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Preface

Fixed point theory emerged as an indispensable tool over the last few decades
in nonlinear sciences and engineering including behavioral science, mathematical
economics, physics, etc. To be precise, while formulating an experiment mathemat-
ically, we often have to investigate the solvability of a functional equation in terms
of differential, integral, fractional differential, or matrix equations. Such a solution
is often achieved by finding fixed point of a particular mapping. The three major
approaches in fixed point theory are metric approach, topological approach, and
discrete approach. In this book, we mainly focus on the theory and applications of
metric fixed point theory.

This book ismeant for researchers, graduate students, and teachers interested in the
theory of fixed points. Mathematicians, engineers, and behavioral scientists will also
find the book useful. The readers of this book will require minimum pre-requisites of
undergraduate studies in functional analysis and topology. This book has a collection
of chapters authored by several renowned contemporary researchers across the world
in fixed point theory. Here, readers will find several useful tools and techniques to
develop their skills and expertise in fixed point theory. The book contains sufficient
theory and applications of fixed points in several areas. The book presents a survey
of the existing knowledge and also the current state-of-the-art development through
original new contributions from the famous researchers all over the world.

This book consists of total 15 chapters. Chapter 1 provides a detailed review of the
most important basic fixed point theorems in metric spaces, which are essential for
the sequel. In Chap. 2, fixed point theorems related to the infinite system of integral
equations have been studied. Chapter 3 presents the study of common fixed points
in a generalized metric space. Fixed point results and their applications in various
modular metric spaces have been discussed in Chaps. 4–6. Chapter 7 provides a
new insight into parametric metric spaces, whereas variational in equalities and
variational control problems have been studied in Chaps. 8–10. Some optimization
techniques in terms of best proximity points and coincidence best proximity results
have been presented in Chaps. 11 and 12, respectively. Application of fixed points to
themathematics of fractals has been presented inChap. 13.A survey on nonexpansive
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vi Preface

mappings and their extensions in Banach spaces is provided in Chap. 14. Finally, in
Chap. 15, we explore the applications of fixed point theory in behavioral sciences.

Silchar, India
Bongaigaon, India
Belgrade, Serbia

Pradip Debnath
Nabanita Konwar
Stojan Radenović
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Basic Fixed Point Theorems in Metric
Spaces

Binayak S. Choudhury and Nikhilesh Metiya

Abstract This chapter is a review work on the development of metric fixed point
theory. It begins with the description of Banach’s ContractionMapping Principle and
finally contains results established in the recent years aswell. Theproofs are presented
for every theorem discussed here. Several illustrations are given. The development is
presented separately for functions with and without continuity property. Only results
on metric spaces without any additional structures are considered.

1 Introduction

It is widely held that metric fixed point theory originated in the year 1922 through the
work of S. Banach when he established the famous Contraction Mapping Principle
[2] which has come to be known by his name. It is a versatile domain of mathematics
having implications in several other branches of science, technology and economics
[1, 31, 43]. At present even after a century of its initiation, the subject area remains
vibrant with research activities.

Admittedly, putting together all basic theorems in metric fixed point theory in a
single chapter is an impossible task. One has to be selective on this issue. We do
not mean to undermine those results which are left out of our selection. They can
even be more important than those which are included in this chapter. For instance,
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2 B. S. Choudhury and N. Metiya

Generalized Banach Contraction Conjecture (GBCC) result of Merryfield et al. [26]
is not included in this chapter. There are many important fixed point results which are
deduced in metric spaces having additional structures like partial order, graph, etc.
But here we consider only those results which are relevant to metric spaces without
any additional structures. The only additional property which we consider here is
the completeness property of the metric space. Further, we describe theorems for
mappings with or without continuity assumption.

Definition 1 (Fixed point) Let M be a nonempty set and S : M → M be a mapping.
A fixed point of S is a point ξ ∈ M such that Sξ = ξ , that is, a fixed point of S is a
solution of the functional equation Sz = z, z ∈ M .

A self-mapping may have no fixed point, a unique fixed point and more than one
fixed point. This is illustrated in the following examples.

Example 1 Take R the set of all real numbers equipped with usual metric.

(i) The mapping S : R → R, Sz = z3, z ∈ R has three fixed points z = 0, z = 1
and z = −1.

(ii) The mapping S : R → R defined by Sz = −z3, z ∈ R has only fixed point
z = 0.

(iii) The mapping S : R → R where Sz = z + sin z, z ∈ R has fixed points z =
nπ, n = 0,±1,±2, ....

(iv) The mapping S : R → R defined as Sz = z + 1, z ∈ R has no fixed point.

2 Banach’s Contraction Mapping Principle

The first result we describe is the famous Contraction Mapping Principle.

Definition 2 (Contraction mapping) A mapping S : M → M , where (M, ρ) is a
metric space, is called a Lipschitz mapping if there exists a real number k > 0 such
that ρ(Su, Sv) ≤ k ρ(u, v) holds for all u, v ∈ M . The smallest positive real number
k for which the Lipschitz condition is valid is called the Lipschitz constant of S.

If the Lipschitz constant k lies between 0 and 1, that is, if 0 < k < 1, then the
Lipschitz mapping S is called a contraction mapping.

Obviously, a contraction mapping is continuous.

Example 2 (i) The mapping S : [0, 1) → [0, 1) defined by Sz = z
5 is a contrac-

tion mapping.
(ii) The mapping S : R → R defined by Sz = 5z+3

2 is not a contraction mapping.

In 1922, Banach established a fixed point result for a self-map S of a complete
metric space using a contractive condition, which is known as Banach’s contraction
mapping principle.
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Theorem 1 (Banach’s contraction mapping principle [2]) A self-mapping S of a
complete metric space (M, ρ) admits a unique fixed point if for all u, v ∈ M,

ρ(Su, Sv) ≤ k ρ(u, v), where 0 < k < 1. (1)

Proof Suppose ζ, η ∈ M with ζ �= η are two fixed points of S. From (1), we have
ρ(ζ, η) = ρ(Sζ, Sη) ≤ k ρ(ζ, η), which is a contradiction. Hence the fixed point of
S, if it exists is unique.

Choose any point z0 ∈ M . We construct a sequence {zn} in M such that

zn = Szn−1 = Snz0 for all n ≥ 1. (2)

For each positive integer n, we have

ρ(zn, zn+1) = ρ(Szn−1, Szn)

≤ k ρ(zn−1, zn)

≤ k2 ρ(zn−2, zn−1)

...

≤ kn ρ(z0, z1).

By triangular inequality, we have for n > m,

ρ(zm, zn) ≤ ρ(zm, zm+1) + ρ(zm+1, zm+2) + ... + ρ(zn−1, zn)

≤ km ρ(z0, z1) + km+1 ρ(z0, z1) + ... + kn−1 ρ(z0, z1)

≤ km[1 + k + k2 + ... + kn−m−1] ρ(z0, z1)

< km[1 + k + k2 + ...] ρ(z0, z1)

= km

1 − k
ρ(z0, z1) → 0, as n → +∞ [since α < 1],

which implies that {zn} is a Cauchy sequence in M . By the completeness of M , there
exists ξ ∈ M such that zn → ξ , as n → +∞.

Being a contraction mapping, S is continuous. Therefore, we have Sξ =
limn→+∞ Szn = limn→+∞ zn+1 = ξ . Hence, ξ is a fixed point S. By what we have
already proved, ξ is the unique fixed point of S.

Example 3 Take the complete metric space R equipped with usual metric and the
contraction mapping S : R → R defined as Sz = 2(1 − z

5 ). We see that z = 10
7 is

the unique fixed point of S.
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3 Generalizations of Contraction Mapping Principle

In 1969, Boyd and Wong [4] made a very interesting generalization of the Banach’s
contraction mapping principle in complete metric spaces. They replaced the con-
stant k in (1) of Theorem 1 by a function ϕ : [0,+∞) → [0,+∞) which is upper
semicontinuous from the right (that is, tn ↓ t ≥ 0 ⇒ lim supϕ(tn) ≤ ϕ(t)).

The following result is due to Boyd and Wong [4].

Theorem 2 A self-mapping S of a complete metric space (M, ρ) admits a unique
fixed point if there exists a function ϕ : [0,+∞) → [0,+∞) which is upper semi-
continuous from the right with 0 ≤ ϕ(t) < t for t > 0 and the following inequality
holds:

ρ(Su, Sv) ≤ ϕ(ρ(u, v)), for all u, v ∈ M. (3)

Proof Let z0 ∈ M be any arbitrary element. We define a sequence {zn} in M such
that zn = Szn−1 = Snz0, for all n ≥ 1. If zl = zl+1 for some positive integer l, then
zl is a fixed point of S. So we assume that zn �= zn+1, for all n ≥ 0.

Applying (3) and using the property of ϕ, we have

ρ(zn+1, zn+2) = ρ(Szn, Szn+1) ≤ ϕ(ρ(zn, zn+1)) < ρ(zn, zn+1), for all n ≥ 0.
(4)

Therefore, {ρ(zn, zn+1)} is a monotonic decreasing sequence which is bounded
below by 0 and hence there exists an δ ≥ 0 for which

lim
n→+∞ ρ(zn, zn+1) = δ. (5)

From (4), we have

ρ(zn+1, zn+2) ≤ ϕ(ρ(zn, zn+1)), for all n ≥ 0.

Taking limit supremum as n → +∞ on both sides and using (5) and the properties
of ϕ, we have δ ≤ ϕ(δ) < δ. It is a contradiction unless δ = 0. Hence

lim
n→+∞ ρ(zn, zn+1) = 0. (6)

We prove that {zn} is a Cauchy sequence by method of contradiction. If possible,
suppose that {zn} is not a Cauchy sequence. Then we have an ε > 0 for which there
exist two sequences of positive integers {m(k)} and {n(k)} such that

n(k) > m(k) > k, ρ(zm(k), zn(k)) ≥ ε and ρ(zm(k), zn(k)−1) < ε.

Now,
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ε ≤ ρ(zm(k), zn(k)) ≤ ρ(zm(k), zn(k)−1) + ρ(zn(k)−1, zn(k))

< ε + ρ(zn(k)−1, zn(k)).

Using (6), we have
lim

k→+∞ ρ(zm(k), zn(k)) = ε. (7)

Again,

ρ(zm(k), zn(k)) ≤ ρ(zm(k), zm(k)+1) + ρ(zm(k)+1, zn(k)+1) + ρ(zn(k), zn(k)+1)

≤ ρ(zm(k), zm(k)+1) + ϕ(ρ(zm(k), zn(k))) + ρ(zn(k), zn(k)+1).

Taking limit supremum as n → +∞ on both sides of the inequality and using (6), (7)
and the properties of ϕ, we have ε ≤ ϕ(ε) < ε. This is a contradiction. Hence {zn}
is a Cauchy sequence. As (M, ρ) is complete, there exists ξ ∈ M such that zn → ξ ,
as n → +∞.

We now show that ξ is a fixed point of S. It follows by the contraction condition
that S is continuous. Therefore, Sξ = limn→+∞ Szn = limn→+∞ zn+1 = ξ . Hence
ξ is a fixed point S.

Let z be a fixed point of S other than ξ . Then ρ(z, ξ) > 0. From (3), we have
ρ(z, ξ) = ρ(Sz, Sξ) ≤ ϕ(ρ(z, ξ)) < ρ(z, ξ), which is a contradiction. Hence, ξ is
the unique fixed point of S.

Example 4 Take the metric space M = [0, 1] equipped with usual metric. Define
S : M → M as Sz = z − z2

2 , for z ∈ M . Let ϕ : [0, +∞) → [0, +∞) be defined
by

ϕ(t) =
{
t − t2

2 , if 0 ≤ t ≤ 1,
t
2 , otherwise.

Boyd andWong fixed point theorem is applicable and z = 0 is the unique fixed point
of S.

In 1969, Meir and Keeler [25] established that the conclusion of Banach’s theo-
rem holds more generally from the following condition of weakly uniformly strict
contraction:

Given ε > 0, there exists δ > 0 such that

ε ≤ ρ(x, y) < ε + δ implies ρ(Sx, Sy) < ε. (8)

The following result is due to Meir and Keeler [25].

Theorem 3 A self-mapping S of a complete metric space (M, ρ) admits a unique
fixed point if (8) holds.

Proof We first observe that (8) implies that

ρ(Sx, Sy) < ρ(x, y) whenever x �= y. (9)
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Suppose that ζ and η are two distinct fixed points of S. Then from (9), we have
ρ(ζ, η) = ρ(Sζ, Sη) < ρ(ζ, η), which is a contradiction. Hence S may have at most
one fixed point.

Let z0 ∈ M be any arbitrary element. Take the same sequence {zn} in M as in the
proof of Theorem 2. We take zn �= zn+1, for all n ≥ 0. This is because in the case
zl = zl+1, for some positive integer l, zl is a fixed point of S.

Let cn = ρ(zn, zn+1). From (9), we can show that {cn = ρ(zn, zn+1)} is a
monotonic decreasing sequence of nonnegative real numbers. Then there exists
an ε ≥ 0 such that cn → ε, as n → +∞. If possible, suppose that ε > 0. As
{cn} is decreasing and cn → ε, as n → +∞, for δ > 0 there exists m such that
ε ≤ cn < ε + δ for all n ≥ m. Therefore, ε ≤ cm < ε + δ. Then from (8) it follows
that cm+1 = ρ(zm+1, zm+2) = ρ(Szm, Szm+1) < ε, which is a contradiction. Hence
ε = 0. Therefore,

lim
n→+∞ ρ(zn, zn+1) = 0. (10)

We suppose that {zn} is not a Cauchy sequence. Then there exists 2ε > 0 such
that lim sup ρ(zm, zn) > 2ε. By the hypothesis, there exists a δ > 0 such that

ε ≤ ρ(x, y) < ε + δ implies ρ(Sx, Sy) < ε. (11)

Formula (11) remains true if we replace δ by δ
′ = min {δ, ε}. By (10), there exists

a positive integer P for which cP < δ
′

3 . Choose m, n > P so that ρ(zm, zn) > 2ε.
Now for any j ∈ [m, n], we have

| ρ(zm, z j ) − ρ(zm, z j+1) |≤ c j <
δ

′

3
.

This implies, since ρ(zm, zm+1) < ε and ρ(zm, zn) > ε + δ
′
, that there exists j ∈

[m, n] with
ε + 2δ

′

3
< ρ(zm, z j ) < ε + δ

′
. (12)

However, for all m and j ,

ρ(zm, z j ) ≤ ρ(zm, zm+1) + ρ(zm+1, z j+1) + ρ(z j+1, z j ).

From (11) and (12), we have

ρ(zm, z j ) ≤ cm + ε + c j <
δ

′

3
+ ε + δ

′

3
,

which contradicts (12). Therefore, {zn} is a Cauchy sequence.
Now (9) implies that S is continuous. As discussed in the proof of Theorem 1, we

conclude that S has a unique fixed point.
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Example 5 ([25]) LetM = [0, 1] ∪ {3, 4, 6, 7, ..., 3n, 3n + 1, ...} be equippedwith
Euclidean metric and S : M → M be defined by

S(u) =
⎧⎨
⎩

u
2 , if 0 ≤ u ≤ 1,
0, if u = 3n,

1 − 1
n+2 , if u = 3n + 1.

Here, Theorem 3 is applicable and the unique fixed point of S is u = 0.

It is observed that in Banach’s contraction mapping principle, the contraction
condition is global, that is, the operators satisfy the contraction condition for every
pair of points taken from the metric space. A natural question arises whether the
conclusion of Banach’s theorem is true if the contraction condition is satisfied locally,
that is, for sufficiently close points only. The answer was given in the affirmative in
a paper by Michael Edelstein [14] in 1961.

Definition 3 (Local Contraction [14]) A self-mapping S : M → M , where (M, ρ)

is a metric space, is locally contractive if for every x ∈ M there exist ε > 0 and
λ ∈ [0, 1), which may depend on x , such that

p, q ∈ S(x, ε) = {y : ρ(x, y) < ε} implies ρ(Sp, Sq) < λ ρ(p, q). (13)

Definition 4 (Uniform Local Contraction [14]) A uniformly locally contractive
mapping on a metric space (M, ρ) is a locally contractive mapping S : M → M
where both ε and λ do not depend on x .

Definition 5 ([14]) Let (M, ρ) be a metric space such that for every a, b ∈ M
there exists an η-chain, that is, a finite set of points a = x0, x1, ..., xn = b (n may
depend on both a and b) satisfying ρ(x j−1, x j ) < η ( j = 1, 2, ..., n). Then (M, ρ)

is η-chainable.

Theorem 4 (Edelstein [14]) An (ε, λ)—uniformly locally contractive mapping S :
M → M on a ε-chainable complete metric space (M, ρ) has a unique fixed point.

Proof Choose any point z ∈ M . Take the ε-chain : z = z0, z1, ..., zn = Sz. By the
triangular property, we have

ρ(z, Sz) ≤
n∑
1

ρ(zi−1, zi ) < nε. (14)

For pairs of consecutive points of the ε-chain, condition (13) is satisfied. Hence,
denoting S(Smz) = Sm+1z (m = 1, 2, ...), we have

ρ(Szi−1, Szi ) < λ ρ(zi−1, zi ) < λ ε;

and, by repeated application of the above inequality, we have
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ρ(Smzi−1, S
mzi ) < λ ρ(Sm−1zi−1, S

m−1zi ) < λm ε. (15)

Using (14) and (15), we have

ρ(Smz, Sm+1z) ≤
n∑

i=1

ρ(Smzi−1, S
mzi ) < λm n ε. (16)

Now, for any two positive integers j, k( j < k), we have

ρ(S j z, Skz) ≤
k−1∑
i= j

ρ(Si z, Si+1z) < nε [λ j + λ j+1 + ... + λk−1]

<
λ j

1 − λ
nε → 0, as j → +∞.

It follows that {Si z} is a Cauchy sequence in M . Now, M being complete, there exists
a point ξ ∈ M such that Si z → ξ , as i → +∞.

Now(13) implies that S is continuous.Therefore,wehave Sξ = limi→+∞ S(Si z) =
limi→+∞ Si+1z = ξ . Hence ξ is a fixed point S.

If possible, let ζ (ζ �= ξ) be another fixed point of S. Now ρ(ξ, ζ ) > 0. Let
ξ = z0, z1, ..., zk = ζ be an ε-chain. Using (15), we have

ρ(ξ, ζ ) = ρ(Sξ, Sζ ) ≤ ρ(Slξ, Slζ )

≤
k∑

i=1

ρ(Sl zi−1, S
l zi ) < λl kε → 0 as l → +∞,

which is a contradiction. Hence, ξ = ζ and our proof is completed.

Example 6 Let M = {(u, v) : u = cos θ, v = sin θ, 0 ≤ θ ≤ 3
2π} be equipped

with Euclidean metric. Define S : M → M as Sp = ( u2 ,
v
2 ), for p = (u, v) ∈ M .

Theorem 4 is applicable here and p = (0, 0) is the unique fixed point of S.

In 2012, Samet et al. [37] introduced the new concept of α − ψ-contractive type
mapping and established a fixed point theorem for such mappings in complete metric
spaces. The presented theorem therein extends, generalizes and improves the famous
Banach’s contraction mapping principle. We describe here the notions of α − ψ-
contractive and α-admissible mappings.

Let � denote the family of nondecreasing functions ψ : [0, +∞) → [0, +∞)

such that
∑+∞

n=1 ψn(t) < +∞ for each t > 0, where ψn is nth iterate of ψ .

Lemma 1 ([37]) If ψ : [0, +∞) → [0, +∞) be a nondecreasing function satisfy-
ing limn→+∞ ψn(t) = 0 for each t > 0, then ψ(t) < t for each t > 0.

Definition 6 ([37]) Let S : M → M andα : M × M → [0, +∞)be twomappings.
The mapping T is α-admissible if α(u, v) ≥ 1 =⇒ α(Tu, T v) ≥ 1, for u, v ∈ M .
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Example 7 Let M = [0, 1]. Let S : M → M and α : M × M → [0, +∞) be
respectively defined as follows:

Sz = sin2 z

16
, for z ∈ M and α(u, v) =

{
eu+v, if 0 ≤ u ≤ 1, 0 ≤ v ≤ 1

8 ,

0, otherwise.

Here S is α-admissible.

Definition 7 ([37]) A mapping T : M → M , where (M, d) is a metric space, is
called an α − ψ-contractive mapping if there exist two functions α : M × M →
[0, +∞) and ψ ∈ � such that

α(u, v) ρ(Tu, T v) ≤ ψ(ρ(u, v)), for all u, v ∈ M.

Remark 1 If α(u, v) = 1 for all u, v ∈ M and ψ(t) = kt for all t ≥ 0 and some
k ∈ [0, 1), theα − ψ-contractivemapping reduces toBanach’s contractionmapping.

Theorem 5 (Samet et al. [37]) Let (M, ρ) be a complete metric space, S : M → M
and α : M × M → [0, +∞). Suppose that (i) S is α-admissible, (ii) there exists
z0 ∈ M such that α(z0, Sz0) ≥ 1, (iii) S is continuous and (iv) there exists ψ ∈ �

such that S is an α − ψ-contractive mapping. Then S admits a fixed point.

Proof Let z0 ∈ M such that α(z0, Sz0) ≥ 1. We construct a sequence {zn} in M
such that

zn+1 = Szn, for all n ≥ 0. (17)

Then α(z0, z1) ≥ 1. As S is α-admissible, we have α(Sz0, Sz1) = α(z1, z2) ≥ 1.
Again, applying the admissibility assumption, we have α(Sz1, Sz2) = α(z2, z3) ≥ 1.
Continuing this process, we have

α(zn, zn+1) ≥ 1, for all n ≥ 0. (18)

Like in the proof of Theorem 2, we show that the possibility of zl = zl+1 occurring,
for some positive integer l, ensures that zl is a fixed point of S. So we consider the
case zn �= zn+1, for all n ≥ 0.

Applying (iv) with z = zn−1 and y = zn , where n ≥ 1, and using (17) and (18),
we obtain

ρ(zn, zn+1) = ρ(Szn−1, Szn) ≤ α(zn−1, zn) ρ(Szn−1, Szn) ≤ ψ(ρ(zn−1, zn)).

By repeated the application of the above inequality and a property of ψ , we have

ρ(zn, zn+1) ≤ ψn(ρ(z0, z1)), for all n ≥ 1.

With the help of the above inequality, we have
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+∞∑
n=1

ρ(zn, zn+1) ≤
+∞∑
n=1

ψn(ρ(z0, z1)) < +∞,

which implies that {zn} is a Cauchy sequence in M . As M is complete, we get
ξ ∈ M such that limn→+∞ zn = ξ . From the continuity of S, it follows that Sξ =
limn→+∞ Szn = limn→+∞ zn+1 = ξ . Hence ξ is a fixed point S.

Example 8 ([37]) Take M = R the set of all real numbers endowed with the usual
metric ρ. Let S : M → M be defined as follows:

Sz =
⎧⎨
⎩
2z − 3

2 , if z > 1,
z
2 , if 0 ≤ z ≤ 1,
0, if z < 0.

As ρ(S1, S2) = 2 > 1 = ρ(2, 1), the Banach’s contraction mapping principle can-
not be applied in this case.

Define ψ : [0, +∞) → [0, +∞) and α : M × M → [0, +∞) as follows:

ψ(t) = t

2
and α(u, v) =

{
1, if u, v ∈ [0, 1],
0, otherwise.

Here Theorem 5 is applicable and z = 0 is a fixed point of S.

In 1973, Geraghty [17] introduced a class of functions to generalize the Banach’s
contraction mapping principle. Let S be the class of all functions β : [0,+∞) →
[0, 1) satisfying the property: β(tn) → 1, as tn → 0.

An example of a function in S may be given by β(t) = e−2t for t > 0 and β(0) ∈
[0, 1).
Theorem 6 (Geraghty [17]) A self-mapping S of a complete metric space (M, ρ)

admits a unique fixed point if there exists a function β ∈ S such that

ρ(Su, Sv) ≤ β(ρ(u, v)) ρ(u, v), for all u, v ∈ M. (19)

Proof Suppose that S has two fixed points ζ and η with ζ �= η. From (19), we
haveρ(ζ, η) = ρ(Sζ, Sη) ≤ β(ρ(ζ, η)) ρ(ζ, η) < ρ(ζ, η), which is a contradiction.
Hence the fixed point of S, if it exists, is unique.

Let z0 ∈ M be any arbitrary element. Take the same sequence {zn} in M as in the
proof of Theorem 2. Like in the proof of Theorem 2, we show that the possibility
of zl = zl+1 occurring, for some positive integer l, implies the existence of a fixed
point of S. So we assume that zn �= zn+1, for all n ≥ 0.

First we prove limn→+∞ ρ(zn, zn+1) = 0. Applying (19) and using the property
of β, we have for all n ≥ 0,

ρ(zn+1, zn+2) = ρ(Szn, Szn+1) ≤ β(ρ(zn, zn+1)) ρ(zn, zn+1) < ρ(zn, zn+1). (20)



Basic Fixed Point Theorems in Metric Spaces 11

Therefore, {ρ(zn, zn+1)} is a decreasing sequence of nonnegative real numbers. We
get an δ ≥ 0 such that limn→+∞ ρ(zn, zn+1) = δ.

Suppose that δ > 0. From (20), we have

ρ(zn+1, zn+2)

ρ(zn, zn+1)
≤ β(ρ(zn, zn+1)) < 1, for all n ≥ 0.

Then

1 ≤ lim
n→+∞ β(ρ(zn, zn+1)) < 1,

which implies that
lim

n→+∞ β(ρ(zn, zn+1)) = 1. (21)

It follows by the property of β that limn→+∞ ρ(zn, zn+1) = 0, which contradicts our
assumption. Hence δ = 0, that is, limn→+∞ ρ(zn, zn+1) = 0.

Nextwe show that {zn} is a Cauchy sequence. If {zn} is not a Cauchy sequence then
arguing similarly as in the proof of Theorem 2, we get an ε > 0 for which we can find
two sequences of positive integers {m(k)} and {n(k)} such that limk→+∞ ρ(zm(k),

zn(k)) = ε.
Now,

ρ(zm(k)+1, zn(k)+1) ≤ ρ(zm(k)+1, zm(k)) + ρ(zm(k), zn(k)) + ρ(zn(k), zn(k)+1).

Again,

ρ(zm(k), zn(k)) ≤ ρ(zm(k), zm(k)+1) + ρ(zm(k)+1, zn(k)+1) + ρ(zn(k)+1, zn(k))

that is,

ρ(zm(k), zn(k)) − ρ(zm(k), zm(k)+1) − ρ(zn(k)+1, zn(k)) ≤ ρ(zm(k)+1, zn(k)+1).

From the above inequalities we have that

ρ(zm(k), zn(k)) − ρ(zm(k), zm(k)+1) − ρ(zn(k)+1, zn(k)) ≤ ρ(zm(k)+1, zn(k)+1)

≤ ρ(zm(k)+1, zm(k)) + ρ(zm(k), zn(k)) + ρ(zn(k), zn(k)+1).

Taking limit as k → +∞ in the above inequality and using the fact limn→+∞
ρ(zn, zn+1) = 0 and limk→+∞ ρ(zm(k), zn(k)) = ε, we have

lim
k→+∞ ρ(zm(k)+1, zn(k)+1) = ε. (22)

Applying (19), we have
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ρ(zm(k)+1, zn(k)+1) = ρ(Szm(k), Szn(k)) ≤ β(ρ(zm(k), zn(k))) ρ(zm(k), zn(k))

< ρ(zm(k), zn(k)),

that is,

ρ(zm(k)+1, zn(k)+1)

ρ(zm(k), zn(k))
≤ β(ρ(zm(k), zn(k))) < 1.

Then

1 ≤ lim
k→+∞ β(ρ(zm(k), zn(k))) < 1,

which implies that
lim

k→+∞ β(ρ(zm(k), zn(k))) = 1. (23)

It follows by the property of β that limk→+∞ ρ(zm(k), zn(k)) = 0, that is, ε = 0,
which is a contradiction. Hence {zn} is a Cauchy sequence. As (M, ρ) is complete,
there exists an ξ ∈ M such that zn → ξ as n → +∞. Now applying (19), we have

ρ(zn+1, Sξ) = ρ(Szn, Sξ) ≤ β(ρ(zn, ξ)) ρ(zn, ξ) < ρ(zn, ξ).

Taking limit as n → +∞ in the above inequality, we have ρ(ξ, Sξ) = 0, that is,
ξ = Sξ , that is, ξ is a fixed point of S. From what we have already proved, ξ is the
unique fixed point of S.

Example 9 Take the metric space M = [0,+∞) equipped with usual metric. Let
β(t) = 1

1+t , for all t ≥ 0. Then β ∈ S. Define S : M → M as

Su =
{ u

3 , if 0 ≤ u ≤ 1,
1
3 , if u > 1.

Theorem 6 is applicable and here u = 0 is the unique fixed point of S.

The next theorem is a generalized weak contraction mapping theorem due to
Choudhury et al. [9] which was proved in 2013. It is the culmination of a series of
papers generalizing andweakeningBanach’s result in a specificway. Inmetric spaces,
this line of research was originated by Rhoades [34] and was further contributed
through works like [7, 13, 44]. Prior to the work of Rhoades [34], such contractions
were considered in different settings and under different conditions, a description
of which can be found in [18, 19]. Although most of these results including [9]
are worked out in partially ordered metric spaces, we present the theorem here in a
complete metric space without order.

We denote by � the set of all functions ψ : [0, +∞) → [0, +∞) satisfying
(iψ) ψ is continuous and nondecreasing,
(i iψ) ψ(t) = 0 if and only if t = 0;
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and by � we denote the set of all functions α : [0, +∞) → [0, +∞) such that
(iα) α is bounded on any bounded interval in [0, +∞),
(i iα) α is continuous at 0 and α(0) = 0.

Theorem 7 Let S be a self-mapping of a complete metric space (M, ρ). Suppose
that there exist ψ ∈ � and ϕ, θ ∈ � such that

ψ(x) ≤ ϕ(y) ⇒ x ≤ y, (24)

for any sequence {xn} in [0, +∞) with xn → t > 0,

ψ(t) − lim ϕ(xn) + lim θ(xn) > 0, (25)

and
ψ(ρ(Su, Sv)) ≤ ϕ(ρ(u, v)) − θ(ρ(u, v)), for all u, v ∈ M. (26)

Then S has a unique fixed point in M .

Proof Choose an arbitrary element z0 ∈ M and define a sequence {zn} in M such
that

zn+1 = Szn, for all n ≥ 0. (27)

Let Rn = ρ(zn+1, zn), for all n ≥ 0.
Applying (26), we have

ψ(ρ(zn+2, zn+1)) = ψ(ρ(Szn+1, Szn)) ≤ ϕ(ρ(zn+1, zn)) − θ(ρ(zn+1, zn)),

that is,
ψ(Rn+1) ≤ ϕ(Rn) − θ(Rn), (28)

which, in view of the fact that θ ≥ 0, yieldsψ(Rn+1) ≤ ϕ(Rn), which by (24) implies
that Rn+1 ≤ Rn , for all positive integers n, that is, the sequence {Rn} is monotonic
decreasing. Then we get an r ≥ 0 such that

Rn = ρ(zn+1, zn) → r as n → +∞. (29)

Taking limit supremum on both sides of (28), using (29), the property (iα) of ϕ and
θ , and the continuity of ψ , we obtain

ψ(r) ≤ lim ϕ(Rn) + lim (− θ(Rn)).

Since lim (− θ(Rn)) = − lim θ(Rn), we obtain

ψ(r) ≤ lim ϕ(Rn) − lim θ(Rn),

that is,
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ψ(r) − lim ϕ(Rn) + lim θ(Rn) ≤ 0,

which by (25) is a contradiction unless r = 0. Therefore,

Rn = ρ(zn+1, zn) → 0, as n → +∞. (30)

Next we prove that {zn} is a Cauchy sequence. On the contrary, there exists an
ε > 0 for which we can find two sequences of positive integers {m(k)} and {n(k)}
such that for all positive integers k,

n(k) > m(k) > k, ρ(zm(k), zn(k)) ≥ ε and ρ(zm(k), zn(k)−1) < ε.

Arguing similarly as in the proof of Theorem 5, we prove that

lim
k→+∞ ρ(zm(k), zn(k)) = ε and lim

k→+∞ ρ(zm(k)+1, zn(k)+1) = ε. (31)

Applying from (26) and (27), we have

ψ(ρ(zn(k)+1, zm(k)+1)) = ψ(ρ(Szn(k), Szm(k)))

≤ ϕ(ρ(zn(k), zm(k))) − θ(ρ(zn(k), zm(k))).

Using (31), the property (iα) of ϕ and θ , and the continuity of ψ , we obtain

ψ(ε) ≤ lim ϕ(ρ(zn(k), zm(k))) + lim (− θ(ρ(zn(k), zm(k)))).

As lim (− θ(ρ(zn(k), zm(k)))) = − lim θ(ρ(zn(k), zm(k))), we get

ψ(ε) ≤ lim ϕ(ρ(zn(k), zm(k))) − lim θ(ρ(zn(k), zm(k))),

that is,

ψ(ε) − lim ϕ(ρ(zn(k), zm(k))) + lim θ(ρ(zn(k), zm(k))) ≤ 0,

which is a contradiction by (25). Therefore, {zn} is a Cauchy sequence in M and
hence there exists ξ ∈ M such that

lim
n→+∞ zn+1 = lim

n→+∞ Szn = lim
n→+∞ = ξ. (32)

Now, applying (26), we have

ψ(ρ(zn+1, Sξ)) = ψ(ρ(Szn, Sξ)) ≤ ϕ(ρ(zn, ξ)) − θ(ρ(zn, ξ)).
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Taking limit as n → +∞ and using (32), the properties of ψ , ϕ and θ , we obtain
ψ(ρ(ξ, Sξ)) = 0, which implies that ρ(ξ, Sξ) = 0, that is, ξ = Sξ , that is, ξ is a
fixed point of S.

Suppose that ζ ∈ M (ζ �= ξ) be another fixed point of S. Then ρ(ξ, ζ ) > 0. Now,
we consider a sequence {yn} in M such that yn → ζ as n → +∞. Therefore,

ρ(ξ, yn) → ρ(ξ, ζ ) > 0, as n → +∞. (33)

By (26), we have

ψ(ρ(ξ, Syn)) = ψ(ρ(Sξ, Syn)) ≤ ϕ(ρ(ξ, yn)) − θ(ρ(ξ, yn)).

Using (33), the property (iα) of ϕ and θ , and the continuity of ψ , we obtain

ψ(ρ(ξ, ζ )) ≤ lim ϕ(ρ(ξ, yn)) + lim (− θ(ρ(ξ, yn))),

that is,

ψ(ρ(ξ, ζ )) − lim ϕ(ρ(ξ, yn)) + lim θ(ρ(ξ, yn)) ≤ 0,

which is a contradiction by (25). Therefore, ρ(ξ, ζ ) = 0, that is, ξ = ζ . Hence, T
has a unique fixed point.

Example 10 LetM = [0, 1] andρ(x, y) = |x − y|, for x, y ∈ M . Let S : M → M
be defined by Sx = x − x2

2 , for all x ∈ M . Let θ, ϕ, ψ : [0, +∞) → [0, +∞) be
given, respectively, by the formulas

θ(t) = t2

2
, ϕ(t) =

{
t, if 0 ≤ t ≤ 1,
0, otherwise,

ψ(t) =
{
t, if 0 ≤ t ≤ 1,
t2, otherwise.

Applying Theorem 7, we see that the unique fixed point of S is x = 0.

Remark 2 Considering ψ and ϕ to be the identity mappings and θ(t) = (1 − k)t ,
where 0 ≤ k < 1, in Theorem 7 we have Theorem 1.

Pata-type contractions are introduced in a recent paper due to Pata [29] in 2011
in which a fixed point theorem for such contractions was proved by using a new
approach. The result due to Pata [29] appeared to be stronger than Banach’s Con-
traction Mapping Principle, even stronger than the well-known Boyd-Wong fixed
point theorem.

We use the following class of functions for the following result. Let � denote
the family of all functions ψ : [0, 1] → [0, +∞) such that ψ is increasing and
continuous at zero with ψ(0) = 0.

Theorem 8 (Pata [29]) Let Λ ≥ 0, α ≥ 1 and β ∈ [0, α] be some constants and
ψ ∈ �. Let (M, d) be a complete metric space and S : M → M be such that for
every ε ∈ [0, 1] and all x, y ∈ M,
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ρ(Sx, Sy) ≤ (1 − ε)ρ(x, y) + Λεαψ(ε)
[
1 + ‖x‖ + ‖y‖

]β

, (34)

where ||x || = ρ(x, u) and ||y|| = ρ(y, u) for an arbitrary but fixed u ∈ M. Then S
has a unique fixed point in M.

Proof Suppose that S has two fixed points ζ and η with ζ �= η. Then ρ(ζ, η) > 0.
Applying (34) with 0 < ε ≤ 1, we have

ρ(ζ, η) = ρ(Sζ, Sη) ≤ (1 − ε) ρ(ζ, η) + Λ εαψ(ε)
[
1 + ||ζ || + ||η||

]β

,

that is,

ε ρ(ζ, η) ≤ Λ εα ψ(ε)
[
1 + ||ζ || + ||η||

]β

,

that is,

ρ(ζ, η) ≤ Λ εα−1 ψ(ε)
[
1 + ||ζ || + ||η||

]β

.

Taking ε → 0 and using the property of ψ , we have ρ(ζ, η) ≤ 0, which is a contra-
diction. Hence S may have at most one fixed point.

Choosing an arbitrary element z0 ∈ M , we construct a sequence {zn} in M such
that

zn+1 ∈ Szn for all n ≥ 0. (35)

Let
cn = ||zn|| = ρ(zn, z0), for all n ≥ 0. (36)

Applying (34) with 0 < ε ≤ 1, we get

ρ(zn+2, zn+1) ≤ ρ(Szn+1, Szn)

≤ (1 − ε) ρ(zn+1, zn) + Λ εαψ(ε)
[
1 + ||zn+1|| + ||zn||

]β

.

Since α ≥ 1, taking ε → 0 and using the property of ψ , we have

ρ(zn+2, zn+1) ≤ ρ(zn+1, zn) for all n ≥ 0, (37)

that is, the sequence {ρ(zn+1, zn)} is a decreasing. So

ρ(zn+1, zn) ≤ ρ(z1, z0) = c1 = ||z1||, for all n ≥ 0, (38)

and also there exists a real number l ≥ 0 such that
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ρ(zn+1, zn) → l as n → +∞. (39)

We claim that {cn} is bounded.
Applying (34) of the theorem, (35), (36), (37) and (38), we have

cn = ρ(zn, z0) ≤ ρ(zn, zn+1) + ρ(zn+1, z1) + ρ(z1, z0)

= ρ(zn+1, zn) + ρ(zn+1, z1) + c1
≤ ρ(z1, z0) + ρ(zn+1, z1) + c1 = c1 + ρ(zn+1, z1) + c1
≤ ρ(Szn, Sz0) + 2c1

≤ (1 − ε) ρ(zn, z0) + Λ εα ψ(ε)
[
1 + ||zn|| + ||z0||

]β + 2c1

≤ (1 − ε) cn + Λ εα ψ(ε)
[
1 + ||zn||

]β + 2c1

≤ (1 − ε) cn + Λ εα ψ(ε)
[
1 + cn

]α + 2c1,
(
since β ≤ α

)
.

≤ (1 − ε) cn + Λ εα ψ(ε)
[
1 + cn + c1

]α + 2c1,
(
since β ≤ α

)
.

So, we have

cn ≤ (1 − ε) cn + Λ εα ϕ(ε)
[
1 + cn + c1

]α + 2c1. (40)

Now
(
1 + cn + c1

)α = (1 + cn)
α
(
1 + c1

1 + cn

)α ≤ (1 + cn)
α(1 + c1)

α. (41)

If possible, suppose that the sequence {cn} is unbounded. Then we have a sub-
sequence {cnk } with cnk → +∞ as k → +∞. Then there exist a natural number N ∗
such that

cnk ≥ 1 + 2c1 for all k ≥ N ∗. (42)

Now, for all k ≥ N ∗ from (40) and using (41), we have

(
1 + cnk + c1

)α = (1 + cnk )
α(1 + c1)

α ≤ cα
nk (1 + 1

cnk
)α (1 + c1)

α,

which implies

(
1 + cnk + c1

)α ≤ cα
nk (1 + 1)α (1 + c1)

α = 2αcα
nk (1 + c1)

α. (43)

Then for all k ≥ N ∗, we have from (40) and (43) that

cnk ≤ (1 − ε)cnk + Λ εα ψ(ε) 2α cα
nk (1 + c1)

α + 2c1,
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that is,

ε cnk ≤ Λ εα ψ(ε) 2α cα
nk (1 + c1)

α + 2c1

=
[
Λ 2α (1 + c1)

α
]

εα ψ(ε) cα
nk + 2c1.

Let a = Λ 2α (1 + c1)α and b = 2c1. Here a and b are fixed positive real numbers.
So, we have

ε cnk ≤ a εα ψ(ε) cα
nk + b.

Choose ε = εk = 1+b
cnk

= 1+2c1
cnk

, where k ≥ N ∗. Then by (42), 0 < ε ≤ 1. Now we
have

1 ≤ a (1 + b)α ψ(εk) → 0 as k → +∞,

which is a contradiction. Hence {cn} is bounded.
Applying (34) with ε ∈ (0, 1], we have

ρ(zn+2, zn+1) ≤ ρ(Szn+1, Szn)

≤ (1 − ε) ρ(zn+1, zn) + Λ εα ψ(ε)
[
1 + ||zn+1|| + ||zn||

]β

.

Since {cn} is bounded, there exists a real number H > 0 such that cn = ||zn|| ≤ H
for all n ≥ 0. Then

ρ(zn+2, zn+1) ≤ (1 − ε) ρ(zn+1, zn) + Λ εα ψ(ε)
[
1 + ||zn+1|| + ||zn||

]β

≤ (1 − ε) ρ(zn+1, zn) + Λ εα ψ(ε)
[
1 + 2H

]β

.

Taking n → +∞ and using (39), we have

l ≤ (1 − ε) l + Λ εα ψ(ε)
[
1 + 2H

]β

,

which implies that

ε l ≤ Λ εα ψ(ε)
[
1 + 2H

]β

,

that is,

l ≤ Λ εα−1 ϕ(ε)
[
1 + 2H

]β

.
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Taking ε → 0 and using the property of ψ , we have l ≤ 0, which implies that l = 0.
So, we get

lim
n→+∞ ρ(zn+1, zn) = 0. (44)

Next we prove that the sequence {zn} is Cauchy. On the contrary, there exists a
ξ > 0 and two sequences of positive integers {m(k)} and {n(k)} such that for all
positive integers k,

n(k) > m(k) > k, ρ(zm(k), zn(k)) ≥ ξ and ρ(zm(k), zn(k)−1) < ξ.

Now,

ξ ≤ ρ(zm(k), zn(k)) ≤ ρ(zm(k), zn(k)−1) + ρ(zn(k)−1, zn(k)),

that is,

ξ ≤ ρ(zm(k), zn(k)) < ξ + ρ(zn(k)−1, zn(k)).

Using (44), we have
lim

k→+∞ ρ(zm(k), zn(k)) = ξ. (45)

Again,

ρ(zm(k), zn(k)) ≤ ρ(zm(k), zm(k)+1) + ρ(zm(k)+1, zn(k)+1) + ρ(zn(k)+1, zn(k))

and

ρ(zm(k)+1, zn(k)+1) ≤ ρ(zm(k)+1, zm(k)) + ρ(zm(k), zn(k)) + ρ(zn(k), zn(k)+1).

Using (44) and (45), we have

lim
k→+∞ ρ(zm(k)+1, zn(k)+1) = ξ. (46)

Applying (34) with ε ∈ (0, 1], we have

ρ(zm(k)+1, zn(k)+1) ≤ ρ(Szm(k), Szn(k))

≤ (1 − ε) ρ(zm(k), zn(k)) + Λ εα ψ(ε)
[
1 + ||zm(k)|| + ||zn(k)||

]β

.

Since cn = ||zn|| ≤ H for all n ≥ 0,

ρ(zm(k)+1, zn(k)+1) ≤ (1 − ε) ρ(zm(k), zn(k)) + Λ εα ψ(ε)
[
1 + 2H

]β

.
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Taking limit as k → +∞ and using (45), (46) and the property of ψ , we have

ξ ≤ (1 − ε) ξ + Λ εα ψ(ε)
[
1 + 2H

]β

,

which implies that

ε ξ ≤ Λ εα ψ(ε)
[
1 + 2H

]β

,

that is,

ξ ≤ Λ εα−1 ϕ(ε)
[
1 + 2H

]β

.

Taking limit as ε → 0 and using the property of ψ , we have ξ ≤ 0, which is a
contradiction. Therefore, {zn} is a Cauchy sequence in M and hence there exists
y ∈ M such that

zn → y as n → +∞. (47)

Applying (34) with ε ∈ (0, 1], we have

ρ(zn+1, Sy) ≤ ρ(Szn, Sy)

≤ (1 − ε) ρ(zn, y) + Λ εαψ(ε)
[
1 + ||zn|| + ||y||

]β

.

Since cn = ||zn|| ≤ H for all n ≥ 0. Then

ρ(zn+1, Sy) ≤ (1 − ε) ρ(zn, y) + Λ εαψ(ε)
[
1 + H + ||y||

]β

.

Taking n → +∞ and using (44), (47), we get

ρ(y, Sy) ≤ Λ εαψ(ε)
[
1 + H + ||y||

]β

.

Taking limit as ε → 0 and using the property of ψ , we have ρ(y, Sy) = 0, that is,
y = Sy, that is, y is a fixed point of S. From what we have already proved, y is the
unique fixed point of S.

Example 11 ([29]) Let M = [1,+∞) and let S : M → M be defined by

Sz = −2 + z − 2
√
z + 4 4

√
z.

It has a unique fixed point z = 1. For any given r > 0 and z ≥ 1, if

Q(z, r) = 2[√z + r − √
z] − 4[ 4

√
z + r − 4

√
z],
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then
|S(z + r) − S(z)| = r − Q(z, r)

holds for all r and z. On the other hand, for every ε ∈ [0, 1], one can prove that

−εr + ε2(2z + r)3/2 + Q(z, r) ≥ Q(z, r) − r2

4(r + 2z)3/2
≥ 0.

It follows that

|S(z + r) − S(z)| = r − Q(z, r) ≤ (1 − ε)r + ε2(2z + r)3/2,

and the conditions of Theorem 8 are fulfilled.

4 Metric Fixed Point Without Continuity

In 1976, Caristi [5] proved an elegant fixed point theorem on complete metric spaces,
which is a generalization of the Banach’s contractionmapping principle and is equiv-
alent to the Ekeland variational principle [15].

Definition 8 A function ϕ : X → R is said to be lower semicontinuous at x if for
any sequence {xn} ⊂ X , we have

xn → x ∈ X ⇒ ϕ(x) ≤ lim inf
n→+∞ ϕ(xn).

Definition 9 Let (M, ρ) be a metric space. A mapping S : M → M is called a
Caristi mapping if there exists a lower semicontinuous function ϕ : M → R+ such
that

ρ(u, Su) ≤ ϕ(u) − ϕ(Su), for all u ∈ M.

Theorem 9 ([24]) Let (M, ρ) be a complete metric space. A mapping S : M → M
admits a fixed point in M if there exists a lower semicontinuous functionϕ : M → R+
such that

ρ(u, Su) ≤ ϕ(u) − ϕ(Su), for all u ∈ M. (48)

Proof From (48) it follows immediately that

ϕ(Su) ≤ ϕ(u), for every u ∈ M. (49)

For u ∈ M , define

Q(u) = {y ∈ M : ρ(u, y) ≤ ϕ(u) − ϕ(y)}.
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Q(u) is nonempty because u ∈ Q(u) and Su ∈ Q(u). Let y ∈ Q(u). Now, we have

ρ(u, Sy) ≤ ρ(u, y) + ρ(y, Sy) ≤ ϕ(u) − ϕ(y) + ϕ(y) − ϕ(Sy),

that is,

ρ(u, Sy) ≤ ϕ(u) − ϕ(Sy). (50)

It follows that Sy ∈ Q(u). Hence, we have that if y ∈ Q(u) then Sy ∈ Q(u).
Define

q(u) = inf {ϕ(y) : y ∈ Q(u)}.

As Q(u) is nonempty for each u ∈ M and the function ϕ is nonnegative, the function
q(u) is well-defined. Then, we have that for any u ∈ M ,

0 ≤ q(u) ≤ ϕ(Su) ≤ ϕ(u). (51)

Let u1 ∈ M be arbitrary. By the definition of q(u1), there exists u2 ∈ Q(u1) such
that ϕ(u2) < q(u1) + 1. Again, by the definition of q(u2), there exists u3 ∈ Q(u2)
such that ϕ(u3) < q(u2) + 1

2 . In this way, we define a sequence {un} in M such that
un+1 ∈ Q(un) with

ϕ(un+1) < q(un) + 1

n
, for n ≥ 1. (52)

Since un+1 ∈ Q(un), we have

0 ≤ ρ(un, un+1) ≤ ϕ(un) − ϕ(un+1), (53)

that is,
ϕ(un+1) ≤ ϕ(un), for n ≥ 1. (54)

Hence {ϕ(un)} is a nonincreasing sequence of nonnegative numbers and therefore
there exists r ≥ 0 such that

lim
n→+∞ ϕ(un) = r. (55)

Therefore, {ϕ(un)} is a Cauchy sequence. Hence, for every k ∈ N (set of all natural
number), there exists Nk ∈ N such that for every pair of natural numbers m, n with
m ≥ n ≥ Nk , we have

0 ≤ ϕ(un) − ϕ(um) <
1

k
. (56)

From (51) and (52), we have
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ϕ(un+1) < q(un) + 1

n
≤ ϕ(un) + 1

n
.

Taking limit as n → +∞ and using (55), we have

lim
n→+∞ q(un) = r. (57)

We claim that for m ≥ n ≥ Nk ,

ρ(un, um) ≤ ϕ(un) − ϕ(um) <
1

k
. (58)

(58) is trivially valid for n = m. Therefore, it is sufficient to show that (58) is true
for m > n. Using triangular inequality, (53) and (56), we have for m > n that

ρ(un, um) ≤ ρ(un, un+1) + ρ(un+1, un+2) + · · · + ρ(um−1, um)

≤ ϕ(un) − ϕ(un+1) + ϕ(un+1) − ϕ(un+2) + · · · + ϕ(um−1) − ϕ(um).

It follows that

ρ(un, um) ≤ ϕ(un) − ϕ(um) <
1

k
. (59)

Therefore, (58) is true for m ≥ n ≥ Nk . From (58), it follows that {un} is a Cauchy
sequence and hence by completeness of M , there exists z ∈ M such that

lim
n→+∞ ρ(un, z) = 0. (60)

Hence, for every n ∈ N ,

lim
m→+∞ ρ(un, um) = ρ(un, z).

Using this, (59) and the lower semicontinuity of ϕ,

ρ(un, z) = lim
m→+∞ ρ(un, um) ≤ lim sup

m→+∞
[ϕ(un) − ϕ(um)]

≤ ϕ(un) − lim inf
m→+∞ ϕ(um)

≤ ϕ(un) − ϕ(z).

Therefore,

ρ(un, z) ≤ ϕ(un) − ϕ(z), (61)

which implies that z ∈ Q(un) for every n ∈ N . Then we have
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q(un) ≤ ϕ(z) ≤ ϕ(un) − ρ(un, z), for every n ∈ N . (62)

Taking limit as n → +∞ in the above inequality and using (55) and (57), we have

ϕ(z) = r. (63)

Since, as proved above, z ∈ Q(un) for every n ∈ N , (50) implies that Sz ∈ Q(un)
for every n ∈ N . Therefore, by (49), we conclude from (63) that

q(un) ≤ ϕ(Sz) ≤ ϕ(z) = r. (64)

Letting n → +∞ and using (57), we obtain ϕ(Sz) = ϕ(z). By (48) again,

0 ≤ ρ(z, Sz) ≤ ϕ(z) − ϕ(Sz) = 0.

Hence ρ(z, Sz) = 0, that is, Sz = z. Therefore, S has a fixed point.

Example 12 TakeM = [0, 1] endowedwith the usualmetricρ. Define S : M → M
as

Su =
{

u
2 , if u �= 1,
1, if u = 1.

The conditions of Theorem 9 are satisfied and S has fixed points 0 and 1.

It is easy to see that Caristi’s fixed point theorem is a generalization of theBanach’s
contraction mapping principle by defining ϕ(u) = 1

1−k ρ(u, Su), where 0 < k < 1
is the Lipschitz constant associated with the contraction S from Banach’s principle.
It has been shown by Kirk in [22] that the validity of Caristi’s fixed point theorem
implies that the corresponding metric space is complete while the Banach’s con-
traction mapping principle does not characterize completeness. The above example
shows that Caristi’s contraction can also be discontinuous.

Suzuki [42] in the year 2008 established a new fixed point theorem which is
a generalization of Theorem 1 and characterizes the metric completeness. Though
there are many generalizations of Theorem 1, the direction of Suzuki is new and
very simple. Suzuki-type contractions form an important class of contractions in the
domain of fixed point theory.

Define a function θ : [0, 1) → ( 12 , 1] as

θ(r) =

⎧⎪⎨
⎪⎩

1, if 0 ≤ r ≤
√
5−1
2 ;

1−r
r2 , if

√
5−1
2 ≤ r ≤ 1√

2
;

1
1+r , if 1√

2
≤ r < 1.
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Theorem 10 (Suzuki [42]) A self-mapping S of a complete metric space (M, ρ)

admits a unique fixed point if there exists a real number r ∈ [0, 1) such that for all
x, y ∈ M,

θ(r) ρ(x, Sx) ≤ ρ(x, y) implies ρ(Sx, Sy) ≤ r ρ(x, y). (65)

Proof Since θ(r) ≤ 1, θ(r) ρ(x, Sx) ≤ ρ(x, Sx) holds for every x ∈ M . By (65),
we have

ρ(Sx, S2x) ≤ r ρ(x, Sx), for all x ∈ M. (66)

Choose any point u ∈ M and construct a sequence {un} in M such that

un = Snu for all n ≥ 1. (67)

It follows from (66) that ρ(un, un+1) ≤ rn ρ(u, Su). Then
∑+

1 ∞ρ(un, un+1) <

+∞, which implies that {un} is aCauchy sequence.AsM is complete, {un} converges
to some point z ∈ M . Next, we show

ρ(Sx, z) ≤ rρ(x, z), for all x ∈ M \ {z}. (68)

For x ∈ M \ {z}, there exists a positive integer m such that ρ(un, z) ≤ ρ(x,z)
3 , for all

n ≥ m. Then we have for all n ≥ m that

θ(r)ρ(un, Sun) ≤ ρ(un, Sun) = ρ(un, un+1)

≤ ρ(un, z) + ρ(un+1, z)

≤ 2

3
ρ(x, z) = ρ(x, z) − 1

3
ρ(x, z)

≤ ρ(x, z) − ρ(un, z) ≤ ρ(un, x).

Then it follows by (65) that ρ(un+1, Sx) ≤ r ρ(un, x), for all n ≥ m. Taking n →
+∞, we get ρ(Sx, z) ≤ rρ(x, z). Hence (68) is true. Assume that Snz �= z for all
n ∈ N . By (68), we have

ρ(Sn+1z, z) ≤ rnρ(Sz, z), for all n ∈ N . (69)

We consider the following three cases:
• 0 ≤ r ≤

√
5−1
2 ;

•
√
5−1
2 < r < 1√

2
;

• 1√
2

≤ r < 1.

If 0 ≤ r ≤
√
5−1
2 , then r2 + r − 1 ≤ 0 and 2r2 < 1. If we assume ρ(S2z, z) <

ρ(S2z, S3z), then we have
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ρ(z, Sz) ≤ ρ(z, S2z) + ρ(Sz, S2z)

< ρ(S2z, S3z) + ρ(Sz, S2z)

≤ r2ρ(z, Sz) + rρ(z, Sz)

≤ ρ(z, Sz),

which is a contradiction. So we have ρ(S2z, z) ≥ ρ(S2z, S3z) ≥ θ(r)ρ(S2z, SS2z).
By hypothesis and (69), we have

ρ(z, Sz) ≤ ρ(z, S3z) + ρ(S3z, Sz)

≤ r2ρ(z, Sz) + rρ(S2z, z)

≤ r2ρ(z, Sz) + r2ρ(Sz, z) = 2r2ρ(z, Sz)

< ρ(z, Sz).

It is a contradiction. If
√
5−1
2 < r < 1√

2
, then 2r2 < 1. If we assume ρ(S2z, z) <

θ(r) ρ(S2z, S3z), then we have in view of (66)

ρ(z, Sz) ≤ ρ(z, S2z) + ρ(Sz, S2z)

< θ(r) ρ(S2z, S3z) + ρ(Sz, S2z)

≤ θ(r) r2ρ(z, Sz) + rρ(z, Sz) = ρ(z, Sz),

which is a contradiction. Hence ρ(S2z, z) ≥ θ(r) ρ(S2z, SS2z). As in the previous
case, we can prove

ρ(z, Sz) ≤ 2r2ρ(z, Sz) < ρ(z, Sz).

This is a contradiction. Take the case 1√
2

≤ r < 1. We note that for x, y ∈ M , either

θ(r) ρ(x, Sx) ≤ ρ(x, y) or θ(r) ρ(Sx, S2x) ≤ ρ(Sx, y)

holds. Indeed, if

θ(r) ρ(x, Sx) > ρ(x, y) and θ(r) ρ(Sx, S2x) > ρ(Sx, y),

then we have

ρ(x, Sx) ≤ ρ(x, y) + ρ(Sx, y)

< θ(r) (ρ(x, Sx) + ρ(Sx, S2x))

≤ θ(r) (ρ(x, Sx) + rρ(x, Sx))

= ρ(x, Sx).

This is a contradiction. Since either
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θ(r) ρ(u2n, u2n+1) ≤ ρ(u2n, z) or θ(r)ρ(u2n+1, u2n+2) ≤ ρ(u2n+1, z)

holds for every n ∈ N , either

ρ(u2n+1, Sz) ≤ r ρ(u2n, z) or ρ(u2n+2, Sz) ≤ r ρ(u2n+1, z)

holds for every n ∈ N . Since {un} converges to z, the above inequalities imply there
exists a subsequence of {un} which converges to Sz. This implies Sz = z. This is
a contradiction. Therefore, there exists n ∈ N such that Snz = z. Since {Snz} is a
Cauchy sequence, we obtain Sz = z, that is, z is a fixed point of S. The uniqueness
of a fixed point follows easily from (68).

Example 13 ([42]) Take the metric space M = {(0, 0), (4, 0), (0, 4), (4, 5), (5, 4)}
equipped with metric ρ defined as ρ((x1, x2), (y1, y2)) = |x1 − y1| + |x2 − y2|. Let
S : M → M be defined by

S(x1, x2) =
{

(x1, 0), if x1 ≤ x2,
(0, x2), if x1 > x2.

Here, Theorem 10 is applicable and the unique fixed point of S is (0, 0).

All the results described above are generalizations of Banach’s result. In the
next theorem, we deal with a contraction condition which is of a different category
and does not generalize Banach’s contraction. The contraction condition is also
satisfied by discontinuous functions. The result is due to Kannan [20, 21] which
was established in the year 1968.

Definition 10 (Kannan-type mapping [20, 21]) A mapping S : M → M , where
(M, ρ) is a metric space, is called a Kannan-type mapping if there exists 0 < k < 1

2
such that

ρ(Sx, Sy) ≤ k [ρ(x, Sx) + ρ(y, Sy)], for all x, y ∈ M. (70)

Theorem 11 (Kannan [20, 21]) Let (M, ρ) be a complete metric space and S :
M → M be a Kannan type mapping. Then T admits a unique fixed point.

Proof Let z0 ∈ M be any arbitrary element. We take the same sequence {zn} in M
as in the proof of Theorem 1. Applying (70), we have

ρ(zn+1, zn+2) = ρ(Szn, Szn+1) ≤ k [ρ(zn, Szn) + ρ(zn+1, Szn+1)]
= k [ρ(zn, zn+1) + ρ(zn+1, zn+2)], for all n ≥ 0,

which implies that

ρ(zn+1, zn+2) ≤ k

1 − k
ρ(zn, zn+1), for all n ≥ 0. (71)
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Now 0 < k < 1
2 implies that 0 < 2k < 1, that is, 0 < k < 1 − k. Hence 0 < k

1−k <

1. Let α = k
1−k . Then we have from (71) that

ρ(zn+1, zn+2) ≤ α ρ(zn, zn+1), for all n ≥ 0.

Applying similar arguments as in the proof of Theorem 1, we prove that {zn} is a
Cauchy sequence and there exists ξ ∈ M such that zn → ξ , as n → +∞.

Now applying (70), we have

ρ(zn+1, Sξ) = ρ(Szn, Sξ) ≤ k [ρ(zn, Szn) + ρ(ξ, Sξ)]
= k [ρ(zn, zn+1) + ρ(ξ, Sξ)], for all n ≥ 0.

Taking the limit as n → +∞, we have

ρ(ξ, Sξ) ≤ k ρ(ξ, Sξ), that is, (1 − k) ρ(ξ, Sξ) ≤ 0.

As (1 − k) > 0, it follows that ρ(ξ, Sξ) = 0, that is, ξ = Sξ , that is, ξ is a fixed
point of S.

If possible, suppose that ζ be another fixed point of S. Applying (70), we have

ρ(ζ, ξ) = ρ(Sζ, Sξ) ≤ k [ρ(ζ, Sζ ) + ρ(ξ, Sξ)] = 0,

which implies that ρ(ζ, ξ) = 0, that is, ζ = η, which is a contradiction. Hence the
fixed point of S is unique.

Example 14 ([32], p. 262) Take M = [0, 1] endowed with the usual metric. Define
S : M → M as

Sz =
{ z

3 , if 0 ≤ z < 1,
1
6 , if z = 1.

Theorem 11 is applicable and z = 0 is the unique fixed point of S. It is observed that
S is not continuous on M .

Following the appearance of the results in [20, 21], many persons created contrac-
tive conditions not requiring continuity of the mapping and established fixed point
and common fixed point results for them; see, for example, [6, 35, 36].

There is another reason for which the Kannan-type mappings are considered to be
important. The Banach’s contraction mapping principle does not characterize com-
pleteness. In fact, there are examples of noncomplete spaces where every contraction
has a fixed point [11]. It has been shown in [38, 40] that the necessary existence of
fixed points for Kannan-type mappings implies that the corresponding metric space
is complete. The above are some reasons for which the Kannan-type mappings are
considered important in mathematical analysis. There are several extensions and
generalizations of Kannan-type mappings in various spaces as, for instance, those in
the works noted in [8, 12, 16].
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Fixed point theorem due to Chatterjea [6] which was established in the year 1972
and which is actually a sort of dual of the Kannan fixed point theorem is based on a
condition similar to (70).

Definition 11 (C-contraction [6]) A mapping S : M → M , where (M, ρ) is a met-
ric space, is called a C-contraction if there exists 0 < k < 1

2 such that

ρ(Sx, Sy) ≤ k [ρ(x, Sy) + ρ(y, Sx)], for all x, y ∈ X. (72)

Theorem 12 (Chatterjea [6]) Let (M, ρ) be a complete metric space and S : M →
M be a C-contraction. Then T admits a unique fixed point.

Proof The proof follows by the same method as in Theorem 11. The details are
omitted.

Example 15 Take M = [0, 1] equipped with usual metric ρ. Define S : M → M
as

Sz =
{
0, if 0 ≤ z < 1,
1
6 , if z = 1.

The conditions of Theorem 12 are satisfied and here z = 0 is the unique fixed point
of S. It is observed that S is not continuous on M .

One of the most general contractive conditions was given by Ć irić [10] in 1974
which is known as quasi-contraction.

Definition 12 (Quasi-contraction [10]) A mapping S : M → M , where (M, d) is
a metric space, is called a quasi-contraction if there exists 0 ≤ k < 1 such that, for
all u, v ∈ M ,

d(Su, Sv) ≤ k max{d(u, v), d(u, Su), d(v, Sv), d(u, Sv), d(v, Su)}. (73)

Let S be a self-mapping of ametric spaceM . For A ⊂ M let δ(A) = sup {d(a, b) :
a, b ∈ A} and for each u ∈ M , let

O(u, n) = {u, Su, S2u, ..., Snu}, n = 1, 2, ...

O(u,∞) = {u, Su, S2u, ...}.

A space M is said to be S-orbitally complete if and only if every Cauchy sequence
which is contained in O(u,∞) for some u ∈ M converges in M .

Lemma 2 (Ćirić [10]) Let (M, d) be a metric space, S : M → M be a quasi-
contraction and n be any positive integer. Then for each z ∈ M and for all positive
integers i and j , i, j ∈ {1, 2, ..., n} implies d(Si z, S j z) ≤ kδ[O(z, n)].
Proof Let z ∈ M be arbitrary. Let n be any positive integer and let i and j satisfy
the condition of lemma 2. Then Si−1z, Si z, S j−1z, S j z ∈ O(z, n) (where S0z = z)
and since S is a quasi-contraction, we have
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d(Si z, S j z) = d(SSi−1z, SS j−1z)

≤ k max{d(Si−1z, S j−1z), d(Si−1z, Si z), d(S j−1z, S j z),

d(Si−1z, S j z), d(S j−1z, Si z)}
≤ k δ[O(z, n)],

which proves the lemma.

Remark 3 From this lemma, it follows that if S is quasi-contraction and z ∈ M ,
then for every positive integer n there exists a positive integer k ≤ n, such that
d(z, Skz) = δ[O(z, n)].
Lemma 3 (Ćirić [10]) Let (M, d) be a metric space and S : M → M be a quasi-
contraction. Then

δ[O(z,∞)] ≤ 1

1 − k
d(z, Sz)

holds for all z ∈ M.

Proof Let z ∈ M be arbitrary. Since δ[O(z, 1)] ≤ δ[O(z, 2)] ≤ ..., we have that
δ[O(z,∞)] = sup{δ[O(z, n)] : n∈N }.Now it is sufficient to prove that δ[O(z, n)] ≤
1

1−k d(z, Sz), for all n ∈ N .

Let n be any positive integer. From the remark of the previous lemma, there
exists Skz ∈ O(z, n)] (1 ≤ k ≤ n) such that d(z, Skz) = δ[O(z, n)]. By a triangular
inequality and Lemma 2, we have

d(z, Skz) = d(z, Sz) + d(Sz, Skz) ≤ d(z, Sz) + kδ[O(z, n)]
≤ d(z, Sz) + kd(z, Skz).

Therefore, δ[O(z, n)] = d(z, Skz) ≤ 1
1−k d(z, Sz). Since n is arbitrary, the proof is

completed.

Now we state the main result.

Theorem 13 (Ćirić [10]) Let S : M → M, where (M, d) is a metric space, be a
quasi-contraction. If M is S-orbitally complete, then S has a unique fixed point in
M.

Proof Let z ∈ M be arbitrary. First, we prove that the sequence {Snz} is a Cauchy
sequence. Let n and m be two positive integers with n < m. By Lemma 2, we have

d(Snz, Smz) = d(SSn−1z, Sm−n+1Sn−1z) ≤ k δ[O(Sn−1z,m − n + 1)].

Following Remark 3, we get an integer l with 1 ≤ l ≤ m − n + 1 such that

δ[O(Sn−1z,m − n + 1)] = d(Sn−1z, Sl Sn−1z).
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By Lemma 2, we have

d(Sn−1z, Sl Sn−1z) = d(SSn−2z, Sl+1Sn−2z)

≤ k δ[O(Sn−2z, l + 1)]
≤ k δ[O(Sn−2z,m − n + 2)].

Therefore, we have

d(Snz, Smz) ≤ k δ[O(Sn−1z,m − n + 1)] ≤ k2 δ[O(Sn−2z,m − n + 2)].
Continuing this process, we obtain

d(Snz, Smz) ≤ k δ[O(Sn−1z,m − n + 1)] ≤ k2 δ[O(Sn−2z,m − n + 2)] ≤ · · · ≤ knδ[O(z,m)].

Now it follows from Lemma 3 that

d(Snz, Smz) ≤ kn

1 − k
d(z, Sz) → 0 as n → +∞, (74)

which implies that {Snz} is a Cauchy sequence. As M is S-orbitally complete, there
exists ξ ∈ M such that Snz → ξ as n → +∞. Now

d(Sξ, Sn+1z) = d(Sξ, SSnz)

≤ k max{d(ξ, Snz), d(ξ, Sξ), d(Snz, Sn+1z), d(ξ, Sn+1z), d(Snz, Sξ)}.

Taking the limit as n → +∞, we have

d(ξ, Sξ) ≤ k d(ξ, Sξ), that is, (1 − k) d(ξ, Sξ) ≤ 0.

As (1 − k) > 0, it follows that d(ξ, Sξ) = 0, that is, ξ = Sξ , that is, ξ is a fixed
point of S.

Suppose that ζ ∈ M (ζ �= ξ) be another fixed point of S. As S is a quasi-
contraction, we have

d(ξ, ζ ) = d(Sξ, Sζ )

≤ k max{d(ξ, ζ ), d(ξ, Sξ), d(ζ, Sζ ), d(ξ, Sζ ), d(ζ, Sξ)}
≤ k max{d(ξ, ζ ), 0, 0, d(ξ, ζ ), d(ζ, ξ)}
≤ k d(ξ, ζ )

which is a contradiction. Therefore, d(ξ, ζ ) = 0, that is, ξ = ζ . Hence fixed point
of S is unique.

Example 16 Take the metric space M = [0, 1] equipped with usual metric. Define
S : M → M as
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Sz =
{
0, if 0 ≤ z < 1,
1
2 , if z = 1.

Then Theorem 13 is applicable and z = 0 is the unique fixed point of S. It is observed
that S is not continuous on M .

In 1988, Rhoades [33] examined that there exists a large number of discontinuous
contractive mappings which produce a fixed point but do not require the map to be
continuous at the fixed point. Rhoades [33] raised an open question whether there
exists a contractive definitionwhich produces a fixed point but which does not require
the map to be continuous at the fixed point. In 1999, Pant [27] answered the open
question in the affirmative. In 2017, Bisht et al. [3] gave one more solution to the
open question of the existence of contractive definitions which ensure the existence
of a fixed point where the fixed point is not a point of continuity [33].

In the following theorem, the notation Q(u, v) stands for

Q(u, v) = max{ρ(u, v), ρ(u, Tu), ρ(v, T v),
ρ(u, T v) + ρ(v, Tu)

2
}.

Theorem 14 (Bisht et al. [3]) Let (M, ρ) be a complete metric space and S be a self-
mapping on M such that S2 is continuous. Suppose that (i) ρ(Su, Sv) ≤ φ(Q(u, v)),
whereφ : R+ → R+ is such thatφ(t) < t for each t > 0; (ii) for a given ε > 0, there
exists a δ(ε) > 0 such that ε < Q(u, v) < ε + δ implies ρ(Su, Sv) ≤ ε. Then there
exists unique z ∈ M such that Sz = z. Moreover, S is discontinuous at z if and only
if lim

u→z
Q(u, z) �= 0.

Proof Let z0 ∈ M be any arbitrary element. We define a sequence {zn} in M such
that zn = Szn−1 = Snz0 for all n ≥ 1. If zl = zl+1 for some positive integer l, then
zl is a fixed point of S. So we assume zn �= zn+1, for all n ≥ 0. Let cn = ρ(zn, zn+1),
for n ≥ 0. By assumption (i)

cn+1 = ρ(zn+1, zn+2) = ρ(Szn, Szn+1)

≤ φ(max{ρ(zn, zn+1), ρ(zn, Szn), ρ(zn+1, Szn+1),

ρ(zn, Szn+1) + ρ(zn+1, Szn)

2
})

≤ φ(max{ρ(zn, zn+1), ρ(zn, zn+1), ρ(zn+1, zn+2),

ρ(zn, zn+2) + ρ(zn+1, zn+1)

2
})

≤ φ(max{ρ(zn, zn+1), ρ(zn, zn+1), ρ(zn+1, zn+2),

ρ(zn, zn+1) + ρ(zn+1, zn+2)

2
})

≤ φ(max{ρ(zn, zn+1), ρ(zn+1, zn+2)})
= φ(max{cn, cn+1}) < max{cn, cn+1}.
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Suppose that cn ≤ cn+1. Thenwe have from the above inequality that cn+1 < cn+1,
which is a contradiction. Hence cn+1 < cn , for all n. Then {cn} tends to a limit c ≥ 0.

If possible, suppose c > 0. Then we have a positive integer k such that n ≥ k
implies

c < cn < c + δ(c). (75)

It follows from assumption (ii) and cn+1 < cn that cn+1 ≤ c, for n ≥ k, which con-
tradicts the above inequality. Thus we have c = 0.

Let us fix ε > 0. Without loss of generality, we may assume that δ(ε) < ε. Since
cn → 0 as n → +∞, there exists a positive integer k such that cn < δ

2 , for all n ≥ k.
We shall use induction to show that for any n ∈ N ,

ρ(zk, zk+n) < ε + δ

2
. (76)

The inequality (76) is true for n = 1. Assuming (76) is true for some n, we shall
prove it for n + 1. Now

ρ(zk, zk+n+1) ≤ ρ(zk, zk+1) + ρ(zk+1, zk+n+1). (77)

It sufficient to show that
ρ(zk+1, zk+n+1) ≤ ε. (78)

By assumption (i),

ρ(zk+1, zk+n+1) = ρ(Szk, Szk+n) ≤ φ(Q(zk, zk+n)) < Q(zk, zk+n), (79)

where

Q(zk, zk+n) = max{ρ(zk, zk+n), ρ(zk, Szk), ρ(zk+n, Szk+n),

ρ(zk, Szk+n) + ρ(zk+n, Szk)

2
}

= max{ρ(zk, zk+n), ρ(zk, zk+1), ρ(zk+n, zk+n+1),

ρ(zk, zk+n+1) + ρ(zk+n, zk+1)

2
}.

Now, ρ(zk, zk+n) < ε + δ
2 , ρ(zk, zk+1) < δ

2 , ρ(zk+n, zk+n+1) < δ
2 ,

ρ(zk ,zk+n+1)+ρ(zk+n ,zk+1)

2 ≤ ρ(zk ,zk+n)+ρ(zk+n ,zk+n+1)+ρ(zk+n ,zk )+ρ(zk ,zk+1)

2 < ε + δ. Hence
Q(zk, zk+n) < ε + δ. If 0 ≤ Q(zk, zk+n) ≤ ε, then by (79), it follows that ρ(zk+1,

zk+n+1) ≤ ε, that is, (78) is true. Again, if ε < Q(zk, zk+n) < ε + δ, then by assump-
tion (ii) and (79) we have that ρ(zk+1, zk+n+1) ≤ ε, that is, (78) is true. There-
fore, ρ(zk+1, zk+n+1) ≤ ε, that is, (78) is true. Then from (77), we have that
ρ(zk, zk+n+1) < ε + δ

2 . Then by the induction method, (76) is true for any n ∈ N .
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This implies that {zn} is a Cauchy sequence. Since M is complete, there exists a point
y ∈ M such that zn → y as n → +∞. Also Szn → y and S2zn → y. By continuity
of S2, we have S2zn → S2y. This implies S2y = y.

We claim that Sy = y.
If possible, suppose that y �= Sy. Then by (i), we get

ρ(y, Sy) = ρ(S2y, Sy) ≤ φ(Q(Sy, y)) < Q(Sy, y)

= max {ρ(Sy, y), ρ(Sy, S2y), ρ(y, Sy),
ρ(Sy, Sy) + ρ(y, S2y)

2
} = ρ(y, Sy),

which is a contradiction. Thus y = Sy, that is, y is a fixed point of S.
Suppose that ζ ∈ M (ζ �= y) is another fixed point of S. Then ρ(y, ζ ) > 0. By

(i), we have

ρ(y, ζ ) = ρ(Sy, Sζ ) ≤ φ(Q(y, ζ )) < Q(y, ζ )

= max{ρ(y, ζ ), ρ(y, Sy), ρ(ζ, Sζ ),
ρ(y, Sζ ) + ρ(ζ, Sy)

2
} = ρ(y, ζ ),

which is a contradiction. Therefore, ρ(y, ζ ) = 0, that is, y = ζ . Hence, S has a
unique fixed point.

Example 17 ([3]) Take the metric space M = [0, 2] with the metric. Define S :
M → M as

Su =
{
1, if u ≤ 1,
0, if u > 1.

The mapping S satisfies assumption (i) with φ(t) = 1 for t > 1 and φ(t) = t
2 for

t ≤ 1. Also, S satisfies assumption (ii) with δ(ε) = 1 for ε ≥ 1 and δ(ε) = 1 − ε for
ε < 1. Hence S satisfies all the assumptions of Theorem 14 and has a unique fixed
point u = 1. Here, lim

u→1
Q(u, 1) �= 0 and S is discontinuous at the fixed point u = 1.

5 Remark

We have already mentioned that the present chapter is not sufficient for a com-
prehensive description of the topic under consideration. Among important results
which form integral parts of the theory but are not covered here are the follow-
ing. Asymptotic contractions in fixed point theory were introduced by Kirk [23].
Further generalizations of Kirk’s result were done in works like [39, 41]. A very
generalized fixed point theorem unifying many important results was introduced by
Pant [28] which is significantly important. In 2006, Proinov [30] introduced a gen-
eralization of Banach’s contraction mapping principle in a new direction which was
subsequently shown to be evenmore general than Ć irić’s quasi-contraction [10]. The
review paper of Rhoades [32] is important for comprehending comparisons between
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several contractive conditions used in fixed point theory. Although not discussed in
their technical details, the reader is strongly advised to consult these works.

Many of the results described above have initiated new lines of research in fixed
point theory. For instance, the result of Caristi [5] is the origin of a study in fixed
point theory and variational principles which by its vastness and importance is itself
a chapter of mathematics. We do not dwell on these matters within the limited scope
of this chapter. But we must say that without these considerations, the appreciation
of the results presented here is bound to be partial.
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Study of Fixed Point Theorem and
Infinite Systems of Integral Equations

Anupam Das and Bipan Hazarika

Abstract In this chapter, we propose some generalizations of the Meir-Keeler fixed
point theorem involving a measure of noncompactness and prove the existence of
a solution for an infinite system of functional integral equations by using this new
type of fixed point theorem in Banach space. With the help of suitable examples, we
illustrate our results.

1 Introduction

In 1930, Kuratowski [17] initiated the concept of measure of noncompactness in
metric space. Measure of noncompactness (MNC) and fixed point theory can be
applied to study various types of integral equationswhichwe come across in different
real-life situations. For more details on MNC, one can see [7, 9] and references
therein. Darbo [11] introduced the measure of noncompactness to generalized the
Banach fixed theorem. In the recent past, many researchers solved the different types
of differential and non-linear integral equations in Banach spaces using the Darbo
fixed point theorem. For example, we refer Aghajani et al. [2] and the references
therein. Aghajani et al. [3] generalized the Meir-Keeler fixed point theorem (see
[18]) with the help of MNC and used it for solving non-linear integral equations
in Banach spaces. Mursaleen and Rizvi [20] solved the systems of second-order
differential equations in Banach sequence spaces using the Meir-Keeler condensing
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operator. One can see [6, 12–15, 19, 21, 22] for the application of Darbo fixed point
theorem and Meir-Keeler fixed point theorem in terms of MNC.

These ligatures motivated us to introduce the concept of an operator-type con-
traction and MNC, to study the solvability of infinite systems of functional integral
equations in Banach sequence spaces. Further, we verified our results with the help
of some suitable examples.

1.1 Axiomatic Approach to the Concept of an MNC

Assume a real Banach space (E, ‖ . ‖) and denote a closed ball in E centered at x0 and
with radius r by B(x0, r). If X ⊂ E is nonempty, then X̄ and Conv(X ) represent the
closure and convex closure of X.Also, assumeME denote the family of all nonempty
and bounded subsets of E andNE its subfamily consisting of all relatively compact
sets.

The concept of an MNC is introduced by Banaś and Lecko [8].

Definition 1 A function μ : ME → [0,∞) is called an MNC if the following
assumptions are satisfied:

(i) the family ker μ = {Δ ∈ ME : μ (Δ) = 0} �= φ and ker μ ⊂ NE .

(ii) Δ1 ⊂ Δ2 ⇒ μ (Δ1) ≤ μ (Δ2) .

(iii) μ
(
Δ̄
) = μ (Δ) .

(iv) μ (ConvΔ) = μ (Δ) .

(v) μ (γΔ1 + (1 − γ )Δ2) ≤ γμ (Δ1) + (1 − γ )μ (Δ2) for γ ∈ [0, 1] .
(vi) ifΔ j ∈ ME , Δ j = Δ̄ j , Δ j+1 ⊂ Δ j for j = 1, 2, 3, ... and lim j→∞ μ

(
Δ j
) =

0 then
⋂∞

j=1 Δ j �= ∅.

1.2 Hausdorff Measure of Noncompactness (HMNC)

Definition 2 [8] Suppose (Δ, �) is ametric space,Γ ⊂ Δ is bounded and B(w, d) =
{z ∈ Δ : d(z, w) < d} . Then the HMNC χ(Γ ) of Γ is defined by

χ(Γ )0 := inf

⎧
⎨

⎩
δ > 0 : Γ ⊂

n⋃

j=1

B(w j , d j ), x j ∈ Δ, d j < δ ( j = 1, 2, . . . , k), k ∈ N

⎫
⎬

⎭
.

It can equivalently be stated as follows:

χ(Γ ) = inf {δ > 0 : Γ has a finite δ − net in Δ} .

Some Banach spaces are given as follows:
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c0 =
{
a = (ai )

∞
i=1 ∈ ω : lim

i→∞ ai = 0, ‖ a ‖∞= sup
i

|ai |
}

the space of all sequences converging to zero
and


p =
⎧
⎨

⎩
a = (ai )

∞
i=1 ∈ ω :

∞∑

i=1

|ak |p < ∞ (1 ≤ p < ∞), ‖ a ‖p=
( ∞∑

i=1

|ai |p
)1/p

⎫
⎬

⎭

the space of all absolutely p−summable series.
In the Banach space

(
c0, ‖ . ‖c0

)
, the Hausdorff MNC χ is defined by (see [8])

χc0(D) = lim
n→∞ sup

a∈D

[
max
k≥n

|ak |
]

,

where a = (ai )
∞
i=1 ∈ c0 and D ∈ Mc0 .

Banaś and Mursaleen [8] defined the Hausdorff MNC χ (in Theorem 5.18 (a)) on(

p, ‖ . ‖
p

)
, (1 ≤ p < ∞) as follows:

χ
p (D) = lim
n→∞

⎡

⎣sup
a∈D

( ∞∑

k=n

| ak |p
)1/p

⎤

⎦ ,

where a = (ai )
∞
i=1 ∈ 
p and D ∈ M
p .

We recall the following important theorems.

Theorem 1 [1, Shauder] Suppose E is a Banach space and Δ ⊂ E is nonempty,
closed and convex. Then every compact, continuous map T : Δ → Δ has at least
one fixed point.

Theorem 2 [11, Darbo] Suppose E is a Banach space and Δ ⊂ E is nonempty,
bounded, closed and convex. Let T : Δ → Δ be a continuous mapping. Suppose
that there is a constant γ ∈ [0, 1) such that

μ(TΛ) ≤ γμ(Λ), Λ ⊆ Δ.

Then T has a fixed point.

In 1969, Meir and Keeler [18] introduced a fixed point theorem in a metric space
(Δ, d̂) for operator satisfying the following condition that for each ε > 0 there exists
a δ(ε) > 0 such that

ε ≤ d̂(α, β) < ε + δ(ε) ⇒ d̂(Tα, Tβ) < ε,

for all x, y ∈ X. This condition is called the Meir-Keeler (MK) contractive-type
condition.
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Definition 3 A mapping ξ : R+ → R+ is called an MK mapping if ξ(0) = 0 and
for each ε > 0 there exists δ > 0 such that for any w ∈ R+,

ε ≤ w < ε + δ ⇒ ξ(w) < ε.

