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Abstract

White biotechnology (BT), a sustainable and eco-friendly technology, has taken
precedence over chemical industries in the last few decades. It has revolutionized
the industrial BT sector by exploiting abundant natural resources for the produc-
tion of important commodities benefiting mankind. Industries employ
microorganisms or biomolecules extracted from them for production and
processing in various industrial areas such as food and feed, beverages, agricul-
ture, pharmaceutical, textile, leather, paper, detergent, polymers, cosmetics, waste
management, etc. Despite the advantages, the use of biomolecules is not substan-
tial because they cannot tolerate harsh industrial conditions, which in turn affects
the production process. In the last decade, the industrial research focus has shifted
toward extremophiles, organisms that can survive extreme conditions. These
organisms have evolved defense mechanisms to survive severe conditions such
as high or low temperature, salinity, pressure, pH, radiation, and desiccation.
Biomolecules extracted from these organisms have robust characteristics to retain
optimum activity even under unnatural conditions. A class of eukaryotes called
extremophilic fungi are at the crux of this research focus as they are a reservoir of
sturdy biomolecules with many industrial applications. Fungal extremozymes can
be easily cultured on agro-industrial waste and also easily purified. All these
factors make fungal extremozymes an attractive resource for large-scale, cost-
effective, and eco-friendly industrial processes. In addition to extremozymes,
extremophilic fungi are an abundant resource of potent cytotoxic, antimicrobial
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drugs. This chapter focuses on various extremophilic fungi used in the BT
industry. It also covers the different extremozymes, biomolecules, and secondary
metabolites secreted by them and their potential biotechnological applications.
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15.1 Introduction

A sustainable bio-based economy is a ray of hope in response to the present
environmental crisis such as population expansion, climatic changes, exhaustion of
nonrenewable resources, global warming, pollution, etc. The advent of bioprocess
technology, also known as white biotechnology, has revolutionized the industrial
sector by exploiting natural resources for the production and processing of value-
added products that positively impact the global economy and environment. This
contemporary technology employs enzymes or microorganisms such as yeast, bac-
teria, fungi, and plant extracts in numerous industrial applications. Fungal sources
have been the major contributors in this field as many enzymes, organic acids,
antibiotics, etc., are produced on a commercial scale (Meyer et al. 2016). The
discovery of penicillin, fungal antibiotics along with the commercial production of
citric acid by Aspergillus niger, marked a milestone in the era of fungal biotechnol-
ogy, and since then many more discoveries have steadily transformed it into a
powerful and proficient technology. Fungi play a vital and irreplaceable role in
energy recycling of the ecosystem by helping in the decomposition and recycling of
organic matter. This versatile class of eukaryotes are omnipresent and can be found
in soil, desserts, glaciers, sea, freshwater bodies, and various other environments
including the stratosphere (van der Giezen 2011). Fungi have proven to be a valuable
resource to humanity from being consumed as food to combating infectious diseases
and many biomolecules with important industrial applications. Besides, helping in
the fermentation processes of baking, brewing, etc., they aid in the production of
enzymes, antibiotics, organic acids, pigments, vitamins, lipids, and numerous other
products that are economically important (Adrio and Demain 2003). Their fast
growth rate, short life cycles, ease of culture, and purification are highly favorable
attributes that benefit the industrial production processes (Hooker et al. 2019).

Fungi are highly resilient organisms that can adapt to diverse habitats and due to
their ecological plasticity, they can survive harsh environments precluded to most
life forms. They dwell in virtually all types of extreme habitats ranging from
extremely dry and cold deserts in the Antarctic and other very cold areas worldwide
to highest mountain peaks (Selbmann et al. 2008) to deep permafrost soils
(Ozerskaya et al. 2009; Selbmann et al. 2015), geothermal and fumarole soils in
volcanic areas, acid mine drainages with sulfuric acid (Selbmann et al. 2008), or in
highly alkaline sites (Gunde-Cimerman et al. 2009; Selbmann et al. 2013). Under
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severe conditions and high competition, fungi acquire peculiar skills to exploit
natural or xenobiotic resources and such fungi are termed as extremophilic fungi
(Zhang et al. 2018).

These fungi have evolved defense mechanisms in the form of regulation and
expression of specific genes or production of robust enzymes that help them to
survive conditions such as high or low temperature, salinity, pressure, pH, radiation,
and desiccation. Biomolecules extracted from these organisms have robust
characteristics and retain optimum activity even under harsh industrial conditions.
All these factors make fungal extremozymes an attractive resource for large-scale,
cost-effective, and eco-friendly industrial processes, and the scope to use
extremophilic fungi for biotechnological applications is increasing with time
(Sarmiento et al. 2015).

