authors in [26, 213, 214] utilize
game theory to attract clients to share their resources. In [213], the authors use
the Stackelberg game to incentive clients to contribute their data resources for
improving the learning accuracy of the model. Similarly, the authors in [214] use
the Stackelberg game to incentive clients to contribute their computation resources
for reducing the latency of model training. In [26], the authors adopt the Stackelberg
game to study the interaction between participating clients and an edge server.
The interaction includes the strategies of participating clients and the edge server,
i.e., local relative accuracy and reward. The participating clients make optimal
local relative accuracy to maximize their benefits. Then the edge server makes
optimal reward to its benefit, which improves the global accuracy of model training.
But the above studies assume that the central server is aware of clients’ data
quality, computation capability, energy state, and willingness to participate, namely
information asymmetry. To overcome the information asymmetry, contract theory
is a powerful tool to model the incentive mechanism [215, 216]. The authors in

8.2 Vehicular Networks 181

[28] use a multi-weight subjective logic model to design a reputation-based worker
selection scheme for reliable federated learning. Then, they use contract theory to
stimulate high-reputation workers with high-quality data to participate in model
training, which reduces the latency of model training. In addition, a consortium
blockchain is used to manage the reputation in a decentralized manner. The above
existing work focus on mobile edge computing (MEC) [211, 217] and distributed
networks [28, 212–214]. In this chapter, we discuss federated learning in VEC,
which is important for generalizing AI applications in ICV, although it has not been
reported in other work. Table 8.1 gives the comparison of existing related work.

8.2 Vehicular Networks

As shown in Fig. 8.1, the general framework of federated learning in VEC consists
of the following components:

• Central Server: Central server plays a core role in the procedure of federated
learning. It communicates with vehicular clients to collect the updated local
DNN models and perform model aggregation. We take image classification as a
typical AI application in VEC. DNN-based image classification has been widely
used in autopilot and interactive navigation for ICV, as well as object tracking
and event detection in ITS [218, 219]. To obtain high accuracy and efficiency
of model aggregation, the central server should evaluate the image quality and
computation capability of vehicular clients, and select the “fine” models from
vehicular clients.

• Vehicular Client: Vehicular clients are equipped with a set of built-in sen-
sors, such as cameras, GPS, tachographs, lateral acceleration sensors, and also
accommodate storage space, computation and communication resources [219].
The built-in sensors are used to capture images that may be preprocessed for
data augment. After that, the preprocessed images are classified and labeled by
automatic labeling technology [209], and are cached in vehicular clients. After
receiving a request from a central server, vehicular clients separately train local
DNN models with their local images. Vehicular clients send updated the local
DNN models to the central server for model aggregation.

Based on the principle of federated learning, the original algorithm, i.e., federated
averaging (FedAvg), will randomly assign some vehicular clients to perform
tasks of training the local DNN models [18]. The selected vehicular clients have
diverse image quality and computation capability, which reduces the accuracy and
efficiency of model aggregation. To cope with the above dilemma, we propose a
selective model aggregation approach.

182 8 Vehicular Networks and Autonomous Driving Cars

Ta
bl
e
8.
1

A
co

m
pa

ri
so

n
ab

ou
tc

lie
nt

se
le

ct
io

n
fo

r
fe

de
ra

te
d

le
ar

ni
ng

in
ed

ge
co

m
pu

tin
g

an
d

di
st

ri
bu

te
d

ne
tw

or
ks

R
ef

.
N

et
w

or
k

ty
pe

C
lie

nt
he

te
ro

ge
ne

ity
In

fo
rm

at
io

n
fe

at
ur

e
A

pp
ro

ac
h

[2
11

]
M

ob
ile

ed
ge

co
m

pu
tin

g
C

om
pu

ta
tio

n
ca

pa
bi

lit
y

an
d

co
m

m
un

ic
at

io
n

co
nd

iti
on

In
fo

rm
at

io
n

sy
m

m
et

ry
G

re
ed

y
al

go
ri

th
m

fo
r

se
le

ct
in

g
cl

ie
nt

s
w

ith
hi

gh
co

m
pu

ta
tio

n
ca

pa
bi

lit
y

an
d

go
od

w
ir

el
es

s
ch

an
ne

l
co

nd
iti

on
to

im
pr

ov
e

m
od

el
pe

rf
or

m
an

ce

[2
12

]
D

is
tr

ib
ut

ed
ne

tw
or

k
C

om
pu

ta
tio

n
ca

pa
bi

lit
y

an
d

w
ill

in
gn

es
s

to
up

lo
ad

da
ta

In
fo

rm
at

io
n

sy
m

m
et

ry
H

eu
ri

st
ic

al
go

ri
th

m
fo

r
co

ns
tr

uc
tin

g
i.i

.d
.d

at
a

to
im

pr
ov

e
m

od
el

pe
rf

or
m

an
ce

[2
13

]
D

is
tr

ib
ut

ed
ne

tw
or

k
A

m
ou

nt
of

da
ta

In
fo

rm
at

io
n

sy
m

m
et

ry
St

ac
ke

lb
er

g
ga

m
e

fo
r

im
pr

ov
in

g
le

ar
ni

ng
ac

cu
ra

cy
of

m
od

el

[2
14

]
D

is
tr

ib
ut

ed
ne

tw
or

k
C

om
pu

ta
tio

n
ca

pa
bi

lit
y

In
fo

rm
at

io
n

sy
m

m
et

ry
St

ac
ke

lb
er

g
ga

m
e

fo
r

re
du

ci
ng

la
te

nc
y

of
m

od
el

tr
ai

ni
ng

[2
6]

M
ob

ile
ed

ge
co

m
pu

tin
g

C
om

pu
ta

tio
n

ca
pa

bi
lit

y
an

d
co

m
m

un
ic

at
io

n
co

nd
iti

on
In

fo
rm

at
io

n
sy

m
m

et
ry

St
ac

ke
lb

er
g

ga
m

e
fo

r
im

pr
ov

in
g

gl
ob

al
ac

cu
ra

cy
of

m
od

el
tr

ai
ni

ng

[2
8]

D
is

tr
ib

ut
ed

ne
tw

or
k

C
om

pu
ta

tio
n

ca
pa

bi
lit

y
In

fo
rm

at
io

n
as

ym
m

et
ry

C
on

tr
ac

tb
as

ed
in

ce
nt

iv
e

m
ec

ha
ni

sm
fo

r
re

du
ci

ng
la

te
nc

y
of

m
od

el
tr

ai
ni

ng

8.2 Vehicular Networks 183

Fig. 8.1 A general framework of federated learning in vehicular edge computing

Fig. 8.2 Selective model aggregation. Three vehicular clients are illustrated in the case, where
vehicular clients 1 and 2 are finally selected while vehicular client 3 is not, according to the contract
based procedure

8.2.1 Selective Model Aggregation

As shown in Fig. 8.2, the main procedure of selective model aggregation has the
following steps.

• Step 1: Contract based selection: The central server initializes a global DNN
model denoted as w(0). Based on the historical records of vehicular clients,
the central server evaluates their image quality and computation capability. The

184 8 Vehicular Networks and Autonomous Driving Cars

details about the utilized evaluation method are presented in Sect. 8.2.2. The
central server designs two-dimensional contract items for vehicular clients. Each
item includes the amount of images, the amount of computation resources and the
reward. All the contract items are broadcasted to vehicular clients periodically.
The contract items are signed if they are accepted by the corresponding type
of vehicular clients. For example, vehicular clients 1 and 2 are selected while
vehicular client 3 is not, in Fig. 8.2.

• Step 2: Global model download: After confirming the contract items, vehicular
clients 1 and 2 download the global DNN model w(0) from the central server.

• Step 3: Local model training: According to the predesigned contract items,
vehicular clients 1 and 2 train a local DNN model by using their local images and
computation resources. More specifically, vehicular client 1 uses the global DNN
model w(0) and a number of x1 local images to conduct the forward-backward
propagation algorithm to minimize the local loss function F1(w(0)). After E

rounds of local iterations, vehicular client 1 updates the local DNN model wE
1 (0).

Similarly, vehicular client 2 updates the local DNN model wE
2 (0).

• Step 4: Updated local model upload: To meet synchronization requirements, the
updated local DNN models wE

1 (0) and wE
2 (0) are sent to the central server in

time.
• Step 5: Global model aggregation: After receiving the updated local DNN

models wE
1 (0) and wE

2 (0), the central server aggregates them to update the global
DNN model, which generates the global DNN model w(1). Also, the central
server aggregates the local loss functions F1(wE

1 (0)) and F2(wE
2 (0)) as a new

global loss function F(w(1)) = x1F1(wE
1 (0))+x2F2(wE

2 (0))
x1+x2

[18].

Steps 1–5 form one global iteration (i.e., one communication round). In the k-
th global iteration, the change of the global loss function is denoted as ΔFk =
F(w(k)) − F(w(k − 1)), namely global loss decay [220].

8.2.2 System Model

We now consider a general scenario where a central server schedules a set of
vehicular clients (denoted as M). In the model aggregation, the heterogeneity of
resources among the vehicular clients affects the accuracy and efficiency of model
aggregation. In other words, the diverse image quality and computation capability
affect the accuracy and efficiency of model aggregation, respectively. Each vehicular
client knows exactly its image quality and computation capability, but the image
quality and computation capability are not available to the central server. This
means that there exists asymmetric information between the vehicular clients and
the central server. To overcome the above problem, the central server can leverage
contract theory to design an incentive mechanism to motivate the vehicular clients
to participate in the model aggregation. In contract theory, an employer makes
optimal contracts for the employees when the employer does not know the privacy

8.2 Vehicular Networks 185

information of each employee [215]. Here contract theory is used to model the
interactions between the central server and the vehicular clients under information
asymmetry. The central server acts as the employer and offers different contract
items to the vehicular clients. The vehicular clients act as the employees and select
the contract items matching their own types.

Next, we define the image quality and computation capability of vehicular
clients. Based on the image quality and computation capability, we define the
utilities of vehicular clients and the types of vehicular clients. Finally, we model
the utility of central server.

Image Quality

Due to the mobility of vehicles, the images captured by on-board cameras generally
suffer from motion blur, noise, and distortion [221, 222]. The noise and distortion
in different vehicular clients may follow identical statistical distribution, while the
motion blur level varies with instantaneous velocity of each vehicular client [210].
For depicting the motion blur level caused by instantaneous velocity, we utilize a
geometric model to illustrate the relationship between an object of interest and the
on-board camera. According to the model, the motion blur level can be implicitly
predicted by observing the instantaneous velocity of each vehicular client. By
Cortés-Osorio et al. [210], we have

v′ = σ l

H [s cos(δ) − (g + l) sin(δ)] , (8.1)

where v′ is the relative velocity between velocity v of vehicular client and velocity
vo of the object, σ is the perpendicular distance from the pinhole to the starting point
of an object, l is the length of the motion blur on the image plane, H is the exposure
time interval, s is the camera focal length, δ is the angle between the image plane and
the motion direction, and g is the starting position of the object on the image plane.
We denote the charge-coupled device (CCD) pixel size in the horizontal direction
as Q, and have

L = v′H [s cos(δ) − QG sin(δ)]

v′HQ sin(δ) + σQ
, (8.2)

where G and L are the starting position of the object and the level of motion blur in
the image (in pixels), respectively. As shown in Fig. 8.3, considering the case where
the image plane and the motion direction are parallel (δ = 0), and the object of
interest is static (vo = 0), Eq. (8.2) is transformed into

L = vsH

σQ
, (8.3)

186 8 Vehicular Networks and Autonomous Driving Cars

Fig. 8.3 Geometric model for image quality analysis

where sH
σQ

is a parameter of the on-board camera. The equation directly shows that
low instantaneous velocity means the low motion blur level.

Based on the motion blur level, we try to evaluate the image quality. By Pei et
al. [208], we consider that when the motion blur level of training images is more
similar to that of testing images, the higher the classifying accuracy is resulted. As
a consequence, we measure the image quality by function β that has the form as

β = β(L,Lt), (8.4)

where Lt is the given motion blur level of testing images. Function β has the
following characteristics. If L is approximated to Lt , β(L,Lt) is larger; and vice
versa. If |L1 − Lt | = |L2 − Lt | and L1 < L2, we have β(L1, Lt) ≥ β(L2, Lt). To
satisfy the above characteristics, β(L,Lt) is defined by

β(L,Lt) =
{
eq1(L−Lt), 0 ≤ L ≤ Lt ,

e−q2(L−Lt), Lt ≤ L,
(8.5)

where q1 and q2 are two predefined constants. In Fig. 8.4, we shows an example of
function β, where q1 = 0.5, q2 = 0.8 and Lt = 6.

In the k-th global iteration, based on the image quality, we express the valuation
function of vehicular client m as

rk,m = βk,mhk(pk,m), (8.6)

8.2 Vehicular Networks 187

Motion blur level L
0 2 4 6 8 10 12 14 16 18 20

Im
ag

e
qu

al
ity

 β

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L1

q(L1)

L2

q(L2)

e0.5(L-6)

e-0.8(L-6)

Lt=6

Fig. 8.4 Image quality with motion blur level

where βk,m is the image quality for vehicular client m, pk,m is the reward for
contributing images and computation resources to the central server, and hk(pk,m)

is a revenue function which is increased with the increasing of the reward pk,m. The
similar valuation function appears in [223].

Computation Capability

For vehicular client m, contributing images and computation resources incurs a cost
of resource consumption, which is denoted as

ck,m = αk,mxk,m + Ek,mek,mxk,mf
2
k,m, (8.7)

where αk,m is the unit cost for collecting each image, xk,m is the amount of images,
and fk,m is the amount of computation resources. Ek is regarded as a constant for all
the vehicular clients [28, 31]. According to [224], ek,m = ιk,mbk,mηk,mρk,m where
ιk,m is the unit cost for the computation resource consumption, bk,m is the size of
each image, ηk,m is the effective switched capacitance that depends on the chip
architecture, and ρk,m is the number of CPU cycles to process one bit. We consider
a special case that αk,m = μkek,m, where μk could be identical for all the vehicular
clients. The cost of vehicular client m is simplified into

ck,m = μkek,mxk,m + Ekek,mxk,mf
2
k,m. (8.8)

188 8 Vehicular Networks and Autonomous Driving Cars

With a lower ek,m, vehicular client m can be more suitable to provide computation
resources at a lower cost. Thus, ek,m is a key factor of the computation capability of
vehicular client m.

Utility Function and Type of Vehicular Client

The utility of vehicular client m is related to the difference between its valuation
and cost. Using (8.6) and (8.8), the utility of vehicular client m is shown by

uk,m = βk,mhk(pk,m) − μkek,mxk,m − Ekek,mxk,mf
2
k,m. (8.9)

To formulate the type of vehicular client m, we first transform (8.9) with ek,m as
follows

ûk,m = uk,m

ek,m
= βk,m

ek,m
hk(pk,m) − μkxk,m − Ekxk,mf

2
k,m. (8.10)

The authors in [223] has claimed that the transformation has no impact on contract
design. We will discuss the details later. The type of vehicular client m is represented
by θk,m = βk,m

ek,m
.

Definition 1 In the k-th global iteration, the types of vehicular clients are sorted in
an ascending order and classified into θk,1, . . . θk,N , which follows

θk,1 < . . . < θk,n < . . . < θk,N ,N ≤ M. (8.11)

The higher order of θ implies that they have greater availability to contribute
their images and computation resources in the local DNN model training. Each
vehicular client can easily determine its own type by measuring its image quality
and computation capability while the central server is totally not aware of their exact
types. But the central server can only obtain the number of each type vehicular
clients through observing their historical records. Let Mk,n represent the number
of vehicular clients belonging to type-n in the k-th global iteration. We have∑

n∈N Mk,n = Mk . The utility of type-n vehicular client is expressed by

ûk,n = θk,nhk(pk,n) − ck,n(xk,n, fk,n), (8.12)

where ck,n(xk,n, fk,n) = μkxk,n + Ekxk,nf
2
k,n.

Utility Function of Central Server

In a certain global iteration, the utility of the central server is calculated by

Uk = Rk − Ck, (8.13)

8.2 Vehicular Networks 189

where Ck is the cost function in terms of rewards, and Rk is the revenue function in
terms of images and computation resources. The revenue function Rk is shown by

Rk = ψkAk, (8.14)

where Ak indicates the learning efficiency and ψk is the unit revenue for the learning
efficiency. According to [220], the learning efficiency is modeled as

Ak = ΔFk

tk
, (8.15)

where ΔFk is the global loss decay, and tk is the end-to-end latency of federated
learning in one global iteration.

Global Loss Decay

According to [220], vehicular clients contribute more training images for federated
learning, which results in a much lower global loss attenuation. Thus, the relation-
ship between the global loss decay and the total amount of contributed training
images can be approximately evaluated as

ΔFk = ξ

√
Ek

∑

n∈N
Mk,nxk,n, (8.16)

where ξ is the coefficient determined by the specific structure of the DNN model.

End-to-end Latency

The central server starts for model aggregation only after receiving all the updated
local DNN models. In the k-th global iteration, the end-to-end latency of federated
learning for N types of vehicular clients is determined by

tk = max
n∈N tk,n, tk ≤ T max

k , (8.17)

where T max
k is the synchronization latency required by the central server and tk,n is

the end-to-end latency for type-n vehicular client in the global iteration. The end-
to-end latency for type-n vehicular client is calculated by

tk,n = tdk,n + tck,n + tuk,n, (8.18)

190 8 Vehicular Networks and Autonomous Driving Cars

where tdk,n is the latency of downloading the global DNN model, tck,n is the latency
of training the local DNN model, and tuk,n is the latency of uploading the updated
local DNN model.

• Global Model Download Latency: The latency of downloading the global DNN
model is

tdk,n = φd
k,n

rdk,n

, (8.19)

where φd
k,n is the size of the global DNN model and rdk,n is the downlink rate.

• Local Model Training Latency: Within Ek local iterations, the number of CPU
cycles for type-n vehicular client to perform xn training images, is denoted as
Ekbk,nxk,nρk,n. Thus, the latency of training the local DNN model is

tck,n = Ekbk,nxk,nρk,n

fk,n
. (8.20)

• Updated Local Model Upload Latency: The latency of uploading the updated
local DNN model is given by

tuk,n = φu
k,n

ruk,n
, (8.21)

where φu
k,n is the size of the updated local DNN model and ruk,n is the uplink rate.

For the central server, the cost Ck is formulated as

Ck =
∑

n∈N
Mk,npk,n. (8.22)

The entire utility function of the central server is

Uk = ψkξ
√
Ek

∑
n∈N Mk,nxk,n

maxn∈N tk,n(xk,n, fk,n)
−
∑

n∈N
Mk,npk,n. (8.23)

8.2.3 Contract Formulation

To encourage the vehicular clients to participate in the model aggregation, the
contract items need to satisfy the constraints individual rationality (IR) and incentive
compatibility (IC).

8.2 Vehicular Networks 191

Definition 2 (Individual Rationality (IR)) Vehicular clients should choose the
contract items ensuring a non-negative utility, i.e.,

ûn(xn, fn, pn) = θnh(pn) − cn(xn, fn) ≥ 0, n ∈ {1, 2, . . . , N} . (8.24)

The IR ensures that the reward of each vehicular client compensates the cost of
resource consumption in the model aggregation. If ûn ≤ 0, the vehicular client
will not participate in the model aggregation, i.e., choosing the contact item (xn =
0, fn = 0, pn = 0).

Definition 3 (Incentive Compatibility (IC)) Vehicular client m must choose the
contract item (xn, fn, pn) matching its own type, which can be mathematically
expressed as

θnh(pn) − cn(xn, fn) ≥ θnh(pj) − cj (xj , fj), n, j,∈ {1, 2, . . . , N} . (8.25)

The IC constraint ensures that each vehicular client automatically chooses the
contract items designed for its corresponding type.

For satisfying the constraints of IC and IR, the optimization problem of maxi-
mizing the utility of the central server is formulated as

max
(x,f,p)

U = ψξ
√
E
∑

n∈N Mnxn

maxn∈N tn(xn, fn)
−
∑

n∈N
Mnpn,

s.t. C1 : θnh(pn) − cn(xn, fn) ≥ 0, n ∈ {1, 2, . . . , N} ,
C2 : θnh(pn) − cn(xn, fn) ≥ θnh(pj) − cj (xj , fj), n, j ∈ {1, 2, . . . , N} ,
C3 : 0 ≤ pn, 0 ≤ xn, 0 < fn, n ∈ {1, 2, . . . , N} ,

(8.26)

where C1 and C2 are IR and IC, respectively, C3 ensures decision variables are
non-negative and p, x, f ∈ R

N are vectors.

