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Abstract

Earlier emergence and vigorous seedling stand are key indicators of crop perfor-
mance. Seed priming as cost-effective hydration technique is central to enhance
crop vigor to optimize input use in production and affect grain nutritional quality
and food security in rice systems. Poor seedling growth and sub-optimal plant
density associated with delayed transplanting of nursery seedling of low vigor is
one of the major constraints in conventional flooded (CF) and water-saving
aerobic (AR) and alternate wetting and drying (AWD) rice systems. Likely,
poor and erratic stand restricts the success of direct seeded rice due to less
weed competitiveness associated with low seed vigor. Seed hydropriming,
osmopriming, and nutrient priming have been successfully employed in conven-
tional transplanted system irrigated as AR or AWD and in direct seed rice systems
to achieve healthy seedling stands, rapid crop development, high yields, and grain
nutritional quality including input resource use efficiency. This chapter discusses
the potential of priming for improving seed and seedling vigor, crop develop-
ment, yields, grain nutritional quality, and their profitability in rice systems. This
will help to reduce the yield gaps associated with crop vigor in actual and
potential yields in rice production.
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4.1 Introduction

Rice (Oryza sativa L.) as staple feeds daily >3.5 billion people to fulfill their 20%
daily calorie requirement (Ahmad et al. 2015; Rehman et al. 2019). More than 75%
of world supplies are harvested from rice produced under flooded condition
(CF) (Yang 2012; Van et al. 2001), and water as an important factor affects rice
production (Ahmad and Hasanuzzaman 2012; Ahmad et al. 2008, 2009).

Irrigated rice in Asia is usually cultivated primarily by growing seedlings into
nursery seedbeds and later their transplanting manually or mechanically into paddy
fields maintained under CF or saturated condition with or without puddling.
Depending on the freshwater availability, rice fields are maintained as flooded
throughout crop growth cycle as in CF system, alternate wetting and drying
(AWD) exposing soil to wet–dry cycles in AWD, at field capacity in aerobic rice
(AR), and kept saturated under system of rice intensification (SRI) (Farooq et al.
2009a, b; Rehman et al. 2012). In each of these methods, wet bed method of nursery
raising is mostly practiced by farmers in which rice seed is first soaked for 24 h in
water. Then pre-germinated seeds incubated for 48 h are broadcasted uniformly on
nursery raised bed resulting in poor and delayed emergence while producing nursery
seedlings of uneven stand (Ahmad 1998; Farooq et al. 2008). These nursery
seedlings of different ages ranging from 30 to 45 days are transplanted into the
main rice fields (De Datta 1981; Singh and Singh 1999).

Nursery seedling with poor and delayed emergence raised by wet bed methods
when transplanted results in sub-optimum planting density, and patchy and irregular
crop stands subsequently have less growth rate. Nursery seedling of poor vigor is
accompanied with delayed transplanting (>30 days) owing to scarce and high labor
cost at critical time resulting in lower grain yields (Reddy 2004) and seed quality
associated with poor seed setting owing to high temperature and high humidity at
flowering (Rehman et al. 2019).

These effects are further increased on growth with transplanting shock when
nursery of increased seedling age (Salam et al. 2001) is shifted. Nonetheless,
seedling age is significant factor toward yield contribution in transplanting rice
system by affecting tillers, dry matter production, and root traits, and several studies
report transplanting of young nursery seedlings (�25 days) with positive effects on
grain yield (Randriamiharisoa and Uphoff 2002; Horie et al. 2005; Pasuquin et al.
2008). Studies on SRI report better crop performance in terms of higher yields by
transplanting 2–3 weeks or even more younger seedlings (Makarim et al. 2002).

Transplanting younger rice seedlings affects four phyllochron stages and
produces more number and fertile tillers, with better capture resources including
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nitrogen, extended crop duration, higher 1000-grain weight, and grain yields (Ashraf
et al. 1999; Mishra and Salokhe 2008) compared to transplanting aged nursery
seedlings with more competition for resources.

