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Abstract

Cancer stem cells (CSCs) are sub-populated cells in the tumor and responsible for
tumor growth, heterogeneity, relapse, and progression of cancer. They play a
dynamic role in developing resistance of chemotherapeutics and promoting
epithelial mesenchymal transition (EMT) and metastasis in tumors, which are
accountable for approximately 90% of mortality. Thus, agents targeting CSCs or
chemosensitizing CSCs have now gained significant importance in the regulation
and inhibition of various malignancies. Nowadays, numerous dietary polypheno-
lic compounds such as flavonoids are being explored as potential candidates to be
utilized in chemoprevention and treatment of various cancers by targeting CSCs.
In multiple studies, flavonoids have shown an inhibitory effect on the self-
renewal potential, stemness characteristics, EMT process, and survival of CSCs
in different tumors. Literature shows that few flavonoids like genistein, quercetin,
silibinin, and apigenin have been explored substantially for their role in inhibition
of CSCs. However, there is paucity of data for some of the flavonoids such as
broussoflavonol B, icaritin, morusin, casticin, wogonin, baicalein, luteolin,
ugonin J and K, naringine, and pomiferin though they have also shown inhibition
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of CSCs. This chapter illustrates a descriptive information about CSCs, their
characteristics, biomarkers, and pathways involved in their maintenance (Notch,
Hedgehog, Wnt/β-catenin, PI3K/Akt, and NF-κB). In addition, the literature
around several flavonoids and their effect in reduction or eradication of CSCs
via attenuation of different signaling pathways have been reviewed.
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7.1 Introduction

Cancer Stem Cells (CSCs), also known as cancer-initiating cells (CICs) or tumor-
initiating cells (TICs), are sub-populated cells (0.1–10%) of the tumor and are
mainly responsible for tumor heterogeneity, tumor growth, recurrence, self-renewal,
and progression of various types of cancer depicted in Fig. 7.1 [1, 2]. Unlike normal
stem cells, CSCs have indefinite potential of self-renewal that leads to
tumorigenesis. The alteration in the metabolic and phenotypic characteristics of
CSCs, mainly because of various genetic and epigenetic modifications, leads to
the emergence of tumor heterogeneity which increases tumor survival and invasion
into other tissues and further complicates the cancer treatment [1, 3]. CSCs were first
identified in acute myeloid leukemia (AML) by Bonnet and Dick in 1994 [4]. In
solid tumors, it was first derived from breast cancer cells in 2003 when a group of
researchers injected the CD44+, CD24�/low populated cells in immune-deficient
mice [5]. Thereafter, CSCs have also been found in brain, lung, prostate, colon,
multiple myeloma, pancreatic, liver, head and neck, ovarian, cervical, gastric, and
other cancers [1, 6–9].

The CSCs are accountable for the resistance development against
chemoradiotherapies, epithelial mesenchymal transitions (EMT), and metastasis
which are the main cause of approximately 90% of mortality [4, 10]. The resistance
against treatments and disease progression may occur partly due to the lower
proliferative rate of CSCs compared to non-CSCs [11]. They are nowadays targeted
for cancer treatment due to their capability to initiate and propagate tumor growth
and develop resistance [12].

In several in vitro and in vivo studies, dietary phytocompounds have been shown
to inhibit tumor formation and progression in various malignancies [8, 13, 14]. The
studies showing the potential role of phytocompounds against CSCs are limited.
However, in recent years, studies have been conducted and demonstrated the anti-
CSCs effect of some phytocompounds [8, 13–17]. Polyphenolic compounds, espe-
cially flavonoids have shown their role in inhibiting tumorigenesis due to their anti-
CSCs effect indicating that they can be an attractive chemopreventive and chemo-
therapeutic candidate for cancer treatment [18–20]. In this chapter, the effects of
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different flavonoids and their derivatives on CSCs derived from various types of
cancers have been illustrated.

7.2 Characteristics of Cancer Stem Cells (CSCs)

7.2.1 Salient Features

CSCs possess three unique characteristics that enable them for tumor initiation,
propagation, and spread [2, 14, 18, 21–24]:

1. The self-renewal capacity helps CSCs to preserve their pool.
2. CSCs are multipotent and give rise to the heterogeneous population of cells

through asymmetric division.
3. The uncontrolled proliferative potential of CSCs supports the sustained develop-

ment of tumors.

7.2.2 Promotion of Epithelial Mesenchymal Transition (EMT)

Epithelial mesenchymal transition is found as one of the significant characteristics of
CSCs. During EMT, the features of epithelial cells converts to mesenchymal cell-
like phenotypes (spindle-shaped appearance) which also enhances the invasive
potential and motility of the cells [4, 25, 26]. During EMT progression, E-cadherin
which is epithelial cell marker is downregulated whereas mesenchymal markers like
N-cadherin and vimentin are upregulated [26]. EMT is a reversible change as it can
induce intravasation to invade healthy group of cells followed by extravasation to
form new tumors (Fig. 7.2). In intravasation process, the epithelial cancer cells
change their phenotype to mesenchymal cells while entering into the bloodstream.
Mesenchymal-epithelial transition (MET) is the reverse form of EMT occurring
along with these changes after extravasation and can boost new tumors formation
[26, 27].

The molecular mechanism of EMT includes inducers, regulators, and effectors.
When the tumors start to grow due to signal the transition order by the inducers like
TGF- β, VEGF, IGF, Wnt, and Notch causes nutrient deficit and hypoxia in the cells
of the tumor at the center [28]. The regulators are transcription factors or drivers that
change the cell shape and make them more favorable to invade other healthy tissues
by regulating the cytoskeleton [29]. Master regulators of the EMT are Twist and
Snail1 which regulate repression of E-cadherin and enhances the tumor-initiating
capacity of cells, respectively. Other regulators of EMT are SMAD, BMP, Slug,
ZEB1, and ZEB2 which are found helpful in suppressing transcription by binding
directly to E-cadherin at the promoter region [26, 30]. Vimentin and keratin act as a
regulator to maintain overall cell shape towards mesenchymal cells which are more
motile [3]. Enzymes such as collagenases and matrix metalloproteinases (MMPs)
promote the escape of tumor cells from the primary tumor site and help them to enter
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the bloodstream [31]. Moreover, the transition of EMT to MET is an essential step in
tumor formation to escape the CSCs from programmed cell death, an apoptosis that
kills epithelial cells in the blood circulation [32].

7.2.3 Chemoradiotherapy Resistance

One of the significant characteristics of CSCs is the development of resistance
against chemoradiotherapy. Resistance attained by CSCs is generally regulated by
the high capacity for DNA repair mechanism and increased protection against
reactive oxygen species (ROS). CSCs stay dormant during chemoradiotherapy and
can regenerate cancer after therapy. Dormancy of CSCs is associated with multiple
genes (e.g., TGF-β2) [29, 33] which are responsible for therapy resistance and
contribute to cancer relapse [33, 34]. It has also been shown that conventional
therapies target the high proliferative stem cells instead of dormant CSCs of tumor
that can cause a recurrence of cancer [26]. Additionally, chemoradiotherapy resis-
tance also develops due to the upregulation of anti-apoptotic pathways.

Recent studies suggested that abnormal chromatin package density is correlated
with the survival rate of cancer cells which are resistant to chemotherapies
[35]. Moreover, studies have indicated that the growing number of EMT cell states
are regulated by epigenetic mechanisms [36].

Tumor heterogeneity is defined as a state when cancer cells possess distinct
genotypes and phenotypes within a single tumor (intra-tumor heterogeneity) and

Fig. 7.2 Epithelial mesenchymal transition (EMT)
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are also responsible for complication or resistance to chemotherapy. An epigenetic
mechanism is involved to cause the phenotypic differences between the CSCs and
non-CSCs. In studies, CSCs have shown to cause tumor heterogeneity and promote
new tumor development as compared to normal cancer cells [33, 37, 38]. In the
present scenario, intra-tumor heterogeneity is a big challenge in the development of
cancer therapy.

The overexpression of the telomerase enzyme, regulated by mutated hTERT
gene, may cause unstable chromosome length in CSCs. Telomere repeats are akin
to the self-renewal capacity of CSCs which is controlled by telomerase activity.
Moreover, it has been shown that mitochondrial telomerase activity in CSCs protects
nuclear DNA by reducing the level of ROS and causing therapy resistance [39, 40].