The term “extremophile” was first proposed by MacElroy in 1974 to describe a
broad group of organisms that can live optimally under extreme conditions. They
belong to all three domains of life—Eucarya, Bacteria, and Archaea. Extremophiles
are classified into seven categories based on the extreme habitats they inhabit
(Fig. 15.1). Piezophiles can survive high hydrostatic pressure and have been isolated
from deep sea sediments (>3000 m deep). Thermophiles or hyperthermophiles are
organisms that inhabit hot springs, deep sea hydrothermal vents, and can tolerate
very high temperatures varying from 50 to 80 �C or over 80 �C (Raddadi 2015).
Some halotolerant fungi can tolerate high salt concentration and abiotic stress

Fig. 15.1 Extreme environments of the earth
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(Gunde-Cimerman et al. 2003). This is why many fungi inhabit marine
environments. Alkalophiles can tolerate a pH range between 9 and 12, whereas
acidophiles can survive extremely low pH of 1–2 (Jin and Kirk 2018). Psychrophiles
are the next class that can tolerate extreme cold conditions of the Antarctic zone
(Selbmann et al. 2008) and some yeasts can survive ultraviolet rays (UV-B) expo-
sure even at lethal doses (Selbmann et al. 2011). Due to their uncommon adaptabil-
ity, fungi may also easily colonize stressful and extreme environments created by
anthropogenic activities, such as those polluted with heavy metals, toxic chemicals,
sewage, etc. (Ceci et al. 2019). Therefore, polluted sites are a rich source to screen
for extremophilic fungi. Fungal strains isolated from these environments are strongly
adapted to high toxicity and extreme physical parameters (i.e., high salt concentra-
tion and high pH). These strains are potentially useful in biotechnological
applications such as the biodegradation of the pollutants (Gomes and Steiner
2004; Selbmann et al. 2013) or they can be considered as sources of important
bioactive compounds, specific enzymes, biosurfactants, and antioxidants, useful for
applications in medicine or food, cosmetics, and chemical industry (Adrio and
Demain 2003). They are also employed in biofuel and bioenergy industries since
solar cells of specialized pigments work only under extreme conditions like polar
caps.

15.2 Biotechnological Applications

Biotechnological industries are exploiting a variety of enzymes as solutions to
numerous industrial processes. Fungi from the extreme environment are considered
a vital source of commercial hydrolytic enzymes due to their exceptional properties
of high catalytic activity, stability, high enzyme yield, ease of culture, and retention
of activity even under high-stress conditions. Lipases, amylases, proteases,
cellulases, xylanases, etc., are highly used in industries that require efficient break-
down of lignocellulosic biomass in the processing and production of good quality
biobased products. Hence, fungal extremozymes help in large-scale, cost-effective,
and eco-friendly industrial processes that could significantly affect the growth of the
biotechnology sector (Shukla and Singh 2020). Some of the important fungal
extremozymes are listed in Table 15.1. The important fields that use these enzymes
include decolorization of dyes in the textile industry, detoxify pesticides, degrade
agricultural waste to valuable by-products, delignify biomass for biofuel production,
bleach the kraft pulp in the paper industry, processing and stabilization of juice,
wine, bakery products in the food industry, bioremediation, and many other pro-
cesses (Baldrian 2006; Brijwani et al. 2010). Along with extremozymes, secondary
metabolites and bioactive peptides are also products of extremophilic fungi. Their
potential role in preventive medicine as antimicrobials, antivirals, cytotoxic agents,
antitumorigenic, antidiabetic, anti-inflammatory, lipid-lowering activities is also
illustrated in this chapter (Fig. 15.2).
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Table 15.1 Extremophilic enzymes sources and uses in industries

Enzymes Organisms
Applications in
industries References

Proteases Penicillium buponti,
Malbranchea pulchella
var. sulfurea, Humicola
lanuginose
Rhodotorula mucilaginosa
L7
Leucosporidium
antarcticum
Acremonium sp. L1–4B
Pseudogymnoascus
pannorum
Candida humicola

Food, detergents,
leather,
pharmaceutical,
agricultural
industries

(Maheshwari et al. 2000)
(Lario et al. 2015)
(Turkiewicz et al. 2003)
(Evaristo da Silva
Nascimento et al. 2015)
(Krishnan et al. 2011)
(Ray et al. 1992)

