
Halophilic, Acidophilic, Alkaliphilic,
Metallophilic, and Radioresistant Fungi:
Habitats and Their Living Strategies

9

Tuyelee Das, Abdel Rahman Al-Tawaha, Devendra Kumar Pandey,
Potshangbam Nongdam, Mahipal S. Shekhawat, Abhijit Dey,
Kanak Choudhary, and Sanjay Sahay

Abstract

The magnificent stress-resistant mechanism, capacity to transform extreme abi-
otic factors as triggers for genetic modulation and physiological evolution,
synced speciation in response to altered environment, and highly innovative
succession cum resource management skill have crowned the microorganisms
as the “specialist messenger of life” that thrive under extreme conditions. How-
ever, in recent decade, the ubiquitous fungi have gathered attention after archaea
and bacteria for their versatile ecological adaptation, morphological resilience,
and biochemical flexibility that allowed them to sustain and flourish under
nature’s deadliest environmental conditions. The inhospitable temperature, pres-
sure, radiation, desiccation, salinity, and pH (both acidic and basic)-induced
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stress has capacitated a large number of extremophilic fungi with better
sustainability factors. The “extraterrestrial” type of existence has been reported
from hostile and lethal niches like frozen world of Antarctic and Arctic, deep sea
ice and hydrothermal vents, hot springs, areas of high salt concentration, barren
desert with extreme climate, toxic heavy metal and organic matter polluted
regions, ocean trenches with high pressure, radiation contaminated zones, etc.
The phylogenetic diversity of extremophilic fungi is highly complex exactly as
their multidimensional mechanism of primary and secondary resource manage-
ment, niche utilization, and physiological metabolism. From the bed of life-
enriched rainforests to barren worlds full of toxic materials and fluctuating
climate, this eukaryotic group has manifested great evolutionary plasticity and
molecular strategies that are the center of interdisciplinary research that connects
evolutionary biology, astrobiology, biochemistry, molecular biology, ecology,
and many related fields of science. The modification of genetic make-up and
introduction of specialized survival technique controlled via manipulation of
metabolic pathways are not only associated with successful colonization of
these fungal members but also important in terms of exploration of natural
products from unexplored sources.
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9.1 Introduction

Until microbiologist exposed that the extreme environment of earth is truly occupied
by a various range of microorganisms, humans assumed that in such extreme
parameters no organism can live. Nonetheless, lately, a diverse variety of
extremophiles has been discovered across a wide range of environment like hydro-
thermal vents, hot springs, polar regions, acid mine drainage sites, deserts, acidic
lake, saline–alkaline lakes, sodic lakes, etc. (Gunde-Cimerman et al. 2003; Gunde-
Cimerman and Zalar 2014; Plemenitaš et al. 2014; Selbmann et al. 2013).
Extremophiles (eukaryotes, bacteria, and archaea) are microbes that have been
found at extremes of pressures of up to 110 MPa, pH (0–12.5), temperature
(122 �C � 20 �C), salinity (>1.0 M NaCl), and UV radiations. Archaea is the
most flourish group of extremophiles. Alternatively, fungi are the most adaptable,
ubiquitous, and effective ecological group having progressed gradually toward a
wide range of ecological niches. Accordingly, they need to utilize prime sources for
the establishment and production of essential enzymes. These fungi are additionally
impacted upon by main abiotic factors like pH, salinity, temperature, and water
availability and accessibility. Therefore, species of fungi occupy a respective niche
due to their unique kind of survival mechanism based on particular ecological abiotic
factors. Fungi apply diverse strategies to survive in different and extreme environ-
mental conditions. These strategies are mainly C-selected (combative), S-selected
(stress), and R-selected (ruderal) (Cooke and Whipps 1993). In this chapter, we are
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specifically concerned with extremophilic fungi, which may use S-selected strategies
for growth and survival in a range of so-called extreme environments. Extremophilic
fungi are gaining ecological importance as well as biotechnical interest due to their
ability to produce different kinds of bioactive compounds, enzymes, and proteins
with prospective application in the industrial fields. Extremophilic fungi have some
unique feature that were evolved based on extreme environmental conditions. Types
of extremophilic fungi and its adaptative strategies to survive in extreme environ-
ment conditions are presented in Fig. 9.1. Many of the biomolecules, viz., enzymes
and proteins produced by these fungi, are attributed to some defense strategies for
their survival in the extreme environment. Apart from industrial benefits, these fungi
possess unique genes that promote the growth of plant when applied as biofertilizers
in sustainable agriculture (Yadav 2017). Thus, this chapter focuses on the strategies
adopted by the other extremophilic fungi (halophiles, acidophiles, and alkaliophiles)
to grow in harsh environments linked to some genes’ expressions and the production
of natural products as a response, which lead to an ecological impact on the
environment.

9.2 Halophiles

Halophilic fungi require more than 0.2 M salt for their growth and are divided into
(1) slight halophiles (0.2–0.85 M; 2–5%), (2) moderate halophiles (0.85–3.4 M;
5–20%), and (3) extreme halophiles (3.4–5.1 M; 20–30%) (El Hidri et al. 2013;
Guesmi et al. 2013).