Therefore, it is imperative to grow seedlings of high vigor, and transplanting at
younger age is the primary factor to obtain uniform crop stand and increased rice
production. Padalia (1980) reported that 50% success of rice cultivation depends
upon the seedling, irrespective of method of nursery raising.

Seedling vigor in rice defines the plant characteristics such as survival, height,
thickness and uniformity of stem, and establishment and development of new roots,
and these traits vary with age, production system, and seedling hills before and after
transplanting. Therefore, nursery seedling health with improved vigor plays a greater
role in improving rice yields by affecting their establishment subsequent growth
such as tillering in transplanted rice (TeKrony and Egli 1991; Himeda 1994; Ros
et al. 2003; Sasaki 2004).

Nonetheless, sustainable rice production depends on efficient use of labor, water,
and fertilizer to improve productivity, profitability, and resource use efficiency while
reducing environmental footprints (Foley et al. 2011; Farooq et al. 2011a, b; Hoang
et al. 2019). On the other hand, climate change-induced emissions of potent methane
(CH4), decreasing freshwater resources, high labor, and production costs are major
challenges to conventional rice system (Linquist et al. 2012; Nawaz et al. 2019).
Rice production under CF degrades soil physical and chemical properties by
disintegrating soil aggregate, porosity, and permeability with increase in bulk
density owing to the development of hardpan at shallow depth under puddle
condition and decreases wheat productivity and delay its cultivation (Farooq et al.
2008; Nawaz et al. 2017, 2019; Nadeem et al. 2020). This suggests water-wise
production by growing rice alternatively under direct seeding condition (DSR),
AWD, and SRI (Farooq et al. 2009a, b, Farooq et al. 2011a, b, Rehman et al.
2012; Hoang et al. 2019).

Worldwide, these different methods of rice production have been adapted to
sustain its productivity, and rice direct seeding is also being practiced as alternative
to conventional transplanting in the United States, Western Europe including Italy
and France, India, Russia, Japan, Cuba, Sri, Lanka, Malaysia, Vietnam, Thailand,
Philippines, Pakistan, and in some parts of Iran (Farooq et al. 2011a, b; Kumar and
Ladha 2011).

Direct seeded rice is practiced by broadcasting of pre-germinated seed on puddled
soil in wet seeding, broadcasting, or drilling of seed in dry soil or at field capacity in
dry seeding and broadcasting of seed in standing water in case of water seeding
(Farooq et al. 2011a, b). Compared to wet and water seeding methods, dry DSR is
more popular in areas with unpredictable water supply and rainfall such as for
lowland rice cultivation and has advantages of less labor and water consuming,
timely establishment, and earlier maturity, including reduced methane emissions
(Ella et al. 2011; Gathala et al. 2011; Chauhan et al. 2012).

Among several factors, high weed pressure, nutrient management, and poor crop
stand due to anoxic condition during germination, seed viability, and un-leveled
fields affect rice production under dry DSR condition (Ladha et al. 2009; Tripathi
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et al. 2005; Manigbas et al. 2008). Previously, research has focused on reducing
weed pressure and high emergence rate to improve its adaption and very less on
developing cultivars of high early seedling vigor, a trait to determine successful crop
establishment, improve weed competitiveness, and achieve high yield (Zhang et al.
2005a, b; Foolad et al. 2007; Mahender et al. 2015).

Seed germination, early seedling vigor, and uniform crop stands are key
determinants of successful crop production and susceptible stages of plant growth
cycle to adverse soil and environmental factors (Harris 1996; Hadas 2004). Avail-
ability of good quality seed and its cost influence both the quality and quantity of
crop produce ultimately influencing food and nutritional security. Early seedling
vigor is indicator of good quality seed which translates into quick, uniform germi-
nation, and development of crop stand with strong seedling growth detrimental to
adverse soil and climatic condition. Earlier and uniform crop stands establish deeper
and vigorous root systems to overcome seedbed constraints such as harden and
drying upper soil layers, resist to sub-, supra-optimal temperature, and suppress
weeds growth by reducing competition for water and nutrient sources (Farooq et al.
2018).