Remark 1 It can be observed that if ξ is an MK mapping, then ξ(w) < w for all
w > 0.

We now introduce the notion of weaker Meir-Keeler function as follows:

Definition 4 [10] ξ : R+ → R+ is a weaker MK mapping if for each ε > 0, there
exists δ > 0 such that for any w ≥ 0 with ε ≤ w < ε + δ, there exists k0 ∈ N such
that ξ k0(w) < ε.

Definition 5 [16] A function ψ : R+ → R+ is said to be a Jachymski function (JF)
if ψ(0) = 0 and for each ε > 0 there exists δ > 0 such that for any w ∈ R+,

ε < w < ε + δ ⇒ ψ(w) ≤ ε.

Remark 2 [4] We observe that each MK mapping is a JF. However, the converse
does not follow.

To establish our results, the following related concepts will be needed.

Definition 6 [5] Let F̂([0,∞)) denote the class of all functions f̂ : [0,∞) →
[0,∞) and let � be the class of all operators

O(.; .) : F̂([0,∞)) → F̂([0,∞)), f̂ → O( f̂ ; .)

satisfying the following conditions:

1. O( f̂ ; t̂) > 0 for t̂ > 0 and O( f̂ ; 0) = 0;
2. O( f̂ ; t̂) ≤ O( f̂ ; ŝ) for t̂ ≤ ŝ;
3. limn→∞ O( f̂ ; t̂n) = O( f̂ ; limn→∞ t̂n);
4. O( f̂ ;max

{
t̂, ŝ
}
) = max

{
O( f̂ ; t̂), O( f̂ ; ŝ)

}
for some f̂ ∈ F̂([0,∞)).

Example 1 If f̂ : R+ → R+ is a Lebesgue integrable function with finite integral
on each compact subset of R+, such that for each w > 0,

∫ w

0 f̂ (s)ds > 0, then

O( f̂ ;w) =
∫ w

0
f̂ (s)ds

satisfies all the assumptions.

Example 2 If f̂ : R+ → R+ is a nondecreasing, continuous mapping satisfying
f̂ (0) = 0 and f̂ (w) > 0 for w > 0, then
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O( f̂ ;w) = f̂ (w)

1 + f̂ (w)

satisfies all the assumptions.

Example 3 If f̂ : R+ → R+ is any mapping, then

O( f̂ ;w) = w

satisfies all the assumptions.

Definition 7 Let F be the class of all mappings F : R3+ → R+ satisfying

1. max {p, q, r} ≤ F(p, q, r) for p, q, r ≥ 0.
2. F is continuous and nondecreasing.
3. F(p, 0, 0) = p.

For example, F(p, q, r) = p + q + r.

2 Fixed Point Theorems

Definition 8 Let E be aBanach space and D ⊆ E be nonempty andμ be an arbitrary
MNCon E .Suppose that the operator T : D → D is a generalizedMK-type function
if for any ε > 0 there exists δ(ε) > 0 satisfying for any Δ ⊆ D,

ε ≤ O ( f ; F (μ(Δ), φ1(μ(Δ)), φ2(μ(Δ)))) < ε + δ

⇒ O ( f ; F (μ(TΔ), φ1(μ(TΔ)), φ2(μ(TΔ)))) < ε,

where φ1, φ2 : R+ → R+ are continuous mappings, O(.; .) ∈ �, F ∈ F and f ∈
F̂([0,∞).

Theorem 3 Suppose that D ⊆ E is a nonempty, bounded, closed and convex of a
Banach space E and μ is an arbitrary MNC on E . Also T : D → D is a continuous
and generalized MK condensing operator, then T has at least one fixed point on D.

Proof Consider a sequence (Dn) satisfying D0 = D and Dn+1 = Conv(T Dn) for
n ≥ 0. We observe that T D0 = T D ⊆ D = D0, D1 = Conv(T D0) ⊆ D = D0,

therefore by continuing this process,wehaveD0 ⊇ D1 ⊇ D2 ⊇ . . . ⊇ Dn ⊇ Dn+1 ⊇
. . . .

If a natural number N can be found satisfying μ(DN ) = 0 then DN is compact.
By Schauder’s theorem, it can be concluded that T has a fixed point.

If μ(Dn) > 0 for some n ≥ 0, and also

F (μ(Dn), φ1(μ(Dn)), φ2(μ(Dn))) > 0
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and
O ( f ; F (μ(Dn), φ1(μ(Dn)), φ2(μ(Dn)))) > 0,

define εn = O ( f ; F (μ(Dn), φ1(μ(Dn)), φ2(μ(Dn)))) and δn = δ(εn).

As εn < εn + δn , we obtain

εn+1 = O ( f ; F (μ(Dn+1), φ1(μ(Dn+1)), φ2(μ(Dn+1))))

= O ( f ; F (μ(Conv (T Dn)), φ1(μ(Conv (T Dn))), φ2(μ(Conv (T Dn)))))

= O ( f ; F (μ(T Dn), φ1(μ(T Dn)), φ2(μ(T Dn))))

≤ O ( f ; F (μ(Dn), φ1(μ(Dn)), φ2(μ(Dn))))

= εn.

Therefore, {εn} is a positive decreasing sequence of real numbers, and there exists
γ ≥ 0 satisfying εn → γ as n → ∞.

We have to prove that γ = 0.
If possible, assume that γ > 0 then there exists a natural number n0 satisfying n ≥

n0 that gives γ ≤ εn < γ + δ(γ ), and so by applying generalized MK condensing
operator we get εn+1 < γ which is a contradiction. Therefore, γ = 0, i.e.εn → 0 as
n → ∞. Therefore,

O
(
f ; lim

n→∞ F (μ(Dn), φ1(μ(Dn)), φ2(μ(Dn)))
)

= 0

which gives
lim
n→∞ F (μ(Dn), φ1(μ(Dn)), φ2(μ(Dn))) = 0.

Using the property of F , we get

lim
n→∞ μ(Dn) = lim

n→∞ φ1(μ(Dn)) = lim
n→∞ φ2(μ(Dn)) = 0.

Since Dn ⊇ Dn+1 for all n ∈ N, therefore applying Definition 1, we obtain that
D∞ = ⋂∞

n=1 Dn is a nonempty, closed and convex subset of D and D∞ is invariant
under T . Thus, by applying Schauder’s theorem it can be said that T has a fixed point
in D∞ ⊆ D. This completes the proof.

Theorem 4 Suppose E is a Banach space and D ⊆ E is nonempty, bounded, closed
and convex, and μ is an arbitrary MNC on E . Also T : D → D is a continuous
mapping, and for any ε > 0 there exists δ(ε) > 0 satisfying for any X ⊆ D,

ε ≤ O ( f ;μ(X) + φ1(μ(X)) + φ2(μ(X))) < ε + δ

⇒ O ( f ;μ(T X) + φ1(μ(T X)) + φ2(μ(T X))) < ε,

whereφ1, φ2 : R+ → R+ are continuousmappings, O(.; .) ∈ �and f ∈ F([0,∞).

Then T has at least one fixed point.
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Proof Taking F(a, b, c) = a + b + c in Theorem 3, we obtain the results.

Theorem 5 Assume that D ⊆ E is nonempty, bounded, closed and convex of a
Banach space E, and μ is an arbitrary MNC on E . Assume that T : D → D is
a continuous mapping, and for any ε > 0 there exists δ(ε) > 0 satisfying for any
X ⊆ D,

ε ≤ μ(X) + φ1(μ(X)) + φ2(μ(X)) < ε + δ

⇒ μ(T X) + φ1(μ(T X)) + φ2(μ(T X)) < ε,

where φ1, φ2 : R+ → R+ are continuous functions. Then T has at least one fixed
point.

Proof Taking O( f ;w) = w in Theorem 4, the result can be obtained.

Theorem 6 Assume D is a nonempty, bounded, closed and convex subset of a
Banach space E, andμ is an arbitrary MNC on E . Also T : D → D is a continuous
mapping, and for any ε > 0 there exists δ(ε) > 0 satisfying for any X ⊆ D,

ε ≤ μ(X) + φ1(μ(X)) < ε + δ

⇒ μ(T X) + φ1(μ(T X)) < ε,

where φ1 : R+ → R+ is a continuous function. Then T has at least one fixed point.

Proof Taking φ2 ≡ 0 in Theorem 5, the result can be obtained.

Theorem 7 Suppose a Banach space E and D ⊆ E is nonempty, bounded, closed
and convex with μ is an arbitrary MNC on E . Assume T : D → D is a continuous
mapping. Suppose that there exists a JF ψ : R+ → R+ satisfying ψ(t) < t for all
t > 0 and for any X ⊆ D,

O ( f ; F (μ(T X), φ1(μ(T X)), φ2(μ(T X)))) ≤ ψ (O ( f ; F (μ(X), φ1(μ(X)), φ2(μ(X)))))

where φ1, φ2, ψ : R+ → R+ are continuous mappings, O(.; .) ∈ �, F ∈ F and
f ∈ F([0,∞). Then T has at least one fixed point.

Proof Consider a sequence (Dn) satisfying D0 = D and Dn+1 = Conv(T Dn) for
n ≥ 0. We observe that T D0 = T D ⊆ D = D0, D1 = Conv(T D0) ⊆ D = D0,

therefore by continuing this process,wehaveD0 ⊇ D1 ⊇ D2 ⊇ . . . ⊇ Dn ⊇ Dn+1 ⊇
. . . .

If a natural number N can be found satisfying μ(DN ) = 0, then DN is compact.
By Schauder’s theorem, it can be concluded that T has a fixed point.

If μ(Dn) > 0 for some n ≥ 0, and also

F (μ(Dn), φ1(μ(Dn)), φ2(μ(Dn))) > 0

and
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O ( f ; F (μ(Dn), φ1(μ(Dn)), φ2(μ(Dn)))) > 0,

then we have

O ( f ; F (μ(Dn+1), φ1(μ(Dn+1)), φ2(μ(Dn+1))))

= O ( f ; F (μ(Conv (T Dn)), φ1(μ(Conv (T Dn))), φ2(μ(Conv (T Dn)))))

= O ( f ; F (μ(T Dn), φ1(μ(T Dn)), φ2(μ(T Dn))))

≤ ψ (O ( f ; F (μ(Dn), φ1(μ(Dn)), φ2(μ(Dn)))))

< O ( f ; F (μ(Dn), φ1(μ(Dn)), φ2(μ(Dn)))) .

Then {O ( f ; F (μ(Dn), φ1(μ(Dn)), φ2(μ(Dn))))}n∈N is a nonincreasing sequence
and thus it converges to some point ε ≥ 0 satisfying

ε < O ( f ; F (μ(Dn), φ1(μ(Dn)), φ2(μ(Dn))))

for all n ∈ N.

If ε > 0, then there exists δ = δ(ε) satisfying

ε < t < ε + δ ⇒ ψ(t) ≤ ε.

Take nδ ∈ N satisfying

O ( f ; F (μ(Dn), φ1(μ(Dn)), φ2(μ(Dn)))) < ε + δ

for all n ≥ nδ. Therefore,

ψ (O ( f ; F (μ(Dn), φ1(μ(Dn)), φ2(μ(Dn))))) ≤ ε

and so
O ( f ; F (μ(Dn+1), φ1(μ(Dn+1)), φ2(μ(Dn+1)))) ≤ ε

for all n ∈ N, which is a contradiction so, ε = 0 and lim
n→∞ μ(Dn) = 0.

Since Dn ⊇ Dn+1 for all n ∈ N, therefore, applying Definition 1, we obtain that
D∞ = ⋂∞

n=1 Dn is a nonempty, closed and convex subset of D and D∞ is invariant
under T . Thus, applying Schauder’s theorem it can be said that T has a fixed point
in D∞ ⊆ D. This completes the proof.

Theorem 8 Assume D ⊆ E is a nonempty bounded closed convex of aBanach space
E and μ is an arbitrary MNC on E . Also T : D → D is a continuous mapping.
Suppose that there exists a JF ψ : R+ → R+ satisfying ψ(t) < t for all t > 0 and
for any X ⊆ D,

O ( f ; μ(T X) + φ1(μ(T X)) + φ2(μ(T X))) ≤ ψ (O ( f ; μ(X) + φ1(μ(X)) + φ2(μ(X)))) ,
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where φ1, φ2, ψ : R+ → R+ are continuous mappings, O(.; .) ∈ � and f ∈
F([0,∞). Then T has at least one fixed point.

Proof Taking F(p, q, r) = p + q + r in Theorem 7, the results can be obtained.

Theorem 9 Assume D ⊆ E is nonempty, bounded, closed and convex of a Banach
space E, and μ is an arbitrary MNC on E . Assume T : D → D is a continuous
mapping. Suppose that there exists a JF ψ : R+ → R+ satisfying ψ(t) < t for all
t > 0 and for any X ⊆ D,

O ( f ;μ(T X)) ≤ ψ (O ( f ;μ(X))) ,

where ψ : R+ → R+ are continuous mappings, O(.; .) ∈ � and f ∈ F([0,∞).

Then T has at least one fixed point.

Proof Taking φ1 ≡ 0 and φ2 ≡ 0 in Theorem 8, the results can be obtained.

3 Application of Fixed Point on Integral Equations

In this part, the following infinite system of functional integral equations shall be
studied:

zn(t) = Fn

(
t,
∫ a(t)

0
Gn(t, v, z(v))dv, z(t)

)
(1)

where z(t) = (zi (t))
∞
i=1 , t ∈ I = [0, 1].

3.1 Solvability of Infinite System of Functional Integral
Equations in c0

Assumptions

(1) a : I → R+ is continuous.
(2) Fn : I × R × c0 → R (n ∈ N) are continuous functions with

F̂n = sup
{∣∣Fn(t, 0, z

0(t))
∣
∣ : t ∈ I

}
,

where z0(t) = (
z0n(t)

)∞
n=1 and z0n(t) = 0 for all n ∈ N, t ∈ I.

Also un, mn : I → R+ (n ∈ N) are continuous functions satisfying

|Fn(t, p, z(t)) − Fn(t, q, z̄(t))| ≤ un(t)max
i≥n

|zi (t) − z̄i (t)| + mn(t) |p − q| ,

where z̄(t) = (z̄i (t))
∞
i=1 ∈ c0.
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(3) Gn : I × I × c0 → R (n ∈ N) are continuous. Also,

Ĝn = sup

{
mn(t)

∣∣∣∣

∫ a(t)

0
Gn(t, v, z(v))dv

∣∣∣∣ : t ∈ I

}
.

(4) Define an operator Z on I × c0 to c0 as follows:

(t, z(t)) → (Zz)(t) =
(
Fn

(
t,
∫ a(t)

0
Gn(t, v, z(v))dv, z(t)

))∞

n=1

.

(5) As n → ∞, then F̂n → 0, Ĝn → 0. Also

sup
n∈N

F̂n = F̂, sup
n∈N

Ĝn = Ĝ,

and sup {un(t) : t ∈ I, n ∈ N} = Û such that 0 < Û < 1.

Theorem 10 If assumptions (1)–(5) hold, the system of equations (1) has at least
one solution in z(t) ∈ c0, t ∈ I.

Proof For all t ∈ I,

‖ z(t) ‖c0 = max
n≥1

∣∣
∣∣Fn

(
t,
∫ a(t)

0
Gn(t, v, z(v))dv, z(t)

)∣∣
∣∣

≤ max
n≥1

∣
∣∣∣Fn

(
t,
∫ a(t)

0
Gn(t, v, z(v))dv, z(t)

)
− Fn

(
t, 0, z0(t)

)
∣
∣∣∣

+max
n≥1

∣∣Fn
(
t, 0, z0(t)

)∣∣

≤ max
n≥1

{
un(t)max

i≥n
|zi (t)| + mn(t)

∣∣
∣∣

∫ a(t)

0
Gn(t, v, z(v))dv

∣∣
∣∣

}

≤ Û ‖ z(t) ‖c0 +Ĝ + F̂,

i.e.

‖ z(t) ‖c0≤
Ĝ + F̂

1 − Û
= r (say).

Let B̂ = B̂(z0(t), r) be a closed ball with center at z0(t) and radius r, thus B̂ is an
NBCC subset of c0. By assumption (4), for all t ∈ I,

(Zz)(t) = {(Znz)(t)}∞n=1 =
{
Fn

(
t,
∫ a(t)

0
Gn(t, v, z(v))dv, z(t)

)}∞

n=1

,

where z(t) ∈ B̂. Also,
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lim
n→∞(Znz)(t) = lim

n→∞ Fn

(
t,
∫ a(t)

0
Gn(t, v, z(v))dv, z(t)

)
= 0.

Hence (Zz)(t) ∈ c0. Since ‖ (Zz)(t) − z0(t) ‖c0≤ r, therefore, Z maps B̂ to B̂.

Now, we claim that Z is continuous on B̂.

Let ε > 0 and x(t) = (xn(t))∞n=1, y(t) = (yn(t))∞n=1 ∈ B̂ satisfying ‖ x − y ‖c0<
ε

2Û
= δ.

For all t ∈ I,

|(Znx)(t) − (Zn y)(t)|
=
∣∣∣
∣Fn

(
t,
∫ a(t)

0
Gn(t, v, x(v))dv, x(t)

)
− Fn

(
t,
∫ a(t)

0
Gn(t, v, y(v))dv, y(t)

)∣∣∣
∣

≤ Û max
i≥n

|xi (t) − yi (t)| + mn(t)

∣∣
∣∣

∫ a(t)

0
Gn(t, v, x(v))dv −

∫ a(t)

0
Gn(t, v, y(v))dv

∣∣
∣∣

<
ε

2
+ mn(t)

∫ a(t)

0
|Gn(t, v, x(v)) − Gn(t, v, y(v))| dv.

Let
A = sup {a(t) : t ∈ I } and M = sup {mn(t) : t ∈ I, n ∈ N} .

As Gn is a continuous function, for ‖ x − y ‖c0< δ we get

|Gn(t, v, x(v)) − Gn(t, v, y(v))| <
ε

2(M + 1)(A + 1)
,∀n ∈ N.

Therefore,

mn(t)
∫ a(t)

0
|Gn(t, v, x(v)) − Gn(t, v, y(v))| dv

≤ M
∫ A

0
|Gn(t, v, x(v)) − Gn(t, v, y(v))| dv

<
MAε

2(M + 1)(A + 1)

<
ε

2
.

Thus, |(Znx)(t) − (Zn y)(t)| < ε for ‖ x − y ‖c0< δ.

For t ∈ I,
‖ Zx − Zy ‖c0< ε whenever ‖ x − y ‖c0< δ.

Hence, Z is continuous on B̂. Now,
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χ(Z(B̂)) = lim
n→∞ sup

z(t)∈B̂
max
k≥n

∣∣∣∣Fk

(
t,
∫ a(t)

0
Gn(t, v, z(v))dv, z(t)

)∣∣∣∣

≤ lim
n→∞ sup

z(t)∈B̂
max
k≥n

{
uk(t)max

i≥n
|zi (t)| + mk(t)

∣
∣∣∣

∫ a(t)

0
Gn(t, v, z(v))dv

∣
∣∣∣+ Fk

}

≤ Ûχ(B̂).

Observe that χ(Z(B̂)) ≤ Ûχ(B̂) < ε gives χ(B̂) < ε

Û
. Taking δ = ε(1−Û )

Û
, we get

ε ≤ χ(B̂) < ε + δ.

Applying Theorem 5 for φ1 ≡ φ2 ≡ 0, we imply that Z has at least one fixed point
on B̂ ⊂ c0, i.e. Eq. (1) has at least one solution in c0. This completes the proof.

Example 4 Consider the following infinite system:

zn(t) = 1

t + n2
+
∑

i≥n

|zi (t)|
2i2

+ 1

n3et

∫ t

0

sin(zn(v)) + cos(v) sin
(∑n

i=1 zi (v)
)

2 + sin
(∑n

i=1 zi (v)
) dv

(2)
for t ∈ [0, 1] = I, n ∈ N.

For this problem a(t) = t,

Fn

(
t,
∫ a(t)

0
Gn(t, v, z(v))dv, z(t)

)

= 1

t + n2
+
∑

i≥n

|zi (t)|
2i2

+ 1

n3et

∫ t

0

sin(zn(v)) + cos(v) sin
(∑n

i=1 zi (v)
)

2 + sin
(∑n

i=1 zi (v)
) dv

and

Gn(t, v, z(v)) = sin(zn(v)) + cos(v) sin
(∑n

i=1 zi (v)
)

2 + sin
(∑n

i=1 zi (v)
) .

If z(t) ∈ c0, then Fn

(
t,
∫ a(t)
0 Gn(t, v, z(v))dv, z(t)

)
∈ c0.

Now, if x(t) = (xi (t))
∞
i=1 , y(t) = (yi (t))

∞
i=1 ∈ c0, then

∣
∣∣
∣∣
Fn

(

t,
∫ a(t)

0
Gn(t, v, x(v))dv, x(t)

)

− Fn

(

t,
∫ a(t)

0
Gn(t, v, y(v))dv, y(t)

)∣∣∣
∣∣

≤
∑

i≥n

1

2i2
|xi (t) − yi (t)| + 1

n3et

∫ a(t)

0
|Gn(t, v, x(v)) − Gn(t, v, y(v))| dv

≤
⎛

⎝
∑

i≥n

1

2i2

⎞

⎠max
i≥n

|xi (t) − yi (t)| + 1

n3et

∫ a(t)

0
|Gn(t, v, x(v)) − Gn(t, v, y(v))| dv

≤ π2

12
|xi (t) − yi (t)| + 1

n3et

∫ a(t)

0
|Gn(t, v, x(v)) − Gn(t, v, y(v))| dv.
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Here, ut = π2

12 , mn(t) = 1
n3et . Also, 0 < Û < 1, ; F̂n ≤ 1 and F̂n → 0 as n → ∞.

Again,

Ĝn = sup

{
1

n3et

∣∣∣∣∣

∫ t

0

sin(zn(v)) + cos(v) sin
(∑n

i=1 zi (v)
)

2 + sin
(∑n

i=1 zi (v)
) dv

∣∣∣∣∣
: t, v ∈ I

}

≤ 2

n3
,

i.e. as n → ∞ then Ĝn → 0.
The functions Fn and Gn are continuous for all n ∈ N. As assumptions from (1)–

(5) are satisfied, by applying Theorem 10 it can be obtained that Eq. (2) has at least
one solution in c0.

3.2 Solvability of Infinite System of Functional Integral
Equations in �1

Assumptions

(1) a : I → R+ is continuous.
(2) Fn : I × R × 
1 → R (n ∈ N) are continuous functions with

∑

n≥1

∣∣Fn(t, 0, z
0(t))

∣∣

converging to zero where z0(t) = (
z0n(t)

)∞
n=1 and z

0
n(t) = 0 for all n ∈ N, t ∈ I.

Also αn, βn : I → R+ (n ∈ N) are continuous functions satisfying

|Fn(t, p, z(t)) − Fn(t, q, z̄(t))| ≤ αn(t) |zn(t) − z̄n(t)| + βn(t) |p − q| ,

where z̄(t) = (z̄i (t))
∞
i=1 ∈ 
1.

(3) Gn : I × I × 
1 → R (n ∈ N) are continuous. Also, there exists Qk satisfying

Qk = sup

{
∑

n≥k

[
βn(t)

∣∣∣
∣

∫ a(t)

0
Gn(t, v, z(v))dv

∣∣∣
∣

]
: t ∈ I

}

.

(4) Define an operator Z on I × 
1 to 
1 as follows:

(t, z(t)) → (Zz)(t) =
(
Fn

(
t,
∫ a(t)

0
Gn(t, v, z(v))dv, z(t)

))∞

n=1

.

(5) As n → ∞ then Qn → 0. Also

sup
n∈N

Qn = Q̂, sup {αn(t) : t ∈ I, n ∈ N} = α̂
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such that 0 < α̂ < 1 and for all t ∈ I,

β̂ = sup

{
∑

n

βn(t) : n ∈ N, t ∈ I

}

.

Theorem 11 If assumptions (1)–(5) hold, the system of equations (1) has at least
one solution in z(t) ∈ 
1, t ∈ I.

Proof For all t ∈ I,

‖ z(t) ‖
1 =
∑

n≥1

∣∣∣∣Fn

(
t,
∫ a(t)

0
Gn(t, v, z(v))dv, z(t)

)∣∣∣∣

≤
∑

n≥1

∣∣∣∣Fn

(
t,
∫ a(t)

0
Gn(t, v, z(v))dv, z(t)

)
− Fn

(
t, 0, z0(t)

)
∣∣∣∣

+
∑

n≥1

∣∣Fn
(
t, 0, z0(t)

)∣∣

≤
∑

n≥1

{
αn(t) |zn(t)| + βn(t)

∣
∣∣∣

∫ a(t)

0
Gn(t, v, z(v))dv

∣
∣∣∣

}

≤ α̂ ‖ z(t) ‖
1 +Q̂,

i.e.

‖ z(t) ‖
1≤
Q̂

1 − α̂
= r̂ (say).

Let D̂ = D̂(z0(t), r) be a closed ball with center at z0(t) and radius r̂ , thus D̂ is an
NBCC subset of 
1. By assumption (4), for all t ∈ I,

(Zz)(t) = {(Znz)(t)}∞n=1 =
{
Fn

(
t,
∫ a(t)

0
Gn(t, v, z(v))dv, z(t)

)}∞

n=1

,

where z(t) ∈ D̂. Also,

∑

n≥1

|(Znz)(t)| =
∑

n≥1

∣∣∣∣Fn

(
t,
∫ a(t)

0
Gn(t, v, z(v))dv, z(t)

)∣∣∣∣ < ∞.

Hence, (Zz)(t) ∈ 
1. Since ‖ (Zz)(t) − z0(t) ‖
1≤ r̂ , therefore, Z maps D̂ to D̂.

Now, we claim that Z is continuous on D̂.

Let ε > 0 and x(t) = (xn(t))∞n=1, y(t) = (yn(t))∞n=1 ∈ D̂ satisfying‖ x − y ‖
1<
ε
2α̂ = δ.

For all t ∈ I,
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|(Znx)(t) − (Zn y)(t)|
=
∣∣
∣∣Fn

(
t,
∫ a(t)

0
Gn(t, v, x(v))dv, x(t)

)
− Fn

(
t,
∫ a(t)

0
Gn(t, v, y(v))dv, y(t)

)∣∣
∣∣

≤ α̂ |xn(t) − yn(t)| + βn(t)

∣
∣∣∣

∫ a(t)

0
Gn(t, v, x(v))dv −

∫ a(t)

0
Gn(t, v, y(v))dv

∣
∣∣∣

≤ α̂ |xn(t) − yn(t)| + βn(t)
∫ a(t)

0
|Gn(t, v, x(v)) − Gn(t, v, y(v))| dv.

Let A = sup {a(t) : t ∈ I } .

As Gn is a continuous function, for ‖ x − y ‖
1< δ we get

|Gn(t, v, x(v)) − Gn(t, v, y(v))| <
ε

2(β̂ + 1)(A + 1)

for all n ∈ N. Therefore,

βn(t)
∫ a(t)

0
|Gn(t, v, x(v)) − Gn(t, v, y(v))| dv

≤ βn(t)
∫ A

0
|Gn(t, v, x(v)) − Gn(t, v, y(v))| dv

<
Aεβn(t)

2(β̂ + 1)(A + 1)
.

Thus,

∑

n≥1

|(Znx)(t) − (Zn y)(t)|

≤ α̂
∑

n≥1

|xn(t) − yn(t)| + Aε

2(β̂ + 1)(A + 1)

∑

n≥1

βn(t)

<
ε

2
+ Aεβ̂

2(β̂ + 1)(A + 1)
= ε.

Therefore,
‖ Zx − Zy ‖
1< ε whenever ‖ x − y ‖
1< δ.

Hence Z is continuous on D̂.

Now,
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χ(Z(D̂)) = lim
n→∞ sup

z(t)∈D̂

∑

k≥n

∣∣∣∣Fk

(
t,
∫ a(t)

0
Gn(t, v, z(v))dv, z(t)

)∣∣∣∣

≤ lim
n→∞ sup

z(t)∈D̂

∑

k≥n

{
αk(t) |zk(t)| + βk(t)

∣∣∣
∣

∫ a(t)

0
Gn(t, v, z(v))dv

∣∣∣
∣

}

≤ α̂χ(B̂).

Observe that χ(Z(D̂)) ≤ α̂χ(D̂) < ε gives χ(D̂) < ε
α̂
. Taking δ = ε(1−α̂)

α̂
, we get

ε ≤ χ(D̂) < ε + δ.

By applying Theorem 5 for φ1 ≡ φ2 ≡ 0, we imply that Z has at least one fixed
point on D̂ ⊂ 
1, i.e. Eq. (1) has at least one solution in 
1. This completes the proof.

Example 5 Consider the following infinite system:

zn(t) =
∑

i≥n

zi (t) sin(t)

2i2
+ 1

n2et

∫ t

0

cos
(∑n

i=1 zi (v)
)

2 + sin (zn(v))
dv (3)

for t ∈ [0, 1] = I, n ∈ N.
For this problem a(t) = t,

Fn

(

t,
∫ a(t)

0
Gn(t, v, z(v))dv, z(t)

)

=
∑

i≥n

zi (t) sin(t)

2i2
+ 1

n2et

∫ t

0

cos
(∑n

i=1 zi (v)
)

2 + sin (zn(v))
dv

and

Gn(t, v, z(v)) = cos
(∑n

i=1 zi (v)
)

2 + sin (zn(v))
.

If z(t) ∈ 
1, then

∞∑

n=1

∣
∣∣∣Fn

(
t,
∫ a(t)

0
Gn(t, v, z(v))dv, z(t)

)∣∣∣∣

≤
∞∑

n=1

∑

i≥n

∣∣
∣∣
zi (t) sin(t)

2i2

∣∣
∣∣+

t

et
∑

n≥1

1

n2

≤ ‖ z(t) ‖
1 +π2

6e
< ∞,

i.e. Fn

(
t,
∫ a(t)
0 Gn(t, v, z(v))dv, z(t)

)
∈ 
1.

Now, if x(t) = (xi (t))
∞
i=1 , y(t) = (yi (t))

∞
i=1 ∈ 
1, then
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∣∣∣∣Fn

(
t,
∫ a(t)

0
Gn(t, v, x(v))dv, x(t)

)
− Fn

(
t,
∫ a(t)

0
Gn(t, v, y(v))dv, y(t)

)∣∣∣∣

≤ π2

12
|xn(t) − yn(t)| + 1

n2et

∫ a(t)

0
|Gn(t, v, x(v)) − Gn(t, v, y(v))| dv.

Here, αn(t) = π2

12 , βn(t) = 1
n2et .Also, 0 < α̂ < 1 and

∑

n≥1

∣∣Fn(t, 0, z0(t))
∣∣ converges

to zero for all t ∈ I.
Again,

∑

n≥1

βn(t)

∣∣∣∣

∫ a(t)

0
Gn(t, v, z(v))dv

∣∣∣∣ ≤ t

et
∑

n≥k

1

n2

and

Qk ≤ sup

{
t

et
∑

n≥k

1

n2
: t ∈ I

}

.

As k → ∞ then Qk → 0 and Q̂ = π2

6e , we also have β̂ = π2

6 .

The functions Fn and Gn are continuous for all n ∈ N. As assumptions (1)–(5)
are satisfied, by applying Theorem 11 we imply that Eq. (3) has at least one solution
in 
1.
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Common Fixed Point Theorems and
Applications in Intuitionistic Fuzzy Cone
Metric Spaces

Nabanita Konwar

Abstract The aim of this chapter is to establish some common fixed point theorems
in intuitionistic fuzzy conemetric space (in short, IFCMS) for compatible andweakly
compatible mappings. The existence and uniqueness of the common fixed point have
been studied. In order to substantiate the non-triviality of results some examples are
provided.

1 Introduction

Sometimes themathematical modeling ofmany real-life experiments becomes infea-
sible because of the inadequate measure of distance between two elements or points.
For such type of situations, fuzzy logic or fuzzy set contribute a consequential plat-
form to construct and improve the modeling and designing mathematical systems.
The generalized form of fuzzy set, i.e., the intuitionistic fuzzy set (in short, IFS)
can control more complex situations efficiently and also reduce the complexity of
modeling systems for higher order sets. The flexible nature of such type of models
helps to improve the applications of science and mathematics and also motivates our
current study.

Fuzzy set theory was established by Zadeh [23] in 1965. A generalized concept
called IFS was initiated by Atanassaov [3] in 1986. With the help of this newly gen-
eralized set one can deal with the degree of membership as well as non-membership
properties of an elements of a set. Kaleva and Seikkala [15] put forward the notion of
fuzzy metric space (in short, FMS). Consequently the idea of FMS was modified by
several mathematicians like Kramosil andMichalek [16], George and Veeramani [7],
etc. Jungck and Rhoads [14] established the concept of weakly compatible maps on
metric spaces. Further, Huang and Zhang [10] established the idea of cone metric
space, whereas Abbas and Jungck [1] introduced some results on non-commuting
mapping in cone metric spaces.
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Initially, Heilpern [9] introduced the conception of fixed point theory and estab-
lished an extended version of Banach’s contraction principle in the setting of FMS.
The idea of fuzzy conemetric space (in short, FCMS)was initiated byOner et al. [18].
This famous work has been further generalized and extended by many mathemati-
cians in the settings of fuzzy set [2, 4–6, 8, 17, 19–22].

In this chapter, we investigate the existence and uniqueness of common fixed point
for a pair of self-mappings in an IFCMS.

2 Preliminaries

Below we discuss a few preliminary definitions.

Definition 1 Consider a binary operation b∗ : [0, 1] × [0, 1] → [0, 1]. Then b∗ is
known as a continuous t − norm if:

(i) b∗ satisfy the associativity and commutativity property,
(ii) b∗ satisfy the continuous property,
(iii) αb∗1 = α, ∀ α ∈ [0, 1],
(iv) αb∗b ≤ βb∗d whenever α ≤ β and b ≤ d and α, β, c, d ∈ [0, 1].
Definition 2 Consider a binary operation b◦ : [0, 1] × [0, 1] → [0, 1]. Then b◦ is
called a continuous t − co − norm if

(i) b◦ satisfy the associativity and commutativity property,
(ii) b◦ satisfy the continuous property,
(iii) αb◦0 = α, ∀ α ∈ [0, 1],
(iv) αb◦b ≤ βb◦d whenever α ≤ β and b ≤ d and α, β, c, d ∈ [0, 1].
Definition 3 ([11]) Suppose S is a subset of a real Banach space X then S is called
a cone if it satisfies the following conditions:

(i) S is closed, non-empty and S �= 0.
(ii) if α, β ∈ [0,∞) and x, y ∈ S, then αx + βy ∈ S
(iii) if both x ∈ S and −x ∈ S, then x = 0.

For S ⊂ X , a partial ordering ≤ on X is defined by x ≤ y if and only if y − x ∈ S.
And x << y stands for y − x ∈ int (S). All cones have non-empty interior.

Definition 4 ([3]) Suppose Y is a non-empty set and I is a subset of Y . Define the
mappings �I : Y → [0, 1] and ℘I : Y → [0, 1]. If I is defined as I = {(x, �I (x),
℘I (x)) : x ∈ X, 0 ≤ �I + ℘I ≤ 1}, where �I is the degree of membership and ℘I is
non-membership function of the element x ∈ Y , then I is known as IFS.

Definition 5 ([12]) Consider a non-empty set X . Suppose (X, μd , νd , ∗, ◦) is a five-
tuple, where ∗, ◦ is a continuous t-norm and t-co-norm, Y is a closed cone and
μd , νd are fuzzy set on X2 × int (Y ) where int (Y ) denotes interior of the set Y .
Then (X, μd , νd , ∗, ◦) is known as intuitionistic fuzzy cone metric space (in short,
IFCMS) if ∀ α, ξ, z ∈ X and s, t ∈ int (Y ) following conditions are holds
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(i) μd(α, ξ, s) + νd(α, ξ, s) ≤ 1,
(ii) μd(α, ξ, s) > 0,
(iii) μd(α, ξ, s) = 1 iff α = ξ ,
(iv) μd(α, ξ, s) = μd(ξ, α, s),
(v) μd(α, z, s + t) ≥ (μd(α, ξ, s

b )) ∗ (μd(ξ, z, t
b )),

(vi) μd(α, ξ, ·) : int (Y ) → [0, 1] is continuous,
(vii) νd(α, ξ, s) < 1,
(viii) νd(α, ξ, s) = 0 iff α = ξ ,
(ix) νd(α, ξ, s) = νd(ξ, α, s),
(x) νd(α, z, s + t) ≤ (νd(α, ξ, s

b )) ∗ (νd(ξ, z, t
b )),

(xi) νd(α, ξ, ·) : int (Y ) → [0, 1] is continuous.
Definition 6 ([13]) Suppose (X, μd , νd , ∗, ◦) is a IFCMS. Then the pair (μd , νd) is
said to be triangular, if ∀ α, ξ, z ∈ X and s, t ∈ int (Y ),(

1
μd (υ,ξ,s) − 1

)
≤

(
1

μd (υ,z,s) − 1
)

+
(

1
μd (z,ξ,s) − 1

)
,

and νd(υ, ξ, s) ≤ νd(υ, z, s) + νd(z, ξ, s).

Definition 7 ([1]) Consider a pair of self-mapping (S, f ) of a IFCMS (X, μd , νd , ∗,

◦). Then (S, f ) is said to be compatible, if for some sequence (xi ) in X , limi→∞ μd

( f S(xi ), S f (xi ), s) = 1 and limi→∞ νd( f S(xi ), S f (xi ), s) = 0, for s ∈ int (y) such
that limi→∞ f (xi ) = limi→∞ S(xi ) = x , for some x ∈ X .

Definition 8 ([1]) Suppose S and f are two self-maps of a set X . Then a point v ∈ X
is said to be a coincidence point of S and f if we have v = S(v) = f (v). And S and
f are known as weakly compatible if they commutes at their coincidence point, i.e.,
for some v ∈ X S(v) = f (v) we have S f (v) = f S(v).

Proposition 1 ([1]) Suppose that S and f are two weakly compatible self-maps of
a set X. If S and f have a unique point of coincidence v = S(v) = f (v), then v is
the unique common fixed point of S and f .

Next we categorize the main result of the chapter.

3 Some Common Fixed Point Theorems in IFCMS

In this section we present a common fixed point theorem in IFCMS for compatible
and weakly compatible mappings. We also deduce some consequences of this main
result.

Theorem 1 Suppose (X, μd , νd , ∗, ◦) is a complete IFCMS. Consider four self-
mappings S, T, f, g : X → X having the properties that S(X) ⊆ g(X), T (X) ⊆
f (X) and f is continuous, ( f, S) is compatible and (g, T ) is weakly compatible.
And ∀ x, y ∈ X, s ∈ int (P) μd , νd satisfies the following conditions:
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1

μd (S(x), T (y), s)
− 1 ≤ α1(

1

μd ( f (x), g(y), s)
− 1) + α2(

1

μd ( f (x), S(x), s)
− 1)+

α3(
1

μd (g(y), T (y), s)
− 1) + α4(

1

μd ( f (x), T (y), s)
− 1)+

α5(
1

μd (g(y), S(x), s)
− 1)

and

νd(S(x), T (y), s) ≤ α1(νd( f (x), g(y), s)) + α2(νd( f (x), S(x), s))

+ α3(νd(g(y), T (y), s)) + α4(νd( f (x), T (y), s))

+ α5(νd(g(y), S(x), s)) (1)

where α1, α2, α3, α4, α5 ∈ [0,∞)with α1 + α2 + α3 + α4 + α5 < 1 and α2 = α3 or
α4 = α5.

Then S, T, f and g have a unique common fixed point in X.

Proof First we consider the given condition S(X) ⊆ g(X), T (X) ⊆ f (X).
For some fixed x0 ∈ X , considering a sequence (xi ) ∈ X such that ∀ i ≥ 0

y2i+1 = g(x2i+1) = S(x2i ) and y2i+2 = f (x2i+2) = T (x2i+1)

Now for s ∈ int (P),

1

μd (g(x2i+1), f (x2i+2), s)
− 1 = 1

μd (S(x2i ), T (x2i+1), s)
− 1

≤ α1

(
1

μd ( f (x2i ), g(x2i+1), s)
− 1

)
+ α2

(
1

μd ( f (x2i ), S(x2i ), s)
− 1

)
+

α3

(
1

μd (g(x2i+1), T (x2i+1), s)
− 1

)
+ α4

(
1

μd ( f (x2i ), T (x2i+1), s)
− 1

)

+ α5

(
1

μd (g(x2i+1), S(x2i ), s)
− 1

)

≤ α1

(
1

μd ( f (x2i ), g(x2i+1), s)
− 1

)
+ α2

(
1

μd ( f (x2i ), g(x2i+1), s)
− 1

)
+

α3

(
1

μd (g(x2i+1), f (x2i+2), s)
− 1

)
+ α4

(
1

μd ( f (x2i ), f (x2i+2), s)
− 1

)

+ α5

(
1

μd (g(x2i+1), g(x2i+1), s)
− 1

)

≤ α1

(
1

μd ( f (x2i ), g(x2i+1), s)
− 1

)
+ α2

(
1

μd ( f (x2i ), g(x2i+1), s)
− 1

)
+

α3

(
1

μd (g(x2i+1), f (x2i+2), s)
− 1

)

+ α4

(
1

μd ( f (x2i ), g(x2i+1), s)
− 1 + 1

μd (g(x2i+1), f (x2i+2), s)
− 1

)

= (α1 + α2 + α4)

(
1

μd ( f (x2i ), g(x2i+1), s)
− 1

)

+ (α3 + α4)

(
1

μd (g(x2i+1), f (x2i+2), s)
− 1

)
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and

νd(g(x2i+1), f (x2i+2), s) = νd(S(x2i ), T (x2i+1), s)

≤ α1νd( f (x2i ), g(x2i+1), s) + α2νd( f (x2i ), S(x2i ), s)+
α3νd(g(x2i+1), T (x2i+1), s) + α4νd( f (x2i ), T (x2i+1), s)+

α5νd(g(x2i+1), S(x2i ), s)

≤ α1νd( f (x2i ), g(x2i+1), s) + α2νd( f (x2i ), g(x2i+1), s)+
α3νd(g(x2i+1), f (x2i+2), s) + α4νd( f (x2i ), f (x2i+2), s)+

α5νd(g(x2i+1), g(x2i+1), s)

≤ α1νd( f (x2i ), g(x2i+1), s) + α2νd( f (x2i ), g(x2i+1), s)+
α3νd(g(x2i+1), f (x2i+2), s)+

α4(νd( f (x2i ), g(x2i+1), s) + νd(g(x2i+1), f (x2i+2), s))

= (α1 + α2 + α4)νd( f (x2i ), g(x2i+1), s) + (α3+
α4)νd(g(x2i+1), f (x2i+2), s).

Therefore we have,

1

μd(g(x2i+1), f (x2i+2), s)
− 1 ≤ α

(
1

μd( f (x2i ), g(x2i+1), s)
− 1

)
and

νd(g(x2i+1), f (x2i+2), s) ≤ α(νd( f (x2i ), g(x2i+1), s)), where α = α1 + α2 + α4

1 − (α3 + α4)
.

(2)

Again we have

1

μd( f (x2i+2), g(x2i+3), s)
− 1 = 1

μd(T (x2i+1), S(x2i+2), s)
− 1

≤ α1

(
1

μd( f (x2i+1), g(x2i+2), s)
− 1

)
+ α2

(
1

μd( f (x2i+2), S(x2i+2), s)
− 1

)

+ α3

(
1

μd(g(x2i+1), T (x2i+1), s)
− 1

)
+ α4

(
1

μd( f (x2i+2), T (x2i+1), s)
− 1

)

+ α5

(
1

μd(g(x2i+1), S(x2i+2), s)
− 1

)

≤ α1

(
1

μd( f (x2i+1), g(x2i+2), s)
− 1

)
+ α2

(
1

μd( f (x2i+2), g(x2i+3), s)
− 1

)

+ α3

(
1

μd(g(x2i+1), f (x2i+2), s)
− 1

)
+ α4

(
1

μd( f (x2i+2), f (x2i+2), s)
− 1

)

+ α5

(
1

μd(g(x2i+1), g(x2i+3), s)
− 1

)
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≤ α1

(
1

μd( f (x2i+1), g(x2i+2), s)
− 1

)
+ α2

(
1

μd( f (x2i+2), g(x2i+3), s)
− 1

)

+ α3

(
1

μd(g(x2i+1), f (x2i+2), s)
− 1

)

+ α5

(
1

μd(g(x2i+1), f (x2i+2), s)
− 1 + 1

μd( f (x2i+2), g(x2i+3), s)
− 1

)

= (α1 + α3 + α5)

(
1

μd(g(x2i+1), f (x2i+2), s)
− 1

)

+ (α2 + α5)

(
1

μd( f (x2i+2), g(x2i+3), s)
− 1

)

and

νd( f (x2i+2),g(x2i+3), s) = νd(T (x2i+1), S(x2i+2), s)

≤ α1νd( f (x2i+1), g(x2i+2), s) + α2νd( f (x2i+2), S(x2i+2), s)+
α3νd(g(x2i+1), T (x2i+1), s) + α4νd( f (x2i+2), T (x2i+1), s)+

α5νd(g(x2i+1), S(x2i+2), s)

≤ α1νd( f (x2i+1), g(x2i+2), s) + α2νd( f (x2i+2), g(x2i+3), s)+
α3νd(g(x2i+1), f (x2i+2), s) + α4νd( f (x2i+2), f (x2i+2), s)+

α5νd(g(x2i+1), g(x2i+3), s)

≤ α1νd( f (x2i+1), g(x2i+2), s) + α2νd( f (x2i+2), g(x2i+3), s)+
α3νd(g(x2i+1), f (x2i+2), s)+

α5(νd(g(x2i+1), f (x2i+2), s) + νd( f (x2i+2), g(x2i+3), s))

= (α1 + α3 + α5)(νd(g(x2i+1), f (x2i+2), s))

+ (α2 + α5)(νd( f (x2i+2), g(x2i+3), s)).

Hence we have

1

μd ( f (x2i+2), g(x2i+3), s)
− 1 ≤ β

(
1

μd (g(x2i+1), f (x2i+2), s)
− 1

)
and

νd ( f (x2i+2), g(x2i+3), s) ≤ β(νd (g(x2i+1), f (x2i+2), s)), where β = α1 + α3 + α5

1 − (α2 + α5)
. (3)

Now form Eqs. 2 and 3, we have

1

μd(g(x2i+1), f (x2i+2), s)
− 1 ≤ α

(
1

μd( f (x2i ), g(x2i+1), s)
− 1

)

≤ αβ

(
1

μd(g(x2i−1), f (x2i ), s)
− 1

)
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≤ αβα

(
1

μd( f (x2i−2), g(x2i−1), s)
− 1

)

≤ . . . ≤ α(βα)i
(

1

μd( f (x0), g(x1), s)
− 1

)
(4)

and

νd(g(x2i+1), f (x2i+2), s) ≤ α(νd( f (x2i ), g(x2i+1), s)),

≤ αβ(νd(g(x2i−1), f (x2i ), s))

≤ αβα(νd( f (x2i−2), g(x2i−1), s))

≤ . . . ≤ α(βα)i (νd( f (x0), g(x1), s)) (5)

And

1

μd( f (x2i+2), g(x2i+3), s)
− 1 ≤ β

(
1

μd(g(x2i+1), f (x2i+2), s)
− 1

)

≤ βα

(
1

μd( f (x2i ), g(x2i+1), s)
− 1

)

≤ βαβ

(
1

μd(g(x2i−1), f (x2i ), s)
− 1

)

≤ . . . ≤ (βα)i+1(
1

μd( f (x0), g(x1), s)
− 1) (6)

and

νd( f (x2i+2), g(x2i+3), s) ≤ β(νd(g(x2i+1), f (x2i+2), s)),

≤ βα(νd( f (x2i ), g(x2i+1), s))

≤ βαβ(νd(g(x2i−1), f (x2i ), s))

≤ . . . ≤ (βα)i+1(νd( f (x0), g(x1), s)) (7)

Now we consider the condition a2 = a3

αβ = α1 + α2 + α4

1 − (α3 + α4)
· α1 + α3 + α5

1 − (α2 + α5)

= α1 + α2 + α4

1 − (α2 + α4)
· α1 + α3 + α5

1 − (α3 + α5)
< 1 · 1 = 1 (8)

and a4 = a5 we have

αβ = α1 + α2 + α4

1 − (α3 + α4)
· α1 + α3 + α5

1 − (α2 + α5)
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= α1 + α2 + α4

1 − (α3 + α5)
· α1 + α3 + α5

1 − (α2 + α4)
< 1 · 1 = 1. (9)

As μd and νd are triangular, therefore for j > i ≥ i0 we have

1

μd (y2i+1, y2 j+1), s)
− 1 ≤

(
1

μd (y2i+1, y2 j+2, s)
− 1

)
+ . . . +

(
1

μd (y2m , y2m+1, s)
− 1

)

≤ (α

j−1∑
k=i

(αβ)k +
j∑

k=i+1

(αβ)k )

(
1

μd (y0, y1, s)
− 1

)

≤ (
α(αβ)i

1 − αβ
+ (αβ)i+1

1 − αβ
)

(
1

μd (y0, y1), s)
− 1

)

= (1 + β)
α(αβ)i

1 − αβ

(
1

μd (y0, y1), s)
− 1

)

and

νd(y2i+1, y2 j+1), s) ≤ (νd(y2i+1, y2 j+2, s)) + . . . + (νd(y2i+1, y2 j+1, s))

≤ (α

j−1∑
k=i

(αβ)k +
j∑

k=i+1

(αβ)k)νd(y0, y1, s)

≤ (
α(αβ)i

1 − αβ
+ (αβ)i+1

1 − αβ
)νd(y0, y1, s)

= (1 + β)
α(αβ)i

1 − αβ
νd(y0, y1, s).

Continuing in this way, we have

1

μd(y2i , y2 j+1), s)
− 1 ≤ (1 + α)

(αβ)i

1 − αβ

(
1

μd(y0, y1), s)
− 1

)

and νd(y2i , y2 j+1), s) ≤ (1 + α)
(αβ)i

1 − αβ
νd(y0, y1, s)

1

μd(y2i , y2 j ), s)
− 1 ≤ (1 + α)

(αβ)i

1 − αβ

(
1

μd(y0, y1), s)
− 1

)

and νd(y2i , y2 j ), s) ≤ (1 + α)
(αβ)i

1 − αβ
νd(y0, y1, s)

1

μd(y2i+1, y2 j ), s)
− 1 ≤ (1 + β)

α(αβ)i

1 − αβ

(
1

μd(y0, y1), s)
− 1

)
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and νd(y2i+1, y2 j ), s) ≤ (1 + α)
α(αβ)i

1 − αβ
νd(y0, y1, s).

For j > i we have

1

μd (y2i+1, y2 j+1), s)
− 1 ≤ max

{
(1 + α)

(αβ)i

1 − αβ
, (1 + β)

α(αβ)i

1 − αβ

} (
1

μd (y0, y1), s)
− 1

)

−→ 0, as i → ∞.

and

νd(y2i+1, y2 j+1), s) ≤ max

{
(1 + α)

(αβ)i

1 − αβ
, (1 + β)

α(αβ)i

1 − αβ

}
νd(y0, y1, s)

−→ 0, as i → ∞.

this implies that (yi ) for i ≥ 0 is a Cauchy sequence.
By the completeness properties of X , ∃ v ∈ X such that yi → v as i → ∞, then

we obtain

g(x2i+1) → v, f (x2i+2) → v, S(x2i ) → v and T (x2i+1) → v. (10)

As f is a continuous self-mapping on X and satisfies

f (g(x2i+1)) → f (v), f ( f (x2i+2)) → f (v), f (S(x2i )) → f (v) and

f (T (x2i+1)) → f (v).

Therefore f (S(x2i )) → f (v) and (S, f ) is compatible. Hence we have

lim
i→∞ μd(S( f (x2i )), f (S(x2i )), s) = lim

i→∞ μd(S( f (x2i )), f (v), s) = 1,

lim
i→∞ μd( f (S(x2i )), f (v), s) = 1, for s ∈ int (p). (11)

and

lim
i→∞ νd(S( f (x2i )), f (S(x2i )), s) = lim

i→∞ νd(S( f (x2i )), f (v), s) = 0,

lim
i→∞ μd( f (S(x2i )), f (v), s) = 0, for s ∈ int (p). (12)

Next we have to show that f (v) = v.
From the Definition 5,
μd( f (v), v, 2s) ≥ μd( f (v), S( f (x2i )), s) ∗ μd(S( f (x2i )), v, s)

and νd( f (v), v, 2s) ≤ νd( f (v), S( f (x2i )), s) ◦ μd(S( f (x2i )), v, s).
Since (S, f ) is compatible therefore,
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μd( f (v), v, 2s) ≥ lim
i→∞(μd( f (v), S( f (x2i )), s) ∗ μd(S( f (x2i )), v, s)) = 1 ∗ 1 = 1

and

νd( f (v), v, 2s) ≤ lim
i→∞(νd( f (v), S( f (x2i )), s) ◦ νd(S( f (x2i )), v, s)) = 0 ◦ 0 = 0.

Hence
μd( f (v), v, 2s) = 1 and νd( f (v), v, 2s) = 0 which implies f (v) = v.
Next we have to show that S(v) = v.
Again from the Definition 5,
μd(S(v), v, 2s) ≥ μd(S(v), f (S(x2i )), s) ∗ μd( f (S(x2i )), v, s)

and νd(S(v), v, 2s) ≤ νd(S(v), f (S(x2i )), s) ◦ μd( f (S(x2i )), v, s).
From the compatible property we have

μd(S(v), v, 2s) ≥ lim
i→∞(μd(S(v), f (S(x2i )), s) ∗ μd( f (S(x2i )), v, s) = 1 ∗ 1 = 1

and

νd(S(v), v, 2s) ≤ lim
i→∞(νd(S(v), f (S(x2i )), s) ◦ νd( f (S(x2i )), v, s) = 0 ◦ 0 = 0.

Then μd(S(v), v, 2s) = 1 and νd(S(v), v, 2s) = 0 which implies S(v) = v.
Hence v = f (v) = S(v).
Next we have to show that T (v) = g(v).

Since S(X) ⊆ g(X) therefore ∃ u ∈ X such that v = S(v) = g(u) we have

1

μd (T (u), g(u), s)
− 1 = 1

μd (S(u), T (u), s)
− 1

≤ α1

(
1

μd ( f (v), g(u), s)
− 1

)
+ α2

(
1

μd ( f (v), S(v), s)
− 1

)
+

α3

(
1

μd (g(u), T (u), s)
− 1

)
+ α4

(
1

μd ( f (v), T (u), s)
− 1

)

+ α5

(
1

μd (g(u), S(v)
− 1

)

= α1

(
1

μd ( f (v), v, s)
− 1

)
+ α2

(
1

μd (v, f (v), s)
− 1

)
+

α3

(
1

μd (g(u), T (u), s)
− 1

)
+ α4

(
1

μd (g(u), T (u), s)
− 1

)

+ α5

(
1

μd (g(u), g(u), s)
− 1

)

= (α3 + α4)

(
1

μd (g(u), T (u), s)
− 1

)

and

νd(T (u), g(u), s) = νd(S(u), T (u), s)



Common Fixed Point Theorems and Applications in Intuitionistic … 65

≤ α1νd( f (v), g(u), s) + α2νd( f (v), S(v), s)+
α3νd(g(u), T (u), s) + α4νd( f (v), T (u), s)

+ α5νd(g(u), S(v)

= α1νd( f (v), v, s) + α2νd(v, f (v), s)+
α3νd(g(u), T (u), s) + α4νd(g(u), T (u), s)

+ α5μd(g(u), g(u), s)

= (α3 + α4)νd(g(u), T (u), s).

Since (α3 + α4) < 1 therefore
μd(g(u), T (u), s) = 1 and νd(g(u), T (u), s) = 0.
This implies that T (u) = g(u) = v and from the weak compatibility of T and g

we have

g(v) = g(T (u)) = T (g(u)) = T (v).

Finally we have to show that T (v) = v.
From the Definition 5,

1

μd(T (v), v, s)
− 1 = 1

μd(T (v), S(v), s)
− 1

≤ α1

(
1

μd( f (v), g(v), s)
− 1

)
+ α2

(
1

μd( f (v), S(v), s)
− 1

)
+

α3

(
1

μd(g(v), T (v), s)
− 1

)
+ α4

(
1

μd( f (v), T (v), s)
− 1

)

+ α5

(
1

μd(g(v), S(v), s)
− 1

)

= α1

(
1

μd(v, T (v), s)
− 1

)
+ α2

(
1

μd( f (v), f (v), s)
− 1

)
+

α3

(
1

μd(g(v), g(v), s)
− 1

)
+ α4

(
1

μd(v, T (v), s)
− 1

)

+ α5

(
1

μd(T (v), v, s)
− 1

)

= (α1 + α4 + α5)

(
1

μd(v, T (v), s)
− 1

)

and

νd(T (v), v, s) = νd(T (v), S(v), s))

≤ α1νd( f (v), g(v), s) + α2νd( f (v), S(v), s)+
α3νd(g(v), T (v), s) + α4νd( f (v), T (v), s)
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+ α5νd(g(v), S(v), s)

= α1νd(v, T (v), s) + α2νd( f (v), f (v), s)+
α3νd(g(v), g(v), s) + α4νd(v, T (v), s)

+ α5μd(T (v), v, s)

= (α1 + α4 + α5)νd(v, T (v), s).

Since (α1 + α4 + α5) < 1 therefore μd(v, T (v), s) = 1 and νd(v, T (v), s) = 0.
This implies v = T (v) implies g(v) = v.
Hence, f (v) = g(v) = S(v) = T (v) = v, this implies v is a common fixed point

of the four self-mappings f, g, S and T in X .
Next we have to show the uniqueness of v.
Suppose v

′ ∈ X is another point satisfies f (v
′
) = g(v

′
) = S(v

′
) = T (v

′
) = v

′

then from Eq. 1

1

μd(v
′
, v, s)

− 1 = 1

μd(S(v
′
), T (v), s)

− 1

≤ α1

(
1

μd( f (v
′
), g(v), s)

− 1

)
+ α2

(
1

μd( f (v
′
), S(v

′
), s)

− 1

)

+ α3

(
1

μd(g(v), T (v), s)
− 1

)
+ α4

(
1

μd( f (v
′
), T (v), s)

− 1

)

+ α5

(
1

μd(g(v), S(v
′
), s)

− 1

)

= (α1 + α4 + α5)

(
1

μd(v
′
, v, s)

− 1

)

and

νd(v
′
, v, s) = νd(S(v

′
), T (v), s))

≤ α1νd(v
′
), g(v), s) + α2νd( f (v

′
), S(v

′
), s)+

α3νd(g(v), T (v), s) + α4νd( f (v
′
), T (v), s)

+ α5νd(g(v), S(v), s)

= α1νd(v, T (v), s) + α2νd( f (v), f (v), s)+
α3νd(g(v), g(v), s) + α4νd(v, T (v), s)

+ α5μd(g(v), S(v
′
), s)

= (α1 + α4 + α5)νd(v
′
, v, s).

Since (α1 + α4 + α5) < 1 therefore μd(v
′
, v, s) = 1 and νd(v

′
, v, s) = 0. this

implies that v
′ = v.

Hence the common fixed point of f, g, S and T in X is unique.
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Next we deduct some corollary from the above theorem.

Corollary 1 Consider a complete IFCMS (X, μd , νd , ∗, ◦) where μd , νd are trian-
gular. Consider four self-mappings S, T, f, g : X → X having the properties that
S(X) ⊆ g(X), T (X) ⊆ f (X) and f is continuous, ( f, S) is compatible and (g, T )

is weakly compatible. And ∀ x, y ∈ X satisfying the condition:

1

μd(S(x), T (y), s)
− 1 ≤ α1

(
1

μd( f (x), g(y), s)
− 1

)

+ α2

(
1

μd( f (x), S(x), s)
− 1

)

+ α3

(
1

μd(g(y), T (y), s)
− 1

)
(13)

and

νd (S(x), T (y), s) ≤ α1νd ( f (x), g(y), s) + α2νd ( f (x), S(x), s) + α3νd (g(y), T (y), s) (14)

where a1, a2, a3 ∈ [0,∞) with a1 + a2 + a3 < 1.
Then S, T, f and g have a unique common fixed point in X.

Corollary 2 Consider a complete IFCMS (X, μd , νd , ∗, ◦) where μd , νd are trian-
gular. Consider four self-mappings S, T, f, g : X → X having the properties that
S(X) ⊆ g(X), T (X) ⊆ f (X) and f is continuous, ( f, S) is compatible and (g, T )

is weakly compatible. And ∀ x, y ∈ X satisfying the condition:

1

μd (S(x), T (y), s)
− 1 ≤ α1

(
1

μd ( f (x), g(y), s)
− 1

)
+ α2

(
1

μd ( f (x), T (y), s)
− 1

)

+ α3

(
1

μd (g(y), S(x), s)
− 1

)
(15)

and

νd (S(x), T (y), s) ≤ α1νd ( f (x), g(y), s) + α2νd ( f (x), T (y), s) + α3νd (g(y), S(x), s) (16)

where a1, a2, a3 ∈ [0,∞) with a1 + a2 + a3 < 1.
Then S, T, f and g have a unique common fixed point in X.

Corollary 3 Consider a complete IFCMS (X, μd , νd , ∗, ◦) where μd , νd are trian-
gular. Consider four self-mappings S, T, f, g : X → X having the properties that
S(X) ⊆ g(X), T (X) ⊆ f (X) and f is continuous, ( f, S) is compatible and (g, T )

is weakly compatible. And ∀ x, y ∈ X satisfying the condition:
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1

μd(S(x), T (y), s)
− 1 ≤ α

(
1

μd( f (x), g(y), s)
− 1

)
and

νd(S(x), T (y), s) ≤ ανd( f (x), g(y), s) (17)

where a ∈ [0,∞).
Then S, T, f and g have a unique common fixed point in X.

Corollary 4 Consider a complete IFCMS (X, μd , νd , ∗, ◦) where μd , νd are tri-
angular. Consider two self-mappings T, g : X → X having the properties that
T (X) ⊆ f (X) and f is continuous, (T, f ) is weakly compatible. And ∀ x, y ∈ X
satisfying the condition:

1

μd (T (x), T (y), s)
− 1 ≤ α1

(
1

μd ( f (x), f (y), s)
− 1

)
+ α2

(
1

μd ( f (x), T (x), s)
− 1

)
+

α3

(
1

μd ( f (y), T (y), s)
− 1

)
+ α4

(
1

μd ( f (x), T (y), s)
− 1

)

+ α5

(
1

μd ( f (y), T (x), s)
− 1

)
(18)

and

νd (T (x), T (y), s) ≤ α1νd ( f (x), f (y), s) + α2νd ( f (x), T (x), s) + α3νd ( f (y), T (y), s)

+ α4νd ( f (x), T (y), s) + α5νd ( f (y), T (x), s) (19)

where a1, a2, a3, a4, a5 ∈ [0,∞) with a1 + a2 + a3 + a4 + a5 < 1, and a2 = a3 or
a4 = a5.

Then T and f have a unique common fixed point in X.

Example 1 Consider a IFCMS (X, μd , νd , ∗, ◦) where X = [0, 1] and μd , νd :
X2 × (0,∞) → [0, 1] are triangular and ∀ x, y ∈ X and s > 0 μd , νd defined as:

μd(x, y, s) = s

s + |x − y| and νd(x, y, s) = |x − y|
s + |x − y| .

Then (X, μd , νd , ∗, ◦) is a complete IFCMS.
Next we consider four self-mapping S, T, f, g : X → X defined as

S(x) = T (x) =
{

1
2

(
2x
3 + 1

4

)
, x �= 0

0, x = 0,

and

g(x) = f (x) =
{

2x
3 + 1

4 , x �= 0
0, x = 0.
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As S(x) = T (X) and g(X) = f (X) we have S(x) ⊆ g(X) or T (x) ⊆ f (X).
Then from the Eq.1, we have

1

μd (S(x), T (y), s) − 1
= |S(x) − T (y)|

s
= |x − y|

3s

≤ α1

(
1

μd ( f (x), g(y), s)
− 1

)
+ α2

(
1

μd ( f (x), S(x), s)
− 1

)

+ α3

(
1

μd (g(y), T (y), s)
− 1

)
+ α4

(
1

μd ( f (x), T (y), s)
− 1

)

+ α5

(
1

μd (g(y), S(x), s)
− 1

)

and

νd(S(x), T (y), s) = |S(x) − T (y)|
s + |S(x) − T (y)| = |x − y|

3s + |x − y|
≤ α1νd( f (x), g(y), s) + α2νd( f (x), S(x), s)

+ α3νd(g(y), T (y), s) + α4νd( f (x), T (y), s)

+ α5νd(g(y), S(x), s).

Then we can verify that all the condition of Eq. 1 is satisfied with α1 = 1
2 , α2 =

α3 = 1
6 and α4 = α5 = 0.

Hence 0 is the unique common fixed point of S, T, f and g in X.
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Modular Spaces and Fixed Points
of Generalized Contractions

Tayebe Laal Shateri and Ozgur Ege

Abstract In the present paper, some common fixed point theorems for a couple of
self-maps in modular spaces are proved. We have found sufficient conditions for the
existence and uniqueness of common fixed points for a couple of self-maps in some
classes of modular spaces, where the modular is satisfying the �2-condition. In fact,
we generalize the kind of nonlinear contraction for self-maps that is the result in [4].

1 Introduction

The modular spaces were investigated by Nakano [15] and then generalized by some
researchers [10, 13, 24]. The detailed information on Orlicz spaces can be found in
[9]. The references [11, 14] contain more reviews on Orlicz and modular spaces.

Fixed point theorems are used to show the existence of solution concept in such
different fields such as engineering, medicine, statistics, chemistry, and economics.
Banach contraction principle is an essential tool in fixed point theory, which has
been used and extended in many different directions. In modular spaces, various
fixed point theorems have been studied by many researchers, see [1–3, 5–7, 16, 17,
21, 22].

In addition, Razani et al. [18] proved some fixed point theorems of asymptotic
and nonlinear contractions in modular spaces. Also, Khamsi [8] introduced quasi-
contraction mappings without �2-condition in modular spaces. For the existence
results on asymptotic pointwise contractions in modular spaces, see [12]. Cyclic
(α, β)-admissible mappings in modular spaces were investigated in [19, 20].

Definition 1 Let X be a vector space over F (= C or R). A functional σ : X →
[0,∞] is said to be modular if for all x, y ∈ X ,
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(i) σ(x) = 0 ⇔ x = 0,
(ii) σ(αx) = σ(x) for every α ∈ F with |α| = 1,
(iii) σ(αx + βy) ≤ σ(x) + σ(y) if α, β ≥ 0 and α + β = 1.

Definition 2 If (i i i) in Definition 1 is replaced by

σ(αx + βy) ≤ αsσ(x) + βsσ(y),

for α, β ≥ 0, α + β = 1 with an s ∈ (0, 1], then σ is called an s-convex modular,
and if s = 1, σ is said to be a convex modular.

A modular σ defines a corresponding modular space, i.e., the vector space Xσ

stated as

Xσ = {x ∈ X : σ(λx) → 0 as λ → 0}.

σ is said to satisfy the �2-type condition if there exists κ > 0 such that σ(2x) ≤
κσ(x) for all x ∈ Xσ .

Definition 3 Let Xσ be a modular space and let {xn} and x be in Xσ . Then
(i) {xn} is said to be σ -convergent to x and write xn

σ−→ x if σ(xn − x) → 0 as
n → ∞.
(i i) We say that {xn} is σ -Cauchy if σ(xn − xm) → 0 as n,m → ∞.
(i i i) A subset B of Xσ is said to be σ -complete if any σ -Cauchy sequence is σ -
convergent to an element of B.
(iv)A subset S ofXσ is called σ -closed if for any sequence {xn} ⊆ S with xn

σ−→ x ,
we have x ∈ S.
(v) A subset S of Xσ is called σ -bounded if

δσ (S) = sup
x,y∈S

σ(x − y) < ∞,

where δσ (S) is the σ -diameter of S.

Remark 1 The function σ(x) is increasing for any x ∈ X . If we assume 0 < a < b,
then the condition (iii) in Definition 1 with y = 0 indicates that

σ(ax) = σ
(a
b
bx

)
≤ σ(bx)

for all x ∈ X . Moreover, if σ is a convex modular on X and |α| ≤ 1, then σ(αx) ≤
ασ(x) and σ(x) ≤ 1

2σ(2x) for all x ∈ X .

Example 1 Let ξ be a nondecreasing, continuous, and convex function defined on
[0,∞) such that ξ(0) = 0, ξ(α) > 0 for α > 0 and ξ(α) → ∞ as α → ∞. The
function ξ is called an Orlicz function. ξ satisfies the �2-condition if there exists
κ > 0 such that ξ(2α) ≤ κξ(α) for all α > 0. Let (
,M, μ) be a measure space.
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Assume that L0(μ) is the space of all measurable real- or complex-valued functions
on 
. Define for every f ∈ L0(μ) the Orlicz modular σϕ( f ) as

σξ ( f ) =
∫




ξ(| f |)dμ.

AnOrlicz space is the associated modular function space with regard to this modular
and it will be denoted by Lξ (
, μ) or Lξ which can be alternatively stated as

Lξ = { f ∈ L0(μ) : σξ (λ f ) → 0 as λ → 0}

or

Lξ = { f ∈ L0(μ) : σξ (λ f ) < ∞ for some λ > 0}.

The Orlicz space Lξ is σξ -complete and (Lξ , ‖.‖σξ
) is a Banach space with

‖ f ‖σξ
= inf

{
λ > 0 :

∫




ξ

( | f |
λ

)
dμ ≤ 1

}
.

2 Main Results

Throughout this study, it will be assumed that the modular σ satisfies the �2-type
condition with κ ≥ 1. Also we assume that � is the family of all increasing and
upper semicontinuous functions ϕ : R+ → [0,∞) satisfying

ϕ(t) < t (t > 0) and ϕ(0) = 0. (1)

In [23], it is proved that if t > 0, then ϕ(t) < t if and only if limn→∞ ϕn(t) = 0.
In this section, by using some techniques in [4], we obtain some common fixed

point theorems for self-maps in modular spaces as follows.

Theorem 1 LetXσ be a σ -complete modular space. Suppose that ϕ : R+ → [0,∞)

satisfies in (1). Let � be a σ -closed subset of Xσ and H, K : � → � be mappings
such that there exist α, β ∈ R

+ with α > β, and

σ
(
α(Hx − Ky)

)
≤ ϕ

[
max

{
σ
(
β(x − Hx)

)
, σ

(
β(y − Ky)

)}]
, (2)

for all x, y ∈ �. Then H and K have a unique common fixed point in �.

Proof First we prove that any fixed point of H is also a fixed point of K , and
conversely. Suppose Hx = x , but Kx 
= x , then (2) implies that
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σ
(
α(x − Kx)

)
≤ ϕ

(
σ(β(x − Kx))

)
< ϕ

(
σ(α(x − Kx))

)
, (3)

which contradicts with (1), so Kx = x . Similarly, if Kx = x , then Hx = x .
Now, we prove that if H and K have a common fixed point, then the fixed point

is unique. Let Hx = Kx = x and Hy = Ky = y. If x 
= y, then (2) implies that

σ
(
β(x − y)

)
< σ

(
α(x − y)

)
= σ

(
α(Hx − Ky)

)
≤ ϕ

(
σ(β(x − y))

)
(4)

which is a contradiction. Hence x = y.
Let x0 ∈ � and put x2n+1 = Hx2n, x2n+2 = Kx2n+1 for all n = 0, 1, 2, . . .. We

may assume that for any n, xn+1 
= xn , otherwise H or K has a fixed point and the
proof is complete. Now, we have

σ
(
α(x2n+1 − x2n)

)
= σ

(
α(Hx2n − Kx2n−1)

)

≤ ϕ
[
max

{
σ
(
β(x2n − Hx2n)

)
, σ

(
β(x2n−1 − Kx2n−1)

)}
]
,

= ϕ
[
max

{
σ
(
β(x2n − x2n+1)

)
, σ

(
β(x2n−1 − x2n)

)}]
,

= ϕ
(
σ
(
β(x2n − x2n−1)

))
, (5)

otherwise from (5) we get

σ
(
α(x2n+1 − x2n)

)
≤ ϕ

[
max

{
σ
(
β(x2n − x2n−1)

)
, σ

(
β(x2n − x2n+1)

)}]

= ϕ
(
σ
(
β(x2n − x2n+1)

))
< σ

(
α(x2n+1 − x2n)

)
, (6)

and this is impossible. Therefore, from (5) and (6), we have

σ
(
α(x2n+1 − x2n)

)
= σ

(
α(Hx2n − Kx2n−1)

)
≤ ϕ

(
σ
(
β(x2n − x2n−1)

))

< σ
(
β(x2n − x2n−1)

)
< σ

(
α(x2n − x2n−1)

)
. (7)

Similarly,

σ
(
α(x2n+2 − x2n+1)

)
= σ

(
α(Kx2n+1 − Hx2n)

)
≤ ϕ

(
σ
(
β(x2n+1 − x2n)

))

< σ
(
β(x2n+1 − x2n)

)
< σ

(
α(x2n+1 − x2n)

)
. (8)

By (7) and (8), therefore, we have

σ
(
α(xn+1 − xn)

)
≤ ϕ

(
σ
(
β(xn − xn−1)

))
< σ

(
β(xn − xn−1)

)
(n ≥ 1). (9)



Modular Spaces and Fixed Points of Generalized Contractions 75

Consequently, {σ
(
α(xn+1 − xn)

)
} is decreasing and bounded from below. Hence

{σ
(
α(xn+1 − xn)

)
} converges to z. Now, if z 
= 0,

z = lim
n→∞ σ

(
α(xn+1 − xn)

)
≤ lim

n→∞ ϕ
(
σ
(
β(xn − xn−1)

))

< lim
n→∞ ϕ

(
σ
(
α(xn − xn−1)

))
,

then z ≤ ϕ(z), which is a contradiction, hence z = 0.
Now, we show that {xn} is a σ -Cauchy sequence in Xσ . If {βxn} is not a

σ -Cauchy sequence, then there exists ε > 0 and sequences {mk}, {nk} of integers
with mk > nk ≥ k such that

σ
(
β(xmk − xnk )

)
≥ ε (k ∈ N). (10)

Moreover, corresponding to odd numbers nk , we can choose even numbers mk in
such a way that it is the smallest integer with mk > nk such that

σ
(
β(xmk−2 − xnk )

)
< ε. (11)

In fact, let mk be the smallest even number exceeding nk for which (10) holds, and

Nk =
{
m ∈ Ne | ∃ nk ∈ No; σ

(
β(xm − xnk )

)
≥ ε, m > nk ≥ k

}
.

It is clear that Nk 
= ∅ and by well-ordering principle, the minimum element of Nk

exists and is denoted by mk , and clearly (11) holds.
Now, let α0 ∈ R

+ be such that β

α
+ 1

α0
= 1. Also assume that r is the smallest

integer number such that α0 < 2r , then from (11) and �2-type condition we have

σ
(
β(xmk − xnk )

)
= σ

(β

α

(
α(xmk − xnk+2)

)
+ 1

α0

(
α0β(xnk+2 − xnk )

))

≤ σ
(
α(xmk − xnk+2)

)
+ σ

(
α0β(xnk+2 − xnk )

)

≤ ϕ
(
σ
(
β(xmk−1 − xnk+1)

))
+ σ

(
α0β(xnk+2 − xnk )

)

< ε + κrσ
(
α0β(xnk+2 − xnk )

)
.

Since limk→∞ σ
(
β(xnk+2 − xnk )

)
= 0, hence limk→∞ σ

(
β(xmk − xnk )

)
= ε. There-

fore,
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σ
[
β(xmk − xnk )

)
=σ

(β

α

(
α(xmk+1 − xnk+1)

)

+ 1

2α0

(
2α0β(xmk − xmk+1 + xnk+1 − xnk )

)]

≤σ
(
α(xmk+1 − xnk+1)

)
+ σ

(
2α0β(xmk − xmk+1)

)

+ σ
(
2α0β(xnk+1 − xnk )

)

≤ϕ
(
σ
(
β(xmk − xnk )

))
+ σ

(
2α0β(xmk − xmk+1)

)

+ σ
(
2α0β(xnk+1 − xnk )

)
.

Therefore, as k → ∞, we get ε ≤ ϕ(ε), which is a contradiction. Hence {βxn} is a
σ -Cauchy sequence, and by �2-type condition, {xn} is a σ -Cauchy sequence. Since
Xσ is complete, there is a w ∈ � such that σ(xn − w) → 0, as n → ∞. Now, it will
be shown that w is the common fixed point of H and K . Put x = x2n and y = w in
(12), we have

σ
(
α(w − Kw)

)
= lim

n→∞ σ
(
α(x2n+1 − Kw)

)
= σ

(
α(Hx2n − Kw)

)

≤ ϕ
[
max{σ(β(x2n − w)), σ (β(x2n − Hx2n)), σ (β(w − Kw))}

]

= ϕ
[
max{σ(β(x2n − x2n+1)), σ (β(w − Kw))}

]

→ ϕ
(
σ(β(w − Kw))

)
< ϕ

(
σ(α(w − Kw))

)

therefore σ
(
α(w − Kw)

)
= 0, and so w = Kw which is the required result.

Putting H = K in Theorem 1, we have the following.

Corollary 1 LetXσ beaσ -completemodular space. Suppose thatϕ : R+ → [0,∞)

satisfies (1). Let � be a σ -closed subset of Xσ and let H : � → � be a mapping
such that there exist α, β ∈ R

+ with α > β, and

σ
(
α(Hx − Hy)

)
≤ ϕ

[
max

{
σ(β(x − Hx)), σ (β(y − Hy))

}]
,

for all x, y ∈ �. Then H has a unique fixed point in �.

Setting ϕ(t) = ηt for η ∈ (0, 1) in Theorem 1, we obtain the next result.

Corollary 2 Let Xσ be a σ -complete modular space. Let � be a σ -closed subset
of Xσ and let H, K : � → � be mappings such that there exist α, β, η ∈ R

+ with
α > β and η ∈ (0, 1), and

σ
(
α(Hx − Ky)

)
≤ η

[
max{σ(β(x − Hx)), σ (β(y − Ky))}

]
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for all x, y ∈ �. Then H and K have a unique common fixed point in �.

Also if we set ϕ(t) = ηt for η ∈ (0, 1) and H = K in Theorem 1, we get the
following.

Corollary 3 Let Xσ be a σ -complete modular space. Let � be a σ -closed subset of
Xσ and let H : � → � be a mapping such that there exist α, β, η ∈ R

+ with α > β

and η ∈ (0, 1), and

σ
(
α(Hx − Hy)

)
≤ η

[
max{σ(β(x − Hx)), σ (β(y − Hy))}

]

for all x, y ∈ �. Then H and K have a unique fixed point in �.

The following example gives a modular space X and two self-maps on X , which
satisfied the requirements of Theorem 1.

Example 2 Let Xσ = [0.1, 1
4 ], and σ(x) = |x | for all x ∈ Xσ . Define H and K on

Xσ as Hx =
√
x
2 , Kx = 1

4 . Suppose ϕ : R → [0,∞) defined as ϕ(t) = t
2 . Then the

hypothesis (12) is satisfied with H and K for α = 4 and β = 3. In fact

σ
(
α(Hx − Ky)

)
= |2√x − 1|

and

ϕ
[
max{σ(β(x − Hx)), σ (β(y − Ky))}

]
= 3

2
max

{∣∣∣∣x −
√
x

2

∣∣∣∣ ,
∣∣∣∣y − 1

4

∣∣∣∣
}

.

Since x, y ∈ [0.1, 1
4 ], hence we have

|2√x − 1| ≤ 3

2
|x −

√
x

2
|,

and so

σ
(
α(Hx − Ky)

)
≤ ϕ

[
max{σ(β(x − Hx)), σ (β(y − Ky))}

]
.

Therefore, Theorem 1 implies that H and K have a unique common fixed point, that
is, 1

4 .

Theorem 2 LetXσ be a σ -complete modular space. Suppose that ϕ : R+ → [0,∞)

satisfies in (1). Let� be a σ -closed subset ofXσ and let H, K : � → � be mappings
such that there exist α, β ∈ R

+ with α > β, and

σ
(
α(Hx − Ky)

)
≤ ϕ

[
max

{
σ
(
β(x − y)

)
, σ

(
β(x − Hx)

)
, σ

(
β(y − Ky)

)}]
,

(12)
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for all x, y ∈ �. Then H and K have a unique common fixed point in �.

Proof As the proof of Theorem 1, we can prove that any fixed point of H is also a
fixed point of S, and, conversely, also H and K have a unique common fixed point.

Let x0 ∈ � and put x2n+1 = Hx2n, x2n+2 = Kx2n+1 for all n = 0, 1, 2, . . .. We
may assume that for any n, xn+1 
= xn , otherwise H or K has a fixed point and the
proof is complete. Now, we have

σ
(
α(x2n+1 − x2n)

)
=σ

(
α(Hx2n − Kx2n−1)

)

≤ϕ
[
max

{
σ
(
β(x2n − x2n−1)

)
, σ

(
β(x2n − Hx2n)

)
, (13)

σ
(
β(x2n−1 − Kx2n−1)

)}
]
,

=ϕ
[
max

{
σ
(
β(x2n − x2n−1)

)
, σ

(
β(x2n − x2n+1)

)
, (14)

σ
(
β(x2n−1 − x2n)

)}]
,

=ϕ
[
max

{
σ
(
β(x2n − x2n−1)

)
, σ

(
β(x2n − x2n+1)

)}]
(15)

=ϕ
(
σ
(
β(x2n − x2n−1)

))
, (16)

otherwise from (13) we get

σ
(
α(x2n+1 − x2n)

)
≤ ϕ

[
max

{
σ
(
β(x2n − x2n−1)

)
, σ

(
β(x2n − x2n+1

)}]

= ϕ
(
σ
(
β(x2n − x2n+1)

))
< σ

(
α(x2n+1 − x2n)

)
, (17)

and this is impossible. Therefore, from (13) and (17), we have

σ
(
α(x2n+1 − x2n)

)
= σ

(
α(Hx2n − Kx2n−1)

)
≤ ϕ

(
σ
(
β(x2n − x2n−1)

))

< σ
(
β(x2n − x2n−1)

)
< σ

(
α(x2n − x2n−1)

)
. (18)

Similarly

σ
(
α(x2n+2 − x2n+1)

)
= σ

(
α(Kx2n+1 − Hx2n)

)
≤ ϕ

(
σ
(
β(x2n+1 − x2n)

))

< σ
(
β(x2n+1 − x2n)

)
< σ

(
α(x2n+1 − x2n)

)
. (19)

By (18) and (19), therefore, we have

σ
(
α(xn+1 − xn)

)
≤ ϕ

(
σ
(
β(xn − xn−1)

))
< σ

(
β(xn − xn−1)

)
(n ≥ 1). (20)
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Consequently, {σ
(
α(xn+1 − xn)

)
} is decreasing and bounded from below. Hence

{σ
(
α(xn+1 − xn)

)
} converges to z. Now, if z 
= 0,

z = lim
n→∞ σ

(
α(xn+1 − xn)

)
≤ lim

n→∞ ϕ
(
σ
(
β(xn − xn−1)

))

< lim
n→∞ ϕ

(
σ
(
α(xn − xn−1)

))
,

then z ≤ ϕ(z), which is a contradiction, hence z = 0.
Now, we show that {xn} is a σ -Cauchy sequence in Xσ . If {βxn} is not a

σ -Cauchy sequence, then there exists ε > 0 and sequences {mk}, {nk} of integers
with mk > nk ≥ k such that

σ
(
β(xmk − xnk )

)
≥ ε (k ∈ N). (21)

Moreover, corresponding to odd numbers nk , we can choose even numbers mk in
such a way that it is the smallest integer with mk > nk such that

σ
(
β(xmk−2 − xnk )

)
< ε. (22)

In fact, let mk be the smallest even number exceeding nk for which (21) holds, and

Nk =
{
m ∈ Ne | ∃ nk ∈ No; σ

(
β(xm − xnk )

)
≥ ε, m > nk ≥ k

}
.