8.2.4 Problem Relaxation and Transformation

Relaxing Constraint

It is hard to solve the optimization problem in (8.26) with non-convex objective
function and constraints. To make it better tractable, a new variable T is introduced
to denote the end-to-end latency, i.e., T = maxn∈N tn(xn, fn). The optimization

192 8 Vehicular Networks and Autonomous Driving Cars

problem in (8.26) is transformed into

max
(x,f,p,T)

U = ψξ
√
E
∑

n∈N Mnxn

T
−
∑

n∈N
Mnpn,

s.t. C1 : θnh(pn) − c(xn, fn) ≥ 0, n ∈ {1, 2, . . . , N} ,
C2 : θnh(pn) − c(xn, fn) ≥ θnh(pj) − c(xj , fj), n, j ∈ {1, 2, . . . , N} ,
C3 : 0 ≤ pn, 0 ≤ xn, 0 < fn, n ∈ {1, 2, . . . , N} ,
C4 : max

n∈N tn = T ,

C5 : 0 < T ≤ T max,

(8.27)

where C5 ensures the end-to-end latency can not exceed the synchronization latency
required by the central server.

Lemma 1 When ρ, b, td and tu are constants with the same value for all vehicular
clients, maxn∈N tn = T is relaxed into td + tu < T and fn = λ(T)xn, n ∈
{1, 2, . . . , N} where λ(T) = ρbE

(T−td−tu)
.

Proof maxn∈N tn = T is firstly relaxed into tn = T , n ∈ {1, 2, . . . , N}. tn = T is
rewritten as fn = xn

ρnbnE

(T−tdn −tun)
. Referring to [225, 226], ρn and bn are simplified into

constants ρ and b with the same value for all vehicular clients. Similar to [28, 31],
∀n ∈ N, tdn and tun are set constants with the same value for all vehicular clients.
As a result, fn = xn

ρnbnE

(T−tdn −tun)
is simplified into fn = xn

ρbE

(T−td−tu)
. We define

λ(T) = ρbE

(T−td−tu)
where T − td − tu > 0. fn = xn

ρbE

(T−td−tu)
is rewritten as

fn = λ(T)xn and td + tu < T .

To simplify the expression, λ(T) is expressed as λ. Replacing maxn∈N tn = T

in (8.27) with fn = λxn, n ∈ {1, 2, . . . , N} and td + tu < T , the optimization
problem (8.27) is rewritten as

max
(x,f,p,T)

U = ψξ
√
E
∑

n∈N Mnxn

T
−
∑

n∈N
Mnpn,

s.t. C1 : θnh(pn) − cn(fn, xn) ≥ 0, n ∈ {1, 2, . . . , N} ,
C2 : θnh(pn) − cn(fn, xn) ≥ θnh(pj) − cj (fj , xj), n, j ∈ {1, 2, . . . , N} ,
C3 : 0 ≤ xn, 0 < fn, 0 ≤ pn, n ∈ {1, 2, . . . , N} ,
C6 : fn = λxn, n ∈ {1, 2, . . . , N} ,
C7 : td + tu < T ≤ T max,

(8.28)

where C6 and C7 comes from C4 and C5 with Lemma 1.

8.2 Vehicular Networks 193

By replacing fn, n ∈ {1, 2, . . . , N} in (8.28) with fn = λxn, n ∈ {1, 2, . . . , N},
we can rewrite (8.28) as

max
(x,p,T)

U = ψξ
√
E
∑

n∈N Mnxn

T
−
∑

n∈N
Mnpn,

s.t. C1 : θnh(pn) − cn(λxn, xn) ≥ 0, n ∈ {1, 2, . . . , N} ,
C2 : θnh(pn) − cn(λxn, xn) ≥ θnh(pj) − cj (λxj , xj), n, j ∈ {1, 2, . . . , N} ,
C3 : 0 ≤ xn, 0 ≤ pn, n ∈ {1, 2, . . . , N} ,
C7 : td + tu < T ≤ T max.

(8.29)

Using Lemma 1, (x, f, p) is simplified into (x, λx, p), which implies that the
amount of computation resources relies the amount of images. In other words, for
type-n vehicular client, type θn = βn

en
is simplified into θn = βn

e
which only depends

the image quality.

Simplifying Complicated Constraint

Non-convex and couple constraints in (8.29), i.e., N IR constraints and N(N−1) IC
constraints, makes (8.29) hard to be solved directly. To reduce constraints of (8.29),
we introduce the following lemmas.

Lemma 2 Given T , for any feasible contact (xn, λxn, pn), pn ≥ pj if and only if
xn ≥ xj ,∀n, j ∈ {1, . . . , N}.
Proof We bring the fn = λxn into the cn(xn, fn) given by

cn(xn, λxn) = μxn + Eλ2x3
n. (8.30)

It is obvious that cn(xn, λxn) is a convex function in terms of xn. To simplify the
expression, cn(xn, λxn) is expressed as cn. First, we prove that if xn > xj , then
pn > pj . According to constraint (8.25), we have the following inequality:

cn − cj < θn(h(pn) − h(pj)), n, j ∈ N. (8.31)

Since xn > xj , we can obtain cn − cj > 0. Then, h(pn) − h(pj) > 0 is satisfied.
Due to the increasing valuation function of h(·), we have pi > pj . Furthermore,
we prove that if pn > pj , then θn > θj . Referring to constraint (8.25), we have the
following inequality:

θj (h(pn) − h(pj)) < cn − cj , n, j ∈ N. (8.32)

194 8 Vehicular Networks and Autonomous Driving Cars

Since pi > pj and h(·) is a monotonically increasing valuation function in terms
of p, we have θj (h(pn) − h(pj)) > 0. Thus, we can obtain cn − cj , i.e., xn > xj .
Finally, we prove that xn = xj if and only if pn = pj , ∀n, j ∈ {1, . . . , N}. We use
the similar procedure to prove xn = xj if and only if pn = pj .

From Lemma 2, vehicular clients contribute more images resulting in more
computation resources, the vehicular client will receive more reward. If two
vehicular clients contribute the same amount of images, they will receive the same
reward. Using Lemma 2, we can deduce Lemma 3.

Lemma 3 (Monotonicity) Given T , for any feasible contact (xn, λxn, pn), pn ≥
pj if and only if θn ≥ θj ,∀n, j ∈ {1, . . . , N}.
Proof Following [216], we prove the sufficiency at first: if θn ≥ θj , then pn ≥ pj .
Based on the IC constraints of type θn and type θj vehicular clients, we have

θnh(pn) − cn ≥ θnh(pj) − cj , (8.33)

and

θjhj − cj ≥ θjh(pn) − c(xn). (8.34)

Adding (8.33) and (8.34), and by rearranging, we can get (θn−θj)(h(pn)−h(pj)) ≥
0. As θn ≥ θj , we must have h(pn) − h(pj) ≥ 0. Since pn ≥ pj and h(·) is a
monotonically increasing valuation function in terms of p, we have pn ≥ pj . Next,
we prove the necessity: if pn ≥ pj , then θn ≥ θj . Similar to the above process, we
use the IC constraint to obtain the same result (θn − θj)(h(pn) − h(pj)) ≥ 0. The
reason is similar to the sufficiency.

Lemma 3 indicates that a higher type of vehicular client should get more reward,
which is the monotonicity property of the contract design.

Based on the above analysis, the IC constraints are used to reduce the IR
constraints. Thus, we have the following lemma.

Lemma 4 Given T , with the IC condition, the IR constraints can be reduced as

θ1h(p1) − c1(λx1, x1) ≥ 0. (8.35)

Proof Given that θ1 < θ2 < . . . < θN , we utilize IC constraints to have

θnh(pn) − cn ≥ θnh(p1) − c1 ≥ θ1h(p1) − c1 ≥ 0. (8.36)

(8.36) indicates that the first type of vehicular client satisfies the IR constraint, other
types of vehicular clients will satisfy the other IR constraints automatically. Thus,
we need to keep the IR constraint for the first type and the other IR constraints can
be reduced.

8.2 Vehicular Networks 195

Based on the IC constaints, we also have the following lemma.

Lemma 5 Given T , by utilizing the monotonicity in Lemma 3, the IC condition can
be transformed into the Local Downward Incentive Compatibility (LDIC) given by

θnh(pn) − cn(λxn, xn) ≥ θnh(pn−1) − cn−1(λxn−1, xn−1), n ∈ {2, . . . , N} ,
(8.37)

and the local upward incentive compatibility (LUIC) given by

θnh(pn) − cn(λxn, xn) ≥ θnh(pn+1) − cn+1(λxn+1, xn+1), n ∈ {1, . . . , N − 1} .
(8.38)

Proof The IC constraints between types n and j, n, j ∈ {2, . . . , N} are defined as
downward incentive constraints (DICs) represented as

θnh(pn) − cn ≥ θnh(pj) − cj , ∀n, j ∈ {2, . . . , N} , n > j. (8.39)

The IC constraints between type n and type j, n, j ∈ {2, . . . , N} are defined as
upward incentive constraints (UICs) represented as

θnh(pn) − cn ≥ θnh(pj) − cj , ∀n, j ∈ {2, . . . , N} , n < j. (8.40)

Specifically, two adjacent types in UICs are defined as LUICs and two adjacent
types in DICs are defined as LDICs. The LUICs and LDICs can be represented as,
respectively,

θnh(pn) − cn ≥ θnh(pn+1) − cn+1, ∀n ∈ {1, . . . , N − 1} , (8.41)

and

θnh(pn) − cn ≥ θnh(pn−1) − cn−1, ∀n ∈ {2, . . . , N} . (8.42)

With the following proof, we will first reduce the DIC to the LDIC. Adopting the
LDIC with three continuous types of the vehicular clients, θn−1 ≤ θn ≤ θn+1, n ∈
{2, . . . , N − 1}, we have the following inequalities

θn+1h(pn+1) − cn+1 ≥ θn+1h(pn) − cn, (8.43)

θnh(pn) − cn ≥ θnh(pn−1) − cn−1. (8.44)

According to the monotonicity, i.e., pn > pj if and only if θn > θj , we have

θn+1(h(pn) − h(pn−1)) ≥ θn(h(pn) − h(pn−1)). (8.45)

196 8 Vehicular Networks and Autonomous Driving Cars

Combining (8.44) and (8.45), we have

θn+1h(pn) − cn ≥ θn+1h(pn−1) − cn−1. (8.46)

Combining (8.43) and (8.46), we have

θn+1h(pn+1) − cn+1 ≥ θn+1h(pn−1) − cn−1. (8.47)

Using (8.47), we can prove that all the DICs can hold

θn+1h(pn+1) − cn+1 ≥ θn+1h(pn−1) − cn−1 ≥ . . . ≥ θn+1h(p1) − c1. (8.48)

Hence, we use the LDICs to hold and reduce all the DICs. Using similar process,
we can also prove that all the UICs can automatically hold, when the LUICs are
satisfied.

Using Lemma 2 to Lemma 5, we reduce the complicated IR and IC constraints.
The optimization problem in (8.29) can be further transformed as follows

max
(x,p,T)

U = ψξ
√
E
∑

n∈N Mnxn

T
−
∑

n∈N
Mnpn,

s.t. C1 : θnh(pn) − cn(λxn, xn) ≥ 0, n ∈ {1, 2, . . . , N} ,
C3 : 0 ≤ xn, 0 ≤ pn, n ∈ {1, 2, . . . , N} ,
C7 : td + tu < T ≤ T max,

C8 : θnh(pn) − cn(λxn, xn) ≥
θnh(pn−1) − cn−1(λxk,n−1, xk,n−1), n ∈ {2, . . . , N} ,
C9 : θnh(pn) − cn(λxn, xn) ≥
θnh(pn+1) − cn+1(λxn+1, xn+1), n ∈ {1, 2, . . . , N − 1} ,
C10 : p1 ≤ p2 ≤ · · · ≤ pN,

(8.49)

where C8 and C9 are the LDIC and LUIC, respectively, and C10 is the monotonicity
property of the contract design. Using the LDIC and the LUIC in (8.49), we deduce
Lemma 6.

8.2 Vehicular Networks 197

Lemma 6 Given T , since the objective function of (8.49) is an increasing function
in terms of xn as well as a decreasing function of pn, ∀n ∈ {1, . . . , N}, the
optimization problem in (8.49) can be further simplified as

max
(x,p,T)

U = ψξ
√
E
∑

n∈N Mnxn

T
−
∑

n∈N
Mnpn,

s.t. C3 : 0 ≤ xn, 0 ≤ pn, n ∈ {1, 2, . . . , N} ,
C7 : td + tu < T ≤ T max,

C10 : p1 ≤ p2 ≤ · · · ≤ pN,

C11 : θ1h(p1) − c1(λx1, x1) = 0,

C12 : θnh(pn) − cn(λxn, xn) = θnh(pn−1) − cn−1(λxn−1, xn−1), n ∈ {2, . . . , N} ,
(8.50)

where C11 and C12 come from C9 and C10.

Proof We will first prove that the reduced IR constraint θ1h(p1) − c1 ≥ 0 can be
reduced to θ1h(p1) − c1 = 0. For the reduced IR constraint, the data requester will
try its best to decrease p1 to improve the optimization objective function U until
θ1h(p1) − c1 = 0.

Secondly, we will prove that the LDIC can be transformed as θnh(pn) − cn =
θnh(pn−1) − cn−1, which is combined with monotonicity to ensure the LUIC hold.
Notice that the LDIC θnh(pn) − cn ≥ θnh(pn−1) − cn−1, ∀n ∈ {2, . . . , N} will
still hold if both pn and pn−1 are reduced to the same amount. To maximize the
optimization objective function, the data requester will decrease pj as possible as it
can until θnh(pn) − cn = θnh(pn−1) − cn−1. Notice that this process doesn’t have
an effect on other types LDIC. So the LDIC can be simplified as θnh(pn) − cn =
θnh(pn−1) − cn−1,∀n ∈ {2, . . . , N}.

Thirdly, we will prove that if θnh(pn)−cn = θnh(pn−1)−cn−1,∀n ∈ {2, . . . , N}
and the monotonicity hold, the LUIC holds. The constraint θnh(pn) − cn =
θnh(pn−1) − cn−1,∀n ∈ {2, . . . , N} can be transformed as

θnh(pn) − θnh(pn−1) = cn − cn−1. (8.51)

Due to the monotonicity, i.e., if θn ≥ θn−1, then h(pn) ≥ h(pn−1), we further have

θnh(pn) − θnh(pn−1) ≥ θn−1h(pn) − θn−1h(pn−1). (8.52)

Combine (8.51) and (8.52), we have

θnh(pn) − θnh(pn−1) = cn − cn−1 ≥ θn−1h(pn) − θn−1h(pn−1). (8.53)

198 8 Vehicular Networks and Autonomous Driving Cars

Equation (8.53) equally is transformed as

θn−1h(pn−1) − cn−1 ≥ θn−1h(pn) − cn, (8.54)

which is exactly the LUIC condition. So we remove the LUIC from the constraints
in (8.50).

8.2.5 Solution to Optimal Contracts

To quantity the analysis, we consider a case h(p) = p. The similar case appears
in [225]. We use the method of iterating C11 and C12 constraints to obtain pn

expressed as

pn = c(x1, λx1)

θ1
+
∑n

a=1
Δa, (8.55)

where Δa = c(xa,λxa)
θa

− c(xa−1,λxa−1)

θa
and Δ1 = 0. By replacing pn in (8.50)

with (8.55), we can rewrite (8.50) as

max
(x,T)

U = ψξ
√
E
∑

n∈N Mnxn

T
−
∑

n∈N
Mndncn,

s.t. C3 : 0 ≤ xn, n ∈ {1, 2, . . . , N} ,
C7 : td + tu < T ≤ T max,

(8.56)

where dn = Mn

θn
+
(

1
θn

− 1
θn+1

)∑N
j=n+1 Mj with n < N , dn = Mn

θn
with n = N ,

and cn = μxn + Eλ2x3
n .

Given T , it can be easily verified that (8.56) is a concave optimization problem.
Based on the above analysis, we design Algorithm 12 as follows:

• Step 1: Initializing parameters such as M,N,E, b, μ, setting i = 1, T = tu +
td + τ where τ is a step size, and U# = 0.

• Step 2: By solving the optimization problem in (8.56) with convex optimization,
we get Ui and xi .

• Step 3: If Ui−U#

U# < 10−5, the algorithm goes to step 5; If U# < Ui , U# will be
replaced by Ui . Continuously, i = i + 1 and T = T + τ are executed.

• Step 4: If T < T max , the algorithm goes to step 2. Otherwise, the algorithm
returns U#, x# and T #.

• Step 5: Based on x# and T #, we compute the optimal price p# and amount
of images x# using (8.55) and amount of computation resources f = λ(T)x,
respectively. Finally, the algorithm outputs p#, x#, f# and T #.

8.2 Vehicular Networks 199

Algorithm 12 Contract optimization based Greedy method

1: Set i = 1, T = td + tu + τ and U# = 0;
2: while T ≤ T max do
3: Get Ui with solving optimization problem (8.56) with standard convex optimization tools;

4: if Ui−U#

U# < 10−5 then
5: Break for
6: end if
7: if U# < Ui then
8: U# = Ui ,
9: end if

10: i = i + 1;
11: T = T + τ ;
12: end while
13: Return x# and T #

14: Assign the optimal price p# with (8.55)
15: Compute the optimal amount of images x# with f# = λ(T #)x#

16: Return p#, x#, f#, T #

Considering the implementation of Algorithm 1, we could evaluate its compu-
tational complexity, which has the form of Cx ∝ N3(T max − td − tu)/τ and thus,
Cx ∼ O(N3). The result indicates that our approach will consume the computing
resource at a moderate level for vehicular applications.

8.2.6 Numerical Results

Simulation Settings

In the simulation, the velocity of vehicular clients is set uniformly distributed in[
vmin, vmax

]
, where vmin and vmax are lower and upper bounds of the velocity,

respectively [227]. But the lower and upper bounds are different in urban, suburban,
and highway [228]. We consider a suburban case where the velocity of vehicular
clients is generated in [0,15] m/s and there are M = 10 vehicular clients with
N = 10 types. By [28, 31, 210, 229], other parameters are listed in Table 8.2.
We conduct the simulation in MATLAB to get the optimal contract items. The
simulation experiment has two parts.

For the first part, under asymmetric information (CA), we compare the proposed
selective model aggregation approach with the original FedAvg approach in terms
of accuracy and efficiency of model aggregation. In the FedAvg approach, each
vehicular client is supposed to have the same amount of images and randomly given
computation capability. The simulation involves the public MNIST dataset [230],
and the BelgiumTSC (Belgium Traffic Sign for Classification) vehicular dataset
[231]. The MNIST dataset consists of 55,000 training images and 10,000 testing
images of 28×28 pixels. The BelgiumTSC dataset consists of 4591 training images
and 2534 testing images. Because the images in the BelgiumTSC dataset are not all

200 8 Vehicular Networks and Autonomous Driving Cars

Table 8.2 Parameter setting in the simulation

Parameter Setting

CCD pixel size Q = 0.011 mm

Camera focal length s = 10 mm

Perpendicular distance σ = 5 m

Exposure time interval H = 1
200 s

Effective switched capacitance η = 10−28

Number of CPU cycles executing one bit ρ = 30 cycles/bit

Unit cost for consuming computation resources ι = 1

Coefficient determined by specific structure of ξ = 1

DNN models

Download and upload data rate rd = ru = 6 MB/s

Unit revenue for the learning efficiency ψ = 0.6, 0.8, 1.0

Linear factor for α and e μ = 5.314 × 1018

The number of global iteration K = 1000

The number of local iteration E = 3, 4, 5

Parameters of the image quality q1 = 0.5, q2 = 0.8, and Lt = 3

the same size, we just resize the images to a fixed size, i.e., 28 × 28 pixels. The
comparison is divided into two cases.

• Blurred Training Image and Unblurred Testing Image (BU): We randomly
divide the training images into 10 groups and each group has the same amount
of images. We synthesize motion-blurred images by Sun et al. [232]. The
motion blur level is divided into 10 levels, i.e., L = 1, 2, . . . , 10. Each group
has a motion blur level. Blurred training images and unblurred testing images
constitute the training and testing datasets, respectively.

• Blurred Training Image and Blurred Testing Image (BB): The training dataset
is produced similar to that in BU. The testing images are blurred with level L = 3
to constitute the testing dataset.

According to the optimal contract items designed for their own types, each vehicular
client picks out a part of training images to train the local DNN model with a
convolutional neural network (CNN) in PYTHON. For the MNIST dataset, the local
DNN model is executed with iteration round E = 5 and full gradient descent.
The CNN consists of two convolutional layers followed by two fully connected
layers and then another 10 units activated by soft-max, with totally about 1,662,752
parameters. According to [220], the size of the local DNN model φ is about 6.5 MB.
For the BelgiumTSC dataset, the local DNN model is executed with iteration round
E = 5 and full gradient descent. The CNN consists of two convolutional layers
followed by three fully connected layers, with totally about 274,730 parameters.
The size of the local DNN model is about 1 MB.