Fig. 9.1 Representative extremophilic fungi and their adaptive strategies to survive in extreme
environmental conditions
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9.2.1 Habitats

Halophilic fungi have been reported from various habitats including the following.

9.2.1.1 Saline Soil
A saline soil is soil with high but variable sodium concentration.

9.2.1.2 Saline Water
Saline water is water with salinity 3% or above (De-Dekker 1983). It includes
brackish water, marine water, and water from salt lakes and salterns. The saline
water is broadly divided into two types, viz., NaCl-rich thalassohaline and MgCl2-
and CaCl2-rich athalassohaline. Of these, thalassohaline water is an important
habitat of halophilic life including fungi. Some typical thalassohaline habitats are
the Dead Sea, Grate Salt Lake of USA, and Natrun Valley of Egypt. The Dead Sea is
about 320 m in depth and a salt concentration of 78% NaCl. It has slightly acidic pH
and important ions such as Na+, Cl-, and Mg2+ (Javor 1989). The Great Salt Lake,
USA, has slightly alkaline pH and salinity of 33% NaCl (Javor 1989). The Solar
Lake, Egypt, may have salinity of 20% NaCl in the summer. Lakes at Natrun Valley
(Wadi El Natrun), Egypt, have salinity in the range of 3.1–8.6% NaCl,

9.2.1.3 Solar Salterns
These are manmade series shallow ponds for making salt. The ponds are fed by sea
water or other saline water bodies, the last in the series is crystallizer having salt
above 30% (Antón et al. 2000). Inland saltern of La Mala, Spain, has salinity of 18%
NaCl and other ions like Mg2+, Ca2+, and K+.

9.2.2 Halophilic and Halotolerant Fungi

The fungi isolated from various saline habitats are mostly halotolerant rather than
halophilic. They can grow in growth medium supplemented with or without salt.
They have been isolated from saline and nonsaline habitats (Plemenitaš et al. 2008)
including from food as food contaminants. The orders Capnodiales, Eurotiales, and
Dothideales of Ascomycota and the genus Wallemia of Basidiomycota have been
reported to comprise halophilic or halotolerant species (Al-Abri 2011). They include
meristematic melanized yeast-like fungi, the so-called black yeasts such as Hortaea
werneckii (Zalar et al. 1999b), Phaeotheca triangularis (Zalar et al. 1999b, c),
Aureobasidium pullulans (Zalar et al. 1999b), and a new species Trimmatostroma
salinum (Zalar et al. 1999a), different related species of the genus Cladosporium
(Gunde-Cimerman et al. 2000; Zalar et al. 2007; Butinar et al. 2005a),
non-melanized yeasts Pichia guilliermondii, Debaryomyces hansenii, Yarrowia
lipolytica, Candida parapsilosis, Rhodosporidium sphaerocarpum, R. babjevae,
Rhodotorula laryngis, Trichosporon mucoides, Metschnikowia bicuspidata, Can-
dida atmosphaerica-like and Pichia philogaea-like (Butinar et al. 2005b), the
filamentous genera Wallemia, Scopulariopsis and Alternaria (Zalar et al. 2005;
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Gunde-Cimerman et al. 2005), and different species of the anamorphic genera
Aspergillus and Penicillium, including some of their teleomorphic genera Eurotium
and Emericella (Butinar et al. 2005, 2011). Of all, Wallemia ichthyophaga
(Basidiomycetes) is the most well-known and in true sense halophilic fungus that
requires a minimum of 10% NaCl for its growth (Zalar et al. 2005; Zajc et al. 2014).

9.2.3 Living Strategies

9.2.3.1 Lower Water Activity
Halotolerants are adapted to lower water activity (aw) and can thrive in the presence
of lower concentration of available water.

9.2.3.2 Compatible Solute
Fungi face in hypersaline environment two stresses, viz., osmotic and ionic ones.
Fungi adapted to life at aw do this by accumulating compatible solutes to counter the
impact of lowering turgor pressure in the presence of hypersaline environment. They
apply same strategy to counter salinity-related osmotic stress. The halophilic
W. ichthyophaga and halotolerants A. pullulans, H. werneckii, and other halotolerant
fungi accumulate primarily glycerol as compatible solute. In addition,
W. ichthyophaga does accumulate little amount of arabitol and traces of mannitol
to supplement glycerol (Zajc et al. 2013a, b). The black yeast H. werneckii, on the
other hand, at lower salinities produces mycosporine–glutaminol–glucoside (prime
function of mycosporine being involved in fungal sporulation and UV protection)
(Oren and Gunde-Cimerman 2007), and at higher salinities produces other polyols
(e.g., erythritol, arabitol, and mannitol) to supplement glycerol (Kogej et al. 2004,
2006). In case of salt-tolerant yeasts Debaryomyces hansenii, Candida versatilis,
Rhodotorula mucilaginosa, or Pichia guilliermondii trehalose and other polyols
supplement glycerol (Andre et al. 1988; Prista et al. 1997; Almagro et al. 2000).