7.3 Biomarkers of CSCs

Biomarkers, proteins or glycoproteins, define the properties of CSCs and are
upregulated, downregulated, or mutated in malignancies. The enhanced activity of
these biomarkers is well correlated with CSCs biology and help in developing new
strategies to treat various malignancies and resistance cases [29, 33, 41]. Few of the
biomarkers of CSCs are cell surface antigens while others are located in the
cytoplasm such as Aldehyde dehydrogenase 1 (ALDH1). ALDH1 oxidizes aldehyde
into carboxylic acid to protect CSCs and increases their chemoresistance by detoxi-
fication of chemotherapeutics. It has three main isotypes such as ALDH1A1,
ALDH1A2, and ALDH1A3 which are involved in self-renewal, differentiation,
and self-protection of CSCs. CD44 is a hyaluronic acid receptor and is responsible
for invasiveness, metastatic potential, and development of drug resistance in CD44
expressing CSCs. It has several isoforms with different significant roles in CSCs.
CD44, CD24, and EpCAM have stemness properties and causing chemoresistance.
CD117 is the stem cell growth factor receptor, encoded by the c-KIT gene and
CD133 is a common marker of CSCs associated with a poor prognosis and
chemoresistance [42]. Table 7.1 refers to the list of some common surface
biomarkers of CSCs in various types of cancer [1, 32, 41, 43–51].

Specific biomarkers can be used to differentiate CSCs from normal cells and other
tumor cells [52]. It is further difficult to identify CSCs by a single biomarker and
understanding the role of specific biomarkers is pivotal to treat current issues of
cancer. Moreover, to date, no universal CSCs biomarker has been discovered. The
current methodologies to isolate and detect functional differences of CSCs from
non-CSCs population are image-based, sphere formation, cytological sorting using
flow cytometry, CRISPR-Cas9 3D sphere culture systems, magnetic-activated cell
sorting (MACS), and xenotransplantation. Among all, xenotransplantation is the
best method to confirm the existence of CSCs [53]. Thus, identifying and isolating
specific CSCs biomarkers in conjunction with new technologies is imperative for the
treatment of various malignancies [4]. This further promotes findings of the novel
therapeutics in eradicating highly tumorigenic and therapy-resistant CSCs.
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7.4 Possible Pathways Involved in Regulation of CSCs

The Wnt, Hedgehog, and Notch are the major evolutionarily conserved signaling
pathways responsible for stemness and differentiation of CSCs. Other signaling
pathways such as PI3K/AKT and NF-κB also play important role in the regulation
of CSCs characteristics. The aberrant activation of these signaling pathways
stimulates CSCs proliferation, restricts differentiation, and prevents apoptosis
[54]. Therapeutic approaches targeting these aberrant signaling pathways are
required to treat the various types of cancer [55]. Moreover, transcription factors
such as SOX2, NANOG, OCT-4, KLF-4, and c-MYC are important for the self-
renewal capacity of CSCs. These transcription factors also stands out as potential
targets for cancer therapy [33, 56].

Table 7.1 Common surface biomarkers of CSCs in various types of human cancers

Types of
cancer Biomarkers

Hematological CD34, CD38, CD19, CD26

Breast ABCG2, AC133, CD44+/ CD24-low, CD133, CD61, ALDH1, CD338+, α6/β3
integrin, EPCAM

Colon AC133, CD44, CD24, CD29, CD133, CD166, EpCAM

Brain CD90, CD133, CD15, AC133

Head and
Neck

ALDH1, CD44, CD271

Skin CD20, CD271

Liver CD133+/CD44+, EpCAM, CD45-, CD90+, ABCG2, CD44, CD90, CD13

Endometrial CD133, ALDH1

Intestine Lrg5

Prostate Integrin α2/β1, BMI-1, integrin α6, CD133+, CD44+, ABCG2/Hoechst 33342,
SCA-1, CD166+, CD151+, p63+CD133

Ovarian CD133+, CD44+, CD117+, CD24+, AC133

Lung ABCG2, CD44, CD133, CD166

Bladder CD44+, CD47+, CK5+

Glioblastoma CD133+ and CD15+

Renal CD133+

Pancreatic CD44+, CD24+

Osteosarcoma CD117+, CD133+, Stro-1+

Multiple
myeloma

CD38�, CD34+, CD138+

Colorectal
cancer

CD133+, CD44+, CD26+, ALDH

7 Flavonoids Targeting Cancer Stem Cells: A Paradigm to Anticancer Efficacy 245



7.4.1 The Notch Pathway

The Notch signaling pathway is complex and multifaceted, reflecting its roles in
diverse functional activities. The loss of Notch activity favors the EMT process
[1]. For the maintenance of stemness of CSCs, upregulation of Notch pathway is
responsible along with overexpression of Notch signaling genes (Notch1, Notch3,
Jag1, and Jag2) and Notch target gene (Hes1) [57]. Notch signaling via transmem-
brane ligands and receptors is primarily involved in the communication between
adjoining cells. Interaction between ligand on one cell and a transmembrane receptor
on a neighboring cell triggers a two-step proteolytic cleavage of the receptor
[58]. The first cleavage is mediated by a disintegrin and metalloproteinase enzymes
(ADAM 10 or 17) also known as tumor necrosis factor-α converting enzyme
(TACE) and the second cleavage is mediated by γ-secretase. This cleavage releases
an intracellular fragment which interacts with nuclear factors to regulate target gene
expression. The Notch pathway comprises of five canonical Notch ligands (Delta-
like ligand 1 [DLL1], DLL3, DLL4, Jagged1, and Jagged2) and four Notch receptor
paralogues (Notch1–4) [59]. Different tumors and tumor subtypes can express
different Notch receptors and ligands. Furthermore, posttranslational modifications
of Notch receptors can change their affinity for ligands and their intracellular half-
lives. The non-canonical Notch signaling pathway also has relevance in cancer.
Thus, targeting Notch signaling has the potential to simultaneously affect multiple
cell types within a tumor, from CSCs to immune cells, vascular endothelial cells, and
tumor cells. Additionally, the mechanistic understanding of the role of Notch
signaling in specific cancers is required for the successful development of agents
targeting the Notch pathway.

The Notch pathway is associated with CSCs in various cancers such as breast
cancer, medulloblastoma, and other gliomas. CSCs can be eliminated by Gamma-
secretase inhibitors (GSIs) which decrease the subpopulation and tumor sphere
formation frequency of CSCs. However, GSIs are relatively nonselective drugs
and sometimes also produce toxicity like secretory diarrhea. Highly specialized
monoclonal antibodies (mAbs) that specifically antagonize Notch ligands and
receptors provide single-target specificity. Knockdown of Hes1 of the CSCs
decreases tumor sphere formation, suggesting that Notch signaling activity is
required for stemness and promoting cell survival of CSCs.

Hence, it can be speculated that inhibition of Notch signaling pathway in CSCs
can play a great role in the treatment of various types of tumors via reducing the
population of CSCs. With anti-Delta-like 4 ligand antibodies, either alone or in
combination with the chemotherapeutic agents, we can reduce the frequency of
CSCs (EpCAM+/CD44+/CD166+). Si-RNA targeted to Notch4 is also found active
in suppressing breast cancer recurrence [60].

Flavonoids also target the Notch signaling pathway for eradication and reduction
of CSCs. This activity of flavonoids might be due to the regulation of Υ-secretase,
Notch ligands and receptors, knockdown of Hes1, si-RNA targeted to Notch4, or
inhibition of DLL-4 ligand.

246 N. Siddiqui et al.



7.4.2 The Hedgehog Pathway

The Hedgehog pathway is considered to modulate tumorigenesis through tissue
patterning, propagation, differentiation, and EMT [61, 62]. Atypical activation of
this pathway is responsible for maintenance and tumorigenesis of CSCs as seen in
various cancers like myeloid leukemia, myeloma, glioma, colorectal, and gastric
cancer [63, 64].