For the second part, we firstly evaluate the optimal contract items in the CA
approach. Then, we compare the utilities of the central server and the vehicular

8.2 Vehicular Networks 201

Number of global iteration
0 100 200 300 400 500 600 700 800 900 1000

A
cc
ur

ac
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BB with CA
BB with FedAvg
BU with CA
BU with FedAvg

Fig. 8.5 Accuracy of model aggregation under the MNIST dataset

clients with existing baseline approaches. The first one is contract based approach
under symmetric information (CS). The second one is Stackeberg game based
approach under asymmetric information (SG) [214]. The third one is the linear
pricing approach [215]. In the SG and the linear pricing approaches, we consider
that the unit price for both images and computation resources are the same. Finally,
we analyze the performance of four approaches under different system settings.

As shown in Fig. 8.5, using the MNIST dataset, we compare the accuracy of
model aggregation for the CA and FedAvg approaches under BB and BU. As
the number of global iteration increases, the accuracy of model aggregation is
increasing for the BB and BU cases. The accuracy of model aggregation in the
BB case is higher than that in the BU case. In the BB case, because the level of
training image quality is closer to the level of testing image quality, which causes a
high accuracy in classifying the images. In the BU case, because the gap between
the level of training image quality and the level of testing image quality is large,
which leads to a low accuracy in classifying the images. The similar results appear
in [208]. In the BB case, the accuracy of model aggregation with the CA approach is
2.42% higher than the accuracy of model aggregation with the FedAvg approach. In
the BU case, the accuracy of model aggregation adopting the CA approach is 6.28%
higher than the accuracy of model aggregation adopting the FedAvg approach.

As shown in Fig. 8.6, using the BelgiumTSC dataset, we also compare the
accuracy of model aggregation for the CA and FedAvg approaches under BB and
BU. The accuracy of model aggregation in the BB case is also higher than that in the
BU case. In the BB case, the accuracy of model aggregation with the CA approach
is 1.23% higher than that of the FedAvg approach. In the BU case, the accuracy of

202 8 Vehicular Networks and Autonomous Driving Cars

Number of global iteration
0 20 40 60 80 100 120 140 160 180 200

A
cc
ur

ac
y

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

BB with CA
BB with FedAvg
BU with CA
BU with FedAvg

Fig. 8.6 Accuracy of model aggregation under the BelgiumTSC dataset

Number of global iteration
1 2 3 4 5 6 7 8 9 10

D
el

ay

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

3.6

CA
FedAvg

Fig. 8.7 Efficiency of model aggregation under CA and FedAvg

model aggregation adopting the CA approach is 0.2% higher than that of the FedAvg
approach.

For the CA and FedAvg approaches in the MNIST dataset, Fig. 8.7 shows the
efficiency of model aggregation for global iteration number k = 1, 2, . . . , 10.

8.2 Vehicular Networks 203

Types of vehicular client
1 2 3 4 5 6 7 8 9 10

U
til

ity
 o

f v
eh

ic
ul

ar
 c

lie
nt

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Type1
Type4
Type7
Type10

Fig. 8.8 Utilities of vehicular clients for types of vehicular clients

Since the FedAvg approach is not adapted to the random computation capability
in the vehicular clients, the training latency changes in a wide range, which causes
inefficient model aggregation. In the CA approach, the synchronization of training
latency is beneficial for the model aggregation. The performance of efficiency of
the model aggregation in the BelgiumTSC dataset has similar results to that in the
MNIST.

The IR and IC constraints are verified in Fig. 8.8. It shows the utilities of type-1,
type-4, type-7 and type-10 vehicular clients. The central server offers all the contract
items (pn, xn, fn), n ∈ 1, 2, . . . , N for each vehicular client. Figure 8.8 shows that
the utility of each vehicular client reaches the highest when choosing the contract
item designed for its own type, which satisfies the IC constraint. For instance, we
consider the utility of type-7 vehicular client. If a type-7 vehicular client chooses the
contract item (p7, x7, f7), its utility could be maximized. Furthermore, when each
vehicular client selects the contract item fitting its corresponding type, the utility
of each vehicular client is nonnegative, which indicates that the IR constraint is
satisfied. Therefore, after choosing the best contract item, the types of the vehicular
clients will be revealed to the central server. In other words, the central server will
know about the image quality and computation capability of the vehicular clients.

Figure 8.9 shows that the contract items under different types of the vehicular
clients. The contract item includes the amount of images, the amount of computation
resources and the reward. To show contract items in the same figure, the amount
of computation resources and the reward are reduced by 107 times and 102 times,
respectively. The relationship among contract items remains unchanged. As the type
becomes higher, each type of vehicular client is eager to share more images and

204 8 Vehicular Networks and Autonomous Driving Cars

Types of vehicular client
1 2 3 4 5 6 7 8 9 10

R
ew

ar
d

am
ou

nt

0

500

1000

1500

2000

2500

Reward
Amount of images
Amount of computation resources

Fig. 8.9 Contract items with types of vehicular clients

Latency (s)
3 4 5 6 7 8 9 10 11 12

U
til

ity
 o

f c
en

tr
al

 s
er
ve

r

0

10

20

30

40

50

60

70

80 CS
CA
SG
Linear

Fig. 8.10 Utility of central server under different approaches in terms of latency

computation resources for higher reward. This means Lemma 2 and Lemma 3 are
both satisfied.

Figure 8.10 shows the effect of latency T on the utility of the central server under
four cases, i.e., CS, CA, SG, and linear pricing approaches. We can see that as the

8.3 Autonomous Driving Cars 205

latency grows, the utility of the central server first increases to the maximum value
and then decreases. With a given latency, firstly, the CS approach achieves the best
performance among four approaches and serves as upper bound. This is because the
central server is fully aware of the types of the vehicular clients and tries its best to
extract the revenue from the vehicular clients until the utilities of all the vehicular
clients are zero. Secondly, two contract based approaches (CS and CA) have more
utility at the central server than the SG approach. The contract based approaches try
to extract the revenue from the vehicular clients as much as possible while satisfying
both the IR and IC constraints, which will leave a small of portion of revenue
for the vehicular clients. In contrast, the SG approach aims at maximizing both
the utilities of the central server and the vehicular clients, which can reserve more
revenue for the vehicular clients. Finally, the utility of the central server achieved
by the SG approach is better than the linear pricing approach. In other words, the
linear pricing approach achieves the worst performance among four approaches and
serves as lower bound. This is because the linear pricing approach would not allow
the central server to adapt to the change of the amount of images and computation
resources, and thus make the performance become worse.

8.3 Autonomous Driving Cars

Autonomous driving cars will enable various smart features by using emerging
technologies, such as edge computing, network function virtualization, cloud
computing, advanced artificial intelligence schemes, 5G and beyond. The prominent
features offered by autonomous driving cars are traffic sign detection, lane departure
warning, collision avoidance, and instant car accident reporting, among others [233].
Additionally, autonomous driving cars can offer infotainment services based on
intelligent caching [10]. One can use centralized machine learning for making
autonomous driving car applications smart. However, it will suffer from the issue of
data privacy leakage. Furthermore, autonomous cars generate 4000 gigaoctet of data
every day [234]. Transferring the whole data to the centralized server for training
a model based on centralized machine learning is difficult due to communication
resource constraints. To address these challenges, we can use federated learning
that enables on-device learning without the need to transfer the end-devices data
to the centralized server. Instead, only learning model updates are transferred to
the centralized aggregation server. It must be noted that federated learning itself
has some privacy concerns and does not completely guarantee privacy preservation.
Although federated learning can enable on-device machine learning for autonomous
cars, it faces few challenges.

• Traditional federated learning is based on a centralized server for global aggrega-
tion and thus suffers from a robustness issue. The centralized aggregation stops
working either due to a failure or security attack.

206 8 Vehicular Networks and Autonomous Driving Cars

• Autonomous cars have high mobility which induces challenges for enabling
frequent seamless connectivity between the end-devices and roadside units for
federated learning.

• Federated learning is based on continuous interaction between the end-devices
and aggregation server that will use a significant amount of communication
resources. Therefore, we must efficiently perform resource management for
federated learning.

To address the above challenges, one can use dispersed federated learning. In this
section, we formulate an optimization problem to minimize the packet error rate,
transmission latency, and transmission energy for dispersed federated learning by
jointly optimizing resource allocation and association. The main contributions of
this section are as follows.

• We formulate an optimization problem to minimize the packet error rate,
transmission latency, and transmission energy for dispersed federated learning-
enabled autonomous cars.

• Due to the NP-hard nature of the formulated problem, we decompose the main
problem into two sub-problems, such as resource allocation sub-problem and
association sub-problem. For the resource allocation sub-problem, we use a one-
sided one-to-one matching game, whereas, for an association, we use a heuristic
algorithm.

• Finally, we provide simulation results to show the effectiveness of the proposed
solution.

We proposed a dispersed federated learning framework for autonomous cars in
our previous work, as shown in Fig. 8.11 [235]. An optimization problem was
formulated to jointly minimize the transmission latency and packet error rate by
optimizing transmit power, association, and resource allocation. Block Successive
Upper-Bound Minimization (BSUM)-a based solution was proposed in [235].
Although the BSUM-based solution of [235] can offer an attractive solution, it
suffers from rounding errors for resource allocation and association.

SubGlobal
Model

Updates

al

s
1

SubGlobal
Model

Updates

al

s
1

2

Transfer of Sub-
Global Model

Updates
3

Global Model
Computation

l 4

5

SubGlobal
Model

Updates

bal

s
1

SubGlobal
Model

Updates

bal

s
1

2

2

Global Model
Computation

l 4

5

5
2

5

Fig. 8.11 Dispersed federated learning enabled autonomous driving cars

8.3 Autonomous Driving Cars 207

8.3.1 System Model and Problem Formulation

We consider a system model that consists of a set M of M edge computing server-
based RSUs and a set N of N autonomous driving cars. Moreover, the set of Y

cellular users served by BS in the same area as that of the RSUs and autonomous
cars is denoted by Y . In our system model, we consider set R of R orthogonal
resource blocks that are already occupied by cellular users, for autonomous driving
cars. A set Un of Un users at the autonomous car n with local datasets want to train
global federated learning model.

Federated Learning Model

In federated learning, a set of devices in autonomous cars first computes their local
models and send them to the aggregation server. After global aggregation, the global
model is sent back to the end-devices. Every device un within autonomous car n has
a local dataset Dn

u = [dn
u1
, dn

u2
, . . . , dn

uknu
], where knu represents the total number of

data samples in the local dataset of device un. The size of input sample dn
uk

and
its output Θn

uk
depend on the type of federated learning task. The output Θn

uk
is

determined by weights wn
u and the input dn

uk
. All the users are assumed to have

different dataset sizes and distribution to reflect practical scenarios [15]. The goal
of the federated learning is to minimize the loss function f , i.e.,

min
wn
1 ,wn

2 ,...,wn
Un

1

K

N∑

n=1

Un∑

u=1

knu∑

k=1

f (wn
u, d

n
uk
,Θn

uk
), (8.57a)

s.t.w1
u = w2

u = . . . = wN
u = z,∀u ∈ Un,∀n ∈ N , (8.57b)

where K and z denote the size of training data for all devices of all autonomous
driving cars and global federated learning model, respectively. The loss function f

is dependent on the nature of the application. For instance, for prediction it accounts
for prediction error. For linear regression problem, the loss function is given by
f (wn

u, d
n
uk
,Θn

uk
) = 1

2 (d
n
uk

wn
u − Θn

uk
)2,∀n ∈ N . Constraint (9.1b) ensures that all

the devices must have the same federated learning model. On the other hand, the
global model update is given by:

z =
∑N

n=1
∑Un

u=1 k
n
uw

n
u

K
. (8.58)

Federated learning involves iterative sharing of learning model updates between
the end-devices and the aggregation server over a wireless channel. The wireless
channel uncertainties will degrade the federated learning performance. Similar to
[29], we use the packet error rate to study the degradation in federated learning
performance due to wireless channel uncertainties. The packet error rate for device

208 8 Vehicular Networks and Autonomous Driving Cars

un of autonomous car n over resource block xn,m and waterfall threshold ϑ is given
by Xi et al. [84]:

qr
u,n(A,X,P) = an,mxn,m

(
1 − exp

(−ϑ(
∑

y∈Yr
hryP

r
y + σ 2)

pnhrn,m

))
, (8.59)

where an,m and xn,m denote the autonomous car-RSU association and resource
allocation, respectively. pn denotes transmit power of device n. We use binary
variable xn,m for showing resource block allocation to autonomous cars:

xn,m =
{

1, If car n is assigned resource block r,

0, otherwise.
(8.60)

The binary variable an,m denotes the association of a car n with the RSU m:

an,m =
{

1, If car n is associated with RSU m,

0, otherwise.
(8.61)

The maximum number of cars associated with a RSU m must not exceed a
maximum limit Δm, i.e.,

N∑

n=1

an,m ≤ Δm,∀m ∈ M, (8.62)

Depending on the packet error rate, one might not consider a certain packet carrying
local learning model in global aggregation due to the high packet error rate. A binary
variable Πn

u is used to indicate whether the received local model from device un of
the autonomous car n contains errors or not (Πn

u = 1 if it does not contain errors
and 0 otherwise). To capture the effect of packet error rate on federated learning
model, (8.58) can be re-written as:

z =
∑N

n=1
∑Un

u=1 k
u
nwn

uΠ
n
u∑N

n=1
∑Un

u=1 k
n
uΠ

n
u

. (8.63)

Now, define the cost function qn that accounts for the effect of a packet error
rate of autonomous car n on the performance of dispersed federated learning for
autonomous cars [29]:

qn(A,X) =
Ui∑

u=1

qu,n(A,X). (8.64)

8.3 Autonomous Driving Cars 209

Communication Model

We consider orthogonal frequency division multiple access (OFDMA) in our model.
Autonomous cars will use resource blocks already in use by other cellular users,
and thus there will be inference between the cellular users and autonomous cars.
However, there will be no interference among autonomous cars because they use
different orthogonal resource blocks. A single resource block can be assigned to a
maximum of one user:

N∑

n=1

xn,m ≤ 1,∀r ∈ R. (8.65)

Every autonomous car must not get more than one resource block:

R∑

r=1

xn,m ≤ 1,∀n ∈ N . (8.66)

All the autonomous driving cars must be assigned resource blocks less than or
equal to the total available resource blocks.

R∑

r=1

∑

n=1

Nxn,m ≤ R. (8.67)

For the up-link channel gain hrn,m between the autonomous driving cars n ∈ N
and RSU m for resource block r , the signal-to-interference-plus-noise ratio (SINR)
is given by:

Γ r
n,m = pnh

r
n,m∑

y∈Yr
hryP

r
y + σ 2 , (8.68)

where pn and σ 2 transmit power and noise, respectively. The term
∑

y∈Yi
hryP

r
y

denote the interference due to cellular users on resource block r . The up-link
achievable data rate for the autonomous car n associated with RSU m for a resource
block r is given by:

ηn = Ωr
n,m log2(1 + Γ r

n,m), (8.69)

where Ωr
n,m represents the bandwidth allocated to the autonomous car n associated

with RSU m for a resource block r . The transmission delay occurred in sending the
sub-global model updates having size vn,m of the autonomous car n to RSU m is
given by:

T trans
n (A,X) = vn,mxn,man,m

ηn
. (8.70)

210 8 Vehicular Networks and Autonomous Driving Cars

The energy consumption in sending the sub-global model updates from autonomous
car n to the RSU m is given by:

Etrans
n (A,X) = xn,man,mvn,mpn

ηn
. (8.71)

Problem Formulation

We formulate a problem to jointly minimize the dispersed federated learning cost
that considers three parameters, such as (a) transmission delay, (b) effect of packet
error rate, and (c) transmission energy. The cost function Cp that counts for the
effect of packet loss rate on the dispersed federated learning model accuracy is given
by:

Cp(A,X) =
N∑

n=1

qn(A,X). (8.72)

The total transmission delay required for one global dispersed federated learning
iteration is given by:

Cd(A,X) =
N∑

n=1

T trans
n (A,X). (8.73)

The total energy consumed during one global dispersed federated learning iteration
is given by:

Ce(A,X) =
N∑

n=1

Etrans
n (A,X). (8.74)

The total cost for dispersed federated learning is given by:

CDFL(A,X) = αCp(A,X) + βCd(A,X) + γCe(A,X), (8.75)

where α, β, and γ are the constants and their sum is α + β + γ = 1. We formulate
our problem joint autonomous driving cars association and resource allocation
(P1) problem to minimize the cost associated with dispersed federated learning as
follows:

P1 : min
A,X

CDFL(A,X) (8.76)

subject to:

8.3 Autonomous Driving Cars 211

N∑

n=1

xn,m ≤ 1,∀r ∈ R, (8.76a)

M∑

m=1

an,m ≤ 1,∀n ∈ N , (8.76b)

R∑

r=1

xn,m ≤ 1,∀n ∈ N , (8.76c)

R∑

r=1

N∑

n=1

xn,m ≤ R, (8.76d)

N∑

n=1

an,m ≤ Δm,∀m ∈ M, (8.76e)

an,m ∈ {0, 1} ∀n ∈ N ,m ∈ M, (8.76f)

xn,m ∈ {0, 1} ∀n ∈ N ,m ∈ M. (8.76g)

Problem P1 is to minimize the total cost of one global dispersed federated
learning model computation. Constraint (8.76a) restricts the assignment of a
resource block to a maximum of one autonomous car. Constraint (8.76b) shows that
the association of a autonomous car can be made to a maximum of one RSU. Every
autonomous driving car must be not get more than one resource block according
to constraint (8.76c). Constraint (8.76d) shows that the assigned resource blocks
to cars must not exceed the maximum allowed limit. The maximum number of
autonomous driving cars that can be associated to a particular RSU is restricted
by the constraint (8.76e). Constraints (8.76f) and (8.76g) restricts that association
variable an,m and resource block assignment variable xn,m to binary values. Problem
P1 has combinatorial nature and it becomes NP-hard for large devices and resource
blocks. Therefore, we decompose the problem into two sub-problems for low
complexity solution.

8.3.2 Joint Association and Resource Allocation Algorithm
for DFL

In this section, we present our proposed joint user association and resource
allocation algorithm to minimize the cost CDFL in problem P1. First, we decompose
problem P1 into two sub-problems: resource allocation sub-problem P2 and
autonomous driving cars association sub-problem P3. For a fixed association matrix

212 8 Vehicular Networks and Autonomous Driving Cars

A, sub-problem P2 is given by

P2 : min
X

CDFL(X) (8.77)

subject to:

N∑

n=1

xn,m ≤ 1,∀r ∈ R, (8.77a)

R∑

r=1

xn,m ≤ 1,∀n ∈ N , (8.77b)

R∑

r=1

N∑

n=1

xn,m ≤ R, (8.77c)

xn,m ∈ {0, 1} ∀n ∈ N ,m ∈ M. (8.77d)

Problem P2 has combinatorial nature and NP-hard for large number of cars and
resource blocks. On the other hand, for sub-problem P3 we consider a fixed resource
allocation matrix X and equal power to all devices, i.e.,

P3 : min
A

CDFL(A) (8.78)

subject to:

M∑

m=1

an,m ≤ 1,∀n ∈ N , (8.78a)

N∑

n=1

an,m ≤ Δm,∀m ∈ M, (8.78b)

an,m ∈ {0, 1} ∀n ∈ N ,m ∈ M. (8.78c)

Similar to sub-problem P2, sub-problem P3 has combinatorial nature and
becomes NP-hard for a large number of autonomous driving cars and RSUs. To
minimize the global FL cost, we propose an iterative scheme that solves sub-
problem P2 and sub-problem P3 in an iterative manner. The iterative approach is
summarized in Algorithm 13.

Matching Game-Based Resource Allocation

Sub-problem P2 is combinatorial in nature and becomes NP-hard for a large number
of autonomous driving cars and resource blocks. To solve P2 sub-problem, we use a

8.3 Autonomous Driving Cars 213

Algorithm 13 Joint association and resource allocation algorithm for DFL
1: Inputs
2: Autonomous driving cars set N , RSUs set M, resource blocks set R, Δm∀m ∈ M, scaling

constants (α, β, γ),
3: Outputs
4: Association matrix A, resource blocks matrix X

5: Initialization
6: Assignment of values to α, β, γ , and Δm

7: Initial random assignment of A.
8: repeat
9: Resource Allocation

10: Run Algorithm 14 to yield X for fix A.
11: Autonomous Car-RSUs Association
12: Run Algorithm 15 to yield A for fix X.
13: Compute CDFL for X and A of steps 9 and 11.
14: until CDFL converges.