It is clear that Nk 
= ∅ and by well-ordering principle, the minimum element of Nk

exists and is denoted by mk , and (22) holds.
Now, let α0 ∈ R

+ be such that β

α
+ 1

α0
= 1. Also assume that r is the smallest

integer number such that α0 < 2r , then from (22) and �2-type condition we have

σ
(
β(xmk − xnk )

)
= σ

(β

α

(
α(xmk − xnk+2)

)
+ 1

α0

(
α0β(xnk+2 − xnk )

))

≤ σ
(
α(xmk − xnk+2)

)
+ σ

(
α0β(xnk+2 − xnk )

)

≤ ϕ
(
σ
(
β(xmk−1 − xnk+1)

))
+ σ

(
α0β(xnk+2 − xnk )

)

< ε + κrσ
(
α0β(xnk+2 − xnk )

)
.

Since limk→∞ σ
(
β(xnk+2 − xnk )

)
= 0, hence limk→∞ σ

(
β(xmk − xnk )

)
= ε. There-

fore,
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σ
[
β(xmk − xnk )

)
= σ

(β

α

(
α(xmk+1 − xnk+1)

)

+ 1

2α0

(
2α0β(xmk − xmk+1 + xnk+1 − xnk )

)]

≤ σ
(
α(xmk+1 − xnk+1)

)
+ σ

(
2α0β(xmk − xmk+1)

)

+ σ
(
2α0β(xnk+1 − xnk )

)

≤ ϕ
(
σ
(
β(xmk − xnk )

))
+ σ

(
2α0β(xmk − xmk+1)

)

+ σ
(
2α0β(xnk+1 − xnk )

)
.

Therefore, as k → ∞, we get ε ≤ ϕ(ε), which is a contradiction. Hence {βxn} is a
σ -Cauchy sequence, and by �2-type condition, {xn} is a σ -Cauchy sequence. Since
Xσ is complete, there is a w ∈ � such that σ(xn − w) → 0, as n → ∞. Now, we
show that w is the common fixed point of H and K . Put x = x2n and y = w in (12),
we have

σ
(
α(w − Kw)

)
= lim

n→∞ σ
(
α(x2n+1 − Kw)

)
= σ

(
α(Hx2n − Kw)

)

≤ ϕ
[
max{σ(β(x2n − w)), σ (β(x2n − Hx2n)), σ (β(w − Kw))}

]

= ϕ
[
max{σ(β(x2n − w)), σ (β(x2n − x2n+1)), σ (β(w − Kw))}

]

→ ϕ
(
σ(β(w − Kw))

)
< ϕ

(
σ(α(w − Kw))

)

therefore σ
(
α(w − Kw)

)
= 0, and so w = Kw. This completes the proof.

Putting S = T in Theorem 2, we deduce the next result.

Corollary 4 LetXσ beaσ -completemodular space. Suppose thatϕ : R+ → [0,∞)

satisfies (1). Let � be a σ -closed subset of Xσ and let T : � → � be a mapping
such that there exist α, β ∈ R

+ with α > β, and

σ
(
α(Hx − Hy)

)
≤ ϕ

[
max

{
σ
(
β(x − y)

)
, σ

(
β(x − Hx)

)
,
(
β(y − Hy)

)}]
,

for all x, y ∈ �. Then H has a unique fixed point in �.

If we set ϕ(t) = ηt for η ∈ (0, 1) in Theorem 2, we deduce the following.
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Corollary 5 Let Xσ be a σ -complete modular space. Let � be a σ -closed subset
of Xσ and let H, K : � → � be mappings such that there exist α, β, η ∈ R

+ with
α > β and η ∈ (0, 1), and

σ
(
α(Hx − Ky)

)
≤ η

[
max

{
σ
(
β(x − y)

)
, σ

(
β(x − Hx)

)
, σ

(
β(y − Ky)

)} ]

for all x, y ∈ �. Then H and K have a unique common fixed point in �.

Also if we set ϕ(t) = ηt for η ∈ (0, 1) and H = K in Theorem 2, we have the
other result.

Corollary 6 Let Xσ be a σ -complete modular space. Let � be a σ -closed subset of
Xσ and let H : � → � be a mapping such that there exist α, β, η ∈ R

+ with α > β

and η ∈ (0, 1), and

σ
(
α(Hx − Hy)

)
≤ η

[
max

{
σ
(
β(x − y)

)
, σ

(
β(x − Hx)

)
, σ

(
β(y − Hy)

)} ]

for all x, y ∈ �. Then H and K have a unique fixed point in �.

In the following, we give an example for Theorem 2.

Example 3 Let Xσ = [0,∞), and σ(x) = |x | for all x ∈ Xσ . Define T and S on
Xσ as Hx =

√
x
4 , Kx = x

4 . Suppose ϕ : R → [0,∞) defined as ϕ(t) = t
2 . Then the

hypothesis (12) is satisfied with H and K for α = 4 and β = 3. Therefore, Theorem
2 implies that H and K have a unique common fixed point.

Theorem 3 LetXσ be a σ -complete modular space. Suppose that ϕ : R+ → [0,∞)

satisfies (1). Let � be a σ -closed subset of Xσ and let H, K : � → � be mappings
such that there exist α, β ∈ R

+ with α > β, and

σ
(
α(Hx − Ky)

)
≤ ϕ

[
max

{
σ
(
β(x − y)

)
, σ

(
β(x − Hx)

)
,
(
β(y − Ky)

)
,

1

2κ

(
σ
(
β(x − Hy)

) + σ
(
β(y − Kx)

))}]
, (23)

for all x, y ∈ �. Then H and K have a unique common fixed point in �.

Proof As the proof of Theorem 1, one can see that any fixed point of H is also a
fixed point of K , and conversely. Also, the common fixed point is unique.

Suppose x0 ∈ � and put x2n+1 = Hx2n, x2n+2 = Kx2n+1 for all n = 0, 1, 2, . . ..
We may assume that for any n, xn+1 
= xn , otherwise H or K has a fixed point and
the proof is complete. Now, we have
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σ
(
α(x2n+1 − x2n)

)
= σ

(
α(Hx2n − Kx2n−1)

)

≤ ϕ
[
max

{
σ
(
β(x2n − x2n−1)

)
, σ

(
β(x2n − Hx2n)

)
,

σ
(
β(x2n−1 − Kx2n−1)

)
,
1

2κ

(
σ
(
β(x2n − Kx2n−1)

)

+ σ
(
β(x2n−1 − Hx2n)

))}]
,

= ϕ
[
max

{
σ
(
β(x2n − x2n−1)

)
, σ

(
β(x2n − x2n+1)

)
,

σ
(
β(x2n−1 − x2n)

)
,
1

2κ

(
σ
(
β(x2n − x2n)

)

+ σ
(
β(x2n−1 − x2n+1))

)}]
,

= ϕ
[
max

{
σ
(
β(x2n − x2n−1)

)
, σ

(
β(x2n − x2n+1)

)
,

1

2κ
σ
(
β(x2n−1 − x2n+1)

)}]
. (24)

But

σ
(
β(x2n−1 − x2n+1)

)
= σ

(1
2

[
2β(x2n−1 − x2n)

]
+ 1

2

[
2β(x2n − x2n+1)

])

≤ σ
(
2β(x2n−1 − x2n)

)
+ σ

(
2β(x2n − x2n+1)

)

≤ k
[
σ
(
β(x2n−1 − x2n)

)
+ σ

(
β(x2n − x2n+1)

)]
, (25)

hence

ϕ
[
max

{
σ
(
β(x2n − x2n−1)

)
, σ

(
β(x2n − x2n+1)

)
,
1

2κ

(
σ(β(x2n − x2n))

+ σ
(
β(x2n−1 − x2n+1)

))}]
= ϕ

(
σ
(
β(x2n − x2n−1)

))
, (26)

in otherwise from (24), we get

σ
(
α(x2n+1 − x2n)

)
≤ϕ

[
max

{
σ
(
β(x2n − x2n−1)

)
, σ

(
β(x2n − x2n+1)

)
,

1

2κ

(
σ
(
β(x2n − x2n)

) + σ
(
β(x2n−1 − x2n+1))

)}]

= ϕ
(
σ
(
β(x2n − x2n+1)

))
< σ

(
α(x2n+1 − x2n)

)
,

and this is impossible. Therefore, from (24) and (25) we have
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σ
(
α(x2n+1 − x2n)

)
= σ

(
α(Hx2n − Kx2n−1)

)
≤ ϕ

(
σ
(
β(x2n − x2n−1)

))

< σ
(
β(x2n − x2n−1)

)
< σ

(
α(x2n − x2n−1)

)
. (27)

similarly

σ
(
α(x2n+2 − x2n+1)

)
= σ

(
α(Kx2n+1 − Hx2n)

)
≤ ϕ

(
σ
(
β(x2n+1 − x2n)

))

< σ
(
β(x2n+1 − x2n)

)
< σ

(
α(x2n+1 − x2n)

)
. (28)

By (27) and (28), therefore, we have

σ
(
α(xn+1 − xn)

)
≤ ϕ

(
σ
(
β(xn − xn−1)

))
< σ

(
β(xn − xn−1)

)
(n ≥ 1). (29)

Consequently,
{
σ
(
α(xn+1 − xn)

)}
is decreasing and bounded from below. Hence{

σ
(
α(xn+1 − xn)

)}
converges to z. Now, if z 
= 0,

z = lim
n→∞ σ

(
α(xn+1 − xn)

)
≤ lim

n→∞ ϕ
(
σ
(
β(xn − xn−1)

))

< lim
n→∞ ϕ

(
σ
(
α(xn − xn−1)

))
,

then z ≤ ϕ(z), which is a contradiction, hence z = 0.
Now, we show that {xn} is a σ -Cauchy sequence in Xσ . If {βxn} is not a

σ -Cauchy sequence, then there exists ε > 0 and sequences {mk}, {nk} of integers
with mk > nk ≥ k such that

σ
(
β(xmk − xnk )

)
≥ ε (k ∈ N). (30)

Moreover, corresponding to odd numbers nk , we can choose even numbers mk in
such a way that it is the smallest integer with mk > nk such that

σ
(
β(xmk−2 − xnk )

)
< ε. (31)

In fact, let mk be the smallest even number exceeding nk for which (30) holds, and

Nk =
{
m ∈ Ne : ∃ nk ∈ No; σ

(
β(xm − xnk )

)
≥ ε, m > nk ≥ k

}
.

It is clear that Nk 
= ∅ and by well-ordering principle, the minimum element of Nk

exists and is denoted by mk , and (31) holds.
Now, let α0 ∈ R

+ be such that β

α
+ 1

α0
= 1. Also assume that r is the smallest

integer number such that α0 < 2r , then from (31) and �2-type condition we have
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σ
(
β(xmk − xnk )

)
= σ

(β

α

(
α(xmk − xnk+2)

)
+ 1

α0

(
α0β(xnk+2 − xnk )

))

≤ σ
(
α(xmk − xnk+2)

)
+ σ

(
α0β(xnk+2 − xnk )

)

≤ ϕ
(
σ
(
β(xmk−1 − xnk+1)

))
+ σ

(
α0β(xnk+2 − xnk )

)

< ε + κrσ
(
α0β(xnk+2 − xnk )

)
.

Since limk→∞ σ
(
β(xnk+2 − xnk )

)
= 0, hence limk→∞ σ

(
β(xmk − xnk )

)
= ε. There-

fore,

σ
[
β(xmk − xnk )

)
=σ

(β

α

(
α(xmk+1 − xnk+1)

)

+ 1

2α0

(
2α0β(xmk − xmk+1 + xnk+1 − xnk )

)]

≤ σ
(
α(xmk+1 − xnk+1)

)
+ σ

(
2α0β(xmk − xmk+1)

)

+ σ
(
2α0β(xnk+1 − xnk )

)

≤ ϕ
(
σ
(
β(xmk − xnk )

))
+ σ

(
2α0β(xmk − xmk+1)

)

+ σ
(
2α0β(xnk+1 − xnk )

)
.

Therefore, as k → ∞, we get ε ≤ ϕ(ε), which is a contradiction. Thus {βxn} is a
σ -Cauchy sequence, and by �2-type condition, {xn} is a σ -Cauchy sequence. Since
Xσ is complete, there is a w ∈ � such that σ(xn − w) → 0, as n → ∞. Now, we
show that w is the common fixed point of H and K . Put x = x2n and y = w in (23),
we obtain

σ
(
α(w − Kw)

)
= lim

n→∞ σ
(
α(x2n+1 − Kw)

)
= σ

(
α(Hx2n − Kw)

)

≤ ϕ
[
max{σ(β(x2n − w)), σ (β(x2n − Hx2n)), σ (β(w − Kw)),

1

2κ
[σ(β(x2n − Kw)) + σ(β(w − Hx2n))]}

]

= ϕ
[
max{σ(β(x2n − w)), σ (β(x2n − x2n+1)), σ (β(w − Kw)),

1

2κ
[σ(β(x2n − Kw)) + σ(β(w − x2n+1))]}

]

→ϕ
(
σ(β(w − Kw))

)
< ϕ

(
σ(α(w − Kw))

)

therefore σ
(
α(w − Kw)

)
= 0, and so w = Kw. This completes the proof.

On putting K = H in Theorem 3 reduces to a result of [4].
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Corollary 7 LetXσ be a σ -complete modular space. Assume that ϕ : R+ → [0,∞)

satisfies in (1). Let � be a σ -closed subset of Xσ and let H : � → � be a mapping
such that there exist α, β ∈ R

+ with α > β, and

σ
(
α(Hx − Hy)

)
≤ ϕ

[
max{σ(β(x − y)), σ (β(x − Hx)), σ (β(y − Hy)),

1

2κ
[σ(β(x − Hy)) + σ(β(y − Hx))]}

]
,

for all x, y ∈ �. Then H has a unique fixed point in �.

The following corollary is an immediate consequence ofTheorem3, ifwe consider
ϕ(t) = ηt for η ∈ (0, 1).

Corollary 8 Let Xσ be a σ -complete modular space. Let � be a σ -closed subset
of Xσ and let H, K : � → � be mappings such that there exist α, β, η ∈ R

+ with
α > β and η ∈ (0, 1), and

σ
(
α(Hx − Ky)

)
≤ η

[
max{σ(β(x − y)), σ (β(x − Hx)), σ (β(y − Ky)),

1

2κ
[σ(β(x − Ky)) + σ(β(y − Hx))]}

]

for all x, y ∈ �. Then H and K have a unique common fixed point in �.

If we put ϕ(t) = ηt for η ∈ (0, 1) and H = K in Theorem 3, then we get the
following corollary.

Corollary 9 Let Xσ be a σ -complete modular space and � be a σ -closed subset
of Xσ . Let H : � → � be a mapping such that there exist α, β, η ∈ R

+ with α > β

and η ∈ (0, 1), and

σ
(
α(Hx − Hy)

)
≤ η

[
max{σ(β(x − y)), σ (β(x − Hx)), σ (β(y − Hy)),

1

2κ
[σ(β(x − Ky)) + σ(β(y − Hx))]}

]

for all x, y ∈ �. Then H has a unique fixed point in �.

The final result holds if σ is s-convex and ϕ(t) = ηs t .

Corollary 10 Let Xσ be a σ -complete modular space, where σ is s-convex and
satisfies the �2-type condition. Let � be a σ -closed subset of Xσ and let H, K :
� → � be mappings such that there exist α, β, η ∈ R

+ with α > max{β, ηβ} and

σ
(
α(Hx − Ky)

)
≤ ηs

[
max{σ(β(x − y)), σ (β(x − Hx)), σ (β(y − Ky)),

1

2κ
[σ(β(x − Ky)) + σ(β(y − Hx))]}

]
, (32)
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for all x, y ∈ �. Then H and K have a unique common fixed point in �.

Proof Let β0 be a constant such that α > β0 > max{β, ηβ}. Then we have

σ
(
α(Hx − Ky)

)
≤ ηs

[
max{σ(β(x − y)), σ (β(x − Hx)), σ (β(y − Ky)),

1

2κ
[σ(β(x − Ky)) + σ(β(y − Hx))]}

]

= ηs
[
max{σ(

β

β0
β0(x − y)), σ (

β

β0
β0(x − Hx)), σ (

β

β0
β0(y − Ky)),

1

2κ
[σ(

β

β0
β0(x − Ky)) + σ(

β

β0
β0(y − Hx))]}

]

≤
(βη

β0

)s
ηs

[
max{σ(β0(x − y)), σ (β0(x − Hx)), σ (β0(y − Ky)),

1

2κ
[σ(β0(x − Ky)) + σ(β0(y − Hx))]}

]
,

where
(

βη

β0

)s
< 1. Hence, by using Corollary 9, the result follows.

Remark 2 Note that Example 3 is also satisfied in the requirements of Theorem 3.
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Fixed-Point Theorems in Generalized
Modular Metric Spaces

N. Manav

Abstract Modular function spaces are one of the unique conditions of modular vec-
tor spaceswhichwere defined byNakano [37] in 1950. Later on, Khamsi, Kozlowski,
and Reich [28] introduced the fixed-point principle in modular function spaces in
1990. Chistyakov introduced concept of a modular metric space in 2011 [14]. Abdou
and Khamsi introduced fixed-point theory into the modular metric spaces using dif-
ferent techniques from the viewpoint of Chistyakov [14, 15], the similar approach
continues in this part as they used in [1]. In this chapter, the Banach Contraction
Principle and Ćirić Quasi-contraction are proven in Generalized Modular Metric
Spaces (briefly GMMS). The usual topology is defined on these spaces, and then,
using Nadler [36] and Edelstein’s results in [1], two fixed-point theorems are given
for a multivalued contractive-type map in the construction of modular metric spaces.
They are Caristi and Feng-Liu types in GMMS with their applications as in [42] and
[43].

1 Metrics and Modulars

The story of modulars, after giving the definition of metrics and modulars might
help better understanding what is their relation. There is a growing interest over
the last few years in studying the fixed-point properties in modular metric spaces
after Khamsi et al. [28] introduced the fixed-point principle in modular function
spaces in 1990. Modular function spaces are singular situation of modular vector
spaceswhichNakano [37] defined them in 1950.Chistyakov [14] introducedmodular
metric definition in 2011 after his early works [13]. Vyacheslav V. Chistyakov was
the first who suggest such a generalization which had a physical understanding of
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the generalization of the modular function spaces, while a metric defined on a set
describes nonnegative finite distances between random two points of the set, the
modulars allow various perceptions relying on the context; for example, the quantity
ωλ(a, b) can be considered as a mean velocity from point a to b in time λ > 0
(absolute value of nonlinear), then a modular creates distance function between
randomly selected two points from X . For a nonlinear approximation to modular
function spaces, readers can check these sources [1, 2, 42].

Metric spaces are defined as a nonlinear variant of a norm-endowed vector spaces
and a nonlinear version of the modular function spaces pursuing certain path as a
vector space equipped with a modular function. Hence, considering it is logical [29].
To understand the idea of modularity on a set, we start by reminding the concept of
metric. Maurice Fréchet [23] in his 1906 doctoral thesis recognized a useful distance
functional between any elements of a set X , then d is shown to be a metric on X if
it fulfills the conditions (axioms) for all points.

Metric space: Let take X be an abstract set.While d : X × X → R is a function
on a set X is said to be a metric on X , if it provides the following axioms for all
a, b, z ∈ X :

(M1) d(a, b) = 0 if and only if a = b,
(M2) d(a, b) = d(b, a),
(M3) d(a, b) ≤ d(a, z) + d(b, z).

The pair (X, d) is said to be a metric space and these axioms are commonly known
as nondegeneracy, symmetry, and triangle inequality in order. In some sources, the
definition of a metric is given with two axioms due to the criteria (M1)–(M3) are
equivalent to (M1) and (M3) which is expressed in the format as d(a, b) ≤ d(a, z) +
d(b, z) while z = a and replacing b with a, then we impose (M2).

In 1950 [37], Nakano introduced the theory of a modular on a vector space, and
in 1959, it was refined by Musielak and Orlicz [33], then in 1983 by Musielak [34].

Modular vector spaces [37]: Let X be a linear vector space over the field R.
Whileρ : X → [0,∞] is a functionwhich is called a regularmodular if the following
satisfied for any a, b ∈ X such:

(1) ρ(a) = 0 ⇐⇒ a = 0,
(2) ρ(αa) = ρ(a) ⇒ |α| = 1,
(3) ρ(αa + (1 − α)b) ≤ ρ(a) + ρ(b), ∀α ∈ [0, 1],
Let ρ be a regular modular which is settled on a vector space X . The set

Xρ = {a ∈ X; lim
α→0

ρ(α a) = 0}

is called a modular vector space. Let {an}n∈N ⊆ Xρ is a sequence and a ∈ Xρ . If
lim
n→∞ ρ(an − a) = 0, then {an}n∈N is said to ρ-converge to a. ρ is revealed to satisfy

the Δ2-condition if there exists C 
= 0 such that ρ(2a) ≤ Cρ(a), for any a ∈ Xρ .
Furthermore, ρ is said to fulfill the Fatou property if ρ(a − b) ≤ lim inf

n→∞ ρ(an − b)

whenever {an} ρ-converges to a, for any a, b, an ∈ Xρ .
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These definitions are given in an article by Chistyakov [14].

Definition 1 Let take w : (0,∞) × X × X → [0,∞] is a function on X which is
revealed to be a metric modular(or simply a modular) as ω(λ, a, b) = ωλ(a, b) for
λ > 0. If it assures the following three axioms:

(i) For any given a, b ∈ X, wλ(a, b) = 0, ∀λ > 0 ⇐⇒ a = b;
(ii) wλ(a, b) = wλ(b, a), ∀λ > 0 and a, b ∈ X ;
(iii) wλ+μ(a, b) ≤ wλ(a, z) + wμ(b, z), ∀λ,μ > 0 and a, b, z ∈ X .

If we replace (i)with the condition following the new condition ofmodular, which
is given as

(i’) wλ(a, a) = 0, ∀λ > 0 and a ∈ X ,

then w is said to be a (metric)pseudo modular on X .

A modular metricw on X is said to be regular while the next version of (i) is fulfilled
such as

(i-r) a = b ⇐⇒ wλ(a, b) = 0 for some λ > 0.
Let w be a (pseudo) modular on a set X . The binary relation

w∼ on X defined
for a, b ∈ X by a

w∼ b if and only if limλ→∞ wλ(a, b) = 0, is, as a result of axioms
(i), (i i), and (i i i), an equivalence relation.

Denote by X/w∼ the quotient-set of X with respect to
w∼ and by Xo

w(a) = {b ∈
X : b w∼ a} the equivalence class of the element a ∈ X in the quotient set X/w∼.

∼
d:

(X/w∼) × (X/w∼) → [0,∞]givenby ∼
d (Xo

w(a), Xo
w(b)) = limλ→∞ wλ(a, b), a, b ∈

X, is well defined and satisfies the axioms of a metric.
Modular Set [16] Now, we fix an element a0 ∈ X arbitrarily and set Xw =

Xo
w(a0). The set Xw is said a modular set. And if we take as a w is a metric

(pseudo)modular on X , then the modular set Xw is a (pseudo)metric space with
(pseudo)metric such that do

w(a, b) = inf{λ > 0 : wλ(a, b) ≤ λ}, a, b ∈ Xw.
Let w be a (pseudo)modular on a set X. Then we take a sequence {an}∞n=1 ⊂ Xw

and a ∈ Xw, now we have

d0
w(an, a) → 0 as n → ∞ ⇐⇒ wλ(an, a) → 0 as n → ∞ for all λ > 0.

An analogous acceptance holds for Cauchy sequences.
To show the set of a modular space, let hold an a0 ∈ X . We show that the two sets

are given as

Xω = Xω(a0) = {a ∈ X : ωλ(a, a0) → 0 as λ → ∞}
X∗

ω = X∗
ω(a0) = {a ∈ X : ∃λ = λ(a) > 0 such that ωλ(a, a0) < ∞}

and they are called modular spaces (around a0). It is clear that Xω ⊂ X∗
ω on the other

hand, this subsumption be allowed legitimate in general.
Standard metric space generalizations are important because they allow for a

strong knowledge of the fundamental conclusions drawn into the setting of classical
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metric spaces. When we proposed a new generalization on metric spaces, we must
always be careful. For instance, if we challenge the triangle inequality, our results
won’t meet with some established principles in metric spaces. It is the point with the
Jleli and Samet presented generalized metric distance in [24]. This generalization
has been shown by the authors including metric spaces, dislocated metric spaces,
b-metric spaces, and modular vector spaces. But the case of modular metric spaces
didn’t generalized [26]. When we scrutinize a modular metric space and a general-
ized metric space wisdom of Jleli and Samet [24], authors introduce a contemporary
perception of generalized modular metric space in [42]. We highly recommend for
curious readers the important readings on metric fixed-point theory by Khamsi and
Kirk [27] and for more [21, 30].

First, we give the definition of generalized modular metric spaces.

Definition 2 [42] Let take X as a concrete set and a function D : (0,∞) × X ×
X → [0,∞] is called to be a generalized modular metric on X (GMMS for short),
if it provides the next three axioms:

(GMM1) If Dλ(a, b) = 0, for some λ > 0, then a = b, ∀a, b ∈ X ;
(GMM2) Dλ(a, b) = Dλ(b, a), ∀λ > 0 and a, b ∈ X ;
(GMM3) there exists C > 0 such that, if (a, b) ∈ X × X , {an} ⊂ X

when lim
n→∞ Dλ(an, a) = 0, for some λ > 0, then

Dλ(a, b) ≤ C lim sup
n→∞

Dλ(an, b).

The pair (X, D) is called to be a generalized modular metric space.

When we investigate this situation whether there exist a, b ∈ X such that there
exists {an} ⊂ X with lim

n→∞ Dλ(an, a) = 0, for some λ > 0, and Dλ(a, b) < ∞, then

we realize C ≥ 1 effortlessly. During this work, we literally accept C ≥ 1.
Now we take D as a generalized modular metric on X and a0 ∈ X is fixed. The

defined sets below;

{
XD = XD(a0) = {a ∈ X : Dλ(a, a0) → 0 as λ → ∞}
X �

D = {a ∈ X : ∃λ = λ(a) > 0 such that Dλ(a, a0) < ∞}

are called generalized modular sets. Next, we give some examples that motivated
our definition of a generalized modular metric space.

Example 1 (Modular vector spaces [37]) Let X be a vector space over the fieldR.
We shall show that amodular vector spacemay be built-inwith a generalizedmodular
metric format. Now, let (X, ρ) be a modular vector space. Define D : (0,+∞) ×
X × X → [0,+∞] by

Dλ(a, b) = ρ

(
a − b

λ

)
.
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Then the following are satisfied:

(i) If Dλ(a, b) = 0, for some λ > 0 and ∀a, b ∈ X ⇒ a = b;
(ii) Dλ(a, b) = Dλ(b, a),∀λ > 0 and a, b ∈ X ;
(iii) if ρ satisfies the Fatou property, then ∀λ > 0 and {an} such that {an/λ}

ρ-converges to a/λ, we impose

ρ

(
a − y

λ

)
≤ lim inf

n→∞ ρ

(
an − b

λ

)
≤ lim sup

n→∞
ρ

(
an − b

λ

)
,

which shows

Dλ(a, b) ≤ lim inf
n→∞ Dλ(an, b) ≤ lim sup

n→∞
Dλ(an, b),

for any a, y, an ∈ Xρ .

Accordingly, (X, D) provides all the requirements of Definition 2 as asserted. Con-
sidering the constant C which is showed in the feature (GMM3) is equal to 1 deter-
mines the Fatou property is satisfied by ρ.

The case of modular metric spaces is mentioned in the subsequent example.

Example 2 (Modular metric spaces [14, 15]) Let X be an abstract set and a defined
function ω : (0,+∞) × X × X → [0,∞], we have

ω(λ, a, b) = ωλ(a, b).

Then, we have Xω be a modular metric space. If lim
n→∞ ωλ(an, a) = 0, for some λ >

0, then we could not take lim
n→∞ ωλ(an, a) = 0, for all λ > 0. For this reason, as

it is carried out in modular vector spaces, we will observe that ω fulfills the Δ2-
conditionwhether this is the condition, i.e., lim

n→∞ ωλ(an, a) = 0, for someλ > 0 refers

lim
n→∞ ωλ(an, a) = 0, for all λ > 0. By extension, the sequence {an}n∈N in Xω is ω-

convergent to a ∈ Xω if lim
n→∞ ωλ(an, a) = 0, for some λ > 0. The modular function

ω is said to provides the Fatou property if {an} is such that lim
n→∞ ωλ(an, a) = 0, for

some λ > 0, we impose

ωλ(a, b) ≤ lim inf
n→∞ ωλ(an, b),

for any b ∈ Xω. While ω is a regular modular, let Xω be a modular metric space and
let take a function D : (0,+∞) × Xω × Xω → [0,+∞] by

Dλ(a, b) = ωλ(a, b).

Then the next properties hold:
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(i) if Dλ(a, b) = 0, for some λ > 0 and a, b ∈ Xω, then a = b;
(ii) Dλ(a, b) = Dλ(b, a), for any λ > 0 and a, b ∈ Xω;
(iii) if ω provides the Fatou property, then for any a ∈ Xω and {an} ⊂ Xω such

that lim
n→∞ Dλ(an, a) = 0, for some λ > 0, we capture

ωλ(a, b) ≤ lim inf
n→∞ ωλ(an, b) ≤ lim sup

n→∞
ωλ(an, b),

for any y ∈ Xω, which refers

Dλ(a, b) ≤ lim inf
n→∞ Dλ(an, b) ≤ lim sup

n→∞
Dλ(an, b).

In other words, (Xω, D) is a generalized modular metric space.

Example 3 (Generalized metric spaces [24]) Throughout X is an abstract set and
D : X × X → [0,∞] is a function and a ∈ X , then we demonstrate the set

C(D, X, a) = {{an} ⊂ X; lim
n→∞D(an, a) = 0}.

With respect to [24], the function D : X × X → [0,∞] is assumed to define a gen-
eralized metric on X if it fulfills the next axioms:

(D1) ∀(a, b) ∈ X × X , we have D(a, b) = 0 ⇒ a = b;
(D2) ∀(a, b) ∈ X × X , we have D(a, b) = D(b, a),
(D3) there exists C > 0 such that, if (a, b) ∈ X × X, {an} ∈ C(D, X, a), we have

D(a, b) ≤ C lim sup
n→∞

D(an, b).

The couple (X,D) is then called a generalized metric space. Now, display that such
formation may be seen as a generalized modular metric space. In fact, let (X,D) be
a generalized metric space. Define D : (0,+∞) × X × X → [0,+∞] by

Dλ(a, b) = D(a, b)

λ
.

Obviously, if {an} ∈ C(D, X, a), for some a ∈ X , then we impose

lim
n→∞ Dλ(an, a) = 0,

for any λ > 0. Then the next hold:

(i) if Dλ(a, b) = 0, for some λ > 0 and a, b ∈ X ⇒ a = b;
(ii) Dλ(a, b) = Dλ(b, a), for any λ > 0 and a, b ∈ X ;
(iii) there existsC > 0 such that, if (a, b) ∈ X × X, {an} ∈ C(Dλ, X, a), for some

λ > 0, we have
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Dλ(a, b) ≤ C lim sup
n→∞

Dλ(an, b).

These properties show that (X, D) is a generalized modular metric space.

2 Fixed-Point Theorems in Generalized Modular Metric
Spaces

Abdou and Khamsi conveyed Fixed-point theory in modular metric spaces [1]. Their
way was distinct from Chistyakov’s perspective [14, 15]. In here, we maintain the
same touch as they used in [1]. So, the definitions, propositions, and their proofs from
a work [42] below resemble the metric properties and are subsequently beneficial to
prove Banach Contraction Principle and Ćirić quasicontraction. After giving Banach
Contraction Principle part Ćirić quasicontraction part is helping more generalised
versons

Definition 3 Let (XD, D) be a generalized modular metric space.

(1) The sequence {an}n∈N in XD is said to be D-convergent to a ∈ XD if and only
if Dλ(an, a) → 0, as n → ∞, for some λ > 0.

(2) The sequence {an}n∈N in XD is said to be D-Cauchy if Dλ(am, an) → 0, as
m, n → ∞, for some λ > 0.

(3) A subset C of XD is said to be D-closed if for any {an} from C which D-
converges to a, we have a ∈ C .

(4) A subsetC of XD is said to be D-complete if for any {an} D-Cauchy sequence
inC such that lim

n,m→∞ Dλ(an, am) = 0 for some λ, there exists a point a ∈ C such

that lim
n,m→∞ Dλ(an, a) = 0.

(5) A subset C of XD is said to be D-bounded if for some λ > 0, we have

δD,λ(C) = sup{Dλ(a, b); a, b ∈ C} < ∞.

In fact, if lim
n→∞ Dλ(an, a) = 0, for some λ > 0, then it cannot be lim

n→∞ Dλ(an, a) =
0, for allλ > 0. For that reason, as this axiom is fulfilled inmodular function spaces, it
is possible to say that D compensatesΔ2-condition if and only if lim

n→∞ Dλ(an, a) = 0,

for some λ > 0 refer lim
n→∞ Dλ(an, a) = 0, for all λ > 0.

Now we can give an answer to a question that arises in the concept of D-limit and
D-limit’s uniqueness.

Proposition 1 Let (XD, D) be a generalized modular metric space. Let {an} be a
sequence in XD. Let (a, b) ∈ XD × XD such that Dλ(an, a) → 0 and Dλ(an, b) → 0
as n → ∞, for some λ > 0, then a = b.
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Proof Using the property (GMM3), we impose

Dλ(a, b) ≤ C lim sup
n→∞

Dλ(an, b) = 0.

which signifies from the property (GMM1) that a = b.

2.1 The Banach Contraction Principle in Generalized
Modular Metric Spaces

In 1922, Banach gave the Banach Contraction Principle in his thesis [9]. Banach’s
theory deals with their presence and uniqueness fixed points of certain metric space
with self-mappings. Many researchers have studied contractive form mappings in
different metric spaces for several fixed-point theorems. Modular metric spaces are
one of them, more important and practical one. The representation to the definition
of modular metric spaces and especially nonlinear version of the classical modular
spaces have been developed by many authors [1, 5, 10, 14–16, 24, 29–31, 39]. Now
in this work, we demonstrate an extension of the Banach Contraction Principle to
the formerly implemented context of generalized modular metric spaces.

Definition 4 Let (XD, D) be a generalizedmodularmetric space and f : XD → XD

be a mapping. f is called a D-contraction mapping, if there exists k ∈ (0, 1) such
that

D1( f (a), f (b)) ≤ k D1(a, b), ∀(a, b) ∈ XD × XD.

a is said to be a fixed point of f if f (a) = a.

Proposition 2 Let (XD, D) be a generalized modular metric space. Let f : XD →
XD be a D-contractionmapping. Ifω1 andω2 are fixed points of f and D1(ω1, ω2) <

∞, then ω1 = ω2.

Proof Let ω1, ω2 ∈ XD be two fixed points of f such that D1(ω1, ω2) < ∞. Since
f is a D-contraction, there exists k ∈ (0, 1) such that

D1(ω1, ω2) = D1( f (ω1), f (ω2)) ≤ k D1(ω1, ω2).

Since D1(ω1, ω2) < ∞, we finalize that D1(ω1, ω2) = 0, which implies ω1 = ω2

from (GMM1).

Now let us take (XD, D) be a generalized modular metric space and f : XD →
XD be a mapping, for any a ∈ M , define the orbit of a by

O(a) = {a, f (a), f 2(a), ...}.
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Set δD,λ(a) = sup{Dλ( f n(a), f m(a)); n,m ∈ N }, whereλ > 0. An extension of the
Banach Contraction Principle is given in generalized modular metric spaces.

Theorem 1 Let (XD, D) be a generalized modular metric space as XD is D-
complete. Let f : XD → XD be a D-contraction mapping. Suppose that δD,1(a0)
is finite, for some a0 ∈ XD. Then { f n(a0)} D-converges to a fixed point ω of f .
Furthermore, if D1(a, ω) < ∞, for a ∈ XD, then { f n(a)} D-converges to ω.

Proof Let a0 ∈ XD be such that the δD,1(a0) < ∞. Then

D1( f
n+p(a0), f n(a0)) ≤ kn D1( f

p(a0), a0) ≤ kn δD,1(a0),

for any n, p ∈ N . Since k < 1, { f n(a0)} is D-Cauchy. Since XD is D-complete,
then there exists ω ∈ XD such that lim

n→∞ D1( f
n(a0), ω) = 0. Since

D1( f
n(a0), f (ω)) ≤ k D1( f

n−1(a0), ω); n = 1, 2, ...,

we have lim
n→∞ D1( f

n(a0), f (ω)) = 0. Proposition 1 shows that f (ω) = ω, i.e., ω is

a fixed point of f . Let a ∈ XD be such that D1(a, ω) < ∞. Then

D1( f
n(a), ω) = D1( f

n(a), f n(ω)) ≤ knD1(a, ω),

for any n ≥ 1. Since k < 1, we have lim
n→∞ D1( f n(a), ω) = 0, i.e., { f n(a)} D-

converges to x .

If we have D1(a, b) < ∞, for any a, b ∈ XD , then we have f , which has only
a fixed point. Furthermore, if XD is D-complete and δD,1(a) < ∞ for any a ∈ XD ,
then all orbits D-converge to the given unique fixed point of f . In metric spaces,
d(a, b) is always finite. Due to this reason, any contraction have at most one fixed
point. In addition, the orbits of the contraction are all bounded. Indeed, where M is
a metric space presented with a metric distance d, let f : M → M be a contraction.
We show that

d( f n+1(a), f n(a)) ≤ kn d( f (a), a),

for any n ∈ N and a ∈ M , which indicates by adopting the triangle inequality

d( f n+p(a), f n(a)) ≤
p−1∑
k=0

d( f n+k+1(a), f n+k(a))

≤
p−1∑
k=0

kn+kd( f (a), a)

≤ 1

1 − k
d( f (a), a),

considering k < 1. So
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sup{d( f n(a), f m(a)); n,m ∈ N } ≤ 1

1 − k
d( f (a), a) < ∞,

for any a ∈ M .
Now, the extension of the Ćirić’s fixed-point theorem [17] is examined for quasi-

contraction type mappings in generalized modular metric spaces and an accurate
version of Theorem 4.3 in [24] seeing that its proof is needed to be modified [26].

2.2 Ćirić Quasi-contraction in Generalized Modular Metric
Spaces

Let us describe the view of quasi-contraction mappings initially in the processing of
generalized modular metric spaces.

Definition 5 Let (XD, D) be a generalized modular metric space. The mapping
f : XD → XD is said to be a D-quasi-contraction, if there exists k ∈ (0, 1) such that

D1( f (a), f (b)) ≤ k max
{
D1(a, b), D1(a, f (a)), D1(b, f (b)),
D1(a, f (b)), D1(b, f (a))

}
,

for any (a, b) ∈ XD × XD .

Proposition 3 Let (XD, D) be a generalized modular metric space. Let f : XD →
XD be a D-quasi-contraction mapping. If x is a fixed point of f such that D1(x, x) <

∞, then we impose D1(x, x) = 0. Furthermore, if x1 and x2 are two fixed points of
f such that D1(x1, x2) < ∞, D1(x1, x1) < ∞ and D1(x2, x2) < ∞, then we have
x1 = x2.

Proof Let x be the fixed point of f , then

D1(x, x) = D1( f (x), f (x)) ≤ k max
{
D1(x, x), D1(x, f (x)),
D1(x, f (x)), D1(x, f (x)),
D1(x, f (x))

}
= k D1(x, x).

Since k < 1 and D1(x, x) < ∞, then D1(x, x) = 0. Let x1, x2 ∈ XD be two fixed
points of f , such that D1(x1, x2) < ∞, D1(x1, x1) < ∞ and D1(x2, x2) < ∞. Since
f is a D-quasi-contraction, there exists k < 1 such that

D1(x1, x2) = D1( f (x1), f (x2)) ≤ k max
{
D1(x1, x2), D1(x1, f (x1)),
D1(x2, f (x2)), D1(x1, f (x2)),
D1(x2, f (x1))

}
.

= k max
{
D1(x1, x2), D1(x1, x1), D1(x2, x2)

}
.
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Since D1(x1, x1) < ∞ and D1(x2, x2) < ∞, then D1(x1, x1) = D1(x2, x2) = 0.
Now we impose

D1(x1, x2) ≤ k D1(x1, x2).

Since D1(x1, x2) < ∞ and k < 1, then D1(x1, x2) = 0.

The next proof may be seen for quasi-contraction type mappings as an extension
of the Ćirić’s fixed-point theorem [17] in generalized modular metric spaces.

Theorem 2 Let (XD, D) be a D-complete generalized modular metric space. Let
f : XD → XD be a D-quasi-contraction mapping. Suppose that k < 1

C , where C is
the constant from (GMM3), and there exists a0 ∈ XD such that δD,1(a0) < ∞. Then
{ f n(a0)} D-converges to some x ∈ XD. If D1(a0, f (x)) < ∞ and D1(x, f (x)) <

∞, then x is a fixed point of f .

Proof Let f is a D-quasi-contraction, then there exists k ∈ (0, 1) such that for all
p, r, n ∈ N and a ∈ XD , we impose

D1( f
n+p+1(a), f n+r+1(a)) ≤ k max

{
D1( f

n+p(a), f n+r (a)),

D1( f
n+p(a), f n+p+1(a)), D1( f

n+r (a), f n+r+1(a)),

D1( f
n+p(a), f n+r+1(a)), D1( f

n+r (a), f n+p+1(a))
}
.

D1( f n+p+1(a), f n+r+1(a)) ≤ k max
{
D1( f n+p(a), f n+r (a)),

D1( f n+p(a), f n+p+1(a)), D1( f n+r (a), f n+r+1(a)),

D1( f n+p(a), f n+r+1(a)), D1( f n+r (a), f n+p+1(a))
}
.

Hereinafter δD,1( f (a)) ≤ k δD,1(a), for any a ∈ XD . As a result, we impose

1δD,1( f
n(a0)) ≤ kn δD,1(a0), (1)

for any n ≥ 1. Taking the inequality (1) just above

2D1( f
n(a0), f n+m(a0)) ≤ δD,1( f

n(a0)) ≤ knδD,1(a0), (2)

for every n,m ∈ N . Since δD,1(a0) < ∞ and k < 1/C ≤ 1, we impose

lim
n,m→∞ D1( f

n(a0), f n+m(a0)) = 0,

which that { f n(a0)} is a D-Cauchy sequence. When XD is D-complete, there exists
x ∈ XD such that lim

n→∞ D1( f n(a0), x) = 0, i.e., { f n(a0)} D-converges to x . Next,

we suppose D1(a0, f (x)) < ∞ and D1(x, f (x)) < ∞. Taking the inequality (2)
and the property (GMM3), we show that

3D1(x, f n(a0)) ≤ C lim sup
m→∞

D1( f
n(a0), f n+m(a0)) ≤ C kn δD,1(a0) (3)
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for every n,m ∈ N .
Hence

D1( f (a0), f (x)) ≤ k max
{
D1(a0, x), D1(a0, f (a0)), D1(x, f (x))
D1( f (a0), x), D1(a0, f (x))

}
.

and, applying (1), (2), (3) and k < 1/C ≤ 1, we have

D1( f 2(a0), f (x)) ≤ max
{
k2 C δD,1(a0), k D1(x, f (x)), k2 D1(x, f (a0))

}
.

Consecutively, by induction, we can impose

D1( f n(a0), f (x)) ≤ max
{
kn C δD,1(a0), k D1(x, f (x)), kn D1(x, f (a0))

}
,

for every n ≥ 1. Furthermore, we get

lim sup
n→∞

D1( f
n(a0), f (x)) ≤ k D1(x, f (x)),

when D1(a0, f (x)) < ∞ and δD,1(a0) < ∞. Again property (GMM3) implies

D1(x, f (x)) ≤ C lim sup
n→∞

D1( f
n(a0), f (x)) ≤ k C D1(x, f (x)).

Since k C < 1 and D1(x, f (x)) < ∞, then D1(x, f (x)) = 0, i.e., f (x) = x .

Example 4 Let X = {p, q, t} and define D : (0,∞) × X × X → [0,∞] as
Dλ(p, p) = Dλ(q, q) = Dλ(t, t) = 0, Dλ(p, q) = Dλ(q, p) = 2, Dλ(p, t) =
Dλ(t, p) = 6, Dλ(q, t) = Dλ(t, q) = 2 for λ > 0. Then, GMM1 and GMM2 are
clear. Dλ+μ(p, t) ≤ Dλ(p, q) + Dμ(q, t) is 6 ≤ 4, is false, so (X, D) is not a mod-
ular metric space. When we address the GMM3, we get lim

n→∞ Dλ(an, a) = 0, while

lim
n→∞ an = a. It is obvious that if we choose a = y then GMM3 is answered, if we

choose a 
= b it is easy to prove that Dλ(a, b) ≤ C lim supn→∞ Dλ(an, b) is true for
all elements from X = {p, q, t}.

2.3 Topology on Generalized Modular Metric Spaces

Now let us show how to describe topologies on generalizedmodular metric spaces by
using results of [43] and take (XD, D) be a GMMS, then B ⊂ XD D−sequentially
open subset of XD , when each sequence of XD has lim

n→∞ Dλ(an, a) = 0 for some λ.

Then, there exists a point a ∈ BD all but a finite number of terms of the sequence
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contained in BD . Let consider τXD be a family of all sequentially open subsets of XD .
In a topological space (XD, τXD ), any convergent sequence in XD is convergent.

Whenwe have C(XD) as a family of all nonempty closed subsets of (XD, τXD ) and
we showM as a family of all nonempty subsets A of XD , we impose the next charac-
teristic. Then we are targeting those two subsets as they are similar. If Dλ(a, A) = 0,
then we have a ∈ A for all a ∈ XD , while Dλ(a, A) = inf{Dλ(a, y) : y ∈ A}. If our
property is assured for any BD ⊂ C(XD) and a ∈ XD , then there exists a sequence
in BD such that lim

n→∞ Dλ(an, a) = 0. We take a ∈ BD all but a finite number of

terms of the sequence included in BD , which means BD ∩ A 
= ∅, so a ∈ A = Ā,
in a topological space (XD, τXD ). Consequently, C(XD) ⊂ M. If we have A ⊂ M,
a ∈ XD − A and a sequence in XD such that lim

n→∞ Dλ(an, a) = 0, then we have no

subsequence in A provide Dλ(a, A) = 0 for any a ∈ A. Hence, XD − A ∈ τXD is
found and realize that A ∈ C(XD). The result shows us C(XD) = M. And addition-
ally, the definition of an open subset is showed by using open balls in GMMS in the
next sentence. If A is a subset of XD for any a ∈ XD , there exists ε > 0 such that
BD(a, ε) := {b ∈ XD : Dλ(a, b) < ε} ⊆ A.

τXD satisfies the usual properties of a topology in a work [42]. For instance, when
we take modular vector spaces as in [4], the ρ-ball Bρ(a, r), where a ∈ Xρ and
r ≥ 0, is given by the definition Bρ(a, r) = {b ∈ Xρ; ρ(a − b) < r}. Bρ is an open
ball and then a subset of A in vector space Xρ . For all ρ-open subsets of Xρ , in the
example of the topology (τρ), is identical for the definition of open subsets of τXρ

in
a modular space Xρ . Chistyakov [16] presented modular open balls and their topo-
logical properties such as: A nonempty set in X is said to ω-open if for every a ∈ A
and λ > 0 there existsμ > 0 such that B(a)λ,μ ⊂ A by using ω as a modular metric.
It was given by τ(ω) for all ω-open subsets of Xω we take a ω-topology (modular
topology) on Xω, which is analogous to τXD in a modular metric space. When we
take a JS-metric space and the topology on JS-metric space, which is showed in [6],
we realize that the normal topology on JS-metric space is equal to τXD again.

3 Feng-Liu Theorem in GMMS

Multivalued mapping has numerous applications in pure and applied mathematics.
Topology, nonlinear functional analysis, function theory of a real variable, game
theory, and mathematical economics are very important examples for those fields.

In this part, new definitions in GMMS are analyzed, namely, multivalued Lip-
schitzian mapping and then D-multivalued contraction. We’re also concentrating
on the relation between those meanings as showing a generalization of the Banach
contraction mapping theory and explaining a fixed-point property via a multivalued
contraction mapping of the nonempty D-closed and bounded subsets in XD . Caristi
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and Feng-Liu type approaches for the existence of a fixed point in GMMS are given
by using the work of Nadler [36]. A non-homogeneous linear parabolic partial dif-
ferential equation and then, an initial value problem in GMMS is given to show some
applications of these results.

3.1 Multivalued Mappings in GMMS

Two fixed-point theorems are demonstrated by Nadler in [36] for multivalued con-
traction mapping. The first one is a generalization of Banach’s contraction mapping
principle, claims that it has a fixed point as a multivalued contraction mapping of
a complete metric space within the nonempty closed and bounded subsets of the
same metric space. The second one is a general statement of an Edelstein result, for
compact set-valued local contractions is given for a fixed-point theorem. His works
are applied through other metric spaces, for example, in [3, 8, 10, 11, 17–21, 25,
26, 28, 32, 35, 39, 40].

Feng and Liu [22], without using Pompei-Hausdorff distance, gave one of the
most important generalization of Nadler’s test. Then several studies based on those
findings and applied them in various metric spaces, such as in [6]. Now it will be
explored in GMMS.

Essentially, the generalized Hausdorff modular is explained here.

Definition 6 Let (XD, D) be a GMMS and for all nonempty A, B ⊂ XD , the gen-
eralized Hausdorff modular has a definition such as:

HD(λ, A, B) = max{sup
a∈A

Dλ(a, B), sup
b∈B

Dλ(b, A)}

where Dλ(a, B) = inf
b∈B Dλ(a, b), on C(XD)-D-strongly complete version of XD is

defined in the next section.

Ifλ = 1,wegetHD(A, B) = max{supa∈A D1(a, B), supb∈B D1(b, A)}onC(XD),
where D1(a, B) = inf

b∈B D1(a, b).

Example 5 If the GMMS is taken in which is given in the first example, for A =
{p, q}, B = {t} ⊂ X , we find that

HD(λ, {p, q}, {t}) = max{ sup
a∈{p,q}

Dλ(a, {t}), sup
b∈{t}

Dλ(b, {p, q})},
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where Dλ(a, {t}) = inf
b∈{t} Dλ(a, b) and Dλ({p, q}, b) = inf

a∈{p,q} Dλ(a, b). All possible

calculations could be made by readers.

3.1.1 Fixed Point for Multivalued Mappings

The existence of a fixed point for a multivalued contractive-type map in modular
metric spaces and in their analysis, and then the existence of a unique fixed point of
multivalued contractivemapping in these spaces by usingNadler [36] and Edelstein’s
results are reviewed by Abdou and Khamsi [1].

Definition 7 Let (XD, D) be a GMMS and then a givenmapping f : XD → C(XD)

is called a multivalued Lipschitzian mapping, if there exists a constant k ≥ 0 such
that for any a, b ∈ XD , for every x ∈ f (a) there exists y ∈ f (b), while D1(x, y) ≤
k D1(a, b). A point a ∈ XD is named as a fixed point of f when a ∈ f (a). Fix( f )
shows the set of fixed points of f . The mapping f is denoted as D-multivalued con-
traction, if the constant satisfies k < 1.

Example 6 Let us take the same example as we used before, and a mapping
f : X → C(X) such that f (3) = f (6) = 3 and f (9) = 6 for every x ∈ f (a) there
exists y ∈ f (b), such the inequality D1(x, y) ≤ k D1(a, b) is proved in X .

We describe at this point that f has a fixed point of XD , as D-multivalued con-
traction mapping f in particular space.

Theorem 3 Let (XD, D) be a GMMS. Suppose that XD is D-strongly complete
and D satisfy 1-Fatou property. If f : XD → C(XD) is a D-multivalued contraction
mapping. Suppose that D1(a0, a) is finite for some a0 ∈ XD and a ∈ f (a0). Then f
has a fixed point.

Proof Fix a0 ∈ XD such that D1(a0, f (a)) < ∞ for some a1 ∈ f (a0) then there
exists a2 ∈ f (a1) such that

D1(a1, a2) ≤ k D1(a0, a1),

where D1(a1, a2) < ∞.

D1(a2, a3) ≤ k2 D1(a0, a1),

where D1(a2, a3) < ∞. By induction, we choose elements of a sequence {an} there
is a1 ∈ f (an+1), for every a0 ∈ f (an), then there exists an+1 ∈ f (an), when f is a
D- multivalued contraction:
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D1(an, an+1) ≤ kn D1(a0, a1),

where D1(an, an+1) < ∞, for every n ≥ 0. Since k < 1,
∑∞

n=1
D1(an, an+1) is con-

vergent, i.e., {an} is D-strongly Cauchy. Since XD is D-strongly complete, then we
say that there exists a point a ∈ XD such that lim

n→∞ D1(an, a) = 0. Since there is

a0 ∈ f (a), for every a1 ∈ f (an),

D1(a0, a1) ≤ k D1(an, a),

and D1 has 1-Fatou property,

D1(a0, a1) ≤ k D1(a, a) ≤ k lim inf
n→∞ D1(an, a),

we conclude that lim
n→∞ D1(a0, a1) = 0, then a is fixed point of f .

3.1.2 Caristi-Type Fixed-Point Results for Multivalued Mappings

Caristi showed a general fixed-point theorem and gave us the application of it to
achieve an important result in a complete metric space which is the generalization
of the Contraction Mapping Principle, and the application along with the character-
ization of weakly inward mappings to show some important fixed-point theorems
in Banach spaces [12]. Thereafter, several authors extended his approach via vari-
ous metric spaces; for example, in [7, 41]. In this section, we discuss Caristi-type
mappings and state results of the Feng-Liu-type in GMMS.

Theorem 4 Let take XD be a D-complete GMMS and f : XD → CB(XD) be a
nonexpansive mapping such that for each a ∈ XD and b ∈ f (a), we impose

D1(a, b) ≤ ΘD(a, b) − ΘD(b, z)

for z ∈ f (b), while CB(XD) is D-closed and bounded subsets of XD and with its
first variable the function ΘD : XD × XD → [0,∞] is lower semicontinuous. Then
D1(an, an+1) < ∞, so f has a fixed point.

Proof Let a0 ∈ XD and a1 ∈ f (a0). If a1 = a0, then proof is completed. Let a0 
= a1.
Using the above inequality of the theorem, then

D1(a0, a1) ≤ ΘD(a0, a1) − ΘD(a1, a2),

for a2 ∈ f (a1). When we continue to use the technique, we have an ∈ f (an) while
an 
= an+1, then we take

0 < D1(an−1, an) ≤ ΘD(an−1, an) − ΘD(an, an+1),
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for an+1 ∈ f (an). Suppose there exists ΘD(an−1, an)n∈N nonincreasing sequence
and converges to x > 0. If we impose limit from the latest inequality, we impose

lim
n→∞ D1(an−1, an) ≤ lim

n→∞{ΘD(an−1, an) − ΘD(an, an+1)},
lim
n→∞ D1(an−1, an) ≤ lim

n→∞ ΘD(an−1, an) − lim
n→∞ ΘD(an, an+1),

lim
n→∞ D1(an−1, an) ≤ x − x = 0

for n ∈ N . It is the same way to prove {an}n∈N is D-Cauchy sequence. Then we
suppose x is a fixed point of f :

D1(x, f (x)) ≤ D 1
2
(x, an+1) − D 1

2
( f (x), an+1),

≤ D 1
2
(x, an+1) − HD( f (x), f (an+1)),

≤ D 1
2
(x, an+1) − D 1

2
(x, an),

for the last equality in the process, when we pass the limit, and then we impose

lim
n→∞ D1(x, f (x)) ≤ lim

n→∞ D 1
2
(x, an+1) − lim

n→∞ D 1
2
(x, an),

lim
n→∞ D1(x, f (ω)) ≤ D 1

2
(x, x) − D 1

2
(x, x) = 0.

Then x is a fixed point of f .

Now its more general version is given via υ function.

Theorem 5 Let XD be a D-complete GMMS and f : XD → CB(XD) be a multi-
valued mapping

HD( f (a), f (b)) ≤ υ(D1(a, b))

for all a, b ∈ XD and υ : [0,∞] → [0,∞] is a lower semicontinuous map such
as defined: υ(t) < t for t ∈ [0,∞] and provides that υ(t)

t is nondecreasing. Then
D1(an, an+1) < ∞, so f has a fixed point.

The next theorem was given by Feng and Liu [22], rather than using Hausdorff
distance and now we indicate their results for a multivalued mapping of f on XD,
let and define

I aD,β( f ) = {x ∈ f (a);β Dλ(a, x) ≤ Dλ(a, f (a))}.

The function f is named as D-lower semicontinuous, and for any sequence {an} ∈
XD is convergent to a ∈ XD , if D1(a, f (a)) ≤ lim inf

n→∞ D1(an, f (an)).



106 N. Manav

Example 7 Using the mapping f : X → C(X) from Example 6; f (a) = 9, β =
1
6 , a ∈ X , we are able to take for any calculation ofβ D1(a, x) ≤ D1(a, f (a)), where
a ∈ f (a), it is assured. Then a function f is called D-lower semicontinuous for any
sequence {an} ∈ X is convergent to a ∈ X , if D1(a, f (a)) ≤ lim inf

n→∞ D1(an, f (an)).

Theorem 6 Let (XD, D) be a complete GMMS and a function f be D-multivalued
mapping on XD. If there exists a constant K > 0 such that K

β
< 1 for any a ∈ XD

there is b ∈ I aD,β( f ) providing

D1(b, f (b)) ≤ K D1(a, b).

If there exists a0 ∈ XD such that D1(a0, f (a0)) < ∞. Suppose there exists a
sequence {an} in XD such that β D1(an+1, an+2) ≤ K D1(an, an+1) and β D1(an+1,

f (an+1)) ≤ K D1(an, f (an)); while an+1 ∈ f (an) and D1(an, an+1) < ∞ for any
n ∈ N .

The sequence we have is D-strongly Cauchy, and if we suppose D1(a, f (a)) is
D-lower semicontinuous, then we get f has a fixed point.

Proof Since f (a) ∈ XD for all a ∈ XD , then I aD,b( f ) is nonempty. Let us take a0 ∈
XD such as D1(a0, f (a0)) < ∞. If D1(b, f (b)) ≤ K D1(a, b), there exists a1 ∈
I a0D,β( f ) such that,

D1(a1, f (a1)) ≤ K D1(a0, a1).

When a1 ∈ I a0D,β( f ), then a1 ∈ f (a0) and

β D1(a0, a1) ≤ D1(a0, f (a0)) < ∞.

Taking a1 ∈ XD such that D1(a1, f (a1)) < ∞. From D1(b, f (b)) ≤ K D1(a, b),
there exists a2 ∈ I a1D,β( f ) such that,

D1(a2, f (a2)) ≤ K D1(a1, a2).

Since a2 ∈ I a1D,β( f ), then a2 ∈ f (a1) and

b D1(a1, a2) ≤ D1(a1, f (a1)) < ∞.

Next, goingwith the new take an+1 ∈ M , we have D1(an+1, f (an+1)) < ∞. From
D1(b, f (b)) ≤ K D1(a, b), there exists an+1 ∈ I anD,β( f ) such that

D1(an, f (an)) ≤ K D1(an, an+1).

While an+1 ∈ I anD,β( f ), then an+1 ∈ f (an) and

β D1(an, an+1) ≤ D1(an, f (an)) < ∞.

Then, we impose
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β D1(an+1, an+2) ≤ D1(an, f (an+1)) ≤ K D1(an, an+1),

which is, while an+1 ∈ f (an),

β D1(an+1, f (an+1)) ≤ D1(an, f (an+1)) ≤ K D1(an, f (an)).

Then, we show

D1(an+1, f (an+1)) ≤ K

β
D1(an, f (an))

for K
β

< 1 for any a ∈ XD ,

D1(an+1, f (an+1)) ≤
(
K

β

)n

D1(a0, a1),

while
∑∞

n=1
D1(an, an+1) < ∞ and {an} is D-strongly Cauchy and XD is D-

strongly complete; then

0 = lim
n→∞ D1(an, an+1) = lim

n→∞ D1(an, f (an)).

D1(a, f (a)) is D-lower semicontinuous,

0 ≤ D1(z, f (z)) ≤ lim inf
n→∞ D1(an, f (an));

since f (z) ∈ XD , then we impose z ∈ f (z).

3.1.3 Application for Feng-Liu Theorem

One of the multivalued mapping applications for modular vector spaces is given
by Alfuraidan et al. in [4]. They showed that a fixed-point theorem for uniformly
Lipschitz mapping in modular vector spaces which in the modular sense has the
uniform property of normal structure. They broadened their findings in the exponent
variable space. Another important application of these is given in [38] by Padcharoen
et al. Theyproved somefixed-point theorems in generalizedmetric spaces and applied
the fixed-point theorems to demonstrate the presence and uniqueness of the solution
to the ordinary differential equation (ODE), partial differential equation (PDEs), and
fractional boundary value problems by using the generalized contraction.

Initial value problem is given in [11] for a non-homogeneous linear parabolic
partial differential equation such as

ft (a, t) = faa(a, t) + S(a, t, f (a, t), fa(a, t)),−∞ < a < ∞, 0 < t ≤ T,

f (a, 0) = φ(a) ≥ 0
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for same valued a ∈ XD , where S is continuous and φ supposed to be continuously
differentiable such that φ and φ′ are bounded. A function f = f (a, t) defined on
R × I = [0, T ] by a solution of this problem, if we have I which fulfills the given
next conditions:

(i) f, ft , fa, faa ∈ C(R × I ) while it denotes the space of all continuous real
valued functions,

(ii) f, fa are bounded ∈ R × I ,
(iii) ft (a, t) = faa(a, t) + S(a, t, f (a, t), fa(a, t)), (a, t) ∈ R × I ,
(iv) f (a, 0) = φ(a) ≥ 0 for all a ∈ R,

The differential equation problem which is given below, is equivalent to the next
integral equation problem such as:

f (a, t) =
∫ ∞
−∞

K (a − δ, t)φ(δ)dδ +
∫ t

0

∫ ∞
−∞

K (a − δ, t − u)S(δ, u, f (δ, u), fa(δ, u))dδdu

for all a ∈ R and 0 < t ≤ T where

K (a, t) = 1√
4π t

e
−a2

4t .

This problem introduces a solution if and only if the equivalent problem just above
has a solution. Let

B := { f (a, t) : f, fa ∈ C(R × I ), || f || < ∞}

where
|| f || := sup

a∈R,t∈I
| f (a, t)| + sup

a∈R,t∈I
| fa(a, t)|.

Now, we have a function D1 as

D1(a, b) := 1

λ
ω1(a, b) = 1

λ2
|a − b|

is a GMM on B. Clearly, the GMMS Bω is a D−complete and separated from its
generators.

Lower semicontinuity property is easy to show for Feng-Liu-type, while D1 is a
GMMS.

Theorem 7 Let us take the problem

ft (a, t) = faa(a, t) + S(a, t, f (a, t), fa(a, t)),−∞ < a < ∞, 0 < t ≤ T,

f (a, 0) = φ(a) ≥ 0.

and suppose the following:
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(i) The function S(a, t, s, p) is uniformly Hölder continuous in a and t for each
compact subset of R × I , for c > 0 with |s| < c and |p| < c.

(ii) There exists a constant cS ≤ T + 2π− 1
2 T

1
2 ≤ q, where q ∈ (0, 1) such that

0 ≤ 1
λ
S[(a, t, s2, p2) − S(a, t, s1, p1)]

cS ≤ [ s2−s1+p2−p1
λ

]

for all (s1, p1), (s2, p2) ∈ R × R with s1 ≤ s2 and p1 ≤ p2,
(iii) S is bounded for bounded s and p;

Then it has a solution.

Proof Let us take a ∈ Bω is a solving of the problem above, if and only if our answer
is integral equivalent such as a ∈ Bω.

If we choose the graph G for V (G) = Bω and the definition of E(G) = {(z, v) ∈
Bω × Bω : z(a, t) ≤ v(a, t) and za(a, t) ≤ va(a, t) for each (a, t) ∈ R × I } when
E(G) is partially ordered and (Bω, E(G)) provides property (A).

The mapping � : Bω → Bω defined as

f (u(a, t)) :=
∫ ∞
−∞

K (a − δ, t)φ(δ)dδ +
∫ t

0

∫ ∞
−∞

K (a − δ, t − u)S(δ, u, f (δ, u), fa(δ, u))dδdu

for all a ∈ R and when the solution gives us the existence of fixed point of f of the
problem.

Since (z, v), (za, va), ( f (z), f (v)), ( f (za), f (va)) ∈ E(G) and from the defini-
tion of f and (i i)

1
λ
| f (v(a, t)) − f (z(a, t))| ≤ cSD1(z, v).

Then, we impose

1
λ
| fa(v(a, t)) − fa(z(a, t))| ≤ cSD1(z, v)

∫ ∞
−∞ K (a − δ, t)φ(δ)dδ

≤ 2π− 1
2 T

1
2 cSD1(z, v).

In the end, all the solutions gathered as

D1( f (z), f (v)) ≤ (T + 2π− 1
2 T

1
2 ) cS D1(z, v)

D1( f (z), f (v)) ≤ c D1(z, v), c ∈ (0, 1)
| f (z) − f (v)| ≤ λ2 |z − v|, λ ∈ (0, 1).

From Feng-Liu’s viewpoint, we impose
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λ2|v − f (v)| ≤ λ2Hd( f (z), f (v)) ≤ λ2 |z − v|
d(v, f (v)) ≤ Hd( f (z), f (v)) ≤ d(z, v)

D1(v, f (v)) ≤ HD( f (z), f (v)) ≤ D1(z, v)

then we have b D1(z, v) ≤ D1(z, f (z)), while b ∈ (0, 1). Then, we have results that
there exists a z� ∈ Bω so that z� = f (z�). So this is the result of our problem.
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On Some Fixed Point Results in Various
Types of Modular Metric Spaces

Mahpeyker Öztürk and Ekber Girgin

Abstract This study aims to introduce a new structure in the setting of non-
Archimedean modular metric space structure called the generalized orthogonal
Fϕ−contraction in the sense of Suzuki and to prove some of the consequences
obtained as a result of using this structure in fixed point theory. Also, graphical
fixed point theorems are obtained as an application of these results. Since the orthog-
onal Fϕ−contraction in the sense of Suzuki, which was put forward as a new idea in
the first part of this study, is not applicable in non-Archimedean quasi modular metric
spaces defined by the authors in [25], a newmodification is made, and as a result, the
new fixed point theorems to which the contraction is applicable are examined and
various results are presented.

1 Introduction

The Banach contraction principle [1], which forms one of the main structures of
the metric fixed point theory, which has emerged as a rich field of study, has been
generalized and developed in various aspects in terms of its lucidity and simplicity
in its application areas and is still among the structures that make progress today.
Among these generalizations, one of the most productive ones is the study presented
by Wardowski [2] in 2012. In his study, he obtained a new contraction using an
increasing function and stated that this contraction generalized Banach’s work, and
also he proved some fixed point theorems. This study was later taken as a reference
by many researchers and new studies have been made and are still being done.

Definition 1 [2] Let (M, d) be a metric space and F : (0,∞) → (−∞,+∞) be a
mapping satisfying
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• (F1) F is strictly increasing,
• (F2) For each sequence {αn}n∈N ⊂ (0,∞) , lim

n→∞ αn = 0 ⇔ lim
n→∞ F (αn) = −∞,

• (F3) There exists k ∈ (0, 1) such that lim
n→∞ αk F (α) = 0.

We say that Z : M → M is a F−contraction if there exists τ > 0 such that for all
j, l ∈ M,

d (Z j, Zl) > 0 implies τ + F (d (Z j, Zl)) ≤ F (d ( j, l)) .

Besides, Wardowski [3] introduced the generalized F-contraction in his study pre-
sented in 2018 as noted below.

Definition 2 Let (M, d) be a metric space and Z : M → M be a self-mapping. For
some functions F : (0,∞) → (−∞,+∞) and ϕ : (0,∞) → (0,∞), we say that
Z is (ϕ, F)−contraction if the followings hold:

• (�1) F satisfies (F1) and (F2),

• (�2) lim inf
s→t+

ϕ (s) > 0 for all t ≥ 0,

• (�3) ϕ (d ( j, l)) + F (d (Z j, Zl)) ≤ F (d ( j, l)) for all j, l ∈ M such that Z j 	=
Zl.

After the fixed point results put forward by Wardowski, many researchers improved
and generalized the F−contraction in abstract spaces [4–9].

Gordji et al. [10] added a new dimension to existing studies in the literature and
defined the term called the orthogonal Banach contraction and presented new results.

Definition 3 [10] Let ⊥ ⊆ M × M be a binary relation defined on a non-void set
M . The relation ⊥ satisfying

∃ j0 [(∀l ∈ M, l⊥ j0,) or (∀l ∈ M, j0⊥l)] ,

is named an orthogonal set and j0 is an orthogonal element. The set M with the
relation ⊥ is an orthogonal set and we point out this orthogonal set by (M⊥).

Definition 4 [10] { jp} is named an orthogonal sequence if

(∀p ∈ N , jp⊥ jp+1
)

or
(∀p ∈ N , jp+1⊥ jp

)
.

Definition 5 [10] Z : M⊥ → M⊥ is called an orthogonal continuous if jp → j as
p → ∞, we have Z jp → Z j as p → ∞.

Definition 6 [10] Let (M⊥) be an orthogonal set. Z : M⊥ → M⊥ is a⊥−preserving
if Z j⊥Zl whenever j⊥l.

Definition 7 [10] Let (M⊥) be an orthogonal set. Z : M⊥ → M⊥ is a ⊥−transitive
if j⊥l and l⊥k imply l⊥k.
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Definition 8 [10] In an orthogonal set (M⊥), the finite sequence x0, x1, x2, ..., xr ⊆
M such that

x0 = j, xr = l, xp⊥xp+1 or xp+1⊥xp,

for all p = 0, 1, 2, ..., r − 1, is named as a path of length r in ⊥ from j to l.

Orthogonality property is investigated and generalized in some particular types of
spaces; see, e.g., [11–13].
Suzuki [14] proved the following fixed point theorems.

Theorem 1 [14] Let Z be a self-mapping defined on a compactmetric space (M, d).
Assume that, for all elements j and l belong to M with j 	= l,

1

2
d ( j, Z j) < d ( j, l) ⇒ d (Z j, Zl) < d ( j, l) .

Then Z holds a unique fixed point in M.

2 Fixed Point Results in non-Archimedean Modular Metric
Space

In 2010, Chistyakov [15, 16] established a modular metric space, in short MMS
which is an extension of metric space and modular linear space. For a non-void set
M , let κ : (0,∞) × M × M → [0,∞] be a function; for simplicity, we will write

κλ ( j, l) = κ (λ, j, l)

for all λ > 0 and j, l ∈ M.

Definition 9 [15] Let κ : (0,∞) × M × M → [0,∞] be a function on a non-void
set satisfying the following statements for all λ, μ > 0 and j, k, l ∈ M :

• (κ1.) j = l ⇔ κλ ( j, l) = 0;
• (κ2.) κλ ( j, l) = κλ (l, j);
• (κ3.) κλ+μ ( j, l) ≤ κλ ( j, k) + κμ (k, l) .

Therefore, κ is called modular metric in M and so Mκ is MMS.
κ is regular if the following holds:

• (κ4.) j = l ⇔ κλ ( j, l) = 0 for some λ > 0.

Moreover, κ is a convex function if for j, l, k ∈ M , the following expression holds:

• (κ5.) κλ+μ ( j, l) ≤ λ
λ+μ

κλ ( j, k) + μ
λ+μ

κμ (k, l) , λ, μ > 0.

For all λ, μ > 0 and j, l, k ∈ Mκ, if we replace (κ3.) with the below

• (κ6.) κmax{λ,μ} ( j, l) ≤ κλ ( j, k) + κμ (k, l) ,
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then we havemore general property. Hence the pair (M,κ) that provides the property
(κ6.) instead of (κ3.) is a non-Archimedean modular metric space, in short non-
AMMS, and is represented by Mκ.

Definition 10 [15] Let S ⊆ Mκ and
(
jp

)
p∈N be a sequence. Then,

• (i.)
(
jp

)
p∈N isκ−convergent to p ∈ Mκ if and only ifκλ

(
jp, j

) → 0 as p → ∞
for all λ > 0.

• (i i.)
(
jp

)
p∈N is κ−Cauchy if κλ

(
jp, jt

) → 0, as p, t → ∞ for all λ > 0.
• (i i i.) S is κ−complete if any κ−Cauchy sequence is κ−convergent.

Definition 11 [17] Let Mκ be a MMS. Z : Mκ → Mκ is a κ−continuous when if
κλ ( jk, j) → 0, then κλ (Z jk, Z j) → 0 as k → ∞.

Now, we establish a new contraction and generate new fixed point results and appli-
cations. We assume that the function F satisfies only condition (F1) whereas the
function ϕ has a property (�2).

Definition 12 Let Mκ⊥ be an orthogonally non-AMMS. A mapping Z : Mκ⊥ →
Mκ⊥ is called a generalized orthogonal Suzuki Fϕ−contraction if there exist ϕ ∈ Φ

and F ∈ Υ such that

1

2
κλ ( j, Z j) < κλ ( j, l) ⇒ ϕ (κλ ( j, l)) + F (κλ (Z j, Zl)) ≤ F (P ( j, i)) , (1)

P ( j, l) = max

{
κλ ( j, l) ,κλ ( j, Z j) ,κλ (l, Zl) ,

κλ ( j, Zl) + κλ (l, Z j)

2
,

κλ

(
Z2 j, j

) + κλ

(
Z2 j, Zl

)

2
,κλ

(
Z2 j, Z j

)
,κλ

(
Z2 j, l

)
,κλ

(
Z2 j, Zl

)
}

,

for all j, l ∈ Mκ⊥ .

Theorem 2 Let Mκ⊥ be a transitive orthogonally κ−complete non-AMMS and Z be
a⊥−continuous,⊥−preservingandgeneralizedorthogonal Suzuki Fϕ−contraction.
Then Z holds a fixed point in Mκ⊥ .

Proof Since the set Mκ⊥ has orthogonality property, there is a j0 element in the set
Mκ⊥ that provides the following:

(∀l ∈ Mκ⊥ , j0⊥l
)

or
(∀l ∈ Mκ⊥ , l⊥ j0

)
.

It follows that j0⊥Z j0 or Z j0⊥ j0. Let jp+1 = Z jp = Z p j0 for all p ∈ N . For
some p∗ ∈ N , if jp∗ = jp∗+1, then jp∗ is a fixed point of the mapping Z and this
fact ends the proof. Accordingly, we presume that jp 	= jp+1 for all p ∈ N . In this
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way, we possess κλ

(
jp, jp+1

)
> 0 for some p ∈ N . Since Z is ⊥−preserving, we

have
(∀p, jp⊥ jp+1

)
or

(∀p, jp+1⊥ jp
)
. Because of the generalized orthog-

onal Suzuki Fϕ−contraction of Z , 1
2κλ

(
jp, Z jp

)
< κλ

(
jp, Z jp

) = κλ

(
jp, jp+1

)

implies

F
(
κλ

(
jp, jp+1

))
< ϕ

(
κλ

(
jp−1, jp

)) + F
(
κλ

(
jp, jp+1

)) ≤ F
(
P

(
jp−1, jp

))
,

where

P
(
jp−1, jp

) = max
{
κλ

(
jp−1, jp

)
,κλ

(
jp−1, Z jp−1

)
,κλ

(
jp, Z jp

)
,

κλ

(
jp−1, Z jp

) + κλ

(
jp, Z jp−1

)

2
,
κλ

(
Z2 jp−1, jp−1

) + κλ

(
Z2 jp−1, Z jp

)

2
,

κλ

(
Z2 jp−1, Z jp

)
,κλ

(
Z2 jp−1, Z jp

)
, κλ

(
Z2 jp−1, Z jp

)}

= max
{
κλ

(
jp−1, jp

)
,κλ

(
jp−1, jp

)
,κλ

(
jp, jp+1

)
,

κλ

(
jp−1, jp+1

) + κλ

(
jp, jp

)

2
,
κλ

(
jp+1, jp−1

) + κλ

(
jp+1, jp+1

)

2
,

κλ

(
jp+1, jp+1

)
,κλ

(
jp+1, jp+1

)
, κλ

(
jp+1, jp+1

)}

= max

{

κλ

(
jp−1, jp

)
,κλ

(
jp, jp+1

)
,
κλ

(
jp−1, jp+1

)

2

}

= max

{

κλ

(
jp−1, jp

)
,κλ

(
jp, jp+1

)
,
κmax{λ,λ}

(
jp−1, jp+1

)

2

}

≤ max

{

κλ

(
jp−1, jp

)
,κλ

(
jp, jp+1

)
,
κλ

(
jp−1, jp

) + κλ

(
jp, jp+1

)

2

}

= max
{
κλ

(
jp−1, jp

)
,κλ

(
jp, jp+1

)}
.

We get

F
(
κλ

(
jp, jp+1

))
< ϕ

(
κλ

(
jp−1, jp

)) + F
(
κλ

(
jp, jp+1

))

≤ F
(
max

{
κλ

(
jp−1, jp

)
,κλ

(
jp, jp+1

)})
.

It is clear that max
{
κλ

(
jp−1, jp

)
,κλ

(
jp, jp+1

)} = κλ

(
jp−1, jp

)
. Otherwise, we

have κλ

(
jp, jp+1

)
< κλ

(
jp, jp+1

)
, which is a contradiction. Hence, we obtain

F
(
κλ

(
jp, jp+1

))
< ϕ

(
κλ

(
jp−1, jp

)) + F
(
κλ

(
jp, jp+1

)) ≤ F
(
κλ

(
jp−1, jp

))
,

(2)
for all p ∈ N . Based on (F1), the relation (2) means κλ

(
jp, jp+1

)
< κλ

(
jp, jp+1

)
,

i.e., lim
k→∞ κλ

(
jp, jp+1

) = r ≥ 0.Assume that r > 0. Then by (H2) follows that there

exists τ > 0 and p1 ∈ N such that for all p ≥ p1
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τ + F
(
κλ

(
jp, jp+1

)) ≤ ϕ
(
κλ

(
jp−1, jp

)) + F
(
κλ

(
jp, jp+1

))

≤F
(
κλ

(
jp−1, jp

))
,

i.e.,
τ + F

(
κλ

(
jp, jp+1

)) ≤ F
(
κλ

(
jp−1, jp

))
.

From the last taking limit as p → ∞, it follows

τ + F (r + 0) ≤ F (r + 0) ,

a contradiction. Therefore, we attain

lim
p→∞ κλ

(
jp, jp+1

) = 0. (3)

Now, we express that
{
jp

}
is a κ−Cauchy sequence by deeming contrary. Then for

ε > 0 it is possible to find two subsequences {ps} and {ts} of positive integers with
the property ks > ts ≥ s such the following inequalities hold:

κλ

(
jps , jts

) ≥ ε, and κλ

(
jps , jts−1

)
< ε. (4)

From (4) and (κ6), it follows that

ε ≤ κλ

(
jps , jts

) = κmax{λ,λ}
(
jps , jts

)

≤ κλ

(
jps , jts−1

) + κλ

(
jts−1, jts

)

< ε + κλ

(
jts−1, jts

)
.

(5)

As s → ∞ in above relation, we attain that

lim
s→∞ κλ

(
jps , jts

) = ε. (6)

Also,

κλ

(
jps , jts

) = κmax{λ,λ}
(
jps , jts

)

≤ κλ

(
jps , jps+1

) + κλ

(
jps+1, jts

)

= κλ

(
jps , jps+1

) + κmax{λ,λ}
(
jps+1, jts

)

≤ κλ

(
jps , jps+1

) + κλ

(
jps+1, jts+1

) + κλ

(
jts+1, jts

)
, (7)

and
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κλ

(
jps+1, jts+1

) = κmax{λ,λ}
(
jps+1, jts+1

)

≤ κλ

(
jps+1, jps

) + κλ

(
jps , jts+1

)

= κλ

(
jps+1, jps

) + κmax{λ,λ}
(
jps , jts+1

)

≤ κλ

(
jps+1, xps

) + κλ

(
jps , jts

) + κλ

(
jts , jts+1

)
. (8)

Using (4) and (6), by taking limit as s → ∞ in (7) and (8), we deduce that

lim
s→∞ κλ

(
jps+1, jts+1

) = ε. (9)

Moreover, from (4) and (κ6), it follows that

κλ

(
jps , jts+1

) = κmax{λ,λ}
(
jps , jts+1

)

≤ κλ

(
jps , jts−1

) + κλ

(
jts−1, jts+1

)

= κλ

(
jps , jts−1

) + κmax{λ,λ}
(
jts−1, jts+1

)

≤ κλ

(
jps , jts−1

) + κλ

(
jts−1, jts

) + κλ

(
jts , jts+1

)

< κλ

(
jts−1, jts

) + κλ

(
jts , jts+1

) + ε (10)

and

κλ

(
jts , jps+1

) = κmax{λ,λ}
(
jts , jps+1

)

≤ κλ

(
jts , jps

) + κλ

(
jps , jts+1

)

= κλ

(
jps , jps+1

) + κmax{λ,λ}
(
jts , jps

)

≤ κλ

(
jps , jps+1

) + κλ

(
jts , jts−1

) + κλ

(
jts−1, jps

)

< ε + κλ

(
jts , jts−1

) + κλ

(
jps , jps+1

)
. (11)

Next, we claim that
1

2
κλ

(
jps , Z jps

) ≤ κλ

(
jps , jts

)
. (12)

If
1

2
κλ

(
jps , Z jps

)
> κλ

(
jps , jts

)
, (13)

then taking limit s → ∞ in (13), we have 0 > ε is a contradiction. Hence,

1

2
κλ

(
jps , Z jps

) ≤ κλ

(
jps , jts

)
.

Also as Mκ⊥ is a transitive orthogonal set, we obtain

(∀s, jps⊥ jts
)

or
(∀s, jts⊥ jps

)
.
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Since Z is generalized orthogonal Suzuki Fϕ−contraction,

F
(
κλ

(
jps+1, jts+1

))
< ϕ

(
κλ

(
jps , jts

)) + F
(
κλ

(
jps+1, jts+1

))

= ϕ
(
κλ

(
jps , jts

)) + F
(
κλ

(
Z jps , Z jts

))

≤ F
(
P

(
jps , jts

))
,

(14)

where

P
(
jps , jts

) = max
{
κλ

(
jps , jts

)
,κλ

(
jps , jps+1

)
,κλ

(
jts , jts+1

)
,

κλ

(
jps , jts+1

) + κλ

(
jts , jps+1

)

2
,
κλ

(
jps+2, jps

) + κλ

(
jps+2, jts+1

)

2
,

κλ

(
jps+2, jps+1

)
,κλ

(
jps+2, jts

)
, κλ

(
jps+2, jts+1

)}

≤ max
{
κλ

(
jps , jts

)
,κλ

(
jps , jps+1

)
,κλ

(
jts , jts+1

)
,

κλ

(
jps , jts+1

) + κλ

(
jts , jps+1

)

2
,

κλ

(
jps+2, jps+1

) + κλ

(
jps+1, jps

) + κλ

(
jps+2, jps+1

) + κλ

(
jps+1, jts+1

)

2
,

κλ

(
jps+2, jps+1

)
,κλ

(
jps+2, jps+1

) + κλ

(
jps+1, jts

)
,

κλ

(
jps+2, jps+1

) + κλ

(
jps+1, jts+1

)}
. (15)

Taking limit as s → ∞ in (10), (11), (13), (14) and (15), also from (3), (6) and (9),
we get

F (ε) < ϕ (ε) + F (ε) ≤ F (ε) ,

which yields a contradiction. Herewith,
{
jp

}
p∈N

is aκ−Cauchy sequence. SinceMκ⊥

orthogonalκ−complete non-AMMS, there existsu∈Mκ⊥ such that limp→∞ κλ

(
jp, u

) =
0. Also, because Z is ⊥−continuous, we get lim

p→∞ κλ

(
Z jp, Zu

) = 0. Thus,

lim
p→∞ κλ

(
Z jp, Zu

) = lim
p→∞ κλ

(
jp+1, Zu

) = 0. Due to the uniqueness of limit, we

get Zu = u, i.e., u is a fixed point of Z . Now, we prove u is a unique fixed point.
Let v is another fixed point of Z . From the choosing of j0 in the first part of proof,
we have

( j0⊥v) or (v⊥ j0) .