Nonetheless, early seedling vigor is an agronomical trait and indicator to improve
speed and uniformity of emergence, seedling growth, and uniform crop stand in
direct seeded (Foolad et al. 2007) and transplanted rice systems (Farooq et al.
2011a), in addition to breeding, developing cultivars of high seed vigor, seed
priming as low cost along with effective technique for improving earlier, and better
crop emergence for uniform stand establishment which flowers earlier and produce
productivity (Harris et al. 2007; Ullah et al. 2019) in many crops including rice.

This chapter discusses the potential of priming for improvement of seed and
seedling vigor, nursery seedling development and uniform stands, effects on crop
growth, increase in yields, nutritional quality of harvested grains, and their economic
benefits in conventional and water-saving rice systems. The major objective is
potential application of priming to effect on seed and seedling vigor to optimize
crop stands and shrink the yield gaps in different rice systems.

4.2 Rice Seed Priming

Priming of seed is a hydration treatment which involves soaking seed in simple water
(hydropriming, on-farm priming), salts to lower water potential (osmopriming or
osmohardening), crop growth regulators (hormonal priming), and crop nutrients
(nutrient seed priming), along with organic biostimulants with or without aeration.
Soaking is followed by drying to lower the moisture contents to the original dry
weight for routine handling and safe storage of seed until use (Farooq et al. 2018).
These are low cost, practicable, and effective techniques for improving seed and crop
(Fig. 4.1) performance to address challenges of low seed quality, seedling vigor, late
planting, lower and higher temperatures, nutrient deficiency, and salinity along with
drought (Finch-Savage and Bassel 2016; Antonino et al. 2000; Farooq et al.
2009a, b, 2011a, b, 2014). Primed crops usually emerge earlier, produce uniform
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and healthy stands, vigorous root system, flower, and mature earlier relatively with
higher crop yields (Table 4.1; Rehman et al. 2011a; Singh et al. 2015). Among
priming treatments, on-farm priming, hydropriming, hardening osmopriming,
osmohardening and hormonal priming with synthetic and natural biostimulants,
and nutrient priming have been successfully employed for improving nursery seed-
ling emergence along with development, produce uniform crop stands, improve
growth, and yield performance in transplanted and dry seed rice systems
(Table 4.1; Farooq et al. 2006a, b, c, d). Among different priming treatments,
osmopriming and osmohardening with CaCl2 and KCl have been extensively
evaluated to improve germination besides uniform rice crop stand establishment
(Farooq et al. 2006b, c, 2007a; Rehman et al. 2011a, b, 2014a, 2015a, b).

Priming treatments have been optimized for concentrations and duration for
soaking of different osmotica, natural or synthetic growth regulators, plant-based
biostimulants, micronutrients, and water. For example, rice seeds are hydroprimed in
water for 24 h, osmopriming for 36 or 48 h, and on-farm priming for 12 h (Farooq
et al. 2006a; Rehman et al. 2015b). Seed osmopriming with KCl has been found
effectively to improve crop stand in coarse rice (Farooq et al. 2006a), seedling
development in nursery and field, and yield attributes in transplanted rice (Farooq
et al. 2007a, b).

4.3 Effects on Seedling Growth, Yield, and Resource Use
Efficiency

Raising rice nursery seedlings by seed priming and their transplanting have several
advantages including rapid crop development, early phenological growth, and
productivity benefits including improved resources use efficiency in conventional
and water-saving systems for rice (Tables 4.1 and 4.3). Early transplanted seedlings
(<30 days) raised by primed seeds also reduced the time from transplanting to
heading and maturity than seedlings raised by traditional method and their
transplanting after 45 days (Farooq et al. 2007a, b). Likely, timely transplanted
seedlings also result in earlier heading and maturity when raised by different priming
methods and priming agents including osmohardening, hardening, and hormonal
priming (Farooq et al. 2007a, b) than with delayed heading and maturity in seedlings
raised after traditional method.