Algorithm 14 Matching-based resource allocation algorithm
1: Inputs
2: Resource blocks preference profile Rr ,∀r ∈ R
3: Resource blocks set R, autonomous driving cars set N
4: Output
5: Matching function Ψ (t)

6: Step 1: Initialization
7: Rr

(t) = ∅, t = 0
8: Ψ (t) � {Ψ (r)(t), Ψ (n)(t)}r∈R,n∈N = ∅
9: Step 2: Matching phase

10: repeat
11: t ← t + 1
12: for r ∈ R, propose n according to Rr

(t) do
13: if n �r Ψ (r)(t) then
14: Ψ (r)(t) ← Ψ (r)(t) \ n′
15: Ψ (r)(t) ← n

16: R′(t)
r = {n′ ∈ Ψ (r)(t)|n �r n′}

17: else
18: R′′(t)

r = {n ∈ N |Ψ (r)(t) �r n}
19: end if
20: Rr

(t) = {R′(t)
r } ∪ {R′′(t)

r }
21: for l ∈ Rr

(t) do
22: Rr

(t) ← Rr
(t) \ {l}

23: end for
24: end for
25: until Ψ (t) = Ψ (t−1)

matching game-based algorithm. Our resource allocation problem is similar to one-
sided matching house allocation problem represented by a tuple (E,H,P) [236–
238], where E , H, and P denote the set of agents, set of houses, and preferences
of agents, respectively. In our problem, the set of autonomous driving cars N and
resource blocks R are equivalent to agents and houses, respectively. A one-sided

214 8 Vehicular Networks and Autonomous Driving Cars

matching for our resource allocation sub-problem (P2) is the assignment of resource
blocks to autonomous driving cars based on a single preference list and is defined
as follows:

Definition 1 A matching Ψ is a function from the set N∪R into the set of elements
of N ∪ R such that

(1) |Ψ (r)| ≤ 1 and Ψ (r) ∈ N ,
(2) |Ψ (n)| ≤ 1 and Ψ (n) ∈ R ∪ φ,
(3) Ψ (r) = n if and only if n is in Ψ (r),

where Ψ (r) = n ⇔ Ψ (n) = r for ∀n ∈ N ,∀r ∈ R and |Ψ (.)| denotes the
cardinality of matching outcome. The intuition of properties (1) and (2) is because
of the constraints (8.76c) and (8.76a) that restricts the assignment of a resource
block to a maximum of one autonomous car and assignment of an autonomous
car to a maximum of one resource block, respectively. There is a need to define
a preference list for matching game. To do so, all the resource blocks rank the
autonomous driving cars according to their cost CDFL(A) for a fixed association
matrix A to yield a preference profile matrix Rr . A car with lowest cost CDFL(A)

has a highest preference, and vice versa. We use a one-sided one-to-one matching
game for resource allocation due to constraints in our system model that every
autonomous car can get a maximum of one resource block and every resource block
must not be assigned more than one autonomous driving cars. The summary of the
algorithm is given in Algorithm 14.

Definition 2 For a stable matching Ψ , it is necessary that there must not be any
blocking pair (n, r), where n ∈ N , r ∈ R, such that r �n Ψ (r), where Ψ (r) denote
the existing matching pair of r .

Theorem 1 The one-sided matching Ψ produces local sub-optimal result for
resource allocation problem P2.

Proof We prove this theorem by contradictions for given autonomous driving cars-
RSU association and transmit power allocation. The outcome of Algorithm 14 is the
matrix Ψ (t) �→ X(t) and want to minimize the DFL cost CDFL. As the matching
algorithm, Algorithm 14 is based on defer/acceptance. Therefore, the matching Ψ (t)

at iteration t guarantees C
(t)
DFL ≤ C

(t−1)
DFL . For binary resource allocation matrix

X, the cost function is characterized by a non-increasing nature. Additionally, the
resource allocation might not be locally optimal. For instance, one of the cars can
be at the same priority in a preference profile for different resource blocks. In such a
scenario, the proposed matching algorithm will assign the car to one of the resource
blocks that might not be the one for which the cost CDFL is lower than the other.
Therefore, matching Ψ based resource allocation converges to local sub-optimal
results.

8.3 Autonomous Driving Cars 215

Algorithm 15 Autonomous car-RSU association algorithm
1: Inputs
2: Resource blocks matrix X, autonomous driving cars matrix N , RSU matrix M, Δm∀m ∈ M,

t = 0
3: Output
4: Association matrix A

5: Step 1: Initialization phase
6: Compute the matrix CDFL(X) ∀n ∈ N ,m ∈ M
7: G(0) ← CDFL for input X and all possible associations.
8: Step 2: Association phase
9: repeat

10: t ← t + 1
11: Compute l(t) = min(G(t))

12: For l(t), propose corresponding RSU m(t)

13: if |m(t)| ≤ Δm then
14: A(t)(m) ← corresponding n

15: G(t)(n, :) ← ∅
16: else
17: G(t)(n,m) ← ∅
18: end if
19: until All autonomous cars are associated with RSUs.

Autonomous Car-RSU Association Algorithm

Sub-problem P3 is combinatorial in nature and is NP-hard for a large number of
autonomous driving cars and RSUs. Therefore, sub-problem P3 cannot be solved
using convex optimization schemes. We propose an efficient heuristic algorithm
for the association of autonomous driving cars with RSUs. The association of
autonomous driving cars with the RSU for a particular resource block must be done
in a way to decrease the cost of the system. Our algorithm minimizes the CDFL as
a cost function for a given resource assignment matrix X.

Theorem 2 The autonomous car-RSU association using Algorithm 15 is local
optimal.

Proof Similar to Theorem 1, we prove this theorem by contradictions. Algorithm 15
uses CDFL �→ G(0) as a metric for a fixed resource block matrix X to compute A. In
every iteration t , a minimum value of matrix G(t) is computed and its corresponding
autonomous car is associated with the suggested RSU while fulfilling the constraint
that associated cars to an RSU must not exceed its maximum limit. Such a process
of autonomous car-RSU association takes place till the association of all the cars.
Moreover, the condition min(G(t−1)) ≤ min(G(t)) is full filled by Algorithm 15 for
all the iterations. Therefore, we can say that the autonomous car-RSU association
performed by Algorithm 15 achieves locally optimal results.

The summary of the proposed association scheme is given Algorithm 15.
Initially, the resource blocks assignment matrix X, autonomous driving cars matrix
N , RSUs matrix M, and maximum cars per mth miner δm, is fed as an input. In
the initialization phase, the matrix G(0) is computed using CDFL for input X for

216 8 Vehicular Networks and Autonomous Driving Cars

all possible associations between autonomous driving cars and RSUs (lines 6–7). In
the association phase (lines 10–18), the first l(t) is computed by finding minimum
cost value among all the elements of the matrix G(t). This value of l(t) represents
the optimal association among all the possible associations. After fulfilling the
condition of the maximum number of autonomous driving cars per RSU, the rows
of the matrix G(t) corresponding to the later associated autonomous driving cars
are deleted to enable easier computation of the minimum value (line 11) in the next
iteration. Such an iterative process continues until all the autonomous driving cars
are associated with the RSUs.

8.3.3 Numerical Results

In this section, we present numerical results to validate our proposal for various
simulation scenarios. The LTE-based vehicular network is used for analysis, as
shown in Fig. 8.12 [240–242]. We consider an area of 500 × 500 m2 where a BS
and 6 RSUs are deployed at the center and distributed uniformly, respectively. The
cellular users and autonomous driving cars (on roads only) 30 each, are deployed
randomly. Other simulation details are given in Table 8.3. Furthermore, all the
values are computed using an average of 500 runs each with different positions
of autonomous cars and cellular users. However, the position of the RSUs remains
constant. CDFL in our numerical results denote the average cost of the proposed
DFL scheme. The word iteration used in this section is different from the local
learning model iterations and it refers to Algorithm 13 iteration. Furthermore, we
compare the performance of our proposed algorithm with two baseline schemes
such as baseline-1 and baseline-2. Baseline-1 uses the proposed association scheme
with random resource allocation, whereas baseline-2 uses a proposed resource
allocation with the random association.

Consider Fig. 8.13, which shows plot of CDFL vs. different values of constants
(α, β, and γ) for 30 autonomous driving cars, 30 iterations, and 6 RSUs. The
constants α, β, and γ in CDFL scale effect due to packet error ratio on FL model

Table 8.3 Simulation
parameters [239, 240]

Simulation parameter Value

Vehicular network area 500 × 500 m2

Autonomous cars 30

Cellular users 30

Frame structure Type 1 (FDD)

Carrier frequency (f) 2 GHz

Cars transmit power 23 dBm

Sub carriers per resource block 12

Resource block bandwidth (W) 180 kHz

Thermal noise for 1 Hz at 20. C −174 dBm

8.3 Autonomous Driving Cars 217

Macro BS

RSU

1000 m

1000 m

Fig. 8.12 LTE-based vehicular network layout

=0.1
,

=0.1
,

=.8

=0.2
,

=0.2
,

=.6

=0.3
,

=0.3
,

=.4

=0.4
,

=0.4
,

=.2

=0.5
,

=0.5
,

=0

values of constants

0

0.2

0.4

0.6

0.8

1

C
D

FL

10-5

Proposed
Baseline-1
Baseline-2

Fig. 8.13 CDFL for different values of α, β and γ

218 8 Vehicular Networks and Autonomous Driving Cars

accuracy, latency, and energy consumption during the FL process, respectively. For
all cases, CDFL has a slightly greater value for baseline-2 than the proposed and
baseline-1. Therefore, we can say that the proposed joint resource allocation and
association algorithm for FL in autonomous cars offers reasonable performance.
For the case of α = 0.1, β = 0.1, and γ = 0.8, the cost of the FL process takes
into account the effect of energy consumption more than the other two parameters
such as latency and loss in FL model accuracy due to packet error rate. The
proposed algorithm results in lower cost compared to other values compared to
other cases given in Fig. 8.13. This shows that the effect of the proposed algorithm
on minimizing the energy is more than joint latency and loss in FL model accuracy
due to packet error ratio in the training of global FL model (i.e., α = 0.5, β = 0.5,
and γ = 0).

In Fig. 8.14, CDFL for iterations is plotted using different number of autonomous
driving cars and fixed 6 RSUs. Figure 8.14 clearly shows that the proposed
algorithm and baseline schemes converge up to 3–5 iterations regardless of the
number of autonomous driving cars. This shows the stability of the proposed
algorithm. The performance of baseline-1 is better than baseline-2 due to the
fact that the cost of DFL depends more on association than resource allocation.
Furthermore, Fig. 8.14 shows that the performance in terms of FL cost for the
proposed scheme remains almost the same with an increase in the number of
autonomous driving cars. On the other hand, the DFL cost decreases slightly for an
increase in the number of autonomous driving cars for the brute force algorithm. The
reason for this behavior is due to the fact that increasing the number of autonomous
driving cars results in a high probability of getting connected to nearby RSU, and

0 5 10 15 20 25 30
Iterations

6.2

6.4

6.6

6.8

7

7.2

C
D

FL

10-6

Proposed (Cars=24)
Baseline-1 (Cars=24)
Baseline-2 (Cars=24)
Proposed (Cars=30)
Baseline-1 (Cars=30)
Baseline-2 (Cars=30)

Fig. 8.14 CDFL vs. iterations for α = β = γ = 1/3 and different autonomous driving cars

8.4 Summary 219

12 18 24 30
Autonomous cars

0

1

2

3

4

5

6

7

8
C

D
FL

10-6

Proposed
Baseline-1
Baseline-2

Fig. 8.15 CDFL vs. autonomous driving cars for α = β = γ = 1/3

thus offers cost reduction. The effect of an increase in the number of autonomous
driving cars for a fixed number of RSUs on the CDFL is shown in Fig. 8.15. Cost
CDFL remains almost the same with an increase in the number of autonomous
driving cars for both proposed and baseline schemes. On the other hand, the effect
of an increase in the number of RSUs for a fixed number of autonomous driving
cars and cellular users is shown in Fig. 8.16. Cost CDFL has a slightly decreasing
trend for both proposed and baseline schemes with an increase in the number of
RSUs for fixed autonomous cars. The reason is throughput improvement of the
whole network which subsequently reduces cost CDFL. Every RSU has a certain
capacity to serve a maximum number of autonomous cars. Therefore, increasing the
number of RSUs increases the possibility of an autonomous car getting associated
with nearby RSUs than the remote one. Associating with a nearby RSU compared
to remote RSU increases throughput which in turn decreases cost.

8.4 Summary

In this chapter, we have discussed the role of federated learning in enabling
vehicular network applications. In the first part, we presented contract theory-
enabled federated learning for vehicular networks. In the second part, we proposed
a novel dispersed federated learning framework for autonomous driving cars that
are based on decentralization. An optimization problem is formulated to jointly

220 8 Vehicular Networks and Autonomous Driving Cars

2 3 5 6
RSUs

0

1

2

3

4

5

6

7

8
C

D
FL

10-6

Proposed
Baseline-1
Baseline-2

Fig. 8.16 CDFL vs. autonomous driving cars for α = β = γ = 1/3

minimize transmission latency, transmission energy, and effect of packet error rate
by optimizing resource allocation and cars-RSUs association. The proposed dis-
persed federated learning framework for autonomous driving cars can offer robust
and resource-efficient operation, and thus a promising candidate for deployment in
future autonomous cars.

Chapter 9
Smart Industries and Intelligent
Reflecting Surfaces

Abstract In this chapter, we present several Internet of Things applications that can
leverage federated learning. More specifically, we introduce two applications such
as smart industry and intelligent reflecting surfaces that can be effectively enabled
by federated learning with many advantages compared to centralized machine
learning. For both applications, first, we propose a framework. Then, we formulate
optimization problems with their possible solutions. Finally, we provide extensive
simulation results to validate our proposals.

9.1 Smart Industry

Smart industry uses collaborative robotics, edge computing, cloud computing,
cyber-physical systems, cognitive Internet of things (C-IoT), and advanced machine
learning schemes to enable various smart applications [243]. The devices of smart
industries generate a significant amount of data that offers us the opportunity to use
that data for training a machine learning model. One way can be to use centralized
machine learning that is based on transferring end-devices data to the centralized
server for training. However, this approach will suffer from the users’ privacy
leakage issue [15]. A malicious user can attack the centralized server and access
the end-devices data. To address this issue in smart industries, one can use federated
learning that enables on-device machine learning without the need to transfer the
end-devices data to the centralized server for training. Although federated learning
in smart industries can offer many benefits, it has few challenges.

• Training a federated learning model for smart industries requires a significant
amount of communication resources.

• Traditional federated learning based on a single centralized server has robustness
concerns in case of the centralized server failure.

• A collaborative federated learning model must take into account the validity
of local learning models prior to performing aggregation. Injecting false local
learning models will prolong the federated learning time.

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
C. S. Hong et al., Federated Learning for Wireless Networks, Wireless Networks,
https://doi.org/10.1007/978-981-16-4963-9_9

221

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-4963-9_9&domain=pdf
https://doi.org/10.1007/978-981-16-4963-9_9

222 9 Smart Industries and Intelligent Reflecting Surfaces

To overcome the aforementioned challenges, one can use dispersed federated
learning that can offer robust operation and efficient communication resources reuse
[244]. On the other hand, the co-location of various industries is also gaining
significant interest from the community. Co-location of several telecommunication
industries for sharing of backup power supply for the cost-efficient operation was
discussed in [245, 246]. Furthermore, various industries in a typical industrial zone
are located in close vicinity. Therefore, one can use federated learning to train
collaborative machine learning for smart industries. The contributions of this section
are as follows.

• We present a dispersed federated learning model for smart industries that can
offer a robust operation.

• An optimization problem is formulated that jointly minimizes the transmission
latency and packet error rate of dispersed federated learning model computation
by optimizing the resource allocation and transmit power allocation.

• Due to the NP-hard and non-convex nature of the formulated problem, we use of
block successive upper-bound minimization algorithm.

• Finally, we provide numerical results to validate the proposal.

9.1.1 System Model and Problem Formulation

Consider the system model shown in Fig. 9.1 that consists of a set I of I industries.
Within every industry there is a set Ui ,∀i ∈ I of Ui,∀i ∈ I devices with local
datasets. Furthermore, there is a set Bi ,∀i ∈ I of Bi,∀i ∈ I of edge computing-
based small cell base stations (SBSs) within every industry. For communication, the
devices use a set R of R orthogonal resource blocks. To enable robust dispersed
federated learning, the steps are given below.

• All the local devices compute their local learning models.
• The computed local learning models are sent to the SBS for sub-global aggrega-

tion. Prior to sub-global aggregation, the local learning models are verified by the
SBSs. After sub-global aggregation, the sub-global model is sent back to the end-
devices. This process will continue iteratively for a fixed number of sub-global
iterations.

• After a predefined number of sub-global iterations, the sub-global model is
shared among the SBSs of various industries. There can be different ways to
share the sub-global models, such as direct transfer and encryption/decryption-
based schemes. The encryption/decryption-based scheme can offer a more
secure exchange of sub-global model updates but at the cost of computational
complexity and communication overhead.

• After the transfer of sub-global model updates, global aggregation takes place.
Finally, the SBS sends back the global model updates to the end-devices.

9.1 Smart Industry 223

Core
Network

Exchange of
sub global

model updates

Industry 3

Sub Global
Model

IoT device with
local dataset

Industry 1

Sub Global
Model

Industry 2

Sub Global
Model

Edge computing
enabled SBS

Fig. 9.1 Dispersed federated learning-enabled smart industries

Consider the devices set Di
u = [d i

u1, d
i
u2, . . . , d

i
ukiu

] of industry u, where kiu

denotes the total number of data samples for a device u of industry i. The size of
input and output for federated learning depends on the application. We consider a
single output Θi

uk that is computed by wi
u for a given input d i

uk . The aim of federated
learning is to minimize the loss function f .

minimize
wi
1,w

i
2,...,w

i
Uu

1

K

I∑

i=1

Ui∑

u=1

kiu∑

k=1

f (wi
u, d

i
uk,Θ

i
uk), (9.1a)

s.t.w1
u = w2

u = . . . = wi
u = z,∀u ∈ Ui ,∀i ∈ I, (9.1b)

where z and K denote the global federated learning model and the total number of
data points of all devices, respectively. Constraint (9.1b) restricts the same learning
model for all devices. The global model update is given by:

z =
∑I

i=1
∑Ui

u=1 k
i
uw

i
u

K
. (9.2)

224 9 Smart Industries and Intelligent Reflecting Surfaces

We use orthogonal frequency division multiple access (OFDMA) as an access
scheme. Different orthogonal resource blocks are assigned to devices involved in
learning, and thus there will be no interference between them. However, devices will
interfere with the cellular users because of reusing cellular users’ resource blocks.
Furthermore, all the SBSs in an industry have the limited capacity to simultaneously
serve the devices. We consider the fixed set of devices associated with every SBS.
For resource allocation, a binary resource block allocation variable yui,r is used.

yui,r =
{

1, If device u of industry i is assigned r,

0, otherwise.
(9.3)

A single resource block can be assigned to a maximum of one device:

∑

i∈I

∑

u∈Ui

yui,r ≤ 1,∀r ∈ R. (9.4)

On the other hand, every device must not be assigned more than one resource block:

∑

r∈R
yui,r ≤ 1,∀i ∈ I, u ∈ Ui . (9.5)

The total number of resource blocks assigned to all devices must not exceed the total
number of available resource blocks:

∑

r∈R

∑

i∈I

∑

u∈Ui

yui,r ≤ R. (9.6)

The signal-to-interference-plus-noise ratio (SINR) for a device u of industry i is
given by:

Γ u→bi
r = pi,uh

u→bi
i,r∑

c∈Cr hrcP r
c + σ 2 ,

(9.7)

where h
u→bi
i,r and pi,u denote channel gain between device u of industry i and base

station bi and the transmission power of device u of industry i, respectively. Cr
and σ 2 represent the set of cellular users using the resource block r and noise,
respectively. The term

∑
y∈Cr h

r
cP

r
c denotes the interference due to cellular users.

The transmit power of all devices must be within the limits.

0 ≤ pi,u ≤ Pm. (9.8)

9.1 Smart Industry 225

The sum of transmit power of all devices must be less than or equal the total power.