Because Z is ⊥−preserving and Mκ⊥ is a transitive orthogonal set, we obtain

(u⊥v) or (v⊥u) .

Also, we have

0 = 1

2
κλ (u, Zu) ≤ κλ (u, v) .
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By the generalized orthogonal Suzuki Fϕ−contraction of Z , we get

F (κλ (u, v)) = F (κλ (Zu, Zv))

< ϕ (κλ (u, v)) + F (κλ (Zu, Zv))

≤ F (P (u, v)) ,

where

P (u, v) = max {κλ (u, v) ,κλ (u, Zu) ,κλ (v, Zv) ,

κλ (u, Zv) + κλ (v, Zu)

2
,
κλ

(
Z2u, u

) + κλ

(
Z2u, Zv

)

2
,

κλ

(
Z2u, Zu

)
,κλ

(
Z2u, v

)
, κλ

(
Z2u, Zv

)}

= κλ (u, v) ,

that is a contradiction and so u is a unique fixed point of Z .

By replacing ⊥−continuity of Z with continuity of F , we attain subsequent
results.

Theorem 3 Let Mκ⊥ be a transitive orthogonally κ−complete non-AMMS and Z be
a generalized orthogonal Suzuki Fϕ−contraction. Suppose that following conditions
hold:

(i.) Z is ⊥−preserving mapping,
(ii.) F is a continuous function.

Then Z holds a unique fixed point in Mκ⊥ .

Proof From the definition of orthogonality, there exists j0 ∈ Mκ⊥ such that

(∀l ∈ Mκ⊥ , j0⊥l
)

or
(∀l ∈ Mκ⊥ , l⊥ j0

)
.

Then from Theorem 2, we get { jp} is a κ−Cauchy sequence in Mκ⊥ . The κ−
completeness of the space Mκ⊥ indicates the existence of an element u that belongs
to Mκ⊥ provides lim

p→∞ κλ

(
jp, u

) = 0. Now, it should be shown that u is a fixed point

of Z . Suppose that κλ (Zu, u) > 0. We assert that for each p ∈ N

1

2
κλ

(
jp, Z jp

) ≤ κλ

(
jp, u

)
.

On the contrary, suppose that
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1
2κλ

(
jp, Z jp

)
> κλ

(
jp, u

)

= 1
2κλ

(
jp, jp+1

)
> κλ

(
jp, u

)
.

Taking limit p → ∞, we get a contradiction. Thus claim is true. Also, since Mκ⊥ is
transitive and Z is ⊥−preserving, we have

jp⊥u or u⊥ jp.

From the generalized orthogonal Suzuki Fϕ−contraction, we get

F
(
κλ

(
jp+1, Zu

))
< ϕ

(
κλ

(
jp, u

)) + F
(
κλ

(
Z jp, Zu

))

≤ F
(
P

(
jp, u

))
,

(16)

where

P
(
jp, u

) = max
{
κλ

(
jp, u

)
,κλ

(
jp, Z jp

)
,κλ (u, Zu) ,

κλ

(
jp, Zu

) + κλ

(
u, Z jp

)

2
,
κλ

(
Z2 jp, jp

) + κλ

(
Z2 jp, Zu

)

2
,

κλ

(
Z2 jp, Z jp

)
,κλ

(
Z2 jp, u

)
, κλ

(
Z2 jp, Zu

)}

≤ max
{
κλ

(
jp, u

)
,κλ

(
jp, jp+1

)
,κλ (u, Zu) ,

κλ

(
jp, Zu

) + κλ

(
u, jp+1

)

2
,

κλ

(
jp+2, jp+1

) + κλ

(
jp+1, jp

) + κλ

(
jp+2, jp+1

) + κλ

(
jp+1, Zu

)

2
,

κλ

(
jp+2, jp+1

)
,κλ

(
jp+2, jp+1

) + κλ

(
jp+1, u

)
,

κλ

(
jp+2, jp+1

) + κλ

(
jp+1, Zu

)}
. (17)

Taking limit k → ∞ in above, we get

F (κλ (u, Zu)) < lim inf
κλ( jk ,u)→0+

ϕ (κλ ( jk, u)) + F (κλ (u, Zu))

≤ F (κλ (u, Zu)) .

The attained last inequality causes a contradiction. Thus, u is a fixed point of Z .

Also, as in Theorem 2, u is a unique fixed point of Z in Mκ⊥ .

Next, by omitting Suzuki’s condition, we achieve some consequences as noted below.

Corollary 1 Let Mκ⊥ be a transitive orthogonally κ−complete non-AMMS. Z :
Mκ⊥ → Mκ⊥ satisfies the following conditions:

• (i.) Z is ⊥−preserving mapping,
• (i i.) Z is ⊥−continuous or F is a continuous function,
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• (i i i.) there exist ϕ ∈ Φ and F ∈ Υ such that

ϕ (κλ ( j, l)) + F (κλ (Z j, Zl)) ≤ F (P ( j, i)) , (18)

P ( j, l) = max

{
κλ ( j, l) ,κλ ( j, Z j) ,κλ (l, Zl) ,

κλ ( j, Zl) + κλ (l, Z j)

2
,

κλ

(
Z2 j, j

) + κλ

(
Z2 j, Zl

)

2
,κλ

(
Z2 j, Z j

)
,κλ

(
Z2 j, l

)
,κλ

(
Z2 j, Zl

)
}

,

for all j, l ∈ Mκ⊥ .

Then Z holds a unique fixed point in Mκ⊥ .

Corollary 2 Let Mκ⊥ be a transitive orthogonally κ−complete non-AMMS and
Z : Mκ⊥ → Mκ⊥ satisfies the following conditions:

• (i.) Z is ⊥−preserving mapping,
• (i i.) Z is ⊥−continuous or F is continuous,
• (i i i.) there exist ϕ ∈ Φ and F ∈ Υ such that

ϕ (κλ ( j, l)) + F (κλ (Z j, Zl)) ≤ F (κλ ( j, i)) , (19)

for all j, l ∈ Mκ⊥ .

Then Z holds a unique fixed point in Mκ⊥ .

Corollary 3 Let Mκ⊥ be a transitive orthogonally κ−complete non-AMMS and
Z : Mκ⊥ → Mκ⊥ satisfies the following conditions:

• (i.) Z is ⊥−preserving mapping,
• (i i.) Z is ⊥−continuous or F is continuous,
• (i i i.) there exist ϕ ∈ Φ and F ∈ Υ such that

1

2
κλ ( j, Z j) ≤ κλ ( j, l) ⇒ ϕ (κλ ( j, l)) + F (κλ (Z j, Zl)) ≤ F (κλ ( j, i)) ,

(20)
for all j, l ∈ Mκ⊥ .

Then Z holds a unique fixed point in Mκ⊥ .

Corollary 4 Let Mκ⊥ be a transitive orthogonally κ−complete non-AMMS and
Z : Mκ⊥ → Mκ⊥ satisfies the following conditions:

• (i.) Z is ⊥−preserving mapping,
• (i i.) Z is ⊥−continuous or F is continuous,
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• (i i i.) there exist τ > 0 and F ∈ Υ such that

1

2
κλ ( j, Z j) ≤ κλ ( j, l) ⇒ τ + F (κλ (Z j, Zl)) ≤ F (κλ ( j, i)) , (21)

for all j, l ∈ Mκ⊥ .

Then Z holds a unique fixed point in Mκ⊥ .

Corollary 5 Let Mκ⊥ be a transitive orthogonally κ−complete non-AMMS and
Z : Mκ⊥ → Mκ⊥ satisfies the following conditions:

• (i.) Z is ⊥−preserving mapping,
• (i i.) Z is ⊥−continuous or F is continuous,
• (i i i.) there exist τ > 0 and F ∈ Υ such that

τ + F (κλ (Z j, Zl)) ≤ F (κλ ( j, i)) , (22)

for all j, l ∈ Mκ⊥ .

Then Z holds a unique fixed point in Mκ⊥ .

Now, we establish new fixed point theorems involving a graph.
The use of graph in metric fixed point theory was established by Jachmyski [18].

You can find more detail about graph theory in [18]. Many mathematicians proved
some fixed point results improving Jachymski’s technique in [19–24].

Now, inspired by [8, 14, 25], we constitute a contractive condition and prove fixed
point results via Jachymski’s technique.

Definition 13 Let Mκ⊥ be an orthogonally non-AMMS. Z : Mκ⊥ → Mκ⊥ is a gen-
eralized orthogonal Suzuki (ϕ, F)G−contraction if the following conditions hold:

• (G1.) Z preserves edges of G,
• (G2.) Z is ⊥−preserving,
• (G3.) there exist ϕ ∈ Φ and F ∈ Υ such that

1

2
κλ ( j, Z j) < κλ ( j, l) ⇒ ϕ (κλ ( j, l)) + F (κλ (Z j, Zl)) ≤ F (P ( j, i)) ,

(23)

P ( j, l) = max

{
κλ ( j, l) ,κλ ( j, Z j) ,κλ (l, Zl) ,

κλ ( j, Zl) + κλ (l, Z j)

2
,

κλ

(
Z2 j, j

) + κλ

(
Z2 j, Zl

)

2
,κλ

(
Z2 j, Z j

)
,κλ

(
Z2 j, l

)
,κλ

(
Z2 j, Zl

)
}

,

for all ( j, l) ∈ E(G̃).
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Definition 14 Let Mκ⊥ be an orthogonal non-AMMS. Z : Mκ⊥ → Mκ⊥ is a G⊥−
continuous if given j ∈ M and sequence

{
jp

}
,

• (i.) lim
p→∞ κλ

(
jp, j

) = 0,

• (i i.)
(
jp, jp+1

) ∈ E (G) and
(
jp⊥ jp+1 or jp+1⊥ jp

)
for p ∈ N imply

Z jp → Z j.

Theorem 4 Let Mκ⊥ be a transitive orthogonally κ−complete non-AMMS endowed
with a graph G and Z be a generalized orthogonal Suzuki (ϕ, F)G̃−contraction.
Assume that following statements hold:

• (i.) Z is ⊥−preserving mapping,
• (i i.) G is a weakly connected graph,
• (i i i.) Z is G⊥−continuous mapping,
• (iv.) there exists j0 ∈ MZ⊥ .

Then Z holds a unique fixed point in Mκ⊥ .

Proof Let
{
jp

}
p∈N be a sequence in Mκ⊥ by

jp+1 = Z jp,

for all p ∈ N . Let j0 be a given point in MZ⊥ . Because Z preserves edge of G̃ and
⊥−preserving, we get

(
jp, jp+1

) ∈ E
(
G̃

)
and jp⊥ jp+1. Then by Theorem 2, we

get
{
jp

}
is a κ−Cauchy sequence. By the orthogonal κ−completeness of Mκ⊥ , there

exists u ∈ Mκ⊥ such that
lim
p→∞ κλ

(
jp, u

) = 0.

Moreover, if Z is G⊥−continuous mapping, we get lim
p→∞ κλ

(
Z jp, Zu

) = lim
p→∞ κλ

(
jp+1, Zu

) = 0.Due to the uniqueness of the limit, we have u = Zu, i.e., u is a fixed
point of Z .Now, we show that u is a unique fixed point of Z . Conversely, we assume
that w is another fixed point of Z , i.e., Zw = w and u 	= w. Then as G is weakly

connected and Mκ⊥ is transitive, we get (u, w) ∈ E
(
G̃

)
and (u⊥w or w⊥u) .

Furthermore,

0 = 1

2
κλ (u, Zu) < κλ (u, w) .

From the generalized orthogonal Suzuki (ϕ, F)G̃−contraction, we have

F (κλ (u, w)) = F (κλ (Zu, Zw))

< ϕ (κλ (u, w)) + F (κλ (Zu, Zw))

≤ F (P (u, w)) ,

where



126 M. Öztürk and E. Girgin

P (u, w) = max {κλ (u, w) ,κλ (u, Zu) ,κλ (w, Zw) ,

κλ(u,Zw)+κλ(w,Zu)

2 ,
κλ(Z2u,u)+κλ(Z2u,Zw)

2 ,

κλ

(
Z2u, Zu

)
,κλ

(
Z2u, w

)
, κλ

(
Z2u, Zw

)}

= κλ (u, w) .

.

Thus, we get F (κλ (u, w)) < F (κλ (u, w)) , which is a contradiction and so u is a
unique fixed point of Z .

Corollary 6 Let Mκ⊥ be a transitive orthogonally κ−complete non-AMMS with a
graph G. Z : Mκ⊥ → Mκ⊥ satisfies the following conditions:

• (i.) Z is ⊥−preserving mapping,
• (i i.) G is a weakly connected graph,
• (i i i.) Z is G⊥−continuous mapping,
• (iv.) there exists j0 ∈ MZ⊥ ,

• (v.) there exist ϕ ∈ Φ and F ∈ Υ such that

1

2
κλ ( j, Z j) < κλ ( j, l) ⇒ ϕ (κλ ( j, l)) + F (κλ (Z j, Zl)) ≤ F (κλ ( j, i)) ,

(24)
for all ( j, l) ∈ E(G̃).

Then Z holds a unique fixed point in Mκ⊥ .

Corollary 7 Let Mκ⊥ be a transitive orthogonally κ−complete non-AMMS with a
graph G. Z : Mκ⊥ → Mκ⊥ satisfies the following conditions:

• (i.) Z is ⊥−preserving mapping,
• (i i.) G is a weakly connected graph,
• (i i i.) Z is G⊥−continuous mapping,
• (iv.) there exists j0 ∈ MZ⊥ ,

• (v.) there exist τ > 0 and F ∈ Υ such that

1

2
κλ ( j, Z j) < κλ ( j, l) ⇒ τ + F (κλ (Z j, Zl)) ≤ F (κλ ( j, i)) , (25)

for all ( j, l) ∈ E(G̃).

Then Z holds a unique fixed point in Mκ⊥ .

Corollary 8 Let Mκ⊥ be a transitive orthogonallyκ−complete non-AMMSendowed
with a graph G and Z : Mκ⊥ → Mκ⊥ be a mapping. Suppose that following condi-
tions hold:

• (i.) Z is ⊥−preserving mapping,
• (i i.) G is a weakly connected graph,
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• (i i i.) Z is G⊥−continuous mapping,
• (iv.) there exists j0 ∈ MZ⊥ ,

• (v.) there exist ϕ ∈ Φ and F ∈ Υ such that

ϕ (κλ ( j, l)) + F (κλ (Z j, Zl)) ≤ F (κλ ( j, i)) , (26)

for all ( j, l) ∈ E(G̃).

Then Z holds a unique fixed point in Mκ⊥ .

3 Fixed Point Results in Non-Archimedean Quasi Modular
Metric Space

The authors in [25] introduced a quasi modular metric space, shortly indicated as
QMMS, and proved some fixed point theorems for the mappings using rational
expressions. Also in [26], the modified Suzuki-simulation type contractions have
been identified and fixed point theorems have been examined in the context of non-
AQMMS.

Definition 15 [25] A function E : (0,∞) × M × M → [0,∞] is named a quasi
modular metric if the followings hold for all m, n > 0 and j, l, k ∈ M :

• (q1.) j = l ⇔ Em ( j, l) = 0,
• (q2.) Em+n ( j, l) ≤ Em ( j, k) + En (k, l) .

Then, ME is a QMMS.
E is regular if the following holds:

• (q3.) j = l ⇔ Em ( j, l) = 0 for some m > 0.

Again, E is named convex if the inequality holds:

• (q4.) Em+n ( j, l) ≤ m
m+n Em ( j, k) + n

m+n En (k, l) .

Definition 16 [25] In Definition 15, if we exchange (q2) by

• (q5.) Emax{m,n} ( j, l) ≤ Em ( j, k) + En (k, l) .

Then, MQ is a non-Archimedean quasi modular metric space, in short non-AQMMS.

Note that every non-AQMMS is a QMMS.

Remark 1 [25] From the above, we conclude that

• (i.) A conjugate quasi modular metric E−1 of E is introduced by E−1
m ( j, l) =

Em (l, j) .

• (i i.) A function EH denoted by EH = E−1 ∨ E , that is, EH
m ( j, l) =

max {Em ( j, l) , Em (l, j)}, defines a modular metric.
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Definition 17 [25]
A sequence

{
jp

}
p∈N in ME converges to j ∈ ME and is called

• (i.)E−convergent or left convergent if jp → j ⇔ Em
(
j, jp

) → 0, as p → ∞.

• (i i.)E−1−convergent or right convergent if jp → j ⇔ Em
(
jp, j

) → 0, as p →
∞.

• (i i i.)EH−convergent if Em
(
j, jp

) → 0 and Em
(
jp, j

) → 0, as p → ∞.

Definition 18 [25] A sequence
{
jp

}
p∈N in ME is named

• (i.) left(right) EK−Cauchy if for every ε > 0 there exists pε ∈ N such that
Em

(
jr , jp

)
< ε for all p, r ∈ N with pε ≤ r ≤ p (pε ≤ p ≤ r) and for allm > 0.

• (i i.) EH−Cauchy if for every ε > 0 there exists pε ∈ N such that Em
(
jp, jr

)
< ε

for all p, r ∈ N with p, r ≥ pε.

Remark 2 [25] From the above, we conclude that
{
jp

}
p∈N

• (i.) is left EK−Cauchy to E if and only if it is right EK−Cauchy to E−1.
• (i i.) is EH−Cauchy if and only if it is left and right EK−Cauchy.

Definition 19 [25] ME is said to be a

• (i.) left EK−complete if every left EK−Cauchy is E−convergent.
• (i i.) E−Smyth-complete if every left EK−Cauchy sequence is EH− convergent.

Throughout this section, E is regular and convex. Also, wemodify the generalized
orthogonal Suzuki Fϕ−contraction in non-AQMMS.

Definition 20 Let ME⊥ be a non-AQMMS. Z : ME⊥ → ME⊥ is the modified gen-
eralized orthogonal Suzuki Fϕ−contraction if there exist

1

2
Em ( j, Z j) < Em ( j, l) ⇒ ϕ (Em ( j, l)) + F (Em (Z j, Zl)) ≤ F (S ( j, i)) ,

(27)
S ( j, l) = max { Em ( j, l) , Em ( j, Z j) , Em (l, Zl)}

such that ϕ ∈ Φ and F ∈ Υ for all j, l ∈ ME⊥ .

Theorem 5 Let ME⊥ be a transitive orthogonally E−Smyth-complete non-AQMMS
and Z be a ⊥−continuous, ⊥−preserving and modified generalized orthogonal
Suzuki Fϕ−contraction. Then Z holds a unique fixed point in ME⊥ .

Proof Define a sequence
{
jp

}
p∈N in ME⊥ by jp+1 = Z jp, for all p ∈ N . There

exists j0 ∈ ME⊥ such that

(∀l ∈ ME⊥ , j0⊥l
)

or,
(∀l ∈ ME⊥ , l⊥ j0

)
.

It follows that j0⊥Z j0 or Z j0⊥ j0. If jp∗ = jp∗+1 for some p∗ ∈ N , then jp∗ is a
fixed point of Z and so the proof is completed. Consequently, we shall suppose that
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jp 	= jp+1 for all p ∈ N . Therefore, we have Em
(
jp, jp+1

)
> 0 for all p ∈ N . Since

Z is ⊥−preserving, we have
(∀p, jp⊥ jp+1

)
or

(∀p, jp+1⊥ jp
)
. Because Z is

a modified generalized orthogonal Suzuki Fϕ−contraction,

1

2
Em

(
jp, Z jp

)
< Em

(
jp, Z jp

) = Em
(
jp, jp+1

)

implies

F
(
Em

(
jp, jp+1

))
< ϕ

(
Em

(
jp−1, jp

)) + F
(
Em

(
jp, jp+1

)) ≤ F
(
S

(
jp−1, jp

))
,

where

S
(
jp−1, jp

) = max
{
Em

(
jp−1, jp

)
, Em

(
jp−1, Z jp−1

)
, Em

(
jp, Z jp

)}

= max
{
Em

(
jp−1, jp

)
, Em

(
jp−1, jp+1

)}
.

We get

F
(
Em

(
jp, jp+1

))
< ϕ

(
Em

(
jp−1, jp

)) + F
(
Em

(
jp, jp+1

))

≤ F
(
max

{
Em

(
jp−1, jp

)
, Em

(
jp, jp+1

)})
.

It is clear that

max
{
Em

(
jp−1, jp

)
, Em

(
jp, jp+1

)} = Em
(
jp−1, jp

)
.

Otherwise,wehave Em
(
jp, jp+1

)
< Em

(
jp, jp+1

)
,which is a contradiction.Hence,

we obtain

F
(
Em

(
jp, jp+1

))
< ϕ

(
Em

(
jp−1, jp

)) + F
(
Em

(
jp, jp+1

)) ≤ F
(
Em

(
jp−1, jp

))
,

(28)
for all p ∈ N . Based on (F1), the relation (28) means

Em
(
jp, jp+1

)
< Em

(
jp, jp+1

)
,

i.e., lim
p→∞ Em

(
jp, jp+1

) = r ≥ 0. Assume that r > 0, then by (�2), it follows that

there exists τ > 0 and p1 ∈ N such that for all p ≥ p1

τ + F
(
Em

(
jp, jp+1

)) ≤ ϕ
(
Em

(
jp−1, jp

)) + F
(
Em

(
jp, jp+1

))

≤F
(
Em

(
jp−1, jp

))
,

i.e.,
τ + F

(
Em

(
jp, jp+1

)) ≤ F
(
Em

(
jp−1, jp

))
.
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From the last taking limit as r → ∞, it follows

τ + F (r + 0) ≤ F (r + 0) ,

which is a contradiction. Hence, we attain

lim
p→∞ Em

(
jp, jp+1

) = 0. (29)

Now, we show that
{
jp

}
p∈N is a left EK−Cauchy sequence by supposing contrary.

Then for ε > 0 there exist two subsequences of positive integers {ps} and {ts} satis-
fying ps > ts ≥ s such that the inequalities indicated below hold:

Em
(
jps , jts

) ≥ ε, and Em
(
jps , jts−1

)
< ε. (30)

From (30) and (q5), it follows that

ε ≤ Em
(
jps , jts

) = Emax{m,m}
(
jps , jts

)

≤ Em
(
jps , jts−1

) + Em
(
jts−1, jts

)

< ε + Em
(
jts−1, jts

)
.

(31)

On taking limit as s → ∞ in above relation, we obtain that

lim
s→∞ Em

(
jps , jts

) = ε. (32)

Also,

Em
(
jps , jts

) = Emax{m,m}
(
jps , jts

)

≤ Em
(
jps , jps+1

) + Em
(
jps+1, jts

)

= Em
(
jps , jps+1

) + Emax{m,m}
(
jps+1, jts

)

≤ Em
(
jps , jps+1

) + Em
(
jps+1, jts+1

) + Em
(
jts+1, jts

)
(33)

and

Em
(
jps+1, jts+1

) = Emax{m,m}
(
jps+1, jts+1

)

≤ Em
(
jps+1, jks

) + Em
(
jps , jts+1

)

= Em
(
jps+1, jps

) + Emax{m,m}
(
jps , jts+1

)

≤ Em
(
jps+1, jps

) + Em
(
jps , jts

) + Em
(
jts , jts+1

)
. (34)

Using (30) and (32), by taking limit as s → ∞ in (33) and (34), we deduce that

lim
s→∞ Em

(
jps+1, jts+1

) = ε. (35)
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Next, we claim that

1

2
Em

(
jps , Z jps

) ≤ Em
(
jps , jts

)
. (36)

If
1

2
Em

(
jps , Z jps

)
> Em

(
jps , jts

)
, (37)

then taking limit s → ∞ in (37), we have 0 > ε is a contradiction. Hence,

1

2
Em

(
jps , Z jps

) ≤ Em
(
jps , jts

)
.

Also as ME⊥ is a transitive orthogonal set, we obtain

(∀s, jps⊥ jts
)

or
(∀s, jts⊥ jps

)
.

Since Z is the modified generalized orthogonal Suzuki Fϕ−contraction,

F
(
Em

(
jps+1, jts+1

))
< ϕ

(
Em

(
jps , jts

)) + F
(
Em

(
jps+1, jts+1

))

= ϕ
(
Em

(
jps , jts

)) + F
(
Em

(
Z jps , Z jts

))

≤ F
(
S

(
jps , jts

))
, (38)

where

S
(
jps , jts

) = max
{
Em

(
jps , jts

)
, Em

(
jps , Z jps

)
, Em

(
jts , Z jts

)}

= max
{
Em

(
jps , jts

)
, Em

(
jps , jps+1

)
, Em

(
jts , jts+1

)}
. (39)

Taking limit as s → ∞ in (29), (32), (35), (38) and (39), then we get

F (ε) < ϕ (ε) + F (ε) ≤ F (ε) ,

which gives a contradiction. Thus,
{
jp

}
p∈N is a left EK−Cauchy sequence. As ME⊥

orthogonal E−Smyth-complete non-AQMMS, there exists u ∈ ME⊥ such that

lim
p→∞ Em

H
(
jp, u

) = 0.

Thus, we have

lim
p→∞ Em

(
jp, u

) = 0 and lim
p→∞ Em

(
u, jp

) = 0.

Now, we show that u is a fixed point of Z . Suppose that Em (Zu, u) > 0. Since
Z is ⊥−continuous, we get lim

p→∞ Em
(
Z jp, Zu

) = 0. Thus, lim
p→∞ Em

(
Z jp, Zu

) =
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lim
p→∞ Em

(
jp+1, Zu

) = 0. Due to the uniqueness of limit, we get Zu = u, i.e., u is

a fixed point of Z . Now, we prove u is a unique fixed point. Let w is another fixed
point of Z . By our choice of j0 in the first part of proof, we have

( j0⊥w) or (w⊥ j0) .

As Z is ⊥−preserving and ME⊥ is transitive orthogonal set, we obtain

(u⊥w) or (w⊥u) .

Also, we have

0 = 1

2
Em (u, Zu) ≤ Em (u, w) .

Using the modified generalized orthogonal Suzuki Fϕ−contraction of Z , we get

F (Em (u, w)) = F (Em (Zu, Zw))

< ϕ (Em (u, w)) + F (Em (Zu, Zw))

≤ F (S (u, w)) ,

where
S (u, w) = max {Em (u, w) , Em (u, Zu) , Em (w, Zw)}

= max {Em (u, w)} .

Thus, we have
F (Em (u, w)) < F (Em (u, w)),

which is a contradiction. Hence, u is a unique fixed point of Z .

Now, we give some consequences of our main results in this section.

Corollary 9 Let ME⊥ be a transitive orthogonally E−Smyth-complete non-AQMMS
and Z be a modified generalized orthogonal Suzuki Fϕ−contraction. Suppose the
statements noted below hold:

• (i.) Z is ⊥−preserving mapping,
• (ii.) F is a continuous function.

Then Z holds a unique fixed point ME⊥ .

Corollary 10 Let ME⊥ be a transitive orthogonally E−Smyth-complete
non-AQMMS and Z : ME⊥ → ME⊥ satisfies the following:

• (i.) Z is ⊥−preserving mapping,
• (ii.) Z is ⊥−continuous mapping or F is a continuous function,
• (iii.) there exist ϕ ∈ Φ and F ∈ Υ such that
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ϕ (Em ( j, l)) + F (Em (Z j, Zl)) ≤ F (S ( j, i)) , (40)

S ( j, l) = max { Em ( j, l) , Em ( j, Z j) , Em (l, Zl)}

for all j, l ∈ ME⊥ .

Then Z holds a unique fixed point in ME⊥ .

Corollary 11 Let ME⊥ be a transitive orthogonally E−Smyth-complete
non-AQMMS and Z : MQ⊥ → MQ⊥ satisfies the following:

• (i.) Z is ⊥−preserving mapping,
• (i i.) Z is ⊥−continuous mapping or F is a continuous function,
• (i i i.) there exist τ > 0 and F ∈ Υ such that

τ + F (Em (Z j, Zl)) ≤ F (S ( j, i)) , (41)

S ( j, l) = max { Em ( j, l) , Em ( j, Z j) , Em (l, Zl)}

for all j, l ∈ ME⊥ .

Then Z holds a unique fixed point in ME⊥ .

Corollary 12 Let ME⊥ be a transitive orthogonally E−Smyth-complete
non-AQMMS and Z : ME⊥ → ME⊥ satisfies the following:

• (i.) Z is ⊥−preserving mapping,
• (i i.) Z is ⊥−continuous mapping or F is a continuous function,
• (i i i.) there exist τ > 0 and F ∈ Υ such that

τ + F (Em (Z j, Zl)) ≤ F (Em ( j, i)) , (42)

for all j, l ∈ ME⊥ .

Then Z holds a unique fixed point in ME⊥ .

4 Conclusions

In the first part of this study, we introduce the generalized orthogonal Suzuki
Fϕ−contraction, and using this notion, we prove fixed point results in orthogonal
non-AMMS. Also, we attain new results in non-AMMS with a graph. Since our
new contractive condition is not suitable to apply in the setting of orthogonal non-
AQMMS, we need to modify this contractive condition. And then we achieve some
fixed point results via modified contractive conditions which are filling the gap in
the existing literature.
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spaces in connection with integral equations on time scales. RACSAM 114, 147 (2020)
10. Gordji, M.E., Rameani, M., Sen, M., Cho, Y.J.: On orthogonal sets and Banach fixed point

theorem. Fixed Point Theory 18, 569–578 (2017)
11. Sawangsup, K., Sintunavarat, W.: Fixed point results for orthogonal Z−contraction mappings

in O−complete metric spaces. Int. J. Appl. Phys. Math. 10, 1 (2020)
12. Hosseini, H., Gordji, M.E.: Fixed point of multivalued contractions in orthogonal modular

metric spaces. Facta Universitatis Ser. Math. Inform. 34(2), 193–212 (2019)
13. Kanwal, T., Hussain, A., Baghani, H., De la Sen, M.: New fixed point theorems in orthogonal

F−metric spaces with application to fractional differential equation. Symmetry 12, 832 (2020)
14. Suzuki, T.: A new type of fixed point theorem in metric spaces. Nonlinear Anal. 71, 5313–5317

(2009)
15. Chistyakov, V.V.: Modular metric spaces, I: basic concepts. Nonlinear Anal. 72, 1–14 (2010)
16. Chistyakov, V.V.: Modular metric spaces, II: application to superposition operators. Nonlinear

Anal. 72, 15–30 (2010)
17. Mongkolkeha, C., Sintunavarat,W., Kumam, P.: Fixed point theorems for contractionmappings

in modular metric spaces. Fixed Point Theory Appl. 1, 93 (2011)
18. Jachymski, J.: The contraction principle for mappings on a metric space with a graph. Proc.

Am. Math. Soc. 136, 1359–1373 (2008)
19. Öztürk, M., Abbas, M., Girgin, E.: Common fixed point results of a pair generalized (ψ,ϕ)-

contraction mappings in modular spaces. Fixed Point Theory Appl. 2016, 19 (2016)
20. Beg, I., Butt, A.R., Radenovic, S.: The contraction principle for set value mappings on a metric

space with graph. Comput. Math. Appl. 60, 1214–1219 (2010)
21. Hussain, N., Arshad, M., Shoabid, A.: Common fixed point results for α − ψ− contractions

on a metric space endowed with a graph. J. Inequalit. Appl. 2014, 136 (2014)
22. Öztürk, M., Abbas, M., Girgin, E.: Fixed points of ψ-contractive mappings in modular spaces.

Filomat. 30(14), 3817–3827 (2016)
23. Pansuwan, A., Sintunavarat, W., Parvaneh, V., Cho, Y.J.: Some fixed point theorems for

(α, θ, k)-contractive multi-valued mappings with some applications. Fixed Point Theory Appl.
2015, 132 (2015)

24. Rasham, T., Shoaib, A., Alamri, B.A.S., Arshad, M.: Fixed point results for multivalued con-
tractive mappings endowed with graphic structure. J. Math. 2018, 8 (2018)

25. Girgin, E.,Öztürk,M.: (α,β) − ψ−type contraction in non-Archimedean quasimodularmetric
spaces and applications. J. Math. Anal. 10(1), 19–30 (2019)

26. Girgin, E., Öztürk, M.: Modified Suzuki-simulation type contractive mapping in non-
Archimedean quasi modular metric spaces and application to graph theory. Mathematics 7(9),
769 (2019)

http://arxiv.org/abs/12211.3164


On Parametric (b, θ)-Metric Space and
Some Fixed Point Theorems

Yumnam Mahendra Singh and Mohammad Saeed Khan

Abstract The primary aim of this chapter is to introduce the notion of parametric
(b, θ)-metric space as an extended form of parametric b-metric space and establish
some theorems on the existence and uniqueness of fixed point for a class of admissible
mapping, satisfying a certain contractive condition. Finally, the result obtained is
applied to establish the existence of a solution of an integral equation.

1 Introduction

In the mathematical analysis, we are concerned inevitably with two basic concepts,
namely, convergent of sequences and continuity of functions. Notice that these
notions depend precisely on the distance between two points. The term metric (dis-
tance) between two abstract points plays a vital role in mathematical analysis and
the related discipline of sciences, engineering and social sciences. The renowned
French mathematician Maurice Fréchet (1878–1973) initiated the study of metric
space in 1905. The notion of metric space has been extending with a continuous
effort by many mathematicians in many directions. One such extension is b-metric
space, which was introduced by Bakhtin [8] in 1989 (also see Czerwik [15], 1993).
Recently, a new generalization of parametric metric space [18], namely, parametric
b-metric space has been initiated by Hussain et al. [19] in 2015 and proved fixed
point theorems of the almost weakly contractive condition and Geraghty type. On
the other hand, Kamran et al. [20] introduced the concept of extended b-metric space
as a generalization of b-metric space and proved fixed point theorems including an
analog of Banach contraction principle. Nieto andRodríguez-López ([24, 25]) gener-
alized the results of Ran and Reurings [30] byweakening the conditions of continuity
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as well as monotonicity and applied to study periodic boundary value problems of
first-order ordinary differential equations (for more details and recent development
in fixed point theory, we refer to [1, 3, 4, 9, 14, 16, 18, 19, 24, 25, 30, 31], and
references therein).

There are two aspects in this chapter: first, we discuss the notions of parametric
(b, θ)-metric space and parametric α-admissibility of mapping and secondly using
these notions, we establish theorems on the existence and uniqueness of fixed points
with an application to an integral equation.

2 Preliminaries

Throughout the chapter, we shall denote N = the set of natural numbers and R =
the set of real numbers.

Definition 1 [8, 15] The ordered paired (Ω, db) is called a b-metric space (in short,
bMS) if Ω �= ∅ is an arbitrary set, b ≥ 1 a real number and db : Ω × Ω → [0,∞)

is a b-metric on Ω satisfying the following conditions: ∀η, ρ, σ ∈ Ω ,
(db1) db(η, ρ) = 0 iff η = ρ;
(db2) db(η, ρ) = db(ρ, η);
(db3) db(η, ρ) ≤ b[db(η, σ ) + db(σ, ρ)].
The condition (db3) reduces to triangular inequality if b = 1, but it does not true for
b > 1. Hence, the class of b-metric spaces is an extended form of metric space in
the broader sense.

Example 1 [2] Let (Ω, d) be a metric space, where Ω �= ∅ and db(η, ρ) =
[d(η, ρ)]r ,∀η, ρ ∈ Ω . Then (Ω, db) is a bMS with b = 2r−1, where r > 1 is a
real number, but db is not a metric on Ω .

Note that the distance function db may not be continuous (see [13, 17]). For more
results and examples on b-metric spaces, we refer to [2, 10, 13, 15, 17, 27] and
references therein.

Definition 2 [20] The ordered paired (Ω, dθ ) is called an extended b-metric space
(in short, EbMS) if Ω �= ∅ is an arbitrary set, θ : Ω × Ω → [1,∞), and db : Ω ×
Ω → [0,∞) is an extended b-metric on Ω satisfying the following conditions:
∀η, ρ, σ ∈ Ω ,
(dθ1) dθ (η, ρ) = 0 iff η = ρ;
(dθ2) dθ (η, ρ) = dθ (ρ, η);
(dθ3) dθ (η, ρ) ≤ θ(η, ρ)[dθ (η, σ ) + dθ (σ, ρ)].
Note that if θ(η, ρ) = b > 1,∀η, ρ ∈ Ω , then EbMS becomes a bMS. Therefore,
every metric space is bMS and every bMS is EbMS, but the converse need not be
true in general. For more results on EbMS and references, we refer to [5–7, 20, 28].
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Example 2 Consider Ω = R and define dθ : Ω × Ω → [0,∞) as: dθ (η, ρ) =
|η| + |ρ|, η �= ρ and dθ (η, ρ) = 0, η = ρ, where θ(η, ρ) = 1 + |η| + |ρ|,∀η, ζ ∈
Ω . Then (Ω, dθ ) is an EbMS. However, for η, ρ ∈ R\{0}, η �= ρ, we have

dθ (η, ρ)

dθ (η, 0) + dθ (0, ρ)
≤ 1 + |η| + |ρ| = θ(η, ρ).

But supη,ρ∈Ω θ(η, ρ) = +∞, so it is impossible to find a finite b = θ(η, ρ) ≥ 1
satisfying (dθ3). Therefore, (Ω, dθ ) is not a bMS. Note that every finite EbMS is
obviously bMS.

Definition 3 [18] The ordered paired (Ω,P) is called a parametric metric space
(in short, PMS) if Ω �= ∅ be a set, and P : Ω2 × (0,∞) → [0,∞) is a parametric
metric satisfying the following conditions: ∀ η, ρ, σ ∈ Ω and ∀τ > 0,
(P1) P(η, ρ, τ ) = 0, iff η = ρ;
(P2) P(η, ρ, τ ) = P(ρ, η, τ );
(P3) P(η, ρ, τ ) ≤ P(η, σ, τ ) + P(σ, ρ, τ ).

Example 3 [18] Consider Ω �= ∅ is a set containing all continuous function η :
(0,∞) → R and define P(η, ρ, τ ) = |η(τ) − ρ(τ)|,∀τ > 0. Then (Ω,P) is a
PMS.

Example 4 [18] Consider Ω = [0,∞) and define P(η, ρ, τ ) = τ max{η, ρ}, η �=
ρ and P(η, ρ, τ ) = 0, η = ρ,∀τ > 0. Then (Ω,P) is a PMS.

Example 5 Consider (Ω, d) be a metric space with metric d, where Ω �= ∅ is a set.
Define P(η, ρ, τ ) = d(η,ρ)

τ+d(η,ρ)
,∀τ > 0. It is obvious that P satisfies (P1) and (P2).

To verify (P3), let η, ρ, σ ∈ Ω , we have

P(η, σ, τ ) + P(σ, ρ, τ ) = d(η, σ )

τ + d(η, σ )
+ d(σ, ρ)

τ + d(σ, ρ)

≥ d(η, σ )

τ + d(η, σ ) + d(σ, ρ)
+ d(σ, ρ)

τ + d(η, σ ) + d(σ, ρ)

= d(η, σ ) + d(σ, ρ)

τ + d(η, σ ) + d(ρ, σ )
= 1

τ
d(η,σ )+d(σ,ρ)

+ 1

≥ 1
τ

d(η,ρ)
+ 1

= d(η, ρ)

τ + d(η, ρ)
= P(η, ρ, τ ).

It shows that (P3) is satisfied ∀τ > 0. Thus (Ω,P) is a PMS.

Let (Ω,P) be a PMS and c0 ∈ Ω and λ > 0, then B(c0, λ) = {η ∈ Ω : P(c0, η, τ )

< λ,∀τ > 0} is called an open ball of radius λ centred at c0 ∈ Ω .

Remark 1 In parametric metric space (Ω,P), we say that P is continuous if it is
continuous at all variables η, ρ ∈ Ω,∀τ > 0. Note that P is a continuous function
(Remark 9[18]).
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Definition 4 [19] The ordered paired (Ω,Pb) is called a parametric b-metric space
(in short, PbMS) ifΩ �= ∅ is a set, b ≥ 1 is a real number andPb : Ω2 × (0,∞) →
[0,∞) is a parametric b-metric satisfying the following conditions: ∀η, ρ, σ ∈ Ω

and ∀τ > 0,
(Pb1) Pb(η, ρ, τ ) = 0, iff η = ρ;
(Pb2) Pb(η, ρ, τ ) = Pb(ρ, η, τ );
(Pb3) Pb(η, ρ, τ ) ≤ b[Pb(η, σ, τ ) + Pb(σ, ρ, τ )].
Clearly if b = 1, then PbMS becomes a PMS and we remark that every PMS
is PbMS, but the converse need not be true. Note that Pb, for b > 1 may not be
continuous (Example 1.7 [19]).

Example 6 [19]ConsiderΩ = [0,∞) anddefinePb(η, ρ, τ ) = τ |η − ρ|p,∀η, ρ ∈
Ω and ∀τ > 0. Then (Ω,Pb) is a PbMS with constant b = 2p, where p ≥ 1.

Motivated by Kamran et al. [20], we define the notion of parametric (b, θ)-metric
space.

Definition 5 The ordered paired (Ω,Pθ ) is called a parametric (b, θ)-metric space
(in short, Pθ MS) if Ω �= ∅ be a set, θ : Ω2 × (0,∞) → [1,∞) and Pθ : Ω2 ×
(0,∞) → [0,∞) is a parametric (b, θ)-metric satisfying the following conditions:
∀η, ρ, σ ∈ Ω and ∀τ > 0,
(Pθ1) Pθ (η, ρ, τ ) = 0, iff η = ρ;
(Pθ2) Pθ (η, ρ, τ ) = Pθ (ρ, η, τ ) ;
(Pθ3) Pθ (η, ρ, τ ) ≤ θ(η, ρ, τ )[Pθ (η, σ, τ ) + Pθ (σ, ρ, τ )].
If θ(η, ρ, τ ) = b ≥ 1, then Pθ becomes Pb. Note that every PMS is PbMS and
every PbMS is Pθ MS. Recall that Pb with b > 1 is not a continuous function, so is
Pθ . We discuss some examples on Pθ MS as follows.

Example 7 Consider Ω = R and let Pθ : Ω2 × (0,∞) → [0,∞) be defined by
Pθ (η, ρ, τ ) = τ(η − ρ)2,where θ(η, ρ, τ ) = 2 + τ(|η| + |ρ|),∀η, ρ ∈ Ω and∀τ >

0. Then (Ω,Pθ ) is a Pθ MS.

Example 8 Consider Ω = R and let θ : Ω2 × (0,∞) → [1,∞) be defined by
θ(η, ρ, τ ) = 1 + τ(|η| + |ρ|),∀η, ρ ∈ Ω and ∀τ > 0. Let Pθ : Ω2 × (0,∞) →
[0,∞) be given by Pθ (η, ρ, τ ) = τ(|η|p + |ρ|p), η �= ρ and Pθ (η, ρ, τ ) = 0, η =
ρ ∀τ > 0, where p ≥ 1. Then (Ω,Pθ ) is a Pθ MS.

Example 9 Let θ : Ω2 × (0,∞) → [1,∞),whereΩ = [0, 1]be a functiondefined
by θ(η, ρ, τ ) = 2[ 1+τ(η+ρ)

η+ρ
], η + ρ > 0 and θ(0, 0, τ ) = 1,∀τ > 0. Define Pθ :

Ω2 × (0,∞) → [0,∞) as

Pθ (η, ρ, τ ) = τ

ηρ
, η, ρ ∈ (0, 1], η �= ρ;

Pθ (η, ρ, τ ) = 0, η = ρ;
Pθ (η, 0, τ ) = Pθ (0, η, τ ) = τ

η
, η ∈ (0, 1],
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∀τ > 0. Clearly (Pθ1) and (Pθ2) are hold. For (Pθ3), we have the following cases:
(i) For η, ρ, σ ∈ (0, 1], ∀τ > 0, we have

Pθ (η, ρ, τ ) ≤ θ(η, ρ, τ )[Pθ (η, σ, τ ) + Pθ (σ, ρ, τ )]
⇐⇒ τ

ηρ
≤ 2

[1 + τ(η + ρ)]
(η + ρ)

τ(η + ρ)

ηρσ
⇐⇒ σ ≤ 2[1 + τ(η + ρ)].

(ii) For η, ρ ∈ (0, 1] and σ = 0,∀τ > 0, we have

Pθ (η, ρ, τ ) ≤ θ(η, ρ, τ )[Pθ (η, 0, τ ) + Pθ (0, ρ, τ )]
⇐⇒ τ

ηρ
≤ 2

[1 + τ(η + ρ)]
η + ρ

(τ

η
+ τ

ρ

)
⇐⇒ 1 ≤ 2[1 + τ(η + ρ)].

(iii) For η, σ ∈ (0, 1] and ρ = 0,∀τ > 0, we have

Pθ (η, 0, τ ) ≤ θ(η, 0, τ )[Pθ (η, σ, τ ) + Pθ (σ, 0, τ )]
⇐⇒ τ

η
≤ 2

(1 + τη)

η

( τ

ησ
+ τ

σ

)
⇐⇒ ησ ≤ 2(1 + τη)(1 + η).

It shows that (Pθ3) is satisfied. Thus (Ω,Pθ ) is a Pθ MS.

Example 10 Consider Ω = l p(R), 0 < p < 1 where l p(R) = {{ρi } ⊆ R : ∑∞
i=1 |ρi |p <

∞}. Define Pθ (ρ, σ, τ ) =
(∑∞

i=1 |η(τ){ρi − σi }|p
) 1

p
with θ(ρ, σ, τ ) = 2

1
p + τ(|ρ| +

|σ |), where 0 < η(τ) < ∞, ρ = {ρi }, σ = {σi } ∈ Ω and ∀τ > 0. Obviously, (Pθ1)
and (Pθ2) are hold. For (Pθ3), let ρ, σ, ω ∈ Ω , where ρ = {ρi }, σ = {σi }, ω =
{ωi } ∈ Ω,∀τ > 0, we obtain

(
Pθ (ρ, σ, τ )

)p = [η(τ)]p
∞∑
i=1

|(ρi − ωi ) + (ωi − σi )|p

≤ [η(τ)]p
∞∑
i=1

(
2max

{
|ρi − ωi |, |ωi − σi |

})p

≤ [2η(τ)]p
∞∑
i=1

(
|ρi − ωi |p + |ωi − σi |p

)

= 2p

( ∞∑
i=1

|η(τ){ρi − ωi }|p +
∞∑
i=1

|η(τ){ωi − σi }|p
)

=⇒ Pθ (ρ, σ, τ ) ≤ 2

( ∞∑
i=1

ui +
∞∑
i=1

vi

) 1
p

,

settingwithui = |η(t){ρi − ωi }|p andvi = |η(t){ωi − σi }|p. Since0 < p < 1which

is equivalent to 1 < 1
p < ∞. By convexity of f (r) = r

1
p , we have
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f
(r + s

2

)
≤ 1

2

(
f (r) + f (s)

)

=⇒
(r + s

2

) 1
p ≤ 1

2

(
r

1
p + s

1
p

)

=⇒ (r + s)
1
p ≤ 2

1
p −1

(
r

1
p + s

1
p

)
.

Consequently, we obtain

Pθ (ρ, σ, τ ) ≤ 2.2
1
p −1

⎡
⎣
( ∞∑

i=1

ui

) 1
p

+
( ∞∑

i=1

vi

) 1
p

⎤
⎦

= 2
1
p

⎡
⎣
( ∞∑

i=1

|η(τ){ρi − ωi }|p
) 1

p

+
( ∞∑

i=1

|η(τ){ωi − σi }|p
) 1

p

⎤
⎦

≤ θ(ρ, σ, τ ) [Pθ (ρ, ω, τ) + Pθ (ω, σ, τ )] .

Thus (Ω,Pθ ) is a Pθ MS.

Example 11 Consider Ω = L p[0, 1], the set of all real function f (u), u ∈ [0, 1]
such that

∫ 1
0 | f (u)|pdu < ∞, where 0 < p < 1. Define

Pθ ( f, g, τ ) =
(∫ 1

0

∣∣∣∣
f (u) − g(u)

1 + τ

∣∣∣∣
p

du

) 1
p

and θ( f, g, τ ) = 2
1
p + 1+τ

f +g , where f + g > 0 and θ(0, 0, τ ) = 2
1
p , ∀τ > 0. It is

obvious that (Pθ1) and (Pθ2) are hold. For (Pθ3), let f, g, h ∈ Ω , we have

[Pθ ( f, g, τ )]p = 1

(1 + τ)p

∫ 1

0
| f (u) − g(u)|pdu

≤
( 2

1 + τ

)p
[∫ 1

0
| f (u) − h(u)|pdu +

∫ 1

0
|h(u) − g(u)|pdu

]

⇒ Pθ ( f, g, τ ) ≤ 2

1 + τ

[∫ 1

0
| f (u) − h(u)|pdu +

∫ 1

0
|h(u) − g(u)|pdu

] 1
p

As in Example 10, we obtain

Pθ ( f, g, τ ) ≤ 2
1
p

[
Pθ ( f, h, τ ) + Pθ (h, g, τ )

]

≤ θ( f, g, τ )
[
Pθ ( f, h, τ ) + Pθ (h, g, τ )

]
,

so (Pθ3) is satisfied. Thus (Ω,Pθ ) is a Pθ MS.
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Consider Ω �= ∅ be a set and let (Ω,Pθ ) be a Pθ MS. Suppose Pθ is a continuous
function on Ω , a ∈ Ω and r > 0, we write

B(a, r) = {η ∈ Ω : Pθ (a, η, τ ) < r,∀τ > 0}.

Then we say that B(a, r) is an open ball of radius r > 0 centred at a.

Definition 6 Let (Ω,Pθ ), where Ω �= ∅ be a Pθ MS and {ηn} be a sequence in Ω ,
then

(i) the sequence {ηn} is said to be convergent to η ∈ Ω and symbolically, we write
ηn → η as n → +∞ iff ∀τ > 0,Pθ (ηn, η, τ ) → 0 as n → +∞;

(ii) the sequence {ηn} is said to be a Cauchy in Ω iff ∀τ > 0, Pθ (ηm, ηn, τ ) → 0 as
m, n → +∞;

(iii) (Ω,Pθ ) is said to be complete iff everyCauchy sequence {ηn} inΩ is convergent.

Definition 7 Let (Ω,Pθ ) be aPθ MS and T : Ω → Ω be a mapping. We say that T
is continuous at η ∈ Ω if for any sequence {ηn} inΩ such that ηn → η as n → +∞,
we have Tηn → Tη as n → +∞.

Example 12 Let Ω = [0, 1] and define Pθ (η, ρ, τ ) = τ(|η|2 + |ρ|p), η �= ρ and
Pθ (η, ρ, τ ) = 0, η = ρ, where θ(η, ρ, τ ) = 1 + τ(|η| + |ρ|),∀η, ρ ∈ Ω and∀τ >.
Suppose T : Ω → Ω be amapping defined by T η = η

3 ,∀η ∈ Ω . For anyη0 ∈ Ω , we
define a sequence {ηn}n∈N in Ω such that ηn = T nη0 = ( 13 )

nη0. Clearly, ηn → 0 as
n → +∞ and Tηn = ( 13 )

n+1η0 → T 0 = 0 as n → +∞, i.e. limn→+∞ Pθ (Tηn , T 0, τ ) = 0

whenever limn→+∞ Pθ (ηn, 0, τ ) = 0. Therefore, T is continuous at 0.

Throughout the following sections, we assume that Pθ is a continuous function.
Let Ω �= ∅ be a set. Suppose T : Ω → Ω and α : Ω × Ω → R are mappings. We
denote Fix(T ) = {η ∈ Ω : Tη = η}.
Definition 8 ([31]) A mapping T : Ω → Ω is said to be α-admissible if η, ρ ∈
Ω,α(η, ρ) ≥ 1 =⇒ α(Tη, Tρ) ≥ 1.

Definition 9 [23]Anα-admissiblemapping T is said to beα∗-admissible if∀η, η∗ ∈
Fix(T ) �= ∅, α(η, η∗) ≥ 1.

Definition 10 [21] A mapping T : Ω → Ω is said to be triangular α-admissible if:
(T1) T is an α-admissible;
(T2) α(η, ρ) ≥ 1 and α(ρ, σ ) ≥ 1 =⇒ α(η, σ ) ≥ 1, η, ρ, σ ∈ Ω .

Definition 11 [4]Amapping T : Ω → Ω is said to beweak triangularα-admissible
if:
(T1) T is an α-admissible;
(T3) α(η, Tη) ≥ 1 =⇒ α(η, T 2η) ≥ 1.
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For the uniqueness of fixed point, Alsulami et al. [4] used the following hypothesis:
Condition (B): For η, ρ ∈ Ω , there exists σ ∈ Ω such that α(η, σ ) ≥ 1 and
α(σ, ρ) ≥ 1.

Definition 12 [29] A mapping T : Ω → Ω is said to be α-orbital-admissible if
η ∈ Ω,α(η, Tη) ≥ 1 =⇒ α(Tη, T 2η) ≥ 1.

Definition 13 [29] A mapping T : Ω → Ω is said to be triangular α-orbital-
admissible if:
(T4) T is α-orbital-admissible;
(T5) α(η, ρ) ≥ 1 and α(ρ, Tρ) ≥ 1 =⇒ α(η, Tρ) ≥ 1, η, ρ ∈ Ω .

For the uniqueness condition, many authors used the following hypothesis:

Definition 14 Anα-orbital-admissiblemappingT is said to beα∗-orbital-admissible
if ∀η, η∗ ∈ Fix(T ) �= ∅, α(η, η∗) ≥ 1.

Remark 2 In [29], Popescu remarked that every α-admissible mapping is α-
orbital-admissible. However, it may be observed that every α-admissible map-
ping T is α-orbital-admissible if there exist w ∈ Ω and r ∈ N ∪ {0} such that
α(η, ρ) = α(T rw, T r+1w) ≥ 1.Moreover, in Definition 12, if ρ = Tη, η ∈ Ω , then
α(η, ρ) ≥ 1 =⇒ α(Tη, Tρ) ≥ 1, that is, every α-orbital-admissible mapping T is
α-admissible mapping.

Example 13 Let Ω = {0, 1, 2} with usual metric d(η, ρ) = |η − ρ|. Define T :
Ω → Ω and α : Ω × Ω → R as: T 0 = 0, T 1 = 2, T 2 = 1 and α(η, ρ) = 1, if
(η, ρ) ∈ {(0, 1), (0, 2)} and α(η, ρ) = 0 otherwise. Note that T is a α-admissible
as α(0, 1) = α(0, 2) = 1, α(T 0, T 1) = α(T 0, T 2) = 1. But there does not exist
w ∈ Ω such that α(η, ρ) = α(T rw, T r+1w) = 1, r ∈ N ∪ {0}. So T is not an α-
orbital-admissible mapping.

Example 14 Consider Ω and T : Ω → Ω are as in Example 13. Define α :
Ω × Ω → R as α(η, ρ) = 1, (η, ρ) ∈ P and α(η, ρ) = 0 otherwise, where P =
{(0, 0), (1, 2), (2, 1)}. Since α(0, T 0) = α(1, T 1) = α(2, T 2) = 1, α(T 0, T 20) =
α(T 1, T 21) = α(T 2, T 22) = 1, so T is an α-orbital-admissible. Also, we have
α(0, 0) = α(1, 2) = α(2, 1) = 1,α(T 0, T 0) = α(T 1, T 2) = α(T 2, T 1) = 1. So T
is α-admissible mapping. Notice that T is neither triangular α-admissible nor weak
triangular α-admissible (respectively, triangular α-orbital-admissible).

Now we define the notion of parametric α-admissible mapping, an analog of α-
admissible mapping ([31]). Let Ω �= ∅ be a set and α : Ω2 × (0,∞) → R be a
function.

Definition 15 A mapping T : Ω → Ω is said to be parametric α-admissible if
η, ρ ∈ Ω,α(η, ρ, τ ) ≥ 1 =⇒ α(Tη, Tρ, τ) ≥ 1,∀τ > 0.
In addition, we say that T is a parametric α∗-admissible if ∀η, ρ ∈ Fix(T ) �= ∅,
α(η, ρ, τ ) ≥ 1, ∀τ > 0.
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Example 15 LetΩ be a set of all continuous function f : [0,∞) → [0,∞). Define
α : Ω2 × (0,∞) → R and T : Ω → Ω as: α( f, g, τ ) = e2( f −g), for f (τ ) ≥ g(τ )

and α( f, g, τ ) = 0 otherwise, ∀τ > 0 and T f = ln(1 + f ), ∀ f ∈ Ω . Then T is a
parametric α-admissible.

Example 16 Let Ω = [0,∞) and T : Ω → Ω be a mapping defined by Tη = η2

2 ,∀η ∈ Ω . Define α : Ω2 × (0,∞) → R as α(η, ρ, τ ) = 1 + τ(η + ρ), for η, ρ ∈
[0, 2] and α(η, ρ, τ ) = 0 otherwise, ∀τ > 0. Note that Fix(T ) = {0, 2}. Then T is
a parametric α-admissible and parametric α∗-admissible as well.

Example 17 ConsiderΩ = [0,∞) and let T : Ω → Ω be given by Tη = 1+η

2 , η ∈
[0, 1] and Tη = η, η > 1. Define α(η, ρ, τ ) = 1, η, ρ ∈ [0, 2] and α(η, ρ, τ ) = 0
otherwise, ∀τ > 0. Then T is a parametric α-admissible but not a parametric α∗-
admissible as Fix(T ) = {1} ∪ {c : c > 1}.
Definition 16 [26] A continuous function ϕ : R+ → R+ is called an altering dis-
tance if it is non-decreasing and ϕ(r) = 0 iff r = 0 and  denotes the set of all
altering distance function.

Example 18 Let ϕi : R+ → R+, where i = 1, 2 be defined by

(i) ϕ1(r) = ear + br − 1;

(ii) ϕ2(r) = ar2 + ln(br + 1), where a, b > 0.

Clearly,ϕi=1,2 is an altering distance function (formore examples on altering distance
function, we refer to Sintunavarat [32]).

Lemma 1 [22] Suppose η : R+ → R+ is non-decreasing. Then, for every r > 0,
lim

n→+∞ ηn(r) = 0 implies η(r) < r ,where ηn denotes the nth-iterate of η.

Definition 17 [10, 11] A function ψ : R+ → R+ is said to be a comparison func-
tion, if it ismonotonically increasing and lim

n→+∞ ψn(r) = 0, for all r > 0. The symbol

�, the set of all comparison function.

Note that if ψ is comparison function, then by Lemma 1, ψ(r) < r,∀r > 0 and
ψ(0) = 0.

Example 19 [12] Let ψi=1,2,3 : R+ → R+, where ψi ∈ � be defined by
(ψ1) ψ1(r) = αr , where 0 ≤ α < 1;
(ψ2) ψ2(r) = r

1+r ;
(ψ3) ψ3(r) = βγ (r), where ψ3(r) is monotonically increasing, 0 ≤ β < 1 and γ :
R+ → R+ such that γ n(r) → 0 as n → +∞.
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3 Main Results

In this section, we establish theorems on the existence and uniqueness of fixed point
for a class of parametric α-admissible mapping in the setting of parametric (b, θ)-
metric space and extend our result to parametric (b, θ)-metric space endowed with
partial ordered.

Lemma 2 Let (Ω,Pθ ) be a parametric (b, θ)-metric space and {ηn} be any
sequence in Ω . If there exist two functions ϕ ∈ ,ψ ∈ � with ϕ(r) ≥ r > ψ(r),
for r > 0 such that

0 < ϕ
(
Pθ (ηn, ηn+1, τ )

)
≤ ψ

(
Pθ (ηn−1, ηn, τ )

)
(1)

and

lim
n,m→+∞

θ(ηn, ηm, τ )ψn
(
Pθ (η0, η1, τ )

)

ψn−1
(
Pθ (η0, η1, τ )

) < 1 (2)

for any m > n ≥ 1 and ∀τ > 0, then the sequence {ηn} is a Cauchy in Ω .

Proof Assume that ϕ(r) ≥ r > ψ(r), r > 0, then from (1), we obtain

0 < Pθ (ηn, ηn+1, τ ) ≤ ϕ(Pθ (ηn, ηn+1, τ ))

≤ ψ
(
Pθ (ηn−1, ηn, τ )

)

...

≤ ψn
(
Pθ (η0, η1, τ )

)
,∀τ > 0. (3)

Setting θi = θ(ηi , ηi+p, τ )∀i ∈ N , p ≥ 1 andω = Pθ (η0, η1, τ ), thenby (Pθ3)with
(3), we obtain
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Pθ (ηn, ηn+p, τ ) ≤ θ(ηn, ηn+p, τ )[Pθ (ηn, ηn+1, τ ) + Pθ (ηn+1, ηn+p, τ )]
= θ(ηn, ηn+p, τ )Pθ (ηn, ηn+1, τ )

+ θ(ηn, ηn+p, τ )Pθ (ηn+1, ηn+p, τ )

≤ θ(ηn, ηn+p, τ )Pθ (ηn, ηn+1, τ )

+ θ(ηn, ηn+p, τ )θ(ηn+1, ηn+p)Pθ (ηn+1, ηn+2, τ ) + . . .

+ θ(ηn, ηn+p, τ )θ(ηn+1, ηn+p, τ )

. . . θ(ηn+p−1, ηn+p, τ )Pθ (ηn+p−1, ηn+p, τ )

≤ θnψ
n
(
Pθ (η0, η1, τ )

)
+ θnθn+1ψ

n+1
(
Pθ (η0, η1, τ )

)
+ . . .

+ θnθn+1 . . . θn+p−1ψ
n+p−1

(
Pθ (η0, η1, τ )

)

= θnψ
n(ω) + θnθn+1ψ

n+1(ω) + · · · + θn . . . θn+p−1ψ
n+p−1(ω)

=
n+p−1∑
i=n

ψ i (ω)

i∏
j=n

θ j .

Multiplying
∏n−1

i=1 θi on the right side of the above inequality, we obtain

Pθ (ηn, ηn+p, τ ) ≤
n+p−1∑
i=n

ψ i (ω)

i∏
j=1

θ j

=
n+p−1∑
i=1

ψ i (ω)

i∏
j=1

θ j −
n−1∑
i=1

ψ i (ω)

i∏
j=1

θ j . (4)

Since from (2) for i ≥ 1, we obtain

lim
i→+∞

θ(ηi , ηi+p, τ )ψ i
(
Pθ (η0, η1, τ )

)

ψ i−1
(
Pθ (η0, η1, τ )

) = lim
i→+∞

θiψ
i (ω)

ψ i−1(ω)
< 1.

Therefore, by ratio test the series
∑∞

i=1 ψ i (ω)
∏i

j=1 θ j converges. Let

S = ∑∞
i=1 ψ i (ω)

∏i
j=1 θ j and Sn = ∑n

i=1 ψ i (ω)
∏i

j=1 θ j , the sequence of partial
sum. Consequently, (4) becomes

Pθ (ηn, ηn+p, t) ≤
[
Sn+p−1 − Sn−1

]

for any n ∈ N and p ≥ 1. Letting limit as n → +∞, we obtain

lim
n→+∞Pθ (ηn, ηn+p, τ ) = 0.

Hence, {ηn} is Cauchy sequence in Ω .
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Putting ϕ(ξ) = ξ and ψ(ξ) = kξ , where ξ ∈ R+, k ∈ [0, 1) in Lemma 2, then we
obtain the following lemma.

Lemma 3 Let (Ω,Pθ ) be a parametric (b, θ)-metric space and {ηn} be any
sequence in Ω such that

0 < Pθ (ηn, ηn+1, τ ) ≤ kPθ (ηn−1, ηn, τ )

and

lim
n,m→+∞ θ(ηn, ηm, τ ) <

1

k
,

where k ∈ [0, 1), for any m > n ≥ 1 and ∀τ > 0, then the sequence {ηn} is a Cauchy
in Ω .

Let (Ω,Pθ ) be a parametric (b, θ)-metric space and T : Ω → Ω be a mapping. We
denote

�(η, ρ, τ ) = max
{
Pθ (η, ρ, τ ),Pθ (η, Tη, τ),Pθ (ρ, Tρ, τ),

Pθ (η, Tρ, τ) + Pθ (ρ, Tη, τ)

2θ(η, ρ, τ )

}
;

R(η, ρ) = max
{
d(η, ρ), d(η, Tη), d(ρ, Tρ),

d(η, Tρ) + d(ρ, Tη)

2

}

and

S(η, ρ) = max
{
d(η, ρ),

d(η, Tη) + d(ρ, Tρ)

2
,
d(η, Tρ) + d(ρ, Tη)

2

}
.

Theorem 1 Let (Ω,Pθ ) be a complete parametric (b, θ)-metric space and T :
Ω → Ω be a continuousmapping onΩ . Assume that there existα : Ω2 × (0,∞) →
R, ϕ ∈  and ψ ∈ � such that ϕ(r) ≥ r > ψ(r), for r > 0 satisfying

α(η, ρ, τ )ϕ
(
Pθ (Tη, Tρ, τ)

)
≤ ψ

(
�(η, ρ, τ )

)

∀η, ρ ∈ Ω and ∀τ > 0. If

(i) T is a parametric α-admissible;

(ii) there exists η0 ∈ Ω such that α(η0, Tη0, τ ) ≥ 1,∀τ > 0;

(iii) limn,m→+∞
θ(ηn , ηm , τ )ψn

(
Pθ (η0, η1, τ )

)

ψn−1

(
Pθ (η0, η1, τ )

) < 1,
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where ηn = T nη0, m > n ≥ 1,∀τ > 0. Then there exists ζ ∈ Ω such that T ζ = ζ ,
i.e. Fi x(T ) �= ∅.
Proof From condition (ii), there exists η0 ∈ Ω such that α(η0, Tη0, τ ) ≥ 1,∀τ > 0.
Consider a sequence {ηn} in Ω such that ηn = T nη0,∀n ∈ N . If ηk−1 = ηk =
Tηk−1, for some k ∈ N , then we have ηk−1 = Tηk−1 and hence ηk−1 is a fixed
point of T . Without lost of generality we assume that ηn−1 �= ηn,∀n ∈ N , then
Pθ (ηn, ηn+1, τ ) > 0,∀τ > 0. Since by (i), T is a parametric α-admissible, α(η0, η1,

τ ) = α(η0, Tη0, τ ) ≥ 1 implies α(η1, η2, τ ) = α(T τ0, T 2τ0, τ ) ≥ 1,∀τ > 0. Simi-
larly, α(η1, η2, τ ) = α(Tη0, T 2η0, τ ) ≥ 1 implies α(η2, η3, τ ) = α(T 2η0, T 3η0, τ )

≥ 1,∀τ > 0. Inductively we obtain that α(ηn−1, ηn, τ ) ≥ 1, where n ∈ N and ∀τ >

0. From the inequality, we obtain

ϕ
(
Pθ (ηn, ηn+1, τ )

)
= ϕ

(
Pθ (Tηn−1, Tηn, τ )

)

≤ α(ηn−1, ηn, τ )ϕ
(
Pθ (Tηn−1, Tηn, τ )

)

≤ ψ
(
�(ηn−1, ηn, τ )

)
,

where

�(ηn−1, ηn, τ ) = max
{
Pθ (ηn−1, ηn, τ ),Pθ (ηn−1, Tηn−1, τ ),Pθ (ηn, Tηn, τ ),

Pθ (ηn−1, Tηn, τ ) + Pθ (ηn, Tηn−1, τ )

2θ(ηn−1, ηn, τ )

}

= max
{
Pθ (ηn−1, ηn, τ ),Pθ (ηn, ηn+1, τ ),

Pθ (ηn−1, ηn+1, τ )

2θ(ηn−1, ηn, τ )

}
.

Consequently, we obtain

ϕ
(
Pθ (ηn, ηn+1, τ )

)
≤ ψ

(
max

{
Pθ (ηn−1, ηn, τ ),Pθ (ηn, ηn+1, τ ),

Pθ (ηn−1, ηn+1, τ )

2θ(ηn−1, ηn, τ )

})

≤ ψ
(
max

{
Pθ (ηn−1, ηn, τ ),Pθ (ηn, ηn+1, τ ),

Pθ (ηn−1, ηn, τ ) + Pθ (ηn, ηn+1, τ )

2θ(ηn−1, ηn, τ )

})
. (5)

If Pθ (ηn−1, ηn, τ ) < Pθ (ηn, ηn+1, τ ), then from (5), we obtain

ϕ
(
Pθ (ηn, ηn+1, τ )

)
≤ ψ(Pθ (ηn, ηn+1, τ )) < ϕ(Pθ (ηn, ηn+1, τ )).

This is a contradiction and hencePθ (ηn, ηn+1, τ ) ≤ Pθ (ηn−1, ηn, τ ),∀n ∈ N . There-
fore from (5) with ϕ(r) ≥ r > ψ(r), r > 0, we obtain
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0 < ϕ
(
Pθ (ηn, ηn+1, τ )

)
≤ ψ

(
Pθ (τn−1, ηn, τ )

)
,∀τ > 0.

Also from (i i i), we obtain

lim
n,m→+∞

θ(xn, xm, t)ψn(Pθ (η0, η1, τ ))

ψn−1(Pθ (η0, η1, τ ))
< 1,

∀τ > 0,wherem > n ≥ 1.ByLemma2,weobtain that the sequence {ηn} is aCauchy
in Ω . Since (Ω,Pθ ) is complete, there is ζ ∈ Ω such that ηn → ζ as n → +∞,
i.e. limn→+∞ Pθ (ηn, ζ, τ ) = 0,∀τ > 0. Suppose that T is continuous on Ω , then
Tηn → T ζ as n → +∞, but Tηn = ηn+1 → ζ as n → +∞. Therefore T ζ = ζ .

Example 20 Let Ω = [0,∞) and Pθ : Ω2 × (0,∞) → [0,∞) be a parametric
(b, θ)-metric equippedwithPθ (η, ρ, τ ) = τ |η − ρ|2,where θ(η, ρ, τ ) = 2 + τ(η +
ρ),∀η, ρ ∈ Ω and ∀τ > 0. Consider T : Ω → Ω is a continuous mapping defined
by Tη = 3η

5 , η ∈ [0, 1] and Tη = 2η − 7
5 , η > 1. Define α : Ω2 × (0,∞) → R

as α(η, ρ, τ ) = 1, η, ρ ∈ [0, 1] and α(η, ρ, τ ) = 0 otherwise, ∀τ > 0. Note that
α(η, ρ, τ ) = 1 and α(Tη, Tρ, τ) = 1,∀η, ρ ∈ [0, 1] and ∀τ > 0. So T is a para-
metric α-admissible. Also setting ψ(r) = kr and ϕ(r) = r , where k = 9

25 , then
ϕ(r) ≥ r > ψ(r), for r > 0. In fact, ∀η, ρ ∈ Ω and ∀τ > 0, we obtain

α(η, ρ, τ )ϕ
(
Pθ (Tη, Tρ, τ)

)
= τ |Tη − Tρ|2

= 9

25
τ |η − ρ|2 = kPθ (η, ρ, τ )

≤ ψ
(
�(η, ρ, τ )

)
.

Since T is parametric α-admissible, we construct a sequence {ηn} in Ω such that
α(ηn, ηn+1, τ ) = α(T nη0, T n+1η0, τ ) ≥ 1,∀τ > 0. Since α(ηn, ηn+1, τ ) ≥ 1,∀n ∈
N ∪ {0}, so ηn ∈ [0, 1],∀n ∈ N ∪ {0}. In fact, ηn = T nη0 = ( 35 )

nη0 → 0 as n →
+∞ and limn,m→+∞ θ(T nη0, Tmη0, τ ) = 2 < 1

k . Thus, T satisfies all the conditions
of Theorem 1 and hence Fix(T ) �= ∅. One can check that Fix(T ) = {0, 7

5 }.
We omit the condition of continuity assumption in Theorem 1 as follows.

Theorem 2 Let (Ω,Pθ ) be a complete parametric (b, θ)-metric space and T :
Ω → Ω be a mapping on Ω . Assume that there exist α : Ω2 × (0,∞) → R, ϕ ∈ 

and ψ ∈ � such that ϕ(r) ≥ r > ψ(r), r > 0 satisfying

α(η, ρ, τ )ϕ
(
Pθ (Tη, Tρ, τ)

)
≤ ψ

(
�(η, ρ, τ )

)
,

∀η, ρ ∈ Ω and ∀τ > 0. If

(i) T is a parametric α-admissible;
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(ii) there exists η0 ∈ Ω such that α(η0, Tη0, τ ) ≥ 1,∀τ > 0;

(iii) limn,m→+∞
θ(ηn , ηm , τ )ψn

(
Pθ (η0, η1, τ )

)

ψn−1

(
Pθ (η0, η1, τ )

) < 1, where ηn = T nη0, m > n ≥ 1,∀τ >

0;

(iv) {ηn} is a sequence in Ω such that α(ηn, ηn+1, τ ) ≥ 1 and ηn → ζ ∈ Ω as n →
+∞, then there exists a subsequence {ηnk } of {ηn} such that α(ηnk , ζ, τ ) ≥
1,∀τ > 0, where nk ≥ n0 ≥ 1.

Then there exists ζ ∈ Ω such that T ζ = ζ , i.e. Fi x(T ) �= ∅.
Proof As in Theorem 1, one can show that the sequence {ηn} is a Cauchy inΩ . Since
(Ω,Pθ ) is complete, there exists ζ ∈ Ω such thatηn → ζ ann → +∞. From (iv)we
obtain α(ηnk , ζ, τ ) ≥ 1, nk ≥ n0 ≥ 1,∀τ > 0. Taking η = ηnk and ρ = ζ,∀τ > 0,
we obtain

ϕ
(
Pθ (ηnk+1, T ζ, τ )

)
= ϕ

(
Pθ (Tηnk , T ζ, τ )

)

≤ α(ηnk , ζ, τ )ϕ
(
Pθ (Tηnk , T ζ, τ )

)

≤ ψ
(
�(ηnk , ζ, τ )

)

< ϕ
(
�(ηnk , ζ, τ )

)
,

where

�(ηnk , ζ, τ ) = max
{
Pθ (ηnk , ζ, τ ),Pθ (ηnk , Tηnk , τ ),Pθ (ζ, T ζ, τ ),

Pθ (ηnk , T ζ, τ ) + Pθ (ζ, Tηnk , τ )

2θ(ηnk , ζ, τ )

}

= max
{
Pθ (ηnk , ζ, τ ),Pθ (ηnk , ηnk+1, τ ),Pθ (ζ, T ζ, τ ),

Pθ (ηnk , T ζ, τ ) + Pθ (ζ, ηnk+1, τ )

2θ(ηnk , ζ, τ )

}
.

Letting k → +∞ and continuity of ϕ, we obtain

ϕ
(
Pθ (ζ, T ζ, τ )

)
< ϕ

(
lim

nk→+∞ �(ηnk , ζ, τ )
)

= ϕ
(
Pθ (ζ, T ζ, τ )

)

which is a contradiction. Therefore, we conclude that Pθ (ζ, T ζ, τ ) = 0 and hence
T ζ = ζ , i.e. Fix(T ) �= ∅.
Theorem 3 Suppose parametric α∗-admissibility of mapping T : Ω → Ω is sub-
suming to the hypothesis of Theorem 1 (resp. Theorem 2). Then there exists a unique
ζ ∈ Ω such that T ζ = ζ i.e. Fi x(T ) is a singleton.
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Proof By Theorem 1 (resp. Theorem 2), we obtain Fix(T ) �= ∅. Since T is a para-
metric α∗-admissible, then α(ζ, ζ ∗, τ ) = α(T ζ, T ζ ∗, τ ) ≥ 1,∀ζ, ζ ∗ ∈ Fix(T ) and
∀τ > 0. Suppose that ζ �= ζ ∗,∀τ > 0, we obtain

ϕ
(
Pθ (ζ, ζ ∗, τ )

)
= ϕ

(
Pθ (T ζ, T ζ ∗, τ )

)

≤ α(ζ, ζ ∗, t)ϕ
(
Pθ (T ζ, T ζ ∗, τ )

)

≤ ψ
(
�(ζ, ζ ∗, τ )

)
= ψ

(
Pθ (ζ, ζ ∗, τ )

)

< ϕ
(
Pθ (ζ, ζ ∗, τ )

)
.

This is a contradiction and hence T possesses a unique fixed point in Ω , i.e. Fix(T )

is a singleton.

Corollary 1 Let (Ω,Pθ ) be a complete parametric (b, θ)-metric space and T :
Ω → Ω be a mapping such that

Pθ (Tη, Tρ, τ) ≤ k�(η, ρ, τ )

∀η, ρ ∈ Ω and ∀τ > 0. Moreover, if for any η0 ∈ Ω ,

lim
n,m→+∞ θ(ηn, ηm, τ ) <

1

k
,

where ηn = T nη0 and 0 ≤ k < 1,∀τ > 0. Then Fix(T ) is singleton.

Remark 3 (i) In Example 20, T is a parametric α-admissible and Fix(T ) =
{0, 7

5 }, but α( 75 ,
7
5 , τ ) = α(T 7

5 , T
7
5 , τ ) = 0,∀τ > 0. This shows that T is not

parametric α∗-admissible. In this case, Theorem 3 is not application in Example
20.

(ii) Moreover, in Example 20, taking η = 1
2 and ρ = 2, then

Pθ (Tη, Tρ, τ) = Pθ (T
1

2
, T 2, τ ) = 64τ

25
>

9τ

4
= Pθ (

1

2
, 2, τ ),

∀τ > 0. This shows that Corollary 1 is not application in Example 20.

We give the direct consequences of Theorems 1 and 2 (respectively, Theorem 3) as
follows.

Theorem 4 Let (Ω, d) be a complete metric space and T : Ω → Ω be a mapping
onΩ . Assume that there exist α : Ω × Ω → R, ϕ ∈  andψ ∈ � such that ϕ(r) ≥
r > ψ(r), for r > 0 satisfying

α(η, ρ)ϕ
(
d(Tη, Tρ)

)
≤ ψ

(
R(η, ρ)

)
, (6)
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∀η, ρ ∈ Ω . If

(i) T is an α-admissible;
(ii) there exists η0 ∈ Ω such that α(η0, Tη0) ≥ 1;

(iii) limn→+∞
ψn

(
d(η0, η1)

)

ψn−1

(
d(η0, η1)

) < 1, where ηn = T nη0;

(iv) (a) T is continuous,
or (b) {ηn} is a sequence in Ω such that α(ηn, ηn+1) ≥ 1 and ηn → ζ ∈ Ω as
n → +∞, then there exists a subsequence {ηnk } of {ηn} such that α(ηnk , ζ ) ≥ 1,
where nk ≥ n0 ≥ 1.

Then there exists ζ ∈ Ω such that T ζ = ζ , i.e. Fi x(T ) �= ∅.
Proof By (ii), there exists η0 ∈ Ω such that α(η0, Tη0) ≥ 1. Define a sequence inΩ

such that ηn+1 = T n+1η0 = Tηn,∀n ∈ N ∪ {0}. As in Theorem 1, we assume that
d(ηn, ηn+1) > 0, then ηn+1 �= ηn,∀n ∈ N ∪ {0}. Since T is α-admissible, α(η0, η1)

= α(η0, Tη0) ≥ 1 implies α(η1, η2) = α(Tη0, T 2η0) ≥ 1. Similarly, α(η1, η2) = α

(Tη0, T 2η0) ≥ 1 implies α(η2, η3) = α(T 2η0, T 3η0) ≥ 1. Repeating this process,
we obtain inductively that α(ηn, ηn+1) ≥ 1,∀n ∈ N ∪ {0}. From (6), we obtain

ϕ
(
d(ηn+1, ηn+2)

)
≤ α(ηn, ηn+1)ϕ

(
d(Tηn, Tηn+1)

)

≤ ψ
(
R(ηn, ηn+1)

)
,

where

R(ηn, ηn+1) = max
{
d(ηn, ηn+1), d(ηn, Tηn), d(ηn+1, Tηn+1),

d(ηn, Tηn+1) + d(ηn+1, Tηn)

2

}

= max
{
d(ηn, ηn+1), d(ηn+1, ηn+2),

d(ηn, ηn+2)

2

}
.

Consequently, we obtain

ϕ
(
d(ηn+1, ηn+2)

)
≤ ψ

(
max

{
d(ηn, ηn+1), d(ηn+1, ηn+2),

d(ηn, ηn+2)

2

})

≤ ψ
(
max

{
d(ηn, ηn+1), d(ηn+1, ηn+2),

d(ηn, ηn+1) + d(ηn+1, ηn+2)

2

})

≤ ψ
(
max

{
d(ηn, ηn+1), d(ηn+1, ηn+2)

})
. (7)

If d(ηn, ηn+1) < d(ηn+1, ηn+2), then from (7), we obtain
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ϕ
(
d(ηn+1, ηn+2)

)
≤ ψ

(
d(ηn+1, ηn+2)

)
< ϕ

(
d(ηn+1, ηn+2)

)
.

This is a contradiction and hence d(ηn+1, ηn+2) ≤ d(ηn, ηn+1). From (7), it follows
that

ϕ
(
d(ηn+1, ηn+2)

)
≤ ψ

(
d(ηn, ηn+1)

)
. (8)

Since ϕ(r) ≥ r > ψ(r) for r > 0, then from (8), we obtain

0 < d(ηn, ηn+1) ≤ ϕ
(
d(ηn, ηn+1)

)
≤ ψ

(
d(ηn−1, ηn)

)
. (9)

Consequently from (9), we obtain

0 < d(ηn, ηn+1) ≤ ψ
(
d(ηn−1, ηn)

)
≤ · · · ≤ ψn

(
d(η0, η1)

)
. (10)

Using triangular inequality and from (10) setting with r = d(η0, η1), for p ≥ 1 and
n ∈ N , we obtain

d(ηn, ηn+p) ≤ d(ηn, ηn+1) + d(ηn+1, ηn+2) + · · · + d(ηn+p−1, ηn+p)

≤ ψn(d(η0, η1)) + ψn+1(d(η0, η1)) + · · · + ψn+p−1(d(η0, η1))

=
n+p−1∑
i=n

ψ i (r)

=
n+p−1∑
i=1

ψ i (r) −
n−1∑
i=1

ψ i (r). (11)

Since from (iii), we obtain

lim
n→+∞

ψn
(
d(η0, η1)

)

ψn−1
(
d(η0, η1)

) = lim
n→+∞

ψn(r)

ψn−1(r)
< 1.

Therefore, by Ration test, the series
∑∞

i=1 ψ i (r) is convergent. Let S = ∑∞
i=1 ψ i (r)

and Sn = ∑n
i=1 ψ i (r), the sequence of partial sum. Consequently, (11) becomes

d(ηn, ηn+p) ≤ [Sn+p−1 − Sn−1]

for n ∈ N and p ≥ 1. Letting n → +∞, we obtain

lim
n→+∞ d(ηn, ηn+p) = 0.
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Thus, the sequence {ηn} is a Cauchy inΩ . Since (Ω, d) is complete, so the sequence
{ηn} converges to ζ ∈ Ω . Following the same steps as in Theorems 1 and 2, we obtain
the required result.