9.2.3.3 Ion Homeostasis
There are at least three physiological strategies halotolerant fungi apply to overcome
ion stress. The halotolerant H. werneckii is said to use the two salt-responsive P-type
(ENA-like) ATPases (Gorjan and Plemenitas 2006) to extrude Na + at higher
concentration of NaCl as supported by genomic data (Lenassi et al. 2013). The
halophilic Wallemia ichthyophaga, which lacks most cation transporters, seems to
use avoidance strategy by preventing entry of excess Na + with its extremely
thickened cell walls (Kralj Kuncic et al. 2010, 2013; Zajc et al. 2013a, b).

.

9.2.3.4 Cell Wall Structure and Pigmentation
At the differential level of melanin on outer cell wall of H. werneckii in the presence
of different salt concentrations (e.g., thin layer of melanin when there is no NaCl, but
thick layer of melanin at optimal salt concentration) (Kogej et al. 2004, 2006), the
melanin seemingly gives mechanical support to counter higher turgor pressure
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(Kogej et al. 2004, 2006). The meristematic growth of Wallemia ichthyophaga
forming bigger (fourfold) and compact multicellular clumps and thickened (three-
fold) at higher salinity (cf. growth phenotype at lower salt concentration) is consid-
ered as an important adaptation to tolerate extreme salinity (Kralj Kuncic et al. 2010,
2013).

9.2.3.5 Plasma Membrane Fluidity
It is generally seen that eukaryotic cells that accumulate glycerol as a compatible
solute, its back outflow has to be stopped by using active transport system (energeti-
cally costly) or by reducing fluidity of membrane through enhancing sterol content
(Oren 1999). In case ofH. werneckii, it has been shown that membrane remains fluid
over a wide range of salinities (Turk et al. 2004, 2007) and its sterol content remains
largely unchanged (Turk et al. 2004), suggesting that its hypermelanized cell wall
also helps maintain glycerol at higher concentrations in the cells even in the presence
of highly fluid membrane (Gostincar et al. 2009).

9.2.3.6 Molecular Basis
Halophilic and halotolerant fungi developed a novel molecular mechanism so that
they can maintain their growth in high salt condition. Halophilic fungi possess a few
features for osmotolerance via utilizing compatible solutes by activation of the HOG
pathway. The HOG pathway produces glycerol that reestablishes the osmotic bal-
ance in the cell (Gostinčar et al. 2011; Zajc et al. 2012; Hohmann 2009). Plemenitaš
et al. (2014) observed that halophilic W. ichthyophaga produced compatible solutes
(glycerol) by HOG pathway activation implicated to their survival in a high osmolar
environment. W. ichthyophaga also maintains high K+/Na+ ratios since in a high
saline environment toxic Na+ ions are over K+ ions. Thus, halophilic fungi devel-
oped some mechanisms that can maintain high K+/Na+ ratios (Plemenitaš et al.
2014). Hydrophobin is a type of protein that contains a high number of acidic amino
acids. These acidic amino acids are exposed to the protein surface and bind with salt
and reduced salt-induced changes (Siglioccolo et al. 2011). Hydrophobins were
found to be present in both W. ichthyophaga and W. sebi (Zajc et al. 2013a, b).
Hydrophobins also induced microconidial chain formation in W. ichthyophaga,
which might involve the accumulation of cells for the formation of the cluster.
Production of haloadaptation is primarily attributed to the response against salt stress
(Fuchs et al. 2004; Gostincar et al. 2010). Hydrophobins can also maintain cell wall
rigidity so that halophilic fungi take advantage of osmolarity changes in stress
(Wosten 2001; Bayry et al. 2012). H. werneckii contains acidic proteins that are
involved in the accumulation of K+ ions besides glycerol in response to hypersalinity
(Kogej et al. 2005).
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9.3 Alkaliphiles

Biochemical processes can occur at different hydrogen ion concentrations. However,
biochemical events function better close to neutral pH. Very high or low pH harms
the activity of biochemical events mostly via damaging the protein structure.
Alkaliphiles have been defined as organisms that grow optimally at pH above
9. Alkaliphiles are further divided into obligate alkaliphiles (incapable of growing
at or below pH 7.0) and facultative alkaliphiles (capable of growing at pH 7.0)
(Padan et al. 2005; Slonczewski et al. 2009).

9.3.1 Habitats

Alkaline habitats have been classified into

1. High Ca2+ environments (groundwaters bearing high CaOH). Various locations
of this type have been reported in California, Oman, the former Yugoslavia,
Cyprus, Jordan, and Turkey (Barnes et al. 1982; Jones et al. 1994).

2. Low Ca2+ environments (e.g., soda lakes, soda soil, and deserts with major salt
being sodium carbonate) (Grant and Horikoshi 1989, 1992). These are stable
environments with soda lakes being a productive system because of the presence
of favorable temperatures (30–45 �C), high sunlight intensities, and abundance of
HCO3 for photosynthesis (Ulukanli and Diurak 2002). The soda lakes are
characterized by higher pH (11–12) and around of 5–30% salinity (NaCO3 and
NaCl in almost equal proportion) conditions (Duckworth et al. 1996).