This improvement in crop stand and nursery seedling growth is attributed to
earlier emergence, better seedling growth, increased root growth and its traits, and
nutrient uptake contributing toward healthy and vigorous stands in direct seeded and
transplanted rice systems (Farooq et al. 2018). Likely, higher yields in these rice
systems are associated with increased total emergence, competitive advantage over
weeds, productive tillers, number of panicles and growth attributes including leaf
area and duration, crop growth rate, and increased dry matter production in aerobic
as well as submerged condition (Mahajan et al. 2011). Reduced spikelet sterility and
increased tillering in aerobic rice with AWD and SRI (Khalid et al. 2015; Das et al.
2021).
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In addition to growth and yield advantages, seed priming has been reported to
improve resource use efficiency regarding water productivity as by osmopriming
with moringa leaf extracts (3%) (Rehman et al. 2015b) and osmopriming with
Trichoderma and potassium nitrate under AWD (Das et al. 2021), reduce panicle
sterility, and enhance gas exchange attributes by nutrient priming with
micronutrients (Zn, B, Mn), thus affecting soil–plant water relationship in direct
seeded and AWD rice systems (Rehman et al. 2014b, 2016). Likely, priming in rice
genotypes efficient in purine permease 1 (PUP1) genes and low in seed phosphorus
contents and also improvement in germination along with earlier seedling develop-
ment in phosphorus-deficient soils (Pame et al. 2015), showing seed priming can be

Table 4.1 Influence of seed priming on paddy yield in rice production systems

Seed priming type
Growing
environment

Water-wise
rice
production
system

%
Increase
in grain
yield References

Hydropriming Field CF 7.65 Rehman et al. (2016)

Hydropriming Field CF �1.95 Rehman et al. (2014b)

Hydropriming Field CF 26.70 Farooq et al. (2007b)

Hydropriming Field AWD �02.35 Rehman et al. (2016)

Hydropriming Field AWD 10.85 Rehman et al. (2014b)

Hydropriming Field DSR-SRI 36.00

Hydropriming Field DSR 05.80 Rehman et al. (2016)

Hydropriming Field DSR 09.65 Rehman et al. (2014b)

Hydropriming Field DSR �18.30 Rehman et al. (2011b)

Hydropriming Field DSR 03.70 Farooq et al. (2006d)

Osmopriming (CaCl2) Field CF 42.80 Farooq et al. (2007b)

Osmopriming (CaCl2) Field CF 42.80 Farooq et al. (2007b)

Osmopriming (KCl) Field DSR-AWD 09.55 Rehman et al. (2015b)

Osmopriming(CaCl2) Field DSR-AWD 14.10 Rehman et al. (2015b)

Osmopriming (CaCl2) Field DSR-SRI 31.50

Osmopriming (CaCl2) Field DSR 27.00 Rehman et al. (2011b)

Osmopriming (KCl) Field DSR 00.00 Rehman et al. (2011b)

Osmopriming (KCl) Field DSR 18.50 Farooq et al. (2006d)

Osmopriming (CaCl2) Field DSR 14.80 Farooq et al. (2006d)

Osmopriming (KCl) Field DSR 10.50 Farooq et al. (2006c)

Nutripriming (B) Field CF 16.40 Rehman et al. (2014b)

Nutripriming (B) Field CF 27.00 Rehman et al. (2016)

Nutripriming (Zn) Field CF 41.10 Farooq et al. (2018)

Nutripriming (B) Field AWD 23.25 Rehman et al. (2014b)

Nutripriming (B) Field AWD 21.30 Rehman et al. (2016)

Nutripriming (B) Field DSR 17.80 Rehman et al. (2014b)

Nutripriming (B) Field DSR 17.55 Rehman et al. (2016)

Nutripriming (Zn) Field DSR and CF 02.90 Farooq et al. (2018)

Nutripriming (Zn) Field DSR 34.60 Farooq et al. (2018)
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combined with genetics to improve crop emergence in P-deficient soils. Weed
competitive advantage by seed priming in direct seeded rice is owed to rapid
emergence and increased seedling vigor at low seed rate reducing biomass of
weeds which provide faster canopy development reducing 10% yield losses (Harris
et al. 2002; Du and Tuong 2002; Anwar et al. 2012; Juraimi et al. 2012).