Theorem 5 Suppose α∗-admissibility of mapping T : Ω → Ω is subsuming to the
hypothesis of Theorem 4. Then there exists a unique ζ ∈ Ω such that T ζ = ζ . More-
over, the sequence {T nη0}n∈N converges to ζ ∈ Ω .

Remark 4 (i) Theorem 4 improves Theorem 8 [4] (respectively, Theorems 9, 10
and 11 of [4]) as the continuity condition in the control function ψ has replaced
by comparison function and weak triangular α-admissibility of mapping T by
α-admissibility, and R(η, ρ) ≤ S(η, ρ),∀η, ρ ∈ Ω .

(ii) The drawback to obtain a unique fixed point in Theorem 8 [4] (respectively,
Theorem 9 [4]) is removed by using α∗-admissibility of mapping T .

Consider (Ω,�) is a partial ordered set. We say T : Ω → Ω is monotone non-
decreasing if η, ρ ∈ Ω , η � ρ implies Tη � Tρ.

Theorem 6 Let (Ω,�) be a partial ordered set and suppose that there exists a
parametric (b, θ)-metric Pθ such that (Ω,Pθ ) be a complete parametric (b, θ)-
metric space. Let T : Ω → Ω be a monotone non-decreasing self-mapping w.r.t. �
such that there exist ϕ ∈  and ψ ∈ �, ϕ(r) ≥ r > ψ(r), for r > 0 satisfying

ϕ
(
Pθ (Tη, Tρ, τ)

)
≤ ψ

(
�(η, ρ, τ )

)
,

∀η, ρ ∈ Ω with η � ρ and ∀τ > 0. If

(i) there exists η0 ∈ Ω such that η0 � Tη0;

(ii) limn,m→+∞
θ(ηn , ηm , τ )ψn

(
Pθ (η0, η1, τ )

)

ψn−1

(
Pθ (η0, η1, τ )

) < 1, where ηn = T nη0,∀τ > 0;

(iii) (a) T is continuous, or (b) {ηn} is a non-decreasing sequence in Ω such that
ηn → ζ as n → +∞, then there exists a subsequence {ηnk } of {ηn} such that
ηnk � ζ , where nk ≥ n0.

Then Fix(T ) �= ∅. Further, if every pair of elements ζ, ζ ∗ ∈ Fix(T ) is comparable,
then Fix(T ) is a singleton.

Proof Define a mapping α : Ω2 × (0,∞) → [0,∞) as α(η, ρ, τ ) = 1, η � ρ or,
ρ � η and α(η, ρ, τ ) = 0 otherwise, ∀τ > 0. Then, we obtain

α(η, ρ, τ )ϕ
(
Pθ (Tη, Tρ, τ)

)
≤ ψ

(
�(η, ρ, τ )

)
,

∀η, ρ ∈ Ω with η � ρ and ∀τ > 0. Since T is monotone non-decreasing mapping
w.r.t.�, so T is a parametric α-admissible. Indeed if η, ρ ∈ Ω such that α(ζ, ρ, τ ) ≥
1,∀τ > 0, then η � ρ, or ρ � η. Since T is monotone non-decreasing mapping
w.r.t �, we have Tη � Tρ, or Tρ � Tη, which in turn gives α(Tη, Tρ, τ) ≥
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1,∀τ > 0. On the other hand, from (ii) there exists η0 ∈ Ω such that η0 � Tη0, then
α(η0, Tη0, τ ) ≥ 1,∀τ > 0. From (iii)(a) if T is continuous, then all the hypothesis
of Theorem 1 are satisfied. Again from (iii)(b) suppose that {ηn} is a non-decreasing
sequence inΩ such thatηn → ζ asn → +∞, then there exists a subsequence {ηnk }of
{ηn} such that ηnk � ζ , nk ≥ n0, which in turn gives α(ηnk , ζ, τ ) ≥ 1,∀τ > 0. Thus,
all the hypothesis of Theorem 2 are satisfied. Consequently, T possesses a fixed point
in Ω , i.e. Fix(T ) �= ∅. Further assume that every pair of elements ζ, ζ ∗ ∈ Fix(T )

are comparable, then ζ � ζ ∗, or ζ ∗ � ζ which in turn gives α(ζ, ζ ∗, τ ) ≥ 1,∀τ > 0.
Therefore, T is a parametric α∗-admissible. Thus, all the hypothesis of Theorem 3
are satisfied and hence Fix(T ) is a singleton.

4 Application

Let Ω = C([0, l], R) be a set of all real-valued continuous functions on [0, l] and
define a parametric (b, θ)-metric Pθ : Ω × Ω × (0,∞) → [0,∞) as

Pθ (η, ρ, τ ) = max
ω∈[0,l]

{
τ |η(ω) − ρ(ω)|2

}

with θ(η, ρ, τ ) = 2 + τ(η + ρ),∀η, ρ ∈ Ω and∀τ > 0. Then (Ω,Pθ ) is a complete
parametric (b, θ)-metric space. Let � be a partial order on Ω defined by η � ρ if
and only if η(ω) � ρ(ω),∀ω ∈ [0, l].

Consider an integral equation

η(r) = σ(r) +
l∫

0

K (r, s) f
(
s, η(s)

)
ds (12)

with the following assumption that:
(H1) : f : [0, l] × R → R, σ : [0, l] → R, and K : [0, l] × [0, l] → [0,∞) are
continuous functions;

(H2) : maxr∈[0,l]
( ∫ l

0 K
2(r, s)ds

) 1
2

<
√
k
l , where k = 1

22 ;

(H3) : 0 ≤
(
f (s, η(s)) − f (s, ρ(s))

)
≤
( |η(s)−Tρ(s)|2+|ρ(s)−Tη(s)|2

2θ(η(s),ρ(s),τ )

) 1
2

∀η, ρ ∈ Ω, η � ρ and ∀τ > 0, where Tη(s) = η(s), s ∈ [0, l];
(H4) : there exists η0 ∈ Ω such that

η0(r) ≤ σ(r) +
l∫

0

K (r, s) f
(
s, η0(s)

)
ds;
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(H5) : limn,m→∞ θ(ηn, ηm, τ ) < 1
k ,whereηn = T nη0,m > n ≥ n0 ∈ N and∀τ > 0.

We have the following theorem for the existence of solution of integral equation.

Theorem 7 Suppose that (H1) − (H5) are hold. Then the integral Eq. (12) has a
solution in Ω .

Proof Suppose T : Ω → Ω be a continuous mapping defined by

Tη(r) = σ(r) +
l∫

0

K (r, s) f
(
s, η(s)

)
ds, (13)

r ∈ [0, l] and ∀η ∈ Ω . First we show that T is non-decreasing mapping with respect
to �. For this, let η � ρ, then by (H3), we have

0 ≤
(
f (s, η(s)) − f (s, ρ(s))

)
,

∀s ∈ [0, l]. Also we have

Tρ(r) − Tη(r) =
l∫

0

K (r, s)
[
f
(
s, ρ(s)

)
− f

(
s, η(s)

)]
ds ≥ 0,

∀r ∈ [0, l]. Then Tη � Tρ, i.e. T is monotone non-decreasing mapping with respect
to �. On the other hand by (H2), (H3) and ∀τ > 0, we have

Pθ (Tη, Tρ, τ) = max
r∈[0,l] τ |Tη(r) − Tρ(r)|2

≤ τ

⎛
⎝max

r∈[0,l]

l∫

0

K (r, s)
[
f
(
s, η(s)

)
− f

(
s, ρ(s)

)]
ds

⎞
⎠

2

≤ τ max
r∈[0,l]

⎡
⎢⎣
⎛
⎝

l∫

0

K 2(r, s)ds

⎞
⎠

1
2 (∫ l

0

[
f
(
s, η(s)

)

− f
(
s, ρ(s)

)]2
ds

) 1
2

]2

≤ kτ

l2

{ |η − Tρ|2 + |ρ − Tη|2
2θ(η, ρ, τ )

}⎛
⎝

l∫

0

ds

⎞
⎠

2

≤ k
Pθ (η, Tρ, τ) + Pθ (ρ, Tη, τ)

2θ(η, ρ, τ )

= k�(η, ρ, τ ).
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From (H4) there exists η0 ∈ Ω such that η0 � Tη0. Setting ϕ(r) = r andψ(r) = kr ,
where k ∈ (0, 1] and r > 0. Thus, the integral operator T defined by (13) satisfies
all the conditions of Theorem 6 and hence Fix(T ) �= ∅, i.e. the integral equation
(12) has a solution in Ω . Further if every pair of elements ζ, ζ ∗ ∈ Fix(T ) ⊆ Ω is
comparable, then the solution is unique.
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Some Extragradient Methods for Solving
Variational Inequalities Using Bregman
Projection and Fixed Point Techniques in
Reflexive Banach Spaces

Lateef Olakunle Jolaoso

Abstract In this chapter, we introduce some extragradient methods for solving vari-
ational inequalities using Bregman projections and a fixed point technique in reflex-
ive Banach spaces. These algorithms are extensions of the prototypes which have
been studied extensively in real Hilbert and 2-uniformly convex Banach spaces. We
emphasize that there are some applicable examples (most especially in mechanics)
which can be modelled as variational inequalities in reflexive Banach spaces outside
Hilbert and 2-uniformly convexBanach spaces.Moreover, the usage ofBregman pro-
jections allows the consideration of more general structures of the feasible set. The
convergence analysis of the algorithms are given using Bregman distance and fixed
point techniques. More so, we present some computational examples to illustrate the
effects of various type of convex functions on the proposed algorithm.

1 Introduction

Throughout this chapter, E is a real Banach space endowed with norm ‖ · ‖ and dual
E∗. We denote the value of the functional f ∗ ∈ E∗ at g ∈ E by 〈 f ∗, g〉. Let C be
a nonempty, closed and convex subset of E and A : C → E∗ be an operator. The
Variational Inequalities (in short, VI) can be defined as finding a point x† ∈ C such
that

〈Ax†, y − x†〉 ≥ 0 ∀ y ∈ C. (1)

The theory of VI can be traced back to the work of Stampacchia [43] on Signorini
problem [19, 20]. It has been developed and considered as a fruitful interaction
between many fields of applied science and mathematical analysis, see for instance
[17, 22, 32, 33]. The existence of solution of the VI was built on arguments of
monotonicity of the operator A and convexity of the set C . It is well known that a
point x† solves the VI if and only if x† solves the fixed point equation
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x† = PC(x† − βAx†), (2)

where β > 0 is a non-negative value and PC is the projection onto C. Considerable
efforts have been made by several researchers in proposing some fixed point meth-
ods which are based on projections for solving the VI in many directions, see, for
instance [8, 9, 11, 34, 35]. One of the simplest methods for solving the VI is the
gradient projection method which is a natural extension of gradient descent method
for solving convex optimization problems [23]. The convergence of the gradient pro-
jectionmethod is guaranteed under a strong condition known as strongmonotonicity.
However, if the operator A defining the VI does not satisfies the strong condition,
the gradient projection method may fail to converge to a solution of the VI. Korpele-
vich [34] first introduced an Extragradient Method (EM) which does not require the
strong monotonicity condition in finite dimensional spaces as follows:

⎧
⎪⎨

⎪⎩

x0 ∈ C ⊂ R
n,

yn = PC(xn − βAxn),

xn+1 = PC(xn − βAyn), n ≥ 0,

(3)

where β ∈ (0, 1/L), A : Rn → R
n is a monotone and L-Lipschitz continuous oper-

ator. The EM has been extended to infinite-dimensional spaces by many authors,
see [9, 10, 14, 18]. Though the EM yields a successful approximation of the solu-
tion of VI, it is considered to be too computational expensive since there is need
to calculate two projections onto the whole feasible set C in each iteration. Other
important modifications of the EM has been introduced by many researchers such
as the Subgradient Extragradient Method (SEM) by Censor et al. [11, 12]. This was
done by defining a constructible half-space whose projection can easily be calculated
explicitly in real Hilbert spaces. The SEM is given as follows: Choose x0 ∈ C and
compute

⎧
⎪⎨

⎪⎩

yn = PC(xn − βAxn),

xn+1 = PTn (xn − βAyn),

where Tn = {x ∈ H : 〈xn − βAxn − yn, x − yn〉 ≤ 0}, n ≥ 0.

(4)

The authors further proved that the sequence {xn} generated by the SEM converges
weakly to a solution of theVI in real Hilbert spaces provided the condition β ∈ (0, 1/
L) is satisfied. Also, Tseng [49] introduced a single projection method for solving
the VI as follows:

⎧
⎪⎨

⎪⎩

x0 ∈ C, β > 0,

yn = PC(xn − βAxn),

xn+1 = yn − β(Ayn − Axn), n ≥ 1.

(5)
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It was proved that (5) converges weakly to a solution of the VI if the stepsize also
satisfiesβ ∈ (

0, 1
L

)
.Note that the value of the operator A is evaluated at two points in

the feasible set C when using the SEM and (5). This can be computational expensive
if the operator A does not have simple structure. Example of such operators can be
found in optimal control theory (see, [31, 50]). Hence, there is need to improve the
SEM such that the evaluation of A will be minimal. An attempt in this direction was
introduced by Popov [40] who introduced the following iteration with evaluation of
A at a single point in the feasible set per each iteration: Given x0, y0 ∈ C, compute

{
yn+1 = PC(xn − βAyn),

xn+1 = PC(xn+1 − βAyn), ∀n ≥ 0,
(6)

where β ∈ (
0, 1

3L

)
. The author also proved a weak convergence of (6) to a solution

of VI. Many other modifications of the above methods can be found in, for instance,
see [1, 8–10, 15, 16, 27–31, 42, 45–48, 52].

Most results on iterative methods for solving the VI have been introduced in
real Hilbert or 2-uniformly convex Banach spaces (see [13, 26, 36, 41] and refer-
ences therein for examples of iterative methods for solving VI in 2-uniformly convex
Banach spaces).We note that there are some interesting applicable models which can
be formulated as VI in higher Banach spaces which are not Hilbert or 2-uniformly
convex Banach spaces. Examples of such can be found in the mechanics and mem-
brane problems (see, for instance, [2, Example 4.4.2]). Hence it becomes necessary
to find iterative methods in Banach spaces which are more general than Hilbert and
2-uniformly convex Banach spaces.

In this chapter, we introduce some extragradient-type iterativemethods for solving
VI in real reflexive Banach spaces. The convergence of these methods are studied
using Bregman distance technique and the fixed point Eq. (2) in reflexive Banach
spaces. It should also be mention that another importance of using the Bregman
projection is that a general structure of the feasible set can be considered for the VI.
For example, we can consider the feasible set as a simplex and choose the Kullback-
Leibler divergencewhich is aBregmandivergence on negative entropy as the distance
and obtain a projection onto simplex which can easily be calculated explicitly. We
further perform some computational experiments to illustrate the behaviour of the
proposed methods in this chapter.

2 Preliminaries

In this section,we give some definitions and preliminary resultswhichwill we needed
for our results. The strong and weak convergences of {xn} to x ∈ E are denoted by
xn → x and xn ⇀ x respectively.

Definition 1 A Banach space E is called strictly convex if
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∥
∥
∥
∥
x + y

2

∥
∥
∥
∥ < 1,

whenever x, y ∈ BE = {x ∈ E : ‖x‖ = 1} and x �= y. When the limit

lim
t→∞

‖x + t y‖ − ‖x‖
t

(7)

exists for all x, y ∈ BE , we say E is Gâteaux differentiable. In this case, we called
E a smooth Banach space. If for each x ∈ BE and the limit (7) exists for all y ∈ BE ,

we say that the norm on E is Fréchet differentiable. Also, if the limit (7) is attained
uniformly for any x, y ∈ BE , then the norm on E is said to be uniformly Fréchet
differentiable. In this case E is called uniformly smooth Banach space. It is well
known that every uniformly smooth Banach space is smooth and reflexive.

Definition 2 Let f : E → (−∞,+∞] be a proper, convex and lower semicontinu-
ous function.We denote the domain of f by dom f where dom f := {u ∈ E : f (u) <

+∞}. When dom f �= ∅, then f is said to be proper. The Fenchel conjugate of f is
the functional f ∗ : E∗ → (−∞,+∞] defined by

f ∗(ξ) = sup{〈ξ, x〉 − f (u) : u ∈ E}, ∀ ξ ∈ E∗.

For any u ∈ int (dom f ) and y ∈ E, we defined the directional derivative of f at u
by

f ′(u, v) = lim
t→∞

f (u + tv) − f (u)

t
. (8)

The gradient of f at u is the linear function∇ f (u)which is denoted by 〈v,∇ f (u)〉 =
f ′(u, v) for all v ∈ E . If the limit (8) exists for every u ∈ int (dom f ), we say that f
is Gâteaux differentiable on E . When the subdifferential of f is single-valued, then
∇ f = ∂ f , where ∂ f is defined by

∂ f (u) = {ξ ∈ E∗ : f (v) − f (u) ≥ 〈v − u, ξ 〉, ∀v ∈ E},

which is the subdifferential of f at u.

Definition 3 Let E be a reflexive Banach space. We say that f : E → (−∞,+∞]
is a Legendre function if it satisfies:

(L1) f is Gâteaux differentiable, int (dom f ) �= ∅ and dom∇ f = int (dom f ),
(L2) f ∗ isGâteaux differentiable, int (dom f ∗) �= ∅ anddom∇ f ∗ = int (dom f ∗).

Since E is reflexive, then∇ f ∗ = (∇ f )−1. If E is a smooth and strictly convexBanach
space, then an example of the Legendre function is f p(u) = 1

p‖u‖p (1 < p < ∞)

with conjugate f ∗(u∗) = 1
q ‖u∗‖q (1 < q < ∞), where 1

p + 1
q = 1; see [3, Corollary

5.5, p. 634]. In this case, the gradient ∇ f coincides with the generalized duality
mapping Jp : E → 2E

∗
which is defined by
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Jp(u) = {v∗ ∈ E∗ : 〈u, v∗〉 = ‖u‖p, ‖v∗‖ = ‖u‖p−1}, where u ∈ E .

If J = J2, then J2 is called the normalized duality mapping and when E = H , a real
Hilbert space, then J ≡ I is the duality mapping.

Definition 4 (Bregman distance [4]) Let f : E → (−∞,+∞] be a Gâteaux differ-
entiable function. The function D f : dom f × int (dom f ) → [0,+∞) defined by

D f (u, v) := f (u) − f (v) − 〈u − v,∇ f (v)〉 (9)

is called the Bregman distance with respect to f . Although, the Bregman distance
fails to satisfies some properties of metric, it however, posses the following important
properties (see [3]):

(i) For any u, x ∈ dom f and v,w ∈ int (dom f ),

D f (v,w) + D f (w, u) − D f (v, u) = 〈∇ f (w) − ∇ f (u), w − v〉; (10)

(ii) For

D f (w, x) + D f (v, u) − D f (w, u) − D f (v, x)

= 〈∇ f (u) − ∇ f (x), w − v〉. (11)

Definition 5 The function f : E → (−∞,+∞] is said to be
(i) strongly coercive if [6]

lim‖u‖→∞
f (u)

‖u‖ = ∞.

(ii) strongly convex if there exists a constant σ > 0 such that [38]

f (v) ≥ f (u) + 〈∇ f (u), v − u〉 + σ

2
‖u − v‖2.

Remark 1 If f is strongly coercive, then [6]

(a) ∇ f : E → E∗ is bijective and norm-to-weak* continuous;
(b) {u ∈ E : D f (u, v) ≤ α} is bounded for all v ∈ E and α > 0.

In addition, if f is strongly convex with parameter σ > 0, then [51]

D f (u, v) ≥ σ

2
‖u − v‖2. (12)

Definition 6 [7] Let f : E → R ∪ {+∞} be a convex and Gâteaux differentiable
function such that C ⊂ int(dom f ). The Bregman projection of x ∈ int(dom f ) onto
C is defined as the necessarily unique vector Proj fC (x) ∈ C such that
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D f (Proj
f
C (u), u) = inf{D f (v, u) : v ∈ C}.

Also, p = Proj fC(u) if and only if

〈∇ f (u) − ∇ f (p), v − p〉 ≤ 0 ∀ v ∈ C. (13)

More so

D f (v, Proj fC (u)) + D f (Proj
f
C (u), u) ≤ D f (v, u) ∀ u ∈ E, v ∈ C. (14)

The following is an analogue of the celebrated Opial’s lemma for Bregman dis-
tance in Banach space.

Lemma 1 [25] Let {xn} be a sequence in E such that xn ⇀ p for some p ∈ E .

Then
lim sup
n→∞

D f (p, xn) < lim sup
n→∞

D f (q, xn),

for all q in the interior of dom f with p �= q.

Next, we give some results which will be used to established the convergence of
iterates to an element in the solution set of the VI (1).

Lemma 2 [5, 24, 44] Let C be a nonempty, closed and convex subset or E. Let
A : C → E∗ be a continuous, monotone mapping and z ∈ C, then

u† ∈ SOL(C, A) if and only if 〈Aw,w − u†〉 ≥ 0, ∀w ∈ C.

Moreover, SOL(C, A) is closed and convex.

The following result is well known; see, e.g. [21, 39].

Lemma 3 Let {an} and {bn} be two non-negative real sequences such that

an+1 ≤ an − bn.

Then {an} is bounded and
∑∞

n=0 bn < ∞.

3 Main Results

In this section, we present some extragradient methods which are based on Bregman
projections and fixed point Eq. (2) for approximating solution of VI in reflexive
Banach spaces E . Suppose C is a nonempty closed convex subset of E . For the rest
of the paper, we assume that the following conditions hold.

Condition 1 The solution set of the VI (1), denoted by SOL(C, A) is nonempty.
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Condition 2 The mapping A : C → E∗ is monotone, i.e.,

〈Au − Av, u − v〉 ≥ 0 ∀u, v ∈ C. (15)

Condition 3 The mapping A is Lipschitz continuous on E with constant L > 0,
i.e.,

‖Au − Av‖ ≤ L‖u − v‖ ∀u, v ∈ E . (16)

Condition 4 The function f : E → (−∞,+∞] satisfies the following:
(B1) f is proper, convex and lower semicontinuous;
(B2) f is uniformlly Fréchet differentiable;
(B2) f is strongly convex on every E with strongly convexity constant σ > 0;
(B4) f is a strongly coercive and Legendre function which is bounded.

Next, we present a subgradient extragradient method for solving the VI.

Algorithm Subgradient extragradient method with Bregman projections

Step 0: Select a starting point x0 ∈ E, β > 0 and set n = 0.
Step 1: Given the current iterate xn, compute

yn = Proj fC (∇ f ∗(∇ f (xn) − βAxn)), (17)

construct the half-space Tn given by

Tn = {u ∈ E : 〈∇ f (xn) − βAxn − ∇ f (yn), u − yn〉 ≤ 0}. (18)

Compute the next iterate via

xn+1 = Proj fTn (∇ f ∗(∇ f (xn) − βAyn)). (19)

Step 2: If xn = yn, then stop. Otherwise, set n ← (n + 1) and return to Step 1.

3.1 Convergence Analysis

The proof of the stopping criterion for Algorithm 5 follows from (2). However, we
present the proof for completeness.

Lemma 4 Suppose that xn = yn for n ≥ 1, then we are at a solution of the VI (1).

Proof Since xn = yn , then from (13), we have

〈∇ f (xn) − βAxn − ∇ f (xn), u − xn〉 ≤ 0 ∀u ∈ C.

This implies that
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β〈Axn, u − xn〉 ≥ 0 ∀u ∈ C.

Since β > 0, then we get

〈Axn, u − xn〉 ≥ 0 ∀ u ∈ C.

Therefore xn ∈ SOL(C, A).

Theorem 1 Assume that Condition 1–4 hold and β ∈ (
0, σ

L

)
. Then the sequences

{xn} and {yn} generated by Algorithm 5 converges weakly to a unique solution x̄ ∈
SOL(C, A).

Proof Let z ∈ SOL(C, A), then from (14), we have

D f (z, xn+1) = D f (z, Proj
f
Tn

(∇ f ∗(∇ f (xn) − βAyn)))

≤ D f (z,∇ f ∗(∇ f (xn) − βAyn)) − D f (xn+1,∇ f (xn) − βAyn)

= f (z) − 〈z,∇ f (xn) − βAyn〉 + f ∗(∇ f (xn) − βAyn)

− f (xn+1) + 〈xn+1,∇ f (xn) − βAyn〉 − f ∗(∇ f (xn) − βAyn)

= f (z) − 〈z,∇ f (xn)〉 + f ∗(xn) − f (xn+1)

+〈xn+1,∇ f (xn)〉 − f ∗(xn) − β〈z − xn+1, Ayn〉
= D f (z, xn) − D f (xn+1, xn) + β〈z − xn+1, Ayn〉. (20)

Since A is monotone and z ∈ SOL(C, A), then we have 〈Ayn, z − yn〉 ≥ 0. Conse-
quently, we get

β〈Ayn, z − xn+1〉 ≤ β〈Ayn, yn − xn+1〉.

Therefore from (20), we derive

D f (z, xn+1) ≤ D f (x, xn) + β〈Ayn, yn − xn+1〉 − D f (xn+1, xn). (21)

Also from (10), we get

D f (xn+1, xn) − D f (yn, xn) − D f (xn+1, yn) = 〈∇ f (yn) − ∇ f (xn), xn+1 − yn〉.
(22)

Substituting (22) into (21), we obtain

D f (z, xn+1) ≤ D f (z, xn) − D f (yn, xn) − D f (xn+1, yn)

−〈∇ f (yn) − ∇ f (yn), xn+1 − yn〉 + β〈Ayn, yn − xn+1〉
= D f (z, xn) − D f (yn, xn) − D f (xn+1, yn)

+〈∇ f (yn) − ∇ f (xn) + βAyn, yn − xn+1〉. (23)

Since xn+1 ∈ Tn and from (18), we deduce that

〈∇ f (xn) − βn Axn − ∇ f (yn), xn+1 − yn〉 ≤ 0.
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This implies that

〈∇ f (xn) − βAyn − ∇ f (yn), xn+1 − yn〉 ≤ 〈∇ f (xn) − βAxn − ∇ f (yn), xn+1 − yn〉
+β〈Axn − Ayn, xn+1 − yn〉

≤ β〈Axn − Ayn, xn+1 − yn〉
≤ β‖Axn − Ayn‖‖xn+1 − yn‖
≤ βL‖xn − yn‖ · ‖xn+1 − yn‖
≤ βL

2
(‖xn − yn‖2 + ‖xn+1 − yn‖2).

Therefore, (23) becomes

D f (z, xn+1) ≤ D f (z, xn) − D f (yn, xn) − D f (xn+1, yn)

+βL

2
(‖yn − xn‖2 + ‖yn − xn+1‖2).

Using (12), we have

D f (z, xn+1) ≤ D f (z, xn) − D f (yn, xn) − D f (xn+1, yn)

+βL

σ
(D f (yn, xn) + D f (xn+1, yn))

= D f (z, xn) −
(

1 − βL

σ

)

D f (yn, xn)

−
(

1 − βL

σ

)

D f (xn+1, yn). (24)

Since β ∈ (0, σ/L), then we have from (24)

D f (z, xn+1) ≤ D f (z, xn).

This implies that {D f (z, xn)} is non-increasing andhence the limit limn→∞ D f (z, xn)
exists. Consequently {D f (z, xn)} is bounded. This means that {xn} is bounded. Also
{yn} is bounded too.
Now from (24), we get

(

1 − βL

σ

)

D f (yn, xn) ≤ D f (z, xn) − D f (z, xn+1) → 0.

Thus
lim
n→∞ D f (yn, xn) = 0.

Then from (12)
lim
n→∞ ‖xn − yn‖ = 0. (25)
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Since f is uniformly Fréchet differentiable, then ∇ f is uniformly continuous on
bounded subsets of E∗ and thus

lim
n→∞ ‖∇ f (yn) − ∇ f (xn)‖′ = 0. (26)

Since {xn} is bounded, we can choose a subsequence {xn j } of {xn} such that xn j ⇀

x̄ ∈ C. We now show that x̄ ∈ SOL(C, A). For all x ∈ C and since A is monotone,
it follows from (13) that

0 ≤ 〈∇ f (ynk ) − ∇ f (xnk ) + βAxnk , x − ynk 〉
= 〈∇ f (ynk ) − ∇ f (xnk ), x − ynk 〉 + β〈Axnk , xnk − ynk 〉

+β〈Axnk , x − xnk 〉
≤ 〈∇ f (ynk ) − ∇ f (xnk ), x − xnk 〉 + β〈Axnk , xnk − ynk 〉

+β〈Axnk , x − xnk 〉.

Passing limit to the last inequality above, we get from (25) and (26) that

〈Ax, x − x̄〉 ≥ 0 ∀x ∈ C.

Hence fromLemma2,wederived that x̄ ∈ SOL(C, A).Furthermore, usingBregman
Opial property, we show that x̄ is a unique solution of the VI (1). Suppose there exists
another sequence {xnk } of {xn} such that xnk ⇀ ȳ, such that x̂ �= x̄ . Following similar
argument has above, we get x̂ ∈ SOL(C, A). It follows from the Bregman opial-like
property of E (more precisely, Lemma 1) that

lim
n→∞ D f (x̂, xn) = lim

k→∞ D f (x̂, xnk ) < lim
k→∞ D f (x̄, xnk )

= lim
n→∞ D f (x̄, xn) = lim

j→∞ D f (x̄, xn j )

< lim
j→∞ D f (x̂, xn j ) = lim

n→∞ D f (x̂, xn),

which is a contradiction. Thus, we have x̂ = x̄ and the desired result follows. This
completes the proof.

Next, we present a Popov’s extragradient method for solving VI with its convergence
analysis using Bregman distance technique in reflexive Banach spaces. We assume
that Condition 1–4 are valid.

Algorithm Popov’s extragradient method with Bregman projection
Step 0: Pick x0, y0 ∈ H arbitrarily and let β > 0. Set n = 0.
Step 1: Compute

x1 = Proj fC (∇ f ∗(∇ f (x0) − βAy0)),

y1 = Prof f
C (∇ f ∗(∇ f (x1) − βAy0)).



Some Extragradient Methods for Solving Variational Inequalities … 169

Step 2: Given the current iterates xn, yn and yn−1, calculate xn+1 and yn+1 as follows:

xn+1 = Proj fTn (∇ f ∗(∇ f (xn) − βAyn)), (27)

yn+1 = Proj fC (∇ f ∗(∇ f (xn+1) − βAyn)),

where
Tn := {z ∈ E : 〈∇ f (xn) − βAyn−1 − ∇ f (yn), z − yn〉 ≤ 0}. (28)

Step 3: If xn+1 = xn and yn = xn STOP. Otherwise, set n ← n + 1 and repeat
Step 2.

Remark 2 Algorithm 7 is constructed based on the concepts of [37] and [40] using
Bregman projections. Note that Algorithm 7 compute only one projection for yn+1

onto C and one evaluation of A at the current approximation yn. Moreover, it is easy
to see that C ⊂ Tn, for all n ∈ N.

3.2 Convergence Analysis

First, we show that the stopping criterion of Algorithm 7 is valid.

Lemma 5 Suppose xn+1 = xn = yn in Algorithm 7. Then xn is a solution of the VI
(1).

Proof Since xn+1 = xn, we get from (13) that

〈∇ f (xn+1) − ∇ f (xn) + βAyn, z − xn+1〉 ≥ 0 ∀z ∈ Tn.

Thus
β〈Ayn, z − xn〉 ≥ 0 ∀z ∈ Tn.

Equivalently
〈Ayn, z − yn〉 ≥ 〈Ayn, xn − yn〉 ∀z ∈ Tn.

This implies that
〈Ayn, z − yn〉 ≥ 〈Ayn, xn − yn〉 ∀z ∈ C. (29)

Moreover, it follows from the definition of Tn that

〈∇ f (xn) − βAyn−1 − ∇ f (yn), u − yn〉 ≤ 0 ∀u ∈ E .

Substituting yn−1 = yn and z = xn the above inequality, we get
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〈∇ f (xn) − βAyn − ∇ f (yn), xn − yn〉 ≤ 0.

Thus
β〈Ayn, xn − yn〉 ≥ 0. (30)

Combining (29) and (30), we have

〈Ayn, z − yn〉 ≥ 0 ∀z ∈ C.

Using the fact that xn = yn, we get

〈Axn, z − xn〉 ≥ 0 ∀z ∈ C.

Hence, this implies that xn is a solution of the VI (1).

We now prove the convergence of the iterates {xn}, {yn} to a solution of the VI
(1).

Theorem 2 Assume that Condition 1–4 and let β ∈
(
0, (

√
2−1)σ
L

)
. Then the

sequences {xn} and {yn} generated by Algorithm 7 converges weakly to a unique
solution x̄ ∈ SOL(C, A).

Proof Let z ∈ SOL(C, A), then we have

〈∇ f (xn+1) − (∇ f (xn) − βAyn), z − xn+1〉 ≥ 0.

This implies that

〈∇ f (xn+1) − ∇ f (xn) + βAyn, z − xn+1〉 ≥ 0.

Thus we have

β〈Ayn, z − xn+1〉 ≥ 〈∇ f (xn+1) − ∇ f (xn), xn+1 − z〉. (31)

Note that from (10), we get

D f (z, xn) = D f (z, xn+1) + D f (xn+1, xn) + 〈∇ f (xn+1) − ∇ f (xn), xn+1 − z〉.

Then (31) becomes

β〈Ayn, z − xn+1〉 ≥ D f (z, xn) − D f (z, xn+1) − D f (xn+1, xn).

Hence

D f (z, xn+1) ≤ D f (z, xn) + β〈Ayn, z − xn+1〉 − D f (xn+1, xn).
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Since A is monotone and z ∈ SOL(C, A), then we have 〈Ayn, z − yn〉 ≥ 0. Conse-
quently, we get

〈Ayn, z − xn+1〉 ≤ 〈Ayn, yn − xn+1〉.

This implies that

D f (z, xn+1) ≤ D f (z, xn) − D f (xn+1, xn) + β〈Ayn, yn − xn+1〉
= D f (z, xn) − D f (xn+1, xn) + β〈Ayn−1, yn − xn+1〉

+β〈Ayn − Ayn−1, yn − xn+1〉. (32)

But

β〈Ayn−1, yn − xn+1〉 = 〈∇ f (xn) − βAyn−1 − ∇ f (yn), xn+1 − yn〉
+〈∇ f (yn) − ∇ f (xn), xn+1 − yn〉.

Since xn+1 ∈ Tn and by the definition of Tn, we get

β〈Ayn−1, yn − xn+1〉 ≤ 〈∇ f (yn) − ∇ f (xn), xn+1 − yn〉. (33)

Using (10) in (33), we obtain

β〈Ayn−1, yn − xn+1〉 ≤ D f (xn+1, xn) − D f (xn+1, yn) − D f (yn, xn). (34)

Combining (32) and (34), we get

D f (z, xn+1) ≤ D f (z, xn) − D f (yn, xn) − D f (xn+1, yn)

+β〈Ayn − Ayn−1, yn − xn+1〉. (35)

Note that by the Cauchy-Schwartz inequality, we have

β〈Ayn−1 − Ayn, xn+1 − yn〉 ≤ β‖Ayn−1 − Ayn‖ · ‖xn+1 − yn‖
≤ βL‖yn−1 − yn‖ · ‖xn+1 − yn‖
≤ βL

(
1

2
√
2
‖yn−1 − yn‖2 + 1√

2
‖xn+1 − yn‖2

)

≤ βL

2
√
2

(

(2 + √
2)‖xn − yn‖2 + √

2‖xn − yn−1‖2
)

+βL√
2
‖xn+1 − yn‖2

≤ βL

σ
(1 + √

2)D f (yn, xn) + βL

σ
D f (xn, yn−1)

+βL
√
2

σ
D f (xn+1, yn), (36)



172 L. Olakunle Jolaoso

where in (36), we have also used the following basic inequalities with (12):

ab ≤ τ 2

2
a2 + 1

2τ 2
b2 and (a + b)2 ≤ √

2a2 + (2 + √
2)b2.

It follows from (35) and (36) that

D f (z, xn+1) ≤ D f (z, xn) −
(

1 − βL
√
2

σ

)

D f (xn+1, yn)

−
(

1 − βL

σ
(1 + √

2)

)

D f (yn, xn) + βL

σ
D f (xn, yn−1). (37)

Now let

an = D f (z, xn) + λL

σ
D f (xn, yn−1)

and

bn =
(

1 − λL(1 + √
2)

σ

)(

D f (yn, xn) + D f (xn+1, yn)

)

.

Then we can rewrite (37) as
an+1 ≤ an − bn.

Then, it follows from Lemma 3 that {an} is bounded and limn→∞ D f (yn, xn) = 0.
Consequently, {xn} is bounded and ‖xn − yn‖ → 0, ‖xn+1 − yn‖ → 0 as n → ∞.

This implies that ‖xn+1 − xn‖ → 0 as n → ∞. Furthermore

‖yn+1 − yn‖ ≤ ‖xn+1 − xn‖ + ‖yn+1 − xn+1‖
+‖xn − yn‖ → 0, as n → ∞. (38)

Consequent

lim
n→∞ ‖xn+1 − yn+1‖ ≤ lim

n→∞(‖xn+1 − yn‖ + ‖yn+1 − yn‖) = 0.

Since f is uniformly Fréchet differentiable, then ∇ f is uniformly continuous on
bounded subsets of E∗, hence

lim
n→∞ ‖∇ f (yn+1) − ∇ f (yn)‖′ = 0. (39)

and
lim
n→∞ ‖∇ f (xn+1) − ∇ f (yn+1)‖′ = 0. (40)
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Since {xn} is bounded, we choose a subsequence {xn j } of {xn} such that xn j ⇀ x̄ .
Consequently, ynk ⇀ x̄ . Since {yn} ⊂ C, thus x̄ ∈ C. Moreover, from the definition
on yn+1 and (13), we get

〈∇ f (xn+1) − βAyn − ∇ f (yn+1), x − yn+1〉 ≤ 0, ∀x ∈ C.

Equivalently

〈∇ f (xn+1) − ∇ f (yn+1), x − yn+1〉 ≤ 〈βAyn, x − yn+1〉 ∀x ∈ C.

Thus
〈∇ f (xn+1) − ∇ f (yn+1)

β
, x − yn+1

〉

+〈Ayn, yn+1 − yn〉
≤ 〈Ayn, x − yn〉 ∀x ∈ C.

This implies that

〈∇ f (xn j+1) − ∇ f (yn j+1)

β
, x − yn j+1

〉

+ 〈Ayn j , yn j+1 − yn j 〉
≤ 〈Ayn j , x − yn j 〉 ∀x ∈ C.

Passing limits to the above inequality and using (38) and (40), we get

〈Ax̄, x − x̄〉 ≥ 0 ∀x ∈ C.

Hence x̄ ∈ SOL(C, A). Using the opial property as in the Proof of Theorem 1, we
obtain that x̄ is a unique solution of VI. This completes the proof.

Next, we present a Tseng extragradient method for solving the VI in reflexive Banach
spaces.

Algorithm Tseng extragradient method using Bregman projection
Step 0: Pick x0 ∈ E, β > 0 and set n = 0.
Step 1: Given the current iterate xn, compute

yn = Proj fC (∇ f ∗(∇ f (xn) − βAxn)). (41)

If xn = yn, STOP. Otherwise,
Step 2: Compute

xn+1 = ∇ f ∗(∇ f (yn) − β(Ayn − Axn)), (42)

Set n := n + 1 and repeat Step 1.

Remark 3 We note that the stopping criterion is the same as that of Algorithm 5
and it is also valid for Algorithm 9.
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3.3 Convergence Analysis

Theorem 3 Assume that Condition 1–4 hold and β ∈ (0, σ/L). Then the sequences
{xn} and {yn} generated by Algorithm 9 converges weakly to a unique solution x̄ ∈
SOL(C, A).

Proof Let z ∈ Sol(C, A), then

D f (z, xn+1) = D f (z,∇ f ∗(∇ f (yn) − β(Ayn − Axn))

= f (z) − 〈z − xn+1,∇ f (yn) − β(Ayn − Axn)〉 − f (xn+1)

= f (z) + 〈xn+1 − z,∇ f (yn)〉 + 〈z − xn+1, β(Ayn − Axn)〉 − f (xn+1)

= f (z) − 〈z − yn,∇ f (yn)〉 − f (yn) + 〈z − yn,∇ f (yn)〉 + f (yn)

+〈xn+1 − z,∇ f (yn)〉 + 〈z − xn+1, β(Ayn − Axn)〉 − f (xn+1)

= D f (z, yn) + 〈xn+1 − yn,∇ f (yn)〉 + f (yn) − f (xn+1)

+〈z − xn+1, β(Ayn − Axn)〉
= D f (z, yn) − D f (xn+1, yn) + 〈z − xn+1, β(Ayn − Axn)〉. (43)

Note that from (11), we have

D f (z, yn) − D f (xn+1, yn) = D f (z, xn) − D f (xn+1, xn)

+〈∇ f (xn) − ∇ f (yn), z − xn+1〉. (44)

Then from (43) and (44), we have

D f (z, xn+1) = D f (z, xn) − D f (xn+1, xn) + 〈z − xn+1, β(Ayn − Axn)〉
+〈∇ f (xn) − ∇ f (yn), z − xn+1〉. (45)

Also, (10) yields

D f (xn+1, xn) − D f (yn, xn) − D f (xn+1, yn) = 〈∇ f (xn) − ∇ f (yn), yn − xn+1〉.
(46)

Substituting (46) into (45), we have

D f (z, xn+1) = D f (z, xn) − D f (yn, xn) − D f (xn+1, yn)

−〈∇ f (xn) − ∇ f (yn), yn − xn+1〉
+〈z − xn+1, β(Ayn − Axn)〉 + 〈∇ f (xn) − ∇ f (yn), z − xn+1〉

= D f (z, xn) − D f (yn, xn) − D f (xn+1, yn)

+〈∇ f (xn) − ∇ f (yn), z − yn〉 + 〈z − xn+1, β(Ayn − Axn)〉
= D f (z, xn) − D f (yn, xn) − D f (xn+1, yn)

+〈∇ f (xn) − ∇ f (yn), z − yn〉 − 〈xn+1 − yn + yn − z, β(Ayn − Axn)〉
= D f (z, xn) − D f (yn, xn) − D f (xn+1, yn)

+〈∇ f (xn) − ∇ f (yn), z − yn〉 − 〈xn+1 − yn, β(Ayn − Axn)〉
−〈yn − z, β(Ayn − Axn)〉
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= D f (z, xn) − D f (yn, xn) − D f (xn+1, yn) − 〈xn+1 − yn, β(Ayn − Axn)〉
−〈yn − z, β(Ayn − Axn) − (∇ f (yn) − ∇ f (xn))〉. (47)

From the definition of yn in (41), it follows from (13) that

〈∇ f (xn) − βAxn − ∇ f (yn), z − yn〉 ≤ 0. (48)

Since A is monotone and z ∈ SOL(C, A), then we have 〈Ayn, yn − z〉 ≤ 0. Com-
bining this with (48), we get

〈β(Ayn − Axn) − (∇ f (yn) − ∇ f (xn)), yn − z〉 ≥ 0.

Hence from (47), we obtain

D f (z, xn+1) ≤ D f (z, xn) − D f (yn, xn) − D f (xn+1, yn)

−〈xn+1 − yn, β(Ayn − Axn)〉. (49)

More so, using the Cauchy-Schwartz inequality and (12), we have

〈yn − xn+1, Ayn − Axn〉 ≤ β‖yn − xn+1‖ · ‖Ayn − Axn‖
≤ βL‖yn − xn+1‖ · ‖yn − xn‖
≤ βL

2
(‖yn − xn+1‖2 + ‖xn − yn‖2)

≤ βL

σ
(D f (xn+1, yn) + D f (yn, xn)).

Thus (49) becomes

D f (z, xn+1) ≤ D f (z, xn) −
(

1 − βL

σ

)

D f (xn+1, yn) −
(

1 − βL

σ

)

D f (yn, xn).

(50)
Since β ∈ (

0, σ
L

)
, then we have

D f (z, xn+1) ≤ D f (z, xn).

Hence {D f (z, xn)} is non-increasing, this implies that limn→∞ D f (z, xn) exists and
thus {D f (z, xn)} is bounded. Consequently, {xn} and {yn} are bounded.
From (50), we have

(

1 − βL

σ

)

D f (yn, xn) ≤ D f (z, xn) − D f (z, xn+1) → 0.

This implies that
lim
n→∞ D f (yn, xn) = 0.
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Since {xn} is bounded, we choose a subsequence {xn j } of {xn} such that xn j ⇀

x̄ ∈ C. Following similar argument as in the Proof of Theorem 1, we have that
x̄ ∈ SOL(C, A) and it is unique.

4 Numerical Experiments

In this section, we perform some experiments to illustrate the numerical behaviour of
the algorithms in the previous section. We also consider the numerical experiments
using some known convex functions with their corresponding Bregman distance
given as follows:

(i) Squared Euclidean distance (SED) with dom f = R
n, and

f (x) = 1

2
xT x, ∇ f (x) = x, ∇ f ∗(x) = x,

D f (x, y) = 1

2
||x − y||2.

(ii) Mahalanobis distance (MD) with dom f = R
n, and

f (x) = 1

2
xT Qx, ∇ f (x) = Qx, ∇ f ∗(x) = Q−1x,

D f (x, y) = 1

2
(x − y)T Q(x − y),

where Q is symmetric positive definite (in some applications, Q is positive
semidefinite, but not positive definite).

(iii) Kullback-Leibler distance (KLD) with dom f = R
n+,

f (x) =
n∑

i=1

xi log xi , ∇ f (x) =
⎡

⎢
⎣

log x1 + 1
...

log xn + 1

⎤

⎥
⎦ , ∇ f ∗(x) =

⎡

⎢
⎣

exp(x1 − 1)
...

exp(xn − 1)

⎤

⎥
⎦ ,

D f (x, y) =
n∑

i=1

(

xi log
xi
yi

− xi + yi

)

.

Here, the function f is called relative (Shannon) entropy.
(iv) Itakura-Saito divergence (ISD) with dom f = R

n++,
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Table 1 Computation results showing No of iteration and Time taken by each algorithm using
different convex functions

Algorithm 5 Algorithm 7 Algorithm 9

m = 5 Iter. 29 14 26

Time (sec) 0.0062 0.0029 0.0054

SED m = 50 Iter. 257 20 237

Time (sec) 0.0191 0.0059 0.0133

m = 100 Iter. 1605 6 1318

Time (sec) 6.0354 0.0059 4.5291

m = 5 Iter. 965 53 709

Time (sec) 3.0710 0.0218 1.4066

KLD m = 50 Iter. 775 14 410

Time (sec) 1.3694 0.0250 0.4100

m = 100 Iter. 416 8 119

Time (sec) 0.4129 0.0045 0.0361

m = 5 Iter. 1126 735 927

Time (sec) 2.5143 1.2777 1.9037

ISD m = 50 Iter. 1358 1057 1983

Time (sec) 4.9860 3.2387 9.5451

m = 100 Iter. 1563 1246 1596

Time (sec) 6.6140 3.9076 7.0319

m = 5 Iter. 6 9 8

Time (sec) 0.0026 0.0037 0.0029

SMD m = 50 Iter. 5 27 8

Time (sec) 0.0031 0.0084 0.0037

m = 100 Iter. 4 32 8

Time (sec) 0.0027 0.0149 0.0067

f (x) = −
n∑

i=1

log xi , ∇ f (x) =
⎡

⎢
⎣

− 1
x1
...

− 1
xn

⎤

⎥
⎦ , ∇ f ∗(x) =

⎡

⎢
⎣

− 1
x1
...

− 1
xn

⎤

⎥
⎦

D f (x, y) =
n∑

i=1

(
xi
yi

− log
xi
yi

− 1

)

,

The function f is also called Burg entropy.
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Fig. 1 SED; top left: m = 5; top right: m = 50, bottom: m = 100

All computation are carried out using Lenovo PC with the following specification:
Intel(R)core i7-600, CPU 2.48GHz, RAM 8.0GB, MATLAB version 9.5 (R2019b).
We consider the variational inequalities model with the operator A : Rm → R

m

defined by A(x) = Mx + q where

M = BBT + S + D,

where B is a m × m matrix, S is a m × m skew symmetric matrix, D is a m × m
diagonal matrix whose diagonal are non-negative (so M is positive definite) and q is
a vector in Rm . The feasible set C is defined by

C =
{
x = (x1, . . . , xm)T : ‖x‖ ≤ 1 and xi ≥ a, i = 1, . . . ,m

}
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Fig. 2 KLD; top left: m = 5; top right: m = 50, bottom: m = 100

where a < 1/
√
m. It is clear that A is monotone and Lipschitz continuous with

Lipschitz constant L = ‖M‖. For q = 0, the unique solution of the correspondingVI
is {0}.We compare the performance of Algorithm 5, 7 and 9 for each convex function
given above andm = 5, 50, 100. The initial values are generated randomly inC with
a = 0.01 and we take β = 1

2L . Note that we are at a solution of the VI (1) if xn = yn
in Algorithm 5 and (9), and xn+1 = xn = yn in Algorithm 7. Thus, we show the
numerical behaviour of the sequence En = ‖yn − xn‖ forAlgorithm5 andAlgorithm
9, and En = ‖xn+1 − xn‖ + ‖xn − yn‖ for Algorithm 7. The computational results
are shown in Table1, Figs. 1, 2, 3 and 4.
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Fig. 3 ISD; top left: m = 5; top right: m = 50, bottom: m = 100

The numerical experiments show that the change in the convex function has sig-
nificant effect on the behaviour of the sequence generated by each algorithm. It is
important to also mention that the performance of the algorithm can be improved by
using appropriate stepsize or using self-adaptive technique for selecting the stepsize.

5 Conclusion

In this chapter, we introduce some extragradient-typemethods for solving variational
inequalities in reflexiveBanach spaces. The convergence of the algorithms are proved
using the Bregman distance technique. Also, we provide some numerical illustration
of the sequence generated by each algorithm using different type of convex functions.
These results extend and improve several interesting results in the literature.
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Common Solutions to Variational
Inequality Problem via Parallel and
Cyclic Hybrid Inertial CQ-Subgradient
Extragradient Algorithms in (HSs)

Hasanen A. Hammad and Mamadou Alouma Diallo

Abstract The intent of this manuscript is to present new algorithms, so-called
strongly convergent parallel and cyclic hybrid inertial CQ-subgradient extragradient
(PCHICQ-SE) algorithms. Proposed algorithms are applied to find common solu-
tions to the variational inequality problem (CSVIP) in the Hilbert spaces (HSs).
Ultimately, numerical experiments are presented here to examine the efficiency of
our algorithms.

1 Introduction

Assume that H is a (HS) with the induced norm ‖.‖ and the inner product 〈., .〉, and
C �= ∅ is a closed convex subset (CCS) of H.

In 1966, Hartman and Stampacchia [1] introduced the concept of variational
inequality problem (VIP), for obtaining y∗ ∈ C so that

〈Ay∗, y − y∗〉 ≥ 0, ∀y ∈ C, (1)

where A : H → H is a nonlinear mapping (NM). The set of solutions of (VIP) (1) is
denoted by V I (A,C). Many algorithms that were based on projections onto (CCSs)
have been proposed for solving (VIP). One of these, and the easiest, is the gradient
method because one projection is calculated on the feasible set. Even so, studying
convergence for this method requires strong assumptions on the involved operators.

Another (PM) for solving saddle point problems and generalizing (VIP) for the
Lipschitz continuous andmonotone mapping has been presented by Korpelevich [2].
He named it as the extragradient method (EM) which is built below:
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{
yn = PC(xn − λA(xn)),
xn+1 = PC(xn − λA(yn)),

where PC is themetric projection ontoC andλ is a suitable parameter. Theprojections
can be found easily if C is a simple structure and the (EM) is computable and very
useful. Otherwise, it is more complicated.

In order to obtain the weak convergence of a solution of the (VIP), Censor et al.
[3] gave the subgradient extragradient (SE) method, for (VIP) in (HSs):

{
yn = PC(xn − λA(xn)),
xn+1 = PTn (xn − λA(yn)),

where a half-space Tn is described as

Tn = {v ∈ H : 〈(xn − λA(xn)) − yn, v − yn〉 ≤ 0}.

Toaccelerate the convergence of this algorithm, authors [4, 5] presented the algorithm
below, which combines the (SEM) with the hybrid method:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

yn = PC(xn − λA(xn)),
zn = αnxn + (1 − αn)PTn xn,
Cn = {z ∈ H : ‖zn − z‖ ≤ ‖xn − z‖},
Qn = {z ∈ H : 〈xn − z, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qn x0.

Here, the (CSVIP) is to find a point y∗ ∈ K = ∩N
i=1Ki so that

〈Ai (y
∗), y − y∗〉 ≥ 0 for all y ∈ Ki , i = 1, . . . , N , (2)

where Ai : H → H is a NM and Ki is a finite collection of non-empty (CCSs) of H
so that ∩N

i=1Ki �= ∅.

The study of (CSVIP)with N > 1 results from selecting Ai = 0, then the problem
is reduced to finding a point y∗ = ∩N

i=1Ki in the non-empty intersection of a finite
family of closed and convex sets, and it is called the convex feasibility problem
(CFP). For a family Ti : H → H, if Ki are the fixed point sets, then the problem is
called the common fixed point problem (CFPP). It is worth noting that these issues
have been studied on a large scale in the past decades, theoretically and numerically,
and this is what gives these issues their importance to many researchers; see [6–13]
and the references therein.

For multi-valued mappings Ai : H → 2H , i = 1, . . . , N , the authors [14] intro-
duced a procedure to discuss the (CSVIP). This procedure is considered so that
mappings Ai are single-valued as the following: Choose x1 ∈ H and calculate



Common Solutions to Variational Inequality Problem … 187

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

yin = PKi (xn − λi
n Ai (xn)),

zin = PKi (xn − λi
n Ai (yn)),

Ci
n = {z ∈ H : 〈xn − zin, z − xn − γi

n(z
i
n − xn)〉},

Cn = ∩N
i=1C

i
n,

Wn = {z ∈ H : 〈x1 − xn, z − xn〉 ≤ 0},
xn+1 = PCn∩Wn x1.

(3)

In order to find the approximation xn+1 of the Algorithm (3), we have to construct
N + 1 subsets C1

n ,C
2
n , . . . ,C

i
n,Wn and solve the following distance optimization

problem: {
min ‖z − x1‖2 ,

so that z ∈ C1
n ∩ . . . ∩ Ci

n ∩ Wn.
(4)

When the number of mappings N is large, the task of solving (4) is very costly.
In the Banach spaces, for searching of the common solution to the (VIP), Anh

and Hieu [15, 16] have presented an iterative method and this method is iterated in
(HSs) as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x0 ∈ C,

yin = αnxn + (1 − αn)Si xn, i = 1, . . . , N ,

in = argmax{∥∥yin − xn
∥∥ : i = 1, . . . , N }, y−

n = yinn ,

Cn+1 = {v ∈ Cn : ∥∥v − y−
n

∥∥ ≤ ‖v − xn‖},
xn+1 = PCn+1x0.

whereαn ∈ (0, 1), lim supn→∞ αn < 1.According to this algorithm, the approxima-
tion xn+1 is defined as the projection of x0 onto Cn+1. However, it seems difficult to
find the explicit form of the sets Cn and perform numerical experiments. Continuing
in this line, Hieu [17] introduced two (PCHSE) algorithms for (CSVIP) in (HSs) and
analyzed the convergence by numerical results. Hasanen et al. [18–20] extended it
by introducing advanced algorithms.

In this paper, we introduce (PCHICQ-SE) algorithms for solving (CSVIP) and
generate sequences that converge strongly to the nearest point projection of the
starting point onto the solution set of the (CSVIP). Also, we give some numerical
experiments to support our results.

2 Crucial Lemmas

We begin this part with some important definitions and lemmas.

Definition 1 [21] A nonlinear operator A (for all x, y ∈ H) is called
(i) monotone if

〈x − y, Ax − Ay〉 ≥ 0,

(ii) pseudo-monotone if 〈Ax − Ay, x − y〉 ≥ 0 implies that
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〈Ay − Ax, y − x〉 ≤ 0,

(iii) L-Lipschitz continuous if ∃L > 0 so that

||Ax − Ay||
||x − y|| ≤ L ,

(iv) non-expansive if
||Ax − Ay||

||x − y|| ≤ 1.

The set of fixed points of a mapping A is defined by F(A) = {x ∈ H : Ax = x}.
Alber and Ryazantseva [22] illustrated the notion of maximal monotone (MM)

mapping as follows: A monotone mapping A : H → H is maximal if and only if,
for each (x, y) ∈ H × H so that

〈x − u, y − v〉 ≥ 0, ∀(u, v) ∈ G(A),

then y = T (x).

Lemma 1 [23] Let H be a (HS). Then for each (x, y) ∈ H × H and α ∈ [0, 1],

‖αx + (1 − α)y‖2 = α ‖x‖2 + (1 − α) ‖y‖2 − α(1 − α) ‖x − y‖2 .

For every x ∈ H , the projection PCx of x onto C is defined by PCx = argmin
{‖y − x‖ : y ∈ C}. Since C is a non-empty (CCS) of H , PCx exists and is unique.
The projection PC : H → C has the following properties:

Lemma 2 [21] Let PC : H → C. Then
1. PC is 1-inverse strongly monotone (ISM), i.e., ∀x, y ∈ H,

‖PCx − PC y‖2 ≤ 〈PCx − PC y, x − y〉.

2. ∀y ∈ H, x ∈ C,

‖x − PC y‖2 + ‖PC y − y‖2 ≤ ‖x − y‖2 .

3. z = PCx iff
〈x − z, z − y〉 ≥ 0, ∀y ∈ C.

For more details about the projection PC , see [24]. The following lemma illustrate
some topological properties of the V I (A,C):

Lemma 3 [23] Consider C �= ∅ (CCS) of a (HS) H and A be a hemi-continuous
and monotone mapping. Then,

V I (A,C) = {e ∈ C : 〈o − e, A(o)〉 ≥ 0, ∀o ∈ C}.
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A normal cone (NC) NC to a set C at a point � ∈ C is described as

NC� = {�∗ ∈ H : 〈� − o, �∗〉 ≥ 0, ∀o ∈ C},

we have the following:

Lemma 4 [25] Assume that C �= ∅ (CCS) of a (HS) H, A is a hemi-continuous and
monotone mapping of C into H with D(A) = C and B is a mapping described as

B(�) =
{
A� + NC� if � ∈ C
∅ if � /∈ C

,

therefore B is a (MM) and B−1(0) = V I (A,C).

3 Main Theorems

This part is devoted to introduce and study the strongly convergent of two (PCHISE)
algorithms.

Theorem 1 (PHICQ-SE algorithm)
Let Ki , i = 1, . . . , N be (CCSs) of a real (HS) H so that K = ∩N

i=1Ki �= ∅. Assume
{Ai }Ni=1 : H → H are finite family of monotone and L−Lipschitz continuous map-
pings. Further, let the solution set F is non-empty and {xn} be a sequence created by
the following manner: Choose x◦ ∈ Ci◦ = C = H, for all i = 1, . . . , N and define
wn as follows:

w◦ = x◦ and for all n ≥ 1, wn = xn − θn(xn − xn−1).

Moreover, choose 0 < λn < 1
L and calculate

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

yin = PKi (wn − λn Ai (wn)),

zin = PT i
n
(wn − λn Ai (yin)),

Ci
n+1 = {v ∈ H : ∥∥zin − v

∥∥2 ≤ μn ‖xn − v‖2 + (1 − μn) ‖xn−1 − v‖2 − εin},
Qn = {v ∈ H : 〈v − xn, xn − x◦〉 ≥ 0},
Cn+1 = ∩N

i=1C
i
n+1,

xn+1 = PCn+1∩Qn (x◦), n ≥ 0,
(5)

where yin ∈ Ki , zin ∈ T i
n = {v ∈ H : 〈(wn − λn Ai (wn)) − yin, v − yin〉 ≤ 0},

εin = μn(1 − μn)(1 − r) ‖xn − xn−1‖2

+ r
(∥∥zin − yin

∥∥2 + μn

∥∥yin − xn
∥∥2 + (1 − μn)

∥∥yin − xn−1

∥∥2
)

,
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r = 1 − λn L ≥ 0 and μn = 1 − θn, for all i = 1, . . . , N . Assume that {θn}n∈N is
a real-valued sequence such that θn ∈ [0, 1]. Then the sequence {xn}n∈N converges
strongly to p = PF (x◦),provided that the series

∑n
i=1 θn ‖xn − xn−1‖2 is convergent.

Proof We discuss the steps below:
Step 1. Show that

∥∥zin − x∗∥∥2 ≤ ∥∥xn−1 − x∗∥∥2 + μn

(∥∥xn − x∗∥∥2 − ∥∥xn−1 − x∗∥∥2
)

− εin, (6)

where x∗ ∈ F.

Let x∗ ∈ F, then by Lemma 1 , we can write

∥∥wn − x∗∥∥2 = ∥∥(1 − θn)(xn − x∗) + θn(xn−1 − x∗)
∥∥2

= (1 − θn)
∥∥xn − x∗∥∥2 + θn

∥∥xn−1 − x∗∥∥2

− θn(1 − θn) ‖xn − xn−1‖2 . (7)

Similarly, we have

∥∥∥yin − wn

∥∥∥2 = (1 − θn)
∥∥∥yin − xn

∥∥∥2 + θn

∥∥∥yin − xn−1

∥∥∥2 − θn(1 − θn)
∥∥xn − xn−1

∥∥2 .

(8)
Since Ai is monotone on Ki and yin ∈ Ki , we get

〈yin − x∗, Ai (y
i
n) − Ai (x

∗)〉 ≥ 0, for all x∗ ∈ F,

yields together x∗ ∈ V I (Ai , Ki ),

〈yin − x∗, Ai (y
i
n)〉 ≥ 0.

So
〈Ai (y

i
n), z

i
n − x∗〉 ≥ 〈Ai (y

i
n), z

i
n − yin〉. (9)

From the property of the (MP) onto T i
n , we have

〈zin − yin, (wn − λn Ai (wn)) − yin〉 ≤ 0. (10)

Thus, by (10), we have

〈zin − yin, (wn − λn Ai (y
i
n)) − yin〉 = 〈zin − yin, (wn − λn Ai (wn)) − yin〉

+ λn〈zin − yin, Ai (wn) − Ai (y
i
n)〉

≤ λn〈zin − yin, Ai (wn) − Ai (y
i
n)〉. (11)

Put sin = wn − λn Ai (yin) and write again z
i
n = PT i

n
(sin). Using Lemma 2 (ii) and (9),

one sees that
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∥∥zin − x∗∥∥2 ≤ ∥∥sin − x∗∥∥2 − ∥∥PT i
n
(sin) − sin

∥∥2

= ∥∥wn − λn Ai (y
i
n) − x∗∥∥2 − ∥∥zin − (wn − λn Ai (y

i
n))

∥∥2

= ∥∥wn − x∗∥∥2 − ∥∥zin − wn

∥∥2 + 2λn〈x∗ − zin, Ai (y
i
n)〉

≤ ∥∥wn − x∗∥∥2 − ∥∥zin − wn

∥∥2 + 2λn〈yin − zin, Ai (y
i
n)〉. (12)

From (11), we can write

∥∥zin − wn

∥∥2 − 2λn〈yin − zin, Ai (y
i
n)〉

= ∥∥zin − yin + yin − wn

∥∥2 − 2λn〈yin − zin, Ai (y
i
n)〉

= ∥∥zin − yin
∥∥2 + ∥∥yin − wn

∥∥2 − 2〈zin − yin, (wn − λn Ai (y
i
n) − yin)〉

= ∥∥zin − yin
∥∥2 + ∥∥yin − wn

∥∥2 − 2λn〈zin − yin, Ai (wn) − Ai (y
i
n)〉

≥ ∥∥zin − yin
∥∥2 + ∥∥yin − wn

∥∥2 − 2λn

∥∥zin − yin
∥∥ ∥∥Ai (wn) − Ai (y

i
n)

∥∥
≥ ∥∥zin − yin

∥∥2 + ∥∥yin − wn

∥∥2 − 2λn L
∥∥zin − yin

∥∥ ∥∥wn − yin
∥∥

≥ ∥∥zin − yin
∥∥2 + ∥∥yin − wn

∥∥2 − λn L
(∥∥zin − yin

∥∥2 + ∥∥wn − yin
∥∥2

)

≥ (1 − λn L)
(∥∥zin − yin

∥∥2 + ∥∥yin − wn

∥∥2
)

. (13)

Applying (13) in (12) and applying (7) and (8), one gets

∥∥∥zin − x∗
∥∥∥2 ≤ ∥∥wn − x∗∥∥ − (1 − λn L)

(∥∥∥zin − yin

∥∥∥2 +
∥∥∥yin − wn

∥∥∥2
)

= (1 − θn)
∥∥xn − x∗∥∥2 + θn

∥∥xn−1 − x∗∥∥2 − θn(1 − θn) ‖xn − xn−1‖2

− (1 − λn L)

( ∥∥zin − yin
∥∥2 + (1 − θn)

∥∥yin − xn
∥∥2

+θn
∥∥yin − xn−1

∥∥2 − θn(1 − θn) ‖xn − xn−1‖2
)

= μn
∥∥xn − x∗∥∥2 + (1 − μn)

∥∥xn−1 − x∗∥∥2 + μn(μn − 1)(1 − r) ‖xn − xn−1‖2

− r

(∥∥∥zin − yin

∥∥∥2 + μn

∥∥∥yin − xn
∥∥∥2 + (1 − μn)

∥∥∥yin − xn−1

∥∥∥2
)

≤ μn
∥∥xn − x∗∥∥2 + (1 − μn)

∥∥xn−1 − x∗∥∥2 − μn(1 − μn)(1 − r) ‖xn − xn−1‖2

− r

(∥∥∥zin − yin

∥∥∥2 + μn

∥∥∥yin − xn
∥∥∥2 + (1 − μn)

∥∥∥yin − xn−1

∥∥∥2
)

= ∥∥xn−1 − x∗∥∥2 + μn

(∥∥xn − x∗∥∥2 − ∥∥xn−1 − x∗∥∥2) − εin,

where

εin = μn(1 − μn)(1 − r) ‖xn − xn−1‖2

+ r
(∥∥zin − yin

∥∥2 + μn

∥∥yin − xn
∥∥2 + (1 − μn)

∥∥yin − xn−1

∥∥2
)

.
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Hence, we have the inequality (6).
Step 2. Prove that Ci

n+1 satisfy the following inequality:

〈μn(xn − xn−1) − (zin − xn−1), v〉
≤ 〈μn

(
xn + xn−1

2

)
, xn − xn−1〉 − 〈 z

i
n + xn−1

2
, zin − xn−1〉 − εin

2
,

where v ∈ F.

Let v ∈ F. By (6), we have successively the following inequality:

∥∥zin − v
∥∥2 ≤ ‖xn−1 − v‖2 + μn

(‖xn − v‖2 − ‖xn−1 − v‖2) − εin,

or ∥∥zin − v
∥∥2 − ‖xn−1 − v‖2 ≤ μn

(‖xn − v‖2 − ‖xn−1 − v‖2) − εin.

By properties of the norm, we have

(
(zin − v) − (xn−1 − v)

) (
(zin − v) + (xn−1 − v)

)
≤ μn

([
(xn − v) − (xn−1 − v)

] [
(xn − v) + (xn−1 − v)

]) − εin,

and the above inequality can be written as

〈 z
i
n + xn−1

2
, zin − xn−1〉 ≤ μn〈

(
xn + xn−1

2

)
, xn − xn−1〉 − εin

2
.

Rearranging the terms, we get the desired.
Step 3. Illustrate that xn+1 is well-defined ∀x◦ ∈ H and F ⊂ Cn+1. Because Ai is
Lipschitz continuous, Ai is continuous. Then, Lemma 3 ensures that V I (Ai , Ki ) is
(CC) for all i = 1, . . . , N . Hence, F is (CC). From the definition of Cn+1 and Step
2, Cn+1 is (CC) for each n ≥ 0 as intersection of closed half-spaces.
Let v ∈ F, then it follows from Step 1 that

∥∥zin − v
∥∥2 ≤ ‖xn−1 − v‖2 + μn

(‖xn − v‖2 − ‖xn−1 − v‖2) − εin.

So, we have v ∈ Cn+1. Thus F ⊂ Cn+1. Next, we will show that F ⊂ Cn+1 ∩ Qn.

By the induction, indeed F ⊂ Q◦ and so F ⊂ C1 ∩ Q◦. Suppose that xl is given
and F ⊂ Cl+1 ∩ Ql for some l ≥ 0. There exists a unique element xl+1 ∈ Cl+1 ∩ Ql

such that xl+1 = PCl+1∩Ql (x◦). It follows that

〈v − xl+1, xl+1 − x◦〉 ≥ 0,

for each v ∈ Cl+1 ∩ Ql . Since F ⊂ Cl+1 ∩ Ql, we get F ⊂ Ql+1. Therefore, we
have F ⊂ Cl+2 ∩ Ql+1 for all l ≥ 0. Since F �= ∅, so xn+1 = PCn+1∩Qn (x◦) is well-
defined.
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Step 4. Prove that limn→∞ ‖xn − x◦‖ = 0. From the algorithm of Theorem 1, we
have

〈v − xn, xn − x◦〉 ≥ 0 for all v ∈ F.

This yields xn ∈ PQn (x◦). Since F ⊂ Qn, we get

‖xn − x◦‖ ≤ ‖x◦ − v‖ , for all v ∈ F. (14)

Also, since xn+1 ∈ Qn, we get

‖xn − x◦‖ ≤ ‖xn+1 − x◦‖ , for all n ≥ 0.

Using (14) and (15), the sequence {‖xn − x◦‖} is bounded andnon-decreasing. There-
fore, limn→∞ ‖xn − x◦‖ = 0.
Furthermore, by Lemma 2 (ii) with x◦ ∈ H and xn ∈ Qn−1, we can write

∥∥xn − PQn−1(x◦)
∥∥2 + ∥∥PQn−1(x◦) − x◦

∥∥2 ≤ ‖xn − x◦‖2 .

Since xn−1 = PQn−1(x◦), so the above inequality leads to

‖xn − xn−1‖2 + ‖xn−1 − x◦‖2 ≤ ‖xn − x◦‖2 .

Taking the limit as n → ∞ in the above inequality, one can obtain

lim
n→∞ ‖xn − xn−1‖ = 0. (15)

Let wn = xn − θn(xn − xn−1). Since 0 ≤ θn ≤ 1, we have

lim
n→∞ ‖wn − xn‖ = lim

n→∞ ‖θn(xn − xn−1)‖ ≤ lim
n→∞ ‖xn − xn−1‖ = 0. (16)

Step 5. Prove that the following relations holds for all i = 1, . . . , N .

lim
n→∞

∥∥zin − xn
∥∥ = 0, lim

n→∞
∥∥yin − xn

∥∥ = 0 = lim
n→∞

∥∥yin − wn

∥∥ .

By the definition of Ci
n+1 ⊂ Cn , xn+1 = Cn+1, for all i = 1, . . . , N , we get

∥∥zin − xn+1

∥∥2 ≤ μn ‖xn − xn+1‖2 − μn(1 − r)(1 − μn) ‖xn − xn−1‖2
+ (1 − μn) ‖xn−1 − xn+1‖2

− r
(∥∥zin − yin

∥∥2 + μn

∥∥yin − xn
∥∥2 + (1 − μn)

∥∥yin − xn−1

∥∥2
)

≤ μn ‖xn − xn+1‖2 − μn(1 − r)(1 − μn) ‖xn − xn−1‖2
+ (1 − μn) ‖xn−1 − xn+1‖2 . (17)
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Passing the limit as n → ∞ in (17), and since μn is a bounded real sequence, so we
can write

lim
n→∞

∥∥zin − xn+1

∥∥ = 0. (18)

By the triangle inequality and using (16) and (19), one sees that

∥∥zin − xn
∥∥ ≤ ∥∥zin − xn+1

∥∥ + ‖xn+1 − xn‖ → 0, (19)

as n → ∞ for all i = 1, . . . , N . Further since r ≥ 0, and using (17), we get

∥∥zin − xn+1

∥∥2 ≤ μn ‖xn − xn+1‖2 − μn(1 − r)(1 − μn) ‖xn − xn−1‖2
+ (1 − μn) ‖xn−1 − xn+1‖2 − r(1 − μn)

∥∥yin − xn−1

∥∥2
,

or we get

r(1 − μn)
∥∥yin − xn−1

∥∥2 ≤ μn ‖xn − xn+1‖2 − μn(1 − r)(1 − μn) ‖xn − xn−1‖2
+(1 − μn) ‖xn−1 − xn+1‖2 − ∥∥zin − xn+1

∥∥2
.

Taking the limit in the above inequity and using (16) and (19), we have

lim
n→∞

∥∥yin − xn−1

∥∥ = 0. (20)

From the triangle inequality, (16) and (21), one can obtain

∥∥yin − xn
∥∥ ≤ ∥∥yin − xn−1

∥∥ + ‖xn−1 − xn‖ → 0, (21)

as n → ∞ for all i = 1, . . . , N . Last, one can obtain

∥∥yin − wn

∥∥ = ∥∥(yin − xn) + θn(xn − xn−1)
∥∥ ≤ ∥∥yin − xn

∥∥ + θn ‖xn − xn−1‖ .

Since θn is a bounded real sequence and using (22) and (17), we get

∥∥yin − wn

∥∥ ≤ ∥∥yin − xn
∥∥ + ‖xn − wn‖ → 0, (22)

as n → ∞ for all i = 1, . . . , N . The inequalities (20), (22) and (23) completes the
proof of this step.
Step 6. Show that {xn}, {yin} and {zin} generated by Algorithm (5) converges strongly
to p = PFx◦. Assume that p is a weak cluster point (WCP) of {xn} and there exists
a subsequence of {xn} converging weakly to p, i.e., xn ⇀ p, from (21), yin ⇀ p.

Now, to prove p ∈ ∩N
i=1V I (Ai , Ki ),we recall Lemma4,which state themappings

Bi (x) =
{
Ai x + NKi (x) if x ∈ C
∅ if x /∈ C
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are a (MM). ∀(x, y) ∈ G(Bi ), we get y − Ai x ∈ NKi (x), where G(Bi ) is the graph
of Bi . Based on NKi (x), we see that

〈y − Ai (x), x − z〉 ≥ 0,

∀z ∈ Ki . Because yin ∈ Ki ,

〈y − Ai (x), x − yin〉 ≥ 0.

Then,
〈y, x − yin〉 ≥ 〈Ai (x), x − yin〉. (23)

Considering yin = PKi (wn − λn Ai (wn)) and Lemma 2 (iii), we get, for all x ∈ Ki ,

〈x − yin, y
i
n − wn + λn Ai (wn)〉 ≥ 0,

or

〈x − yin, Ai (wn)〉 ≥ 〈x − yin,
wn − yin

λn
〉. (24)

Therefore, from (23) and (24) and because Ai is a (MM), we have

〈y, x − yin〉 ≥ 〈Ai (x), x − yin〉
= 〈Ai (x) − Ai (y

i
n), x − yin〉 + 〈Ai (y

i
n) − Ai (wn), x − yin〉 + 〈Ai (wn), x − yin〉

≥ 〈Ai (y
i
n) − Ai (wn), x − yin〉 + 〈wn − yin

λn
, x − yin〉. (25)

Applying (21) in (25) and Ai are L−Lipschitz continuous,

lim
n→∞

∥∥Ai (y
i
n) − Ai (wn)

∥∥ = 0. (26)

Taking the limit in (25) as n → ∞ and using (26), yin ⇀ p, we have 〈x − p, y〉 ≥ 0
for all (x, y) ∈ G(Bi ). The MM of Bi implies that p ∈ B−1

i (0) = V I (Ai , Ki ) for
all i = 1, . . . , N .

Ultimately, we illustrate that xn → p = q = PFx◦. From (15) and q ∈ F, we get

‖xn − x◦‖ ≤ ‖q − x◦‖ , for all n ≥ 0. (27)

By (27) and lower weak semi-continuity of the norm, one sees that

‖p − x◦‖ ≤ lim inf
n→∞ ‖xn − x◦‖ ≤ lim sup

n→∞
‖xn − x◦‖ ≤ ‖q − x◦‖ .
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By the definition of q, p = q and limn→∞ ‖xn − x◦‖ = ‖q − x◦‖ .Hence, from xn −
x◦ ⇀ q − x◦ and the Kadec-Klee property of H , we get xn − x◦ → q − x◦, and so
xn → p. Also, Steps 3 and 5 ensure that the sequences {yin}, {zin} converge strongly
to PFx◦. �

Theorem 2 (CHICQ-SE algorithm)
Let Ki , i = 1, . . . , N be (CCSs) of a real (HS) H so that K = ∩N

i=1Ki �= ∅. Assume
{Ai }ni=1 : H → H is a finite family of monotone and L−Lipschitz continuous map-
pings. In addition, F is non-empty. Suppose that {xn} is a sequence marked by
x◦ ∈ Ci◦ = C = H, for all i = 1, . . . , N and define wn as follows:

w◦ = x◦ and for all n ≥ 1, wn = xn − θn(xn − xn−1).

Then choose 0 < λn < 1
L . Set n = 0,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

yn = PK[n](wn − λn A[n](wn)),

zn = PT[n](wn − λn A[n](yn)),
Cn+1 = {v ∈ H : ‖zn − v‖2 + εn ≤ μn ‖xn − v‖2 + (1 − μn) ‖xn−1 − v‖2},
Qn = {v ∈ H : 〈v − xn, xn − x◦〉 ≥ 0},
xn+1 = PCn+1∩Qn (x◦), n ≥ 0,

where yn ∈ K[n], zn ∈ T[n] = {v ∈ H : 〈(wn − λn A[n](wn)) − yn, v − yn〉 ≤ 0}, [n]
= modulo(n, N ) + 1 with the [n] function taking values in {1, 2, . . . , N },

εn = μn(1 − μn)(1 − r) ‖xn − xn−1‖2
+ r

(‖zn − yn‖2 + μn ‖yn − xn‖2 + (1 − μn) ‖yn − xn−1‖2
)
,

r = 1 − λn L ≥ 0 and μn = 1 − θn. Assume that {θn}n∈N is a real-valued sequence
such that θn ∈ [0, 1]. Then the sequence {xn}n∈N converges strongly to p = PF (x◦).
Moreover, the series

∑n
i=1 θn ‖xn − xn−1‖2 is convergent.

Proof The proof of the second theorem goes here. By arguing similarly as in the
proof of Theorem 1, we obtain that F andCn+1 are (CC) and F ⊂ Cn+1 for all n ≥ 1.
Besides, the sequences {xn}, {yn} and {zn} are bounded and

lim
n→∞

∥∥xn+1 − xn
∥∥ = 0, lim

n→∞ ‖zn − xn‖ = 0, lim
n→∞ ‖yn − xn‖ = 0 = lim

n→∞ ‖yn − wn‖ .

(28)
Suppose p is some (WCP) of {xn}. Fixed an index i ∈ {1, 2, . . . , N } so that indexes
i are finite. Then there is a subsequence {xnk } ∈ {xn} so that xnk ⇀ p and [nk] = i,
∀k. From (28), we get ynk ⇀ p as k → ∞. Similar to (23)–(26), one concludes that
p ∈ V I (Ai , Ki ), and the rest of the proof follows immediately from the proof of
Theorem 1. �
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Remark 1 (i) Since Cn+1 and Qn are either half-space or the whole space H , the
projection xn+1 = PCn+1∩Qn (x◦) computed explicitly as in Theorem 1. (ii) If the map-
ping A isα-(ISM), then A is 1/α−Lipschitz continuous. So, algorithms of Theorems
1 and 2 are successful for solving the (CSVIP) for the α-(ISMs) Ai , i = 1, . . . , N .

4 Numerical Results

In this section, we shall discuss the strong convergence of our algorithms numerically
and graphically in R3 and L2 spaces.

4.1 A Strong Convergence in R
3

Let H = R
3 be a finite dimensional space, d(H) be the dimension of H and N be the

number of functions Ai which is equal to the number of subsets Ki of H . Here, we
shall choose d = 3 and N = 3 (in general d is not equal N ). Consider the variable
x defined by

x =
⎛
⎝ x(1)
x(2)
x(3)

⎞
⎠ ,

and the operator Ai (x) in given form

Ai (x) = Mi x + qi , Mi = Bi B
T
i + Ci + Di ,

where Bi is an (m × m)−matrix, BT
i is a transpose of Bi , Ci is an (m × m)−skew-

symmetricmatrix, Di is an (m × m)−diagonalmatrix (herem = 3) and qi is a vector
in R

3. Here, we consider the diagonal entries are nonnegative, so Mi is positive
definite and each of the operators Ai is defined on the feasible set Ki for all i =
1, . . . , N .

It is clear that Ai is monotone and Lipschitz continuous with the Lipschitz constant

L = max{‖Mi‖, i = 1, . . . , N }.

Suppose that Bi , Ci and Di (i=1,2,3) are generated randomly matrices so that
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B1 =
⎛
⎝−2 1 3

−1 4 −1
−2 1 1

⎞
⎠ , C1 =

⎛
⎝ 5 −1 2

1 7 −1
−2 1 −3

⎞
⎠ , D1 =

⎛
⎝ 2 0 0
0 6 0
0 0 9

⎞
⎠ ,

B2 =
⎛
⎝ 8 1 −3

−1 2 −1
2 1 5

⎞
⎠ , C2 =

⎛
⎝ 3 0 −5
0 9 1
5 −1 1

⎞
⎠ , D2 =

⎛
⎝ 7 0 0
0 5 0
0 0 2

⎞
⎠ ,

B3 =
⎛
⎝ 9 1 3

−3 7 1
−5 1 −7

⎞
⎠ , C3 =

⎛
⎝ 0 5 −2

−5 4 3
2 −3 1

⎞
⎠ , D3 =

⎛
⎝ 4 0 0
0 5 0
0 0 10

⎞
⎠ .

The feasible sets are given by

⎧⎨
⎩

K1 = {x ∈ H : x(1) ≥ 0}
K2 = {x ∈ H : x(2) ≥ 0}

K3 = {x ∈ H : x(1) = x(2)}
.

All the projections over Ki are computed explicitly.
Now consider the sets Ci

n+1 and Qn defined in the theorems as follows:

Ci
n+1 =

{
v ∈ H : 〈μn(xn − xn−1) − (zin − xn−1), v〉

≤ 〈μn
( xn+xn−1

2

)
, xn − xn−1〉 − 〈 zin+xn−1

2 , zin − xn−1〉 − εin
2

}
,

Qn = {v ∈ H : 〈v − xn, xn − x◦〉 ≥ 0}.

These sets are as well half-spaces, but the projection xn+1 = PCn∩Qn (x◦) (in both of
the two proposed algorithms) will be computed numerically with a linear quadratic
optimization technique. (The programs are written in Scilab and performed on a PC
Desktop Intel(R)Core(TM) i5-7200U CPU @ 2.50GHz 2.70GHz, RAM 8.00 GB.)
It should be noted that the (CSVIP) in this case is x∗ = 0.We takeκn = ‖xn − x∗‖∞ ,

n = 0, 1, . . ., to check the convergence of the sequence {xn}n∈N which is generated by
Algorithm of Theorem 1 or Algorithm of Theorem 2, such that if {κn}n∈N converges
to 0, it implies that {xn}n∈N converges to the solution x∗ of the problem (CSVIP).
Define L = max{‖M1‖ , ‖M2‖ , ‖M3‖}.
Now, we shall discuss the behavior of the algorithms with θn = 0 and θn = (

1
a

)n
,

respectively, where a is a natural number greater than 1.
Suppose that Let x(1), x(2) and x(3) be the components of x for each iteration. We
give below the details of the two iterations.