I∑

i=1

Ui∑

ui=1

R∑

r=1

pi,u ≤ Pmax (9.9)

The data rate of the device u using resource block r with bandwidth Ar
u,i is given

by:

Ru→bi
r = Ar

u,i log2(1 + Γ u→bi
r). (9.10)

Wireless channel uncertainties significantly affect the performance of federated
learning in addition to latency. The packet error rate due to a wireless channel is
given by:

eu,i(Y ,P) = yui,rΞ, (9.11)

where

Ξ =
(

1 − exp

(−ϑ(
∑

c∈Cr h
r
cP

r
c + σ 2)

pi,uh
u→bi
i

))
, (9.12)

Let the local learning model of device ui of industry i consist of giu bits. The
total transmission time for computing the sub-global models using Isg sub-global
iterations is given by:

T bi
sg (Y ,P) = Isg

∑

i∈I

∑

b∈Bi

⎛

⎝
∑

u∈Ui

yui,rg
i
u

R
u→bi
r

⎞

⎠ ,∀bi ∈ Bi . (9.13)

In typical federated learning, an increase in local model accuracy will generally
cause an improvement in global learning accuracy and vice versa. The notion of
relative local accuracy is used in our model to reflect the performance of the local
device on the global federated learning model. Greater the value of relative local
accuracy less will be the local accuracy and vice versa. For a sub-global accuracy,
ε and relative local accuracy θ , the number of sub-global iterations for a constant χ
can be given by Konečnỳ et al. [72].

Isg(ε, θ) = χ log(1/ε)

1 − θ
. (9.14)

226 9 Smart Industries and Intelligent Reflecting Surfaces

Using (9.14), we can re-write (9.13) as follows.

Tsg
bi
(Y ,P) = T

bi
sg (Y ,P)

1 − θ
(9.15)

Using Taylor’s approximation, re-write (9.15) as follows.

Tsg
bi
(Y ,P) = (1 + θ)(T bi

sg (Y ,P)) (9.16)

The effect of packet error rate on dispersed federated learning can be given by
Chen et al. [29].

Esg(Y ,P) = Isg

I∑

i=1

Ui∑

u=1

eu,i(X,Y). (9.17)

Similar to (9.16), we re-write (9.17) as follows.

Esg(Y ,P) = (1 + θ)Esg(Y ,P). (9.18)

Now we define the cost function for dispersed federated learning that jointly
accounts for packet error rate and transmission latency.

CDFL(Y ,P) = Tsg
bi
(Y ,P) + Esg(Y ,P). (9.19)

Now, we formulate problem P-1 that minimizes the cost CDFL as follows:

P1 :minimize
Y,P

CDFL(Y ,P) (9.20)

subject to:
∑

i∈I

∑

u∈Ui

yui,r ≤ 1,∀r ∈ R, (9.20a)

∑

r∈R
yui,r ≤ 1,∀i ∈ I, u ∈ Ui , (9.20b)

∑

r∈R

∑

i∈I

∑

u∈Ui

yui,r ≤ R, (9.20c)

0 ≤ pi,u ≤ Pm, (9.20d)

I∑

i=1

Ui∑

ui=1

R∑

r=1

pi,u ≤ Pmax, (9.20e)

yui,r ∈ {0, 1} ∀i ∈ I, u ∈ Ui . (9.20f)

9.1 Smart Industry 227

Problem P1 is a mixed-integer non-linear programming problem. Con-
straints (9.20a) and (9.20b) restricts the assignment of the orthogonal resource block
to a maximum of one device and a maximum of one resource block per device,
respectively. Constraint (9.20c) ensures that the total number of resource blocks
assigned to devices must not exceed the maximum limit of the available resource
blocks. (9.20d) sets the upper and lower limit of transmit power. Constraint (9.20e)
shows that the total power of all devices must not exceed the maximum available
power. Finally, constraints (9.20f) restricts yui,r to be assigned only binary values.

9.1.2 Block Successive Upper-Bound Minimization-Based
Solution

Due to the NP-hard nature of the formulated problem, we propose a BSUM-based
scheme for a solution. To employ BSUM for cost minimization of DFL, we rewrite
the optimization problem P1 as follows.

min
Y∈Y,P∈P

C(Y,P) (9.21)

where C(Y,P) = CDFL(Y ,P). Furthermore, the feasible of sets of Y, and P are:

Y �{Y :
∑

i∈I

∑

u∈Ui

yui,r ≤ 1,∀r ∈ R,
∑

r∈R
yui,r ≤ 1,∀i ∈ I, u ∈ Ui ,

∑

r∈R

∑

i∈I

∑

u∈Ui

yui,r ≤ R, yui,r ∈ {0, 1}},

P �{P : 0 ≤ pi,u ≤ Pm,

I∑

i=1

Ui∑

ui=1

R∑

r=1

pi,u ≤ Pmax}.

For the indices set I, k, ∀i ∈ Ik for every iteration. The problem in (9.21) is still
non-convex even after transforming the binary resource allocation variable into a
continuous variable. Therefore, the block coordinate descent(BCD) scheme cannot
be applied for solving it. To address this issue, one can add a proximal upper-bound
function Ci of the objective function. Here, we add a quadratic penalty term for
penalty parameter μ > 0, whose basic purpose is to maintain h convex.

Ci (Yi;Yk,Pk) = C(Yi; Ỹ, P̃) + μi

2
‖ (Yi − Ỹ) ‖2 . (9.22)

228 9 Smart Industries and Intelligent Reflecting Surfaces

Algorithm 16 BSUM algorithm

1: Initialization: Set k = 0, ε1 > 0, and find initial feasible solutions (Y(0),P(0));
2: repeat
3: Choose index set Ik ;
4: Let Y(k+1)

i ∈ minYi∈Y Ci
(
Yi;Y(k),P(k)

)
;

5: Set Y(k+1)
j = Yk

j , ∀j /∈ Ik ;

6: Find P(k+1)
i , by solving (9.24);

7: k = k + 1;

8: until ‖ C(k)
i − C(k+1)

i

C(k)
i

‖ ≤ ε1

9: Then, set Y(k+1)
i ,P(k+1)

i

)
as the desired solution.

Similarly, we can use the quadratic penalty for Pi . Furthermore, h with respect to
Yi , and Pi in every iteration in (9.22) produces unique Ỹ, and P̃. These values can
be used as solution of (k − 1) iteration. For (k + 1) iteration, the solution can be:

Y(k+1)
i ∈ min

Yi∈Y
Ci
(
Yi;Y(k),P(k)

)
, (9.23)

P(k+1)
i ∈ min

Pi∈P
Ci
(
Pi;Pk,X(k+1)

)
, (9.24)

To solve sub-problems in the above equations, we use Algorithm 16.

9.1.3 Simulations

This section presents numerical results to show the validity of the proposed scheme.
We use two baselines for comparisons, such as baseline-R and baseline-P. Baseline-
R denotes the use of proposed resource allocation with random power allocation,
whereas baseline-P represents the use of proposed power allocation with random
resource allocation. We consider an LTE-based network for the industry in an area
of 1000 × 1000 m2. Moreover, cellular users also exist within the same area as that
of industry. Other simulation parameters are given in Table 9.1.

Consider Fig. 9.2 which shows CDFL vs. iterations for various schemes, such as
proposed, baseline-R, and baseline-P. The proposed scheme outperformed all the
baselines. Moreover, it converges within reasonable global iterations. Therefore, we
can say that the proposed BSUM-based scheme converges fast. On the other hand,
the performance of baseline-P is better than the baseline-R. The reason for this
is more prominent effect of power allocation on the CDFL compared to resource
allocation in our scenario. Figure 9.3 shows the CDFL vs. devices for various
schemes. The proposed scheme outperformed baselines for a different numbers

9.2 Intelligent Reflecting Surfaces 229

Table 9.1 Simulation
parameters [244, 247]

Simulation parameter Value

Industrial network area 1000 × 1000 m2

Industrial devices 30

Cellular users 30

Frame Structure Type 1 (FDD)

Carrier frequency (f) 2 GHz

Devices transmit power 23 dBm

Sub carriers per resource block 12

Resource block bandwidth (W) 180 kHz

Thermal noise for 1 Hz at 20 ◦C −174 dBm

2 4 6 8 10
Iterations

0.95

1

1.05

1.1

1.15

C
D

FL

10-4

Proposed
Baseline-P
Baseline-R

Fig. 9.2 CDFL vs. iterations for various schemes

of devices. Both Figs. 9.2 and 9.3 revealed the effectiveness of our proposed cost
minimization algorithm.

9.2 Intelligent Reflecting Surfaces

9.2.1 Introduction

Intelligent reflecting surface (IRS) has been proposed to improve the performance
of wireless networks [248–250]. Specifically, IRS is a flat array consists of a large
number of passive reflective elements, which can change the characteristics of

230 9 Smart Industries and Intelligent Reflecting Surfaces

39 45 51 57
Devices per industry

1

1.05

1.1

1.15

1.2
C

CF
L

10-4

Proposed
Baseline-P
Baseline-R

Fig. 9.3 CDFL vs. devices for fixed SBSs

incident signal (e.g., frequency, amplitude or phase, etc.) to enhance the desired
signal or suppress interference [248, 251]. There are a number of scenarios about
the IRS assisted communications have been proposed, such as secure wireless
communication [252], virtual line-of-sight (LOS) construction between the base
station (BS) and users when the direct LOS is blocked [253] and device-to-device
(D2D) communications in IoT networks [252]. Therefore, IRS is more appropriate
for the further wireless network due to the properties of passivity and convenience
of deployment.

To maximize the achievable rate at the receiver is important. Here, we introduce
an approach based on deep learning (DL) to design the IRS configuration matrix
(i.e., the phase shift coefficient matrix), which utilized the sampled channel state
information (CSI) for IRS training. However, the protection of user’s privacy during
the communication process has not been fully studied in previous works as a crucial
issue. In recent years, federated learning (FL) has been proposed as a new method to
address the data privacy issues for distributed learning. For example, FL was applied
to realize ultra reliable and low latency Vehicle-to-Vehicle (V2V) communications
while protecting the sensitive data (i.e., queue state information) of users [254].
Specially, in IRS-assisted communication system, the CSI between user and IRS is
actually a category of private data, which closely related to the location information
of users.

9.2 Intelligent Reflecting Surfaces 231

Fig. 9.4 The IRS-assisted wireless communication system

9.2.2 Problem Formulation

As shown in Fig. 9.4, a transmitter is considered to communicate with K receivers
assisted by IRS, meanwhile, a server is connected to IRS for data processing. And
we assume transmitter and receivers are equipped with single antenna, respectively.
The IRS has N reflecting elements. It is worth noting that the transmitter can be the
base station, access point (AP), or user’s device.

The channel model is based on Orthogonal Frequency Division Multiplexing
(OFDM) with M subcarriers, the channels from transmitter and the kth receiver to
IRS are defined as HT ,m ∈ C

N×1 and hkR,m ∈ C
N×1, respectively, where m =

1, 2, . . . ,M , k = 1, 2, . . . , K . And xkm is denoted as the transmitting signal from

transmitter to the kth receiver over the mth subcarrier with the power
∥∥xkm

∥∥2 = P
M

,
in which P represents the total transmit power of each link. In particular, the direct

232 9 Smart Industries and Intelligent Reflecting Surfaces

line-of-sight (LOS) link between the transmitter and the receiver is blocked (i.e.,
occlusion of the buildings). Thus, the received signal at the kth receiver is given as

ykm = ((hkR,m)
T �k

mHT ,m)x
k
m + ωk

m, (9.25)

where a diagonal matrix �k
m = diag[ψ1, ψ2, . . . , ψN] ∈ C

N×N is the IRS
configuration matrix describing the phase shift effect of IRS on incident signal. Note
that the amplitude of incident signal does not change, which means ψn = ejθn for
any n = 1, 2, . . . , N and θn ∈ [0, 2π]. Furthermore, ωk

m ∼ CN (0, σ 2
m) denotes

the additive white Gaussian noise (AWGN) at receivers. The goal of this chapter is
to improve the performance of IRS in the communication system by adjusting �k

m

based on the trained FL model.
For the channel hkR,m and HT ,m, we adopt wideband geometric model in [254]

where each channel is established with L paths. Therefore, hkR,m can be expressed
as

hkR,m =
D−1∑

d=0

hkR,de
−j 2πm

M
d, (9.26)

where the delay-d channel is

hkR,d =
√

N

ρ

L∑

l=1

γlp(dT − η)a(θl, φl), (9.27)

The achievable rate of user k can be expressed as

Rk = 1

M

M∑

m=1

log2

(
1 + r

∣∣∣(hkR,m)
T
�k

mHT ,m

∣∣∣
2
)
, (9.28)

where r = P
Mσ 2

m
denotes the signal to noise ratio (SNR). For the sake of simplicity,

we assume that there is no difference for the IRS configuration matrix between each
subcarriers of the same user, which means �k

1=, . . . ,= �k
m = �k . Consequently,

a predefined set O can be built which consists of a lot of predefined configuration
matrix.

Obviously, our objective is to train the DNN model to establish the mapping
function between HT ,m,hkR,m and the optimal IRS configuration �̂ by searching
over O to further realize the rate maximization.

The searching process can be described as

�̂ = arg max
�k∈O

M∑

m=1

log2

(
1 + r

∣∣∣(hkR,m)
T
�kHT ,m

∣∣∣
2
)
, (9.29)

9.2 Intelligent Reflecting Surfaces 233

so the optimal average achievable rate R̂k at receiver k can obtained as

R̂k = 1

M

M∑

m=1

log2

(
1 + r

∣∣∣(hkR,m)
T
�̂HT ,m

∣∣∣
2
)
. (9.30)

There is a difficulty that such a huge amount of data about perfect CSI with
massive IRS elements will increase the training burden in the implementation of
the above scheme. The traditional method of CSI acquisition is to connect the RF
receive chain with all elements of IRS, which is extremely expensive and complex
to carry out [255]. Thus, we adopt the architecture of IRS with sparse sensors [254].
A tiny fraction of IRS’ elements N ! N are active elements with extra ability
about channel sensing, which means it can switch the working mode from normal
reflective elements to sensor mode when channel estimation is performed. And these
active elements are randomly distributed among IRS elements.

9.2.3 FL Assisted Optimal Beam Reflection

FL has attracted more and more interests as a branch of distributed learning
with several irreplaceable advantages such as privacy protection and distributed
computation. Some work about performance optimization of FL over wireless
networks has been done and we assume the wireless links for FL are stable [29].
Here we introduce a novel scheme that combines FL with IRS in communication
system. The basic structure of FL is illustrated in Fig. 9.5. Each receiver Uk(∀k =
1, 2, . . . , K) participating in training process has its unique dataset Sk , which
means it is not accessible for others, processes on local device merely and we
assume the same size for all these datasets.

Specifically, the standard federated learning algorithm is adopted (i.e., Federated
Averaging). Thus, the whole process can be summarized as three steps:

• Training the local model Wk
i according to the local dataset Sk on local device

Uk , which refers to the receiver in Sect. 9.2.1, where Wk
i represents the local

model trained by the kth device after the ith training. It is worth mentioning that
the input and output of the local model are the sampled channel vector and the
corresponding rate vector discussed later.

• Aggregating all local models W1
i ,W

2
i , . . . ,W

K
i at central server to generate a

global model Wi+1. This process of aggregation can be expressed as

Wi+1 = 1

K

K∑

k=1

Wk
i . (9.31)

• Downloading the global model Wi+1 to each device as the initial configuration
for next training round.

234 9 Smart Industries and Intelligent Reflecting Surfaces

Fig. 9.5 The framework of Federated Learning among several different devices

The optimal model WI can be obtained by repeating these procedures until the
model converges where I denotes the total training times. The basic of FL is DL,
which can be separated into training and validation. For the training phase, the first
step is the dataset construction. And the primary task of dataset construction is CSI
acquisition based on channel estimation through active elements of IRS. For the
simplicity, we assume the channel HT ,m remains constant, so the channel estimation
is only for hkR,m. In order to ensure the facticity of CSI, a random receiving noise
will be added to the estimated channel which can be written as

h̃kR,m = h
k

R,m + nkm, (9.32)

9.2 Intelligent Reflecting Surfaces 235

Algorithm 17 Optimal beam reflection based on federated learning (OBR-FL)
1: Learning Phase:
2: for device/receiver k = 1, 2, . . . , K do
3: for t = 1, 2, . . . , ξ do
4: Sampling the channel information;

5: h̃kt = V
([

h̃ktR,1, h̃
kt
R,2, . . . , h̃

kt
R,M

])
;

6: Scanning O and receive a rate set rkt ;
7: Select out the optimal rate R̂kt ;
8: Construct data points (̃hkt , R̂kt) and add it into local dataset Sk ;
9: end for

10: Local dataset construction finished;
11: Sk = [(̃hk1 , R̂k1), (̃hk2 , R̂k2), . . . , (̃hkξ , R̂kξ)

]
;

12: for i = 1, 2, . . . , I do
13: Train DNN at local device, generate local model Wk

i ;
14: Aggregate local models to produce the global model Wi+1;
15: Download Wi+1 to each device as initial model configuration.
16: end for
17: Optimal model WI is obtained.
18: end for
19: Validation Phase:
20: Channel h̃k sampling;
21: Prediction with the model WI ;
22: Optimal rate R̂kt selection.

where h
k

R,m is the sampled channel. Then we build the vector

h̃k = V
([

h̃kR,1, h̃
k
R,2, . . . , h̃

k
R,M

])

that contains all subcarriers’ CSI, where V denotes vector.
Based on the supervised learning, label matching is followed which takes two

main parts:

• Establishing a rate vector rk =
[
Rk

1, R
k
2, . . . , R

k|Ok|
]

by scanning the predefined

configuration set O and each �k in O is applied to formula (9.28) in order.
• Selecting the highest rate R̂k among rk as the corresponding label.

After the CSI acquisition and label matching, the data point (̃hk, R̂k) can be
added to the dataset Sk . It is worth noting that, as shown in Fig. 9.6, the local dataset
of each user device consists of its own historical data, which includes the historical
CSI and the optimal rate that recorded by itself when the device in different locations
of the region. The size of local dataset is denoted by ξ so that the historical data
points can be written as (̃hkt , R̂kt) for ∀t = 1, 2, . . . , ξ . Consequently, the federated
dataset Sk = [(̃hk1 , R̂k1), (̃hk2 , R̂k2), . . . , (̃hkξ , R̂kξ)

]
is constructed by utilizing the

previous data generation approach.

236 9 Smart Industries and Intelligent Reflecting Surfaces

Fig. 9.6 The local dataset of each device that consists of historical location information

We adopt the forward verification about trained model with the validation
set. The process can be summarized as channel sampling, candidate rate vector
generating, and optimal rate selecting. In this chapter, the Multi-Layer-Perceptron
(MLP) is adopted as the basic DNN architecture which includes 6 full-connected
layers. Rectified Linear Units (ReLU) and Root-Mean-Squared-Error (RMSE) are
selected as active function and loss function, respectively. Meanwhile, we employ
Stochastic Gradient Descent (SGD) for gradient descent. The overall algorithm is
presented in Algorithm 1.

9.2.4 Simulation

The experimental scenario we build is illustrated in Fig. 9.7. BS 7 is activated as IRS
and row R1850 column 90 is the location where the transmitter fixed. Meanwhile,
receivers grid is constructed with 65,160 points from R2001 to R2360 where each
row contains 181 points. We build local datasets by dividing the region of grid to 6
parts which means K = 6 and each independent area is consisted of 60 rows with
ξ = 10,860 points totally, while 80% and 20% of these points are training set and
validation set, respectively. The default configuration about IRS is 24 × 24 (N =
576) elements working at 28 GHz operating frequency based on 100 MHz OFDM
channel with M = 512 subcarriers. However, in order to reduce the complexity of
DNN, only the first MFL = 64 subcarriers are selected to construct local dataset.
For transmitter and receivers, all of them are equipped with single antenna that have
5dBi gain. And we implement Discrete Fourier transform (DFT) to establish the
IRS configuration matrix set O. Meanwhile, the same structure of DNN mentioned
previously is adopted to the centralized ML for comparison.

The convergence trend of FL and ML based algorithm is shown in Fig. 9.8, which
indicates the rationality of the proposed algorithm. It is obviously demonstrated

9.2 Intelligent Reflecting Surfaces 237

Fig. 9.7 Experimental scenario for FL-based IRS system

Fig. 9.8 The convergence performance of FL-based algorithm and ML-based algorithm

238 9 Smart Industries and Intelligent Reflecting Surfaces

Fig. 9.9 The achievable rate based on federated learning and machine learning

that the value of loss function tends to be stable after 800 times iterations and
the proposed algorithm based on FL can almost achieve the similar convergence
performance compared with ML with a little bit lower convergence speed. For
the difference of convergence speed, it is mainly caused by the time delay during
the process of model updating in FL. Meanwhile, it is known that the effect of
centralized ML is better than distributed ML under the same amount of training
data and training time, which explain the distinction of convergence effect between
proposed algorithm and centralized ML.

Figure 9.9 shows the achievable rate performance of different schemes versus
the number of active elements N = 2, 4, 6, 8, 10, and 20. The result is generated at
frequency 28 GHz and L = 10 paths. The achievable rate increases as the increase
of N . It is worth noting that the achievable rate up to 90% of ideal value with
N = 8 which demonstrate that only relatively few active elements are required
for the proposed algorithm to achieve near-optimal rate performance. Furthermore,
as shown in Fig. 9.9 the achievable rate performance of FL-based algorithm can
effectively approach to that of the ML-based algorithm.