The major troupes in the Hedgehog pathway are the three secreted ligands
including Sonic, Desert, and Indian. Smoothened (transmembrane protein) and
3 Gli transcription factors (Gli1-3) along with ligands regulate the suppression or
activation of Hedgehog pathway. Islam and team have demonstrated the indispens-
able role of Sonic hedgehog pathway in the promotion of the EMT, tumorigenicity,
and stemness in both in vitro and in vivo studies [65].

When Patched receptor is unoccupied, it acts as a constitutive inhibitor of
Smoothened. At this state, Gli3 and Gli2-R repress the target gene transcription.
However, when the ligand binds to Patched receptor, the suppression on Smooth-
ened is released allowing transcription of target genes [66]. Overexpression of
Smoothened, Gli1, Sonic hedgehog, and Patched1 gene with decreased expression
of the stemness genes (SOX-2, NANOG, and OCT-4) are found to be responsible for
survival, stemness, proliferation, self-renewal, and clonogenicity of CSCs both
in vivo and in vitro [67].

Cyclopamine and IPI269609, which are antagonist of Smoothened, have been
shown to reduce the populations or eradicate CSCs and induce tumor suppression in
pancreatic and brain cancer [68–70]. The combined chemotherapeutics targeting
Hedgehog pathway to eradicate CSCs have attracted general attention [71, 72]. In
studies, flavonoids alone or in combination with chemotherapeutic agents have
shown to target CSCs or sensitize CSCs possibly via hedgehog signaling pathway
by regulating their receptors, ligands, smoothened, or transcriptional factors. This
has been further described in section 5.

7.4.3 The Wnt/b-catenin Pathway

It is an enormously evolutionarily conserved signaling pathway which plays a
dynamic role in modulating cell propagation and differentiation. In carcinogenesis,
the aberrant signaling of this pathway facilitates the clonal expansion or tumor
heterogeneity which ultimately causes self-renewal, metastasis, multidrug resis-
tance, and invasiveness of CSCs [54, 73, 74].

This is a highly complex pathway comprising of 19 different Wnt ligands and
more than 15 receptors. Conventionally, this pathway comprises of 2 signaling
pathways: canonical (mediated through β-catenin, a transcriptional regulator) and
non-canonical (independent to β-catenin) [74]. The canonical pathway gets triggered
when one cell secretedWnt ligands binds to Frizzled receptors or LRP 5 (low-density
lipoprotein-related protein) and LRP 6 co-receptors of the adjacent cell [75]. Signal-
ing through these two Wnt pathways is necessary for embryonic development and
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homeostasis of various tissues [74, 76]. In general, the canonical Wnt pathway is
involved in regulation of proliferation, survival, and cell fate decisions while the
non-canonical pathway is involved in regulation of asymmetrical divisions in cells,
cell polarity, and migration. It is observed that stem cells of various postnatal tissues
are controlled through the canonical signaling pathway [75].

Along with tumorigenesis, Wnt signaling has been associated with CSCs-
mediated metastasis and maintenance of its stemness. A significantly higher level
of Wnt signaling proteins such as LEF-1, cyclin D1, β-catenin, and TCF-4 along
with Wnt-responsive gene transcription are found in breast CSCs compared with
normal cancer cells. Moreover, the knockdown of canonical Wnt pathway in CSCs
diminishes the expression of genes involved in stemness (CD44, ALDH1, and
Sca-1), CSCs subpopulation, and inhibits tumor sphere formation. This indicates
that Wnt signaling is essential for CSCs stemness maintenance [77]. Furthermore, a
higher expression of Wnt genes (TCF-4 and Disheveled) is present in metastatic
CSCs [78].

Non-canonical pathway may also be responsible for tumor instigation through
Wnt5a actions, a non-canonical Wnt ligand. An in vivo study (ErbB2-driven mam-
mary tumorigenesis on mouse model) showed that Wnt5a ligand limited the expan-
sion of basally located CSCs in tumor [79].

The canonical Wnt signaling cascade is involved in self-renewal of stem cells and
production or differentiation of ancestor cells [80–82] whereas non-canonical Wnt
signaling pathway is involved in the conservation of stem cells, guidance of cell
movement, or inhibition of the canonical signaling cascade [9, 83–85]. Both Wnt
signaling cascades play crucial roles in the growth and progression of CSCs [86].

Deviant activation of this pathway in CSCs was severely linked with
tumorigenesis in various tissues. Chemotherapeutic agents that can be specific to a
Wnt receptor frizzled7, essential co-receptor binder for LRP6, and Wnt signaling
antagonist are responsible for depletion of clonal expansion and tumorigenicity of
CSCs in various kinds of tumors [87]. Knocking down miR-142, which is a potent
effector for activating this signaling is also helpful in diminishing tumor-initiating
ability and sphere formation of CSCs [88]. Moreover, suppressors of Wnt/β-catenin
pathway significantly lessen the population, stemness, and self-renewal capacity of
CSCs [89]. Additionally, inhibiting Wnt/β-catenin makes CSCs more
chemosensitive to conventional drugs along with reduction of self-renewal and
tumorigenic ability [90]. Thus, targeting Wnt/β-catenin signaling would be a
promising approach to conquer CSCs.

7.4.4 Role of PI3K/Akt and NF-kB Pathways in CSCs

The aberrant PI3K/Akt signaling pathway boosts up the cellular proliferation and
survival of the CSCs [91, 92]. PI3K is a heterodimer consisting of a regulatory
subunit—p85 and a catalytic subunit—p110 and Akt, a protein kinase. Both can
regulate the EMT process by modulating a series of relevant transcription factors
such as Twist, Snail, and Slug; inducing integrin-linked kinase activities and
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stimulating MMPs. Moreover, PI3K/Akt might induce the EMT in CSCs in cooper-
ation with TGF-β, NF-κB, RAS, and Wnt/β-catenin [93].

Studies reported that microRNAs (miR-126, miR-10b) are helpful in the mainte-
nance of CSCs state via PI3K signaling through inhibition of PTEN. They promote
maintenance of CSCs by increasing tumor sphere formation along with
overexpression of stemness genes OCT-4 and Snail1 [94, 95]. These findings
show that PTEN signaling plays a suppressive role in the maintenance of CSCs
stemness [95].

Aberrant activation and overexpression of the proinflammatory transcription
factor (NF-κB) protect CSCs from the programmed cell death (apoptosis) by direct
upregulation of anti-apoptotic genes or antagonistic effect on p53 pathway and
promote self-renewal characteristics of CSCs [58]. Transcription factors consist of
five different proteins that function as dimers which are normally inactivated in the
cytoplasm through binding to IκB proteins. Activation of this pathway occurs due to
binding of tumor necrosis factor alpha (TNF-α), IL-1β, and bacterial cell wall
components to their respective receptors (TNF receptor, IL-1 receptor, and toll-
like receptors also known as TLRs), respectively [96]. In case of canonical NF-κB
pathway, adapter proteins are recruited, facilitating the phosphorylation and activa-
tion of IκB kinase (IKKβ) proteins which subsequently initiate the phosphorylation
of IκB proteins, marking them for ubiquitination and degradation [96]. Degradation
of IκB releases NF-κB which translocates to the nucleus and activates transcription
of target genes [58]. In case of non-canonical NF-κB pathway, activation occurs
through different receptors, such as receptor activator of NF-κB (RANK) and CD40,
signaling through NF-κB-inducing kinase and IKKα. Then p100/RelB dimers are
processed into p52/RelB dimers which translocate to the nucleus and activates
transcription. The NF-kB pathway is a highly complex and critical signaling path-
way and has role in cellular proliferation, survival, and differentiation of CSCs
[96]. Hence, we can conclude that NF-κB signaling constitutes an important path-
way controlling the self-renewal and tumorigenesis of CSCs [97, 98]. NF-κB
signaling has also been implicated in enabling CSCs to facilitate metastasis by
downregulation of IKKβ. Genetic silencing or chemical inhibition of IKKβ reduced
the expression of the stemness proteins LIN-28, OCT-4, SOX-2, and NANOG. The
NF-κB signaling pathway may support CSCs stemness and promote tumor metasta-
sis in cancers [99].