Laccases Chaetomium
thermophilium
Corynascus thermophiles
aspergillus oryzae
Aigialus grandis,
Cirrenalia pygmea,
Gliocladium sp.,
Hypoxylon oceanicum,
Halosarpheia
ratnagiriensis,
Gongronella sp.,
Sordaria flmicola,
Verruculina enalia and
Zalerion varium.
Cladosporium
halotolerans,
Cladosporium
sphaerospermum,
Penicillium canescens.
Cerrena unicolor (MTCC
5159) and Penicillium
pinophilum (MCC 1049)

Paper and pulp,
Textile industry,
agriculture,
Food and beverages

(Chefetz et al. 1998)
(Babot et al. 2011; Berka
et al. 1997; Bulter et al.
2003; Xu et al. 1996)
(Raghukumar et al. 1994)
(Jaouani et al. 2014)
(D’Souza-Ticlo et al. 2009)

Cellulases Trichoderma resei
Chaetomiumthermophile,
Sporotrichum thermophile,
Humicola grisea var
thermoidea,
Humicola insolens,
Myceliopthera
thermophila,
Thermoascus aurantiacus
and Talaromyces emrsonii
Cadophora,
Pseudeurotium,
Geomyces, Wardomyces,
Pseudogymnoascus,

Biofuel production,
paper and pulp,
Textile

(Mandels and Weber 1969)
(Maheshwari et al. 2000)
(Krishnan et al. 2011; Tsuji
et al. 2014; Vaz et al. 2011;
Wang et al. 2013)

(continued)
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Table 15.1 (continued)

Enzymes Organisms
Applications in
industries References

Verticillium, Cryptococcus
and Mrakia

Xylanases Aureobasidium pullulans
varmelangium,
Pencillium occitanis PO16,
Aureobasidium pullulans
Pencillium oxalicum
Pencillium citrinum,
Aspergillus fumigatus
Humicola insolensY1,
Sporotrichum thermophile
Rhizomucor pusillus,
Aspergillus gracilis,
Aspergillus penicillioides
Naganishia adeliensis.

Paper and pulp,
Animal feed,
Textile,
Food and brewery

(Ohta et al. 2001)
(Driss et al. 2011)
(Yegin 2017)
(Muthezhilan et al. 2007)
(Dutta et al. 2007)
(Deshmukh et al. 2016)
(Du et al. 2013)
(Sadaf and Khare 2014)
(Robledo et al. 2016)
(Ali et al. 2012)
(Gomes et al. 2003)

Lipases Rhizomucor miehei
Kurtzmanomyces sp. I-11
Moesziomyces antarcticus
Leucosporidium scottii
L117
Mrakia blollopis SK-4
Geomyces sp. P7

Biofuel, detergent,
food, and beverages

(Maheshwari et al. 2000)
(Kakugawa et al. 2002;
Goto et al. 1969)
(Goto et al. 1969)
(Duarte et al. 2015)
(Tsuji et al. 2013)
(Tsuji et al. 2013)

Amylases Rhizomucor pusillus,
Humicola lanuginose,
Myriococcum
thermophilum,
Thermomyces ibadanensis,
Thermomyces lanuginosus
Candida antarctica
Geomyces pannorum

Starch processing,
food and beverage,
paper and pulp,
Textile, and
pharmaceutical

(Adams 1994; Arnesen
et al. 1998; Barnett and
Fergus 1971; Bunni et al.
1989; Fergus 1969;
Jayachandran and
Ramabadran 1970;
Sadhukhan et al. 1992)
(Mot and Verachtert 1987)
(Gao et al. 2016)

Pectinases Aspergillus Niger
Cryptococcus albidus var.
albidus,
Aspergillus Niger
MTCC478,
Saccharomyces cerevisiae,
Penicillium sp. CGMCC
1669
Rhizomucor pusilis
Thermomucor indicae-
seudaticae
Arthrobotrys,
Aureobasidium,
Cladosporium,
Leucosporidium
Tetracladium

Biofuel production,
oil extraction, paper
and pulp, food, and
beverage

(Lara-Márquez et al. 2011)
(Federici 1985)
(Anand et al. 2017)
(Gainvors et al. 2000)
(Yuan et al. 2011)
(Siddiqui et al. 2012)
(Martin et al. 2010)
(Fenice et al. 1997)
(Carrasco et al. 2016)

(continued)
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15.2.1 Food and Beverage Industry

Use of enzymes instead of chemicals improves the quality of the processed food and
creates superior products with improved yields. In addition, enzymes also play key
role in enhancing the nutrition and appeal of the products. Enzymes are used in
baking, making sugar syrups, cheese and dairy making, extraction and clarification
of juices, oil, as sweeteners, for flavor development, meat tenderizing, etc., and in
many other processes. From making food products to storage of food and beverage
all require extreme conditions making extremozymes an essential ingredient to
achieve food quality at low costs in this industry.