Alkaliphiles are also found in a few insect guts and littoral soils (Hicks et al.
2010).

9.3.2 Alkaliphilic Fungi

Alkaliphilic fungi are very rare and reported sporadically from soda soil, soda lake,
and limestone cave (Nagai et al. 1995, 1998; Grum-Grzhimaylo et al. 2013a).
Alkalitolerant fungi Fusarium oxysporum, F. bullatum, and Penicillium variabile
capable of growing at pH have been isolated in 1923 (Johnson 1923). Okada et al.
(1993) isolated alkaliphilic fungus Acremonium alcalophilum growing optimally at
pH 9.0. Most of the fungi thus isolated were alkalitolerants that can grow at alkaline
pH of 10. For example, Acremonium alternatum, A. furcatum, Acremonium
sp. 6, Gliocladium cibotii (YBLF 575), Phialophora geniculata, Stachylidium
icolor, and Stilbella annulata isolated from soil Acremonium sp. 6 were said to be
alkalophile (Nagai et al. 1995). Likewise out of six Acremonium and Chrysosporium
species from limestone caves (stalactite caves) in Japan capable of growing at
alkaline pH, one species each of Acremonium sp. and Chrysosporium sp. were
alkalophiles (Nagai et al. 1998). Then eight species of alkaliphilic and alkalitolerant
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soil fungi from Argentina have been reported belonging to families Bionectriaceae,
Trichocomaceae, Sporormiaceae, Ceratostomataceae, and Sordariaceae (Elíades
et al. 2006). Generally, the alkaliphilic fungi are anamorphic without forming any
sexual structure, for example, Acremonium or Verticillium species (Okada et al.
1993; Kladwang et al. 2003). An alkaliphilic fungus Sodiomyces alkalinus showing
optimal growth at alkaline pH, however, is able to form cleistothecium (Grum-
Grzhimaylo et al. 2013b). Another novel alkaliphilic fungus Emericellopsis alkalina
sp. nov. (grow at pH 4–11.2, but optimally at 10–10.2) besides several alkalitolerant
isolates of Acremonium has been reported (Grum-Grzhimaylo et al. 2013b).

9.3.3 Living Strategy

The fungi found in soda soil/water face at least three stresses, namely, high osmotic
pressures, low water potentials, and elevated ambient pH (>9) (Grum-Grzhimaylo
et al. 2013b).

Alkylophilic fungi regulate their internal pH near neutral through active and
passive regulation mechanisms. Passive regulation involves the low membrane
permeability and cytoplasmic pools of polyamines (PA). Active regulation mecha-
nism of homeostasis involves the sodium ion channels (Sharma et al. 2017). Cell
wall components are very different in alkaliphiles. Many acidic polymers are present
on the cell wall that reduces the pH. Altered membrane lipids and presence of
cytoprotectant molecules enable them to survive at alkaline pH (Masato et al.
2010). Na+/H+ and K+/H+ type of antiporters are used to produce acid to reduce
the internal pH and thus regulate the proton motive force (Charlesworth and Burns
2016). They employ different adaptation mechanisms against stress via accumula-
tion of cytoprotective compounds (carbohydrate osmolytes) and modification of the
composition of their membrane lipids. Sodiomyces alkalinus (Plectosphaerellaceae,
Sordariomycetes, Ascomycota) is an alkalophilic fungus that accumulates cytosol
carbohydrate trehalose, mannitol, phosphatidylcholines (PC), and PA in the myce-
lium of the fungus. Fruit bodies of this fungus were detected with high amounts of
trehalose, triacylglycerols (TAG), PC, and sterols (Kozlova et al. 2019a).
Bondarenko et al. (2018) observed trehalose, mannitol, and arabitol accumulation
in two obligate alkaliphilic fungi Sodiomyces magadii (Plectosphaerellaceae,
Sordariomycetes, Ascomycota) and S. alkaline (Plectosphaerellaceae,
Sordariomycetes, Ascomycota) with almost double proportion of PA and lower
proportions of PC and St (Bondarenko et al. 2018). Kozlova et al. (2019b)
demonstrated unique features of Ascomycete S. alkalinus, which in the early lysis
of cell walls of asci releases immature ascospores inside the fruit body whereas
pseudoparenchymal and peridium cells degradation occur long before the ascospores
maturation at extremely high pH of soda lakes. After maturity, these ascospores are
forcefully released due to higher turgor pressure by cracking the fruit body. It was
assumed that these features could develop to cope with the high pH (Kozlova et al.
2019b).
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The fungi Fusarium oxysporum, was found to respond to hypersaline conditions
by the expression of gene ena1 encoding P-type Na+A-ATPase. This gene is also
upregulated when the pH of growth environment is increased (Caracuel et al. 2003).
This coincidence suggests commonality of alkalitolerance and halotolerance
mechanisms.