9.3 Summary

In this chapter, we have presented two applications, such smart industries and
IRS that can be efficiently enabled via federated learning. For smart industries,
we proposed dispersed federated learning for smart industries to offer robust and

9.3 Summary 239

resource efficient learning. An optimization problem is formulated to minimize
packet error rate and transmission energy by optimizing resource allocation and
transmit power allocation. We applied BSUM-based solution due to the non-convex
nature of the formulated problem. In the second part, we introduce an approach
based on DL to design the IRS configuration matrix (i.e., the phase shift coefficient
matrix), which utilized the sampled CSI for IRS training. In this way, the achievable
rate at the receiver can be maximized.

References

1. C. Zhang, P. Patras, H. Haddadi, Deep learning in mobile and wireless networking: a survey.
IEEE Commun. Surv. Tutorials 21(3), 2224–2287 (2019)

2. C.V.N. Index, Forecast and methodology, 2016–2021. White Paper, Cisco Public, vol. 6,
(2017)

3. W. Saad, M. Bennis, M. Chen, A vision of 6g wireless systems: applications, trends,
technologies, and open research problems. IEEE Netw. 34(3), 134–142 (2019)

4. L.U. Khan, I. Yaqoob, M. Imran, Z. Han, C.S. Hong, 6g wireless systems: a vision,
architectural elements, and future directions. IEEE Access 8, 147029–147044 (2020)

5. P. Yang, Y. Xiao, M. Xiao, S. Li, 6g wireless communications: vision and potential techniques.
IEEE Netw. 33(4), 70–75 (2019)

6. L.U. Khan, W. Saad, D. Niyato, Z. Han, C.S. Hong, Digital-twin-enabled 6g: vision,
architectural trends, and future directions (2021). arXiv preprint arXiv:2102.12169

7. S. Ali, W. Saad, N. Rajatheva, K. Chang, D. Steinbach, B. Sliwa, C. Wietfeld, K. Mei, H. Shiri,
H.-J. Zepernick et al., 6g white paper on machine learning in wireless communication
networks (2020). arXiv preprint arXiv:2004.13875

8. M. Munir, N. H. Tran, W. Saad, C.S. Hong et al., Multi-agent meta-reinforcement
learning for self-powered and sustainable edge computing systems (2020). arXiv preprint
arXiv:2002.08567

9. M. Alsenwi, N.H. Tran, M. Bennis, S.R. Pandey, A.K. Bairagi, C.S. Hong, Intelligent resource
slicing for eMBB and URLLC coexistence in 5g and beyond: a deep reinforcement learning
based approach (2020). arXiv preprint arXiv:2003.07651

10. A. Ndikumana, N.H. Tran, K.T. Kim, C.S. Hong et al., Deep learning based caching for
self-driving cars in multi-access edge computing. IEEE Trans. Intell. Transp. Syst. 22(5),
2862–2877 (2021)

11. H. Khan, A. Elgabli, S. Samarakoon, M. Bennis, C.S. Hong, Reinforcement learning-based
vehicle-cell association algorithm for highly mobile millimeter wave communication. IEEE
Trans. Cogn. Commun. Netw. 5(4), 1073–1085 (2019)

12. K. Thar, T.Z. Oo, Y.K. Tun, K.T. Kim, C.S. Hong et al., A deep learning model generation
framework for virtualized multi-access edge cache management. IEEE Access 7, 62734–
62749 (2019)

13. D. Chen, Y.-C. Liu, B. Kim, J. Xie, C.S. Hong, Z. Han, Edge computing resources reservation
in vehicular networks: a meta-learning approach. IEEE Trans. Veh. Tech. 69(5), 5634–5646
(2020)

14. I. Raicu, I. Foster, A. Szalay, G. Turcu, Astroportal: a science gateway for large-scale
astronomy data analysis, in Teragrid Conference (2006), pp. 12–15

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2021
C. S. Hong et al., Federated Learning for Wireless Networks, Wireless Networks,
https://doi.org/10.1007/978-981-16-4963-9

241

https://doi.org/10.1007/978-981-16-4963-9

242 References

15. L.U. Khan, W. Saad, Z. Han, E. Hossain, C.S. Hong, Federated learning for internet of things:
recent advances, taxonomy, and open challenges (2020). arXiv preprint arXiv:2009.13012

16. W.Y.B. Lim, N.C. Luong, D.T. Hoang, Y. Jiao, Y.-C. Liang, Q. Yang, D. Niyato, C. Miao,
Federated learning in mobile edge networks: a comprehensive survey. IEEE Commun. Surv.
Tutorials 22(3), 2031–2063 (2020)

17. J. Verbraeken, M. Wolting, J. Katzy, J. Kloppenburg, T. Verbelen, J.S. Rellermeyer, A survey
on distributed machine learning. ACM Comput. Surv. 53(2), 1–33 (2020)

18. B. McMahan, E. Moore, D. Ramage, S. Hampson, B.A.Y. Arcas, Communication-efficient
learning of deep networks from decentralized data, in Artificial Intelligence and Statistics.
PMLR (2017), pp. 1273–1282

19. L.U. Khan, S.R. Pandey, N.H. Tran, W. Saad, Z. Han, M.N. Nguyen, C.S. Hong, Federated
learning for edge networks: resource optimization and incentive mechanism. IEEE Commun.
Mag. 58(10), 88–93 (2020)

20. L.U. Khan, W. Saad, Z. Han, C.S. Hong, Dispersed federated learning: vision, taxonomy, and
future directions (2020). arXiv preprint arXiv:2008.05189

21. R.C. Geyer, T. Klein, M. Nabi, Differentially private federated learning: a client level
perspective (2017). arXiv preprint arXiv:1712.07557

22. K. Wei, J. Li, M. Ding, C. Ma, H.H. Yang, F. Farokhi, S. Jin, T.Q. Quek, H.V. Poor, Federated
learning with differential privacy: algorithms and performance analysis. IEEE Trans. Inf.
Forensics Secur. 15, 3454–3469 (2020)

23. M. Seif, R. Tandon, M. Li, Wireless federated learning with local differential privacy, in 2020
IEEE International Symposium on Information Theory (ISIT) (IEEE, Piscataway, 2020), pp.
2604–2609

24. Z. Ji, Z.C. Lipton, C. Elkan, Differential privacy and machine learning: a survey and review
(2014). arXiv preprint arXiv:1412.7584

25. Understanding differential privacy. [Online; Accessed 11 Mar 2021]. https://
towardsdatascience.com/understanding-differential-privacy-85ce191e198a

26. S.R. Pandey, N.H. Tran, M. Bennis, Y.K. Tun, A. Manzoor, C.S. Hong, A crowdsourcing
framework for on-device federated learning. IEEE Trans. Wirel. Commun. 19(5), 3241–3256
(2020)

27. T.H. T. Le, N.H. Tran, Y.K. Tun, Z. Han, C.S. Hong, Auction based incentive design for effi-
cient federated learning in cellular wireless networks, in 2020 IEEEWireless Communications
and Networking Conference (WCNC) (IEEE, Piscataway, 2020), pp. 1–6

28. J. Kang, Z. Xiong, D. Niyato, S. Xie, J. Zhang, Incentive mechanism for reliable federated
learning: a joint optimization approach to combining reputation and contract theory. IEEE
Internet Things J. 6(6), 10700–10714 (2019)

29. M. Chen, Z. Yang, W. Saad, C. Yin, H.V. Poor, S. Cui, A joint learning and communications
framework for federated learning over wireless networks. IEEE Trans. Wirel. Commun. 20(1),
269–283 (2020)

30. L.U. Khan, M. Alsenwi, Z. Han, C.S. Hong, Self organizing federated learning over
wireless networks: a socially aware clustering approach, in 2020 International Conference
on Information Networking (ICOIN) (IEEE, Piscataway, 2020), pp. 453–458

31. N.H. Tran, W. Bao, A. Zomaya, M.N. Nguyen, C.S. Hong, Federated learning over wireless
networks: optimization model design and analysis, in IEEE INFOCOM 2019-IEEE Confer-
ence on Computer Communications (IEEE, Piscataway, 2019), pp. 1387–1395

32. [Online; Accessed 2 Mar 2021]. https://labelyourdata.com/articles/history-of-machine-
learning-how-did-it-all-start/

33. W.S. McCulloch, W. Pitts, A logical calculus of the ideas immanent in nervous activity. Bull.
Math. Biophys. 5(4), 115–133 (1943)

34. A.M. Turing, Computing machinery and intelligence, in Parsing the Turing Test (Springer,
Berlin, 2009), pp. 23–65

35. C. Machinery, Computing machinery and intelligence A.M. Turing. Mind 59(236), 433
(1950)

https://towardsdatascience.com/understanding-differential-privacy-85ce191e198a
https://towardsdatascience.com/understanding-differential-privacy-85ce191e198a
https://labelyourdata.com/articles/history-of-machine-learning-how-did-it-all-start/
https://labelyourdata.com/articles/history-of-machine-learning-how-did-it-all-start/

References 243

36. [Online; Accessed 2 Mar 2021]. http://www-formal.stanford.edu/jmc/slides/dartmouth/
dartmouth/node1.html

37. [Online; Accessed 2 Mar 2021]. https://builtin.com/artificial-intelligence/deep-learning-
history

38. T. Cover, P. Hart, Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–
27 (1967)

39. K. Fukushima, S. Miyake, Neocognitron: a self-organizing neural network model for a
mechanism of visual pattern recognition, in Competition and Cooperation in Neural Nets
(Springer, Berlin, 1982), pp. 267–285

40. T.J. Sejnowski, C.R. Rosenberg, Nettalk: a parallel network that learns to read aloud. johns
hopkins university electrical engineering and computer science technical report. EEC 86(1)
(1986)

41. N. McCulloch, M. Bedworth, J. Bridle, Netspeak—a re-implementation of nettalk. Comput.
Speech Lang. 2(3–4), 289–302 (1987)

42. R.E. Schapire, The strength of weak learnability. Mach. Learn. 5(2), 197–227 (1990)
43. T.K. Ho, Random decision forests, in Proceedings of 3rd International Conference on

Document Analysis and Recognition, vol. 1 (IEEE, Piscataway, 1995), pp. 278–282
44. [Online; Accessed 2 Mar 2021]. https://towardsdatascience.com/the-deep-history-of-deep-

learning-3bebeb810fb2
45. G.E. Hinton, Deep belief networks. Scholarpedia 4(5), 5947 (2009)
46. [Online; Accessed 2 Mar 2021]. https://www.doc.ic.ac.uk/~jce317/history-machine-learning.

html
47. P.A. Bernstein, E. Newcomer, Principles of Transaction Processing (Morgan Kaufmann, Los

Altos, 2009)
48. D. Alistarh, Distributed machine learning: a brief overview. [Online; Accessed March, 2020].

[Online]. https://www.podc.org/data/podc2018/podc2018-tutorial-alistarh.pdf
49. J. Qiu, Q. Wu, G. Ding, Y. Xu, S. Feng, A survey of machine learning for big data processing.

EURASIP J. Adv. Signal Process. 2016(1), 67 (2016)
50. D. Peteiro-Barral, B. Guijarro-Berdiñas, A survey of methods for distributed machine

learning. Progr. Artif. Intell. 2(1), 1–11 (2013)
51. P. Kairouz, H.B. McMahan, B. Avent, A. Bellet, M. Bennis, A.N. Bhagoji, K. Bonawitz,

Z. Charles, G. Cormode, R. Cummings et al., Advances and open problems in federated
learning (2019). arXiv preprint arXiv:1912.04977

52. T. Li, M. Sanjabi, A. Beirami, V. Smith, Fair resource allocation in federated learning (2019).
arXiv preprint arXiv:1905.10497

53. S. Wang, T. Tuor, T. Salonidis, K.K. Leung, C. Makaya, T. He, K. Chan, Adaptive federated
learning in resource constrained edge computing systems. IEEE J. Sel. Areas Commun. 37(6),
1205–1221 (2019)

54. V. Smith, C.-K. Chiang, M. Sanjabi, A. Talwalkar, Federated multi-task learning (2017). arXiv
preprint arXiv:1705.10467

55. M. Jaggi, V. Smith, M. Takáč, J. Terhorst, S. Krishnan, T. Hofmann, M.I. Jor-
dan, Communication-efficient distributed dual coordinate ascent (2014). arXiv preprint
arXiv:1409.1458

56. Z. Han, D. Niyato, W. Saad, T. Başar, A. Hjørungnes, Game theory in wireless and
communication networks: theory, models, and applications (Cambridge University Press,
Cambridge, 2012)

57. T. Li, A.K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, V. Smith, Federated optimization in
heterogeneous networks (2018). arXiv preprint arXiv:1812.06127

58. J. Konečný, H.B. McMahan, D. Ramage, P. Richtárik, Federated optimization: distributed
machine learning for on-device intelligence (2016). arXiv:1610.02527 [cs]

59. C. Ma, J. Konečný, M. Jaggi, V. Smith, M.I. Jordan, P. Richtárik, M. Takáč, Distributed
optimization with arbitrary local solvers. Optim. Methods Softw. 32(4), 813–848 (2017)

60. J. Konečný, Z. Qu, P. Richtárik, Semi-stochastic coordinate descent. Optim. Methods Softw.
32(5), 993–1005 (2017)

http://www-formal.stanford.edu/jmc/slides/dartmouth/dartmouth/node1.html
http://www-formal.stanford.edu/jmc/slides/dartmouth/dartmouth/node1.html
https://builtin.com/artificial-intelligence/deep-learning-history
https://builtin.com/artificial-intelligence/deep-learning-history
https://towardsdatascience.com/the-deep-history-of-deep-learning-3bebeb810fb2
https://towardsdatascience.com/the-deep-history-of-deep-learning-3bebeb810fb2
https://www.doc.ic.ac.uk/~jce317/history-machine-learning.html
https://www.doc.ic.ac.uk/~jce317/history-machine-learning.html
https://www.podc.org/data/podc2018/podc2018-tutorial-alistarh.pdf

244 References

61. A.P. Miettinen, J.K. Nurminen, Energy efficiency of mobile clients in cloud computing, in
USENIX HotCloud’10, Berkeley, CA, USA (2010), p. 4

62. T.D. Burd, R.W. Brodersen, Processor design for portable systems. J. VLSI Signal Process.
Syst. 13(2–3), 203–221 (1996)

63. S. Kandukuri, S. Boyd, Optimal power control in interference-limited fading wireless
channels with outage-probability specifications. IEEE Trans. Wirel. Commun. 1(1), 46–55
(2002)

64. B. Prabhakar, E.U. Biyikoglu, A.E. Gamal, Energy-efficient transmission over a wireless link
via lazy packet scheduling, in IEEE INFOCOM 2001, vol. 1 (2001), pp. 386–394

65. A. Wächter, L.T. Biegler, On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)

66. M. Chen, U. Challita, W. Saad, C. Yin, M. Debbah, Artificial neural networks-based machine
learning for wireless networks: a tutorial. IEEE Commun. Surveys Tut. 21(4), 3039–3071
(2019)

67. K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov, C.M. Kiddon,
J. Konecny, S. Mazzocchi, B. McMahan, T.V. Overveldt, D. Petrou, D. Ramage, J. Roselander,
Towards federated learning at scale: system design, in Proc. Systems and Machine Learning
Conference, Stanford, CA, USA, 2019

68. X. Wang, Y. Han, C. Wang, Q. Zhao, X. Chen, M. Chen, In-edge AI: intelligentizing mobile
edge computing, caching and communication by federated learning. IEEE Netw. 33(5), 156–
165 (2019)

69. E. Jeong, S. Oh, J. Park, H. Kim, M. Bennis, S.L. Kim, Multi-hop federated private
data augmentation with sample compression, in Proc. International Joint Conference on
Artificial Intelligence Workshop on Federated Machine Learning for User Privacy and Data
Confidentiality, Macao, China, 2019

70. Z. Yang, M. Chen, W. Saad, C.S. Hong, M. Shikh-Bahaei, Energy efficient federated learning
over wireless communication networks. IEEE Trans. Wirel. Commun. 20(3), 1935–1949
(2021)

71. T. Li, A.K. Sahu, A. Talwalkar, V. Smith, Federated learning: challenges, methods, and future
directions. IEEE Signal Process. Mag. 37(3), 50–60 (2020)

72. J. Konečnỳ, H.B. McMahan, F.X. Yu, P. Richtárik, A.T. Suresh, D. Bacon, Federated learning:
strategies for improving communication efficiency (2016). arXiv preprint arXiv:1610.05492

73. M. Chen, O. Semiari, W. Saad, X. Liu, C. Yin, Federated echo state learning for minimizing
breaks in presence in wireless virtual reality networks. IEEE Trans. Wirel. Commun. 19(1),
177–191 (2020)

74. J. Konečnỳ, B. McMahan, D. Ramage, Federated optimization: distributed optimization
beyond the datacenter (2015). arXiv preprint arXiv:1511.03575

75. S. Samarakoon, M. Bennis, W. Saad, M. Debbah, Distributed federated learning for ultra-
reliable low-latency vehicular communications. IEEE Trans. Commun. 68(2), 1146–1159
(2020)

76. S. Ha, J. Zhang, O. Simeone, J. Kang, Coded federated computing in wireless networks with
straggling devices and imperfect CSI, in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Paris,
France, 2019

77. J. Park, S. Samarakoon, M. Bennis, M. Debbah, Wireless network intelligence at the edge.
Proc. IEEE 107(11), 2204–2239 (2019)

78. Q. Zeng, Y. Du, K. Huang, K.K. Leung, Energy-efficient radio resource allocation for
federated edge learning, in Proc. IEEE Int. Conf. Commun. Workshop, Dublin, Ireland, 2020

79. Z. Zhao, C. Feng, H.H. Yang, X. Luo, Federated-learning-enabled intelligent fog radio access
networks: fundamental theory, key techniques, and future trends. IEEE Wirel. Commun.
27(2), 22–28 (2020)

80. T.T. Vu, D.T. Ngo, N.H. Tran, H.Q. Ngo, M.N. Dao, R.H. Middleton, Cell-free massive
MIMO for wireless federated learning. IEEE Trans. Wirel. Commun. 19(10), 6377–6392
(2020)

References 245

81. M. Chen, H.V. Poor, W. Saad, S. Cui, Convergence time optimization for federated learning
over wireless networks. IEEE Trans. Wirel. Commun. 20(4), 2457–2471 (2021)

82. M. Chen, N. Shlezinger, H.V. Poor, Y.C. Eldar, S. Cui, Communication-efficient federated
learning. Proc. Nat. Acad. Sci. 118(17), e2024789118 (2021)

83. H.H. Yang, Z. Liu, T.Q.S. Quek, H.V. Poor, Scheduling policies for federated learning in
wireless networks. IEEE Tans. Commun. 68(1), 317–333 (2020)

84. Y. Xi, A. Burr, J. Wei, D. Grace, A general upper bound to evaluate packet error rate over
quasi-static fading channels. IEEE Tans. Wirel. Commun. 10(5), 1373–1377 (2011)

85. Y. Pan, C. Pan, Z. Yang, M. Chen, Resource allocation for D2D communications underlaying
a NOMA-based cellular network. IEEE Wirel. Commun. Lett. 7(1), 130–133 (2018)

86. M.P. Friedlander, M. Schmidt, Hybrid deterministic-stochastic methods for data fitting. SIAM
J. Sci. Comput. 34(3), A1380–A1405 (2012)

87. R. Jonker, T. Volgenant, Improving the Hungarian assignment algorithm. Oper. Res. Lett.
5(4), 171–175 (1986)

88. Y. LeCun, The MNIST database of handwritten digits. http://yann.lecun.com/exdb/mnist/
89. M. Chen, H.V. Poor, W. Saad, S. Cui, Wireless communications for collaborative federated

learning. IEEE Commun. Mag. 58(12), 48–54 (2020)
90. J. Kang, Z. Xiong, D. Niyato, Y. Zou, Y. Zhang, M. Guizani, Reliable federated learning for

mobile networks. IEEE Wirel. Commun. 27(2), 72–80 (2020)
91. S. Wang, M. Chen, C. Yin, W. Saad, C.S. Hong, S. Cui, H.V. Poor, Federated learning for

task and resource allocation in wireless high altitude balloon networks. IEEE Internet Things
J. (2021)

92. Y. Wang, Y. Yang, T. Luo, Federated convolutional auto-encoder for optimal deployment
of UAVs with visible light communications, in Proc. IEEE International Conference on
Communications Workshops (ICC Workshops), Dublin, Ireland

93. T. Zeng, O. Semiari, M. Chen, W. Saad, M. Bennis, Federated learning on the road:
autonomous controller design for connected and autonomous vehicles (2021). arXiv preprint
arXiv:2102.03401