Cold-active enzymes produced by psychrophiles are flexible, resulting in higher
catalytic activity at low temperatures (Arora and Panosyan 2019). These enzymes
can be used to soften frozen meat products, preserve the heat-sensitive nutrients,
accelerate cheese ripening, and they are also effective against wine and juice
clarification. Rhodotorula mucilaginosa L7 is a yeast strain from the Antarctic
region that produces acid protease with an activity range between 15 �C and 60 �C
and pH 5 (Lario et al. 2015). A similar discovery of a psychrophilic and halotolerant
serine protease from Antarctic region resulted in isolation of Leucosporidium
antarcticum fungal strain where the enzyme was found most active at 10–25 �C

Table 15.1 (continued)

Enzymes Organisms
Applications in
industries References

Chitinases Trichoderma, Oenicillium,
Penicillium, Lecanicillium,
Neurospora, Mucor,
Beauveria, Lycoperdon,
aspergillus, Myrothecium,
Conidiobolus,
Metharhizium,
Stachybotrys, Agaricus
Talaromyces emersonii,
Thermomyces lanuginosus
Dioszegia, Glaciozyma,
Lecanicillium,
Leuconeurospora, Mrakia,
Metschnikowia Phoma,
Sporidiobolus, Verticillium
lecanii
Glaciozyma antarctica
PI12

Pharmaceutical and
agricultural industry

(Hamid et al. 2013; Karthik
et al. 2014)
(McCormack et al. 1991)
(Zhang et al. 2012)
(Barghini et al. 2013;
Carrasco et al. 2012; Fenice
et al. 2012, 1998, 1997;
Onofri et al. 2000)
(Ramli et al. 2011)

Phytases Aspergillus Niger
Myceliophthora
thermophila, Talaromyces
Papiliotrema laurentii
AL27
Rhodotorula mucilaginosa
strain JMUY1

Bread making and
animal feed

(Haros et al. 2001)
(Maheshwari et al. 2000)
(Pavlova et al. 2008)
(Yu et al. 2015)
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and 3.5% marine salt (Turkiewicz et al. 2003). Additionally, Laccases have many
applications like processing and stabilization of juice, wine, bakery products in the
food industry, and many other processes (Baldrian 2006; Brijwani et al. 2010).

Amylases are another class of enzymes highly used in food industry; they are also
used in various other industries such as starch processing, textile, food and beverage,
paper, pharmaceutical, and many other industries (Pandey et al. 2000).
Extremophilic fungal α-amylases have achieved an important place in industrial
enzymes. Many thermophilic fungal species studied so far are capable of secreting
amylases. Rhizomucor pusillus, and Humicola lanuginose, Myriococcum
thermophilum, Thermomyces ibadanensis, and Thermomyces lanuginosus are a
few of the thermophilic fungi found to produce amylase enzyme (Sadhukhan
et al.1992; Jayachandran and Ramabadran 1970; Fergus 1969; Bunni et al. 1989;
Barnett and Fergus 1971; Arnesen et al. 1998; Adams 1981; Adams 1994).
Psychotolerant fungi are also a good source of amylases. Candida antarctica from
Antarctic region was observed to produce both α and γ amylases. Both enzymes
were active on high molecular weight polysaccharides with α-amylase showing
activity even on cyclodextrins (Mot and Verachtert 1987). Extremophilic fungal
xylanases and pectinases also have many benefits such as pulping, juice and wine
clarification, oil extraction etc. (Soni et al. 2017). Trichoderma sp, Aspergillus sp,
Penicillium sp, and Acido bacterium spp. are the major extremophilic fungal genera