9.4 Acidophiles

Acidophiles are organisms that grow optimally at pH < 4.0. Another criterion to
differentiate acidotolerant and acidophilious is the growth curve; the former exhibits
bimodal growth while the latter shows unimodal growth (Cavicchioli and Torsten
2000; Gimmler et al. 2001). Fungi are mostly found to be acidotolerants.

9.4.1 Habitats

The acidophilic fungi may be isolated from neutral or acidic habitats (pH < 3) such
as acidic soil, lake, swamp, and peat bogs (Middelhoven et al. 1992). Some of the
highly studied sites are solfatara soil studied in the USA, Japan, Russia, Italy,
Iceland, New Zealand, acid rock drainage of São Domingos (Portugal) and Rio
Tinto (Spain), etc.

9.4.2 Acidophilic Fungi

Acidophilic fungi are rarely found; generally fungi growing at lower pH can also
grow at neutral to slightly alkaline pH and thus mostly they are acidotolerant. Fungal
biodiversity study in highly acidic Tinto river (Spain) revealed species of
Scytalidium, Bahusakala, Phoma, Heteroonium, Lecythophora, Acremonium, and
Mortierella (López-Archilla et al. 2004).

Three highly acidotolerant fungi Acidothrix acidophila (Amplistromataceae,
Sordariomycetes, Ascomycota), Acidea extrema, and Soosiella minima (Helotiales,
Leotiomycetes, Ascomycota) have been isolated from highly acidic soils in the
Czech Republic and a coastal site in the Antarctic Peninsula (Hujslová et al. 2014)
while another anamorphic brown mold fungus Scytalidium acidophilumwas isolated
from acidic soil and acidic solutions in an industrial plant and a uranium mine that
show optimum growth at acidic pH (Sigler and Camichaeil 1974).

Acidophilous fungi have been explored from Iberian Pyrite Belt (IPB), and acid
rock drainage in two localities São Domingos (Portugal) and Rio Tinto (Spain). The
most acid-tolerant found was yeast Cryptococcus spp. 5 followed by Cryptococcus
spp. 3 and Lecytophora spp. Moderately tolerant species were Candida fluviatilis,
Rhodosporidium toruloides, Williopsis californica, and three unidentified yeasts
belonging to Rhodotorula and Cryptococcus (Gadanho et al. 2006).
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A novel acidophilic fungus Teratosphaeria (Capnodiales, Dothideomycetes) was
reported from biofilms collected from an extremely acidic and hot spring. It is a
ascomycetous teleomorphic fungus belonging to ascomyetes; phylogenetically close
to Acidomyces acidophilus and Bispora spp., earlier reported acidophilic anamor-
phic fungi (Yamazaki et al. 2010).

From various studies, the domination of dematiaceous fungal species has been
found in various acidic habitats (Amaral Zettler et al. 2002, 2003; Baker et al. 2004,
2009; Hujslová et al. 2010, 2013; López-Archilla et al. 2004). Of these, the three
fungi Acidomyces acidophilus (Selbmann et al. 2008), Hortaea acidophila (Hölker
et al. 2004), and Acidomyces acidothermus (Yamazaki et al. 2010; Hujslová et al.
2013) have been considered as acidophilic ones. All these plus the acidotolerant
fungus Acidiella bohemica (Hujslová et al. 2013) belong to the family
Teratosphaeriaceae (Capnodiales, Dothideomycetes, Ascomycota). Moreover, the
three fungal species A. acidophilus, A. acidothermus, and H. acidophila along with
two unidentified fungal isolates Paecilomyces spp. and Penicillium sp. 4 can grow at
pH 1 (Gimmler et al. 2001; Hölker et al. 2004; Hujslová et al. 2010; Yamazaki et al.
2010).

9.4.3 Living Strategy

Fungi being eukaryotes face four main challenges: very high H+ concentration,
higher concentration of toxic metals, oligotrophic conditions, and extreme
temperatures (Whitton 1970; Brock 1978; Brake and Hasiotis 2010). Extremely
low pH irreversibly destroys primary and secondary structures of proteins (Kapfer
1998; Nixdorf and Kapfer 1998).

The acidotolerants employ twin mechanisms to tolerate hyperacidic
environments; extrusion of protons out of the cell and maintaining low proton
membrane permeability (Nikolay et al. 2018). Fungi by virtue of these internal pH
regulation mechanisms exist commonly in acidic environments (Gross and Robbins
2000).

Acidophiles maintain the intracellular pH by preventing proton influx, buffering
of intracellular protons, and efflux of protons. Although a number of protein
transporter systems are located on the cell membrane to regulate the cytosolic pH
levels (Gupta et al. 2014; Sharma et al. 2017; Christel 2018).