4.1.1 When the Sequence is Convergent

In this case, we access the behavior of the algorithms when θn = 0 and θn = (
1
a

)n
,

respectively, where a is a natural number.
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Table 1 The numerical results of iterations for λ = 0.5
L

Niter x(1) x(2) x(3)

2 2.6822788 4.1669622 −2.1926203

4 1.7428908 1.9905399 −1.1881078

8 0.8838627 1.063666 −0.147852

16 −0.114004 0.4020859 −0.2948171

32 0.1516955 0.1366903 −0.20404

64 0.0271699 0.0316335 −0.0050567

128 0.003 0.002955 −0.0016168

256 0.0006922 0.000994 −0.000963

Algorithm of Theorem 1 Choosing w◦ = x◦ =
⎛
⎝ 1

7
−3

⎞
⎠ ; θn = 0 and μn = 1.

The numerical results of iterations for λ = 0.5
L are presented as follows (Table 1):

One has a convergence for Niter=199, while, for λ = 0.1
L , we obtain the conver-

gence at Niter=332 (Note, the word Niter refers to the number of the iterations).
Tables 2 and 3 illustrate the numerical results of Algorithm of Theorem 1, when

λ = 0.5
L and λ = 0.1

L , respectively, for the various geometric sequence θn = (
1
a

)n
,

with a ≥ 1.
Algorithm of Theorem 2 We use the same data of the Algorithm of Theorem

1. The function [n] is linked to n by the following formula (which is available in
Scilab):

[n] = modulo(n, N ) + 1,

with the [n] function taking the values in {1, 2, . . . , N }.
The numerical results of iterations for λ = 0.5

L are presented as follows (Table 4):
One has a convergence for Niter = 30279, while, for λ = 0.1

L , we obtain the
convergence at Niter = 93899.

Table 2 Niter for a minimum precision of 0.001 and λ = 0.5
L for various values of a ≥ 1

a 2 3 4 5 6 7 8 9

Niter 239 251 245 282 256 265 203 218

Precision 0.000964 0.000916 0.000972 0.0009435 0.0008744 0.0008258 0.000894 0.0008877

Table 3 Niter for a minimum precision of 0.001 and λ = 0.1
L for various values of a ≥ 1

a 2 3 4 5 6 7 8 9

Niter 468 425 441 412 436 473 366 398

Precision 0.0008626 0.0009609 0.0009059 0.0009781 0.0009738 0.0009586 0.0009793 0.0009965
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Table 4 The numerical results of iterations for λ = 0.5
L

Niter x(1) x(2) x(3)

2 0.8591395 6.6280827 −2.68178

4 2.4721046 3.8131022 −2.3010322

8 1.3779545 2.6042651 −1.0132506

16 2.0633457 1.5218332 −1.004058

32 0.7153241 0.9836615 −0.3302871

64 0.4690249 0.41279 −0.2490068

128 0.1406275 0.2056841 −0.1215445

256 −0.0754801 0.2155831 0.1165085

512 0.0588911 0.0604353 −0.024352

1024 0.0162688 0.024721 −0.0504005

2048 0.0174299 0.0261066 0.0061292

4096 0.0191064 0.0105297 0.0005558

8192 0.0038712 0.0051106 −0.0027426

16384 0.0031451 0.0018751 −0.0013357

32768 0.0009576 0.000981 −0.0009486

Tables 5 and 6 illustrate the numerical results of Algorithm of Theorem 2, when
λ = 0.5

L and λ = 0.1
L , respectively, for the various geometric sequence θn = (

1
a

)n
,

with a ≥ 1.
From Figs. 1 and 2, we see that the performance of Algorithm of Theorem 1 is

better than that of Algorithm of Theorem 2. Also, as the value of λ increases, the
algorithms converge faster.

Table 5 Niter for a minimum precision of 0.001 and λ = 0.5
L for various values of a ≥ 1

a 2 3 4 5 6 7 8 9

Niter 31158 31916 23604 32695 33781 31640 32388 24753

Precision 0.0009737 0.0009972 0.0009887 0.0009999 0.0009858 0.000994 0.0009868 0.0009713

Table 6 Niter for a minimum precision of 0.001 and λ = 0.1
L for various values of a ≥ 1

a 2 3 4 5 6 7 8 9

Niter 264693 276236 234029 257163 223990 236072 259420 237678

Precision 0.0009932 0.0009943 0.0009955 0.0009899 0.0009999 0.0009944 0.0009907 0.0009838
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Fig. 1 Number of iterations for a parallel algorithm

Fig. 2 Number of iterations for a parallel algorithm

4.1.2 When the Sequence is Bounded but not Convergent

Here, we define a sequence θn by

θn = |cos(n)| .

It is easy to see that θn verifies 0 ≤ θn < 1 as required by our theorems.
Tables 7, 8 and 9 give a comparison between the number of iterations required to

get the required precision (δ = 0.001) for the two algorithms with two bounded and
non-convergent sequences.
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Table 7 Comparison between the two algorithms for a cosine sequence

λ Parallel algorithm Cyclic algorithm
0.5
L 218 28889
0.1
L 360 534555

Table 8 Comparison between the two algorithms for a uniformly random distributed sequence

λ Parallel algorithm Cyclic algorithm
0.5
L 171 34613
0.1
L 371 473818

Table 9 Comparison between the two algorithms for a constant sequence θn

λ Parallel algorithm Cyclic algorithm
0.5
L 182 68971
0.1
L 318 451432

Note that, conversely to the first case, θn is not a convergent sequence; however,
the conclusion of the theorems remain verified (one has convergence) as illustrated
by the above table. Moreover, the number of iterations to get the required precision
will become much higher.

4.2 A Strong Convergence in L2

Let H = L2(0, 1)be an infinite dimensional space, define A, K1 and K2 by (Ax)(t) =
t∫
0
x(s)ds

⎧⎨
⎩

K1 = {x ∈ L2(0, 1),
1∫
0
x(t)dt = b1}

K2 = {
x ∈ L2(0, 1), x(t) = b2, 0 ≤ t ≤ 0.1

} , (29)

such that K = K1 ∩ K2.

For simplicity, we shall consider the subset of L2(0, 1) is a simple function. This
choice is justified by the fact that it is easy to define integration for a simple function
and also it is straightforward to approximate L2 functions by sequences of simple
functions.

Here, the issue is to find the mapping t �→ x∗(t) ∈ K such that 〈Ax, x − x∗〉 ≥ 0
for all x ∈ ∩Ki .

Now, we shall show that the mapping x �→ Ax is linear, 1−Lipschitz and mono-
tone.
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Let us compute the L2 norm of Ax, where (Ax)(t) =
t∫
0
x(s)ds.

Decomposing x as the difference between its positive and negative parts, we get

‖Ax‖2L2(0,1) =
1∫

0

⎛
⎝

t∫
0

x(s)ds

⎞
⎠

2

dt =
1∫

0

⎛
⎝

t∫
0

x+(s)ds

⎞
⎠

2

dt +
1∫

0

⎛
⎝

t∫
0

x−(s)ds

⎞
⎠

2

dt

−
1∫

0

⎛
⎝

t∫
0

x+(s)x−(s)ds

⎞
⎠ dt

≤
1∫

0

⎛
⎝

t∫
0

x+(s)ds

⎞
⎠

2

dt +
1∫

0

⎛
⎝

t∫
0

x−(s)ds

⎞
⎠

2

dt

≤
⎛
⎝

t∫
0

x+(t)dt

⎞
⎠

2

dt +
⎛
⎝

t∫
0

x−(t)dt

⎞
⎠

2

dt = ‖x‖2L2(0,1) .

Also, we have

〈Ax, x〉L2(0,1) =
1∫

0

⎛
⎝

t∫
0

x(s)ds

⎞
⎠

2

x(t)dt =
1∫

0

⎛
⎝

t∫
0

x(s)x(t)ds

⎞
⎠

2

dt.

So it is clear that for the subspace of simple functions, the product x(s)x(t) ≥ 0
for each t ≥ 0, 0 ≤ s ≤ t and partition Ak ∈ [0, 1].Hence, we get Ax, x〉L2(0,1) ≥ 0.
So, we conclude that A is a linear, continuous Lipschitzian and monotone mapping.

Now, we will solve VIP (1) with the following data:

x (0) = 1 x (1) = 1 θn = 0 λ = 1,
μn = 1 Ai = A Ki = K L = 1.

For the cases b1 = b2 = 0, the (CSVIP) here is x∗ = 0. So we shall put ‖xn − x∗‖∞ ,

n = 0, 1, 2, . . . and an error threshold δ = 10−3 to examine the convergence of
(xn)n∈N which is iterated by Algorithm 3.1 or Algorithm 3.2 as previously. For
the other cases where b1 �= 0 or b2 �= 0, we will use the sequence ‖xn − xn−1‖∞
n = 0, 1, 2, . . . and an error threshold δ = 10−3 to discuss the convergence of (xn)n∈N
because one do not, in advance, know the solution.

In the following cases, we shall consider the parameters b1 and b2 in (29) to study
the behavior of the various solutions and we take

x◦(t) = 3, x1(t) = 3, θn = (
1
2

)n
, λ = 0.01

L , δ = 10−3.

Cyclic algorithm
Case 1. When b1 = 0 and b2 = 0, we have (Table 10)



204 H. A. Hammad and M. A. Diallo

Table 10 Numerical results of Case 1
Niter x(1) x(2) x(3) x(4) x(5) x(6) x(7) x(8) x(9)

2 0.0148348 2.9970208 2.9940446 2.9910714 2.9881011 2.9851339 2.9821696 2.9792083 2.97625

4 0.0149541 0.0147809 0.0146125 0.0144487 0.0142897 0.0141354 0.0139857 0.0138408 0.0137005

8 0.0001981 0.0000718 −0.000016 −0.0000662 −0.0000799 −0.000058 −0.0000017 0.0000881 0.0002104

Niter = 5,
1∫
0
x(t)dt = 0.0000711 and ‖x‖L2(0,1) = 0.000186.

Case 2. When b1 = 0 and b2 = 1, we get (Fig. 3; Table 11)

Niter =85057,
1∫
0
x(t)dt = 0.00006727 and ‖x‖L2(0,1) = 0.4463904.

Case 3. When b1 = 0.25 and b2 = 1, we have (Fig. 4)

Niter = 11,
1∫
0
x(t)dt = 0.2500397 and ‖x‖L2(0,1) = 0.3830179.

Parallel algorithm
Case 4. When b1 = 0 and b2 = 0, we have (Table 12)

Niter = 4,
1∫
0
x(t)dt = 0.0004276 and ‖x‖L2(0,1) = 0.0001402.

Case 5. When b1 = 0 and b2 = 1, we get (Fig. 5; Table 13)

Niter = 512,
1∫
0
x(t)dt = 0.000403 and ‖x‖L2(0,1) = 0.4611933.

Case 6. When b1 = 0.25 and b2 = 1, we get Niter = 88,
1∫
0
x(t)dt = 0.252749

and ‖x‖L2(0,1) = 0.358893 (Fig. 6).

Fig. 3 Approximate solution function for Case 2
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Fig. 4 Approximate solution function for Case 3

Table 12 Numerical results of Case 4
Niter x(1) x(2) x(3) x(4) x(5) x(6) x(7) x(8) x(9)

2 0.0149867 0.0149762 0.0149688 0.0149643 0.0149628 0.0149643 0.0149688 0.0149762 0.0149867

4 0.0000442 0.0000334 0.0000287 0.0000289 0.0000327 0.0000388 0.0000461 0.0000533 0.0000591

Fig. 5 Approximate solution function for Case 5
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Fig. 6 Approximate solution function for Case 6

Note that, a slight deformation of the shape of the solution compared to Case
3 which can be explained by the same arguments as in the previous case, also for
each algorithm, the behavior of the method is first tested with the data b1 = 0 and
b2 = 0 to verify whether one will obtain the trivial solution x = 0. As related in
the previous part with space R

3, the cyclic algorithm is more precise as it needs
more iterations to obtain the solution with the prescribed accuracy. The parallel
algorithm, althoughmuch faster, may skip the solution due to the fact that it performs
relatively large increments between the iterates. It was found that the cyclic algorithm
is computationallymore precise than the parallel algorithmwhich ismuchmore faster
and that their convergence can be controlled by adjusting the parameters θn and λ.

5 Conclusions

In this paper, we have proposed one parallel and one cyclic hybrid algorithm which
combines the positive features of the (SEM). The choice of the intersection of the sets
Ci
n+1 instead of only one single set based on the furthest intermediate approximation

from the current iterate in the parallel algorithm allowed to increase the precision
of the computations and, therefore, to reduce the number of computations to get the
required precision. The efficiency of the algorithms has been illustrated with some
numerical experiments for discussing the (CSVIP).
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On a New Class of Interval-Valued
Variational Control Problems

Savin Treanţă

Abstract A class of optimization problems that includes interval-valued multiple
integral objective functionals is investigated in this paper. First, a new generalized
convexity condition is defined for the functionals involved and it is proved that an
interval-valued KT-pseudoinvex optimization problem is described so that every
Kuhn–Tucker point represents an LU-optimal solution. Further, an optimization
problem with modified interval-valued cost functional is introduced and an equiva-
lence between the two considered control problems is established. Finally, a connec-
tion between an LU-optimal solution of the considered optimization problem and a
saddle-point associated with the interval-valued Lagrange functional corresponding
to the modified interval-valued optimization problem is studied.

1 Introduction

The concept of convexity has a crucial significance in the study of many mathemati-
cal models that describe phenomena from different branches of science. Due to the
complexity of the environment, as many models of Physics, Economics, Mechanics
or Neural Networks can no longer be described using only the classical definition
of convexity. Consequently, numerous extensions and generalizations of convexity
were necessary for the study of these mathematical models that describe practical
phenomena (see, for instance, Hanson [4], Jeyakumar [6] and Antczak [2]). In order
to investigate the connection between Kuhn–Tucker points and global minimizers,
the notion of invexity formulated by Hanson [4] has been extended to KT-invexity.
Further, this concept was adapted for wider classes of optimization problems (infi-
nite, multiobjective and continuous-time programming problems, variational control
problems) and, in this regard, we mention Arana-Jiménez et al. [3], Osuna-Gómez
et al. [11] and de Oliveira et al. [10]. Moreover, a generalization of convexity was
made in the context of Geometry (see Pini [12], Udrişte [19] and Rapcsák [13]), but
also for the study of multidimensional variational problems governed by multiple
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and path-independent curvilinear integral functionals (see, for instance, Treanţă and
Arana-Jiménez [16, 17], Treanţă [15],Mititelu and Treanţă [8] and Jayswal et al. [5]).

To manage the uncertainty data in many optimization problems, interval opti-
mization is a scientific field increasingly used in applied mathematics. Therefore,
by considering the application of interval analysis in different fields, in this paper,
we extend the result established by Mond and Smart [9], according to Martin [7],
Arana-Jiménez et al. [3] and Treanţă and Arana-Jiménez [16, 17]. More precisely,
a new condition of generalized convexity is introduced such that all Kuhn–Tucker
points to be LU-optimal solutions in the considered interval-valued optimization
problem. Further, an optimization problem involving modified interval-valued cost
functional is defined and an equivalence between the twoconsidered control problems
is established. Moreover, a connection between an LU-optimal solution of the con-
sidered interval-valued optimization problem and a saddle-point associated with the
interval-valued Lagrange functional corresponding to the modified interval-valued
optimization problem is studied. Finally, in Section 6, we conclude the paper.

2 Preliminaries

In this section, some preliminary results and working assumptions to be used in the
sequel are introduced, as follows:

–� ⊂ Rm is a compact domain, with nonempty interior and the smooth boundary
∂�, and θ = (θα), α = 1,m, is a point in �;

– let S be the following state function space

S =
{
s : � → Rn | ‖ s ‖=‖ s ‖∞ +

m∑
α=1

‖ sα ‖∞, s = piecewise smooth functions

}
,

where sα := ∂s

∂θα
;

– also, denote by C the space of piecewise continuous control functions c : � →
Rk with the uniform norm ‖ · ‖∞;

– dθ := dθ1dθ2 · · · dθm represents the volume element on Rm ⊃ �;
– for K := � × Rn × Rk , we define the following continuously differentiable

functions
V = (

V i
α

) : K → Rnm, i = 1, n, α = 1,m,

W = (
Wβ

) : K → Rq , β = 1, q

and we assume that the continuously differentiable functions

Vα = (
V i

α

) : K → Rn, α = 1,m, i = 1, n,
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satisfy the following conditions of integrability

DζV
i
α = DαV

i
ζ , α �= ζ, α, ζ = 1,m, i = 1, n,

with Dζ := ∂

∂θζ
;

– to simplify writing, we use the notations (�sc) := (
θ, s(θ), c(θ), s0(θ), c0(θ)

)
and χsc(θ) := (θ, s(θ), c(θ));

– Einstein summation is assumed (for instance, μβ ∂Wβ

∂si
:=

q∑
β=1

μβ ∂Wβ

∂si
);

– for a = (
a1, . . . , ap

)
, b = (

b1, . . . , bp
)
in Rp, the following convention will

be used throughout the paper:

a = b ⇔ ai = bi , a ≤ b ⇔ ai ≤ bi ,

a < b ⇔ ai < bi , a 
 b ⇔ a ≤ b, a �= b, i = 1, p.

Next, we formulate the definitions for invexity and pseudoinvexity associated with
multiple integral functionals. In this regard, consider

h : J 1(Rm, Rn) × Rk → R, h = h (θ, s(θ), sα(θ), c(θ)) ,

a continuously differentiable function, where J 1(Rm, Rn) is the jet bundle of first-
order associated with Rm and Rn , that determines the following multiple integral
scalar functional

H : S × C → R, H (s, c) =
∫

�

h (θ, s(θ), sα(θ), c(θ)) dθ.

Following Mititelu and Treanţă [8], Treanţă [15], Treanţă and Arana-Jiménez [16],
[17], we have

Definition 1 If there exist a C1-class function

κ : � × Rn × Rk × Rn × Rk → Rn, κ = κ (�sc) = (κi (�sc)) , i = 1, n,

satisfying κ (�s0c0) = 0, ∀θ ∈ �, κ|∂� = 0, and a C0-class function

π : � × Rn × Rk × Rn × Rk → Rk, π = π (�sc) = (
π j (�sc)

)
, j = 1, k,

satisfying π (�s0c0) = 0, ∀θ ∈ �, π |∂� = 0, such that for every (s, c) ∈ S × C:

H (s, c) − H
(
s0, c0

)
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≥
∫

�

[
hs

(
θ, s0(θ), s0α(θ), c0(θ)

)
κ + hsα

(
θ, s0(θ), s0α(θ), c0(θ)

)
Dακ

]
dθ

+
∫

�

[
hc

(
θ, s0(θ), s0α(θ), c0(θ)

)
π

]
dθ,

then H is called invex at
(
s0, c0

) ∈ S × C with respect to κ and π .

Definition 2 If there exist a C1-class function

κ : � × Rn × Rk × Rn × Rk → Rn, κ = κ (�sc) = (κi (�sc)) , i = 1, n,

satisfying κ (�s0c0) = 0, ∀θ ∈ �, κ|∂� = 0, and a C0-class function

π : � × Rn × Rk × Rn × Rk → Rk, π = π (�sc) = (
π j (�sc)

)
, j = 1, k,

satisfying π (�s0c0) = 0, ∀θ ∈ �, π |∂� = 0, such that for every (s, c) ∈ S × C:

H (s, c) − H
(
s0, c0

)
< 0

⇒
∫

�

[
hs

(
θ, s0(θ), s0α(θ), c0(θ)

)
κ + hsα

(
θ, s0(θ), s0α(θ), c0(θ)

)
Dακ

]
dθ

+
∫

�

[
hc

(
θ, s0(θ), s0α(θ), c0(θ)

)
π

]
dθ < 0,

then H is called pseudoinvex at
(
s0, c0

) ∈ S × C with respect to κ and π .

Let I be the set of closed and bounded real intervals. For a closed and bounded
real interval W = [wL , wU ] ∈ I, let wL and wU be the lower and upper bounds of
W , respectively. Further, we will use the following rules:

(1) W = Z =⇒ wL = zL and wU = zU ;
(2) if wL = wU = w then W = [w,w] = w;
(3) W + Z = [wL + zL , wU + zU ];
(5) −W = −[wL , wU ] = [−wU ,−wL ];
(5) W − Z = [wL − zU , wU − zL ];
(6) k + W = [k + wL , k + wU ], k ∈ R;
(7) kW = [kwL , kwU ], k ∈ R, k ≥ 0;
(8) kW = [kwU , kwL ], k ∈ R, k < 0.

Definition 3 ([14]) The relation W 
LU Z between W, Z ∈ I is valid ⇐⇒ wL ≤
zL and wU ≤ zU .
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Definition 4 ([14]) The relationW ≺LU Z betweenW, Z ∈ I is valid⇐⇒ W 
LU

Z and W �= Z .

Definition 5 ([14]) A function f : K → I, introduced as

f χsc(θ) = [ f Lχsc(θ), f Uχsc(θ)], θ ∈ �,

where f Lχsc(θ) and f Uχsc(θ) are real-valued functions, with

f Lχsc(θ) ≤ f Uχsc(θ), θ ∈ �,

is called interval-valued function.

In this paper, we study the following optimization problem, where the multi-

ple integral objective scalar functional F (s, c) =
∫

�

f χsc(θ)dθ, (s, c) ∈ S × C, is
considered as interval-valued:

(OP) min
(s,c)

{∫
�

f χsc(θ)dθ =
[∫

�

f Lχsc(θ)dθ,

∫
�

f Uχsc(θ)dθ

]}

subject to

∂si

∂θα
(θ) = V i

αχsc(θ), i = 1, n, α = 1,m, θ ∈ �, (1)

Wχsc(θ) ≤ 0, θ ∈ �, (2)

s(θ)|∂� = ϕ(θ) = given. (3)

Denoyte by X the set of all feasible solutions for (OP)

X = {(s, c) |s ∈ S, c ∈ C fulfilling (1), (2) and (3)} .

Definition 6 ([14]) The point (s0, c0) ∈ X is said to be LU-optimal solution if there
exists no other (s, c) ∈ X such that F(s, c) ≺LU F(s0, c0).

The necessary conditions of LU-optimality are provided by the following result:

Theorem 1 ([14]) Under constraint qualification assumptions, let (s0, c0) ∈ X be
an LU-optimal solution of (OP). Then, for all θ ∈ �, except at discontinuities, there
exists  : � → R2, (θ) = (L(θ), U (θ)), μ : � → Rq and λ : � → Rnm, with
μ(θ) = (μβ(θ)) ∈ Rq , λ(θ) = (λα

i (θ)) ∈ Rnm, such that:
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L(θ)
∂ f L

∂si
χs0c0(θ) + U (θ)

∂ f U

∂si
χs0c0(θ) + λα

i (θ)
∂V i

α

∂si
χs0c0(θ) (4)

+μβ(θ)
∂Wβ

∂si
χs0c0(θ) + ∂λα

i

∂θα
(θ) = 0, i = 1, n,

L(θ)
∂ f L

∂c j
χs0c0(θ) + U (θ)

∂ f U

∂c j
χs0c0(θ) + λα

i (θ)
∂V i

α

∂c j
χs0c0(θ) (5)

+μβ(θ)
∂Wβ

∂c j
χs0c0(θ) = 0, j = 1, k,

μβ(θ)Wβχs0c0(θ) = 0 (without summation), ((θ), μ(θ)) � 0. (6)

Definition 7 ([14]) If (L , U ) > (0, 0), an LU-optimal solution (s0, c0) ∈ X of
(OP) is a normal LU-optimal solution in (OP).

Definition 8 The point (s0, c0) ∈ X is called Kuhn-Tucker point of (OP) if, for
all θ ∈ �, except at discontinuities, there exist the multipliers μ : � → Rq and
λ : � → Rnm , with μ(θ) = (μβ(θ)) ∈ Rq , λ(θ) = (λα

i (θ)) ∈ Rnm , such that:

∂ f L

∂si
χs0c0(θ) + ∂ f U

∂si
χs0c0(θ) + λα

i (θ)
∂V i

α

∂si
χs0c0(θ) (7)

+μβ(θ)
∂Wβ

∂si
χs0c0(θ) + ∂λα

i

∂θα
(θ) = 0, i = 1, n,

∂ f L

∂c j
χs0c0(θ) + ∂ f U

∂c j
χs0c0(θ) + λα

i (θ)
∂V i

α

∂c j
χs0c0(θ) (8)

+μβ(θ)
∂Wβ

∂c j
χs0c0(θ) = 0, j = 1, k,

μβ(θ)Wβχs0c0(θ) = 0 (wi thout summation), μ(θ) ≥ 0. (9)

The next result formulates a connection between the normal LU-optimal solution
of (OP) and Kuhn–Tucker point of (OP).

Theorem 2 If (s0, c0) ∈ X represents a normal LU-optimal solution of (OP), then
(s0, c0) ∈ X is a Kuhn–Tucker point of (OP).
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3 Interval-Valued KT-pseudoinvex Optimization Problems

In this section, the concept of interval-valuedKT-pseudoinvexity corresponding to the
optimization problem with interval-valued objective functional (OP) is introduced.
Specifically, we generalize the KT-pseudoinvexity notion, introduced by Treanţă and
Arana-Jiménez [16, 17], for interval-valued optimization problems. We prove that
interval-valued KT-pseudoinvexity condition is a necessary and sufficient condition
so that all Kuhn–Tucker points of (OP) to be LU-optimal solutions of (OP).

Definition 9 The interval-valued optimization problem (OP) is called interval-
valued KT-pseudoinvex at (s0, c0) ∈ X if for all μ : � → Rq , satisfying (9), and
piecewise smooth functions λ : � → Rnm , there exist a C1-class function

κ : � × (Rn × Rk)2 × Rnm × Rq → Rn,

κ = (
κi

(
θ, s(θ), c(θ), s0(θ), c0(θ), λ(θ), μ(θ)

))
, i = 1, n,

satisfying κ
(
θ, s0(θ), c0(θ), s0(θ), c0(θ), λ(θ), μ(θ)

) = 0, ∀θ ∈ �, κ|∂� = 0,
and a C0-class function

π : � × (Rn × Rk)2 × Rnm × Rq → Rk,

π = (
π j

(
θ, s(θ), c(θ), s0(θ), c0(θ), λ(θ), μ(θ)

))
, j = 1, k,

satisfying π
(
θ, s0(θ), c0(θ), s0(θ), c0(θ), λ(θ), μ(θ)

) = 0, ∀θ ∈ �, π |∂� = 0,
such that for all (s, c) ∈ X:

F (s, c) ≺LU F
(
s0, c0

) ⇒ L (κ, π) < 0,

where

L (κ, π) :=
∫

�

{
κ

(
f Ls χs0c0(θ) + f Us χs0c0(θ) + λα

i (θ)
(
V i

α

)
s χs0c0(θ)

)}
dθ

+
∫

�

(
μβ(θ)

(
Wβ

)
s χs0c0(θ)

)
κdθ −

∫
�

{λα(θ)Dακ} dθ

+
∫

�

{
π

(
f Lc χs0c0(θ) + f Uc χs0c0(θ) + λα

i (θ)
(
V i

α

)
c χs0c0(θ)

)}
dθ

+
∫

�

(
μβ(θ)

(
Wβ

)
c χs0c0(θ)

)
πdθ.
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Definition 10 If, for all (s0, c0) ∈ X, the interval-valued optimization problem
(OP) is interval-valued KT-pseudoinvex, then it is called interval-valued KT-
pseudoinvex.

Theorem 3 All Kuhn–Tucker points of (OP) are LU-optimal solutions of (OP) if
and only if the interval-valued optimization problem (OP) is interval-valued KT-
pseudoinvex.

Proof “⇐=” Consider (s0, c0) ∈ X is a Kuhn-Tucker point of (OP). In conse-
quence, there exist μ : � → Rq and piecewise smooth functions λ : � → Rnm sat-
isfying (7)–(9). By using the hypothesis, the interval-valued optimization problem
(OP) is interval-valued KT-pseudoinvex. Thus, for μ (satisfying (9)) and λ, for
all (s, c) ∈ X, there exist the functions κ and π fulfilling the interval-valued KT-
pseudoinvexity definition. Next, applying the hypothesis κ|∂� = 0 and the flow-
divergence formula, we get

∫
�

κDαλα(θ)dθ = −
∫

�

[
λα(θ)Dακ

]
dθ.

Consequently, we obtain (see (7) and (8))

L (κ, π) =
∫

�

(
f Ls χs0c0(θ) + f Us χs0c0(θ) + λα

i (θ)
(
V i

α

)
s χs0c0(θ)

)
κdθ

+
∫

�

(
μβ(θ)

(
Wβ

)
s χs0c0(θ) + Dαλα(θ)

)
κdθ

+
∫

�

{
π

(
f Lc χs0c0(θ) + f Uc χs0c0(θ) + λα

i (θ)
(
V i

α

)
c χs0c0(θ)

)}
dθ

+
∫

�

(
μβ(θ)

(
Wβ

)
c
χs0c0(θ)

)
πdθ = 0.

Since (OP) is interval-valuedKT-pseudoinvex, it results F (s, c) �LU F
(
s0, c0

)
, for

all (s, c) ∈ X. Thus, (s0, c0) ∈ X is an LU-optimal solution of (OP). This completes
the proof of implication “⇐=”.

“=⇒” Let (s, c), (s0, c0) ∈ X be two feasible points in (OP), with F (s, c) ≺LU

F
(
s0, c0

)
, μ (satisfying (9)) and λ piecewise smooth functions. We must find two

vector-valued functions κ and π , fulfilling the interval-valued KT-pseudoinvexity
definition, such that L (κ, π) < 0. Arguing by contradiction, suppose that the
inequality L (κ, π) < 0 is not satisfied for any vector-valued functions κ and π

given as above. Putting −κ, −π as arguments of L, we obtain that L (κ, π) > 0
is not satisfied. Consequently, for all vector-valued functions κ and π , we have
L (κ, π) = 0.

Let us considerπ = 0, ∀θ ∈ �, and fix it as argument ofL. Therefore,L (κ, 0) =
0, equivalent with
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�

[
f Ls χs0c0(θ) + f Us χs0c0(θ) + λα

i (θ)
(
V i

α

)
s χs0c0(θ) + μβ(θ)

(
Wβ

)
s χs0c0(θ)

]
κdθ

+
∫

�

[
Dαλα(θ)

]
κdθ = 0,

is satisfied, for all vector-valued functions κ . Using the Dubois-Raymond’s Lemma
(see Alekseev et al. [1]), we have

f Ls χs0c0(θ) + f Us χs0c0(θ) + λα
i (θ)

(
V i

α

)
s χs0c0(θ) (10)

+μβ(θ)
(
Wβ

)
s χs0c0(θ) + Dαλα(θ) = 0.

As above, if we fix κ = 0, ∀θ ∈ �, as argument of L, we obtain

f Lc χs0c0(θ) + f Uc χs0c0(θ) + λα
i (θ)

(
V i

α

)
c χs0c0(θ) + μβ(θ)

(
Wβ

)
c χs0c0(θ) = 0.

(11)
Since s0, c0, λ, μ fulfils the conditions (9), (10) and (11), we conclude that

(s0, c0) ∈ X is a Kuhn–Tucker point of (OP). By using the hypothesis, (s0, c0) ∈ X
is an LU-optimal solution of (OP) and we get a contradiction. Consequently, the
interval-valued optimization problem (OP) is interval-valued KT-pseudoinvex. This
completes the proof. �

4 An Interval-Valued Optimization Problem Associated
with (OP) with Modified Objective Functional

This section includes an interval-valued optimization problem associated with (OP)

with modified objective functional. By considering a concrete application, it can be
easily noticed that the interval-valued optimization problem associated with (OP)

with modified objective functional is simpler to investigate than the original interval-
valued optimization problem.

In the following, for κ, π given as in Sect. 2 (see Definitions 1 and 2) and for
an arbitrary (s0, c0) ∈ X of (OP), we introduce an interval-valued optimization
problem corresponding to (OP) with modified objective functional, as follows:

(OPκ,π (s0, c0)) min
(s,c)

∫
�

( fsχs0c0(θ)κ + fcχs0c0(θ)π) dθ

subject to

∂si

∂θα
(θ) = V i

αχsc(θ), i = 1, n, α = 1,m, θ ∈ �, (12)
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Wχsc(θ) ≤ 0, θ ∈ �, (13)

s(θ)|∂� = ϕ(θ) = given, (14)

where ∫
�

( fsχs0c0(θ)κ + fcχs0c0(θ)π) dθ

:=
[∫

�

(
f Ls χs0c0(θ)κ + f Lc χs0c0(θ)π

)
dθ,

∫
�

(
f Us χs0c0(θ)κ + f Uc χs0c0(θ)π

)
dθ

]
.

Remark 1 The set of feasible solutions in the aforementioned interval-valued opti-
mization problem with modified objective functional is X, as well.
Definition 11 The feasible solution (ŝ, ĉ) ∈ X is called LU-optimal solution of
(OPκ,π (s0, c0)) if the inequality

∫
�

( fsχs0c0(θ)κ (�sc) + fcχs0c0(θ)π (�sc)) dθ

�LU

∫
�

( fsχs0c0(θ)κ (�ŝĉ) + fcχs0c0(θ)π (�ŝĉ)) dθ,

is fulfilled, for every (s, c) ∈ X.
The normal LU-optimal solution notion in the considered interval-valued opti-

mization problem with modified objective functional (OPκ,π (s0, c0)) has the same
significance as in Definition 7.

In the following, we set some results of equivalence for LU-optimal solutions of
(OP) and (OPκ,π (s0, c0)).

Theorem 4 Consider
∫

�

f εχsc(θ)dθ, ε ∈ {L ,U }, are pseudoinvex at (s0, c0) ∈ X
with respect toκ andπ and (s0, c0) ∈ X is anLU-optimal solutionof (OPκ,π (s0, c0)).
Then (s0, c0) ∈ X is an LU-optimal solution of (OP).

Proof Arguing by contradiction, consider (s0, c0) ∈ X isn’t an LU-optimal solution
for (OP). Consequently, there exists (s, c) ∈ X fulfilling

∫
�

f χsc(θ)dθ ≺LU

∫
�

f χs0c0(θ)dθ.

By hypothesis,
∫

�

f εχsc(θ)dθ, ε ∈ {L ,U }, are pseudoinvex at (s0, c0) ∈ X with

respect to κ and π . Therefore, the above inequality involves

∫
�

fsχs0c0(θ)κ (�sc) dθ +
∫

�

fcχs0c0(θ)π (�sc) dθ ≺LU [0, 0].
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By using κ (�s0c0) = π (�s0c0) = 0, we can write as follows:

∫
�

fsχs0c0(θ)κ (�sc) dθ +
∫

�

fcχs0c0(θ)π (�sc) dθ

≺LU

∫
�

fsχs0c0(θ)κ (�s0c0) dθ +
∫

�

fcχs0c0(θ)π (�s0c0) dθ,

which contradicts the optimality of (s0, c0) ∈ X in (OPκ,π (s0, c0)). In consequence,
(s0, c0) ∈ X is LU-optimal solution of (OP). �

Theorem 5 ([18]) Let (s0, c0) ∈ X be a normal LU-optimal solution of (OP). Also,

if
∫

�

μβ(θ)Wβχsc(θ)dθ,

∫
�

λα
i (θ)

(
V i

αχsc(θ) − ∂si

∂θα
(θ)

)
dθ are invex at (s0, c0) ∈

X with respect to κ and π , then (s0, c0) ∈ X is an LU-optimal solution of
(OPκ,π (s0, c0)).

5 Saddle-Point Optimality Criteria

In this section, we establish a relation between an LU-optimal solution of (OP) and
a saddle-point corresponding to the interval-valued Lagrange functional of the con-
sidered interval-valued optimization problem associated with (OP) with modified
objective functional (OPκ,π (s0, c0)).

Definition 12 The interval-valued Lagrange functional corresponding to the con-
sidered interval-valued optimization problem with modified objective functional
(OPκ,π (s0, c0)) is defined as follows:

Lκ,π (s, c; λ,μ)

=
∫

�

( fsχs0c0(θ)κ + fcχs0c0(θ)π + λα
i (θ)

(
V i

αχsc(θ) − ∂si

∂θα
(θ)

)

+μβ(θ)Wβχsc(θ))dθ

:= [LL
κ,π (s, c; λ,μ),LU

κ,π (s, c; λ,μ)
]

where, for ε ∈ {L ,U }, we have denoted

Lε
κ,π (s, c; λ,μ)

:=
∫

�

( f ε
s χs0c0(θ)κ + f ε

c χs0c0(θ)π + λα
i (θ)

(
V i

αχsc(θ) − ∂si

∂θα
(θ)

)
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+μβ(θ)Wβχsc(θ))dθ.

Remark 2 We notice that
Lκ,π (s, c; λ,μ)

=
[∫

�

(
f Ls χs0c0(θ)κ + f Lc χs0c0(θ)π

)
dθ,

∫
�

(
f Us χs0c0(θ)κ + f Uc χs0c0(θ)π

)
dθ

]

+
∫

�

(
λα
i (θ)

(
V i

αχsc(θ) − ∂si

∂θα
(θ)

)
+ μβ(θ)Wβχsc(θ)

)
dθ.

Definition 13 A point (s0, c0; λ,μ) ∈ X × R
nm × R

q
+ is called saddle-point of the

interval-valued Lagrange functional Lκ,π (s, c; λ,μ) corresponding to the modified
interval-valued optimization problem (OPκ,π (s0, c0)) if:

Lκ,π (s0, c0; λ,μ) 
LU Lκ,π (s0, c0; λ,μ), ∀(λ, μ) ∈ R
nm × R

q
+ (15)

Lκ,π (s0, c0; λ,μ) 
LU Lκ,π (s, c; λ,μ), ∀(s, c) ∈ X. (16)

Further, by using the above definitions, we set the following two characterization
results:

Theorem 6 Consider (s0, c0; λ,μ) ∈ X × R
nm × R

q
+ be a saddle-point of the

interval-valued Lagrange functional Lκ,π (s, c; λ,μ) corresponding to the interval-
valued optimization problem (OPκ,π (s0, c0)). Also, consider the functionals∫

�

f εχsc(θ)dθ, ε ∈ {L ,U }, are pseudoinvex at (s0, c0) ∈ X with respect to κ and

π . Then (s0, c0) ∈ X is an LU-optimal solution of (OP).

Proof Let (s0, c0; λ,μ) ∈ X × R
nm × R

q
+ be a saddle-point for the interval-valued

Lagrange functional Lκ,π (s, c; λ,μ) corresponding to the modified optimization
problem (OPκ,π (s0, c0)). Consequently, using (15), we get

∫
�

[
fsχs0c0(θ)κ

(
θ, s0(θ), c0(θ), s0(θ), c0(θ)

)]
dθ

+
∫

�

[
fcχs0c0(θ)π

(
θ, s0(θ), c0(θ), s0(θ), c0(θ)

)]
dθ

+
∫

�

λα
i (θ)

[
V i

αχs0c0(θ) − ∂si

∂θα
(θ)

]
dθ +

∫
�

μβ(θ)Wβχs0c0(θ)dθ


LU

∫
�

[
fsχs0c0(θ)κ

(
θ, s0(θ), c0(θ), s0(θ), c0(θ)

)]
dθ
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+
∫

�

[
fcχs0c0(θ)π

(
θ, s0(θ), c0(θ), s0(θ), c0(θ)

)]
dθ

+
∫

�

λ
α

i (θ)

[
V i

αχs0c0(θ) − ∂si

∂θα
(θ)

]
dθ +

∫
�

μβ(θ)Wβχs0c0(θ)dθ,

for all (λ, μ) ∈ R
nm × R

q
+. Using the properties of κ and π , it results

∫
�

λα
i (θ)

[
V i

αχs0c0(θ) − ∂si

∂θα
(θ)

]
dθ +

∫
�

μβ(θ)Wβχs0c0(θ)dθ

≤
∫

�

λ
α

i (θ)

[
V i

αχs0c0(θ) − ∂si

∂θα
(θ)

]
dθ +

∫
�

μβ(θ)Wβχs0c0(θ)dθ,

for all (λ, μ) ∈ R
nm × R

q
+. Taking μ(θ) = (μβ(θ)) = 0, β = 1, q , and using the

feasibility of (s0, c0), we find

∫
�

λ
α

i (θ)

[
V i

αχs0c0(θ) − ∂si

∂θα
(θ)

]
dθ +

∫
�

μβ(θ)Wβχs0c0(θ)dθ ≥ 0. (17)

Further, arguing by contradiction, suppose that (s0, c0) ∈ X isn’t LU-optimal
solution for (OP). Consequently, there exists (s, c) ∈ X fulfilling

∫
�

f χs,c(θ)dθ ≺LU

∫
�

f χs0c0(θ)dθ.

Since
∫

�

f εχsc(θ)dθ, ε ∈ {L ,U }, are pseudoinvex at (s0, c0) ∈ X with respect to

κ and π , it follows∫
�

[
fsχs0c0(θ)κ

(
θ, s(θ), c(θ), s0(θ), c0(θ)

)]
dθ

+
∫

�

[
fcχs0c0(θ)π

(
θ, s(θ), c(θ), s0(θ), c0(θ)

)]
dθ ≺LU [0, 0].

By considering

κ
(
θ, s0(θ), c0(θ), s0(θ), c0(θ)

) = π
(
θ, s0(θ), c0(θ), s0(θ), c0(θ)

) = 0, ∀t ∈ �,

the above inequality becomes

∫
�

[
fsχs0c0(θ)κ

(
θ, s(θ), c(θ), s0(θ), c0(θ)

)]
dθ (18)
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+
∫

�

[
fcχs0c0(θ)π

(
θ, s(θ), c(θ), s0(θ), c0(θ)

)]
dθ

≺LU

∫
�

[
fsχs0c0(θ)κ

(
θ, s0(θ), c0(θ), s0(θ), c0(θ)

)]
dθ

+
∫

�

[
fcχs0c0(θ)π

(
θ, s0(θ), c0(θ), s0(θ), c0(θ)

)]
dθ.

Since (s, c) ∈ X, the following inequality hold

∫
�

λ
α

i (θ)

[
V i

αχs,c(θ) − ∂si

∂θα
(θ)

]
dθ +

∫
�

μβ(θ)Wβχs,c(θ)dθ ≤ 0, (19)

and, combining (17) and (19), it follows

∫
�

λ
α

i (θ)

[
V i

αχs,c(θ) − ∂si

∂θα
(θ)

]
dθ +

∫
�

μβ(θ)Wβχs,c(θ)dθ (20)

≤
∫

�

λ
α

i (θ)

[
V i

αχs0c0(θ) − ∂si

∂θα
(θ)

]
dθ +

∫
�

μβ(θ)Wβχs0c0(θ)dθ.

In the following, by using (18) and (20), we obtain

∫
�

[
fsχs0c0(θ)κ

(
θ, s(θ), c(θ), s0(θ), c0(θ)

)]
dθ

+
∫

�

[
fcχs0c0(θ)π

(
θ, s(θ), c(θ), s0(θ), c0(θ)

)]
dθ

+
∫

�

λ
α

i (θ)

[
V i

αχs,c(θ) − ∂si

∂θα
(θ)

]
dθ +

∫
�

μβ(θ)Wβχs,c(θ)dθ

≺LU

∫
�

[
fsχs0c0(θ)κ

(
θ, s0(θ), c0(θ), s0(θ), c0(θ)

)]
dθ

+
∫

�

[
fcχs0c0(θ)π

(
θ, s0(θ), c0(θ), s0(θ), c0(θ)

)]
dθ

+
∫

�

λ
α

i (θ)

[
V i

αχs0c0(θ) − ∂si

∂θα
(θ)

]
dθ +

∫
�

μβ(θ)Wβχs0c0(θ)dθ,

which is a contradiction with (16) (see Definition 13). Consequently, (s0, c0) ∈ X is
LU-optimal solution for (OP). �
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Theorem 7 Consider (s0, c0) ∈ X is a normal LU-optimal solution for (OP) and
the multiple integral functional

∫
�

{
μβ(θ)Wβχsc(θ) + λ

α

i (θ)

[
V i

αχsc(θ) − ∂si

∂θα
(θ)

]}
dθ

is invex at (s0, c0) ∈ X with respect to κ and π . Then (s0, c0; λ,μ) ∈ X × R
nm ×

R
q
+ is a saddle-point for the interval-valued Lagrange functional Lκ,π (s, c; λ,μ)

corresponding to the modified optimization problem (OPκ,π (s0, c0)).

Proof The proof is immediate. �

6 Conclusions

A class of optimization problems with interval-valued multiple integral objective
functionals has been studied in this paper. More precisely, it has been shown that
an interval-valued KT-pseudoinvex optimization problem is described so that every
Kuhn–Tucker point is an LU-optimal solution. Further, an interval-valued optimiza-
tion problem with modified objective functional has been introduced and an equiva-
lence between the two considered control problems was established. Finally, a con-
nection between an LU-optimal solution of (OP) and a saddle-point corresponding
to the interval-valued Lagrange functional of the considered interval-valued opti-
mization problem with modified objective functional (OPκ,π (s0, c0)) was studied.
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Best Proximity Points for Multivalued
Mappings Satisfying Zσ-Proximal
Contractions with Applications

Hüseyin Işık, Amjad Ali, Fahim Uddin, Awais Asif, and Muhammad Arshad

Abstract The purpose of this manuscript is to ensure best proximity point for mul-
tivalued maps satisfying Zσ-proximal contraction under an influence of φ function
on the context of metric spaces. Also, we discuss an example to display the validity
of our work. At the end, we apply our main results to derive new best proximity point
results on a metric space endowed with a partial ordering/graph.

1 Introduction and Preliminaries

Best proximity point results equip sufficient conditions that guarantee the existence
of approximate type solutions, which are optimal as well. Indeed, in the study of
fixed point theory the functional equation Ωυ = υ that is, ρ(Ωυ, υ) = 0 has no
solution for a non-self mapping (Ω : M → N ), it is desirable to make an approx-
imation solution υ the error of ρ(Ωυ, υ) is minimum. In light of that consideration
ρ(Ωυ, υ) ≥ ρ(M,N ), an absolute optimal approximate solution is an υ for which
the error ρ(Ωυ, υ) assumes the least possible value ρ(M,N ). As a hypothesis, best
proximity point theorems supply sufficient conditions for the existence of an opti-
mal approximate solution υ, known as a best proximity point of the mapping Ω

that satisfying ρ(Ωυ, υ) = ρ(M,N ). Notice that, best proximity point theorem is
a natural generalization of fixed point theorem. In the presence of self-mapping, a
best proximity point becomes a fixed point.

Let (Ξ, ρ) be a metric space. Denote N (Ξ), CL(Ξ), CB(Ξ) and K (Ξ) by the
class of all subsets ofΞ, the class of all closed subsets ofΞ, the class of all nonempty
closed and bounded subsets of Ξ and the class of all nonempty compact subsets of
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Ξ, respectively. Define the generalized Hausdorff metric H induced by ρ onCL(Ξ)

as follows:

H(M,N ) =
{
max{supυ1∈M ρ(υ1,N ), supυ2∈N ρ(υ2,M)}, maximum exists,

+∞, otherwise,

for all M,N ∈ CL(Ξ). For M,N ⊆ Ξ , we use the following facts:

ρ(υ1,N ) = inf{ρ(υ1, υ2) : υ2 ∈ N };
PM(υ1) = {υ2 ∈ N : ρ(υ1, υ2) = ρ(υ1,M)};
Λ := ρ(M,N ) = inf{ρ(υ1, υ2) : υ1 ∈ M, υ2 ∈ N };
M0 = {υ1 ∈ M : ρ(υ1, υ2) = ρ(M,N ) for some υ2 ∈ N };
N0 = {υ2 ∈ N : ρ(υ1, υ2) = ρ(M,N ) for some υ1 ∈ M}.

There are some sufficient conditions claimed the nonempty of M0 and N0. A such
simple condition is that, Ă is compact and N is approximatively compact w.r.t. M
(every sequence {υi } in N such that ρ(u, υi ) → ρ(u,N ) for some u in M should
have a convergent subsequence).

A point υ∗ ∈ M is said to be a best proximity point of mapping Ω : M →
CL(N ), if ρ(υ∗,Ωυ∗) = ρ(M,N ).

Definition 1 ([23]) Let (M,N ) be a pair of nonempty subsets of a metric space
(Ξ, ρ) with M0 �= ∅. Then the pair (M,N ) is said to have the weak P-property if
and only if for any υ1, υ2 ∈ M0 and u1, u2 ∈ N0,{

ρ(υ1, u1) = ρ(M,N )

ρ(υ2, u2) = ρ(M,N )
=⇒ ρ(υ1, υ2) ≤ ρ(u1, u2).

Jleli and Samet [16] introduced the concept of σ-proximal admissible for a non-
self-mapping as following:

Definition 2 ([16]) LetM andN be two nonempty subsets of ametric space (Ξ, ρ).

Let Ω : M → N and σ : M × M → [0,+∞) be given mappings. The mapping
Ω is said to be σ-proximal admissible, if for all υ1, υ2, u1, u2 ∈ M,

⎧⎨
⎩

σ(υ1, υ2) ≥ 1
ρ(u1,Ωυ1) = ρ(M,N )

ρ(u2,Ωυ2) = ρ(M,N )

=⇒ σ(u1, u2) ≥ 1.

Definition 3 ([9]) Let M,N be two nonempty subsets of a metric space (Ξ, ρ)

and σ : M × M → [0,+∞) a given function. A mapping Ω : M → CL(N ) is
called multivalued σ-proximal admissible, if for all υ1, υ2, u1, u2 ∈ M, y1 ∈ Ωυ1

and y2 ∈ Ωυ2,
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σ(υ1, υ2) ≥ 1
ρ(u1, y1) = ρ(M,N )

ρ(u2, y2) = ρ(M,N )

=⇒ σ(u1, u2) ≥ 1.

Lemma 1 ([9]) Let M and N be two nonempty closed subsets of a metric space
(Ξ, ρ) and Ω : M → CL(N ) be a multivalued mapping. Then for a, b ∈ M and
u ∈ Ωa, there exists v ∈ Ωb such that ρ(u, v) ≤ ηH(Ωa,Ωb) where η ≥ 1.

There after, many researchers worked on existence of best proximity point results
for single-valued andmultivaluedmappings satisfying different classes of contractive
conditions (see, [1, 3, 4, 7, 8, 11–13, 16–21, 23–25]).

Hussain et al. [10] considered the following class of mappings:

Z = {ϑ : [0,+∞) → [1,+∞) satisfies (ϑ1) − (ϑ5)}

where

(ϑ1) ϑ is nondecreasing;
(ϑ2) ϑ(s) = 1 if and only if s = 0;
(ϑ3) for every {sn} in (0,+∞), limn→+∞ ϑ(sn) = 1 if and only if limn→+∞ sn = 0;
(ϑ4) there exist r ∈ (0, 1) and � ∈ (0,+∞] such that lims→0+ ϑ(s)−1

sr = �;
(ϑ5) ϑ(s1 + s2) ≤ ϑ(s1)ϑ(s2).

Example 1 Let ϑ1,ϑ2 : [0,+∞) → [1,+∞) be defined by ϑ1(s) = e
√
s and ϑ2(s)

= 5
√
s , respectively. Then ϑ1,ϑ2 ∈ Z.

Denote R+ := [0,+∞) and define the following class of mappings, which was
considered in [6].

Φ = {φ : R+ × R
+ → R | φ satisfies φ(r1, r2) ≤ 1

2
r1 − r2}.

The following functions φ1 and φ2 are elements of Φ:

(i) φ1 : R+ × R
+ → R defined by φ1(r1, r2) = v(r1) − u(r2), where v, u : R+ →

R
+ are given as v(r1) = r1

2 and u(r2) = r2.

(ii) φ2 : R+ × R
+ → R defined by φ2(r1, r2) = r1

2 − v(r1,r2)
u(r1,r2)

r2, where v, u : R+ ×
R

+ → R
+ are given as v(r1, r2) = r1r2 and u(r1, r2) = r1r2 + r2 for all r1, r2 >

0.

Theorem 1 ([10]) Let (Ξ, ρ) be a complete metric space and Ω : Ξ → Ξ be con-
tinuous mapping. If there exist ϑ ∈ Z and γ1, γ2, γ3, γ4 ∈ R

+ with 0 ≤ γ1 + γ2 +
γ3 + 2γ4 < 1 such that

ϑ(ρ(Ωυ1,Ωυ2)) ≤ [ϑ(ρ(υ1, υ2))]γ1[ϑ(ρ(υ1,Ωυ1))]γ2 [ϑ(ρ(υ2,Ωυ2))]γ3
· [ϑ(ρ(υ1,Ωυ2) + ρ(υ2,Ωυ1))]γ4 ,

for all υ1, υ2 ∈ Ξ. Then Ω has a unique fixed point.



230 H. Işık et al.

Definition 4 LetΩ : Ξ → CL(�) be amultivaluedmapping,where (Ξ,σ), (�, ρ)

are two metric spaces and H is the Hausdorff metric on CL(�). The mapping Ω

is said to be continuous at u ∈ Ξ, if H(Ωu,Ωun) → 0 whenever σ(u, un) → 0 as
n → +∞.

2 Multivalued Suzuki-Type Zσ-Contractions

We begin this section with the following definition.

Definition 5 LetM andN be two nonempty closed subset of a metric space (Ξ, ρ)

and σ : M × M → R
+. A multivalued mapping Ω : M → CL(N ) is said to be

multivalued Suzuki-type Zσ-contraction, if there existφ ∈ Φ,ϑ ∈ Z and γ1, γ2, γ3 ∈
R

+ with 0 ≤ γ1 + γ2 + γ3 < 1 such that

φ[ρ(υ,Ων) − Λ, ρ(υ, ν)] < 0 =⇒
ϑ(H(Ωυ,Ων)) ≤ [ϑ(ρ(υ, ν))]γ1[ϑ(ρ(υ,Ωυ) − Λ)]γ2 [ϑ(ρ(ν,Ων) − Λ)]γ3 , (1)

for all υ, ν ∈ M with σ(υ, ν) ≥ 1 and H(Ωυ,Ων) > 0.

Now, we can state the first result of this paper.

Theorem 2 Let (Ξ, ρ) be a complete metric space and (M,N ) be a pair of
nonempty closed subsets of Ξ such that M0 is nonempty. Let Ω : M → K (N )

be a continuous multivalued mapping such that

(i) Ωυ ⊆ N0 for all υ ∈ M0 and (M,N ) satisfies the weak P-property;
(ii) Ω is multivalued σ-proximal admissible;
(iii) there exist υ0, υ1 ∈ M0 and ν0 ∈ Ωυ0 such that ρ(υ1, ν0) = Λ and σ(υ0, υ1) ≥

1;
(iv) Ω is multivalued Suzuki-type Zσ-contraction.

Then Ω has a best proximity point inM.

Proof Owing to (i i i), there exist υ0, υ1 ∈ M0 and ν0 ∈ Ωυ0 such that

ρ(υ1, ν0) = Λ and σ(υ0, υ1) ≥ 1.

If ν0 ∈ Ωυ1, then
Λ ≤ ρ(υ1,Ωυ1) ≤ ρ(υ1, ν0) = Λ,

and so υ1 is the required point. Due to this trivial way, let ν0 /∈ Ωυ1 and hence
H(Ωυ0,Ωυ1) > 0. On the other side, since ν0 ∈ Ωυ0, we get

ρ(υ0,Ωυ0) ≤ ρ(υ0, ν0) ≤ ρ(υ0, υ1) + ρ(υ1, ν0) = ρ(υ0, υ1) + Λ,
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and thus ρ(υ0,Ωυ0) − Λ ≤ ρ(υ0, υ1). Then,

φ[ρ(υ0,Ωυ0) − Λ, ρ(υ0, υ1)] ≤ 1

2
(ρ(υ0,Ωυ0) − Λ) − ρ(υ0, υ1)

< (ρ(υ0,Ωυ0) − Λ) − ρ(υ0, υ1)

≤ ρ(υ0, υ1) − ρ(υ0, υ1)

= 0.

SinceΩυ1 is compact, there exists ν1 ∈ Ωυ1 such that ρ(ν0,Ωυ1) = ρ(ν0, ν1).Also,
as 0 < ρ(ν0,Ωυ1) ≤ H(Ωυ0,Ωυ1), from (ϑ1) and condition (iv), we have

ϑ(ρ(ν0, ν1)) = ϑ(ρ(ν0,Ωυ1)) ≤ ϑ(H(Ωυ0,Ωυ1))

≤ [ϑ(ρ(υ0, υ1))]γ1[ϑ(ρ(υ0,Ωυ0) − Λ)]γ2 [ϑ(ρ(υ1,Ωυ1) − Λ)]γ3
≤ [ϑ(ρ(υ0, υ1))]γ1[ϑ(ρ(υ0, υ1))]γ2 [ϑ(ρ(υ1,Ωυ1) − Λ)]γ3 . (2)

By ν1 ∈ Ωυ1 ⊆ N0, there exists υ2 ∈ M0 such that ρ(υ2, ν1) = Λ. Since (M,N )

satisfies the weak P-property, we deduce that ρ(υ1, υ2) ≤ ρ(ν0, ν1). Also, since
ν1 ∈ Ωυ1, we get

ρ(υ1,Ωυ1) ≤ ρ(υ1, ν1) ≤ ρ(υ1, υ2) + ρ(υ2, ν1) = ρ(υ1, υ2) + Λ,

and thus

ρ(υ1,Ωυ1) − Λ ≤ ρ(υ1, υ2). (3)

If υ1 = υ2, then υ1 is the required best proximity point of Ω . Assume that υ1 �= υ2.
By (2), we obtain

ϑ(ρ(υ1, υ2)) ≤ ϑ(ρ(ν0, ν1))

≤ [ϑ(ρ(υ0, υ1))]γ1+γ2 [ϑ(ρ(υ1,Ωυ1) − Λ)]γ3
≤ [ϑ(ρ(υ0, υ1))]γ1+γ2 [ϑ(ρ(υ1, υ2))]γ3 ,

which implies that

ϑ(ρ(υ1, υ2)) ≤ ϑ(ρ(ν0, ν1)) ≤ [ϑ(ρ(υ0, υ1))]
γ1+γ2
1−γ3 . (4)

Now, υ0, υ1, υ2 ∈ M0 ⊆ M and ν0 ∈ Ωυ0, ν1 ∈ Ωυ1 such that σ(υ0, υ1) ≥ 1,
ρ(υ1, ν0) = Λ, ρ(υ2, ν1) = Λ. Then, it follows from condition (i i) that σ(υ1, υ2) ≥
1. Thus, we have

ρ(υ2, ν1) = Λ and σ(υ1, υ2) ≥ 1.
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By the processes analogous to the above, we get that ν1 /∈ Ωυ2 and hence
H(Ωυ1,Ωυ2) > 0. By using (3), we have

φ[ρ(υ1,Ωυ1) − Λ, ρ(υ1, υ2)] ≤ 1

2
(ρ(υ1,Ωυ1) − Λ) − ρ(υ1, υ2)

< (ρ(υ1,Ωυ1) − Λ) − ρ(υ1, υ2)

≤ ρ(υ1, υ2) − ρ(υ1, υ2)

= 0.

SinceΩυ2 is compact, there exists ν2 ∈ Ωυ2 such that ρ(ν1,Ωυ2) = ρ(ν1, ν2).Also,
as 0 < ρ(ν1,Ωυ2) ≤ H(Ωυ1,Ωυ2), from (ϑ1) and condition (iv), we have

ϑ(ρ(ν1, ν2)) = ϑ(ρ(ν1,Ωυ2)) ≤ ϑ(H(Ωυ1,Ωυ2))

≤ [ϑ(ρ(υ1, υ2))]γ1[ϑ(ρ(υ1,Ωυ1) − Λ)]γ2 [ϑ(ρ(υ2,Ωυ2) − Λ)]γ3
≤ [ϑ(ρ(υ1, υ2))]γ1[ϑ(ρ(υ1, υ2))]γ2 [ϑ(ρ(υ2,Ωυ2) − Λ)]γ3 . (5)

By ν2 ∈ Ωυ2 ⊆ N0, there exists υ3 ∈ M0 such that ρ(υ3, ν2) = Λ. Since (M,N )

satisfies the weak P-property, we deduce that ρ(υ2, υ3) ≤ ρ(ν1, ν2). Also, since
ν2 ∈ Ωυ2, we get

ρ(υ2,Ωυ2) ≤ ρ(υ2, ν2) ≤ ρ(υ2, υ3) + ρ(υ3, ν2) = ρ(υ2, υ3) + Λ,

and thus

ρ(υ2,Ωυ2) − Λ ≤ ρ(υ2, υ3). (6)

If υ2 = υ3, then υ2 is the required best proximity point of Ω . Assume that υ2 �= υ3.
By using (6) in (5), we obtain

ϑ(ρ(υ2, υ3)) ≤ ϑ(ρ(ν1, ν2))

≤ [ϑ(ρ(υ1, υ2))]γ1+γ2 [ϑ(ρ(υ2,Ωυ2) − Λ)]γ3
≤ [ϑ(ρ(υ1, υ2))]γ1+γ2 [ϑ(ρ(υ2, υ3))]γ3 ,

which implies that

ϑ(ρ(υ2, υ3) ≤ ϑ(ρ(ν1, ν2)) ≤ [ϑ(ρ(υ1, υ2))]
γ1+γ2
1−γ3 . (7)

Now, υ1, υ2, υ3 ∈ M0 ⊆ M and ν1 ∈ Ωυ1, ν2 ∈ Ωυ2 such that σ(υ1, υ2) ≥ 1,
ρ(υ2, ν1) = Λ, ρ(υ3, ν2) = Λ. Then, it follows from condition (i i) that σ(υ2, υ3) ≥
1. Thus, we have

ρ(υ3, ν2) = Λ and σ(υ2, υ3) ≥ 1.
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Continuing this process, we construct two sequences {υn} and {νn}, respectively in
M0 ⊆ M and N0 ⊆ N such that for n = 0, 1, 2, . . . ,

(a) νn ∈ Ωυn and νn /∈ Ωυn+1;
(b) σ(υn, υn+1) ≥ 1 and υn �= υn+1;
(c) ρ(υn+1, νn) = Λ and

1 < ϑ(ρ(υn, υn+1)) ≤ ϑ(ρ(νn−1, νn)) ≤ [ϑ(ρ(υn−1, υn))]
γ1+γ2
1−γ3 , (8)

which implies

1 < ϑ(ρ(υn, υn+1)) ≤ ϑ(ρ(νn−1, νn)) ≤ [ϑ(ρ(υ0, υ1))]hn , (9)

where h = γ1+γ2
1−γ3

< 1. Taking limit as n → +∞ in (9), we get
limn→+∞ ϑ(ρ(υn, υn+1)) = 1 and so

lim
n→+∞ ρ(υn, υn+1) = 0. (10)

Next, we prove that {υn} is a Cauchy sequence in M0. Setting δn :=ρ(υn ,υn+1), from
(ϑ4), there exist r ∈ (0, 1) and � ∈ (0,+∞] such that

lim
n→+∞

ϑ(δn) − 1

(δn)r
= �.

Take λ ∈ (0, �). From the definition of limit, there exists n0 ∈ N such that

[δn]r ≤ λ−1[ϑ(δn) − 1], for all n > n0.

Using (9) and the above inequality, we deduce

n[δn]r ≤ λ−1n([ϑ(δ0)]hn − 1), for all n > n0.

This implies that

lim
n→+∞n[δn]r = lim

n→+∞n[ρ(υn, υn+1)]r = 0.

Hence, there exists n1 ∈ N such that

ρ(υn, υn+1) ≤ 1

n1/r
, for all n > n1. (11)

Let p > n > n1. Then using the triangular inequality and (11), we get
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ρ(υn, υp) ≤
p−1∑
j=n

ρ(υ j , υ j+1) ≤
p−1∑
j=n

1

j1/r
<

+∞∑
j=n

1

j1/r
.

Due to the convergence of the series
∑+∞

j=n
1
j1/r , we deduce that {υn} is a Cauchy

sequence in M. By the similar processes and (9), we can easily prove that {νn} is a
Cauchy sequence in N . Since M and N are closed subsets of the complete metric
space (Ξ, ρ), there exist υ∗ ∈ M and ν∗ ∈ N such that υn → υ∗ and νn → ν∗ as
n → +∞. From (c), we know that

ρ(υn+1, νn) = Λ, for all n = 0, 1, 2, . . . .

Letting n → +∞, we get that

ρ(υ∗, ν∗) = Λ. (12)

Now, we claim that ν∗ ∈ Ωυ∗. Since νn ∈ Ωυn, we have

ρ(νn,Ωυ∗) ≤ H(Ωυn,Ωυ∗).

Taking limit as n → +∞ in the above inequality and using the continuity of Ω , we
get

ρ(ν∗,Ωυ∗) = lim
n→+∞ρ(νn,Ωυ∗) ≤ lim

n→+∞H(Ωυn,Ωυ∗) = 0.

Since Ωυ∗ is compact, then Ωυ∗ is closed. Hence, ρ(ν∗,Ωυ∗) = 0 implies ν∗ ∈
Ωυ∗.
Now, using (12), we have

ρ(υ∗,Ωυ∗) ≤ ρ(υ∗, ν∗) = Λ = ρ(M,N ) ≤ ρ(υ∗,Ωυ∗),

which implies that ρ(υ∗,Ωυ∗) = ρ(M,N ) and this completes the proof. �

In the next theorem, we replace K (N )withCB(N ) by considering the following
additional condition:
(C) ϑ is right continuous.

Theorem 3 Let (Ξ, ρ) be a complete metric space and (M,N ) be a pair of
nonempty closed subsets of Ξ such thatM0 is nonempty. Let Ω : M → CB(N ) be
a continuous multivalued mapping such that the conditions (i)–(iv) in Theorem 2
and the assumption (C) are satisfied. Then Ω has a best proximity point inM.

Proof By (i i i), there exist υ0, υ1 ∈ M0 and ν0 ∈ Ωυ0 such that

ρ(υ1, ν0) = Λ and σ(υ0, υ1) ≥ 1.
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Next, suppose that ν0 /∈ Ωυ1 and hence H(Ωυ0,Ωυ1) > 0. Since ν0 ∈ Ωυ0, we
get

ρ(υ0,Ωυ0) ≤ ρ(υ0, ν0) ≤ ρ(υ0, υ1) + ρ(υ1, ν0) = ρ(υ0, υ1) + Λ,

and thus ρ(υ0,Ωυ0) − Λ ≤ ρ(υ0, υ1). Then,

φ[ρ(υ0,Ωυ0) − Λ, ρ(υ0, υ1)] ≤ 1

2
(ρ(υ0,Ωυ0) − Λ) − ρ(υ0, υ1)

< (ρ(υ0,Ωυ0) − Λ) − ρ(υ0, υ1)

≤ ρ(υ0, υ1) − ρ(υ0, υ1)

= 0.

From the condition (iv), we have

ϑ(H(Ωυ0,Ωυ1)) ≤ [ϑ(ρ(υ0, υ1))]γ1[ϑ(ρ(υ0,Ωυ0) − Λ)]γ2 [ϑ(ρ(υ1,Ωυ1) − Λ)]γ3
≤ [ϑ(ρ(υ0, υ1))]γ1[ϑ(ρ(υ0, υ1))]γ2 [ϑ(ρ(υ1,Ωυ1) − Λ)]γ3 .

By the property of right continuity of ϑ ∈ Z, there exists a real number η1 > 1 such
that

ϑ(η1H(Ωυ0,Ωυ1)) ≤ [ϑ(ρ(υ0, υ1))]γ1[ϑ(ρ(υ0, υ1))]γ2 [ϑ(ρ(υ1,Ωυ1) − Λ)]γ3 .
(13)

From ρ(ν0,Ωυ1) < η1H(Ωυ0,Ωυ1), by Lemma 1, there exists ν1 ∈ Ωυ1 such that
ρ(ν0, ν1) ≤ η1H(Ωυ0,Ωυ1). Then, using (ϑ1), (13) and last inequality, we infer
that

ϑ(ρ(ν0, ν1)) ≤ ϑ(η1H(Ωυ0,Ωυ1))

≤ [ϑ(ρ(υ0, υ1))]γ1[ϑ(ρ(υ0, υ1))]γ2 [ϑ(ρ(υ1,Ωυ1) − Λ)]γ3 . (14)

By ν1 ∈ Ωυ1 ⊆ N0, there exists υ2 ∈ M0 such that ρ(υ2, ν1) = Λ. Since (M,N )

satisfies the weak P-property, we deduce that ρ(υ1, υ2) ≤ ρ(ν0, ν1). Also, since
ν1 ∈ Ωυ1, we get

ρ(υ1,Ωυ1) ≤ ρ(υ1, ν1) ≤ ρ(υ1, υ2) + ρ(υ2, ν1) = ρ(υ1, υ2) + Λ,

and thus

ρ(υ1,Ωυ1) − Λ ≤ ρ(υ1, υ2). (15)

If υ1 = υ2, then υ1 is the required best proximity point of Ω . Assume that υ1 �= υ2.
By (14) and (15), we obtain
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ϑ(ρ(υ1, υ2)) ≤ ϑ(ρ(ν0, ν1)) ≤ ϑ(η1H(Ωυ0,Ωυ1))

≤ [ϑ(ρ(υ0, υ1))]γ1+γ2 [ϑ(ρ(υ1,Ωυ1) − Λ)]γ3
≤ [ϑ(ρ(υ0, υ1))]γ1+γ2 [ϑ(ρ(υ1, υ2))]γ3 ,

which implies that

ϑ(ρ(υ1, υ2) ≤ ϑ(ρ(ν0, ν1)) ≤ ϑ(η1H(Ωυ0,Ωυ1)) ≤ [ϑ(ρ(υ0, υ1))]
γ1+γ2
1−γ3 . (16)

Now, υ0, υ1, υ2 ∈ M0 ⊆ M and ν0 ∈ Ωυ0, ν1 ∈ Ωυ1 such that σ(υ0, υ1) ≥ 1,
ρ(υ1, ν0) = Λ, ρ(υ2, ν1) = Λ. Then, it follows from condition (i i) that σ(υ1, υ2) ≥
1. Thus, we have

ρ(υ2, ν1) = Λ and σ(υ1, υ2) ≥ 1.

Suppose that ν1 /∈ Ωυ2 and hence H(Ωυ1,Ωυ2) > 0. By using (15), we have

φ[ρ(υ1,Ωυ1) − Λ, ρ(υ1, υ2)] ≤ 1

2
(ρ(υ1,Ωυ1) − Λ) − ρ(υ1, υ2)

< (ρ(υ1,Ωυ1) − Λ) − ρ(υ1, υ2)

≤ ρ(υ1, υ2) − ρ(υ1, υ2)

= 0.

From the condition (iv), we have

ϑ(H(Ωυ1,Ωυ2)) ≤ [ϑ(ρ(υ1, υ2))]γ1[ϑ(ρ(υ1,Ωυ1) − Λ)]γ2 [ϑ(ρ(υ2,Ωυ2) − Λ)]γ3
≤ [ϑ(ρ(υ1, υ2))]γ1[ϑ(ρ(υ1, υ2))]γ2 [ϑ(ρ(υ2,Ωυ2) − Λ)]γ3 .

By the property of right continuity of ϑ ∈ Z, there exists a real number η2 > 1 such
that

ϑ(η2H(Ωυ1,Ωυ2)) ≤ [ϑ(ρ(υ1, υ2))]γ1[ϑ(ρ(υ1, υ2))]γ2 [ϑ(ρ(υ2,Ωυ2) − Λ)]γ3 .
(17)

From ρ(ν1,Ωυ2) < η2H(Ωυ1,Ωυ2), by Lemma 1, there exists ν2 ∈ Ωυ2 such that
ρ(ν1, ν2) ≤ η2H(Ωυ1,Ωυ2). Then, using (ϑ1), (17) and last inequality, we get

ϑ(ρ(ν1, ν2)) ≤ ϑ(η2H(Ωυ1,Ωυ2))

≤ [ϑ(ρ(υ1, υ2))]γ1[ϑ(ρ(υ1, υ2))]γ2 [ϑ(ρ(υ2,Ωυ2) − Λ)]γ3 . (18)

By ν2 ∈ Ωυ2 ⊆ N0, there exists υ3 ∈ M0 such that ρ(υ3, ν2) = Λ. Since (M,N )

satisfies the weak P-property, we deduce that ρ(υ2, υ3) ≤ ρ(ν1, ν2). Also, since
ν2 ∈ Ωυ2, we get

ρ(υ2,Ωυ2) ≤ ρ(υ2, ν2) ≤ ρ(υ2, υ3) + ρ(υ3, ν2) = ρ(υ2, υ3) + Λ,
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and thus

ρ(υ2,Ωυ2) − Λ ≤ ρ(υ2, υ3). (19)

If υ2 = υ3, then υ2 is the required best proximity point of Ω . Assume that υ2 �= υ3.
By using (18) and (19), we deduce

ϑ(ρ(υ2, υ3)) ≤ ϑ(ρ(ν1, ν2)) ≤ ϑ(η2H(Ωυ1,Ωυ2))

≤ [ϑ(ρ(υ1, υ2))]γ1+γ2 [ϑ(ρ(υ2,Ωυ2) − Λ)]γ3
≤ [ϑ(ρ(υ1, υ2))]γ1+γ2 [ϑ(ρ(υ2, υ3))]γ3 ,

which implies that

ϑ(ρ(υ2, υ3) ≤ ϑ(ρ(ν1, ν2)) ≤ ϑ(η2H(Ωυ1,Ωυ2)) ≤ [ϑ(ρ(υ1, υ2))]
γ1+γ2
1−γ3 . (20)

Now, υ1, υ2, υ3 ∈ M0 ⊆ M and ν1 ∈ Ωυ1, ν2 ∈ Ωυ2 such that σ(υ1, υ2) ≥ 1,
ρ(υ2, ν1) = Λ, ρ(υ3, ν2) = Λ. Then, it follows from condition (i i) that σ(υ2, υ3) ≥
1. Thus, we have

ρ(υ3, ν2) = Λ and σ(υ2, υ3) ≥ 1.

Continuing this process, we get ηn ⊆ (1,+∞), {υn} ⊆ M0 and {νn} ⊆ N0 such that

(a) νn ∈ Ωυn and νn /∈ Ωυn+1;
(b) σ(υn, υn+1) ≥ 1 and υn �= υn+1;
(c) ρ(υn+1, νn) = Λ and

1 < ϑ(ρ(υn, υn+1)) ≤ ϑ(ρ(νn−1, νn)) ≤ ϑ(ηnH(Ωυn−1,Ωυn))

≤ [ϑ(ρ(υn−1, υn))]
γ1+γ2
1−γ3 , (21)

for all n. Doing the same as we have done in Theorem 2, we obtain {υn} in M and
{νn} inN as Cauchy sequences. SinceM andN are closed subsets of the complete
metric space (Ξ, ρ), there existυ∗ ∈ M and ν∗ ∈ N such thatυn → υ∗ and νn → ν∗
as n → +∞. The rest of the proof is like in the proof of Theorem 2. �

The next result can given by replacing the continuity of the mapping Ω with the
following property:

(H) If {υn} is a sequence inM such that σ (υn, υn+1) ≥ 1 for all n and υn → υ ∈ M
as n → +∞, then σ (υn, υ) ≥ 1 for all n.

Theorem 4 Let (Ξ, ρ) be a complete metric space and (M,N ) be a pair of
nonempty closed subsets of Ξ such that M0 is nonempty. Let Ω : M → K (N )

be a multivalued mapping such that the conditions (i) − (iv) in Theorem 2 and the
property (H) are satisfied. Then Ω has a best proximity point inM.
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Proof From Theorem 2, we have {υn} ⊆ M0 and {νn} ⊆ N0 such that for n =
0, 1, 2, . . . ,

(a) νn ∈ Ωυn and νn /∈ Ωυn+1;
(b) σ(υn, υn+1) ≥ 1 and υn �= υn+1;
(c) ρ(υn+1, νn) = Λ.

Also, there exist υ∗ ∈ M and ν∗ ∈ N such that υn → υ∗ and νn → ν∗ as n → +∞,
and ρ(υ∗, ν∗) = Λ. Now, we prove that υ∗ is a best proximity point of Ω . If Ωυn =
Ωυ∗, then

Λ ≤ ρ(υn+1,Ωυn) ≤ ρ(υn+1, νn) = Λ,

which yields that
Λ ≤ ρ(υn+1,Ωυ∗) ≤ Λ,

for all n ≥ 1. Letting n → +∞, we have

Λ ≤ ρ(υ∗,Ωυ∗) ≤ Λ.

Hence υ∗ is a best proximity point of Ω . Suppose that Ωυn �= Ωυ∗ for all n. Due to
(a), νn ∈ Ωυn such that

ρ(υn,Ωυn) ≤ ρ(υn, νn) ≤ ρ(υn, υn+1) + ρ(υn+1, νn) = ρ(υn, υn+1) + Λ,

and thus ρ(υn,Ωυn) − Λ ≤ ρ(υn, υn+1). Then,

φ[ρ(υn,Ωυn) − Λ, ρ(υn, υn+1)] ≤ 1

2
(ρ(υn,Ωυn) − Λ) − ρ(υn, υn+1)

< (ρ(υn,Ωυn) − Λ) − ρ(υn, υn+1)

≤ ρ(υn, υn+1) − ρ(υn, υn+1)

= 0.

From (b) and (iv), we get

ϑ(ρ(υn+1,Ωυn+1)) ≤ ϑ(H(Ωυn,Ωυn+1))

≤[ϑ(ρ(υn ,υn+1))]γ1 [ϑ(ρ(υn ,Ωυn)−Λ)]γ2 [ϑ(ρ(υn+1,Ωυn+1)−Λ)]γ3
≤ [ϑ(ρ(υn, υn+1))]γ1+γ2 [ϑ(ρ(υn+1,Ωυn+1))]γ3 ,

which implies that

ϑ(ρ(υn+1,Ωυn+1)) ≤ [ϑ(ρ(υn, υn+1))]
γ1+γ2
1−γ3 < ϑ(ρ(υn, υn+1)).
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Hence,

ρ(υn+1,Ωυn+1) < ρ(υn, υn+1). (22)

If φ[ρ(υn,Ωυn) − Λ, ρ(υn, υ
∗)] ≥ 0, then 1

2ρ(υn,Ωυn) − Λ ≥ ρ(υn, υ
∗) and so

1

2
ρ(υn,Ωυn) > ρ(υn, υ

∗).

From (22), we obtain that

ρ(υn, υn+1) ≤ ρ(υn, υ
∗) + ρ(υ∗, υn+1)

<
1

2
ρ(υn,Ωυn) + 1

2
ρ(υn+1,Ωυn+1)

<
1

2
ρ(υn, υn+1) + 1

2
ρ(υn, υn+1)

= ρ(υn, υn+1),

which is a contradiction. Hence, φ[ρ(υn,Ωυn) − Λ, ρ(υn, υ
∗)] < 0 for all n.

Assume that υ∗ /∈ Ωυ∗. By the property (H), we have σ(υn, υ
∗) ≥ 1. Then,

ρ(ν∗,Ωυ∗) ≤ ρ(ν∗, νn) + ρ(νn,Ωυ∗) ≤ ρ(ν∗, νn) + H(Ωυn,Ωυ∗),

implies that

ϑ(ρ(ν∗,Ωυ∗)) ≤ ϑ(ρ(ν∗, νn))ϑ(H(Ωυn,Ωυ∗)). (23)

Consequently,

ϑ(ρ(ν∗, νn))ϑ(H(Ωυn,Ωυ∗))
≤ϑ(ρ(ν∗,νn))[ϑ(ρ(υn ,υn+1))]γ1 [ϑ(ρ(υn ,Ωυn)−Λ)]γ2 [ϑ(ρ(υn+1,Ωυn+1)−Λ)]γ3
≤ ϑ(ρ(ν∗, νn))[ϑ(ρ(υn, υn+1))]γ1[ϑ(ρ(υn, υn+1)]γ2 [ϑ(ρ(υn+1, υn+2))]γ3 .

From (23), it follows that

ϑ(ρ(ν∗,Ωυ∗)) ≤ ϑ(ρ(ν∗, νn))[ϑ(ρ(υn, υn+1))]γ1+γ2 [ϑ(ρ(υn+1, υn+2))]γ3 .

Taking limit as n → +∞, we infer that ϑ(ρ(ν∗,Ωυ∗)) = 1. From (ϑ2), we have
ρ(ν∗,Ωυ∗) = 0. Hence,

Λ ≤ ρ(υ∗,Ωυ∗) ≤ ρ(υ∗, ν∗) + ρ(ν∗,Ωυ∗).

Since ρ(υ∗, ν∗) = Λ and ρ(ν∗,Ωυ∗) = 0, we obtain that ρ(υ∗,Ωυ∗) = Λ

= ρ(M,N ) and this finishes the proof. �
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Theorem 5 Let (Ξ, ρ) be a complete metric space and (M,N ) be a pair of
nonempty closed subsets of Ξ such that M0 is nonempty. Let Ω : M → CB(N )

be a multivalued mapping such that the conditions (i) − (iv) in Theorem 2, and the
conditions (C) and (H) are satisfied. Then Ω has a best proximity point inM.

Proof The proof can easily be done like Theorem 4 and so we omit the proof here.

Taking γ2 = γ3 = 0 in Theorem 2, we obtain the following result.

Corollary 1 Let (Ξ, ρ) be a complete metric space and (M,N ) be a pair of
nonempty closed subsets of Ξ such that M0 is nonempty. Let Ω : M → K (N )

(CB(N )) be a multivalued mapping such that

φ[ρ(υ,Ων) − Λ, ρ(υ, ν)] < 0 =⇒ ϑ(H(Ωυ,Ων)) ≤ [ϑ(ρ(υ, ν))]γ1 , (24)

for all υ, ν ∈ Ξ with σ(υ, ν) ≥ 1 and H(Ωυ,Ων) > 0, where σ : M × M → R
+,

φ ∈ Φ, ϑ ∈ Z and γ1 ∈ [0, 1). Assume that the following assertions hold:

(i) Ωυ ⊆ N0 for all υ ∈ M0 and (M,N ) satisfies the weak P-property;
(ii) Ω is multivalued σ-proximal admissible;
(iii) there exist υ0, υ1 ∈ M0 and ν0 ∈ Ωυ0 such that ρ(υ1, ν0) = Λ and σ(υ0, υ1) ≥

1;
(iv) Ω is continuous or property (H) holds ((C) holds).

Then Ω has a best proximity point inM.

Taking γ1 = 0 in Theorem 2, we get the following result.

Corollary 2 Let (Ξ, ρ) be a complete metric space and (M,N ) be a pair of
nonempty closed subsets of Ξ such that M0 is nonempty. Let Ω : M → K (N )

(CB(N )) be a multivalued mapping such that

φ[ρ(υ,Ων) − Λ, ρ(υ, ν)] < 0 =⇒
ϑ(H(Ωυ,Ων)) ≤ [ϑ(ρ(υ,Ωυ) − Λ)]γ2 [ϑ(ρ(ν,Ων) − Λ)]γ3 , (25)

for allυ, ν ∈ Mwithσ(υ, ν) ≥ 1and H(Ωυ,Ων) > 0, whereσ : M × M → R
+,

φ ∈ Φ, ϑ ∈ Z and γ2, γ3 ∈ R
+ with 0 ≤ γ2 + γ3 < 1. If the assertions (i) − (iv) in

Corollary 1, then Ω has a best proximity point inM.

If we take ϑ(r) = e
√
r k in Theorem 2, then we have the following result.

Corollary 3 Let (Ξ, ρ) be a complete metric space and (M,N ) be a pair of
nonempty closed subsets of Ξ such that M0 is nonempty. Let Ω : M → K (N )

(CB(N )) be a multivalued mapping such that

φ[ρ(υ,Ων) − Λ, ρ(υ, ν)] < 0 =⇒√
H(Ωυ,Ων) ≤ γ1

√
ρ(υ, ν) + γ2

√
ρ(υ,Ωυ) − Λ + γ3

√
ρ(ν,Ων) − Λ, (26)
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for allυ, ν ∈ Mwithσ(υ, ν) ≥ 1and H(Ωυ,Ων) > 0, whereσ : M × M → R
+,

φ ∈ Φ, and γ1, γ2, γ3 ∈ R
+ with 0 ≤ γ1 + γ2 + γ3 < 1. If the assertions (i) − (iv)

in Corollary 1, then Ω has a best proximity point inM.