Fig. 15.2 Representation of extremophilic fungi biotechnological applications
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that contribute to the production of xylanases. Similarly, many acidic fungal
pectinases like Aspergillus niger between pH 3 and 5.5 (Lara-Márquez et al.
2011). Cryptococcus albidus var. albidus, pH 3.75 (Federici 1985), Aspergillus
niger MTCC478, pH 4 (Anand et al. 2016), Penicillium sp. CGMCC 1669,
pH 3.5 (Yuan et al. 2011), and Saccharomyces cerevisiae pH 3–5.5 (Gainvors
et al. 2000) have been screened. Novoshape (novozymes), pectinase 62 L
(biocatalysts), and lallzyme (lallemand) are few commercially available food-
based companies that use pectinase enzyme (Dumorné et al. 2017; Sarmiento et al.
2015). Acidic pectinases are one such enzyme used in the clarification of fruit juices,
beer, and wine as well (Kashyap et al. 2001). Recent research has indicatedS
screening of bacterial strains known to produce alkaline and thermophilic pectinases.
Anand et al. 2016 purified and characterized an alkaline pectinase from Aspergillus
fumigatus MTCC 2584 having a pH optima of 10. In another study, thermophilic
pectinase was purified from Rhizomucor pusilis having temperature optima of 55 �C
was isolated (Siddiqui et al. 2012). Martin et al. 2010 also isolated a thermophilic
pectinase producing fungal strain Thermomucor indicae-seudaticae that could grow
at 45 �C. Recently, psychrophilic and pectinolytic fungi were isolated from Antarctic
region. The representative genera are Arthrobotrys, Aureobasidium, Cladosporium,
and Leucosporidium showed the pectinase activities even at 5 �C (Fenice et al.
1997). A cold-adapted pectinase-producing fungi was also isolated from
Tetracladium sp. with highest activity at 15 �C (Carrasco et al. 2019).

15.2.2 Detergents

Extermophilic fungal lipases are sought-after enzymes in detergent industries as they
possess robust properties. Particularly esterases (EC 3.1.1.1) and lipases (EC 3.1.1.3)
are important as they catalyze the cleavage of esterbonds and also help in reverse
reactions in organic solvents (Fuciños et al. 2012). Lipases help in acidolysis,
alcoholysis, aminolysis, esterification hydrolysis, interesterification, etc. (Daiha
et al. 2015), making them versatile and having many applications in organic and
fine chemical synthesis, and cleaning products. A thermostable lipase from
Humicola lanuginosa strain Y-38 was isolated from compost in Japan. The enzyme
was thermophilic having temperature optima of 60 �C and alkalophilic with pH
optima of 8.0. Rhizomucor miehei, formerly called Mucor miehei, also produced
active lipase (Maheshwari et al. 2000). Kakugawa et al. (2002) reported a thermo-
stable and acidophilic lipase-producing yeast strain Kurtzmanomyces sp. I-11 with
optimum activity at 75 �C and pH 2–4. Another noteworthy example of thermostable
and alkalophilic lipase is produced by Thermomyces lanuginosus, known as TLL
showing maximum lipase activity between 60 and 85 �C and pH 10 (Avila-Cisneros
et al. 2014). Lipolase, Lipoclean, and Lipex are few of the genetically improved
lipases from the fungus Thermomyces lanuginosus included in detergent
formulations by Novozymes (Jurado-Alameda et al. 2012). Cellulases are the next
class of enzymes that have found applications in the detergent industry to increase
brightness and dirt removal from cotton mixed garments (Kuhad et al. 2011). Many
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commercially available detergents have been reported where enzyme such as lipase,
protease, amylases, cellulases, and mannanases are included in the formulations
(Sarmiento et al. 2015).

15.2.3 Paper and Pulp Industry

In the paper and pulp industry, the significant application of enzymes is in the
prebleaching of kraft pulp. Xylanases, hemicellulases, and cellulases are the com-
monly used enzymes for this purpose due to its displayed efficiency. Enzymes have
also been used to raise water retention, pulp fibrillation, and decrease the beating
time in virgin pulps. Enzymes are also involved in increasing the freeness and in the
deinking process (Dumorné et al. 2017; Bajpai 1999). Fungal laccases are involved
in lignin degradation due to displayed efficiency (Alcalde 2007; Thurston 1994).
Due to high enzyme yield and higher redox potential, fungal laccases are preferred
over the plant or bacterial enzymes in the biotechnology sector (Thurston 1994).
Corynascus thermophilus is a fungal strain secreting highly active thermostable
laccase that was used to delignify eucalypt pulp. This laccase was heterologously
expressed in Aspergillus oryzae, characterized, and commercialized (Xu et al. 1996;
Berka et al. 1997; Bulter et al. 2003; Babot et al. 2011). Cellulases are also heavily
used in this industry. Penicillium roqueforti, Cadophora malorum, Geomyces sp.,
and Mrakia blollopis are few of the cold-adapted cellulase-producing fungal strains
(Carrasco et al. 2016; Duncan et al. 2006; Duncan et al. 2008). Trichoderma sp,
Aspergillus sp, Penicillium sp, and Acidobacterium spp are the major extremophilic
fungal genera that contribute to the production of xylanases.