94. M. Chen, D. Gündüz, K. Huang, W. Saad, M. Bennis, A.V. Feljan, H.V. Poor, Distributed
learning in wireless networks: recent progress and future challenges (2021). arXiv preprint
arXiv:2104.02151

95. C. Liu, C. Guo, Y. Yang, M. Chen, H.V. Poor, S. Cui, Optimization of user selection and
bandwidth allocation for federated learning in VLC/RF systems, in Proc. IEEE Wireless
Communications and Networking Conference (WCNC), Nanjing, China, 2021

96. N. Shlezinger, M. Chen, Y.C. Eldar, H.V. Poor, S. Cui, Uveqfed: universal vector quantization
for federated learning. IEEE Trans. Signal Process. 69, 500–514 (2021)

97. S. Niknam, H.S. Dhillon, J.H. Reed, Federated learning for wireless communications:
motivation, opportunities, and challenges. IEEE Commun. Mag. 58(6), 46–51 (2020)

98. G. Zhu, D. Liu, Y. Du, C. You, J. Zhang, K. Huang, Toward an intelligent edge: wireless
communication meets machine learning. IEEE Commun. Mag. 58(1), 19–25 (2020)

99. A. Nedic, A. Olshevsky, M.G. Rabbat, Network topology and communication-computation
tradeoffs in decentralised optimization. Proc. IEEE 106(5), 953–976 (2018)

100. L.G. Jaimes, I.J. Vergara-Laurens, A. Raij, A survey of incentive techniques for mobile crowd
sensing. IEEE Internet Things J. 2(5), 370–380 (2015)

101. S.A. Kazmi, N.H. Tran, T.M. Ho, C.S. Hong, Hierarchical matching game for service
selection and resource purchasing in wireless network virtualization. IEEE Commun. Lett.
22(1), 121–124 (2017)

102. T.H.T. Le, N.H. Tran, T. LeAnh, C.S. Hong, User matching game in virtualized 5g cellular
networks, in 2016 18th Asia-Pacific Network Operations and Management Symposium
(APNOMS) (IEEE, Piscataway, 2016), pp. 1–4

103. C. Pham, N.H. Tran, S. Ren, W. Saad, C.S. Hong, Traffic-aware and energy-efficient VNF
placement for service chaining: joint sampling and matching approach. IEEE Trans. Serv.
Comput. 13(1), 172–185 (2017)

http://yann.lecun.com/exdb/mnist/

246 References

104. M.N. Nguyen, D. Kim, N.H. Tran, C.S. Hong, Multi-stage Stackelberg game approach for
colocation datacenter demand response, in 2017 19th Asia-Pacific Network Operations and
Management Symposium (APNOMS) (IEEE, Piscataway, 2017), pp. 139–144

105. T.M. Ho, N.H. Tran, C.T. Do, S.A. Kazmi, T. LeAnh, C.S. Hong, Data offloading in
heterogeneous cellular networks: Stackelberg game based approach, in 2015 17th Asia-Pacific
Network Operations and Management Symposium (APNOMS) (IEEE, Piscataway, 2015), pp.
168–173

106. S. Noreen, N. Saxena, A review on game-theoretic incentive mechanisms for mobile data
offloading in heterogeneous networks. IETE Tech. Rev. 34(sup1), 15–26 (2017)

107. C. Liu, S. Xing, L. Shen, Stackelberg-game based pricing framework for hybrid access control
in femtocell network, in 2015 IEEE 26th Annual International Symposium on Personal,
Indoor, and Mobile Radio Communications (PIMRC) (IEEE, Piscataway, 2015), pp. 1153–
1156

108. K. Poularakis, G. Iosifidis, L. Tassiulas, A framework for mobile data offloading to leased
cache-endowed small cell networks, in 2014 IEEE 11th International Conference on Mobile
Ad Hoc and Sensor Systems (IEEE, Piscataway, 2014), pp. 327–335

109. L. Gao, G. Iosifidis, J. Huang, L. Tassiulas, D. Li, Bargaining-based mobile data offloading.
IEEE J. Sel. Areas Commun. 32(6), 1114–1125 (2014)

110. H. Yu, M.H. Cheung, J. Huang, Cooperative wi-fi deployment: a one-to-many bargaining
framework. IEEE Trans. Mobile Comput. 16(6), 1559–1572 (2016)

111. S. Wang, T. Tuor, T. Salonidis, K.K. Leung, C. Makaya, T. He, K. Chan, When edge meets
learning: adaptive control for resource-constrained distributed machine learning (2018). arXiv
preprint arXiv:1804.05271

112. H. Kim, J. Park, M. Bennis, S.-L. Kim, “On-device federated learning via blockchain and its
latency analysis (2018). arXiv preprint arXiv:1808.03949

113. R.K. Ganti, F. Ye, H. Lei, Mobile crowdsensing: current state and future challenges. IEEE
Commun. Mag. 49(11), 32–39 (2011)

114. S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein et al., Distributed optimization and
statistical learning via the alternating direction method of multipliers. Found. Trends® Mach
Learn. 3(1), 1–122 (2011)

115. S. Shalev-Shwartz, T. Zhang, Accelerated proximal stochastic dual coordinate ascent for
regularized loss minimization, in International Conference on Machine Learning, Beijing,
China, 2014, pp. 64–72

116. S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, Cambridge,
2004)

117. D. Niyato, M.A. Alsheikh, P. Wang, D.I. Kim, Z. Han, Market model and optimal pricing
scheme of big data and internet of things (IoT), in IEEE International Conference on
Communications (ICC), Kuala Lumpur, Malaysia, May 2016, pp. 1–6

118. F.N. Iandola, M.W. Moskewicz, K. Ashraf, K. Keutzer, Firecaffe: near-linear acceleration
of deep neural network training on compute clusters, in Proc. of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, Nevada, June 2016, pp. 2592–2600

119. C. Dinh, N.H. Tran, M.N. Nguyen, C.S. Hong, W. Bao, A. Zomaya, V. Gramoli, Federated
learning over wireless networks: convergence analysis and resource allocation (2019). arXiv
preprint arXiv:1910.13067

120. Y. Liu, R. Wang, Z. Han, Interference-constrained pricing for d2d networks. IEEE Trans.
Wirel. Commun. 16(1), 475–486 (2017)

121. J. Li, H. Chen, Y. Chen, Z. Lin, B. Vucetic, L. Hanzo, Pricing and resource allocation via game
theory for a small-cell video caching system. IEEE J. Sel. Areas Commun. 34(8), 2115–2129
(2016)

122. B. Faltings, J.J. Li, R. Jurca, Incentive mechanisms for community sensing. IEEE Trans.
Comput. 63(1), 115–128 (2014)

123. Y. Bao, Y. Peng, C. Wu, Z. Li, Online job scheduling in distributed machine learning clusters
(2018). arXiv preprint arXiv:1801.00936

References 247

124. O. Shamir, N. Srebro, Distributed stochastic optimization and learning, in 52nd Annual
Allerton Conference on Communication, Control, and Computing (IEEE, Piscataway, 2014),
pp. 850–857

125. S.D. Conte, C. De Boor, Elementary Numerical Analysis: An Algorithmic Approach, vol. 78
(SIAM, 2017)

126. N.C. Luong, P. Wang, D. Niyato, Y.-C. Liang, Z. Han, F. Hou, Applications of economic and
pricing models for resource management in 5g wireless networks: a survey. IEEE Commun.
Surv. Tutorials 21(4), 3298–3339 (2018)

127. D. Niyato, N.C. Luong, P. Wang, Z. Han, Auction theory for computer networks (2020)
128. Y. Zhang, C. Lee, D. Niyato, P. Wang, Auction approaches for resource allocation in wireless

systems: a survey. IEEE Commun. Surv. Tutorials 15(3), 1020–1041 (2012)
129. N. Nisan, T. Roughgarden, E. Tardos, V.V. Vazirani, Algorithmic Game Theory (Cambridge

Univ. Press, Cambridge, 2007)
130. J. Wang, D. Yang, J. Tang, M. C. Gursoy, Enabling radio-as-a-service with truthful auction

mechanisms. IEEE Trans. Wirel. Commun. 16(4), 2340–2349 (2017)
131. P. Klemperer, What really matters in auction design. J. Econ. Perspect. 16(1), 169–189 (2002)
132. Y. Jiao, P. Wang, D. Niyato, B. Lin, D.I. Kim, Toward an automated auction framework for

wireless federated learning services market. IEEE Trans. Mobile Comput. (2020)
133. Y. Hao, Q. Ni, H. Li, S. Hou, Energy-efficient multi-user mobile-edge computation offloading

in massive MIMO enabled HetNets, in IEEE International Conference on Communications
(ICC), Shanghai, China, 2019, pp. 1–6

134. H.Q. Ngo, E.G. Larsson, T.L. Marzetta, Energy and spectral efficiency of very large multiuser
MIMO systems. IEEE Trans. Commun. 61(4), 1436–1449 (2013)

135. X. Lyu, H. Tian, C. Sengul, P. Zhang, Multiuser joint task offloading and resource optimiza-
tion in proximate clouds. IEEE Trans. Veh. Technol. 66(4), 3435–3447 (2016)

136. W. Dinkelbach, On nonlinear fractional programming. Manag. Sci. 13(7), 492–498 (1967)
137. S. Zaman, D. Grosu, Combinatorial auction-based allocation of virtual machine instances in

clouds. J. Parallel Distrib. Comput. 73(44), 495–508 (2013)
138. A.-L. Jin, W. Song, P. Wang, D. Niyato, P. Ju, Auction mechanisms toward efficient resource

sharing for cloudlets in mobile cloud computing. IEEE Trans. Serv. Comput. 9(6), 895–909
(2015)

139. Data volume of internet of things (IoT) connections worldwide in 2018 and 2025
(in zettabytes). 2020. [Online]. https://www.statista.com/statistics/1017863/worldwide-iot-
connecteddevices-data-size/

140. M.I. Jordan, T.M. Mitchell, Machine learning: trends, perspectives, and prospects. Science
349(6245), 255–260 (2015)

141. D. Chen, C.S. Hong, L. Wang, Y. Zha, Y. Zhang, X. Liu, Z. Han, Matching theory based
low-latency scheme for multi-task federated learning in mec networks. IEEE Internet Things
J. (2021). https://doi.org/10.1109/JIOT.2021.3053283

142. Q. Yang, Y. Liu, T. Chen, Y. Tong, Federated machine learning: concept and applications.
ACM Trans. Intell. Syst. Technol. 10(2), 1–19 (2019)

143. R. Shokri, M. Stronati, C. Song, V. Shmatikov, Membership inference attacks against machine
learning models, in 2017 IEEE Symposium on Security and Privacy (SP), San Jose, CA, May
2017, pp. 3–18

144. M. Nasr, R. Shokri, A. Houmansadr, Comprehensive privacy analysis of deep learning, in
2019 ieee symposium on security and privacy, San Francisco, CA, May 2019

145. M. Abadi, A. Chu, I. Goodfellow, H.B. McMahan, I. Mironov, K. Talwar, L. Zhang, Deep
learning with differential privacy, in Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, Seoul, Republic of Korea, October 2016, pp. 308–
318

146. K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H.B. McMahan, S. Patel, D. Ramage,
A. Segal, K. Seth, Practical secure aggregation for federated learning on user-held data (2016).
arXiv preprint arXiv:1611.04482

https://www.statista.com/statistics/1017863/worldwide-iot-connecteddevices-data-size/
https://www.statista.com/statistics/1017863/worldwide-iot-connecteddevices-data-size/
https://doi.org/10.1109/JIOT.2021.3053283

248 References

147. G. Ács, C. Castelluccia, I have a dream!(differentially private smart metering), in Interna-
tional Workshop on Information Hiding (Springer, Berlin, 2011), pp. 118–132

148. S. Hardy, W. Henecka, H. Ivey-Law, R. Nock, G. Patrini, G. Smith, B. Thorne, Private feder-
ated learning on vertically partitioned data via entity resolution and additively homomorphic
encryption (2017). arXiv preprint arXiv:1711.10677

149. Y. Liu, Y. Kang, C. Xing, T. Chen, Q. Yang, A secure federated transfer learning framework.
IEEE Intell. Syst. 35(4), 70–82 (2020)

150. S. Truex, N. Baracaldo, A. Anwar, T. Steinke, H. Ludwig, R. Zhang, Y. Zhou, A hybrid
approach to privacy-preserving federated learning, in Proceedings of the 12th ACMWorkshop
on Artificial Intelligence and Security, Seoul, Republic of Korea, November 2019, pp. 1–11

151. R. Xu, N. Baracaldo, Y. Zhou, A. Anwar, H. Ludwig, Hybridalpha: an efficient approach for
privacy-preserving federated learning, in Proceedings of the 12th ACMWorkshop on Artificial
Intelligence and Security, Seoul, Republic of Korea, November 2019, pp. 13–23

152. R.L. Rivest, All-or-nothing encryption and the package transform, in International Workshop
on Fast Software Encryption (Springer, Berlin, 1997), pp. 210–218

153. D.R. Stinson, Something about all or nothing (transforms). Des. Codes Cryptogr. 22(2), 133–
138 (2001)

154. A. Lewko, T. Okamoto, A. Sahai, K. Takashima, B. Waters, Fully secure functional
encryption: attribute-based encryption and (hierarchical) inner product encryption, in Annual
International Conference on the Theory and Applications of Cryptographic Techniques
(Springer, Berlin, 2010), pp. 62–91

155. J. Chotard, E.D. Sans, R. Gay, D.H. Phan, D. Pointcheval, Decentralized multi-client
functional encryption for inner product, in International Conference on the Theory and
Application of Cryptology and Information Security (Springer, Brisbane, 2018), pp. 703–732

156. D. Chen, L.J. Xie, B. Kim, L. Wang, C.S. Hong, L.-C. Wang, Z. Han, Federated learning
based mobile edge computing for augmented reality applications, in International Conference
on Computing, Networking and Communications (ICNC), Big Island, HI, February 2020

157. H. Zhu, Y. Jin, Multi-objective evolutionary federated learning. IEEE Trans. Neural Netw.
Learn. Syst. 1–13 (2019)

158. P. Blanchard, R. Guerraoui, J. Stainer et al., Machine learning with adversaries: byzantine
tolerant gradient descent. Adv. Neural Inf. Process. Syst. 119–129 (2017)

159. Y. Chen, L. Su, J. Xu, Distributed statistical machine learning in adversarial settings:
byzantine gradient descent. Proc. ACM Measur. Anal. Comput. Syst. 1(2), 44 (2017)

160. Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, V. Chandra, Federated learning with non-IID data
(2018). arXiv preprint arXiv:1806.00582

161. A. Agarwal, M.J. Wainwright, J.C. Duchi, Distributed dual averaging in networks. Adv.
Neural Inf. Process. Syst. 550–558 (2010)

162. A. Kassambara, Practical Guide to Cluster Analysis in R: Unsupervised Machine Learning,
vol. 1 (STHDA, 2017)

163. D. Arthur, S. Vassilvitskii, k-means++: the advantages of careful seeding, in Proceedings of
the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, 2007, pp. 1027–1035

164. S.Z. Selim, K. Alsultan, A simulated annealing algorithm for the clustering problem. Pattern
Recogn. 24(10), 1003–1008 (1991)

165. P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia,
K. He, Accurate, large minibatch SGD: training imagenet in 1 hour (2017). arXiv preprint
arXiv:1706.02677

166. T. Kohonen, The self-organizing map. Proc. IEEE 78(9), 1464–1480 (1990)
167. L. Bottou, Y. Bengio, Convergence properties of the k-means algorithms, in Advances in

Neural Information Processing Systems (1995), pp. 585–592
168. S.Z. Selim, M.A. Ismail, K-means-type algorithms: a generalized convergence theorem and

characterization of local optimality. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-6(1), 81–
87 (1984)

169. F. Hu, Y. Deng, W. Saad, M. Bennis, A.H. Aghvami, Cellular-connected wireless virtual
reality: requirements, challenges, and solutions. IEEE Commun. Mag. 58(5), 105–111 (2020)

References 249

170. M. Chen, W. Saad, C. Yin, M. Debbah, Data correlation-aware resource management in
wireless virtual reality (VR): an echo state transfer learning approach. IEEE Trans. Commun.
67(6), 4267–4280 (2019)

171. E. Baştuğ, M. Bennis, M. Médard, M. Debbah, Towards interconnected virtual reality:
opportunities, challenges and enablers. IEEE Commun. Mag. 55(6), 110–117 (2017)

172. M. Chen, W. Saad, C. Yin, Echo-liquid state deep learning for 360◦ content transmission
and caching in wireless VR networks with cellular-connected UAVs. IEEE Trans. Commun.
67(9), 6386–6400 (2019)

173. X. Ge, L. Pan, Q. Li, G. Mao, S. Tu, Multipath cooperative communications networks for
augmented and virtual reality transmission. IEEE Trans. Multimedia 1910, 2345–2358 (2017)

174. Y. Sun, Z. Chen, M. Tao, H. Liu, Communications, caching and computing for mobile virtual
reality: modeling and tradeoff (2018). arXiv preprint arXiv:1806.08928

175. J. Park, M. Bennis, URLLC-eMBB slicing to support VR multimodal perceptions over wire-
less cellular systems, in Proc. of IEEE Global Communications Conference (GLOBECOM),
Abu Dhabi, United Arab Emirates, 2018

176. X. Yang, Z. Chen, K. Li, Y. Sun, N. Liu, W. Xie, Y. Zhao, Communication-constrained mobile
edge computing systems for wireless virtual reality: scheduling and tradeoff. IEEE Access 6,
16665–16677 (2018)

177. X. Liu, Y. Deng, Learning-based prediction, rendering and association optimization for MEC-
enabled wireless virtual reality (VR) network. IEEE Trans. Wirel. Commun. (2021)

178. A. Taleb Zadeh Kasgari, W. Saad, M. Debbah, Human-in-the-loop wireless communications:
machine learning and brain-aware resource management. IEEE Trans. Commun. 67(11),
7727–7743 (2019)

179. M.S. Elbamby, C. Perfecto, M. Bennis, K. Doppler, Edge computing meets millimeter-wave
enabled VR: paving the way to cutting the cord, in Proc. of IEEE Wireless Communications
and Networking Conference, Barcelona, Spain, 2018

180. W.C. Lo, C.L. Fan, S.C. Yen, C.H. Hsu, Performance measurements of 360 video streaming
to head-mounted displays over live 4G cellular networks, in Proc. of Asia-Pacific Network
Operations and Management Symposium, Seoul, South Korea, 2017

181. M. Chen, W. Saad, C. Yin, Virtual reality over wireless networks: quality-of-service model
and learning-based resource management. IEEE Trans. Commun. 66(11), 5621–5635 (2018)

182. F. Hu, Y. Deng, A.H. Aghvami, Correlation-aware cooperative multigroup broadcast 360
video delivery network: a hierarchical deep reinforcement learning approach (2020). arXiv
preprint arXiv:2010.11347

183. O. Semiari, W. Saad, M. Bennis, M. Debbah, Integrated millimeter wave and sub-6 GHz
wireless networks: a roadmap for joint mobile broadband and ultra-reliable low-latency
communications. IEEE Wirel. Commun. 26(2), 109–115 (2019)

184. X. Liu, X. Li, Y. Deng, Learning-based prediction and uplink retransmission for wireless
virtual reality (VR) network (2020). arXiv preprint arXiv:2012.12725

185. J. Yin, L. Li, H. Zhang, X. Li, A. Gao, Z. Han, A prediction-based coordination caching
scheme for content centric networking, in Proc. of Wireless and Optical Communication
Conference, Hualien, Taiwan, 2018

186. L. Yao, A. Chen, J. Deng, J. Wang, G. Wu, A cooperative caching scheme based on mobility
prediction in vehicular content centric networks. IEEE Trans. Veh. Technol. 67(6), 5435–5444
(2018)

187. N.T. Nguyen, Y. Wang, H. Li, X. Liu, Z. Han, Extracting typical users’ moving patterns using
deep learning, in Proc. of IEEE Global Communications Conference, Anaheim, CA, USA,
2012

188. M. Chen, M. Mozaffari, W. Saad, C. Yin, M. Debbah, C.S. Hong, Caching in the sky:
proactive deployment of cache-enabled unmanned aerial vehicles for optimized quality-of-
experience. IEEE J. Sel. Areas Commun. 35(5), 1046–1061 (2017)

189. O. Esrafilian, R. Gangula, D. Gesbert, Learning to communicate in UAV-aided wireless
networks: map-based approaches. IEEE Internet Things J. 6(2), 1791–1802 (2019)

250 References

190. M. Chen, W. Saad, C. Yin, Echo state networks for self-organizing resource allocation in
LTE-U with uplink–downlink decoupling. IEEE Trans. Wirel. Commun. 16(1), 3–16 (2017)