Seed nutrient priming by Zn can also reduce the soil application requirement
especially under Zn-deficient soil by increased emergence, seedling growth, and
crop stand producing better yields in rice (Table 4.2; Tehrani et al. 2003; Prom-u-thai
et al. 2012).

4.4 Effects on Grain and Nutritional Quality Attribute

Seed priming induced improved seedling growth, and their transplanting at optimum
age reduced mortality rate was associated with better capture resources of water and
nutrients resulting in enhanced fertilization and less sterile spikelets. Moreover,
increased pre- and post-anthesis net assimilation continued uniform supply of
photosynthates throughout panicles producing maximum normal kernels, reducing
kernel chalkiness, opaque, and abortive kernels in growing nursery seedlings
(Table 4.2; Zheng et al. 2002; Farooq et al. 2007a, b, 2009a, b).

Similarly, Zn nutrient priming is promising strategy for agronomic
biofortification in rice under transplanted and direct seeded water-saving rice
systems (Farooq et al. 2018). Likely, Zn nutrient priming has been associated with
decrease in antinutritional factors including grain phytic acid and Cd contents in
grain and increase in protein contents (Seddigh et al. 2016; Rehman et al. 2018;
Slamet-Loedin et al. 2015). Similarly, seed priming with boron (0.01 mM B) had
been found to improve its grain concentration including panicle fertility under water-
saving rice cultivation (Table 4.2; Johnson et al. 2005; Rehman et al. 2016).

Table 4.2 Influence of nutrient priming on increase in grain mineral concentration in rice
production systems

Nutripriming
(Nutrient and
concentration)

Growing
environment

Rice
production
system

% Increase in grain
mineral concentration References

H3BO3

(0.008 M)
Field CF 700.00 Johnson et al.

(2005)

B
(0.001 and 0.01
B%)

Glasshouse CF 33–47 Rehman et al.
(2012)

B (0.1 mM) Field AWD 29.60 Rehman et al.
(2014b)

B (0.1 mM) Field AR 27.50 Rehman et al.
(2016)

Zn (0.5 M) Field DSR 26.67 Farooq et al.
(2018)
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Seed osmohardening with KCl and CaCl2 has been observed to contain
higher K and Ca contents in rice kernels under traditional and direct seeded rice
systems. Likely, increases in seedling nitrogen are associated with increased number
of secondary roots and reducing sugars with α-amylase activity in nursery
transplanted rice (Farooq et al. 2007b; Rehman et al. 2011a).

4.5 Cost-Benefit Ratio (BCR) and Farmer’s Practice

Success of seed priming depends on its cost-effectiveness, practicability, and adop-
tion. The BCR varies among seed priming methods, and highest profit has been
witnessed in rice under water-saving system, that is, hydropriming in AWD and
DSR, and nutripriming with boron in AWD and with Zn in DSR (Table 4.3). These
advantages of seed priming are associated with high yields and reduced inputs in
terms of fertilizers and water. Nonetheless, seed priming has been practiced in
various countries including Pakistan, Nepal, India, Bangladesh, China, and
Australia in various crops including rice (Singh and Gill 1988; Harris et al. 2001;
Farooq et al. 2006a, b, c; Hussain et al. 2013).

4.6 Rice Seedling Priming

In transplanted rice, rice seedlings are uprooted from the rice nursery area tagged
into small-sized nursery bundles of 5–8 cm (or bunch) for transporting to the targeted
field where transplanting is to be carried out. Before, uprooting the seedlings from
the nursery, a short spell of stress is necessary to develop hardiness in the younger
seedlings, so that these tender seedlings could bear the pulling or transplanting
shock. In order to overcome this shock, the seedlings are being primed after
uprooting and just before or prior to transplanting.