7.5 Flavonoids Targeting CSCs

In recent years, several dietary compounds derived from natural sources have been
found effective in chemoprevention and treatment of various types of cancers.
Flavonoids are a class of polyphenolic secondary metabolites consisting of a
C6-C3-C6 skeleton (15-carbon structure that consists of two phenyl rings and a
heterocyclic ring) that are found abundantly in dietary plants and some medicinal
herbs. On the basis of their chemical structures, they are categorized as flavones,
flavanones, flavonols, and isoflavones which are commonly present in the human
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diet [1, 100–102]. They possess anticancer activity both in preclinical and cellular
model systems (Fig. 7.3). They have also shown an inhibitory effect on the self-
renewal potential and survival of CSCs in various tumors [1, 54]. Moreover, several
recent studies have suggested that flavonoids can also play important role in
targeting the CSCs and may sensitize them towards conventional anticancer
therapies [58, 103–105]. We have reviewed the available literature of flavonoids
targeting CSCs responsible for progression of disease along with their attenuating
signaling pathways.

Mostly flavonoids regulate or eradicate CSCs of tumors by targeting various
pathways which might be associated with maintenance of CSCs such as
Wnt/β-catenin, Hedgehog, Notch, PI3K/Akt, and NF-κB signaling pathways. Few
of the flavonoids such as genistein, quercetin, silibinin, and apigenin have been
explored substantially in the literature for their role in inhibition of CSCs. However,
there is paucity of data for some of the flavonoids such as broussoflavonol B, icaritin,
morusin, casticin, wogonin, baicalein, luteolin, ugonin J and K, naringine, and
pomiferin though they have also shown inhibition of CSCs. These flavonoids have
been shown to directly or indirectly modulate these signaling pathways and contrib-
ute to the reduction of CSCs growth and maintenance.

Fig. 7.3 Flavonoids targeting CSCs
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7.5.1 Genistein

Genistein or Prunetol (4’,5,7-Trihydroxyisoflavone) is an isoflavone type of flavo-
noid. Perkin and Newbury were the first to isolate genistein in 1899 from Genista
tinctoria (Leguminosae) [106–109]. Genistein is a highly active anticancer
phytocompound used in the treatment of various types of malignancies [110–112].

Genistein is known to act via attenuating some signaling pathways like Notch,
Hedgehog, and Wnt/β-catenin of CSCs. Moreover, there are other cellular targets of
genistein through which it can inhibit stemness of CSCs. In recent years, the
inhibitory action of genistein against CSCs was established in colon, breast, prostate,
and pancreatic cancer [16, 113–115]. Downregulation of expression of cyclin B1,
Bcl-2, and Bcl-xL via Notch pathway in breast cancer was also exemplified [114]. In
one in vitro study, Chen and colleagues demonstrated that genistein can cause
overexpression of ARHI tumor suppressor gene thereby inhibiting cell proliferation
and inducing apoptosis in CSCs in prostate cancer [15]. It has also exhibited an
antagonistic role against prostate CSCs through inhibition of Hedgehog-Gli1 path-
way [16]. Sekar and coworkers conducted in vivo experiment in 1, 2-dimethyl
hydrazine (DMH) induced colon cancer model in mice. They observed that genistein
had reduced Argyrophilic nuclear organizer region (AgNOR) and proliferating cell
nucleolar antigen (PCNA) along with suppression of colonic stem cell markers
[113]. Xia and colleagues showed that genistein was capable to upregulate
miR-34a along with downregulation of Notch-1 in pancreatic cancer [115].

The inhibitory role of genistein on Wnt/β-catenin signaling pathway in CSCs has
also been well-established in various studies. In an ex vivo study, genistein was
found to have an inhibitory effect on Wnt/β-catenin pathway by regulating
miR-1260b expression in renal cancer cells [116]. In a study, genistein prevented
self-renewal of breast CSCs via attenuation of Wnt/β-catenin pathway [117].

Furthermore, genistein has the potential to inhibit ovarian CSCs via suppression
of FOXO3a and FOXM1 along with downregulation of expression of stem cell
markers (CD133, CD44, and ALDH1) responsible for self-renewal [14]. This
finding was further supported by another study in which ovarian tumor suppression
was due to decreased expression of CD163 and p-STAT3 [118]. Genistein also
inhibited the self-renewal capacity and reduced the resistance of therapy in gastric
cancer by suppression of CSCs markers [119]. It has the ability to reverse EMT
process in colon cancer by inhibiting cell migration via downregulation of EMT
markers (ZEB1, ZEB2, FOXC1, FOXC2, Snail2/slug, and TWIST1) along with
suppression of Notch-1, p-NF-κB, and NF-κB signaling in in vitro study [120]. The
inhibitory role of genistein in CSCs was tested in renal and nasopharyngeal cancer
and was found to suppress of Hedgehog signaling pathway [121, 122].

Recently, genistein has also shown an inhibitory effect in lung cancer by decreas-
ing cell viability, migration, and invasion of lung CSCs through suppression of
protein expression levels of CD133, CD44, Bmi1, and Nanog [123]. The role of
genistein in head and neck cancer was too studied and was found to downregulate
EMT. It also synergized the effect of doxorubicin, cisplatin, and 5-flourouracil to
cause cell death in CSCs [124] (Table 7.2). Genistein has also produced a synergistic

7 Flavonoids Targeting Cancer Stem Cells: A Paradigm to Anticancer Efficacy 251



Ta
b
le

7.
2

A
nt
ic
an
ce
r
po

te
nt
ia
l
of

G
en
is
te
in

ta
rg
et
in
g
C
S
C
s

T
re
at
m
en
t

C
an
ce
r
ta
rg
et

C
el
l
lin

e/
M
od

el
us
ed

A
ss
ay

us
ed

C
on

cl
us
io
n

R
ef
s.

G
en
is
te
in

R
en
al
ca
nc
er

E
x
vi
vo

st
ud

y
in

A
-4
98

,7
86

-O
,

an
d
C
ak
i-
2
ce
ll
lin

e
M
ic
ro
R
N
A

tr
an
sf
ec
tio

n,
V
ia
bi
lit
y

as
sa
y,

In
va
si
on

as
sa
y,

A
po

pt
os
is

an
al
ys
is
,P

la
sm

id
co
ns
tr
uc
tio

n,
L
uc
if
er
as
e
as
sa
y,

R
T
-q
P
C
R
,a
nd

W
es
te
rn

bl
ot
tin

g

B
lo
ck
in
g
of

W
nt
/β
-c
at
en
in

pa
th
w
ay

an
d
m
iR
-1
26

0b
w
as

do
w
nr
eg
ul
at
ed
,i
nd

uc
tio

n
of

ap
op

to
si
s,
in
hi
bi
tio

n
of

ce
ll

pr
ol
if
er
at
io
n
an
d
in
va
si
on

[1
16
]

G
en
is
te
in

R
en
al
ca
nc
er

In
vi
tr
o
st
ud

y
in

76
8-
O

an
d

A
C
H
N

ce
ll
lin

e
S
ph

er
e
fo
rm

at
io
n
as
sa
y,
C
el
lc
yc
le

an
al
ys
is
,F

lo
w
cy
to
m
et
ry

an
al
ys
is
,

W
es
te
rn

bl
ot
tin

g,
an
d
R
T
-
qP

C
R

A
ct
iv
at
io
n
of

S
on

ic
he
dg

eh
og

pa
th
w
ay
,i
nh

ib
iti
ng

pr
ol
if
er
at
io
n

an
d
in
du

ct
io
n
of

ap
op

to
si
s

[1
22
]

G
en
is
te
in

C
ol
on

ca
nc
er

In
vi
tr
o
st
ud

y
in

H
T
-2
9
ce
ll
lin

e
C
el
l
pr
ol
if
er
at
io
n
as
sa
y,

F
lo
w

cy
to
m
et
ry

an
al
ys
is
,I
nv

as
io
n

as
sa
ys
,D

A
P
I
st
ai
ni
ng

,C
el
l

ap
op

to
si
s
an
al
ys
is
,

im
m
un

ofl
uo

re
sc
en
ce

st
ai
ni
ng

,a
nd

R
T
-P
C
R

S
up

pr
es
si
on

of
N
ot
ch

pa
th
w
ay

le
ad
in
g
to

re
ve
rs
al
of

E
M
T
,

in
du

ct
io
n
of

ap
op

to
si
s
an
d

in
hi
bi
tio

n
of

ce
ll
in
va
si
on

[1
20
]