191. O. Semiari, W. Saad, M. Bennis, Joint millimeter wave and microwave resources allocation in
cellular networks with dual-mode base stations. IEEE Trans. Wirel. Commun. 16(7), 4802–
4816 (2017)

192. Q. Li, M. Yu, A. Pandharipande, X. Ge, J. Zhang, J. Zhang, Performance of virtual full-duplex
relaying on cooperative multi-path relay channels. IEEE Trans. Wirel. Commun. 15(5), 3628–
3642 (2016)

193. Q. Li, M. Yu, A. Pandharipande, X. Ge, Outage analysis of co-operative two-path relay
channels. IEEE Trans. Wirel. Commun. 15(5), 3157–3169 (2016)

194. HTC, HTC Vive. https://www.vive.com/us/
195. Oculus, Mobile VR media overview. https://www.oculus.com/
196. O. Semiari, W. Saad, M. Bennis, Z. Dawy, Inter-operator resource management for millimeter

wave multi-hop backhaul networks. IEEE Trans. Wirel. Commun. 16(8), 5258–5272 (2017)
197. K. Venugopal, M.C. Valenti, R.W. Heath, Device-to-device millimeter wave communications:

interference, coverage, rate, and finite topologies. IEEE Trans. Wirel. Commun. 15(9), 6175–
6188 (2016)

198. J. Jerald, The VR Book: Human-Centered Design for Virtual Reality (Morgan & Claypool,
2015)

199. J. Chung, H.J. Yoon, H.J. Gardner, Analysis of break in presence during game play using a
linear mixed model. ETRI J. 32(5), 687–694 (2010)

200. S. Scardapane, D. Wang, M. Panella, A decentralized training algorithm for echo state
networks in distributed big data applications. Neural Netw. 78, 65–74 (2016)

201. X. Liu, M. Chen, C. Yin, W. Saad, Analysis of memory capacity for deep echo state networks,
in Proc. of IEEE International Conference on Machine Learning and Applications (ICMLA),
Orlando, FL, USA, 2018

202. M. Bennis, D. Niyato, A Q-learning based approach to interference avoidance in self-
organized femtocell networks, in Proc. of IEEE Global Communications Conference Work-
shops, Miami, FL, USA, 2010

203. A. Hard, K. Rao, R. Mathews, S. Ramaswamy, F. Beaufays, S. Augenstein, H. Eichner,
C. Kiddon, D. Ramage, Federated learning for mobile keyboard prediction (2018). arXiv
preprint arXiv:1811.03604

204. T.S. Brisimi, R. Chen, T. Mela, A. Olshevsky, I.C. Paschalidis, W. Shi, Federated learning
of predictive models from federated electronic health records. Int. J. Med. Inf. 112, 59–67
(2018)

205. L. Liu, C. Chen, Q. Pei, S. Maharjan, Y. Zhang, Vehicular edge computing and networking: a
survey. Mobile Netw. Appl. 26, 1145–1168 (2021)

206. D. Chen, X. Zhang, L.L. Wang, Z. Han, Prediction of cloud resources demand based on
hierarchical pythagorean fuzzy deep neural network. IEEE Trans. Serv. Comput. (2019).
https://doi.org/10.1109/TSC.2019.2906901

207. D. Chen, X. Zhang, L. Wang, Z. Han, Prediction of cloud resources demand based on fuzzy
deep neural network, in 2018 IEEE Global Communications Conference (GLOBECOM), Abu
Dhabi, UAE, 2018

208. Y. Pei, Y. Huang, Q. Zou, H. Zang, X. Zhang, S. Wang, Effects of image degradations to
CNN-based image classification (2018). arXiv preprint arXiv:1810.05552

209. P. Dube, B. Bhattacharjee, S. Huo, P. Watson, B. Belgodere, J.R. Kender, Automatic labeling
of data for transfer learning, in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops, Long Beach, CA, 2019, pp. 122–129

210. J.A. Cortés-Osorio, J.B. Gómez-Mendoza, J.C. Riaño-Rojas, Velocity estimation from a
single linear motion blurred image using discrete cosine transform. IEEE Trans. Instrum.
Measur. 68(10), 4038–4050 (2018)

211. T. Nishio, R. Yonetani, Client selection for federated learning with heterogeneous resources
in mobile edge, in ICC 2019–2019 IEEE International Conference on Communications (ICC)
(IEEE, Shanghai, 2019), pp. 1–7

https://www.vive.com/us/
https://www.oculus.com/
https://doi.org/10.1109/TSC.2019.2906901

References 251

212. N. Yoshida, T. Nishio, M. Morikura, K. Yamamoto, R. Yonetani, Hybrid-FL: coopera-
tive learning mechanism using non-IID data in wireless networks (2019). arXiv preprint
arXiv:1905.07210

213. S. Feng, D. Niyato, P. Wang, D.I. Kim, Y.-C. Liang, Joint service pricing and cooperative relay
communication for federated learning, in 2019 International Conference on Internet of Things
(iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber,
Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Atlanta, GA,
2019, pp. 815–820.

214. Y. Sarikaya, O. Ercetin, Motivating workers in federated learning: a stackelberg game
perspective. IEEE Netw. Lett. 2(1), 23–27 (2019)

215. Y. Zhang, L. Liu, Y. Gu, D. Niyato, M. Pan, Z. Han, Offloading in software defined network
at edge with information asymmetry: a contract theoretical approach. J. Signal Process. Syst.
83(2), 241–253 (2016)

216. Z. Hou, H. Chen, Y. Li, B. Vucetic, Incentive mechanism design for wireless energy
harvesting-based internet of things. IEEE Internet Things J. 5(4), 2620–2632 (2018)

217. S.R. Pandey, N.H. Tran, M. Bennis, Y.K. Tun, A. Manzoor, C.S. Hong, A crowdsourcing
framework for on-device federated learning. IEEE Trans. Wirel. Commun. 19(5), 3241–3256
(2020)

218. Y. Jing, B. Guo, Z. Wang, V.O. Li, J.C. Lam, Z. Yu, Crowdtracker: optimized urban moving
object tracking using mobile crowd sensing. IEEE Internet Things J. 5(5), 3452–3463 (2017)

219. D. Yang, K. Jiang, D. Zhao, C. Yu, Z. Cao, S. Xie, Z. Xiao, X. Jiao, S. Wang, K. Zhang,
Intelligent and connected vehicles: current status and future perspectives. Sci. China Technol.
Sci. 61(10), 1446–1471 (2018)

220. J. Ren, G. Yu, G. Ding, Accelerating DNN training in wireless federated edge learning
systems. IEEE J. Sel. Areas Commun. 39(1), 219–232 (2020)

221. S. Dodge, L. Karam, Understanding how image quality affects deep neural networks, in
2016 Eighth International Conference on Quality of Multimedia Experience (QoMEX) (IEEE,
Lisbon, 2016), pp. 1–6

222. S. Ghosh, R. Shet, P. Amon, A. Hutter, A. Kaup, Robustness of deep convolutional neural
networks for image degradations, in 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP) (IEEE, Calgary, 2018), pp. 2916–2920

223. Y. Chen, S. He, F. Hou, Z. Shi, J. Chen, An efficient incentive mechanism for device-to-
device multicast communication in cellular networks. IEEE Trans. Wirel. Commun. 17(12),
7922–7935 (2018)

224. Y. Wang, M. Sheng, X. Wang, L. Wang, J. Li, Mobile-edge computing: partial computation
offloading using dynamic voltage scaling. IEEE Trans. Commun. 64(10), 4268–4282 (2016)

225. C. Li, S. Wang, X. Huang, X. Li, R. Yu, F. Zhao, Parked vehicular computing for energy-
efficient internet of vehicles: a contract theoretic approach. IEEE Internet Things J. 6(4),
6079–6088 (2019)

226. S. Wang, X. Huang, R. Yu, Y. Zhang, E. Hossain, Permissioned blockchain for efficient and
secure resource sharing in vehicular edge computing (2019). arXiv preprint arXiv:1906.06319

227. T. Zhang, R.E. De Grande, A. Boukerche, Vehicular cloud: stochastic analysis of computing
resources in a road segment, in Proceedings of the 12th ACM Symposium on Performance
Evaluation of Wireless Ad Hoc, Sensor, & Ubiquitous Networks, New York, NY, 2015, pp.
9–16

228. A.F. Molisch, F. Tufvesson, J. Karedal, C.F. Mecklenbrauker, A survey on vehicle-to-vehicle
propagation channels. IEEE Wirel. Commun. 16(6), 12–22 (2009)

229. H.-Y. Lin, K.-J. Li, C.-H. Chang, Vehicle speed detection from a single motion blurred image.
Image and Vis. Comput. 26(10), 1327–1337 (2008)

230. Mnist handwritten digit database, 2010. [Online]. http://yann.lecun.com/exdb/mnist/
231. R. Timofte, K. Zimmermann, L. Van Gool, Multi-view traffic sign detection, recognition, and

3d localisation. Mach. Vis. Appl. 25(3), 633–647 (2014)

http://yann.lecun.com/exdb/mnist/

252 References

232. J. Sun, W. Cao, Z. Xu, J. Ponce, Learning a convolutional neural network for non-uniform
motion blur removal, in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Boston, 2015, pp. 769–777

233. I. Yaqoob, L.U. Khan, S.A. Kazmi, M. Imran, N. Guizani, C.S. Hong, Autonomous driving
cars in smart cities: recent advances, requirements, and challenges. IEEE Netw. 34(1), 174–
181 (2019)

234. Federated learning, a step closer towards confidential AI. https://medium.com/frstvc/tagged/
thoughts. Accessed 24 Jan 2020

235. L.U. Khan, Y.K. Tun, M. Alsenwi, M. Imran, Z.A, C.S. Hong, A dispersed federated learning
framework for 6g-enabled autonomous driving cars (2021). arXiv preprint arXiv:2105.09641

236. A.K. Bairagi, N.H. Tran, W. Saad, Z. Han, C.S. Hong, A game-theoretic approach for fair
coexistence between LTE-U and Wi-Fi systems. IEEE Trans. Veh. Technol. 68(1), 442–455
(2019)

237. L. Zhou, On a conjecture by gale about one-sided matching problems. J. Econ. Theory 52(1),
123–135 (1990)

238. A. Abdulkadiroğlu, T. Sönmez, Random serial dictatorship and the core from random
endowments in house allocation problems. Econometrica 66(3), 689–701 (1998)

239. S.A. Kazmi, N.H. Tran, W. Saad, Z. Han, T.M. Ho, T.Z. Oo, C.S. Hong, Mode selection and
resource allocation in device-to-device communications: a matching game approach. IEEE
Trans. Mobile Comput. 16(11), 3126–3141 (2017)

240. G. Araniti, C. Campolo, M. Condoluci, A. Iera, A. Molinaro, LTE for vehicular networking:
a survey. IEEE Commun. Mag. 51(5), 148–157 (2013)

241. J. Wang, J. Liu, N. Kato, Networking and communications in autonomous driving: a survey.
IEEE Commun. Surv. Tutorials 21(2), 1243–1274 (2019)

242. S. Zhang, J. Chen, F. Lyu, N. Cheng, W. Shi, X. Shen, Vehicular communication networks in
the automated driving era. IEEE Commun. Mag. 56(9), 26–32 (2018)

243. M. Aledhari, R. Razzak, R.M. Parizi, F. Saeed, Federated learning: a survey on enabling
technologies, protocols, and applications. IEEE Access 8, 140699–140725 (2020)

244. L.U. Khan, M. Alsenwi, I. Yaqoob, M. Imran, Z. Han, C.S. Hong, Resource optimized
federated learning-enabled cognitive internet of things for smart industries. IEEE Access 8,
168854–168864 (2020)

245. M.N. Nguyen, N.H. Tran, M.A. Islam, C. Pham, S. Ren, C.S. Hong, Fair sharing of backup
power supply in multi-operator wireless cellular towers. IEEE Trans. Wirel. Commun. 17(3),
2080–2093 (2018)

246. N. World, https://www.networkworld.com/article/3407756/colocation-facilities-buck-the-
cloud-data-center-trend.html. Accessed 20 Jan 2020

247. 3GPP, Evolved Universal Terrestrial Radio Access (E-UTRA): Physical Layer Procedures,
Release 11. 3GPP standard TS 36.213, December 2012

248. Q. Wu, R. Zhang, Towards smart and reconfigurable environment: intelligent reflecting
surface aided wireless network. IEEE Commun. Mag. 58(1), 106–112 (2020)

249. C. Huang, A. Zappone, G.C. Alexandropoulos, M. Debbah, C. Yuen, Reconfigurable intelli-
gent surfaces for energy efficiency in wireless communication. IEEE Trans. Wirel. Commun.
18(8), 4157–4170 (2019)

250. C. Huang, S. Hu, G.C. Alexandropoulos, A. Zappone, C. Yuen, R. Zhang, M. Di Renzo,
M. Debbah, Holographic mimo surfaces for 6g wireless networks: opportunities, challenges,
and trends. IEEE Wirel. Commun. 27(5), 118–125 (2020)

251. T.J. Cui, M.Q. Qi, X. Wan, J. Zhao, Q. Cheng, Coding metamaterials, digital metamaterials
and programmable metamaterials. Light Sci. Appl. 3(10), e218 (2014)

252. M. Cui, G. Zhang, R. Zhang, Secure wireless communication via intelligent reflecting surface.
IEEE Wirel. Commun. Lett. 8(5), 1410–1414 (2019)

253. Q. Nadeem, A. Kammoun, A. Chaaban, M. Debbah, M. Alouini, Large intelligent surface
assisted MIMO communications (2019). arXiv preprint arXiv:1903.08127

https://medium.com/frstvc/tagged/thoughts
https://medium.com/frstvc/tagged/thoughts
https://www.networkworld.com/article/3407756/colocation-facilities-buck-the-cloud-data-center-trend.html
https://www.networkworld.com/article/3407756/colocation-facilities-buck-the-cloud-data-center-trend.html

References 253

254. A. Taha, M. Alrabeiah, A. Alkhateeb, Enabling large intelligent surfaces with compressive
sensing and deep learning (2019). arXiv preprint arXiv:1904.10136

255. R.W. Heath, N. Gonzalez-Prelcic, S. Rangan, W. Roh, A.M. Sayeed, An overview of signal
processing techniques for millimeter wave MIMO systems. IEEE J. Sel. Topics Signal
Process. 10(3), 436–453 (2016)

	Preface
	Acknowledgement
	Contents
	Part I Fundamentals and Background
	1 Introduction
	1.1 Machine Learning for Wireless Networks
	1.1.1 Current Challenges
	1.1.2 Distributed Machine Learning
	1.1.3 Federated Learning Briefing

	1.2 Organization of the Book

	2 Fundamentals of Federated Learning
	2.1 Introduction and History
	2.2 Federated Learning Key Challenges
	2.2.1 Statistical Heterogeneity
	2.2.2 System Heterogeneity

	2.3 Key Design Aspects
	2.3.1 Resource Allocation
	2.3.2 Incentive Mechanism
	2.3.3 Security and Privacy

	2.4 Federated Learning Algorithms
	2.4.1 FedAvg
	2.4.2 FedProx
	2.4.3 q-Federated Learning
	2.4.4 Federated Multi-Task Learning

	2.5 Summary

	Part II Wireless Federated Learning: Design and Analysis
	3 Resource Optimization for Wireless Federated Learning
	3.1 Introduction
	3.2 Wireless Federated Learning: Convergence Analysis and Resource Allocation
	3.2.1 System Model
	Federated Learning Over Wireless Networks
	Computation Model
	Communication Model

	3.2.2 Problem Formulation
	3.2.3 Decomposition-Based Solution
	SUB1 Solution
	SUB2 Solution
	SUB3 Solution
	FEDL Solution

	3.2.4 Numerical Results
	Impact of UE Heterogeneity
	Pareto Optimal Trade-off
	Impact of η

	3.3 Wireless Federated Learning: Resource Allocation and Transmit Power Allocation
	3.3.1 Motivation
	3.3.2 System Model
	Machine Learning Model
	Transmission Model
	Packet Error Rates
	Energy Consumption Model
	Problem Formulation

	3.3.3 Convergence Analysis
	3.3.4 Optimization of RB Allocation and Transmit Power for FL Training Loss Minimization
	Optimal Transmit Power
	Optimal Uplink Resource Block Allocation

	3.3.5 Numerical Results

	3.4 Collaborative Federated Learning
	3.4.1 Motivation
	3.4.2 Preliminaries and Overview
	Original Federated Learning
	Collaborative Federated Learning

	3.4.3 Communication Techniques for Collaborative Federated Learning
	Network Formation
	Device Scheduling
	Coding

	3.5 Summary

	4 Incentive Mechanisms for Federated Learning
	4.1 Introduction
	4.2 Game Theory-Enabled Incentive Mechanism
	4.2.1 System Model
	Federated Learning Background
	Cost Model

	4.2.2 Stackelberg Game-Based Solution
	Incentive Mechanism: A Two-Stage Stackelberg Game Approach
	Stackelberg Equilibrium: Algorithm and Solution Approach

	4.2.3 Simulations

	4.3 Auction Theory-Enabled Incentive Mechanism
	4.3.1 System Model
	Preliminary of Federated Learning
	Computation and Communication Models for Federated Learning
	Auction Model
	Deciding Mobile Users's Bid
	Iterative Algorithm
	Optimization of Uplink Transmission Power
	Optimization of CPU Cycle Frequency and Number of Antennas
	Convergence Analysis
	Complexity Analysis

	4.3.2 Auction Mechanism Between BS and Mobile Users
	Problem Formulation
	Approximation Algorithm Design
	Approximation Ratio Analysis
	Payment
	Properties

	4.3.3 Simulations

	4.4 Summary
	Appendix
	A.1 KKT Solution

	5 Security and Privacy
	5.1 Introduction
	5.2 Functional Encryption Enabled Federated Learning
	5.2.1 Federated Learning
	5.2.2 All or Nothing Transform (AONT)
	5.2.3 Multi-Input Functional Encryption for Inner Product
	5.2.4 Threat Model

	5.3 Secure Aggregation for Wireless Federated Learning
	5.3.1 Participant Pre-processing Mode Updates
	5.3.2 Secure Aggregation at Aggregator

	5.4 Security Analysis
	5.4.1 Security for Encryption
	5.4.2 Privacy for Participant

	5.5 Implementation and Evaluation
	5.5.1 Implementation
	5.5.2 Evaluation

	5.6 Summary

	6 Unsupervised Federated Learning
	6.1 Introduction
	6.2 Problem Formulation
	6.3 Dual Averaging Algorithm
	6.3.1 Algorithm Description
	6.3.2 Data Labeling Step
	6.3.3 DA-Based Centroid Computation Step
	6.3.4 Weight Computation via Bin Method
	6.3.5 Weight Computation via Self-Organizing Maps

	6.4 Simulations
	6.5 Summary

	Part III Federated Learning Applications in Wireless Networks
	7 Wireless Virtual Reality
	7.1 Motivation
	7.2 Existing Works
	7.3 Representative Work
	7.3.1 System Model
	Transmission Model
	Break in Presence Model
	Problem Formulation

	7.3.2 Federated Echo State Learning for Predictions of the Users' Location and Orientation
	Components of Federated ESN Learning Algorithm
	ESN Based Federated Learning Algorithm for Users' Location and Orientation Predictions

	7.3.3 Memory Capacity Analysis
	7.3.4 User Association for VR Users
	7.3.5 Simulation Results and Analysis

	7.4 Summary

	8 Vehicular Networks and Autonomous Driving Cars
	8.1 Introduction and State of Art
	8.2 Vehicular Networks
	8.2.1 Selective Model Aggregation
	8.2.2 System Model
	Image Quality
	Computation Capability
	Utility Function and Type of Vehicular Client
	Utility Function of Central Server
	Global Loss Decay
	End-to-end Latency

	8.2.3 Contract Formulation
	8.2.4 Problem Relaxation and Transformation
	Relaxing Constraint
	Simplifying Complicated Constraint

	8.2.5 Solution to Optimal Contracts
	8.2.6 Numerical Results
	Simulation Settings

	8.3 Autonomous Driving Cars
	8.3.1 System Model and Problem Formulation
	Federated Learning Model
	Communication Model
	Problem Formulation

	8.3.2 Joint Association and Resource Allocation Algorithm for DFL
	Matching Game-Based Resource Allocation
	Autonomous Car-RSU Association Algorithm

	8.3.3 Numerical Results

	8.4 Summary

	9 Smart Industries and Intelligent Reflecting Surfaces
	9.1 Smart Industry
	9.1.1 System Model and Problem Formulation
	9.1.2 Block Successive Upper-Bound Minimization-Based Solution
	9.1.3 Simulations

	9.2 Intelligent Reflecting Surfaces
	9.2.1 Introduction
	9.2.2 Problem Formulation
	9.2.3 FL Assisted Optimal Beam Reflection
	9.2.4 Simulation

	9.3 Summary

	References