Acidophiles have highly impermeable cell membrane or reduced size of mem-
brane pore to reduce entry of protons into the cytoplasm and maintain the pH
homeostasis (Mirete et al. 2017) or have efficient proton pumps, which maintain
the proton gradient across the cytoplasm and its pH at or near neutral pH (Mirete
et al. 2017). They cope with the heavy metals by rapid efflux of these metals,
inactivate them, or convert them into less toxic compounds (Charlesworth and
Burns 2016; Christel 2018) and manage their oxidative stress by regulating the
reacting oxygen species (ROS). They possess some antioxidants such as glutathione
to inactivate these ROS or possess some enzymatic machinery such as superoxidase
mutase or peroxidase to neutralize or inactivate the ROS (Christel 2018). They have
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highly expressed chaperons that help them in rapid repair of the damaged proteins.
The protein protects the DNA and other proteins from damage caused by the low pH
(Mirete et al. 2017). An acid-tolerant strain of Penicillium funiculosum growing
actively at pH 1.0 possesses a major facilitator superfamily transporter (PfMFS)
involved in the acid resistance and intracellular pH homeostasis (Xu et al. 2014).

Acidophilic microorganisms are ecologically and economically important
extremophiles found in solfataric fields, hydrogen sulfide (H2S) emissions, active
or abandoned mines, acidic copper mine wastes, and geysers (Sharma et al. 2012).
Although a few acidophiles have been studied up to now, those data are not yet
sufficient to clearly understand the adaptive features of acidophilic fungi. Determi-
nation of endo-1,4-b-xylanase crystal structure from Scytalidium acidophilum
(Chaetomiaceae, Leotiomycetes, Ascomycota), XYL1 acidophilic fungi adds
understandings of low pH adaptation. This study revealed the changes in the
homologous enzyme to maintain stability in an acidic environment. Alterations
include modification in the surface charge, decreased number of salt bridges,
changes like the conserved residue of the active site, etc., at low pH (Michaux
et al. 2010). Bacteria control internal low pH through increasing ATPase pump
efficiency, which rapidly pumps out protons from the cells to raise the internal pH of
the cell. Bacterial adaptation in such an environment (low pH) includes alternation of
the cell membrane and controlling of flagella. This kind of observation is lacking in
fungi and needs to be elaborated to enable a better understanding of fungi present in
such ecological niches.

9.5 Metallophiles

Metallophiles are the organisms that thrive under metal-rich condition or environ-
ment with high metallic concentration. They are able to tolerate and detoxify high
concentration of heavy metals. Most of the metallophiles are acidophiles, thus
enhancing their survival 1000-fold than mesophiles and efficiently tolerate the
high level of heavy metals (Anahid et al. 2011; Gupta et al. 2014).

9.5.1 Habitat

Naturally metal-rich environment such as water bodies and land around mining areas
are the main habitats of metallophiles. Apart from these metal-contaminated areas
around industries are also habitats of such metallophiles.

9.5.2 Metallophilic Fungi

Penicillium verrucosum KNU3 is metallophilic as it shows increased growth in the
presence of Cr3+, Cu2+, and Pb2+ at 1 mM concentration (Joo and Hussein 2012).
Similarly, Penicillium simplicissimum shows higher growth in the presence of heavy
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metals at concentration up to 8000 ppm (Anahid et al. 2011). Other fungi Aspergillus
niger, Aspergillus foetidus and P. simplicissimum showing high tolerance to molyb-
denum and vanadium have been reported. Of these, P. simplicissimum and
A. foetidus are adapted to high concentration of heavy metals and show enhanced
growth in the presence of heavy metals up to concentration of 2000 ppm (Valix et al.
2001).

Fungi that are tolerant to various metals have also been reported. For example,
chromium- and nickel-resistant Aspergillus sp. tolerating chromium toxicity up to
10,000 mg/L chromium have been reported (Congeevaram et al. 2007).
Ectomycorrhizal fungi Hymenogaster sp., Scleroderma sp., and Pisolithus tinctorius
show higher tolerance against increased concentration of Al, Fe, Cu, and Zn (Tam
1995). Heavy metal biosorption analysis revealed that Aspergillus sp.1 accumulated
1.20 mg Cr and 2.72 mg Cd, Aspergillus sp. 2 accumulated 1.56 mg Cr and 2.91 mg
Cd while Rhizopus sp. accumulated 4.33 mg Cr and 2.72 mg Cd per gram of biomass
(Zafar et al. 2007). Saccharomyces cerevisiae and Rhizopus nigricans accumulate
zinc (Sprocati et al. 2006). Fusarium solani shows tolerance to Ag (I) up to 1100 mg/
L concentration (El Sayed and El-Sayed 2020). Another strain of fungus A. niger
tolerates high concentration of heavy metal (Acosta-Rodríguez et al. 2018).
Fomitopsis meliae, Trichoderma ghanense, and Rhizopus microsporus are some
other metalloresistant filamentous fungi isolated from gold and gemstone mine sites
that can tolerate various heavy metals such as Cu, Pb, and Fe (Oladipo et al. 2018).