Example 2 Let Ξ = R
+ × R

+ be endowed with the usual metric ρ. Consider,

M = {(1
2
, υ) : υ ∈ R

+} and N = {(0, υ) : υ ∈ R
+}.

Define Ω : M → CB(N ) by

Ω(
1

2
, υ) =

{ {(0, υ
2 ) : υ ∈ [0, p]}, p ≤ 1,

{(0, υ2) : υ ∈ [p,+∞)}, p > 1,

and a function σ : M × M → R
+ as follows:

σ(υ, ν) =
{
1, υ, ν ∈ {( 12 , p) : p ∈ [0, 1]},
0, otherwise.

Notice that, M0 = M, N0 = N and Ωυ ⊆ N0 for every υ ∈ M0. Moreover,
(M,N ) has weak P-property. Let σ(υ1, υ2) ≥ 1 implies that υ1, υ2 ∈ {( 12 , ν) : ν ∈
[0, 1]}. Then,

Ωυ1,Ωυ2 ⊆ {(0, ν

2
) : ν ∈ [0, 1]}.

Consider y1 ∈ Ωυ0, y2 ∈ Ωυ1 and ν1, ν2 ∈ M such that d(ν1, y1) = ρ(M,N ) and
ρ(ν2, y2) = ρ(M,N ). Then, ν1, ν2 ∈ {( 12 , ν) : ν ∈ [0, 1

2 ]}. Hence, σ(ν1, ν2) ≥ 1
implies that Ω is multivalued σ-proximal admissible. For υ0 = ( 12 , 1) ∈ M0 and
ν0 = (0, 1

2 ) ∈ Ωυ0,we have υ1 = ( 12 ,
1
2 ) ∈ M0 such that ρ(υ1, ν0) = ρ(M,N ) and

σ(υ0, υ1) = 1.Next, let φ(r, s) = r
2 − s, if r, s ∈ [0, 1] and φ(r, s) = 2s, otherwise.

Clearly, φ[ρ(υ,Ων) − Λ, ρ(υ, ν)] < 0 if and only if υ, ν ∈ {( 12 , p) : p ∈ [0, 1]}.
Then,

ϑ(H(Ωυ,Ων)) = ϑ(
|υ − ν|

2
)

= e
√

1
2 |υ−ν|

= e
√

1
2 ρ(υ,ν)

≤ [ϑ(ρ(υ, ν))]γ1 ,

for all υ, ν ∈ {( 12 , p) : p ∈ [0, 1]}. Hence, Ω is an multivalued Suzuki-type Zσ-

contraction with the setting ϑ(r) = e
√
r , γ1 =

√
2
3 and γ2 = γ3 = 0. Moreover, if{

υn = ( 12 , pn)
}
is a sequence in M such that σ (υn, υn+1) ≥ 1 for all n and υn =

( 12 , pn) → υ = ( 12 , p) ∈ M as n → +∞, then pn → p. Hence, pn ∈ [0, 1] and
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so p ∈ [0, 1]. Thus, υn ∈ {( 12 , pn) : pn ∈ [0, 1]} and υ ∈ {( 12 , p) : p ∈ [0, 1]}. This
implies that σ (υn, υ) ≥ 1 for all n.

Consequently, all conditions of Theorem 5 are satisfied. Therefore, Ω has a best
proximity point inM which is ( 12 , 0).

3 Some Applications

In this section, we give new best proximity point results on a metric space endowed
with a partial ordering/graph, by using the results provided in the previous section.
Define

σ : M × M → R
+, σ (u, v) =

{
1, if u  v,

0, otherwise.

Definition 6 LetM,N be two nonempty subsets of a partially orderedmetric space
(Ξ,, ρ). A mappingΩ : M → CL(N ) is called multivalued-proximal increas-
ing, if for all υ1, υ2, ν1, ν2 ∈ M, y1 ∈ Ωυ1 and y2 ∈ Ωυ2,⎧⎨

⎩
υ1  υ2

ρ(ν1, y1) = ρ(M,N )

ρ(ν2, y2) = ρ(M,N )

=⇒ ν1  ν2.

(H ) : If {υn} is a sequence in M such that υn  υn+1 for all n and υn → υ ∈ M
as n → +∞, then υn  υ for all n.

Then the following result is a direct consequence of Theorems 2, 3, 4 and 5.

Theorem 6 Let (Ξ,, ρ) be a complete partially orderedmetric space and (M,N )

be a pair of nonempty closed subsets ofΞ such thatM0 is nonempty. LetΩ : M →
K (N ) (CB(N )) be a multivalued mapping such that

φ[ρ(υ,Ων) − Λ, ρ(υ, ν)] < 0 =⇒
ϑ(H(Ωυ,Ων)) ≤ [ϑ(ρ(υ, ν))]γ1[ϑ(ρ(υ,Ωυ) − Λ)]γ2 [ϑ(ρ(ν,Ων) − Λ)]γ3 ,

(27)

for all υ, ν ∈ M with υ  ν and H(Ωυ,Ων) > 0, where φ ∈ Φ, ϑ ∈ Z and
γ1, γ2, γ3 ∈ R

+ with 0 ≤ γ1 + γ2 + γ3 < 1. Assume that the following assertions
hold:

(i) Ωυ ⊆ N0 for all υ ∈ M0 and (M,N ) satisfies the weak P-property;
(ii) Ω is multivalued -proximal increasing;
(iii) there exist υ0, υ1 ∈ M0 and ν0 ∈ Ωυ0 such that ρ(υ1, ν0) = Λ and υ0  υ1;
(iv) Ω is continuous or property (H ) holds ((C) holds).

Then Ω has a best proximity point inM.
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Let Ξ be a nonempty set and ∇ designates the diagonal of Cartesian product
Ξ × Ξ and G = (V (G), E(G)) be a directed graph with no paralel edges in such a
way that the set V (G) of its vertices coincides with Ξ and ∇ ⊂ E(G), where E(G)

is the set of the edges of the graph, which contains all loops, like that ∇ ⊆ Ξ × Ξ .
Notice that, a graph G is connected, if there is a path between any two vertices and it
is weakly connected, ifG is connected, whereG is an undirected form of the graphG
in which direction of edges have not any role. In a graph G, by antipole the direction
of edges we obtain the graph G−1, whose set of edges and set of vertices are given
by:

E(G−1) = {(υ1, υ2) ∈ Ξ × Ξ : (υ1, υ2) ∈ E(G)} and V (G) = V (G−1). (28)

In the presence of this manner, we have

E(G) = E(G) ∪ E(G−1). (29)

Define,

σ : M × M → R
+, σ (u, v) =

{
1, if (u, v) ∈ E(G),

0, otherwise.

Definition 7 Let (Ξ, ρ) be ametric space endowedwith a graphG and (M,N ) be a
pair of nonempty subsets of Ξ. Amapping Ω : M → CL(N ) is called multivalued
G-proximal, if for all υ1, υ2, ν1, ν2 ∈ M, y1 ∈ Ωυ1 and y2 ∈ Ωυ2,⎧⎨

⎩
(υ1, υ2) ∈ E(G)

ρ(ν1, y1) = ρ(M,N )

ρ(ν2, y2) = ρ(M,N )

=⇒ (ν1, ν2) ∈ E(G).

(GH ) : If {υn} is a sequence in M such that (υn, υn+1) ∈ E(G) for all n and υn →
υ ∈ M as n → +∞, then (υn, υ) ∈ E(G) for all n.

Then the following result is a direct consequence of Theorems 2, 3, 4 and 5.

Theorem 7 Let (Ξ, ρ) be a complete metric space endowed with a graph G and
(M,N ) be a pair of nonempty closed subsets of Ξ such that M0 is nonempty. Let
Ω : M → K (N ) (CB(N )) be a multivalued mapping such that

φ[ρ(υ,Ων) − Λ, ρ(υ, ν)] < 0 =⇒
ϑ(H(Ωυ,Ων)) ≤ [ϑ(ρ(υ, ν))]γ1[ϑ(ρ(υ,Ωυ) − Λ)]γ2 [ϑ(ρ(ν,Ων) − Λ)]γ3 ,

(30)

for allυ, ν ∈ Mwith (υ, ν) ∈ E(G) and H(Ωυ,Ων) > 0, whereφ ∈ Φ,ϑ ∈ Z and
γ1, γ2, γ3 ∈ R

+ with 0 ≤ γ1 + γ2 + γ3 < 1. Assume that the following assertions
hold:

(i) Ωυ ⊆ N0 for all υ ∈ M0 and (M,N ) satisfies the weak P-property;
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(ii) Ω is multivalued G-proximal;
(iii) there exist υ0, υ1 ∈ M0 and ν0 ∈ Ωυ0 such that ρ(υ1, ν0) = Λ and (υ0, υ1) ∈

E(G);
(iv) Ω is continuous or property (GH ) holds ((C) holds).

Then Ω has a best proximity point inM.

4 Conclusion

In this study, we introduce the new class of multivalued Suzuki-type Zσ-contractions
under an influence of φ function. Within this framework, we have introduced new
related best proximity point results in metric spaces. At the end, we have applied our
main results to derive new best proximity point results on a metric space endowed
with a partial ordering/graph. A nontrivial example has been constructed to support
our main works. Herein, the presented theorems and corollaries cannot be directly
procured from the correlative metric spaces version.
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Coincidence Best Proximity Point Results
via w p-Distance with Applications

Naeem Saleem

Abstract Fixed-point theorems in metric spaces have extensively applied to a wide
variety of mathematical problems, these kinds of results based upon some strong
suppositions in metric spaces. In the current chapter, some weakly Kannan type
generalized and weakly Kannan type proximal contractive mappings are introduced.
Using these contractive conditions, we provide coincidence best proximity point
results in complete metric space using wp-distance (which is a generalization of w-
distance). Some applications are also provided to the theory of fixed-points in metric
spaces with ordered structure. We elaborated our results with examples which shows
that obtained results are potential generalizations of already existing results in the
literature.

1 Introduction

Theory of fixed-points is one of the incredible assets in modernmathematics, accord-
ing to F. Browder, “who gave another impulse to the advanced fixed-point theory by
means of the improvement of nonlinear functional analysis as a fundamental part of
science”. This theory is applied to numerous fields of current interest in the analysis,
with topological contemplations assuming a pivotal job, incorporating the relation-
ship with degree hypothesis. The fixed-point theory of certain significant mappings
has its own privilege because of its outcomes having constructive proof and appli-
cations in industrial fields, for example, image processing, physics, software engi-
neering, economics, and telecommunication. In mathematics, several problems can
be transformed into a fixed-point problem T x = x , where T : X → X is an operator
and X is an abstract space. The solution of an operator equation T x = x is known as
fixed-point of the operator T . In 1922, Banach [1] proved a contraction principle for
self mappings named Banach fixed-point theorem, several authors extended and gen-
eralized the Banach contraction principles by modifying the contractive conditions
and generalizing the underlying metric space. To generalize contractive condition
means to generalize the associated conditions on the operator T such that we can
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obtain a fixed-point of operator T but the situation becomes more complicated when
the domain and range of an operator T become different. If T : A → B where A
and B are nonempty and disjoint subsets of a metric space (X, d), then an equation
T x = x need not have a solution in X and hence the need to obtain an optimal solution
of the operator equation arises. This is achieved by reducing the distance between
pre-image x and image T x as a solution of the following minimization problem:

min
x∈X d(x, T x). (1)

The element x ∈ X which satisfy the corresponding minimization problem (1) is
knownas an approximate solutionor approximatefixed-point of the operator equation
T x = x if T is a non-self operator. Any x ∈ A satisfying

d(x, T x) = d(A, B) (2)

is the solution of minimization problem (1) is known as an approximate fixed-point
or best proximity point of the operator T , and the distance between sets A and B is
defined as

d (A, B) = inf{d (a, b) : a ∈ A, b ∈ B}.

Several authors further generalized the Banach contraction principle for non-self
mappings, for further details, readers can see [2–29].

On the other hand, Kada et al. [30] introduced the concept ofw-distance on a met-
ric space and obtained well-known Caristi fixed-point theorem, Ekland variational
principle, and Takahashi existence theorem. Afterward, Suzuki and Takahashi [31]
obtained a fixed-point theorem for multivalued mapping with respect to w-distance.
This result is an improvement of Nadler’s fixed-point theorem. Several fixed-point
theorems have been proved by many researchers in metric spaces via w-distance,
for example, see [32–35]. Kutbi and Sintunavarat introduced the concept of gener-
alized w∗-contractive mapping and proved a fixed-point theorem for such mappings
using the concept of α∗-admissible mapping in [36], which is a multivalued mapping
version of α-admissible mapping defined in [37].

In this chapter, we are going to define the concept of wp-distance, and we will
obtain coincidence best proximity point and best proximity point results in complete
metric space using wp-distance.

2 Preliminaries

This section will serve as an introduction to some basic and foundational concepts of
metric spaces, best proximity points, coincidence best proximity points, w-distance
and its generalizations. This detailed discussion will give a brief overview of the
results related to our main theorems.
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Definition 1 Let A and B are nonempty subsets of a metric space (X, d), define

A0 = {a ∈ A : there exists some b ∈ B such that d(a, b) = d(A, B)},
and

B0 = {b ∈ B : there exists some a ∈ A such that d(a, b) = d(A, B)},
where

d(A, B) = inf{d(a, b) : a ∈ A and b ∈ B}, (distance between sets A and B)}.

Definition 2 ([38]) Let A and B are two nonempty subsets of a metric space (X, d),
and the pair (A, B) is said to satisfy the P-property, if

d(x1, y1) = d(A, B)

d(x2, y2) = d(A, B)

}
implies that d(x1, x2) = d(y1, y2),

for any x1, x2 ∈ A and y1, y2 ∈ B.

Definition 3 ([5]) Let A and B are nonempty subsets of a metric space (X, d) and
T : A → B, an element x∗ ∈ A is called a best proximity point of the mapping T , if

d(x∗, T x∗) = d(A, B).

Definition 4 ([39]) Amapping T : A → B is called an α-proximal admissiblemap-
ping, if there exists a mapping α : A × A → [0,∞) such that

α(x1, x2) ≥ 1
d(u1, T x1) = d(A, B)

d(u2, T x2) = d(A, B)

⎫⎬
⎭ implies that α(u1, u2) ≥ 1,

for all u1, u2, x1 and x2 in A.

Definition 5 Let (X, d) be ametric space. A function p : X × X → [0,∞) is called
a w-distance on X if

• p(x, z) ≤ p(x, y) + p(y, z) for any x, y, z ∈ X
• p is lower semi-continuous in its second variable, i.e., if x ∈ X and yn ∈ y in X
then p(x, y) ≤ lim inf p(x, yn);

• For each ε > 0, there exists δ > 0 such that p(z, x) ≤ δ and p(z, y) ≤ δ implies
d(x, y) ≤ ε.

Definition 6 ([21]) A self mapping g : A → A is said to satisfy αR-property if
there exist a mapping α : A × A → [0,∞) such that α(gx, gy) = 1 implies that
α(x, y) ≥ 1, f orallx, y ∈ A.
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3 Weakly Kannan Type Best Proximity Points via
w p-Distance

In this section, we will introduce wp-distance, weakly Kannan type proximal con-
tractions with wp-distance and then we will provide best proximity point result for
these mappings.

Definition 7 Let (X, d)be ametric space.Amapping p : X × X → [0,∞) is called
a wp-distance on X , if p satisfies the following properties:

(1) p(a, c) ≤ p(a, b) + p(b, c) for any a, b, c ∈ X ,
(2) p is lower semi-continuous in its second variable, i.e., if a ∈ X and bn → b in

X , then p(a, b) ≤ lim infn p(a, bn),
(3) for each ε > 0, there exists δ > 0 such that p(c, a) ≤ δ and p(c, b) ≤ δ implies

that p(a, b) ≤ ε, for any a, b, c ∈ X .

In the following definition, we will generalize the notation of A0, B0, and α-proximal
admissible mapping using wp-distance.

Definition 8 Let p be a wp-distance defined on set X , where (X, d) is a metric
space induced by a metric d. Also, suppose that A and B are nonempty subsets of
X , define

A0,p = {a ∈ A : there exists some b ∈ B such that p(a, b) = p(A, B)},
and

B0,p = {b ∈ B : there exists some a ∈ A such that p(a, b) = p(A, B)},
where

p(A, B) = inf{p(a, b) : a ∈ A and b ∈ B}, (wp-distance between sets A and B),

where

p∗(x, y) = p(x, y) − p(A, B).

From now and onwards, X will represents a metric space (X, d), A, B are nonempty
and disjoint subsets of X , and p will represents a wp-distance defined on X (until
otherwise stated).

Definition 9 Let α : A × A → [0,∞) and T : A → B are mappings. A mapping
T is called an αp-proximal admissible mapping, if

α(x1, x2) ≥ 1
p(u1, T x1) = p(A, B)

p(u2, T x2) = p(A, B)

⎫⎬
⎭ implies that α(u1, u2) ≥ 1,

for all u1, u2, x1 and x2 in A.

Definition 10 A class ϑ is consisting upon all continuous mapping θ : [0,∞) ×
[0,∞) → [0,∞) satisfying θ (a, b) = 0 if and only if a = 0 = b.
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Definition 11 Let g : A → A, T : A → B and α : A × A → [0,∞) are mappings.
A pair of mappings (g, T ) is weakly Kannan type generalized proximal contraction,
if

α(gx, gy)p(gu, gv) ≤ (1 − k)

2
[p∗(T x, gx) + p∗(T y, gy)] − θ[p∗(T x, gx), p∗(T y, gy)], (3)

where p(gu, T x) = p(A, B) = p(gv, T y), θ ∈ ϑ andα(x, y) ≥ 1, for allu, v, x, y ∈
A.

Definition 12 Let α : X × X → [0,∞) be a mapping. A mapping T : A → B is a
weakly Kannan type proximal contraction, if

α(x, y)p(u, v) ≤ (1 − k)

2
[p∗(T x, x) + p∗(T y, y)] − θ [p∗(T x, x), p∗(T y, y)],

(4)
where p(u, T x) = p(A, B) = p(v, T y), θ ∈ ϑ and α(x, y) ≥ 1, for all u, v, x, y ∈
A.

Remark 1 Note that, if gx = IA (an identity mapping over set A) then every weakly
Kannan type generalized proximal contraction becomes weakly Kannan type prox-
imal contraction.

Definition 13 Let g : A → A and T : A → B are mappings. An element x∗ ∈ A is
a wp-coincidence best proximity point of a pair of mappings (g, T ), if

p(gx∗, T x∗) = p(A, B).

Definition 14 Let T : A → B be a mapping. An element x∗ ∈ A is called awp-best
proximity point of the mapping T , if

p(x∗, T x∗) = p(A, B).

Theorem 1 Let A and B are nonempty subsets of a complete metric space (X, d).

Consider a pair of mappings (g, T ) be a weakly Kannan type generalized proximal
contraction, where T be an αp-proximal admissible mapping and g be an one to one
mapping which satisfies αR-property with A0,p is nonempty and closed subset of A.
If T (A0,p) ⊆ B0,p and A0,p ⊂ g(A0,p) then there exists a unique wp-coincidence
best proximity point x∗ of pair (g, T ) in A.

Proof Since A0,p is nonempty and T is weakly Kannan type generalized proxi-
mal contractive mapping. Thus, we can choose an element x0 ∈ A0,p, since T x0 ∈
T (A0,p) ⊆ B0,p, hence there exists x1 in A0,p ⊂ g(A0,p), such that p(gx1, T x0) =
p(A, B). As x1 ∈ A0,p and T x1 ∈ T (A0,p) ⊆ B0,p, there exists x2 in A0,p such
that p(gx2, T x1) = p(A, B). Since mapping T is an αp-proximal admissible and
α(x0, x1) ≥ 1, then we have
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α(x0, x1) ≥ 1
p(gx1, T x0) = p(A, B)

p(gx2, T x1) = p(A, B)

⎫⎬
⎭ implies that α(gx1, gx2) ≥ 1.

Since mapping g satisfies αR-property, hence α(gx1, gx2) ≥ 1 implies α(x1, x2) ≥
1. Since, T is weakly Kannan type generalized proximal mapping, so we have

p(gx1, gx2) ≤ α(gx0, gx1)p(gx1, gx2)

≤ (1 − k)

2
[p∗(T x0, gx0) + p∗(T x1, gx1)] − θ(p∗(T x0, gx0), p∗(T x1, gx1))

= (1 − k)

2
[p(T x0, gx0) + p(T x1, gx1)] − p(A, B) − θ([p(T x0, gx0) − p(A, B),

p(T x1, gx1) − p(A, B)])
≤ (1 − k)

2
[p(T x0, gx1) + p(gx1, gx0) + p(T x1, gx2) + p(gx2, gx1)] − p(A, B) −

θ(p(T x0, gx1) + p(gx1, gx0) − p(A, B), p(T x1, gx2) + p(gx2, gx1) − p(A, B))

≤ (1 − k)

2
[p(gx1, gx0) + p(gx2, gx1)] − θ[p(gx1, gx0), p(gx2, gx1)]

≤ 1

2
[p(gx1, gx0) + p(gx2, gx1)],

which can be written as

p(gx1, gx2) ≤ 1

2
[p(gx1, gx0) + p(gx2, gx1)].

After simplification, we have

p(gx1, gx2) ≤ p(gx1, gx0). (5)

Similarly, for x2 ∈ A0,p ⊂ g(A0,p) and T x2 ∈ T (A0,p) ⊆ B0,p, there exists x3 in
A0,p such that p(gx3, T x2) = p(A, B). Since T is an αp-proximal admissible map-
ping, hence we have

α(x1, x2) ≥ 1
p(gx2, T x1) = p(A, B)

p(gx3, T x2) = p(A, B)

⎫⎬
⎭ implies α(gx2, gx3) ≥ 1.

Since mapping g satisfies αR-property, hence α(x2, x3) ≥ 1. Since, T is a weakly
Kannan type generalized proximal mapping, then

p(gx2, gx3) ≤ α(gx1, gx2)p(gx2, gx3)

≤ (1 − k)

2
[p∗(T x1, gx1) + p∗(T x2, gx2)] − θ(p∗(T x1, gx1), p

∗(T x2, gx2))

= (1 − k)

2
[p(T x1, gx1) + p(T x2, gx2)] − p(A, B) − θ(p(T x1, gx1) − p(A, B),

p(T x2, gx2) − p(A, B))
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≤ (1 − k)

2
[p(T x1, gx2) + p(gx2, gx1) + p(T x2, gx3) + p(gx3, gx2)] − p(A, B) −

θ [p(T x1, gx2) + p(gx2, gx1) − p(A, B), p(T x2, gx3) + p(gx3, gx2) − p(A, B)]
≤ (1 − k)

2
[p(gx2, gx1) + p(gx3, gx2)] − θ [p(gx2, gx1), p(gx3, gx2)]

≤ 1

2
[p(gx2, gx1) + p(gx3, gx2)] − θ(p(gx2, gx1), p(gx3, gx2))

≤ 1

2
[p(gx2, gx1) + p(gx3, gx2)].

Further, we can write

p(gx2, gx3) ≤ 1

2
[p(gx2, gx1) + p(gx3, gx2)].

After simplification, we have

p(gx2, gx3) ≤ p(gx2, gx1), (6)

which shows that the sequence {p(gx2, gx3)} is a decreasing sequence and bounded
below. According to the pattern followed in (5) and (6) and the mapping T is an
αp-proximal admissible mapping, so generally we have

α(xn, xn−1) ≥ 1
p(gxn+1, T xn) = p(A, B)

p(gxn, T xn−1) = p(A, B)

⎫⎬
⎭ implies that α(gxn+1, gxn) ≥ 1, for all n ≥ 1.

Since mapping g satisfies αR-property, hence α(xn+1, xn) ≥ 1. Since, T is weakly
Kannan type generalized proximal contractive mapping, and we have

p(gxn+1, gxn) ≤ α(gxn, gxn−1)p(gxn+1, gxn)

≤ (1 − k)

2
[p∗(T xn, gxn) + p∗(T xn−1, gxn−1)]

−θ(p∗(T xn, gxn), p∗(T xn−1, gxn−1))

= (1 − k)

2
[p(T xn, gxn) + p(T xn−1, gxn−1)]

−p(A, B) − θ(p(T xn, gxn) − p(A, B),

p(T xn−1, gxn−1) − p(A, B)).

After simplification, we have

p(gxn+1, gxn) ≤ (1 − k)

2
[p(T xn , gxn+1) + p(gxn+1, gxn) + p(T xn−1, gxn) + p(gxn , gxn−1)]

−p(A, B) − θ [p(T xn , gxn+1) + p(gxn+1, gxn) − p(A, B), p(T xn−1, gxn) +
p(gxn , gxn−1) − p(A, B)]

≤ (1 − k)

2
[p(gxn+1, gxn) + p(gxn , gxn−1)] − p(A, B) −
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θ [p(gxn+1, gxn), p(gxn , gxn−1)]
≤ 1

2
[p(gxn+1, gxn) + p(gxn , gxn−1)] − θ [p(gxn+1, gxn), p(gxn , gxn−1)] (7)

≤ 1

2
[p(gxn+1, gxn) + p(gxn , gxn−1)].

Above inequality can be written as

p(gxn+1, gxn) ≤ 1

2
[p(gxn+1, gxn) + p(gxn, gxn−1)].

After simplification, we have

p(gxn+1, gxn) ≤ p(gxn, gxn−1), for all n ≥ 1.

Therefore, the sequence {p(gxn+1, gxn)} ismonotonedecreasing andboundedbelow,
so there exists r ≥ 0, such that

lim
n→∞ p

(
gxn+1,gxn

) = r.

We have to show that r = 0. On contrary, suppose that r > 0. By taking limit as n →
∞, on inequality (7), we have

r ≤ 1

2
[r + r ] − θ(r, r),

which implies that
0 ≤ θ(r, r) ≤ 0,

which implies θ(r, r) = 0, where θ ∈ ϑ , hence, r = 0, a contradiction to our sup-
position that r > 0. Hence r = 0, then we have

lim
n→∞ p

(
gxn+1,gxn

) = 0.

Now, we will prove that limn→∞ p
(
gxn,gxm

) → 0 as n → ∞. We claim that
p (gxn, gxm) 
= 0. Now, suppose that there exists ε > 0 and a subsequence {gxm(k)}
and {gxn(k)}. On contrary, suppose that {gxn} is not a Cauchy sequence in A0,p that
is,

p
(
gxn(k), gxm(k)

) ≥ ε,

and
p

(
gxn(k), gxm(k)−1

)
< ε, (8)

where mk > nk > N ∈ N. Using inequalities (3) and (8) we have, ε ≤ p
(
gxn(k),

gxm(k)
)
. Since the mapping T is αp-proximal admissible mapping, so we have
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α(xn(k)−1, xm(k)−1) ≥ 1
p(gxn(k), T xn(k)−1) = p(A, B)

p(gxm(k), T xm(k)−1) = p(A, B)

⎫⎬
⎭ implies that α(gxn(k), gxm(k)) ≥ 1, for all k.

Since mapping g satisfies αR-property, hence α(xn(k), xm(k)) ≥ 1. Since, T is weakly
Kannan type generalized proximal contractive mapping and we have

p(gxn(k), gxm(k)) ≤ α(gxn(k)−1, gxm(k)−1)p(gxn(k), gxm(k))

≤ (1 − k)

2
[p∗(T xn(k)−1, gxn(k)−1) + p∗(T xm(k)−1, gxm(k)−1)]

−θ(p∗(T xn(k)−1, gxn(k)−1), p
∗(T xm(k)−1, gxm(k)−1))

= (1 − k)

2
[p(T xn(k)−1, gxn(k)−1) + p(T xm(k)−1, gxm(k)−1)]

−p(A, B) − θ(p(T xn(k)−1, gxn(k)−1) − p(A, B),

p(T xm(k)−1, gxm(k)−1) − p(A, B))

≤ (1 − k)

2
[p(T xn(k)−1, gxn(k)) + p(gxn(k), gxn(k)−1) +

p(T xm(k)−1, gxm(k)) + p(gxm(k), gxm(k)−1)] − p(A, B)

−θ(p(T xn(k)−1, gxn(k)) + p(gxn(k), gxn(k)−1) − p(A, B),

p(T xm(k)−1, gxm(k)) + p(gxm(k), gxm(k)−1) − p(A, B))

≤ (1 − k)

2
[p(gxn(k), gxn(k)−1) + p(gxm(k), gxm(k)−1)] −

θ [p(gxn(k), gxn(k)−1), p(gxm(k), gxm(k)−1)]
≤ 1

2
[p(gxn(k), gxn(k)−1) + p(gxm(k), gxm(k)−1)] −

θ(p(gxn(k), gxn(k)−1), p(gxm(k), gxm(k)−1))

≤ 1

2
[p(gxn(k), gxn(k)−1) + p(gxm(k), gxm(k)−1)],

which can be written as

ε ≤ p(gxn(k), gxm(k)) ≤ 1

2
[p(gxn(k), gxn(k)−1) + p(gxm(k), gxm(k)−1)] → 0, as k → ∞,

which is a contradiction. Hence {gxn} is a Cauchy sequence in A0,p, where A0,p

is closed subset of complete metric space (X, d). Then we have gxn → gu in
A0,p ⊂ X . Since g is a continuous and one to one mapping hence xn → u. Now,
we have to show that u be a coincidence best proximity point of pair of mappings
(g, T ) and we have

p(Tu, gu) ≤ lim inf p(Tu, gxn).

Since
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p(gxn, Tu) ≤ p(gxn, gxn+1) + p(gxn+1, T xn) + p(T xn, Tu)

≤ p(gxn, gxn+1) + p(A, B) + p(T xn, Tu).

After simplification, we have

p(T xn, Tu) ≥ p(gxn, Tu) − p(gxn, gxn+1) − p(A, B),

Since xn → u and p (x, .) is lower semi continuous. So

lim inf p(T xn, Tu) ≥ lim inf p(gxn, Tu) − 0 − p(A, B).

Since mapping T is continuous, hence we have

0 ≥ p(gu, Tu) − p(A, B),

which further implies that
p(gu, Tu) = p(A, B).

Hence u is the coincidence best proximity point of pair of mapping (g, T ).

Uniqueness: Let u and v are two distinct coincidence best proximity point of pair
of mapping (g, T ) such that u 
= v. Thus, we have

p(gu, gv) = r > 0.

Since, the mapping T is αp-proximal admissible mapping, then

α(u, v) ≥ 1
p(gu, Tu) = p(A, B)

p(gv, T v) = p(A, B)

⎫⎬
⎭ implies that α(gu, gv) ≥ 1.

Since the pair of mapping (g, T ) is weakly Kannan type generalized proximal
admissible mapping thus by using (3) we get,

0 < r ≤ 0

is a contradiction. So, r = 0 which gives gu = gv. Since mapping g is one to one,
so we have a unique coincidence best proximity points of the pair of mapping (g, T ).

In next result, we obtained a best proximity point result for a mapping satisfying
weakly Kannan type proximal contraction.

Theorem 2 Let (X, d) be a complete metric space, A and B are nonempty subsets
of X. Suppose that T : A → B be an αp-proximal admissible and weakly Kannan
type proximal mapping with A0,p is nonempty. Assume that if there exist x0 and x1
in A0,p such that
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p(x1, T x0) = p(A, B), α(x0, x1) ≥ 1

and T (A0,p) ⊆ B0,p then there exists a unique wp-best proximity point x∗ in A.

Proof Let x0 ∈ A0,p and T x0 ∈ T (A0,p) ⊆ B0,p, there exists x1 in A0,p such that
p(x1, T x0) = d(A, B), since x1 ∈ A0,p and T x1 ∈ T (A0,p) ⊆ B0,p, there exists x2
in A0,p such that p(x2, T x1) = d(A, B). Since α : A × A → [0,∞ ), further we
assumed that α(x0, x1) ≥ 1 and T is an αp-proximal admissible mapping, we have

α(x0, x1) ≥ 1
p(x1, T x0) = p(A, B)

p(x2, T x1) = p(A, B)

⎫⎬
⎭ implies that α(x1, x2) ≥ 1,

and mapping T is weakly Kannan type proximal mapping, we have

p(x1, x2) ≤ α(x0, x1)p(x1, x2)

≤ (1 − k)

2
[p∗(T x0, x0) + p∗(T x1, x1)] − θ([p∗(T x0, x0), p

∗(x1, T x1)])

= (1 − k)

2
[p(T x0, x0) + p(T x1, x1)] − p(A, B) −

θ([p(T x0, x0) − p(A, B), p(T x1, x1) − p(A, B)])
≤ (1 − k)

2
[p(T x0, x1) + p(x1, x0) + p(T x1, x2) + p(x2, x1)] − p(A, B) −

θ([p(T x0, x1) + p(x1, x0) − p(A, B), p(T x1, x2) + p(x2, x1) − p(A, B))

≤ (1 − k)

2
[p(A, B) + p(x1, x0) + p(A, B) + p(x2, x1)] − p(A, B) −

θ([p(x1, x0), p(x2, x1)])
≤ (1 − k)

2
[p(x1, x0) + p(x2, x1)] − θ([p(x1, x0), p(x2, x1)])

≤ 1

2
[p(x1, x0) + p(x2, x1)]

the above inequality can be written as

p(x1, x2) ≤ p(x1, x0), (9)

hence {p(x1, x2)} is a decreasing sequence and bounded below. Now, on the same
lines, using the αp-proximal admissibility and weakly Kannan type proximal map-
ping T, we have

p(x2, x3) ≤ p(x2, x1). (10)

Therefore, the sequence {p(x2, x3)} is a decreasing and bounded below. Following
on the same lines, we have the general form

α(xn, xn−1) ≥ 1
p(xn+1, T xn) = p(A, B)

p(xn, T xn−1) = p(A, B)

⎫⎬
⎭ implies that α(xn+1, xn) ≥ 1
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and

p(xn+1, xn) ≤ α(xn , xn−1)p(xn+1, xn)

≤ (1 − k)

2
[p∗(T xn , xn) + p∗(T xn−1, xn−1)] − θ([p∗(T xn , xn), p∗(T xn−1, xn−1, )])

= (1 − k)

2
[p(T xn , xn) + p(T xn−1, xn−1)] − p(A, B) −

θ(p(T xn , xn) − p(A, B), p(T xn−1, xn−1) − p(A, B))

≤ (1 − k)

2
[p(T xn , xn+1) + p(xn+1, xn) + p(T xn−1, xn) + p(xn , xn−1)] (11)

−p(A, B) − θ(p(T xn , xn+1) + p(xn+1, xn) − p(A, B),

p(T xn−1, xn) + p(xn , xn−1) − p(A, B))

≤ (1 − k)

2
[p(A, B) + p(xn+1, xn) + p(A, B) + p(xn , xn−1)] − p(A, B) −

θ(p(xn+1, xn), p(xn , xn−1))

≤ 1

2
[p(xn+1, xn) + p(xn , xn−1)] − θ(p(xn+1, xn), p(xn , xn−1))

≤ 1

2
[p(xn+1, xn) + p(xn , xn−1)],

which can be written as

p(xn+1, xn) ≤ p(xn, xn−1), for all n ≥ 1. (12)

Therefore the sequence {p(xn+1, xn)} is monotone decreasing and bounded below
so there exists r ≥ 0 such that

lim
n→∞ p

(
xn+1,xn

) = r.

On contrary suppose that r > 0. By taking limit as n → ∞ and using (12) we have

r ≤ 1

2
[r + r ] − θ(r, r),

implies
0 ≤ θ(r, r) ≤ 0,

hence θ(r, r) = 0, using the definition of θ , which is contradiction. Hence, r = 0
and we have

lim
n→∞ p

(
xn+1,xn

) = 0.

Now, we claim that the sequence {xn} is a Cauchy sequence. On contrary suppose
that the sequence {xn} is not Cauchy sequence. Suppose that {xm(k)} and {xn(k)} are
subsequence of {xn}, and suppose that there exists a ε > 0 such that

p
(
xn(k), xm(k)

) ≥ ε,
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and
p

(
xn(k), xm(k)−1

)
< ε. (13)

Consider mk > nk > N ∈ N, and using (3) and (13) we obtain,

α(xn(k)−1, xm(k)−1) ≥ 1
p(xn(k), T xn(k)−1) = p(A, B)

p(xm(k), T xm(k)−1) = p(A, B).

⎫⎬
⎭ implies that α(xn(k), xm(k)) ≥ 1.

As mapping T is weakly Kannan type proximal mapping, then we have

p(xn(k), xm(k)) ≤ α(xn(k)−1, xm(k)−1)p(xn(k), xm(k))

≤ (1 − k)

2
[p∗(T xn(k)−1, xn(k)−1) + p∗(xm(k)−1, T xm(k)−1)] −

θ([p∗(T xn(k)−1, xn(k)−1), p
∗(xm(k)−1, T xm(k)−1)])

= (1 − k)

2
[p(T xn(k)−1, xn(k)−1) + p(xm(k)−1, T xm(k)−1)] − p(A, B) −

θ([p(T xn(k)−1, xn(k)−1) − p(A, B), p(xm(k)−1, T xm(k)−1) − p(A, B)])
≤ (1 − k)

2
[p(T xn(k)−1, xn(k)) + p(xn(k), xn(k)−1) + p(xm(k), T xm(k)−1) +

p(xm(k), xm(k)−1)] − p(A, B) − θ(p(T xn(k)−1, xn(k)) + p(xn(k), xn(k)−1)

−p(A, B), p(xm(k), T xm(k)−1) + p(xm(k), xm(k)−1) − p(A, B))

≤ (1 − k)

2
[p(xn(k), xn(k)−1) + p(xm(k), xm(k)−1)]

−θ(p(xn(k), xn(k)−1), p(xm(k), xm(k)−1))

≤ 1

2
[p(xn(k), xn(k)−1) + p(xm(k), xm(k)−1)]

≤ 1

2
[p(xn(k), xn(k)−1) + p(xm(k), xm(k)−1), ]

which can be written as

ε ≤ p(xn(k), xm(k)) ≤ 1

2
[p(xn(k), xn(k)−1) + p(xm(k), xm(k)−1)] → 0, as k → ∞,

which is contradiction. Hence {xn} is a Cauchy sequence. Since {xn} is a Cauchy
sequence in A0,p, where A0,p is closed subset of complete metric space X , so there
exists some u ∈ A0,p such that xn → u in A0,p. Now, we have to show that u is the
best proximity point of T . Since xn → u and p (x, .) is lower semi-continuous and
we have

p(Tu, u) ≤ lim inf p(Tu, xn),

We can write as

p(xn, Tu) ≤ p(xn, xn+1) + p(xn+1, T xn) + p(T xn, Tu)

≤ p(xn, xn+1) + p(A, B) + p(T xn, Tu).
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After simplification, we have

p(T xn, Tu) ≥ p(xn, Tu) − p(xn, xn+1) − p(A, B).

Since xn → u and p (x, .) is lower semi continuous. So

lim inf p(T xn, Tu) ≥ lim inf p(xn, Tu) − 0 − p(A, B),

hence we have
0 ≥ p(u, Tu) − p(A, B),

which further implies that
p(u, Tu) = p(A, B).

Hence u is the best proximity point of mapping T .

Uniqueness: Let u and v are two distinct best proximity point of the mapping T
such that u 
= v. Thus, we have

r = p(u, v) > 0.

Since mapping T is an αp-admissible

α(u, v) ≥ 1
p(u, Tu) = p(A, B)

p(v, T v) = p(A, B)

⎫⎬
⎭ implies that α(u, v) ≥ 1.

Since mapping T is a weakly Kannan type and proximal admissible mapping thus
by using (3) we get,

r ≤ 1

2
[r + r ] − θ(r, r)

r ≤ r − θ(r, r),

we have
θ(r, r) ≤ 0,

which is contradiction. So, r = 0, so we have a unique best proximity points of the
mapping T .

4 Results in Partially Ordered Metric Space

In this section, we will discuss the best proximity point results for weakly Kannan
type generalized ordered proximal contraction and weakly Kannan type ordered
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proximal contraction in partially ordered metric space. From now and onward, we
will consider the following notion:

� = {(x, y) ∈ A0 × A0 : x � y or y � x}.

Definition 15 ([40]) Let X be a nonempty set. Then (X, d,�) is called a partially
ordered metric space if the following conditions are satisfied:

1. d is a metric on X.

2. � is a partial order on X .

Definition 16 ([40]) A mapping T : A → B is said to be order preserving if and
only if

x1 � x2 implies T x1 � T x2 for all x1, x2 ∈ A.

Definition 17 ([40]) A mapping T : A → B is said to be partially order preserving
if and only if

x1 � x2
d(u1, T x1) = d(A, B)

d(u2, T x2) = d(A, B)

⎫⎬
⎭ implies that u1 � u2,

for all u1, u2, x1, x2 ∈ A.

Definition 18 Let g : A → A, T : A → B and α : A × A → [0,∞) are mappings,
where A and B are nonempty subsets of a partially ordered metric space (X, d,�).
A pair of mappings (g, T ) is said to be weakly Kannan type generalized ordered
proximal contraction, if

p(gx, Tu) = p(A, B)

p(gy, T v) = p(A, B)

}
implies that

α(gx, gy)p(gu, gv) ≤ (1 − k)

2
[p∗(T x, gx) + p∗(T y, gy)] − θ(p∗(T x, gx), p∗(T y, gy)),

where θ ∈ ϑ , k ∈ (0, 1) and for all (u, v), (x, y) ∈ �.

Definition 19 Let α : A × A → [0,∞)be a mapping. A mapping T : A → B is
said to be weakly Kannan type ordered proximal contraction, if

p(x, Tu) = p(A, B)

p(y, T v) = p(A, B)

}
implies that

α(x, y)p(u, v) ≤ (1 − k)

2
[p∗(T x, x) + p∗(T y, y)] − θ(p∗(T x, x), p∗(T y, y)),

where θ ∈ ϑ, k ∈ (0, 1) and for all (u, v), (x, y) ∈ �.

Remark 2 If gx = IA (an identity mapping over set A) then every weakly Kannan
type generalized ordered proximal contraction will reduce to weakly Kannan type
ordered proximal contraction.
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Similarly, we can deduce the ordered version of previous results as following.

Theorem 3 Let T : A → B be a proximal ordered preserving mapping and g :
A → A be an one to one mapping on A satisfies the αR-property, where A and B
are nonempty subsets of a complete partially ordered metric space (X, d,�). Also,
T (A0,p) ⊆ B0,p and A0,p ⊂ g(A0,p), where p is awp-distancewith A0,p is nonempty
subset of A. The pair ofmappings (g, T ) is aweaklyKannan type generalized ordered
proximal contraction. If there exist some x0, x1 ∈ A0,p such that

p(gx1, T x0) = p(A, B) and (x0, x1) ∈ �,

then there exists a unique wp-coincidence best proximity point x∗ in A.

Proof Define αp : A × A → [0,∞), as

α(x, y) =
{
1, if (x, y) ∈ �,

0, otherwise.

Since T is an α-proximal admissible mapping, defined as

α(x1, x2) ≥ 1
p(gu1, T x1) = p(A, B)

p(gu2, T x2) = p(A, B)

⎫⎬
⎭ implies that α(gu1, gu2) ≥ 1.

Since g satisfy αR-property, so α(u1, u2) ≥ 1 equivalently, we have

⎧⎨
⎩

(x1, x2) ∈ �

p(gu1, T x1) = p(A, B),

p(gu2, T x2) = p(A, B).

Since T is proximally ordered preserving and we have (u1, u2) ∈ �, so we have

p(gx1, T x0) = p(A, B) and α(x0, x1) ≥ 1.

Note that, if (x, y) ∈ � then α(x, y) = 1 otherwise, α(x, y) = 0. Since the pair of
mapping (g, T ) satisfy weakly Kannan type generalized ordered proximal mapping,
and we have

α(x, y) ≥ 1
p(gx, Tu) = p(A, B)

p(gy, T v) = p(A, B)

⎫⎬
⎭ implies that

p(gu, gv) ≤ (1 − k)

2
[p∗(T x, gx) + p∗(T y, gy)] − θ(p∗(T x, gx), p∗(T y, gy)).
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Consider {xn} be a sequence such that α(xn, xn+1) ≥ 1 for all n ∈ N ∪ {0}with xn →
x as n → ∞, hence (xn, xn+1) ∈ �, for all n ∈ N ∪ {0}, with
xn → x as n → ∞. Hence all conditions of Theorem (1) holds and unique wp-
coincidence best proximity point of mappings (g, T ) exist.

Similarly, we can prove the following theorem.

Theorem 4 Let T : A → B be a proximal ordered preserving and weakly Kannan
type ordered proximal mapping, where A and B are nonempty subsets of a complete
partially orderedmetric space (X, d,�). Also, T (A0,p) ⊆ B0,p and A0,p is nonempty
subset of A. If there exist some x0, x1 ∈ A0,p such that

p(x1, T x0) = p(A, B) and (x0, x1) ∈ �,

then there exists a unique wp-best proximity point x∗ of T in A.

5 Application to Fixed-Point Theory

In this section, wewill prove some results related to the fixed-point theory for weakly
Kannan type generalized contraction. Here, if we consider A = B = X , thenwe have
the following definitions.

Definition 20 A self-mapping T on X is said to commute with respect to self-
mapping g on X , if

gu = T x and gv = T y implies that gx = T y and gy = T x .

Example 1 LetX = {0, 1, 2, 3, 4} and mappings g, T : X → X are defined as,

g(x) =
{
1 + x x ∈ {0, 1}
x − 1 x ∈ {2, 3, 4} and T (x) =

⎧⎨
⎩

1 x = 3
x x ∈ {2, 4}

1 + x x ∈ {0, 1}.

If we take u = 0, x = 3, v = 1 and y = 2 then the mapping T commute with respect
to g.

Definition 21 Let α : X × X → [0,∞) and g, T : X → X are mapping. A pair of
mappings (g, T ) is said to be weakly Kannan type generalized contraction, if

α(T x, T y)p(T x, T y) ≤ (1 − k)

2
[p∗(T x, T y) + p∗(T y, T x)] − θ(p∗(T x, T y), p∗(T y, T x)),

where θ ∈ ϑ, k ∈ (0, 1) and for all (x, y) ∈ X .

Definition 22 Let α : X × X → [0,∞) be a mapping. A mapping T : X → X is
said to be weakly Kannan type contraction, if
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α(x, y)p(x, y) ≤ (1 − k)

2
[p∗(T x, T y) + p∗(T y, T x)] − θ(p∗(T x, T y), p∗(T y, T x)),

where θ ∈ ϑ, k ∈ (0, 1) and for all (x, y) ∈ X.

Now, from Theorem (1) and (2), we can deduce the following results.

Theorem 5 Let g and Tare continuous self-mapping on a complete metric space
(X, d) and pair ofmappings (g, T ) be aweaklyKannan type generalized contraction,
further mapping T commute with respect to mapping g. If there exists x0 ∈ X such
that α(x0, T x0) ≥ 1 then pair (g, T ) has a unique coincidence point.

Proof If we take A = B = X in Theorem (1), since self-mapping T commute with
respect to mapping g then every weakly Kannan type generalized proximal contrac-
tion becomes weakly Kannan type generalized contraction, for self-mapping every
αp-proximal admissiblemapping is aαp-admissiblemapping, all conditions of Theo-
rem (1) are satisfied, so according to Theorem (1), we can find x ∈ X as a coincidence
best proximity point of pair of mapping(g, T ), as

p(gx, T x) = p(A, B)

butin the case of self-mapping, p(A, B) = 0 = p(gx, T x), from above equation,
(in the case of self-mapping) every weakly Kannan type generalized contraction
mappings (g, T ) has a unique coincidence point of gx = T x .

Theorem 6 Let (X, d) be a complete metric space and T : X → X be a continuous
weakly Kannan type contraction, further if there exists x0 ∈ C with α(x0, T x0) ≥ 1
then T has a unique fixed-point.

Proof If we take A = B = X in Theorem (2) then every weakly Kannan type prox-
imal contraction becomes weakly Kannan type contraction and every α-proximal
admissible mapping becomes α-admissible mapping, all conditions of Theorem (2)
are satisfied, so according to Theorem (2), we can find x a best proximity point of
mapping T such that

p(x, T x) = p(A, B).

In case of self-mapping, as A = B = X then p(A, B) = 0 = p(x, T x), from the
above equation, we can say that every weakly Kannan type contractive mapping T
has a unique fixed-point.

Definition 23 A pair of self mappings (g, T ) on X is said to be a weakly Kannan
type generalized ordered contraction, if

α(gx, gy)p(T x, T y) ≤ (1 − k)

2
[p∗(T x, T y) + p∗(T y, T x)] − θ(p∗(T x, T y), p∗(T y, T x)),

where θ ∈ ϑ, k ∈ (0, 1), for all (x, y) ∈ �.
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Definition 24 Let α : X × X → [0,∞) be a mapping. A mapping T : X → X is
said to be weakly Kannan type ordered contraction, if

α(x, y)p(T x, T y) ≤ (1 − k)

2
[p∗(T x, T y) + p∗(T y, T x)] − θ(p∗(T x, T y), p∗(T y, T x)),

where θ ∈ ϑ, k ∈ (0, 1), for all (x, y) ∈ �.

Theorem 7 Let α : X × X → [0,∞), g : X → X and T : X → X are mapping
and (X, d,�) is a partially ordered complete metric space and (g, T ) be a pair of
continuous weakly Kannan type generalized ordered contraction and mapping T
commute with respect to mapping g. If x0 ∈ X and (x0, T x0) ∈ �, then pair (g, T )

has a unique coincidence point.

Proof Following the same lines of proof of Theorem (3), and taking in account for
self-mapping such that (x0, T x0) ∈ �, we have α(x0, T x0) = 1, then every weakly
Kannan type generalized ordered proximal contraction becomesweaklyKannan type
generalized ordered contraction. Since mapping T commute with respect to mapping
g and remaining conditions of Theorem (3) also holds. Then pair (g, T ) has a unique
coincidence point.

Theorem 8 Let (X, db,�) is a complete partially ordered metric space and T :
X → X is a weakly Kannan type ordered contraction satisfying the condition of
Theorem (7), then T has a unique fixed-point.

6 Conclusion

In this chapter, we introduced the concept of weakly Kannan type generalized prox-
imal contraction and weakly Kannan type proximal contraction mapping and we
obtained some coincidence and best proximity point results in complete metric space
using wp-distance, which extends and generalized the already exiting results in lit-
erature [41, 42]. Some applications in fixed-point theory and ordered metric spaces
are also discussed.
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Application of Fixed Point Iterative
Methods to Construct Fractals
and Anti-fractals

Sudesh Kumari, Ashish Nandal, and Renu Chugh

Abstract In the present chapter, we demonstrate an application of fixed point iter-
ative methods to construct fractals (Mandelbrot and Julia sets) and anti-fractals (tri-
corns, multicorns and Anti-Julia sets) for the complex polynomials and antipolyno-
mials of the type Fd(z) = zn + d and Ad(z) = z̄m + d, respectively, where d ∈ C

and n,m ≥ 2.We derive some escape criteria to generate fractals and anti-fractals by
adopting the Suantai type iterative method. Moreover, we graphically visualize and
examine the dynamics of these fractals and anti-fractals for certain complex poly-
nomials and antipolynomials, respectively. Several beautiful aesthetic patterns have
been obtained which explore the geometry of fractals and anti-fractals and therefore
enrich the theory of fixed points.

1 Introduction

Fixed point theory has been applied to investigate various nonlinear phenomena
such as complex graphics, biology, physics and geometry [1–4]. There are several
iterative methods in the literature for which the fixed points of operators have been
approximated over the years by various authors. Some of well-known fixed point
iterative methods are Mann [5], Ishikawa [6], Khan [7], Noor [8], Suantai [9], SP
[10], Agarwal [11] and CR [12].These fixed point iterative methods have been used
to generate various complex graphics like fractals and anti-fractals, e.g., the Mann
iteration [13–16], Ishikawa-iteration [17, 18], S-iteration [19, 20], Noor-iteration
[21, 22], CR-iteration [23, 24] and SP-iteration [25–27]. Thus, fixed point theory
plays a prominent role to construct beautiful graphics of fractals and anti-fractals
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where fixed point iterative methods are used. Fixed point iterative methods assist in
constructing beautiful graphics of fractals and anti-fractals that have been used in
image encryption [28] or compression [29], cryptography [30] and art and design
[31]. The applications of fractal theory in the fields of electrical and electronics
engineering revolutionized the industry of security control system, capacitors, radar
system, radio and antennae for wireless system [32, 33]. Moreover, architects and
engineers apply fractal theory to sketch and design the maps of different projects
[34]. Consequently, fractals and anti-fractals enriched the theory of fixed points in
the form of aesthetic patterns of complex graphics [1].

Fractals are defined as objects having irregular structures that cannot be com-
pletely described in Euclidean geometric language. Benoit B. Mandelbrot [35]
described fractal as a fragmented geometric shape that contains congruent pieces,
each of which is a reduced size copy of the original one. In 1918, French math-
ematician Gaston Julia [36] firstly introduced the iterative procedure for complex
polynomial z2 + c; c ∈ C and derived the Julia set. Afterward, the work of Julia was
extended by FrenchMathematicianMandelbrot [35] and obtained beautiful graphics
named as Mandelbrot sets with the help of computers. Julia sets and Mandelbrot sets
are examples of classical fractals. Mandelbrot and Julia sets were extended from the
complex numbers to quaternions [37], bicomplex numbers [38], tricomplex num-
bers [39], etc. Rani and Kumar [13, 14] defined superior iterate to obtain superior
Mandelbrot sets and Julia sets for complex valued polynomials. In 2009, Rochon
[40] generated Mandelbrot sets in bicomplex plane. Thereafter, Wang et al. [41–44]
extended the work of Rochon [40] to generate the graphics of fractals. In 2010,
Chauhan et al. [17, 45] used the Ishikawa-iteration to study dynamics of superior
Julia and superior Mandelbrot sets. Ashish et al. [21] applied the Noor iterative
method to generate Julia and Mandelbrot sets. Kang et al. [46] investigated the mod-
ified Ishikawa process and S-iteration to study the relative superior Mandelbrot sets.
Kumari et al. [25–27] used four-step iterativemethods to construct fractals. Recently,
Abbas et al. [47] used the Picard-Ishikawa type iterative method to generate fractals.

Moreover, anti-fractals like tricorns, multicorns andAnti-Julia sets are the dynam-
ics of antiholomorphic complex polynomials of the form Ad(z) = z̄m + d; m ≥ 2
and d ∈ C [48]. The term “tricorn” was coined by Milnor. Milnor [49] and Branner
[50] found multicorns in a real slice of cubic connectedness locus. Lau and Schle-
icher [51] analyzed the symmetries of tricorns and multicorns. Main features of
tricorns and multicorns were explained by Nakane and Schleicher [48] together with
beautiful figures. The Mann iteration was considered by Rani [15, 16] to investigate
multicorns and Anti-Julia sets for complex polynomials z̄m + d; m ≥ 2. Some fixed
point results for anti-fractals had been proved by Mishra et al. [18] by using the
Ishikawa iterate with s-convexity. Further, the dynamics of the anti-fractals had been
analyzed by Chugh et al. [22], Chauhan et al. [52], Kang et al. [19], Partap et al. [53],
Kwun et al. [23], Li et al. [24] and Chen et al. [20] by applying various fixed point
iterative methods.

In the present chapter, the graphical behavior of fractals and anti-fractals have been
discussed and visualized for the complex polynomials of the form Fd(z) = zn + d
and Ad(z) = z̄m + d, respectively, where d ∈ C and n,m ≥ 2 via the Suantai type
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fixed point iterative method. The Suantai type iterative method was introduced by
Suantai [9] in 2005. The significance of the Suantai type iterative procedure lies
in the fact that it includes several important iterative procedures like Picard, Mann,
Ishikawa, Khan, Noor, etc. It has been observed that fractals (Mandelbrot and Julia
sets) and anti-fractals (tricorns, multicorns and Anti-Julia sets) generated by us have
comparatively distinctive shapes to already generated fractals and anti-fractals in the
literature.

2 Preliminaries

This section is dedicated to some basic definitions which are prerequisites for further
work.

Definition 1 (Orbit) [54]. The orbit of a point x0 ∈ C under a mapping g : C → C

is defined as a sequence of points

x0, x1 = g(x0), x2 = g2(x0), . . . , xn = gn(x0), . . . .

Definition 2 (Julia Set) [35]. The Julia set of a function g : C → C is the boundary
of the set of points z ∈ C that tends to infinity under repeated iteration by g(z), i.e.,
for a function g, the Julia set is given by

J (g) = ∂{z ∈ C : gn(z) → ∞ as n → ∞},

where gn(z) denotes the nth iteration of function g.

Definition 3 (Mandelbrot Set) [36]. The Mandelbrot set M is defined as the collec-
tion of all numbers z ∈ C for which the Julia set remains connected, i.e.,

M = {z ∈ C : J (g) is connected}.

Definition 4 (Multicorn) [54]. The multicorn Ad for the function Ad(z) = z̄m +
d; m ≥ 2 is described as the collection of all d ∈ C such that the orbit of the point
0 is bounded, i.e.,

Ad = {d ∈ C : An
d(0) does not tend to ∞},

where An
d(0) represents the nth iteration of the function Ad(z). Equivalently, multi-

corns can be defined as the connectedness of loci for higher degree antiholomorphic
polynomials Ad(z) = z̄m + d. It is notable that tricorns are the reduced form of
multicorns when m = 2.

Definition 5 (Suantai Type Orbit) [9] Let Z ⊆ C and Fd : Z → Z be a self map.
A sequence {z j } of iterations is known as the Suantai type orbit for an initial point
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z0 ∈ Z if it is defined by

z j+1 = (1 − λ j − μ j ) z j + λ j Fd(y j ) + μ j Fd(z j ),

y j = (1 − α j − β j ) z j + α j Fd(x j ) + β j Fd(z j ), (1)

x j = (1 − ν j ) z j + ν j Fd(z j ), j = 0, 1, 2, . . . ,

where λ j , μ j , ν j , α j , β j ∈ [0, 1], λ j + μ j ∈ [0, 1], α j + β j ∈ [0, 1] for all j ∈ N

and
∑∞

j=0(λ j + μ j ) = ∞.

Remark 1 The Suantai type orbit reduces to the

• Noor orbit when μ j = β j = 0, λ j = α j = ν j �= 0.
• Khan orbit when λ j = 1, μ j = α j = ν j = 0, β j �= 0.
• Ishikawa orbit when μ j = α j = ν j = 0, β j �= 0, λ j �= 0.
• Mann orbit when λ j = α j = β j = ν j = 0, μ j �= 0.
• Picard orbit when μ j = 1, λ j = α j = β j = ν j = 0.

Throughout the present chapter, we assume that z0 = z, y0 = y, x0 = x,
wherex, y, z ∈ C and λ j = λ, μ j = μ, ν j = ν, α j = α, β j = β where
λ, μ, ν, α, β ∈ (0, 1].

3 Main Results

The Suantai type orbit for any initial point z0 ∈ C can be expressed as follows :

z j+1 = (1 − λ − μ) z j + λFd(y j ) + μ Fd(z j ),

y j = (1 − α − β) z j + αFd(x j ) + βFd(z j ), (2)

x j = (1 − ν) z j + νFd(z j ), j = 0, 1, 2, . . . ,

where Fd(z j ) can be a quadratic, cubic or higher degree complex polynomial and
0 < λ, μ, ν, α, β ≤ 1.

Various techniques including escape criterion, iterated function systems, random
fractals, etc. have been adopted to generate and analyze fractals. The escape criterion
has a renowned place in the generation of fractals. The escape criterion is a stop-
ping criterion that depends on the number of iterations required to find out whether
the orbit of an initial point tends to infinity or not. This criterion is proved as an
appropriate mechanism to demonstrate some attributes of a dynamic system using
iteration procedures. Now, we prove the escape criterion for quadratic, cubic and
higher degree complex polynomials to construct Julia and Mandelbrot sets under the
Suantai type orbit.
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3.1 Escape Criterion for Quadratic Complex Polynomials

Let Fd(z) = z2 + d be a quadratic complex polynomial, where d is a complex num-
ber, then escape criterion for quadratic complex polynomial is given by the following.

Theorem 1 Assume that |z| ≥ |d| > max
{

2
|λ|−|μ| ,

2
|α|−|β| ,

2
|ν|

}
, where λ,μ, ν,

α, β ∈ (0, 1] and d is a complex number. Consider the sequence {z j } j∈N as given in
(2), then the orbit of |z| tends to infinity, i.e., |z j | → ∞ as j → ∞.

Proof From (2), consider

|x | = |(1 − ν)z + νFd(z)|.

As Fd(z) = z2 + d, we have

|x | = |(1 − ν)z + ν(z2 + d)|
≥ |(1 − ν)z + νz2| − |νd|.

As |z| ≥ |d|, we obtain

|x | ≥ |(1 − ν) z + νz2| − |ν||z|
≥ |νz2| − |(1 − ν)z| − |ν||z|
= |ν||z|2 − |z| + |ν||z| − |ν||z|
= |z|(|ν||z| − 1).

Therefore,

|x | ≥ |z|(|ν||z| − 1). (3)

The assumption |z| > 2
|ν| gives

|ν| |z| − 1 > 1. (4)

Now, (3) becomes

|x | > |z|. (5)

Also, from (2),

|y| = |(1 − α − β)z + αFd(x) + βFd(z)|
= |(1 − α − β)z + α(x2 + d) + β(z2 + d)|
≥ |α(x2 + d)| − |β(z2 + d)| − |(1 − α − β)z|
≥ |α||x |2 − |α||d| − |β||z|2 − |β||d| − |(1 − α − β)z|.
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Using the assumption that |z| ≥ |d|, we get

|y| ≥ |α||x |2 − |α||z| − |β||z|2 − |β||z| − |(1 − α − β)z|.

From (5), we have

|y| > |α||z|2 − |α||z| − |β||z|2 − |β||z| − |(1 − α − β)z|
= |z|2(|α| − |β|) − |z|.

Thus,

|y| > |z|((|α| − |β|)|z| − 1
)
. (6)

Also, since |z| > 2
|α|−|β| , this gives

(
(|α| − |β|)|z| − 1

)
> 1. (7)

Then, (6) reduces to

|y| > |z|. (8)

Now, for z j+1 = (1 − λ − μ)z j + λFd(y j ) + μFd(z j ), we have

|z1| = |(1 − λ − μ)z + λFd(y) + μFd(z)|
= |(1 − λ − μ)z + λ(y2 + d) + μ(z2 + d)|
≥ |λ(y2 + d)| − |μ(z2 + d)| − |(1 − λ − μ)z|
≥ |λ||y|2 − |λ||d| − |μ||z|2 − |μ||d| − |(1 − λ − μ)z|.

Using the assumption |z| ≥ |d|, we obtain

|z1| ≥ |λ||y|2 − |λ||z| − |μ||z|2 − |μ||z| − |(1 − λ − μ)z|.

Now, (8) gives

|z1| > |λ||z|2 − |λ||z| − |μ||z|2 − |μ||z| − |(1 − λ − μ)z|
= |z|2(|λ| − |μ|) − |z|
= |z|{(|λ| − |μ|)|z| − 1}.

Since |z| > 2
|λ|−|μ| , we have (|λ| − |μ|)|z| − 1 > 1. Thus, there exists a real number

σ > 0 such that (|λ| − |μ|)|z| − 1 > σ + 1 > 1.
Consequently, this gives

|z1| > (σ + 1)|z|.
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Particularly,
|z1| > |z|.

Continuing this process j times, we have

|z j | > (1 + σ) j |z|.

Hence, |z j | → ∞ as j → ∞.

The escape criterion proved in Theorem 1 gives us a little more informa-
tion. In the proof, we have used only the fact that |z| ≥ |d| and |d| > 2

|λ|−|μ| ,
|d| > 2

|α|−|β| and |d| > 2
|ν| . Thus, the following corollary is obtained as a refinement of

Theorem 1.

Corollary 1 Assume that |z| > max
{|d|, 2

|λ|−|μ| ,
2

|α|−|β| ,
2
|ν|

}
, then |z j | → ∞ as

j → ∞.

3.2 Escape Criterion for Cubic Complex Polynomials

Now, we derive the following escape criterion for a cubic complex polynomial
Fd(z) = z3 + d where d ∈ C.

Theorem 2 Suppose |z| ≥ |d| > max
{(

2
|ν|

)1/2
,

(
2

|α|−|β|
)1/2

,
(

2
|λ|−|μ|

)1/2}
where

λ,μ, ν, α, β ∈ (0, 1] and d is a complex number. Consider the sequence {z j } j∈N
as defined in (2), then |z j | → ∞ as j → ∞.

Proof From (2), consider

|x | = |(1 − ν)z + νFd(z)|.

As Fd(z) = z3 + d, we have

|x | = |(1 − ν)z + ν(z3 + d)|
≥ |(1 − ν)z + νz3| − |ν d|.

As |z| ≥ |d|, we obtain

|x | ≥ |(1 − ν) z + νz3| − |ν||z|
≥ |νz3| − |(1 − ν)z| − |ν||z|
= |ν||z|3 − |z| + |ν||z| − |ν||z|
= |z|(|ν||z|2 − 1).
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Therefore,

|x | ≥ |z|(|ν||z|2 − 1). (9)

The assumption |z| > ( 2
|ν| )

1/2 gives

|ν||z|2 − 1 > 1. (10)

Now, (9) becomes

|x | > |z|. (11)

Also, from (2),

|y| = |(1 − α − β)z + αFd(x) + βFd(z)|
= |(1 − α − β)z + α(x3 + d) + β(z3 + d)|
≥ |α(x3 + d)| − |β(z3 + d)| − |(1 − α − β)z|
≥ |α||x |3 − |α||d| − |β||z|3 − |β||d| − |(1 − α − β)z|.

Using the assumption that |z| ≥ |d|, we obtain

|y| ≥ |α||x |3 − |α||z| − |β||z|3 − |β||z| − |(1 − α − β)z|.

From (11), we have

|y| > |α||z|3 − |α||z| − |β||z|3 − |β||z| − |(1 − α − β)z|
= |z|3(|α| − |β|) − |z|.

Thus,

|y| > |z|((|α| − |β|)|z|2 − 1
)
. (12)

Also, since |z| > ( 2
|α|−|β| )

1/2, this gives

(|α| − |β|)|z|2 − 1 > 1. (13)

Then, (12) becomes

|y| > |z|. (14)

Finally, we have
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|z1| = |(1 − λ − μ)z + λFd(y) + μFd(z)|
= |(1 − λ − μ)z + λ(y3 + d) + μ(z3 + d)|
≥ |λ(y3 + d)| − |μ(z3 + d)| − |(1 − λ − μ)z|
≥ |λ||y|3 − |λ||d| − |μ||z|3 − |μ||d| − |(1 − λ − μ)z|.

The assumption |z| ≥ |d| gives

|z1| ≥ |λ||y|3 − |λ||z| − |μ||z|3 − |μ||z| − |(1 − λ − μ)z|.

Now, (14) gives

|z1| > |λ||z|3 − |λ||z| − |μ||z|3 − |μ||z| − |(1 − λ − μ)z|
= |z|3(|λ| − |μ|) − |z|
= |z|{(|λ| − |μ|)|z|2 − 1}.

Since |z| > ( 2
|λ|−|μ| )

1/2, we have (|λ| − |μ|)|z|2 − 1 > 1. Thus, there exists a real

number σ > 0 such that (|λ| − |μ|)|z|2 − 1 > σ + 1 > 1.
Consequently, this gives

|z1| > (σ + 1)|z|.

In particular,
|z1| > |z|.

Repeating this process j times, we have

|z j | > (1 + σ) j |z|.

Hence, |z j | → ∞ as j → ∞.

3.3 Escape Criterion for General Complex Polynomials

Now, we prove the following theorem for general complex polynomials Fd(z) =
zn + d; n = 2, 3, . . . , where d ∈ C as a general escape criterion:

Theorem 3 Assume

|z| ≥ |d| > max
{( 2

|ν|
)1/n−1

,
( 2

|α| − |β|
)1/n−1

,
( 2

|λ| − |μ|
)1/n−1}

where λ,μ, ν, α, β ∈ (0, 1]. Define a sequence {z j } j∈N as given in (2) where z0 =
z, y0 = y and x0 = x. Then |z j | → ∞ as j → ∞.
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Proof We prove the theorem by using the method of induction. For n = 2, Fd(z) =
z2 + d, the escape criterion takes the form

|z| ≥ |d| > max{ 2

|λ| − |μ| ,
2

|α| − |β| ,
2

|ν|
}
.

Thus, from Theorem 1, |z j | → ∞ as j → ∞. Similarly, for n=3, we get Fd(z) =
z3 + d. Then, the escape criterion is

|z| > max{|c|, (2(1 + |a|)
sα

)1/2
,
( (2(1 + |a|)

sβ

)1/2
,
(2(1 + |a|)

sγ

)1/2}.

Theorem 2 implies that |z j | → ∞ as j → ∞. Hence, the result holds for n = 2, 3.
Now, let the results hold for any n. We shall prove the result for n + 1. Let us assume
that
Fd(z) = zn+1 + d and |z| ≥ |d| > max

{(
2
|ν|

)1/n
,

(
2

|α|−|β|
)1/n

,
(

2
|λ|−|μ|

)1/n}
.

Then, from (2), consider

|x | = |(1 − ν)z + νFd(z)|
= |(1 − ν)z + ν(zn+1 + d)|
≥ |(1 − ν)z + νzn+1| − |ν d|.

The assumption |z| ≥ |d| yields

|x | ≥ |(1 − ν) z + νzn+1| − |ν||z|
≥ |νzn+1| − |(1 − ν)z| − |ν||z|
= |ν||z|n+1 − |z| + |ν||z| − |ν||z|
= |z|(|ν||z|n − 1).

Thus,

|x | ≥ |z|(|ν||z|n − 1). (15)

The assumption |z| > ( 2
|ν| )

1/n implies

|ν||z|n − 1 > 1. (16)

Now, (15) becomes

|x | > |z|. (17)
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Also, from (2),

|y| = |(1 − α − β)z + αFd(x) + βFd(z)|
= |(1 − α − β)z + α(xn+1 + d) + β(zn+1 + d)|
≥ |α||x |n+1 − |α||d| − |β||z|n+1 − |β||d| − |(1 − α − β)z|.

Using the assumption |z| ≥ |d| and (17), we have

|y| > |α||z|n+1 − |α||z| − |β||z|n+1 − |β||z| − |(1 − α − β)z|
= |z|n+1(|α| − |β|) − |z|.

Thus,

|y| > |z|((|α| − |β|)|z|n − 1
)
. (18)

Also, the assumption |z| > ( 2
|α|−|β| )

1/n gives

(|α| − |β|)|z|n − 1 > 1. (19)

Then, (18) becomes

|y| > |z|. (20)

Finally, consider

|z1| = |(1 − λ − μ)z + λFd(y) + μFd(z)|
= |(1 − λ − μ)z + λ(yn+1 + d) + μ(zn+1 + d)|
≥ |λ||y|n+1 − |λ||d| − |μ||z|n+1 − |μ||d| − |(1 − λ − μ)z|.

The assumption |z| ≥ |d| implies

|z1| ≥ |λ||y|n+1 − |λ||z| − |μ||z|n+1 − |μ||z| − |(1 − λ − μ)z|. (21)

Using (20) in (21), we obtain

|z1| > |λ||z|n+1 − |λ||z| − |μ||z|n+1 − |μ||z| − |(1 − λ − μ)z|
= |z|n+1(|λ| − |μ|) − |z|
= |z|{(|λ| − |μ|)|z|n − 1}.

Moreover, our assumption |z| > ( 2
|λ|−|μ| )

1/n gives that (|λ| − |μ|)|z|n − 1 > 1. Thus,
there exists a real number σ > 0 such that (|λ| − |μ|)|z|n − 1 > σ + 1 > 1.
Finally, this gives

|z1| > (σ + 1)|z|.
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In particular,
|z1| > |z|.

Repeating this process in the same manner, we have

|z j | > (1 + σ) j |z|.

Therefore, |z j | → ∞ as j → ∞. Thus, result is true for n + 1. Hence, result holds
for any n.

Corollary 2 Suppose that if for some p ≥ 0 and k ≥ 2,

|z p| > max{|d|, ( 2

|ν|
)1/k−1

,
( 2

|α| − |β|
)1/k−1

,
( 2

|λ| − |μ|
)1/k−1}

,

then |z p| > (1 + σ)p|z| and |z p| → ∞ as p → ∞.

Using this corollary, we obtain an algorithm to generate connected Julia sets of
general complex polynomials Fd(z); d ∈ C. If for some j , {z j } lies outside the

circle of radius max{|d|, ( 2
|ν|

)1/p−1
,

(
2

|α|−|β|
)1/p−1

,
(

2
|λ|−|μ|

)1/p−1}
, then the orbit of

z escapes to infinity, which means the point z does not lie in the connected Julia set.
If {z j } does not exceed this bound, then by definition, z lies in the connected Julia
set and collection of such points is known as the Mandelbrot set.

4 Algorithm for Generating Fractals

Now, we provide an algorithm to construct all fractals by using general escape cri-
terion.

1. Setup:

Choose a complex number d = l + mι.
Initialize values of variables λ, μ, ν, α, β.
Take z0 = x + yι as an initial point.

2. Iterate:

z j+1 = (1 − λ − μ) z j + λFd(y j ) + μ Fd(z j ),

y j = (1 − α − β) z j + αFd(x j ) + βFd(z j ),

x j = (1 − ν) z j + νFd(z j ), j = 0, 1, 2, . . . ,

where Fd(z) = zn + d, n = 2, 3, . . . .
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3. Stop:

|z j | > escape radius

= max
{|d|, ( 2

|ν|
)1/n−1

,
( 2

|α| − |β|
)1/n−1

,
( 2

|λ| − |μ|
)1/n−1}

.

4. Count: The number of iterations to escape.
5. Color: Depends on the number of iterations required to escape.

5 Construction of Mandelbrot Sets in the Suantai Type
Orbit

This section deals with the construction of Mandelbrot and Julia sets for quadratic
and higher degree complex polynomials. The color and shape variations exhibit in the
figures when we change the parameters. We have used a maximum of 15 number of
iterations to visualize the fractals. With the help of the above algorithm, we construct
the following Mandelbrot and Julia sets in the Suantai type orbit by using software
Mathematica 11.0.

5.1 Mandelbrot Sets for Quadratic Polynomials

We consider quadratic complex polynomial Fd(z) = z2 + d; d ∈ C and vary the
values of parameters λ,μ, ν, α, β ∈ (0, 1] to observe the effect of parameters on
shapes of quadratic Mandelbrot sets.

In Figs. 1, 2, 3, 4, 5 and 6, we generate Quadratic Mandelbrot sets by taking
different values of parameters λ, μ, ν, α, β and observe that the shape becomes
fattier when we increase the values of parameters. The Mandelbrot set 1 represents a
classical Cardioid together with a large bulb on its left side. Also, infinite many small
bulbs are attached around its perimeter where each bulb contains its own antennas.
Figures3 and 4 demonstrate the different Mandelbrot sets containing different bulbs.
Figure5 represents a fattier Mandelbrot set while a lengthy Mandelbrot set is repre-
sented by Fig. 6. We construct different shapes of quadratic Mandelbrot sets which
all are symmetrical about x-axis.
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Fig. 1 Quadratic
Mandelbrot set for
λ = 0.2, μ = 0.7, ν =
0.9, α = 0.1, β = 0.8

Fig. 2 Quadratic
Mandelbrot set for
λ = 0.9, μ = 0.04, ν =
0.9, α = 0.09, β = 0.01
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Fig. 3 Quadratic
Mandelbrot set for
λ = 0.58, μ = 0.18, ν =
0.3, α = 0.58, β = 0.37

Fig. 4 Quadratic
Mandelbrot set for
λ = 0.3, μ = 0.1, ν =
0.09, α = 0.3, β = 0.12
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Fig. 5 Quadratic
Mandelbrot set for
λ = 0.08, μ = 0.01, ν =
0.9, α = 0.38, β = 0.19

Fig. 6 Quadratic
Mandelbrot set for
λ = 0.78, μ = 0.04, ν =
0.1, α = 0.76, β = 0.03
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5.2 Mandelbrot Sets for Higher Degree Polynomials

To visualize theMandelbrot sets for higher degree complex polynomials, we consider
the general polynomial Fd(z) = zn + d ; n ≥ 3, d ∈ C and taking different values
of parameters λ,μ, ν, α, β ∈ (0, 1]. We observe that these fractals have reflection
symmetry with respect to both the axis, i.e., x-axis and y-axis.

• For the cubic polynomial Fd(z) = z3 + d, the cubic Mandelbrot sets have been
visualized in Figs. 7 and 8 by taking different values of parameters which look like
decorated coupled urns.

• In Fig. 9, the Mandelbrot set for fifth-degree polynomial Fd(z) = z5 + d is shown
while Fig. 10 represents a Mandelbrot set for tenth-degree polynomial Fc(z) =
z10 + d.

• Mandelbrot sets for higher values of n, i.e., n = 15 and n = 20 are visualized by
Figs. 11 and 12, respectively, which are similar to a circular saw.

Fig. 7 Cubic Mandelbrot set
for λ = 0.9, μ = 0.04, ν =
0.9, α = 0.09, β = 0.01
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Fig. 8 Cubic Mandelbrot set
for λ = 0.53, μ = 0.42, ν =
0.08, α = 0.33, β = 0.01

Fig. 9 Fifth-order
Mandelbrot set for
λ = 0.79, μ = 0.12, ν =
0.3, α = 0.56, β = 0.37
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Fig. 10 Tenth-order
Mandelbrot set for
λ = 0.69, μ = 0.17, ν =
0.58, α = 0.68, β = 0.31

Fig. 11 Fifteenth-order
Mandelbrot set for
λ = 0.6, μ = 0.04, ν =
0.05, α = 0.6, β = 0.01



288 S. Kumari et al.

Fig. 12 Twenty-fifth-order
Mandelbrot set for
λ = 0.6, μ = 0.04, ν =
0.05, α = 0.09, β = 0.01

6 Construction of Julia Sets in the Suantai Type Orbit

In this section, we generate Julia sets for quadratic and higher degree complex poly-
nomials.

6.1 Julia Sets for Quadratic Complex Polynomials

Let us consider the quadratic complex polynomial Fd(z) = z2 + d ; d ∈ C and
different values of parameters λ, μ, ν, α, β ∈ (0, 1] to discuss and visualize the
quadratic Julia sets.

• In Figs. 13 and 14, beautiful graphics of Quadratic Julia sets are constructed.
Figure13 is a spiral type Julia set. Both the Julia sets have very nice aesthetic
patterns to be used for designing purpose.

• Dragon types quadratic Julia sets have been represented by Figs. 15 and 16.
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Fig. 13 Quadratic Julia set
for λ = 0.1, μ = 0.4, ν =
0.7, α = 0.19, β =
0.8, d = 0.5 − 0.04ι

Fig. 14 Quadratic Julia set
for λ = 0.95, μ = 0.04, ν =
0.8, α = 0.09, β =
0.9, d = −0.8 + 0.05ι
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Fig. 15 Quadratic Julia set
for λ = 0.58, μ = 0.38, ν =
0.89, α = 0.1, β =
0.18, d = 0.5 − 0.5ι

Fig. 16 Quadratic Julia set
for λ = 0.71, μ = 0.25, ν =
0.8, α = 0.52, β =
0.37, d = 0.5 − 0.5ι
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6.2 Julia Sets for Higher Degree Polynomials

Here, we visualize and study the dynamics of Julia sets for higher degree complex
polynomial Fd(z) = zn + d ; n ≥ 3, d ∈ C by taking different values of parameters
λ, μ, ν, α, β ∈ (0, 1].
• Cubic Mandelbrot sets for the polynomial Fd(z) = z3 + c are presented by
Figs. 17, 18 and 19 by choosing different values of parameters.

• TheMandelbrot sets for fourth- and fifth-degree polynomials are shown in Figs. 20
and 21, respectively. Figure21 somewhat resembles with the shape of coronavirus.
Further, the Mandelbrot set for tenth-degree polynomial Fd(z) = z10 + d is rep-
resented in Fig. 22.

Fig. 17 Cubic Julia set for
λ = 0.9, μ = 0.001, ν =
0.115, α = 0.1, β =
0.03, d = −0.115 − 0.05ι
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Fig. 18 Cubic Julia set for
λ = 0.9, μ = 0.01, ν =
0.4, α = 0.09, β =
0.01, d = 0.9 − 0.9ι

Fig. 19 Cubic Julia set for
λ = 0.048, μ = 0.034, ν =
0.79, α = 0.031, β =
0.019, d = −0.18 − 0.18ι
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Fig. 20 Fourth-order Julia
set for
λ = 0.05, μ = 0.001, ν =
0.05, α = 0.01, β =
0.001, d = 0.2 − 0.2ι

Fig. 21 Fifth-order Julia set
for λ = 0.9, μ = 0.01, ν =
0.4, α = 0.09, β =
0.01, d = 0.9 − 0.9ι
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Fig. 22 Tenth-order Julia set
for λ = 0.5, μ = 0.2, ν =
0.08, α = 0.4, β =
0.001, d = 0.1 − 0.1ι

7 Generation of Anti-fractals in the Suantai Type Orbit

In this section, we provide a general escape criterion to analyze and construct anti-
fractals for antiholomorphic polynomials of the form Ad(z) = z̄m + d; m ≥ 2 under
the Suantai type orbit.

Theorem 4 Assume

|z| ≥ |d| > max
{( 2

|ν|
)1/m−1

,
( 2

|α| − |β|
)1/m−1

,
( 2

|λ| − |μ|
)1/m−1}

,

where λ,μ, ν, α, β ∈ (0, 1]. Define a sequence {z j } j∈N given by

z j+1 = (1 − λ − μ) z j + λFd(ȳ j ) + μ Fd(z̄ j ),

y j = (1 − α − β) z j + αFd(x̄ j ) + βFd(z̄ j ), (22)

x j = (1 − ν) z j + νFd(z̄ j ), j = 0, 1, 2, . . . ,

where Fd(z̄) = z̄m + d, z0 = z, y0 = y and x0 = x. Then |z j | → ∞ as j → ∞.

Proof From (22), consider

|x | = |(1 − ν)z + νFd(z̄)|
= |(1 − ν)z + ν(z̄m + d)|
≥ |(1 − ν)z + ν z̄m | − |ν d|.
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The assumption |z| ≥ |d| gives

|x | ≥ |(1 − ν) z + ν z̄m | − |ν||z|
≥ |ν z̄m | − |(1 − ν)z| − |ν||z|
= |ν||z̄|m − |z| + |ν||z| − |ν||z|
= |z|(|ν||z|m−1 − 1), ∵ |z̄| = |z|.

Therefore,

|x | ≥ |z|(|ν||z|m−1 − 1). (23)

The assumption |z| > ( 2
|ν| )

1/m−1 implies

|ν||z|m−1 − 1 > 1. (24)

Using (24), (23) yields

|x | > |z|. (25)

Also,

|y| = |(1 − α − β)z + αFd(x̄) + βFd(z̄)|
= |(1 − α − β)z + α(x̄m + d) + β(z̄m + d)|
≥ |(1 − α − β)z + α(x̄m + d)| − |β(z̄m + d)|
≥ |α(x̄m + d)| − |β(z̄m + d)| − |(1 − α − β)z|
≥ |α||x̄m | − |α||d| − |β||z̄m | − |β||d| − |(1 − α − β)z|
≥ |α||x̄ |m − |α||d| − |β||z̄|m − |β||d| − |(1 − α − β)z|.

Since |x̄ |m = |x |m and |z̄|m = |z|m , we get

|y| ≥ |α||x |m − |α||d| − |β||z|m − |β||d| − |(1 − α − β)z|. (26)

Using (25) and assumption |z| ≥ |d| in (26), we obtain

|y| ≥ |α||z|m − |α||z| − |β||z|m − |β||z| − |z| + |α||z| + |β||z|
= |α||z|m − |β||z|m − |z|
= |z|m(|α| − |β|) − |z|
= |z|(|z|m−1(|α| − |β|) − 1).