15.2.4 Agricultural Applications

Many cellulolytic and xylanolytic fungi are acknowledged to have applications in
the field of agriculture by boosting the seed germination, improved root system and
flowering, increased crop yields, and rapid plant growth (Ahmed and Bibi 2018).
Fungal xylanases such as Pencillium oxalicum (Muthezhilan et al. 2007), Pencillium
citrinum (Dutta et al. 2007), Aspergillus fumigatus (Deshmukh et al. 2016), and
Humicola insolensY1(Du et al. 2013) are isolated showing optimum activity
between pH 8–9 and 45–55 �C with H.insolensY1 also being highly thermophilic
with a temperature optima of 70–80 �C. Other thermophilic xylanase-producing
fungi include Chaetomium sp. CQ31, Sporotrichum thermophile isolated from
composting soil having activity at neutral pH and 60–70 �C temperature (Jiang
et al. 2010; Sadaf and Khare 2014). Rhizomucor pusillus and Aspergillus fumigatus
screened from the maize silage showed optimum xylanase activity at 75 �C and pH 6
(Robledo et al. 2016). Many thermophilic xylanase-producing fungi such as
Chaetomium thermophilum, Humicola insolens, Melanocarpus sp., Malbranchea
sp., and Thermoascus aurantiacus were reported by Ghatora et al. 2006.
Halotolerant fungal xylanase Phoma sp isolated from mangrove sediments having
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enzyme activity at pH 5, 45 �C, and a high salt concentration of 4 M NaCl (Wu et al.
2018). Aspergillus gracilis and Aspergillus penicillioides were screened from
man-made solar saltern (Ali et al. 2012) and psychrophilic fungal xylanases were
isolated from Antarctic soils, marine sponges, etc. Cladosporium sp. from marine
sponge showed high xylanase activity at low temperatures (Del Cid et al. 2014).
Naganishia adeliensis are isolated from Antarctica (Gomes et al. 2003). Phytases are
another class of enzymes involved in seed germination, but they are also considered
antinutrients because they act as strong chelators of divalent mineral ions such as
calcium, magnesium, iron, and zinc. Chitinases have many applications, especially
as antiphytopathogenic and antifungal agents. They are used to protect crops to
control pathogens. Cola-active extremozymes are used in agriculture to enhance the
water management by plants, which are under deficiency stress (Dumorné et al.
2017).

15.2.5 Animal Feed Industry

Cellulases and xylanases have advantage in the animal feed industry in the treatment
of agricultural silage, grains, and seeds to enhance nutritional value. Cold-adapted
phytases have advantages as they can be directly included in the feed of monogastric
animals and also in aquaculture.

15.2.6 Bioremediation and Biodegradation: Major Application
of Extremozymes

Bioremediation and biodegradation employ microbes in the elimination of
pollutants, contaminants, and toxins from water, soil, and other environments.
Waste from any kind of industry is hazardous. It is highly acidic or alkaline, and
contains all kinds of biomass and proteinaceous waste. It also has a high content of
metal ions and many other toxins, dyes, chemicals, radioactive material, etc., making
it very harmful to the flora and fauna around it.

Certain microbes can be used to recycle and degrade pollutants as they produce
hydrolytic enzymes that can degrade and help clean up the contaminated sites.
Fungal extremozymes are extremely useful in these processes as they can sustain
harsh conditions and still work on organic toxins. Thermophiles convert recalcitrant
materials in bioprocessing and favor the in situ bioremediation process (Castro et al.
2019). As the solubility of the pollutants increases, the metabolic activity of
thermophiles also increases (Zeldes et al. 2015). Thermophilic fungi such as
Pyrodictium, Clostridium, and Methanopyrus can metabolize naphthalene, anthra-
cene, and phenanthrene (Ghosal et al. 2016). White rot fungi are the chief
representatives of the biodegradation of lignin substances (Deshmukh et al. 2016).
21 PAH degrading fungi were isolated from PAH-contaminated soils that could
efficiently degrade PAH. Aspergillus niger, Diaporthe sp., Coriolopsis byrsina,
Pestalotiopsis sp., and Cerrena are known to treat and bioremediate textile mill
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effluents (Rani et al. 2014). Stenotrophomonas maltophilia strain AJH1 has been
isolated from Arabia, which was able to degrade low and high molecular weight
PAHs such as anthracene, naphthalene, phenanthrene, pyrene, and benzo(k)-
f2uoranthene (Rajkumari et al. 2019). D. radiouridans is another important fungus
used in bioremediation of radioactively contaminated sites (Brim et al. 2006).
Sulfolobus sulfataricus secrete lactonase enzyme that acts against organophosphates
(Hawwa et al. 2009). Thermoascus aurantiacus, another fungal strain, can secrete
phenol oxidase and target phenolic hydrocarbons (Machuca et al. 1998).