G
en
is
te
in

C
ol
on

ca
nc
er

In
vi
vo

st
ud

y
in

1,
2-
di
m
et
hy

l
hy

dr
az
in
e-
in
du

ce
d
co
lo
n
ca
nc
er

m
od

el

A
lc
ia
n
bl
ue

st
ai
ni
ng

,A
gN

O
R
,a
nd

P
C
N
A

an
al
ys
is

W
nt
/β
-c
at
en
in

pa
th
w
ay

w
as

do
w
nr
eg
ul
at
ed

al
on

g
w
ith

re
st
or
at
io
n
of

co
lo
ni
c
ni
ch
e
an
d

su
pp

re
ss
io
n
of

st
em

ce
ll
m
ar
ke
rs

(C
D
13

3,
C
D
44

,a
nd

β-
ca
te
ni
n)

[1
13
]

G
en
is
te
in

C
ol
on

ca
nc
er

In
vi
tr
o
st
ud

y
in

M
G
C
-8
03

an
d

S
G
C
-7
90

1
ce
ll
lin

e
fo
llo

w
ed

by
in

vi
vo

st
ud

y
in

N
ud

e
m
ic
e

xe
no

gr
af
t
m
od

el

S
of
t
ag
ar

co
lo
ny

fo
rm

at
io
n
as
sa
y,

T
um

or
sp
he
re

fo
rm

at
io
n
as
sa
y,

M
T
T
as
sa
y,

R
N
A
ex
tr
ac
tio

n,
R
T
-P
C
R
,R

T
-q
P
C
R
,a
nd

T
um

or
gr
ow

th
in

xe
no

gr
af
ts

In
hi
bi
tio

n
of

se
lf
-r
en
ew

al
ca
pa
ci
ty

in
ca
nc
er

ce
lls

al
on

g
w
ith

re
du

ce
d

ch
em

or
es
is
ta
nc
e
vi
a

do
w
nr
eg
ul
at
io
n
of

A
B
C
C
1,

A
B
C
C
5,

A
B
C
G
2,

an
d
E
R
K
1/
2

ac
tiv

ity
(N

ot
ch

pa
th
w
ay
)
an
d

in
hi
bi
tio

n
of

A
B
C
G
2
m
R
N
A

ex
pr
es
si
on

[1
19
]

G
en
is
te
in

B
re
as
tc
an
ce
r

In
vi
tr
o
st
ud

y
in

tr
an
sf
ec
te
d
M
S
F

ce
ll
lin

e
R
ed

oi
lO

st
ai
ni
ng

,R
T
-q
P
C
R
,

T
ri
gl
yc
er
id
e
qu

an
tifi

ca
tio

n
as
sa
y,

C
el
l
gr
ow

th
pr
ev
en
te
d
by

re
pr
es
si
on

of
W
nt
/β
-c
at
en
in

[1
17
]

252 N. Siddiqui et al.



W
es
te
rn

bl
ot
tin

g,
C
el
lv

ia
bi
lit
y

as
sa
y,

T
um

or
sp
he
re

fo
rm

at
io
n

as
sa
y

G
en
is
te
in

B
re
as
tc
an
ce
r

In
vi
tr
o
st
ud

y
in

tr
an
sf
ec
te
d

M
D
A
-M

B
-2
31

ce
ll

Q
ua
nt
ita
tiv

e
ap
op

to
tic

ce
ll
de
at
h

as
sa
y,

M
T
T
as
sa
y,

C
el
l
cy
cl
e

an
al
ys
is
,a
nd

W
es
te
rn

bl
ot
tin

g

In
hi
bi
tio

n
of

N
ot
ch
-1

pa
th
w
ay

ca
us
in
g
in
hi
bi
tio

n
of

N
F
-K

b
L
ea
di
ng

to
do

w
nr
eg
ul
at
io
n
of

cy
cl
in
B
1,

in
hi
bi
tio

n
of

pr
ol
if
er
at
io
n,

an
d
in
du

ct
io
n
of

ap
op

to
si
s

[1
14
]

G
en
is
te
in

+
D
ox

or
ub

ic
in

B
re
as
tc
an
ce
r

In
vi
tr
o
st
ud

y
in

do
xo

ru
bi
ci
n-

re
si
st
an
t
C
S
C
s
de
ri
ve
d
fr
om

pa
re
nt
al
M
C
F
-7

ce
lls

M
T
T
as
sa
y,

F
lu
or
o-

sp
ec
tr
op

ho
to
m
et
ry
,C

el
l
cy
cl
e

an
al
ys
is
,A

po
pt
os
is
an
al
ys
is
,F

lo
w

cy
to
m
et
ry
,R

T
-P
C
R
,a
nd

W
es
te
rn

bl
ot
tin

g

S
up

pr
es
si
on

of
m
R
N
A
an
d

pr
ot
ei
n
ex
pr
es
si
on

of
c-
er
bB

2,
ch
em

os
en
si
tiz
ed

th
e
C
S
C
s
to

do
xo

ru
bi
ci
n
vi
a
P
-g
p-
in
de
pe
nd

en
t

m
ec
ha
ni
sm

,i
nd

uc
tio

n
of

ce
ll

cy
cl
e
ar
re
st
an
d
ap
op

to
si
s

[1
28
]

G
en
is
te
in

P
ro
st
at
e
ca
nc
er

In
vi
tr
o
st
ud

y
in

P
C
-3

ce
ll
lin

e
T
um

or
sp
he
re

fo
rm

at
io
n
as
sa
y
an
d

C
ol
on

y
fo
rm

at
io
n
as
sa
y

In
hi
bi
tio

n
of

G
li1

ge
ne

su
pp

re
ss
in
g
C
D
44

m
ar
ke
r
ca
us
in
g

de
cr
ea
se
d
tu
m
or
ig
en
ic
ity

th
ro
ug

h
m
od

ul
at
io
n
in

H
ed
ge
ho

g
pa
th
w
ay

[1
6]

G
en
is
te
in

P
ro
st
at
e
ca
nc
er

In
vi
tr
o
st
ud

y
in

C
S
C
s
is
ol
at
ed

fr
om

P
C
-3
,L

N
C
ap
,a
nd

D
u1

45
R
T
-P
C
R
,C

el
l
pr
ol
if
er
at
io
n
as
sa
y,

In
va
si
on

as
sa
y,
L
uc
if
er
as
e
ac
tiv

ity
as
sa
y,

F
lo
w

cy
to
m
et
ry
,W

es
te
rn

bl
ot
tin

g,
an
d

Im
m
un

oh
is
to
ch
em

is
tr
y

A
ct
iv
at
io
n
of

H
ed
ge
ho

g
pa
th
w
ay

ca
us
ed

ov
er
ex
pr
es
si
on

of
A
R
H
I

tu
m
or

su
pp

re
ss
or

ge
ne
,i
nh

ib
ite
d

ce
ll
pr
ol
if
er
at
io
n,

an
d
in
du

ce
d

ap
op

to
si
s

[1
5]

G
en
is
te
in

P
ro
st
at
e
ca
nc
er

In
vi
tr
o
st
ud

y
in

A
sP
C
-1

ce
ll
lin

e
M
T
T
as
sa
y,

C
lo
no

ge
ni
c
as
sa
y,

H
is
to
ne
/D
N
A

E
L
IS
A
,R

T
-P
C
R
,

S
ph

er
e
fo
rm

at
io
n
as
sa
y,

W
es
te
rn

bl
ot

an
al
ys
is
,a
nd

m
iR
N
A
-3
4a

T
ra
ns
fe
ct
io
n

R
ee
xp

re
ss
io
n
of

m
iR
-3
4a

th
ro
ug

h
do

w
nr
eg
ul
at
io
n
of

N
ot
ch
-1

ca
us
in
g
in
du

ct
io
n
of

ap
op

to
si
s
in

C
S
C
s

[1
15
]

G
en
is
te
in

N
as
op

ha
ry
ng

ea
l

ca
nc
er

In
vi
tr
o
st
ud

y
in

hu
m
an

na
so
ph

ar
yn

ge
al
ca
nc
er

ce
ll
lin

es
T
um

or
sp
he
re

fo
rm

in
g
as
sa
y

S
on

ic
he
dg

eh
og

w
as

su
pp

re
ss
ed

le
ad
in
g
to

in
hi
bi
tio

n
of

[1
21
]

(c
on

tin
ue
d)

7 Flavonoids Targeting Cancer Stem Cells: A Paradigm to Anticancer Efficacy 253



Ta
b
le

7.
2

(c
on

tin
ue
d)

T
re
at
m
en
t

C
an
ce
r
ta
rg
et

C
el
l
lin

e/
M
od

el
us
ed

A
ss
ay

us
ed

C
on

cl
us
io
n

R
ef
s.