9.5.3 Living Strategies

Presence of heavy metals such as Zn, Cd, Hg, Pb, Ag, Co, and Cr makes the
environment very toxic. Generally high metal concentration inhibits the growth
and functioning of microbes, but metallophiles develop the strategies to function
optimally under these conditions. Some metallophiles possess efficient efflux pumps
for the rapid removal of toxic metals while others associate these metals by binding
them with protein molecules (Gupta et al. 2014). Ascomycete fungi such as
S. cerevisiae, Schizosaccharomyces pombe, and Candida albicans have been studied
for their adaptations to cope with high concentration of heavy metals. Some fungi
chelate these heavy metals with thiolated peptides and make a complex that is either
accumulated in the vacuole or extruded out of the cell. Some produce an antioxidant
glutathione in high amount that prevents the oxidative stress. S. cerevisiae transports
the heavy metals into external environment through a plasma membrane transporter
Pca1 (Otohinoyi and Omodele 2015). They exhibit two general mechanisms: extra-
cellular and intracellular, to fight with the high concentration of heavy metals.
Extracellular mechanism involves the chelating and cell wall binding (biosorption)
of heavy metals to restrict the entry of heavy metals into the cell while intracellular
mechanism involves the binding of heavy metals to proteins to reduce the concen-
tration of heavy metals inside the cell and prevent itself from damage (Anahid et al.
2011).
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9.6 Radioresistants

Radioresistants or radiophiles are the extremophiles that are highly resistant to high
level of ionizing and ultraviolet radiation. Radioresistant organisms tolerate extreme
radiations for longer period of time while radiotolerant organisms tolerate extreme
radiations for only a short period of time. Ionizing radiation such as gamma radiation
and nonionizing radiation such as ultraviolet radiation are the two major radiations
that cause lethal effect on an organism. Radiophiles are polyextremophiles as they
can tolerate extreme cold, dehydration, vacuum, and high acidic concentration
(Coker 2019).

9.6.1 Adaptations of Radiophiles

Gamma radiations causes double-stranded breaks in the DNA of an organism and
produce reacting oxygen species that interfere with the metabolic processes leading
to cell death. They also damage proteins and lipids and produce persistent oxidative
stress. UV radiations cause more destruction by DNA damage through formation of
thymine dimer and pyrimidine radio tolerant photoproducts. Radiophiles protect
them from gamma radiation by adapting efficient DNA repair mechanism that
rapidly repairs the damaged DNA, production of antioxidants, enzymatic defense
system (increased production of enzyme such as catalase to inactivate free radicals
and reactive oxygen species), and condensed nucleoid. UV-resistant radiophiles
protect them from radiation through multiple mechanisms. Their genome is com-
posed of very small number of bipyrimidine sequences. They possess gene duplica-
tion phenomenon causing polyploidy. Carotenoids, superoxide dismutase, and
hydroperoxidases reduce the stress developed by radiation (Coker 2019).
Radiophiles possess the capability to survive under starvation and high oxidative
stress condition. They can even survive in condition with high amount of DNA
damage. Ionizing radiations induce changes in upregulation of cell repair system and
genetic component of an organism. Some UV radiation-resistant radiophiles protect
their DNA from lethal radiation by the presence of UV-absorbing pigments such as
scytonemin in sheath around the cell while some radiophiles accumulate
UV-absorbing pigments such as mycosporine like amino acids in the cytoplasm of
the cell (Dighton et al. 2008; Kazak et al. 2010).

Fungi are resistant to chronic ionizing radiations evolved from various radiation
sources such as radioactive waste and nuclear disaster. The main strategy adopted by
the radiation-resistant fungi against high radiation stress is to scavenge reactive
oxygen species. They accumulate high amount of Mn2+ metabolite antioxidant
complex for scavenging reactive oxygen species induced by the ionizing radiations
as Mn2+ complexes with other compounds to inactivate the reactive oxygen species.
Low concentration of iron ions and high concentration of manganese ions protect the
cell from oxidative stress. Radiotolerant fungi possess high Mn2+/Fe2+ ratio
(Dadachova and Casadevall 2008; Dighton et al. 2008; Matusiak 2016). Melanin
and some other pigments play an important role for the development of resistance to
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radiations. A complex polymer melanin is important in energy transduction and
shielding as they possess the capability to absorb various kinds of electromagnetic
radiations. Radiation exposure causes fungal melanin pigment to alter the shape and
induce them to form a thick layer of melanin. Some fungi, especially melanized
fungi, harvest energy from the radiation with the help of melanin pigment and utilize
this energy for their growth and development (Dadachova and Casadevall 2008;
Dighton et al. 2008).

Ascomycota yeast possess resistance to chronic ionizing radiation is correlated
with Cr+3 while resistance of Basidiomycete yeast to chronic ionizing radiation is
correlated with the highest temperature that allows the growth (Shuryak et al. 2019).
Biofilms of radioresistant fungi are adapted to high mutation rate and are more
resistant to ionizing radiation than other radioresistants (Ragon et al. 2011). Crypto-
coccus neoformans is a radioresistant fungi that generally can be found in high
radiation environment. Genome-wide radiation resistance analysis of this fungus
explains the upregulation of DNA repair machinery for reducing the radiation stress.
Rad53 protein kinase regulates the transcription factor Bdr1 and controls the tran-
scription (Jung et al. 2016).