Seedling priming techniques involve the following, that is, (1) hydropriming
(on-farm priming) as dipping the roots of uprooted seedlings in the standing water
in a watercourse preferably under shade; (2) Zn priming as dipping the seedlings in
Zn solution (35%) at the rate of 12.5 kg ha�1, which is very effective for Zn
application. The seedlings uptake the required quantity of Zn, which is required by
the rice plant after transplanting; (3) nutripriming as application of biostimulants as
booster dose to the younger seedlings; and (4) inoculation of rhizobacteria, which is
carried out to enhance mineral nutrient uptake (N, P, K, etc.).

These above-mentioned seedling priming techniques are very cost-effective,
practicable in nature, and very efficient to improve seedling performance in the
field after transplanting to combat the issues of lower seed quality, seedling vigor,
late planting, higher temperature, nutrient deficiency, salinity, and drought. Primed
seedling re-start their re-growth after pulling or transplanting shock to perform better
through producing uniform as well as healthy crops stands, vigorous root system,
and mature earlier relatively with higher crop yields as compared to unprimed
seedlings.
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4.7 Conclusion and Future Thrusts

Seed priming is viable and practicable solution to improve crop stand and seedling
growth, productivity, nutritional quality, and profitability in traditional and water-
saving rice systems. Seed priming can be integrated with genetics as evident from
enhanced performance of rice varieties containing QTLs for Sub1 such as Swarna
and Pup1 in IR74 under submerged and low soil P conditions, respectively (Ella
et al. 2011; Sarkar 2012; Pame et al. 2015).

Table 4.3 Influence of seed priming on benefit-to-cost ratio in rice production systems

Seed priming
type

Growing
environment

Rice Production
system

% Increase
benefit:
cost ratio
over
control References

Hydropriming Field DSR-SRI 04.07

Hydropriming Field CF �02.30 Rehman et al.
(2014b)

Hydropriming Field AWD 44.56 Rehman et al.
(2014b)

Hydropriming Field DSR 07.48 Rehman et al.
(2014b)

Hydropriming Field CF 05.82 Rehman et al.
(2016)

Hydropriming Field AWD 09.78 Rehman et al.
(2016)

Osmopriming (CaCl2) Field DSR-SRI 05.88

Nutripriming (B) Field DSR 12.63 Rehman et al.
(2016)

Nutripriming (B) Field AWD 11.40 Rehman et al.
(2016)

Nutripriming (B) Field CF 21.36 Rehman et al.
(2016)

Nutripriming (B) Field DSR 16.82 Rehman et al.
(2014b)

Nutripriming (B) Field AWD 57.60 Rehman et al.
(2014b)

Nutripriming (B) Field CF 13.70 Rehman et al.
(2014b)

Nutripriming (Zn) Field DSR 06.00 Farooq et al.
(2018)

Nutripriming (Zn) Field DSR 18.18 Farooq et al.
(2018)

Nutripriming (Zn) Field CF 15.38 Farooq et al.
(2018)
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As seed vigor is less considered trait in traditional rice system, and priming had
been found to induce stress memory in harvested progeny which needs to be
investigated in case of traditional and water-saving rice systems. Such integration
of stress-invoked memory in primed seed can be combined with molecular
approaches to enhance seed vigor to translate this trait into next generations to
address the challenges of seed and seedling vigor. With increasing nutritional
deficiency of micronutrients, especially Zn, B, and Fe in human population world-
wide, nutrient priming with these micronutrients can improve crop produce and
grain micronutrient contents to help reduce malnutrition. In conclusion, as a cost-
effective and practicable approach, seed priming can be effective technology to
optimize yields using less resources, reduce the gaps between potential and actual
yields, and improve socioeconomic condition of growers for sustainable food
security.
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