C
N
E
2
an
d
H
O
N
E
1
en
ri
ch
ed

C
S
C
s

tu
m
or
sp
he
re

fo
rm

at
io
n
ca
pa
ci
ty
,

ce
ll
pr
ol
if
er
at
io
n,

an
d
in
du

ct
io
n
of

ap
op

to
si
s.
D
ec
re
as
ed

th
e
nu

m
be
r

of
E
pC

A
M
+
ce
lls
,s
up

pr
es
se
d

ex
pr
es
si
on

of
st
em

ce
ll
m
ar
ke
rs

G
en
is
te
in

L
un

g
ca
nc
er

In
vi
tr
o
st
ud

y
in

IM
R
-9
0,

H
46

0,
an
d
A
54

9
ce
ll
lin

es
S
ph

er
e
fo
rm

at
io
n
as
sa
y,

C
el
l

vi
ab
ili
ty

as
sa
y,

W
ou

nd
-h
ea
lin

g
as
sa
y,

T
ra
ns
w
el
l
in
va
si
on

as
sa
y,

W
es
te
rn

bl
ot
tin

g,
an
d
C
el
l

tr
an
sd
uc
tio

n
an
al
ys
is

D
ow

nr
eg
ul
at
io
n
of

F
ox

M
1

ca
us
in
g
in
hi
bi
tio

n
of

C
S
C
s

m
ig
ra
tio

n
an
d
in
va
si
on

vi
a

su
pp

re
ss
io
n
of

W
nt
/β
-c
at
en
in

[1
23
]

G
en
si
te
in

+
O
xa
lip

la
tin

O
ra
lc
an
ce
r

In
vi
vo

st
ud

y
in

D
im

et
hy

lb
en
z[
a]

an
th
ra
ce
ne

(D
M
B
A
)-
in
du

ce
d
or
al

ca
rc
in
om

a
m
od

el

H
is
to
pa
th
ol
og

ic
al
an
al
ys
is

D
ow

nr
eg
ul
at
io
n
of

W
nt
/β
-c
at
en
in

ca
us
ed

de
cr
ea
se
d
C
D
44

ex
pr
es
si
on

an
d
th
us

de
cr
ea
se
d
ce
ll

pr
ol
if
er
at
io
n

[1
26
]

G
en
is
te
in

H
ea
d
an
d
ne
ck

ca
nc
er

E
x
vi
vo

in
he
ad

an
d
ne
ck

ca
nc
er

tis
su
es

re
se
ct
ed

fr
om

he
ad

an
d

ne
ck

ca
nc
er

pa
tie
nt
s

C
el
l
pr
ol
if
er
at
io
n
as
sa
y,

S
ph

er
e

fo
rm

at
io
n
as
sa
y,

M
ig
ra
tio

n
an
d

in
va
si
on

as
sa
y,

L
uc
if
er
as
e
as
sa
y,

F
lo
w

cy
to
m
et
ry
,C

ol
on

y
fo
rm

at
io
n
an
al
ys
is
,R

T
-P
C
R
,a
nd

W
es
te
rn

bl
ot
tin

g

A
ct
iv
at
io
n
of

N
ot
ch

ca
us
ed

in
hi
bi
tio

n
of

st
em

ne
ss

ch
ar
ac
te
ri
st
ic
s
in
cl
ud

in
g

m
ig
ra
tio

n,
in
va
si
on

,a
nd

co
lo
ny

-
fo
rm

in
g
ab
ili
tie
s

[1
24
]

G
en
is
te
in

O
va
ri
an

ca
nc
er

In
vi
tr
o
st
ud

y
in

S
K
O
V
3
an
d

O
V
C
A
R
-3

ce
ll
lin

es
al
on

g
w
ith

in
vi
vo

in
nu

de
m
ic
e
xe
no

gr
af
t

m
od

el

In
vi
vo

tu
m
or
ig
en
ic
ity

as
sa
y,

M
T
T
as
sa
y,

an
d
W
es
te
rn

bl
ot
tin

g.
A
ct
iv
at
io
n
of

F
O
X
O
3a

an
d

do
w
nr
eg
ul
at
io
n
of

F
O
X
M
1
an
d

st
em

ce
ll
m
ar
ke
rs
(C
D
13

3,
C
D
44

,
an
d
A
L
D
H
1)

by
w
hi
ch

si
gn

ifi
ca
nt
ly

in
hi
bi
tin

g
pr
ol
if
er
at
io
n
an
d
se
lf
-r
en
ew

al
ca
pa
ci
ty

of
C
S
C
s.

[1
4]

G
en
is
te
in

O
va
ri
an

ca
nc
er

In
vi
tr
o
st
ud

y
in

S
K
O
V
3,

A
27

80
,

an
d
O
V
C
A
R
-3

ce
ll
lin

es
fo
llo

w
ed

S
ph

er
e
fo
rm

at
io
n
as
sa
y,

C
ol
on

y
fo
rm

at
io
n
te
st
,E

nz
ym

e-
lin

ke
d

A
ct
iv
at
io
n
of

he
dg

eh
og

pa
th
w
ay

ca
us
ed

bl
oc
ki
ng

IL
-8
/S
T
A
T
3

[1
18
]

254 N. Siddiqui et al.



by
in

vi
vo

st
ud

y
in

nu
de

m
ic
e

xe
no

gr
af
t
m
od

el
im

m
un

os
or
be
nt

as
sa
y,

w
es
te
rn

bl
ot
tin

g,
an
d
in

vi
vo

tu
m
or
ig
en
ic
ity

ex
pe
ri
m
en
t

si
gn

al
in
g
w
hi
ch

le
ad
s
to
in
hi
bi
tio

n
of

se
lf
-r
en
ew

al
ca
pa
ci
ty

of
C
S
C
s

G
en
si
te
in

+
T
am

ox
if
en

H
ep
at
ic
ca
nc
er

In
vi
tr
o
st
ud

y
in

H
ep
G
2
ce
ll
lin

e
C
el
l
gr
ow

th
as
sa
y,

C
el
lv

ia
bi
lit
y

as
sa
y,

C
el
l
cy
cl
e
an
al
ys
is
,a
nd

F
lo
w

cy
to
m
et
ry

S
yn

er
gi
st
ic
al
ly

in
hi
bi
te
d

pr
ol
if
er
at
io
n
an
d
in
du

ce
d

ap
op

to
si
s

[1
25
]

G
en
si
te
in

+
5-
fl
uo

ro
ur
ac
il

C
ol
or
ec
ta
l

ca
nc
er

In
vi
tr
o
st
ud

y
in

H
T
29

ce
ll
lin

e
C
ol
on

os
ph

er
e
fo
rm

at
io
n,

C
el
l

vi
ab
ili
ty
,C

el
lc
yc
le
an
al
ys
is
,F

lo
w

cy
to
m
et
ry
,a
nd

W
es
te
rn

bl
ot
tin

g

R
ed
uc
tio

ns
in

C
D
13

3+
C
D
44

+

su
bp

op
ul
at
io
n
al
on

g
w
ith

re
du

ce
d

co
lo
no

sp
he
re

fo
rm

at
io
n
th
ro
ug

h
up

re
gu

la
tio

n
of

N
ot
ch

pa
th
w
ay

[1
27
]

7 Flavonoids Targeting Cancer Stem Cells: A Paradigm to Anticancer Efficacy 255



effect with other chemotherapeutic drugs and is helpful in chemosensitizing the
CSCs to treat resistance cases. Sanaei et al. studied the combined effect of genistein
and Tamoxifen in hepatocellular cancer cell line (HepG2). It showed that the
combination synergistically inhibited proliferation and induced apoptosis
[125]. Genistein has a synergistic effect when used in combination with oxaliplatin
since the combination exhibited suppression of the expression of CSCs marker
(CD44) and inhibited cell proliferation in oral squamous cell carcinoma [126]. Genis-
tein has also shown a synergistic effect when given in combination with doxorubicin
and 5-FU. They targeted CSCs and chemosensitize them [127, 128]. The role of
genistein to retard CSCs has been explored in various studies which are presented in
Table 7.2 with their cellular pathways.