Rajkumari et al. (2019) studied different approaches of degradation of hydrocar-
bon waste. Candida, Aspergillus, Chlorella, and Penicillium were found to be most
suitable in the elimination of these wastes. A marine fungal laccase-mediated
detoxification and bioremediation of anthraquinone dye called reactive blue was
reported (Verma et al. 2012). These laccases could work under very high salinity.
Similarly, laccase from Fusarium incarnatum was able to degrade bisphenol A,
which is a endocrine-disrupting chemical (Chhaya and Gupte 2013). Other studies
indicated heavy metal and chloropyriphos bioremediation can be achieved by using
Aspergillus sp, Curvularia, and Acrimonium sp. (Akhtar et al. 2013; Silambarasan
and Abraham 2013); likewise, polychlorinated biphenyl degradation can be
degraded by Phoma eupyrena, Doratomyces nanus, Myceliophthora thermophila,
and D. verrucisporus (Barghini et al. 2013). Lugowski et al. 1998 has reported that
Pseudomonas sp is used for degradation of aromatic hydrocarbons. Halomonas
sp. and Pseudomonas aeruginosa strain is used for cleaving of aliphatic
hydrocarbons.

15.2.7 Bioactive Peptides from Marine Fungi

Oceans are the biggest resource for novel therapeutic compounds. Thousands of
secondary metabolites such as polyketides, lactones, alkaloids, steroids, and peptides
having pharmacological significance are discovered from marine fungal strains (Jin
et al. 2016). Sessile marine microorganisms usually harbor the fungal strains in a
symbiotic relationship where the marine fungi protect the host against predators and
disease by releasing bioactive compounds (Schueffler and Anke 2014). The unique
structural and functional diversity of the marine bioactive compounds is attributed to
the extreme conditions of salinity, pressure, and temperature that also give immense
stability from all kinds of degradation to these peptides, making them promising
candidates for drug discovery. Thus, isolating and characterizing novel bioactive
peptides and metabolites from marine fungi with therapeutic properties is a
promising avenue to explore in the prevention of human diseases. To date, thousands
of compounds have been isolated from many marine fungi, but curating them all is
not feasible. So, the data from two latest reviews covering last 15 years of research
(Ibrar et al. 2020; Youssef et al. 2019) on the fungal bioactive peptides and
compounds is adapted and a comprehensive summary is presented in Table 15.1
with additions and modifications made according to the relevance and scope of this
chapter.
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15.2.7.1 Peptides
In the last five decades, a significant number of marine bioactive peptides are
discovered that either fall in the class of synthetic, non-ribosomally produced
peptides such as bacitracins, polymixins, glycopeptides, or gramicidins, etc., or
natural, ribosomal peptide class. The synthetic peptides are mostly produced by
bacteria, but natural peptides are produced by many species including marine fungi
with potent activities (Saleem et al. 2007). Many fungi belonging to various genus
produce potent peptides showing antimicrobial, antiviral, cytotoxic,
antitumorigenic, antidiabetic, anti-inflammatory, lipid-lowering activities. These
peptides are structurally diverse from being cyclic to N-methylated. Some are
dipeptides, nonapeptides, depsipeptides, or pentadecapeptides having complex
backbones and many side chains. Genus Aspergillus is found to be a rich source
of bioactive peptides with Aspergellicins A–E, Cyclodipeptide, Sclerotide A–B,
Terrelumamide A–B, Psychriphillin E–G, Aspersymmatide A, Cotteslosin A,
Diketopiperazine dimer, cyclic tetrapeptide, Aspergellipeptide D–E, and
14-hydroxycyclopeptine being produced by them showing cytotoxic, anticancer,
and anti-inflammatory properties (Table 15.1). Cordyhehptapeptides and efrapeptins
are certain other bioactive peptides isolated from Acremonium sp with cytotoxic and
antibacterial activities. Lajollamide A from Asteromyces, Dictyonamide A from
Certodictyon, Clonostachysins from Clonostachys, and Ungusin A, Emercellamide
from Emericella sp, and Rostratins from Exserohilium are cytotoxic,
antidinoflagellate, and antimicrobial in nature. Similarly, peptides from
Microsporum, Penicillium, Scytalidium, Simplicillium, Stachylidium, Talaromyces,
and Zygosporium fungi also show various toxic effects on cancers and microbes.