9.7 Fungi in Exoplanet-like Environment

For the study of life outside of our planet, extremophilic organisms are considered
the best suitable model. As we already discussed, these organisms can survive in
extreme acidic, alkaline, heat, cold, salt, and pressure. The real challenges to grow
extremophilic fungi in exoplanet-like environment are space vacuum, solar, galactic
and ionizing radiation, and extreme cold and heat. The precondition for Mars would
be water availability. Fungi-producing melanin pigment are mostly colonized in the
Antarctic to the Arctic to high-altitude terrains. For growing in such regions,
extremophilic fungi have to deal with UV radiations, dry, and cold. So, melanized
fungi could be a suitable model for studies in Mars-like habitat. Microcolonial
fungus Cryomyces antarcticus (incertaesedis), Dothideomycetes, Ascomycota) can
live in Mars-like habitat in a good way. C. antarcticus in Mars-like habitat for 24 h
showed a decrease in protein number, but after 4- and 7-day treatment protein
number was increased again and protein patterns matched to normalcy. This result
indicated that C. antarcticus needs 1 week for recovery of its metabolic activity in a
Mars-like condition (Zakharova et al. 2014). Another melanin-forming fungi
Cryomyces minteri (incertaesedis, Dothideomycetes, Ascomycota) and known
C. antarcticus exposed in Mars-like habitat for 18 months resulted in 10% of the
sample being able to form colonies. Additionally, high stability in DNA is also
observed in the hostile conditions of space (Onofri et al. 2015). Onofri et al. (2018)
isolated C. antarcticus and C. minteri from cryptoendolithic microbial communities
in Antarctica. After the screening of their DNA, it was observed that C. antarcticus
displayed higher resistance than C. minteri. They concluded that the apparent
presence of thicker melanized cell wall of C. antarcticus could be a reason for
higher resistance (Onofri et al. 2018). Pacelli et al. (2019) experimented with black
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fungus C. antarcticus with a simulated space vacuum or Mars-like condition and
found that this black fungus can tolerate such a condition with high integrity of DNA
even after the treatments (Pacelli et al. 2019) So the theory that in space biological
material can be preserved is somehow true as we cited that fungi DNA remains
undamaged in space. However, exact space condition cannot be created in the
laboratory.

9.7.1 Genes and/or Secondary Metabolites

The EhHOG gene has an important role in the osmoregulatory pathway. EhHOG
gene, isolated from Eurotium herbariorum from the dead sea, where salinity is the
utmost on earth, showed resistance against salt, water, and low- and high-
temperature stress. EhHOG genes encode mitogen-activated protein kinase
(MAPK), which is a homolog of the HOG gene from Aspergillus nidulans, Saccha-
romyces cerevisiae, Schizosaccharomyces pombe, and many other eukaryotes. In the
hog1 mutant gene of S. cerevisiae, when supplemented by the EhHOG gene, growth
of the fungi is restored in high salt stress condition. Additionally, glycerol content
also increased (Jin et al. 2005). Halophilic fungus Aspergillus glaucus contains
RPL44 (ribosomal protein L44), a conserved protein related to salt resistance (Liu
et al. 2014). Same kind of result was found in aquaglyceroporins (GlpFs), 60S
protease subunit, and AgRPS3aE, ribosomal subunit from A. glaucus.
Aquaglyceroporins transport glycerol and water, which are related to osmoregula-
tion (Liang et al. 2015; Liu et al. 2015). Altogether these genes are highly conserved;
they can support transgenic plants or cells surviving under high salt and heat stress
conditions. Analysis of these genes may further support genetic engineering tools
and crop improvement under high salt, water, and temperature stress. Extremophilic
fungi develop exclusive defenses to survive in extreme conditions like temperature,
salinity, pH, pressure, and desiccation, which leads to the production of diverse
secondary metabolites. Secondary metabolites have no direct role in the adaptation
process of extremophilic fungi. However, they have an indirect role by inhibiting the
different microorganisms (viruses, pathogenic fungi, and pathogenic bacteria) in a
competition to survive in an environment with limited nutrients (Table 9.1).

9.8 Conclusion

Extremophilic features are great parts of evolution, and scientists would get a better
understanding of the effect of different proteins, genes, or metabolites responsible
for survival in extreme environments. The presence of several harsh environmental
conditions can lead to weighty challenges for living, resulting in unique survival
strategies. Fungi are one of the most adaptable organisms for their splendid environ-
mental and structural flexibility. They are physiologically changed for vigorous
growth under extreme temperature, salt, pressure, pH, and minimal water availability
through employing biochemical pathways, which are responsible for synthesizing
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compounds (organic compounds, glycerol, trehalose, mannitol, arabitol, erythritol,
etc.). In future, investigations on the extremophilic fungal genomes can be helpful to
reveal the alteration in their cellular response in response to the extreme environ-
ment. Extremophiles that can survive in a wide range of harsh environments can
further be used in a range of industrially important bioprocesses and in astrobiology
studies.
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