7.5.2 Quercetin

Quercetin (C15H10O7), a flavonol from the class of flavonoids, is dietary polypheno-
lic compound found in many dietary plants and also found in medicinal botanicals
[Ginkgo biloba (Ginkgoaceae) and Hypericum perforatum (Hypericaceae)] displays
excellent antitumor activity [129]. It induces apoptosis and downregulates protein
expression of EMT, angiogenesis, and stemness of CSCs population in many cancer
[130, 131]. In studies, quercetin has been shown to inhibit breast cancer via targeting
CSCs. Recently, upregulation of small heat shock proteins 27 (Hsp27) was found to
be beneficial in maintaining CSCs along with their stemness [131–133]. Quercetin
could act as an inhibitor of Hsp27 which causes a decrease in self-renewal capacity
of CSCs which eventually reduces the population of ALDH+ breast CSCs. Quercetin
further displayed the synergistic effect with geldanamycin (Hsp90 inhibitor) and
reduced the migration, tumorigenesis, and population of ALDH+ breast CSCs via the
suppression of Hsp90 and Hsp27 [134]. In another study, quercetin suppressed
vascularization of tumors by targeting epidermal growth factor (EGF)/Hsp27 signal-
ing [135]. In addition to target Hsp27, quercetin has shown an inhibitory effect on
PI3K/Akt/mTOR signaling pathway which is responsible for self-renewal and
stemness of CSCs in breast cancer [136]. Quercetin has also demonstrated an
improvement in chemosensitivity of resistance cases and inhibited population of
breast CSCs by blocking nuclear translocation of Y-box binding protein 1 and hence
downregulating P-glycoprotein. This is one of the reasons for its effect in reducing
the multidrug resistance and stemness of CSCs [136, 137]. The use of anticancer
agents in combination with quercetin has resulted in reduced target toxicity, induc-
tion of apoptosis, lowering the cancer recurrence, and inhibition of EMT in CSCs.

Quercetin has also shown promising result in head and neck cancer by showing
inhibitory effect on stemness signature, self-renewal capacity, migration ability, and
EMT along with reduction in CSCs number which were derived from SAS and
OECM1 cell lines (Table 7.3) [138]. It has also shown anticancer effect against
teratocarcinoma via antagonizing the Wnt/β-catenin signaling pathway in CSCs of
NT2/D1 human cell line [139]. When quercetin was used with other flavonoid, such
as luteolin, the combination reversed the EMT process by downregulating the EMT
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markers in epidermal carcinoma [140]. These combinations are also shown to inhibit
the JNK signaling pathway, which further explain their effects on stemness,
vasculogenic mimicry properties, and metastatic potential in Du145-III cells
(CSCs) derived from Du144-Parental cell line of prostate cancer [141].

Quercetin and EGCG (Epigallocatechin gallate) found in tea, act synergistically
and inhibited self-renewal potential along with migration and invasion properties of
CSCs of prostate carcinoma by inhibiting TCF/LEF and Gli activities. Quercetin
with EGCG lowers the viability of prostate tumor spheroids and lessens the migra-
tory, invasiveness, and colony-forming potential of CD44+/CD133+ prostate CSCs
[18]. The anti-CSCs activity of sulforaphane in combination with quercetin has been
found more effective in treatment of pancreatic cancer in the MIA-aCa2 CSCs via
inhibiting tumor growth [130]. Quercetin has further drawn attention as a potential
CSCs targeting therapeutic agent in colon cancer by inhibiting the proliferation of
CD133+ colon CSCs and also increasing the chemosensitivity to doxorubicin in
in vitro study [142].

Furthermore, the combined effect of cisplatin and quercetin in head and neck
cancer was found promising in drug-resistant cases of cisplatin therapy. SCC25 oral
squamous cisplatin-resistant CSCs were implanted into nude mice. They signifi-
cantly inhibited the tumor growth compared with cisplatin or control alone and
chemosensitized the CSCs [143] (Table 7.3).

7.5.3 Silibinin

Silibinin is a flavonolignan obtained from the seeds and fruits of milk thistle plant
Silybum marianum (Asteraceae) and has been used for the treatment of various types
of liver ailment [144]. Previous investigations have shown its strong
chemopreventive abilities in various types of cancers [6, 145–149] (Table 7.4).
Silibinin has exemplified its action to inhibit colon CSCs in in vitro and ex vivo
models and prevent the self-renewal and sphere formation of CSCs by suppressing
the PP2Ac/AKT Ser473/mTOR pathway [150]. This is further supported by another
study in which silibinin decreased the number and colon sphere formation of CSCs
in colorectal cancer by interfering with kinetics and shifted the cell division process
towards asymmetric type (generating one CSCs and one first-generation progenitor
cell) [151]. Silibinin was found to be effective in colon cancer cell line via blockage
of β-catenin Wnt signaling pathway. It downregulates β-catenin gene and protein
expression in CSCs. Silibinin also significantly suppressed the proliferation of CSCs
by inducing apoptosis by increasing the Bax/Bcl-2 ratio. It has further shown
downregulation of stemness markers of CSCs like CD133, CD44, BMI1, ALDH1,
and doublecortin-like kinase 1. Additionally, it has the ability to inhibit migration by
attenuation of EMT through decreased expression of N-cadherin and vimentin along
with increased expression of E-cadherin [152].

The nanoformulation of silibinin has inhibited proliferation and migration of
CSCs by induction of apoptosis using MIA-PaCa pancreatic cell line through
suppression of some onco-miRs (miR-155, miR-222, and miR-21) and upregulation
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of some tumor suppressive miRs (miR-34a, miR-126, and miR-let7b) [153]. More-
over, silibinin also has a synergistic effect with other therapeutics. Silibinin in
combination with sorafenib has shown a synergistic effect through inhibition of
phosphorylation of STAT3/ERK/AKT pathway. This leads to inhibited sphere
formation and self-renewal of CSCs in hepatic carcinoma [144] (Table 7.4). The
combination of silibinin and 5-FU has demonstrated inhibition of CD44v6 (isoform
of CD44) which resulted in weakened stemness characteristic of colon CSCs.
CD44v6 is a functional biomarker responsible for cancer progression, initiation of
metastatic process, resistance to conventional therapeutics, relapse, and associated
with poor survival in patients with colon cancer [154].

7.5.4 Apigenin

Apigenin, a common polyphenolic dietary flavone, is abundantly present in many
fruits, vegetables, and Chinese medicinal herbs. Evidence from in vitro and in vivo
studies has shown its anticancer potential in multiple types of malignancies such as
brain tumor, ovarian cancer, lung carcinoma, prostate cancer, breast cancer, and
other tumors [104, 105, 155–157]. Recently, the anticancer effect of apigenin has
been widely investigated via targeting sub-populated CSCs. Also, it reduced the
toxicity of chemotherapeutic agents. Apigenin has been reported to suppress various
human cancers in in vitro and in vivo models by targeting multiple biological
processes such as triggering cell apoptosis and autophagy, inducing cell cycle arrest,
and suppressing cell migration and invasion. This chapter also includes the most
recent advancement of apigenin and its synergistic effect with other chemotherapeu-
tic agents by targeting CSCs along with attenuation of involved signaling pathways
(Table 7.5). The use of apigenin with chemotherapeutics has overcome the cancer
drug resistance or may reduce the toxicities [158]. The glycosidal form of apigenin,
Isovitexin (apigenin-6-C-glucoside), has also exhibited its anticancer potential
against CSCs in hepatic carcinoma. It decreases the progression of carcinogenicity
and stemness by downregulating FoxM1 via inhibition of manganese superoxide
dismutase [159]. Isovitexin also suppressed sphere, colony formation, and decreased
CD44+ cell population along with suppressed the level of ABCG2, ALDH1, and
NANOG mRNA in SK-Hep-1 spheroids of hepatocellular carcinoma by
upregulating miR-34a expression [160]. It has the ability to inhibit osteosarcoma
by decreasing CSCs population in in vivo model. It has shown to repressed sphere
formation, induced apoptotic cell death, and reduced mRNA levels in CSCs derived
from U2OS-SC and MG63-SC cells [161]. Studies of apigenin in CSCs are
presented in Table 7.5.