The general procedure for isolating fungal peptides involves culturing of fungi
under appropriate conditions and extraction of peptides using solvents such as ethyl
acetate. The extracted sample is lyophilized and further purified using chro-
matographic techniques until pure forms of peptides are obtained. 1D and 2D
NMR techniques in combination with mass spectrometry are used to determine the
structure of the peptides and Marfey’s and Mosher’s reactions are used to elucidate
the absolute configuration, amino acid composition, and structural modifications
(Wang et al. 2017) Biological activity of the purified peptide is measured using IC50

or MIC (minimum inhibitory concentrations) values against cancer cell lines, patho-
genic bacteria, and many other microbes.

15.2.7.2 Bioactive Compounds
Marine secondary metabolites have gained a lot of attention in the recent past due to
their potent pharmacological properties. The accidental discovery of cephalosporin
C antibiotic from the marine Cephalosporium sp. fungus in 1949 started a trend to
explore marine habitats for bioactive compounds. Many other marine fungi-derived
products are currently available in the market such as antibacterial terpenoid fusidic
acid, polyketide griseofulvin antibiotic, penicillins, cephalosporins, macrolides,
statins, many alkaloids, glycosides, isoprenoids, lipids, etc. (Chandra and Arora
2009; Hamilton-Miller 2008), that exhibit potent toxicity towards tumors, cell
proliferation, microtubule formation, pathogenic bacteria, viruses, nematodes, foul

15 Biotechnological Application of Extremophilic Fungi 327



smells, and also exhibit photo-protective activities (Rateb and Ebel 2011). Bioactive
compounds are produced by all kinds of extremophilic fungi from psychotolerant, to
thermophiles, piezophiles, acidophiles, halotolerant, and xerophiles. Table 15.2
recapitulates different secondary metabolites and their biological activities. Many
bioactive compound-secreting fungal strains are discovered by exploring extremely
toxic environments such as Berkeley acid lake, hot springs, salt salterns, fumaroles,
deep sea sediments and vents, mangroves, Antarctic permafrost, etc. These places
have become rich biodiversity for the exploration of such value-added compounds
(Ibrar et al. 2020).

Bioactive compounds are also extracted and purified in the same way as peptides,
although the characterization techniques will differ. A bioassay-guided fractionation
procedure is employed to obtain pure compound fractions, where the potential
activity of the fractions is assessed. Most marine compounds have different chemical
composition so different polar compounds have to be used for the fractionation
method so that the active compound can be separated from the inactive fractions
depending on the partition coefficients of the analytes. Polyketides alkaloids, sugars,
steroids, and saponins are generally found in aqueous fractions, whereas peptides
need mildly polar solvents, and terpenes, hydrocarbons, and fatty acids are found in
low-polar fractions. The bioactive fractions are next subjected to gel permeation
chromatography to further purify the molecules. The purified compounds are then
structurally and chemically characterized by sophisticated techniques such as mass
spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. High-
resolution 1D and 2D NMR spectroscopy are routinely used for the structural
characterization of the bioactive compounds.

15.3 Conclusion

Biotechnological industries are using a variety of extremophilic fungi as solutions to
diverse industrial processes. The survival strategies of extremophilic fungi are
unique and associated with the production of extremozymes and various secondary
metabolites with robust qualities, making them a rich and abundant resource. Despite
their potential, a very small percent of extremophilic fungi are discovered. Explora-
tion of extremophilic organisms will make a huge impact and open new avenues in
biotechnology research. With the advancement in various technologies like
metagenomics, genetic engineering, in silico analysis, and technology that can
access uninhabitable and inaccessible places on earth, it is now possible to identify,
isolate, and extract potent compounds that can cater to the needs of almost every
sector of the biotech industry to help form a sustainable and efficient biobased
economy.
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