7.5.5 Miscellaneous Flavonoids Targeting CSCs

There is limited evidence exists on other flavonoids which have shown their
preventive effect against CSCs via modulating signaling pathways involved in the
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maintenance of CSCs. These flavanoids are broussoflavonol B, icaritin, casticin,
pomiferin, morusin, baicalein, ugonin, wogonin, luteolin, and kaempferol.

Broussoflavonol B (5,7,30,40- Tetrahydroxy-3-methoxy-6,8-diprenylflavone) is
chemically prenylflavone isolated from Broussonetia papyrifera (Moraceae) com-
monly known as Paper mulberry. It inhibits the growth of ER-positive (estrogen
positive) breast cancer in MCF7 cells probably through downregulation of ER-α36
expression. [64, 103, 162]. The knockdown of expression of ER-α36 by
broussoflavonol B inhibits tumor sphere formation and reduced the count of
HER2-CSCs which help in treating the therapy-resistant cases [103]. Jeong and
Ryu reported its anticancer potential in pancreatic cancer via suppression of the
FoxM1 and its target genes to induce G0/G1 phase arrest in p53 mutant PANC-1
cells. It also inhibited cell migration and invasion by reducing ERK activity and
MMP-2 expression [163] Table 7.6.

Icaritin is a mono-prenylflavonoid derivative (flavonoid skeleton with a lipophilic
prenyl side chain) obtained from Chinese herb Epimedium Genus having estrogen
receptor modulator effect and hence called phytoestrogen. Icaritin and its analogs
regulate cell growth of various types of cancers such as breast cancer, esophageal
cancer, chronic myeloid leukemia (CML), and lung carcinoma [103, 164–167]
Table 7.6.

Morusin, a prenylated flavonoids obtained from root bark of Morus australis
(Moraceae) possess anticancer effect on various type of malignancies [168–170]. It
showed inhibition of the growth and migration of human cervical CSCs from HeLa
cell line through attenuation of NF-kBp65 activity mediated apoptotic induction
[168]. Further, it showed promising anticancer potential in aggressive type of brain
cancer, i.e., glioblastoma. Morusin inhibits glioblastoma CSCs by induction of
apoptosis by upregulating the protein expressions of PPARΥ, Bax, and caspase-3.
Additionally, it downregulates the expressions of Bcl-2 and stemness markers such
as CD133, nestin, Oct4, and Sox2 and attenuates adipocyte trans-differentiation
[171]. Recently, morusin was found to be a potential anticancer agent in laryngeal
cancer by inhibiting the stemness and proliferation of CSCs [172] (Table 7.6).

Casticin (30,5-dihydroxy-3,40,6,7-tetramethoxyflavone) is a natural poly-
methoxy-flavone also called as vitexicarpin, isolated from the fruits of Vitex trifolia
(Lamiaceae) [173]. Casticin has exemplified its anticancer potential via targeting
CSCs and modulating their stemness related proteins, AMPK/FoxO3 signaling
pathway activation, blocking Wnt/catenin signaling pathways and inhibiting EMT
process by regulating expressions of E-cadherin, MMPs and N-cadherin in various
types of cancers like liver cancer, lung cancer, and nasopharyngeal cancer [173–175]
Table 7.6.

Other flavonoids having anti-CSCs effect are pomiferin which is isolated from the
fruit of the Maclura pomifera (Moraceae) effective in glioblastoma [176]. Ugonin J
and K (two cyclohexylmethyl flavonoids) isolated from the rhizomes of
Helminthostachys zeylanica (Ophioglossaceae) are effective in breast cancer
[177]. Naringenin which is obtained from tomato and citrus fruits acts as a phytoes-
trogen and is effective in inhibition of ER+ breast cancer CSCs [178]. Its seminatural
derivative, named 6-C-(E-phenylethenyl) naringenin was found effective in the
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treatment of hepatocellular carcinoma by suppressing Wnt/β-catenin signaling
[179]. Baicalein is 5,6,7-trihydroxyflavone, originally isolated from the roots of
Scutellaria baicalensis (Lamiaceae) possessing anticancer effect by targeting
CSCs of pancreatic, liver, multiple myeloma, and breast cancer [180–183]
Table 7.6. Luteolin is 3,4,5,7-tetrahydroxyflavone obtained from many dietary
plants such as chamomile tea, celery, perilla leaf, and green peppers. The in vitro
and in vivo studies showed that it inhibits cancer initiation and progression by
interfering with transcription factors and kinases, regulating cell cycle, apoptosis,
and inhibiting cell transformation, migration, invasion, and angiogenesis [184–
189]. It also has the potential to target CSCs via attenuation of different pathways
[167] and also produce a synergistic effect to enhance the anticancer potential of the
other chemotherapeutic drugs [190]. Moreover, it is sensitizing the CSCs and
treating therapy resistance cases of cancer [141, 191] (Tables 7.3 and 7.6).

Wogonin is an O-methylated flavone found in the roots of Scutellaria baicalensis
(Lamiaceae). Wogonin has been also used to target CSCs in various malignancies
such as osteosarcoma, multiple myeloma, and breast cancer [183, 192–194] by
attenuation of EMT markers (MMP-9), regulation of ROS signaling. Wogonoside
which is a glycoside of wogonin has shown anticancer potential against cutaneous
squamous carcinoma via suppression of PI3K/AKT and Wnt/β-catenin pathway of
CSCs [195].

Kaempferol (3,5,7-trihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one) is
a phytoestrogen, obtained abundantly from tea, broccoli, apples, strawberries, and
beans. It showed an anti-CSCs effect by decreasing breast CSCs derived from
MCF-7 cell line and downregulated the markers such as Oct4, Nanog, ABCB1,
and ALDH1A1 [196].

The details of studies regarding the inhibitory action of miscellaneous flavonoids
in CSCs have been described in Table 7.6.

7.6 Future Prospects of Flavonoids Targeting CSCs
in Malignancies

In recent years, there has been much attention towards the inhibition of CSCs to
reduce the severeness and resistant cases of cancer. Hence, polyphenolic flavonoids
are used to prevent cancer progression via targeting CSCs. Flavonoids are regarded
as multifacet phytocompounds possessing plethora of therapeutic effects [181, 197,
198]. There is substantial data available which have shown their potential to
eradicate CSCs. However, no evaluation has been conducted in the clinical setting
targeted CSCs. Furthermore, the major issue to target the CSCs is the identification
of specific markers for a particular type of tumor. The specific markers would
provide novel strategies to target the CSCs and inhibit the progression of cancer.
Flavonoids also act as epigenetic modifiers by inhibiting early epigenetic alterations
and inhibit cancer cell proliferation in in vitro models using cell lines. In various
in vitro studies, flavonoids activate the expression of different tumor suppressor
genes by epigenetic modifications [199, 200]. However, there is a lack of studies of
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flavonoids as epigenetic modifiers targeting CSCs maintenance. Hence, there is a
need for studies on flavonoids as natural epigenetic modulators for the treatment of
cancers targeting CSCs which could represent a promising and valid strategy to
inhibit chemoresistance and carcinogenesis. Flavonoids are able to eradicate and
chemosensitize the CSCs of various tumors via attenuating many pathways but they
suffer from certain limitations such as poor solubility, poor permeability, bitter taste,
extensive intestinal metabolism, and instability which diminish their bioavailability.
Due to these issues, relatively high dose of flavonoids is required to produce a
significant biological response. Strategies are needed to overcome these issues of
solubility and thereby improving its oral bioavailability. Chemical modification in
the structure of flavonoids may enhance the stability of flavonoids [109, 111, 201–
203]. This will help to conduct their clinical trials and enhance their clinical usage.
This chapter also described that the combination of flavonoids with conventional
therapies could enhance the therapeutic effects and chemoradiosensitize the CSCs in
various malignancies [182]. Hence, they may enhance the anticancer potential along
with a reduction in resistance.
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