Thus,

|y| ≥ |z|(|z|m−1(|α| − |β|) − 1). (27)
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Also, the assumption |z| > ( 2
|α|−|β| )

1/m−1 gives

(|α| − |β|)|z|m−1 − 1 > 1. (28)

Using (28) in (27), we obtain

|y| > |z|. (29)

Finally, consider

|z1| = |(1 − λ − μ)z + λFd(ȳ) + μFd(z̄)|
= |(1 − λ − μ)z + λ(ȳm + d) + μ(z̄m + d)|
≥ |(1 − λ − μ)z + λ(ȳm + d)| − |μ(z̄m + d)|
≥ |λ(ȳm + d)| − |μ(z̄m + d)| − |(1 − λ − μ)z|
≥ |λȳm | − |λd| − |μz̄m | − |μd| − |(1 − λ − μ)z|
= |λ| ¯|y|m − |λ||d| − |μ| ¯|z|m − |μ||d| − |(1 − λ − μ)z|
= |λ||y|m − |λ||d| − |μ||z|m − |μ||d| − |(1 − λ − μ)z|.

Thus,

|z1| ≥ |λ||y|m − |λ||d| − |μ||z|m − |μ||d| − |(1 − λ − μ)z|. (30)

Using the assumption |z| ≥ |d| and (29), (30) becomes

|z1| ≥ |λ||z|m − |λ||z| − |μ||z|m − |μ||z| − |(1 − λ − μ)z|
= |λ||z|m − |μ||z|m − |z|
= |z|(|z|m−1(|λ| − |μ|) − 1).

Also, our assumption |z| > ( 2
|λ|−|μ| )

1/m−1 implies that (|λ| − |μ|)|z|m−1 − 1 > 1.

Thus, there exists a real number σ > 0 such that (|λ| − |μ|)|z|m−1 − 1 > σ + 1 > 1.
Hence, this gives

|z1| > (σ + 1)|z|.

Continuing this process in the same manner, we have

|z2| > (1 + σ)2|z|,

|z3| > (1 + σ)3|z|,
...

|z j | > (1 + σ) j |z|.
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Therefore, |z j | → ∞ as j → ∞.

The following subsections contain tricorns and multicorns for antiholomorphic
polynomial Ad(z) = z̄m + d; m ≥ 2 via the Suantai type orbit. We use the escape
criterion (Theorem 4) to construct the images of anti-fractals using the software
Mathematica 11.0.Amaximumof10number of iterations havebeenused to construct
the following anti-fractals.

7.1 Construction of Tricorns and Multicorns

Here, we visualize the graphics of anti-fractals like tricorns and multicorns for anti-
holomorphic polynomial Ad(z) = z̄m + d; m ≥ 2 by considering different values
of parameters λ, μ, ν, α, β ∈ (0, 1].
• In Figs. 23, 24 and 25, tricorns are visualizedwhich demonstrate the three cornered
nature of tricorns. We demonstrate the multicorns for m = 3 in Figs. 26 and 27
which have four different corners.

• It is surprising to see that for m = 4, a star-shaped multicorn is constructed as
shown by Fig. 28.

• Multicorns form = 15 andm = 25 are constructed in Figs. 29 and 30, respectively.
Figure30 takes the form of a circular saw.

• Weobserve thatmulticorn is symmetric around both the axis, i.e., x-axis and y-axis
when m is odd and it is symmetric only along x-axis when m is even.

• It is observed that each tricorn and multicorn for the antipolynomial z̄m + d has
m + 1 branches.

Fig. 23 Tricorn set for
λ = 0.2, μ = 0.04, ν =
0.6, α = 0.68, β = 0.2
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Fig. 24 Tricorn set for
λ = 0.01, μ = 0.07, ν =
0.9, α = 0.07, β = 0.02

Fig. 25 Tricorn set for
λ = 0.57, μ = 0.09, ν =
0.77, α = 0.48, β = 0.027
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Fig. 26 Third-order
Multicorn for
λ = 0.09, μ = 0.09, ν =
0.3, α = 0.07, β = 0.02

Fig. 27 Third-order
Multicorn for
λ = 0.72, μ = 0.007, ν =
0.58, α = 0.95, β = 0.001
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Fig. 28 Fifth -order
Multicorn for
λ = 0.07, μ = 0.01, ν =
0.8, α = 0.7, β = 0.02

Fig. 29 Fifteenth-order
Multicorn for
λ = 0.07, μ = 0.01, ν =
0.08, α = 0.9, β = 0.09
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Fig. 30 Twenty-fifth-order
Multicorn for
λ = 0.3, μ = 0.1, ν =
0.9, α = 0.71, β = 0.25

8 Construction of Anti-Julia Sets

Now, we construct Anti-Julia sets for the antipolynomial Ad(z) = z̄m + d; m ≥ 2
by taking different values of parameters λ,μ, ν, α, β ∈ (0, 1] and d ∈ C by using
software Mathematica 11.0.

• Quadratic Anti-Julia sets have been constructed in Figs. 31, 32 and 33 by taking
different values of parameters.

• We construct cubic Anti-Julia sets in Figs. 34, 35 and 36whichmaintain symmetry
with respect to origin and have four folds. In Fig. 34, Anti-Julia set depicts four
corners as a trident, a divine symbol named Trishula.

• Anti-Julia sets for m = 5 and m = 10 are visualized in Figs. 37 and 38, respec-
tively. These graphics maintain symmetry with respect to origin and have 6 and
11 branches, respectively.
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Fig. 31 Quadratic
Anti-Julia set for
λ = 0.6, μ = 0.1, ν =
0.9, α = 0.09, β =
0.01, d = 0.04 + 0.2ι

Fig. 32 Quadratic
Anti-Julia set for
λ = 0.72, μ = 0.05, ν =
0.58, α = 0.18, β =
0.008, d = 0.2 − 0.2ι
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Fig. 33 Quadratic
Anti-Julia set for
λ = 0.156, μ = 0.126, ν =
0.83, α = 0.14, β =
0.131, d = 0.34 − 0.34ι

Fig. 34 Cubic Anti-Julia set
for λ = 0.3, μ = 0.04, ν =
0.05, α = 0.05, β =
0.02, d = 0.02 + 0.2ι
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Fig. 35 Cubic Anti-Julia set
for λ = 0.05, μ = 0.01, ν =
0.6, α = 0.1, β =
0.04, d = −0.1 − 0.1ι

Fig. 36 Cubic Anti-Julia set
for λ = 0.25, μ = 0.01, ν =
0.28, α = 0.15, β =
0.01, d = −0.19 − 0.19ι
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Fig. 37 Fifth-order
Anti-julia set for
λ = 0.45, μ = 0.01, ν =
0.28, α = 0.15, β =
0.01, d = 0.25 − 0.25ι

Fig. 38 Tenth-order
Anti-julia set for
λ = 0.3, μ = 0.04, ν =
0.05, α = 0.05, β =
0.02, d = 0.2 + 0.2ι
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9 Conclusion

In this chapter, we used the Suantai type orbit as an application of fixed point iterative
methods to examine the behaviors of complex polynomials and antipolynomials. We
proved some escape criteria to generate fractals and anti-fractals. Some tempting
graphics of fractals and anti-fractals have been constructed by choosing different
values of parameters λ, μ, ν, α, β ∈ (0, 1]. We noticed that eminent changes in the
shapes of fractals and anti-fractals can be observed with the variation of parameters
λ, μ, ν, α, β. We observed that for higher degree polynomials, the fractals and
anti-fractals have the rotational symmetry along the origin and their shapes look
similar to a circular saw. Our results might be very useful in generating automatic
aesthetic patterns for graphic designers.
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Nonexpansive Mappings, Their
Extensions, and Generalizations in
Banach Spaces

Rajendra Pant, Rahul Shukla, and Prashant Patel

Abstract This is a survey chapter. We present a brief development of fixed point
theory for nonexpansive type mappings in Banach spaces.

1 Introduction

Nonexpansive mappings are natural generalization of contraction mappings. These
mappings are important due to their connection with the monotonicity methods and
also appear in applications for initial value, variational inequality, optimization, equi-
librium, and many other problems in nonlinear analysis [56]. It is well-known that a
nonexpansive self-mapping of a complete metric space need not have a fixed point.

Example 1 Let (�1, ‖.‖1) be the Banach space of all real absolutely summable
sequences and

K =
{

x = (x1, x2, . . . ) : xn ≥ 0 for all n and
∞∑

n=1

xn = 1

}
,

a closed bounded subset of �1.Let T : K → K be defined by T (x) = (0, x1, x2, . . . ).
Then T is a fixed point free nonexpansive mapping on K .

Also, the sequence of iterates (the Picard sequence) of a nonexpansive mapping
may not converge to a fixed point of the mapping, unlike the contraction mappings.
Therefore the study of existence and convergence of fixed points of nonexpansive
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mappings is an important subject. In this chapter, we present some important exis-
tence and convergence results for nonexpansive mappings, their extensions, and
generalizations.

2 Preliminaries

Throughout this chapter, R denotes the set of real numbers, and N the set of all
positive integers.

Definition 1 [13, 22]. The modulus of convexity of Banach space X is the function
δ : [0, 2] → [0, 1] defined by

δ(ε) = inf

{
1 − 1

2
‖x + y‖ : x, y ∈ X, ‖x‖, ‖y‖ ≤ 1, ‖x − y‖ ≥ ε

}
.

The characteristic of convexity of X is defined as

ε0(X) = sup{ε : δ(ε) = 0}.

Definition 2 [25].ABanach space X is said to be uniformly convex in every direction
(UCED, for short) if for ε ∈ (0, 2] and z ∈ X with ‖z‖ = 1, there exists δ(ε, z) > 0
such that∥∥∥∥ x + y

2

∥∥∥∥ ≤ 1 − δ(ε, z) for all x, y ∈ X with ‖x‖ ≤ 1 and ‖y‖ ≤ 1 and

x − y ∈ {t z : t ∈ [−2,−ε] ∪ [ε, 2]}.

The Banach space X is said to be uniformly convex if for each ε ∈ (0, 2] there exists
δ > 0 such that∥∥∥∥ x + y

2

∥∥∥∥ ≤ 1 − δ for all x, y ∈ X with ‖x‖ = ‖y‖ ≤ 1 and ‖x − y‖ ≥ ε.

It is obvious that uniform convexity implies UCED.

Definition 3 [49]. A Banach space X is said to be nearly uniformly convex if for
every ε > 0 there exists a δ > 0 such that if ‖xn‖ ≤ 1, and ‖xn − xm‖ ≥ ε for m 	=
n, then there is an N ≥ 1 and scalars λ1, · · · , λN ≥ 0 with

N∑
n=1

λn = 1 such that

‖λn xn‖ ≤ 1 − δ.

Definition 4 [39]. Let K be a nonempty subset of a Banach space X. For x ∈ X
define

rx (K ) = sup{‖x − y‖ : y ∈ K } and r(K ) = inf{rx (K ) : x ∈ K }.
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The number r(K ) is called the Chebyshev radius of K .

Definition 5 [18, 39]. The character of a Banach space X is defined as

κ(X) = sup{c > 0 : r(B(0, 1) ∩ B(x, d)) < 1 and ‖x‖ = 1},

where B(x, d) ⊂ X is the open ball centered at x with radius d.

Definition 6 [25]. Let K be a nonempty subset of a Banach space X. A point x ∈
K ⊆ X is said to be diametral if rx (K ) = diam(K ) (diameter). The point x is said
to be nondiametral if it is not diametral. A convex subset K of X is said to have
normal structure if each bounded, convex subset D of K with diam D > 0 contains
a nondiametral point.

Definition 7 [25]. Let A be a nonempty subset of a Banach space X. The convex
hull of A, is the smallest convex set containing A, that is,

conv(A) = ∩{K ⊂ X : K ⊃ A, K is a convex set},

and the closed convex hull of A, is defined as

conv(A) = ∩{K ⊂ X : K ⊃ A, K is closed convex in X}.

Definition 8 [14, 15, 25]. Let K be a nonempty subset of a Banach space X, and
{xn} a bounded sequence in X. The asymptotic radius of {xn} at a point x is defined
by

r(x, {xn}) := lim sup
n→∞

‖xn − x‖.

The asymptotic radius of {xn} with respect to K is defined by

r(K , {xn}) := inf{r(x, {xn}) : x ∈ K }.

The asymptotic center of {xn} with respect to K is defined by

A(K , {xn}) := {x ∈ K : r(x, {xn}) = r(K , {xn}).

Remark 1 We note that

(a) If K is a nonempty closed convex subset of a uniformly convex Banach space
X, then the asymptotic center of every bounded sequence {xn} in X relative to
K is singleton.

(b) Further, if K is a nonempty weakly compact convex subset of a UCED Banach
space X, then the asymptotic center of every bounded sequence {xn} in X relative
to K is singleton [25, 33].
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Definition 9 [3]. Let X be a Banach space and X∗ its dual. Then the multivalued
mapping J : X → 2X∗

defined by

J (x) := {h ∈ X∗ : 〈x, h〉 = ‖x‖2 = ‖h‖2},

is called the normalized duality mapping.

Definition 10 [3]. Let X be a Banach space and SX = {x ∈ X : ‖x‖ = 1} the unit
sphere of X. Then

(1) the norm of X is said to be Gâteaux differentiable at point x ∈ SX if for y ∈ SX

lim
t→0

‖x + t y‖ − ‖x‖
t

(1)

exists. The norm of X is said to Gâteaux differentiable if it is Gâteaux differen-
tiable at each point of SX .

(2) the Banach space X is said to be smooth if the limit (1) exists for all x, y ∈ SX .

(3) the norm of the Banach space X is said to be Frećhet differentiable if for each
x, y ∈ SX , the limit (1) exists uniformly.

It is known that if X is smooth then the duality mapping J is single valued [25]. In
this case, for all x, f ∈ X

〈 f, J (x)〉 + 1

2
‖x‖2 ≤ 1

2
‖x + f ‖2 ≤ 〈 f, J (x)〉 + 1

2
‖x‖2 + b(‖ f ‖),

where J (x) is the Fréchet derivative of the functional
1

2
‖.‖2 at x ∈ X and b is an

increasing function defined on [0,∞) such that lim
t→0

b(t)

t
= 0.

Definition 11 [45]. A Banach space X is said to satisfy Opial property if, for every
weakly convergent sequence {xn} with weak limit x ∈ X,

lim inf
n→∞ ‖xn − x‖ < lim inf

n→∞ ‖xn − y‖

holds for all y ∈ X with x 	= y.

All finite dimensional Banach spaces, all Hilbert spaces and �p (1 < p < ∞) satisfy
the Opial property. But L p (1 < p < ∞, p 	= 2) do not satisfy the Opial property
[13].

Definition 12 [31]. A Banach space X is said to be uniformly nonsquare if there
exists δ ∈ (0, 1) such that for any x, y ∈ SX either ‖x+y‖

2 ≤ 1 − δ or ‖x−y‖
2 ≤ 1 − δ.

The constant J (X) defined by

J (X) = sup{min(‖x + y‖, ‖x − y‖) : x, y ∈ SX },
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is called the nonsquare or James constant of X. Here SX is as in Definition 10.

Definition 13 [54]. Let K be a nonempty subset of a Banach space X. A function
f : K → R is said to be convex if for all x, y ∈ K and λ ∈ (0, 1),

f (λx + (1 − λ)y) ≤ λ f (x) + (1 − λ) f (y).

The function f is said to be quasi-convex if for all x, y ∈ K and λ ∈ (0, 1),

f (λx + (1 − λ)y) < max{ f (x), f (y)}.

Definition 14 [5].

(a) Let K be a nonempty subset of a Banach space X. A function g : K → R is
said to be coercive if g(zn) → ∞ whenever {zn} is a sequence in K such that
‖zn‖ → ∞.

(b) Let (�∞, ‖.‖∞) be theBanach space of bounded real sequences. Then there exists
a bounded linear functional μ on �∞ such that for all n ∈ N,

(i) if {tn} ∈ �∞ and tn ≥ 0 then μ({tn}) ≥ 0,
(ii) if tn = 1 then μ({tn}) = 1,
(iii) μ({tn+1}) = μ({tn}) for all {tn} ∈ �∞.

The functional μ is said to be a Banach limit [55].

Proposition 1 [55]. Let K be a nonempty closed convex subset of a reflexive Banach
space X and g : K → R a convex, continuous, and coercive function. Then there
exists x ∈ K such that g(x) = inf g(K ).

Definition 15 [13, 25]. Let K be a nonempty subset of aBanach space X.Amapping
T : K → K is said to be nonexpansive if for all x, y ∈ K ,

‖T (x) − T (y)‖ ≤ ‖x − y‖.

A point p ∈ K is said to be a fixed point of T if T (p) = p. We denote the set of all
fixed points of T by F(T ).

The mapping T is said to be quasi-nonexpansive provided that it has a fixed point in
K and for each fixed point p ∈ K and every y ∈ K ,

‖T (p) − T (y)‖ = ‖p − T (y)‖ ≤ ‖p − y‖.

Definition 16 [25]. Let K be a nonempty subset of a Banach space X and T : K →
K a mapping. A sequence {xn} in K is said to be approximate fixed point sequence
(in short, a.f.p.s.) for T if lim

n→∞ ‖xn − T (xn)‖ = 0.

Lemma 1 (Zorn’s Lemma). Let A 	= ∅ be a partially ordered set. If every chain
C ⊂ A has an upper bound, then A has a maximal element.



314 R. Pant et al.

3 Fixed Point Theorems for Nonexpansive Mappings

In 1965, the study of existence of fixed points of nonexpansivemappingswas initiated
by Browder [9], Göhde [27] and Kirk [36], independently.

Theorem 1 (Browder [9] and Göhde [27]). Let K be a nonempty bounded closed
convex subset of a uniformly convex Banach space X. Then every nonexpansive
mapping T : K → K has a fixed point.

We present a simpler proof of the above theorem which has been taken from [21,
50].

Proof Fix y0 ∈ K and for each n ∈ N, define the mapping Tn : K → K by

Tn(x) =
(
1 − 1

n

)
T (x) +

(
1

n

)
y0 for all x ∈ K .

Then for all x, y ∈ K , we have

‖Tn(x) − Tn(y)‖ =
(
1 − 1

n

)
‖T (x) − T (y)‖ ≤

(
1 − 1

n

)
‖x − y‖.

Thus Tn is a contraction mapping for each n ∈ N. Now, by Banach contraction
principle, Tn has a fixed point xn ∈ K . Since K is bounded, we get

lim
n→∞ ‖xn − T (xn)‖ = lim

n→∞
1

n
‖y0 − T (xn)‖ = 0.

Let r = r(K , {xn}) and {z} = A(K , {xn}). By the triangle inequality and nonexpan-
siveness of the mapping T, we get

‖T (z) − xn‖ ≤ ‖T (z) − T (xn)‖ + ‖T (xn) − xn‖
≤ ‖z − xn‖ + ‖T (xn) − xn‖.

Taking lim sup on both sides of the above inequality, we have

r(T (z), {xn}) ≤ r(z, {xn}) = r.

This implies that T (z) ∈ A(K , {xn}), and T (z) = z.

Theorem 2 (Kirk [36]). Let K be a nonempty weakly compact convex subset of a
Banach space X with normal structure. Then every nonexpansive mapping T : K →
K has a fixed point.

The proof of Theorem 2, we present here, is taken from [50].

Proof Let A be a family of all nonempty weakly closed convex T -invariant subsets
of K . It is clear that the relation on A defined by
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C1 � C2 ⇔ C1 ⊃ C2

generates a partial order. We consider any chain C ⊂ A and the set

Co = ∩
C∈C

C.

Since C is weakly compact and the family C has the finite intersection property,
Co 	= ∅. Further, Co is weakly closed bounded convex T -invariant subset of K . So,
Co is an upper bound for the chain C. By Zorn’s lemma, there exists a maximal
element Do ∈ A. Take

Doo = convT (Do) ⊂ Do.

Then,
T (Doo) ⊂ T (Do) ⊂ convT (Do) = Doo.

Therefore Doo ∈ A. By maximality of Do, we get Do = Doo. Thus

convT (Do) = Do.

Since Do is weakly compact, we have

M(Do) = {z ∈ Do : rz(Do) = r(Do)} 	= ∅.

Therefore ∃z ∈ Do such that rz(Do) = r(Do). For each y ∈ Do, we have

‖T (z) − T (y)‖ ≤ ‖z − y‖ ≤ rz(Do) = r(Do).

Thus
T (Do) ⊂ B(T (z), r(Do))

and
Do = convT (Do) ⊂ B(T (z), r(Do)).

Therefore,
rT z(Do) = rz(Do) = r(Do)

and M(Do) is T -invariant. The set Do is minimal invariant, hence

M(Do) = Do.

Since Do has normal structure, it follows that diam(Do) = 0. Thus,

Do = {z},
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and z is a fixed point of T .

In 2006, García-Falset et al. obtained the following important generalization of
Browder-Göhde and Kirk theorems for the existence of fixed points of a nonex-
pansive mapping.

Theorem 3 [19]. Let K be a nonempty bounded closed convex subset a uniformly
nonsquare Banach space X. Then every nonexpansive mapping T : K → K has a
fixed point.

4 Some Extensions and Generalizations of Nonexpansive
Mappings

In [32], Kannan extended nonexpansive mappings as follows and obtained some
fixed point results.

Definition 17 Let K be a nonempty subset of a Banach space X. A mapping T :
K → K is said to be Kannan-nonexpansive if for all x, y ∈ X,

‖T (x) − T (y)‖ ≤ 1

2
{‖x − T (x)‖ + ‖y − T (y)‖}.

Theorem 4 [32]. Let K be a nonempty bounded closed and convex subset of a
reflexive Banach space X and T : K → K a Kannan-nonexpansive mapping. If
sup
y∈F

‖y − T (y)‖ < diam(F) for every nonempty bounded closed convex subset F of

K , containing more than one element and mapped into itself by T . Then T has a
unique fixed point in K .

In 1972, Goebel and Kirk [24] introduced the notion of asymptotically nonexpansive
mappings.

Definition 18 Let K be a nonempty subset of a Banach space X. A mapping T :
K → K is said to be asymptotically nonexpansive if for each x, y ∈ K ,

‖T n(x) − T n(y)‖ ≤ kn‖x − y‖,

where {kn} is a sequence of real numbers such that kn → 1 as n → ∞.

The following example shows that an asymptotically nonexpansive mapping need
not be nonexpansive.

Example 2 [24]. Let B be a unit ball in the Hilbert space �2 and T : B → B defined
by

T (x) = (0, x2
1 , A2x2, A3x3, . . . ),
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where Ai is a sequence of numbers such that 0 < Ai < 1 and
∞∏

i=2
Ai = 1

2 . Then T is

an asymptotically nonexpansive mapping but not nonexpansive.

Theorem 5 [24]. Let K be a nonempty bounded closed convex subset of a uniformly
convex Banach space X and T : K → K an asymptotically nonexpansive mapping.
Then T has a fixed point.

Proof For each x ∈ K and r > 0 let S(x, r) denote the spherical ball centered at x
with radius r. Let y ∈ K be fixed, and let the set Ry, consist of those numbers ρ for
which there exists an integer k such that

K ∩
( ∞∩

i=k
S(T i (y), ρ)

)
	= ∅.

If d is the diameter of K then d ∈ Ry, and Ry 	= ∅. Let ρ0 = g.l.b. Ry, and for each
ε > 0 define

Cε = ∞∪
k=1

(
∞∩

i=k
S(T i (y), ρ0 + ε)).

So, for every ε > 0 the sets Cε ∩ K are nonempty and convex. By reflexivity of X,

we get
C = ∩

ε>0
(Cε ∩ K ) 	= ∅.

Note that for x ∈ C and η > 0 there exists an integer N such that if i ≥ N , then

‖x − T i (y)‖ ≤ ρ0 + η.

Now let x ∈ C and suppose the sequence {T n(x)}does not converge to x (i.e., suppose
T (x) 	= x). Then there exists ε > 0 and a subsequence {T ni (x)} of {T n(x)} such that
‖T ni (x) − x‖ ≥ ε, i ∈ N. Now, for m > n,

‖T n(x) − T m(x)‖ ≤ kn‖x − T m−n(x)‖.

Assume ρ0 > 0 and choose α > 0 such that

(
1 − δ

(
ε

ρ0 + α

))
(ρ0 + α) < ρ0.

Choose n so that

‖x − T n(x)‖ ≥ ε and kn

(
ρ0 + α

2

)
≤ ρ0 + α.

If N ≥ n is sufficiently large, then m > N implies

‖x − T m−n(y)‖ ≤ ρ0 + α

2
.
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Now, we have

‖T n(x) − T m(y)‖ ≤ kn‖x − T m−n(y)‖ ≤ ρ0 + α and ‖x − T m(y)‖ ≤ ρ0 + α.

By uniform convexity of X, if m > N ,

∥∥∥∥ x + T n(x)

2
− T m(y)

∥∥∥∥ ≤
(
1 − δ

(
ε

ρ0 + α

))
(ρ0 + α) < ρ0,

which contradicts the definition of ρ0. Therefore we conclude ρ0 = 0 or T (x) = x .

If ρ0 = 0, then {T n(y)} is a Cauchy sequence and T n(y) → x = T (x) as n → ∞.

Therefore the set C consists of a single point which is a fixed point of T .

In 1974, Kirk [37] extended the concept of asymptotically nonexpansive mappings
to asymptotically nonexpansive type mappings as follows and obtained a fixed point
theorem for these mapping.

Definition 19 A mapping T : K → K is said to be asymptotically nonexpansive
type if for each x ∈ K

lim sup
i→∞

{
sup
y∈K

[‖T i (x) − T i (y)‖ − ‖x − y‖]
}

≤ 0. (2)

Theorem 6 [37]. Let K be a nonempty bounded closed convex subset of a Banach
space X for which ε0(X) < 1. Suppose T : K → K is an asymptotically nonexpan-
sive type mapping such that T N is continuous for some positive integer N . Then T
has a fixed point in K .

Proof Let x ∈ K be fixed. There exists a number ρ0 = ρ0(x) ≥ 0 which is minimal
with respect to the property: for each ε > 0 there exists an integer K such that

K ∩
( ∞∩

i=k
S(T i (x); ρ0 + ε)

)
	= ∅.

Let

Cε = ∞∪
k=1

( ∞∩
i=k

S(T i (x); ρ0 + ε)

)
.

Then the set Cε is nonempty bounded and convex, hence by reflexivity of X the
closure Cε of Cε is weakly compact and

C = ∩
ε>0

(Cε ∩ K ) 	= ∅.

Now let z ∈ C, and
d(z) = lim sup

i→∞
‖z − T i (z)‖.
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If ρ0(x) = 0, then clearly T n(x) → z as n → ∞. Let η > 0 and using (2), choose
M so that i ≥ M implies

sup
y∈K

[‖T i (z) − T i (y)‖ − ‖z − y‖] ≤ 1

3
η.

Given i ≥ M , since T n(x) → z there exists m > i such that

‖T m(x) − z‖ ≤ 1

3
η and ‖T m−i (x) − z‖ ≤ 1

3
η.

Thus if i ≥ M,

‖z − T i (z)‖ ≤ ‖z − T m(x)‖ + ‖T m(x) − T i (z)‖
≤ ‖z − T m(x)‖ + ‖T i (z) − T i (T m−i (x))‖ − ‖z − T m−i (x)‖
+ ‖z − T m−i (x)‖
≤ 1

3
η + sup

y∈K

[‖T i (z) − T i (y)‖ − ‖z − y‖] + 1

3
η

≤ η.

This provesT n(z) → z asn → ∞, that is,d(z) = 0.Butd(z) = 0 impliesT Ni (z) →
z as i → ∞ and by continuity of T N , we have T N (z) = z. Thus

T (z) = T (T Ni (z)) = T Ni+1(z) → z as i → ∞, (3)

and T (z) = z. Therefore we may assume ρ0(x) > 0 and d(z) > 0.

Now let ε > 0, ε ≤ d(z). By the definition of ρ0 there exists an integer N ∗ such
that if i ≥ N ∗ then

‖z − T i (x)‖ ≤ ρ0 + ε,

and by (2) there exists N ∗∗ such that if i ≥ N ∗∗ then

sup
y∈K

[‖T i (z) − T i (y)‖ − ‖z − y‖] ≤ ε.

Choose j so that j ≥ N ∗∗ and so that

‖z − T j (z)‖ ≥ d(z) − ε.

Thus if i − j ≥ N ∗,
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‖T j (z) − T i (x)‖ = {‖T j (z) − T j (T i− j (x))‖ − ‖z − T i− j (x)‖} + ‖z − T i− j (x)‖
≤ ε + (ρ0 + ε)

= ρ0 + 2ε.

Let w = 1
2 (z + T j (z)). By the modulus of convexity of X, we have

‖w − T i (x)‖ ≤
(
1 − δ

(
d(z) − ε

ρ0 + 2ε

))
(ρ0 + 2ε), i ≥ N ∗ + j.

By the minimality of ρ0, we have

ρ0 ≤
(
1 − δ

(
d(z) − ε

ρ0 + 2ε

))
(ρ0 + 2ε).

Letting ε → 0, we get

ρ0 ≤
(
1 − δ

(
d(z)

ρ0

))
ρ0.

This implies 1 − δ
(

d(z)
ρ0

)
≥ 1 and hence δ

(
d(z)
ρ0

)
= 0. It follows from the definition

of ε0 that
d(z)
ρ0

≤ ε0. So,
d(z) ≤ ε0ρ0(x).

Let d(x) = lim sup
i→∞

‖x − T i (x)‖. Then we have ρ0(x) ≤ d(x), and

d(z) ≤ ε0d(x). (4)

Also notice that ‖z − x‖ ≤ d(x) + ρ0(x) ≤ 2d(x).

Now, fix x0 ∈ K and define the sequence {xn} by xn+1 = z(xn), n ∈ N ∪ {0},
where z(xn) is obtained from xn in the same manner as z(x) from x . If for any n we
have ρ(xn) = 0 then, as seen above, T (xn+1) = xn+1. Otherwise, we have by (4)

‖xn+1 − xn‖ ≤ 2d(xn) ≤ 2(ε0)
nd(x0).

Since ε0 < 1, the sequence {xn} is Cauchy. Thus there exists y ∈ K such that xn → y
as n → ∞. Also

‖y − T i (y)‖ ≤ ‖y − xn‖ + ‖xn − T i (xn)‖ + ‖T i (xn) − T i (y)‖
≤ ‖y − xn‖ + ‖xn − T i (xn)‖ + [‖T i (xn) − T i (y)‖ − ‖xn − y‖]
+ ‖xn − y‖.

Thus
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d(y) = lim sup
i→∞

‖y − T i (y)‖
≤ lim sup

i→∞
2‖xn − y‖ + lim sup

i→∞
‖xn − T i (xn)‖

+ lim sup
i→∞

[‖T i (xn) − T i (y)‖ − ‖xn − y‖]
≤ d(xn) + 2‖xn − y‖.

Since xn → y and d(xn) → 0 as n → ∞, d(y) = 0. But as seen before (3), this
implies T (y) = y.

Using the concept of asymptotic center Edelstein [15] obtained the following fixed
point theorem.

Theorem 7 Let K be a nonempty closed and convex subset of a uniformly convex
Banach space X. Let T : K → K be a mapping such that {T n(x)} is bounded for
some x ∈ K . Let c be the asymptotic center of {T n(x)} with respect to K and there
exists N such that

‖T (c) − T n(x)‖ ≤ ‖c − T n−1(x)‖

for n ≥ N , then c is a fixed point of T .

Kar and Veeramani [33] generalized certain results from Edelstein [15], Goebel and
Kirk [24], and Kirk and Xu [38] as follows.

Theorem 8 Let K be a nonempty closed and convex subset of a uniformly convex
Banach space X. Let T : K → K be a mapping such that {T n(x0)} is bounded
for some x0 ∈ K . Suppose that K0 ⊂ K is a nonempty closed convex set which is
invariant under T . Let c be the asymptotic center of {T n(x0)} with respect to K0 and
there exists N such that

‖T p(c) − T n+p(x0)‖ ≤ knp‖c − T n(x0)‖

for all n, p ≥ N , where lim
p→∞ lim

n→∞ knp = 1.

Then T p(c) converges strongly to c. Further, if T is continuous at c then c is a fixed
point of T .

In 1973, Goebel et al. [26], considered the following general class of nonexpansive
mappings.

Definition 20 [26]. Let K be a nonempty subset of a Banach space X. A mapping
T : K → K is said to be a generalized nonexpansive mapping if for every x, y ∈ K

‖T (x) − T (y)‖ ≤ a1‖x − y‖ + a2‖T (x) − x‖ + a3‖T (y) − y‖ + a4‖T (y) − x‖
+a5‖T (x) − y‖, (5)

where ai ≥ 0 and
5∑

i=1
ai = 1.
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Theorem 9 [8]. Let K be a nonempty weakly compact convex subset of a Banach
space X with normal structure and T : K → K a generalized nonexpansive map-
ping. Then T has a fixed point in K .

In 1983, Jaggi [30] introduced a generalization of nonexpansive mapping. This class
of mappings is known as Jaggi-nonexpansive mappings [16].

Definition 21 Let K be a nonempty subset of a Banach space X. A mapping T :
K → K is said to be Jaggi-nonexpansive if for every T -invariant closed convex
subset E of K with at least two points and for every x ∈ E,

sup{‖T (x) − T (y)‖ : y ∈ E} ≤ sup{‖x − y‖ : y ∈ E}.

The following example shows that a Jaggi-nonexpansive mapping need not be quasi-
nonexpansive.

Example 3 [16]. Let K = [0, 1] be a subset of R endowed with the usual norm.
Define T : K → K by

T (x) =
{

x, if x ∈ Q ⊂ K ,

1 − x, if x ∈ K , x /∈ Q,

where Q is the set of all rational numbers. Then it is easy to verify that the mapping
T is Jaggi-nonexpansive mapping but not quasi-nonexpansive.

Theorem 10 [30]. Let K be a nonempty bounded closed convex subset of a reflex-
ive Banach space X with normal structure and T : K → K a Jaggi-nonexpansive
mapping. Then T has a fixed point in K .

Proof Let A be a family of closed convex subsets H of K with T (H) ⊂ H. The
family A is nonempty as K ∈ A. Using Zorn’s lemma and reflexivity of X , A has
a minimal element E . If E is singleton, then T (E) ⊂ E implies that T has a fixed
point. Thus let E has at least two elements. As K has normal structure, we can find
an element c ∈ E such that

sup
t∈E

‖c − t‖ = d (say) < diam(E).

Also, the closed convex hull conv(T (E)) of T (E) is contained in E and belongs to
A. Therefore conv(T (E)) = E . Let

F = {z ∈ E : sup
t∈E

‖z − t‖ ≤ d}.

As c ∈ F , so F is nonempty. We claim that T (F) ⊂ F. For any z ∈ F , we see that

sup
t∈E

‖T (z) − T (t)‖ ≤ sup
t∈E

‖z − t‖ ≤ d.
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This implies that T (E) ⊂ B(T (z), d), a closed ball centered at T (z) with radius
d. Therefore, E = conv(T (E)) is also contained in B(T (z), d). Consequently,
sup
t∈E

‖T (z) − t‖ ≤ d. Thus T (z) ∈ F. It is easy to verify that F is closed and convex.

Lastly

diam(F) = sup
x,y∈F

‖x − y‖

≤ sup
x∈F,y∈E

‖x − y‖.

Also, for each x ∈ F,

sup
y∈E

‖x − y‖ ≤ d < diam(E).

Therefore
diam(F) ≤ sup

x∈F,y∈E
‖x − y‖ < diam(E).

This implies that F is a proper subset of E, which is a contradiction.

Remark 2 In [34], Kassay showed that the converse of the above theorem is also
true. More precisely, a reflexive Banach space having normal structure can be char-
acterized by the fixed point property for Jaggi-nonexpansive mappings. For more
details on Jaggi-nonexpansive mappings, we refer to [16].

In 2007,Goebel andPineda [23] introduced the concept ofmean typeα-nonexpansive
mappings. We say α = (α1, . . . , αn) a multi-index if n ≥ 1, α1 > 0, αn > 0, αi ≥ 0

and
n∑

i=1
αi = 1.

Definition 22 Let K be a nonempty subset of a Banach space X. A mapping T :
K → K is said to be mean type α-nonexpansive if for all x, y ∈ K

n∑
i=1

αi‖T i (x) − T i (y)‖ ≤ ‖x − y‖.

Example 4 [23]. Let B be a closed unit ball in (�1, ‖.‖1) and τ : [−1, 1] → [−1, 1]
a function defined by

τ(t) =

⎧⎪⎨
⎪⎩
2t + 1, if t ∈ [−1,− 1

2 ),

0, if t ∈ [− 1
2 ,

1
2 ),

2t − 1, if t ∈ [ 12 , 1].

Define a mapping T : B → B by

T (x1, x2, . . . ) =
(

τ(x2),
2

3
x3, x4, x5, . . .

)
.
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Then T is a mean type α-nonexpansive with α = ( 12 ,
1
2 ) but not nonexpansive.

Theorem 11 [17, 23]. Let K be a nonempty bounded closed convex subset of a
Banach space X and T : K → K a mean type (α1, α2)-nonexpansive mapping. Then
T has an a.f.p.s., provided that α1 ≥ 1

2 .

Proof Fix ε > 0. Since Tα is a nonexpansive self-mapping on K , inf
K

‖Tα(x) −
x‖ = 0. Thus there exists xε ∈ K for which ‖Tα(xε) − xε‖ ≤ α2ε. For T is (α1, α2)-
nonexpansive, we have

α1‖T 2(xε) − T (xε)‖ + α2‖T 3(xε) − T 2(xε)‖ ≤ ‖T (xε) − xε‖
= ‖T (xε) − Tα(xε) + Tα(xε) − xε‖
≤ ‖T (xε) − Tα(xε)‖ + ‖Tα(xε) − xε‖
≤ ‖(1 − α1)T (xε) − α2T 2(xε)‖ + α2ε

= α2‖T (xε) − T 2(xε)‖ + α2ε.

Thus,

(α1 − α2)‖T (xε) − T 2(xε)‖ + α2‖T 3(xε) − T 2(xε)‖ ≤ α2ε

⇐⇒ (2α1 − 1)‖T (xε) − T 2(xε)‖ + α2‖T 3(xε) − T 2(xε)‖ ≤ α2ε.

Sinceα1 ≥ 1
2 , we know 2α1 − 1 ≥ 0, so ‖T (zε) − zε‖ ≤ ε, where zε = T 2(xε) ∈ K .

Theorem 12 [18]. Let K be a nonempty bounded closed convex subset of a Banach
space for which ε0(X) < 1 and T : K → K an (α, p)-nonexpansive mapping with
α = (α1, . . . , αn) and p ≥ 1 such that

⎛
⎝ n∑

j=1

⎛
⎝ n∑

i= j

αi

⎞
⎠

⎞
⎠

1/p

< κ(X).

Then T has a fixed point.

In 2008,Kirk andXu [38] introduced the notion of pointwise eventually nonexpansive
mappings.

Definition 23 Let K be a nonempty subset of a Banach space X. A mapping T :
K → K is said to be pointwise eventually nonexpansive if for each x ∈ K there
exists N (x) ∈ N such that if n ≥ N (x),

‖T n(x) − T n(y)‖ ≤ ‖x − y‖

for each y ∈ K .

Butsan et al. [12] obtained the following result for pointwise eventually nonexpansive
mappings.
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Theorem 13 [12]. Let K be a nonempty compact convex subset of a nearly uniformly
convex Banach space X. Then every pointwise eventually nonexpansive mapping
T : K → K has a fixed point.

In 2010, Nicolae [43] introduced the concept of nonexpansive mapping with respect
to orbits (wrt orbits, in short).

Definition 24 Let K be a nonempty subset of a Banach space X. A mapping T :
K → K is said to be nonexpansive wrt orbits if for all x, y ∈ K ,

‖T (x) − T (y)‖ ≤ sup
y∈OT (y)

‖x − y‖,

where OT (y) := {T n(y) : n ∈ N ∪ {0}}.
Proposition 2 [16]. Let K be a nonempty subset of a Banach space X and T :
K → K a nonexpansive wrt orbits. Then T is a Jaggi-nonexpansive as well as
quasi-nonexpansive mapping.

Remark 3 The converse of the above proposition does not hold. In fact, themapping
considered in Example 3 is Jaggi-nonexpansive mapping but it fails to be quasi-
nonexpansive mapping and therefore it can not be nonexpansive wrt orbits.

Amini-Harandi et al. [4] obtained a fixed point theorem for nonexpansive mappings
wrt orbits using weak normal structure in a Banach space.

Theorem 14 [4]. Let K be a nonempty weakly compact convex subset of a Banach
space X. Then, X has weak normal structure if and only if every nonexpansive
mapping wrt orbits T : K → K has a fixed point in K .

Remark 4 [16]. In view of Proposition 2 it is evident that Theorem 14 is indeed, a
corollary of Theorem 10.

In 2011, Aoyama and Kohsaka [5] introduced the notion of an α-nonexpansive map-
ping.

Definition 25 Let K be a nonempty subset of a Banach space X and α < 1 a real
number. A mapping T : K → K is said to be α-nonexpansive if for all x, y ∈ K ,

‖T (x) − T (y)‖2 ≤ α‖T (x) − y‖2 + α‖T (y) − x‖2 + (1 − 2α)‖x − y‖2.

Although, α-nonexpansive mappings are defined for any real number α < 1, Ariza-
Ruiz et al. [6] pointed out that this concept is trivial for α < 0.

Theorem 15 [5]. Let K be a nonempty closed convex subset of a uniformly con-
vex Banach space X and T : K → K an α-nonexpansive mapping. Then F(T ) is
nonempty if and only if there exists x ∈ K such that {T n(x)} is bounded.
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Proof Fix y ∈ K . Since T is α-nonexpansive, for all n ∈ N

‖T n+1(x) − T (y)‖2 ≤ α‖T n+1(x) − y‖2 + α‖T (y) − T n(x)‖2 + (1 − 2α)‖T n(x) − y‖2.

Let μ be a Banach limit. Then

μn‖T n(x) − T (y)‖2 ≤ αμn‖T n(x) − y‖2 + αμn‖T (y) − T n(x)‖2
+(1 − 2α)μn‖T n(x) − y‖2,

and hence

(1 − α)μn‖T n(x) − T (y)‖2 ≤ (1 − α)μn‖T n(x) − y‖2.

Since 1 − α > 0, we get

μn‖T n(x) − T (y)‖2 ≤ μn‖T n(x) − y‖2. (6)

Let g : K → R be the function defined by g(y) = μn‖T n(x) − y‖2 for all y ∈ K .

We show that g is a convex, continuous, and coercive function. In fact, the convexity
of g is obvious. Let {ym} be a sequence in K such that ym → y. Then for all n ∈ N,

∣∣‖T n(x) − ym‖2 − ‖T n(x) − y‖2∣∣
= ∣∣‖T n(x) − ym‖ − ‖T n(x) − y‖∣∣ (‖T n(x) − ym‖ + ‖T n(x) − y‖)
≤ ‖ym − y‖ sup{‖T n(x) − ym‖ + ‖T n(x) − y‖ : m, n ∈ N}.

This shows that h : K → �∞ defined by

h(z) = {‖T (x) − z‖2, ‖T 2(x) − z‖2, . . . }

for all z ∈ K is continuous. Therefore g = μ ◦ h is also continuous. Next we show
that g is coercive. If {zm} is a sequence in K such that ‖zm‖ → ∞, then we have

‖T n(x) − zm‖2 ≥ (‖zm‖ − ‖T n(x)‖)2 ≥ ‖zm‖
(

‖zm‖ − 2 sup
n∈N

‖T n(x)‖
)

,

and hence g(zm) → ∞. From Proposition 1, there exists u ∈ K such that g(u) =
inf g(K ). Since X is uniformly convex, such a point u is unique and g(T (u)) ≤ g(u).

Therefore u must be a fixed point of T .

In 2016, Llorens-Fuster [40] introduced the concept of orbitally nonexpansive map-
pings.

Definition 26 [40]. Let K be a nonempty subset of a Banach space X. A mapping
T : K → K is said to be orbitally nonexpansive if for every nonempty closed convex
T -invariant subset D of K , there exists some x0 ∈ D such that



Nonexpansive Mappings, Their Extensions, and Generalizations … 327

lim sup
n→∞

‖T n(x0) − T (x)‖ ≤ lim sup
n→∞

‖T n(x0) − x‖

for every x ∈ D.

Example 5 [40]. Consider the Hilbert space (�2, ‖.‖2) and set

K := {x = (x1, x2, . . . ) ∈ �2 : ‖x‖2 ≤ 1, xn ≥ 0, n ∈ N}.

Let T : K → K be a mapping defined by

T (x) = (x2
1 , x2

2 , . . . ).

Then T is orbitally nonexpansive but not nonexpansive.

Theorem 16 [8]. Let K be a nonempty convex subset of a Banach space X. Then
X has normal structure if and only if for each non-constant bounded sequence {xn}
in K , the function g(x) = lim sup

n→∞
‖xn − x‖ is not constant in conv{xn}.

Theorem 17 [40]. Let K be a nonempty weakly compact convex subset of a Banach
space X with normal structure and T : K → K be an orbitally nonexpansive map-
ping. Then T has a fixed point.

Proof Since K is a weakly compact set, by Zorn’s lemma there exists a nonempty
closed convex, T -invariant subset C of K with no proper subsets enjoying these
characteristics. From the definition of orbitally nonexpansive mapping, there exists
x0 ∈ C such that for every x ∈ C,

lim sup
n→∞

‖T n(x0) − T (x)‖ ≤ lim sup
n→∞

‖T n(x0) − x‖.

We consider two cases.

Case 1: There exists z ∈ C such that T n(x0) = z for n large enough. We claim
that, in this case, z is a fixed point of T . Indeed,

‖z − T (z)‖ = lim sup
n→∞

‖T n(x0) − T (z)‖ ≤ lim sup
n→∞

‖T n(x0) − z‖ = 0.

Case 2: The sequence {T n(x0)} is bounded and not (eventually) constant. Since
the Banach space X has normal structure, from Theorem 16, the real function
g : C → [0, 1) defined by

g(x) := lim sup
n→∞

‖x − T n(x0)‖

is not constant on conv{T n(x0) : n ∈ N}. Then g takes at least two different real
values, that is, there exist v1, v2 ∈ conv{T n(x0) : n ∈ N} ⊂ C such that
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r1 := g(v1) < g(v2) := r2.

Let r := 1
2 (r1 + r2) and consider the set

M := {x ∈ C : g(x) ≤ r}.

It is easy to verify that M is nonempty, closed, and convex and M 	= C because
v2 /∈ M. Since T is an orbitally nonexpansive mapping, we have

g(T (x)) := lim sup
n→∞

‖T (x) − T n(x0)‖ ≤ lim sup
n→∞

‖x − T n(x0)‖ = g(x) ≤ r.

Thus, M is a nonempty closed convex and T -invariant subset of C with M 	= C,

which is a contradiction to the minimality of C. So, Case 2 is not possible. This
completes the proof.

In 2016, Bin Dehaish andKhamsi [7] considered the following class of nonexpansive
mappings in partially ordered Banach spaces (see also [53]).

Definition 27 [7]. Let K be a nonempty subset of a partially ordered Banach space
(X, ‖.‖,�). Let T : K → K be a mapping. T is said to be monotone nonexpansive
if

‖T (x) − T (y)‖ ≤ ‖x − y‖ and T (x) � T (y)

for x, y ∈ C such that x � y.

Theorem 18 [7]. Let (X, ‖.‖,�) be a partially ordered UCED Banach space such
that order intervals are closed and convex. Let K be a nonempty weakly compact
convex subset of X not reduced to one point. Let T : K → K be a monotone nonex-
pansive mapping. Assume there exists x1 ∈ C such that x1 and T (x1) are comparable.
Then T has a fixed point.

5 Suzuki-Type Generalized Nonexpansive Mappings

In 2008, Suzuki [54] introduced a new class of nonexpansive mappings and obtained
some fixed point results.

Definition 28 Let K be a nonempty subset of a Banach space X. A mapping T :
K → K is said to satisfy condition (C) if for all x, y ∈ K

1

2
‖x − T (x)‖ ≤ ‖x − y‖ implies ‖T (x) − T (y)‖ ≤ ‖x − y‖.

A mapping satisfying condition (C) is also known as Suzuki-type generalized non-
expansive mapping. This class of mappings need not be continuous.
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Example 6 [54]. Let K = [0, 3] be a subset of R endowed with the usual norm.
Define T : K → K by

T (x) =
{
0, if x 	= 3,

1, if x = 3.

Then T satisfies condition (C). However, T is not continuous and therefore T is not
a nonexpansive mapping.

Theorem 19 [54]. Let K be a nonempty convex subset of a Banach space X and
T : K → K a mapping satisfying the condition (C). Assume that either K is compact
or K is weakly compact and X has the Opial property. Then T has a fixed point.

García-Falset et al. [20] introduced a generalization of Suzuki-type generalized non-
expansive mappings as follows:

Definition 29 Let K be a nonempty subset of a Banach space X. A mapping T :
K → K is said to satisfy condition (Eμ) if there exists μ ≥ 1 such that for all
x, y ∈ K ,

‖x − T (y)‖ ≤ μ‖x − T (x)‖ + ‖x − y‖.

We say that T satisfies the condition (E) on K whenever T satisfies (Eμ) for some
μ ≥ 1.

Theorem 20 [20]. Let K be a nonempty subset of a Banach space X having the
Opial property and T : K → X a mapping satisfying the condition (E). Suppose
there exists an a.f.p.s. {xn} for T such that xn → z ∈ K . Then, T (z) = z.

Llorens-Fuster and Gálvez [41] introduced the following notion of condition (L) and
obtained a fixed to point theorem for a mapping satisfying condition (L).

Definition 30 Let K to be a nonempty subset of a Banach space X. A mapping
T : K → K satisfies condition (L) on K provided that

(a) If a set D ⊂ K is nonempty closed convex and T -invariant, (i.e., T (D) ⊂ D),
then there exists an a.f.p.s. for T in D.

(b) For any a.f.p.s. {xn} of T in K and each x ∈ K ,

lim sup
n→∞

‖xn − T (x)‖ ≤ lim sup
n→∞

‖xn − x‖.

Example 7 [41]. Let K = [
0, 2

3

]
be a subset of R endowed with the usual norm.

Define T : K → K by
T (x) = x2.

One can verify that the mapping T satisfies condition (L), but it is neither a gener-
alized nonexpansive mappings nor satisfies the condition (C).
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Theorem 21 [41]. Let K be a nonempty weakly compact convex subset of a Banach
space X having normal structure and T : K → K a mapping satisfying condition
(L). Then, T has a fixed point.

Proof Let C be a minimal subset of K . Since T satisfies condition (L), there exists
an a.f.p.s. {xn} for T in C. This sequence is either constant, and hence it consists of
a fixed point of T , or it is non-constant. In this case, since X has normal structure,
from Theorem 16, the real function g : C → [0,∞) given by

g(x) = lim sup
n→∞

‖x − xn‖,

is not constant in conv{xn : n ∈ N} ⊂ C. Then, g takes at least two values. If r is an
intermediate value, then the set

M := {x ∈ C : g(x) ≤ r},

is nonempty, convex, and closed and M 	= C. From condition (L), the set M is also
T -invariant which contradicts the minimality of C.

Recently, Pant and Shukla [47] introduced a wider class of nonexpansive mappings,
which properly contains nonexpansive, Suzuki-type generalized nonexpansive map-
pings and partially extends firmly-nonexpansive and α-nonexpansive mappings.

Definition 31 [47]. Let K be a nonempty subset of a Banach space X. A mapping
T : K → K is called a generalized α-nonexpansive if there exists an α ∈ [0, 1) such
that for all x, y ∈ K ,

1

2
‖x − T (x)‖ ≤ ‖x − y‖ implies

‖T (x) − T (y)‖ ≤ α‖T (x) − y‖ + α‖x − T (y)‖ + (1 − 2α)‖x − y‖.

Lemma 2 [47]. Let K be a nonempty subset of a Banach space X and T : K → K
a generalized α-nonexpansive mapping. Then for all x, y ∈ K ,

‖x − T (y)‖ ≤ (3 + α)

(1 − α)
‖x − T (x)‖ + ‖x − y‖.

Theorem 22 Let K be a nonempty weakly compact convex subset of a UCED
Banach space X and T : K → K a generalized α-nonexpansive mapping. If T has
an a.f.p.s. then T has a fixed point in K .

Proof Let {xn} be an a.f.p.s. for T in K . Define a continuous convex function f :
K → [0,∞) by

f (x) = lim sup
n→∞

‖xn − x‖.

Since K is weakly compact and f is continuous, there exists a point p ∈ K such that
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f (p) = min{ f (x) : x ∈ K }.

By Lemma 2, we have

‖xn − T (p)‖ ≤ (3 + α)

(1 − α)
‖xn − T (xn)‖ + ‖xn − p‖.

So,

lim sup
n→∞

‖xn − T (p)‖ ≤ lim sup
n→∞

{
(3 + α)

(1 − α)
‖xn − T (xn)‖ + ‖xn − p‖

}
.

Thus f (T (p)) ≤ f (p). Since f (p) is minimum, f (T (p)) = f (p). For f is quasi-
convex, we get

f (p) ≤ f

(
p + T (p)

2

)
< max{ f (p), f (T (P))} = f (p),

a contradiction, unless T (p) = p. This completes the proof.

In 2019, Pandey et al. [46] (see also [48]) further generalized the class of generalized
α-nonexpansive mapping as follows:

Definition 32 Let K be a nonempty subset of a Banach space X. A mapping T :
K → K is said to be a generalized α-Reich-Suzuki nonexpansive mapping if there
exists an α ∈ [0, 1) for each x, y ∈ K ,

1

2
‖x − T (x)‖ ≤ ‖x − y‖ implies ‖T (x) − T (y)‖ ≤ max{P(x, y), Q(x, y)},

where
P(x, y) = α‖T (x) − x‖ + α‖T (y) − y‖ + (1 − 2α)‖x − y‖;

and
Q(x, y) = α‖T (x) − y‖ + α‖T (y) − x‖ + (1 − 2α)‖x − y‖.

Lemma 3 [46]. Let K be a nonempty subset of a Banach space X and T : K → K
a generalized α-Reich-Suzuki nonexpansive mapping. Then for each x, y ∈ K ,

‖x − T (y)‖ ≤
(
3 + α

1 − α

)
‖x − T (x)‖ + ‖x − y‖.

Proposition 3 [20]. Let K be a nonempty closed convex subset of a Banach space
X and T : K → X be a mapping satisfying the condition (E) with F(T ) 	= ∅. Then
T is quasi-nonexpansive.
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Remark 5 In view of the above lemma, a generalized α-Reich-Suzuki nonexpan-

sive mapping satisfies the condition (E) with μ = (3 + α)

(1 − α)
. Therefore the class of

mappings satisfying the condition (E) is larger.

Theorem 23 [46]. Let K be a nonempty bounded closed subset of a Banach space
X, and T : K → K a mapping satisfying the condition (E). Suppose that there is
an a.f.p.s. for T such that asymptotic center is nonempty and compact. Then T has
a fixed point.

6 Convergence of Fixed Points of Nonexpansive Type
Mappings

A well-known way to find a fixed point of a nonexpansive mapping T is to use
a contraction to approximate it (Browder [10, 11]). More precisely, fix z ∈ K and
define a mapping Tt : K → K by Tt (x) = t z + (1 − t)T (x) for all x ∈ K and given
t ∈ (0, 1). It is easy to see that Tt is a contraction on K and the classical Banach
contraction principle assures that Tt has a unique fixed point xt ∈ K , that is,

xt = t z + (1 − t)T (xt ).

To approximate fixed point of a nonlinear mapping, the simplest iteration process is
the well-known Picard iteration process:

{
x1 ∈ K

xn+1 = T (xn), n ∈ N.

However, the Picard iteration of a nonexpansive mapping T may not converge to a
fixed point of T .

Example 8 Let X = K = [0, 1] and T : K → K defined by T (x) = 1 − x for all
x ∈ K . Then T is nonexpansive and has a unique fixed point 1

2 . But for any x1 =
a 	= 1

2 the Picard iteration yields an oscillatory sequence a, 1 − a, a, 1 − a, . . . .

To overcome from these problems and to get better rate of convergence, a number of
iteration processes have been introduced by many authors. Some prominent iteration
processes are given below.The following iteration process is known asMann iteration
process [42]: {

x1 ∈ K

xn+1 = (1 − βn)xn + βnT (xn), n ∈ N,

where {βn} is a sequence in [0, 1].
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Theorem 24 [28]. An infinite matrix (cmn) is regular if and only if the following are
true:

(1) lim
m→∞ cmn = 0 for each n ∈ N,

(2) lim
m→∞

∞∑
n=1

cmn = 1,

(3) sup
m

{ ∞∑
n=1

|cmn|
}

≤ L < +∞ for some L > 0.

Theorem 25 [42]. Let K be a compact convex subset of a Banach space X and
T : K → K a continuous mapping. Let {xn} be the sequence of T -iterates generated
by x1 ∈ K . Define

vn =
n∑

k=1

ank xk and xn+1 = T (vn),

where A = (ank) is the triangular matrix satisfying

(a) ai j ≥ 0 for i, j ∈ N,

(b) ai j = 0 for all j > i,

(c)
i∑

j=1
ai j = 1 for all i ∈ N.

If either of the sequences {xn} and {vn} converges, then the other also converges to
the same point and their common limit is a fixed point of T .

Theorem 26 [42]. Suppose neither {xn} nor {vn} defined in Theorem 25 is conver-
gent. Let X be the set of all limit points of {xn} and V the set of all limit points of

{vn}. If A satisfies additionally lim
n→∞ ann = 0 and lim

n→∞
n∑

k=1
|an+1k − ank | = 0, then X

and V are closed connected sets.

In 1979, Reich [51], obtained the following convergence results for Mann iteration
process on very general settings.

Proposition 4 [51]. Let K be a closed convex subset of a uniformly convex Banach
space with Frećhet differentiable norm, and let {Tn : 1 ≤ n < ∞} be a family of
nonexpansive self mappings of K with a nonempty common fixed point set F. If x1 ∈
K and xn+1 = Tn(xn) for n ∈ N, then lim

n→∞〈xn, J ( f1 − f2)〉 exists for all f1 	= f2 in

F.

Proof Let an = ‖t xn + (1 − t) f1 − f2‖ for t ∈ [0, 1], δ the modulus of convexity
of the space,

M = ‖x1 − f1‖, γ (r) =
(

M

2

)
δ

(
4r

M

)
, Sn,m = Tn+m−1Tn+m−2 · · · Tn,

and
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bn,m = ‖Sn,m(t xn − (1 − t) f1) − (t xn+m + (1 − t) f1)‖.

Note that an,m ≤ bn,m + an . After some manipulation, we see that

γ (‖T (cx + (1 − c)y) − cT (x) − (1 − c)T (y)‖) ≤ ‖x − y‖ − ‖T (x) − T (y)‖

for all c ∈ [0, 1], ‖x − y‖ ≤ M and nonexpansive T : K → K . Hence

γ (bn,m) ≤ ‖xn − f1‖ − ‖xn+m − f1‖ ≤ εn → 0 as n → ∞.

Consequently,
lim sup

n→∞
an ≤ lim inf

n→∞ an and lim
n→∞ an = a

exists. Let dn = 〈xn − f1, J ( f1 − f2)〉. Given ε > 0 there exists t ∈ (0, 1) such that
0 ≤ an

t − dn < ε for all n ∈ N. Therefore lim sup
n→∞

dn ≤ a
t , lim inf

n→∞ dn ≥ a
t − ε, and

the result follows.

Theorem 27 [51]. Let K be a closed convex subset of a uniformly convex Banach
space X with a Frećhet differentiable norm, T : K → K a nonexpansive map-
ping with a fixed point, and {βn} a real sequence such that 0 ≤ βn ≤ 1 and
∞∑

n=1
βn(1 − βn) = ∞. Let x1 ∈ K and xn+1 = βnT (xn) + (1 − βn)xn for n ∈ N.

Then {xn} converges weakly to a fixed point of T .

Proof Since
∞∑

n=1
βn(1 − βn) = ∞, the sequence {xn − T (xn)} converges strongly to

zero. Therefore every weak subsequential limit of {xn} is a fixed point of T . Let f1
and f2 be two such limits. By Proposition 4 with Tn = βnTn + (1 − βn)I ,

〈 f2, J ( f1 − f2)〉 = 〈 f1, J ( f1 − f2)〉,

so that f1 = f2.

In 1974, Ishikawa [29] generalized Mann iteration process from one step to two step
as follows: ⎧⎪⎨

⎪⎩
x1 ∈ K

yn = (1 − βn)xn + βnT (xn)

xn+1 = (1 − γn)xn + γnT (yn), n ∈ N,

where {βn} and {γn} are sequence in [0, 1].
Noor [44] introduced the following three step iteration process and studied the

approximate solution of the variational inclusions in Hilbert spaces:
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x1 ∈ K

xn+1 = (1 − βn)xn + βnT (yn)

yn = (1 − γn)xn + γnT (zn)

zn = (1 − δn)xn + δnT (xn), n ∈ N,

where {βn}, {γn} and {δn} are sequences in [0, 1].
In 2007, Agarwal et al. [2] introduced the following iteration process known as

S-iteration process.

⎧⎪⎨
⎪⎩

x1 ∈ K

xn+1 = (1 − βn)T (xn) + βnT (yn)

yn = (1 − γn)xn + γnT (xn), n ∈ N,

(7)

where {βn} and {γn} are sequences in (0, 1) satisfying the condition

∞∑
n=1

βnγn(1 − γn) = ∞.

Proposition 5 [2]. Let K be a nonempty closed convex subset of a Banach space
X and T : K → K a contraction mapping with Lipschitz constant k and a unique
fixed point p. For x1 ∈ K , let {xn} and {yn} be sequences defined in (7). Then for all
n ∈ N,

‖xn+1 − p‖ ≤ k[1 − (1 − k)βnγn]‖xn − p‖.

Theorem 28 [2]. Let K be a nonempty closed convex subset of a uniformly convex
Banach space X and T : K → K a nonexpansive mapping. Let {xn} be the sequence
defined by (7) with the restriction:

lim
n→∞ βnγn(1 − βn) exists and lim

n→∞ βnγn(1 − βn) 	= 0. (8)

Then, for any arbitrary x1 ∈ K , the sequence {‖xn − T (xn)‖} converges to some
constant rK (T ) = inf{‖x − T (x)‖ : x ∈ K }, which is independent of the choice of
the initial value x1 ∈ K .

Theorem 29 [2]. Let X be a uniformly convex Banach space with a Frećhet differ-
entiable norm or that satisfies Opial property. Let K be a nonempty closed convex
subset of X and T : K → K a nonexpansive mapping with F(T ) 	= ∅. Let {xn} be
the sequence defined by (7) with the restriction (8). Then {xn} converges weakly to a
fixed point of T .

In 2014, Abbas and Nazir [1] introduced the following process and showed that it
converges faster than Picard, Mann, Ishikawa, Noor and S-iteration process.
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x1 ∈ K

xn+1 = (1 − βn)T (yn) + βnT (zn)

yn = (1 − γn)T (xn) + γnT (zn)

zn = (1 − δn)xn + δnT (xn), n ∈ N,

(9)

where {βn}, {γn} and {δn} are sequences in (0, 1).

Definition 33 [52]. Let K be a subset of a normed space X.Amapping T : K → K
is said to satisfy Condition (I ) if there exists a nondecreasing function g : [0,∞) →
[0,∞) satisfying g(0) = 0 and g(r) > 0 for all r ∈ (0,∞) such that ‖x − T (x)‖ ≥
g( inf

y∈F(T )
‖x − y‖) for all x ∈ K .

Now, we present a result for quasi-nonexpansive mappings and a sequence defined
by (9).

Lemma 4 Let K be a nonempty closed convex subset of a Banach space X and
T : K → X be a quasi-nonexpansive mapping. Suppose {xn} is a sequence defined
by (9). Then the following holds:

(1) max{‖xn+1 − p‖, ‖yn − p‖, ‖zn − p‖} ≤ ‖xn − p‖ for all n ∈ N;
(2) lim

n→∞ ‖xn − p‖ exists.

Proof By (9) and Proposition 3, we have

‖zn − p‖ = ‖(1 − δn)xn + δnT (xn) − p‖
≤ (1 − δn)‖xn − p‖ + δn‖T (xn) − p‖
≤ (1 − δn)‖xn − p‖ + δn‖xn − p‖
= ‖xn − p‖. (10)

By (9), (10) and Proposition 3, we have

‖yn − p‖ = ‖(1 − γn)T (xn) + γnT (zn) − p‖
≤ (1 − γn)‖T (xn) − p‖ + γn‖T (zn) − p‖
≤ (1 − γn)‖xn − p‖ + γn‖zn − p‖
≤ (1 − γn)‖xn − p‖ + γn‖xn − p‖
= ‖xn − p‖. (11)

Again, using (9), (10),(11) and Proposition 3, we have

‖xn+1 − p‖ = ‖(1 − βn)T (yn) + βnT (zn) − p‖
≤ (1 − βn)‖T (yn) − p‖ + βn‖T (zn) − p‖
≤ (1 − βn)‖yn − p‖ + βn‖zn − p‖
≤ (1 − βn)‖xn − p‖ + βn‖xn − p‖
= ‖xn − p‖. (12)
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On combining (10), (11) and (12) proves (1). Also by (12) the sequence {‖xn − p‖}
is a monotonic nonincreasing and bounded. Hence, lim

n→∞ ‖xn − p‖ exists.

Lemma 5 [56, p.484]. Let X be a uniformly convex Banach space and 0 < a ≤ ln ≤
b < 1 for all n ∈ N. Let {xn} and {yn} be two sequences such that lim sup

n→∞
‖xn‖ ≤

r, lim sup
n→∞

‖yn‖ ≤ r and lim
n→∞ ‖ln xn + (1 − ln)yn‖ = r hold for some r ≥ 0. Then

lim
n→∞ ‖xn − yn‖ = 0.

In [46], authors obtained some convergence results formappings satisfying condition
(E).

Theorem 30 [46]. Let K be a nonempty closed convex subset of a uniformly convex
Banach space X and T : K → X be a mapping satisfying the condition (E). Suppose
{xn} is a sequence defined by (9). Then F(T ) 	= ∅ if and only if {xn} is a bounded
a.f.p.s for T .

Proof Let {xn} be a bounded sequence and lim
n→∞ ‖T (xn) − xn‖ = 0. Let z ∈ A(K ,

{xn}). By the definition of asymptotic radius,

r(T (z), {xn}) = lim sup
n→∞

‖xn − T (z)‖.

Since T satisfies the condition (E),

r(T (z), {xn}) = lim sup
n→∞

‖xn − T (z)‖
≤ μ lim sup

n→∞
‖T (xn) − xn‖ + lim sup

n→∞
‖xn − z‖

= r(z, {xn}).

By the uniqueness of asymptotic center of {xn}, we have T (z) = z.
Conversely, let F(T ) 	= ∅ and z ∈ F(T ). Then from Lemma 4, lim

n→∞ ‖xn − z‖
exists. Suppose

lim
n→∞ ‖xn − z‖ = r. (13)

By (13) and Proposition 3, we have

lim sup
n→∞

‖T (xn) − z‖ ≤ r. (14)

From (13) and (10),

lim sup
n→∞

‖zn − z‖ ≤ lim
n→∞ ‖xn − z‖ = r. (15)

Again, by (11) and (13),
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lim sup
n→∞

‖yn − z‖ ≤ r. (16)

Using (15) and Proposition 3,

lim sup
n→∞

‖T (zn) − z‖ ≤ r. (17)

Similarly,
lim sup

n→∞
‖T (yn) − z‖ ≤ r. (18)

By (9), (10), (11) and Proposition 3, we have

‖xn+1 − z‖ = ‖(1 − βn)T (yn) + βnT (zn) − z‖
≤ (1 − βn)‖T (yn) − z‖ + βn‖T (zn) − z‖
≤ (1 − βn)‖yn − z‖ + βn‖zn − z‖
≤ (1 − βn)‖xn − z‖ + βn‖xn − z‖
= ‖xn − z‖,

or
‖xn+1 − z‖ ≤ ‖(1 − βn)T (yn) + βnT (zn) − z‖ ≤ ‖xn − z‖, (19)

it implies that
r ≤ lim

n→∞ ‖(1 − βn)T (yn) + βnT (zn) − z‖ ≤ r.

Then,
lim

n→∞ ‖(1 − βn)T (yn) + βnT (zn) − z‖ = r. (20)

From (17), (18), (20) and Lemma 5, we get

lim
n→∞ ‖T (yn) − T (zn)‖ = 0. (21)

Now by (9), we have

‖xn+1 − T (zn)‖ = ‖(1 − βn)T (yn) + βnT (zn) − T (zn)‖
≤ (1 − βn)‖T (yn) − T (zn)‖.

Making n → ∞ we get
lim

n→∞ ‖xn+1 − T (zn)‖ = 0. (22)

By the triangle inequality and (17), we have
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‖xn+1 − z‖ ≤ ‖xn+1 − T (zn)‖ + ‖T (zn) − z‖
≤ ‖xn+1 − T (zn)‖ + ‖zn − z‖.

By (13) and (22), we get
r ≤ lim inf

n→∞ ‖zn − z‖. (23)

So, by (15) and (23) we have,

lim
n→∞ ‖zn − z‖ = r. (24)

Now, by (9), Proposition 3 and (13), we have

‖zn − z‖ = ‖(1 − δn)xn + δnT (xn) − z‖
≤ (1 − δn)‖xn − z‖ + δn‖T (xn) − z‖
≤ (1 − δn)‖xn − z‖ + δn‖xn − z‖
= ‖xn − z‖. (25)

So, making n → ∞ and using equation (24), (13), we get

r ≤ lim
n→∞ ‖(1 − δn)(xn − z) + δn(T (xn) − z)‖ ≤ r.

Therefore
lim

n→∞ ‖(1 − δn)(xn − z) + δn(T (xn) − z)‖ = r. (26)

By (13), (14), (26) and Lemma 5, we conclude that lim
n→∞ ‖T (xn) − xn‖ = 0.

Our next result is prefaced by the following Lemma.

Lemma 6 [46]. Suppose that all the conditions of Theorem 30 are satisfied. Then
lim

n→∞〈xn, J (z1 − z2)〉 exists for any z1, z2 ∈ F(T ); in particular 〈x − y, J (z1 −
z2)〉 = 0 for all weak limits x, y of {xn}.
Proof It may be completed following the proof of Lemma 2.3 [35].

Theorem 31 [46]. Let X, K , T , and {xn} be same as in Theorem 30. Assume that
either X satisfies (a) the Opial property or has (b) a a Fréchet differential norm and
I − T is demiclosed at zero. If F(T ) 	= ∅, then {xn} converges weakly to a fixed point
of T .

Proof By Theorem 30, the sequence {xn} is bounded and lim
n→∞ ‖T (xn) − xn‖ = 0.

Uniform convexity of X implies reflexiveness of X so, there exists a subsequence
{xn j } of {xn} such that {xn j } converges weakly to some z ∈ K . Suppose (a) holds.
Then using theOpial property, it can be easily shown that the sequence {xn} converges
weakly to z.Now suppose (b) holds. FromLemma 6, we have 〈x − y, J (z − p)〉 = 0



340 R. Pant et al.

for all x, y ∈ ωw(xn). By demiclosedness of I − T at zero, we have z, p ∈ F(T ).

Thus
‖z − p‖2 = 〈z − p, J (z − p)〉 = 0.

Therefore z = p.

The proof of the following theorem is elementary and therefore omitted.

Theorem 32 [46]. Let T be a mapping on a closed convex subset K of a Banach
space X satisfying the condition (E) with F(T ) 	= ∅. Let {xn} be a sequence with
x1 ∈ K defined by (9). Then the sequence {xn} converges strongly to a fixed point
of T if lim inf

n→∞ d(xn, F(T )) = 0, where d(x, F(T )) denotes the distance from x to

F(T ).

Finally, we present a strong convergence theorem.

Theorem 33 [46]. Let X, K , T and {xn} be same as in Theorem 30. Let T satisfies
condition (I ) with F(T ) 	= ∅. Then {xn} converges strongly to a fixed point of T .

Proof From Theorem 30, it follows that

lim inf
n→∞ ‖T (xn) − xn‖ = 0. (27)

Since T satisfies condition (I ), we have

‖xn − T (xn)‖ ≥ g(d(xn, F(T ))).

From (27), we get
lim inf

n→∞ g(d(xn, F(T ))) = 0.

Since g : [0,∞) → [0,∞) is a nondecreasing function with g(0) = 0 and g(r) > 0
for all r ∈ (0,∞), therefore we have

lim inf
n→∞ d(xn, F(T )) = 0.

Therefore all the assumptions of Theorem32 are satisfied and {xn} converges strongly
to a fixed point of T .
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AMathematical Model Using Fixed Point
Theorem for Two-Choice Behavior of
Rhesus Monkeys in a Noncontingent
Environment

Pradip Debnath

Abstract Two-choice behavior of monkeys were studied in 1959 by Wilson and
Rollin in a noncontingent environment to ascertain whether this intermediate species
would exhibit behavior similar to that of humans or to that of paradise fish. In this
chapter, our aim is to examine the conduct of Rhesus monkeys in such a noncontin-
gent environment and to establish an appropriate mathematical framework for the
same. We establish the existence and uniqueness of solution for this noncontingent
environment model with the help of Banach’s contraction principle.

1 Introduction

The application ofmathematics, particularly that of probability theory, in the study of
learning processes dates back to mid-twentieth century [3, 5–7]. In 1957, Mosteller
[12] in his breakthrough paper demonstrates the use of mathematics through some
examples and experiments. Through three experiments he illustrated the application
of mathematics to present: (a) a synopsis of the method of learning in an experiment;
(b) a subjective difference between two theoretical ideas; and (c) an investigation of
the conformity between items one in theory and the other in practice. Mosteller also
discussed a new mathematical problem that had arisen from such applications.

In several psychological experiments such as learning and recalling a list of words,
it has been observed that the performance in recalling the words gets better with
increased measure of practice. As such, there were attempts to describe these learn-
ing processes explicitly by finding suitable curves. In many cases, the curves like
hyperbola, exponential curve, etc. were fitting the desired experiment. The significant
features of these curves are that they increase monotonically with increased practice
and reach an asymptote or ceiling when the best possible performance is achieved.
But in reality, we observe that the performance in a certain trial is much weaker than
the earlier trial. Therefore, the monotonically increasing character of the curve is not
always in tune with the experiment.
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This unpredictable and inconsistent behavior of learning process encouraged the
use of statistical or random processes instead of deterministic curves to achieve
a better description of the experiment. The first statistical or stochastic model for
learning may be credited to Thurstone [14]. Gulliksen and Wolfe [9] found modified
and developed version of these learning curves.

Since 1949, several stochastic models have been developed those represent the
reactions made by the subject in unvaried experiments. Upon receiving a stimulus,
the subject makes a reaction and an outcome of this response takes place which is
possibly a reward or a shock. It is supposed that in the beginning of each trial every
probable reaction has its own probability of turning out and also that the event which
happens during the trial alters the probabilities of these reactions from one trial to the
next. While formulating the experiment mathematically, an operator which adjusts
the probabilities in a prearranged way is the mathematical analogue of that event.
Hence, in such a framework, the learning process is made of different probabilities
of the reactions and the laws that alter them.

Mosteller [12] described the models discussed above with the help of some par-
ticular experiments. He discussed an escape-avoidance test performed on dogs by
Solomon and Wynne [13] and another experiment that was performed on paradise
fish by Bush and Wilson [4]. Recently, Turab and Sintunavarat modeled the two-
choice behavior of the paradise fish [15, 16] and the traumatic avoidance learning
model for dogs with the help of Banach’s contraction principle [2]. In the current
chapter, our aim is to describe the two-choice behavior of Rhesus monkeys in a non-
contingent environment which were studied by Wilson and Rollin [17] and Wilson
[18].

2 An Experiment with Rhesus Monkeys

Wilson and Rollin [17] investigated the two-choice behavior of Rhesus monkeys in
a noncontingent environment. Ten untrained Rhesus monkeys were chosen as Ss for
the first part of the experiment out of which one died and the experiment continued
with the remaining nine. The apparatus for the experiment was a Wisconsin General
Test Apparatus (WGTA). When the door of the S was opened, he came across a
black horizontal surface upon which there were two black plastic boxes separated
by a transparent plexiglass barrier. The boxes were, in fact, covers for shallow food
wells (Fig. 1).

The boxes were weighted and connected in such a way that if the front of one
box was slightly opened, the other would fly open as well. When S selected a box
by raising it, he could observe both food wells but could reach only the one he had
selected.

A 7-day initial trainingwas performed to enable the Ss to get used to the apparatus,
learn to open the food well, and get rewarded. After this training, various training
series began and the experiment was completed in five parts. Each S was given 32
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Fig. 1 Images of Rhesus
monkeys captured by the
author using Canon camera

(a)

(b)

(c)
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massed trials on a daily basis. The Ss were approximately 22h hungry and the reward
was a half-peanut.

In that experiment, on each trial S (which is the subject) could see (i) the outcome
that resulted from his reaction; (ii) what outcome would have resulted if the other
reactionwasmade.As such, a noncontingent situationwas created successfully in that
experiment. In spite of the noncontingent environment, in Part 1 of the experiment, all
Ss adopted at asymptote the “most rational” method of always reacting to the more
often correct box. This result is different from the one obtained in noncontingent
environment with paradise fish where Ss approach asymptotes of either 0% or 100%.

The information model predicts that each S should choose the more favorable
side 75% of the time. This is, of course, not in tune with the experiment where the
Ss choose the favorable side so regularly. But this fact does not go too much against
the model possibly because our sample was not sufficiently large.

When rectification of an uncredited response was not allowed, it was observed
that the Ss quickly reached an asymptote of approximately 100% choice of the 0.75
side, regardless of their initial probabilities of choice of the more favorable side.

On the other hand, when immediate correction was permitted, most of the Ss
slowly increased their proportion of choices of the 0.75 side. The data do not conform
the deduction that all Ss were getting closer to an asymptote of 75% choice of the
0.75 side. Rather, they are consistent with the suggestion that with sufficient testing
all would have chosen the 0.75 side approximately 100% of the time.

3 Modeling of the Problem Using Banach’s Fixed Point
Theorem

It is assumed that in this experiment with Rhesus monkeys in a noncontingent situ-
ation, the habit formation model is reasonably fitting. A natural question arises that
what choice by the monkey will bring about a steady state on the more favorable
side? Such questions are of fundamental importance in themathematical modeling of
study of learning. To depict the experiment mathematically, we adopt a conventional
approach.

We assume that M and N are two responses and both have satisfactory outcome
but not always equal. When A occurs on trial n, the operator P is applied to xn to
produce xn+1. Further, when B occurs, the operator Q is applied to obtain xn+1. The
operators P and Q are represented by the following:

Px = αx + γ ;

Qx = βx + δ;

where 0 < α ≤ β < 1; γ, δ ∈ [0, 1], and γ, δ ≤ β.
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We further implement the assumption that the probabilities of responses M and N
are x and 1 − x , respectively. If x is the probability of M on some trial and M occurs,
the new probability of M is Px . On the contrary, if N occurs, the new probability of
M is Qx .

The inspection reveals that an entity observing this rule will generate one of the
responses and give response only with the other (where the probability is 1). We
denote this probability as (x, α, β).

If one trial is conducted, the new probability of the entity is Px (if M occurs)
with probabilities x and 1 − x . Thus, if M is the first trial, its new probability of
acculturation by M is ψ(αx + γ ). Again, if N is the first trial, the immersion of new
probability by M is ψ(βx + δ). Considering the pertinent probabilities, we have
following functional equation depicting the probabilities:

ψ(x, α, β) = xψ(αx + γ ) + (1 − x)ψ(βx + δ). (1)

4 Main Results

By C[0, 1]we denote the family of all continuous real-valued functionsψ : [0, 1] →
R such that ψ(0) = 0 and the norm on C[0, 1] is defined by

||ψ ||C = sup
x �=y

|ψ(x) − ψ(y)|
|x − y| < ∞,

for all ψ ∈ C[0, 1].
It can be proved that

(C[0, 1], || · ||C
)
is a Banach space.

Functional Eq. (1) may be written as

ψ(x) = xψ(αx + γ ) + (1 − x)ψ(βx + δ), (2)

where ψ ∈ C[0, 1], 0 < α ≤ β < 1, and γ, δ ∈ [0, 1] such that γ, δ ≤ β.
We shall apply fixed point theory to prove existence and uniqueness of a solution

of functional Eq. (2).
The following result is of paramount importance in this context.

Theorem 1 Let Δ be a closed and Γ -invariant subset of C[0, 1], i.e., Γ (Δ) ⊆ Δ,
where Γ : Δ → Δ is defined as

(Γ ψ)(x) = xψ(αx + γ ) + (1 − x)ψ(βx + δ),

for each ψ ∈ Δ and for all x ∈ [0, 1]. If 0 < α ≤ β < 1
6 and γ, δ ∈ [0, 1] such that

γ, δ ≤ β, then Γ is a Banach contraction mapping.
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Proof Let ψ, ζ ∈ Δ and x, y ∈ [0, 1] such that x �= y. Then we have

∣∣(Γ ψ − Γ ζ)(x)
∣∣ − ∣∣(Γ ψ − Γ ζ)(y)

∣∣

|x − y|
= 1

|x − y|
[
Γ (ψ − ζ )(x) − Γ (ψ − ζ )(y)

]

=∣∣ 1

|x − y|
[
x(ψ − ζ )(αx + γ ) + (1 − x)(ψ − ζ )(βx + δ)

− y(ψ − ζ )(αy + γ ) + (1 − y)(ψ − ζ )(βy + δ)
]∣∣

=∣∣ 1

|x − y|
[{x(ψ − ζ )(αx + γ ) − x(ψ − ζ )(αy + γ )}

+ {(1 − x)(ψ − ζ )(βx + δ) − (1 − x)(ψ − ζ )(βy + δ)}
+ {x(ψ − ζ )(αy + γ ) − y(ψ − ζ )(αy + γ )}
+ {(1 − x)(ψ − ζ )(βy + δ) + (1 − y)(ψ − ζ )(βy + δ)

]∣∣

≤αx ||ψ − ζ || + β(1 − x)||ψ − ζ || + |(ψ − ζ )(αy + γ ) − (ψ − ζ )(0)|
+ |(ψ − ζ )(βy + δ) − (ψ − ζ )(0)|

≤αx ||ψ − ζ || + β(1 − x)||ψ − ζ || + |αy + γ |||ψ − ζ || + |βy + δ|||ψ − ζ ||
≤6β||ψ − ζ ||.

Since 0 < 6β < 1, it follows that Γ is a Banach contraction mapping.

The next result gives us the existence and uniqueness of a solution of functional
Eq. (1).

Theorem 2 If 6β < 1, then functional Eq. (1) has a unique solution and there exists
a closed and Γ -invariant subset Δ of C[0, 1], where the operator Γ : Δ → Δ is
defined as

(Γ ψ)(x) = xψ(αx + γ ) + (1 − x)ψ(βx + δ),

for each ψ ∈ Δ and for all x ∈ [0, 1].
Moreover, the iteration of functions {ψn} in Δ defined by

(ψn)(x) = xψn−1(αx + γ ) + (1 − x)ψn−1(βx + δ),

for all n ∈ N with ψ0 ∈ Δ, converges to the unique solution of functional Eq. (1)
with respect to the metric induced by the norm || · ||C .
Proof Δ being a closed subset of a Banach space C[0, 1], we can conclude that Δ

is complete. The rest of the proof follows from the Banach contraction principle
together with Theorem 1.
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5 Some Consequences of the Main Result

In a two-choice behavior experiment of Rhesus monkeys, the directives given to the
monkeys may result in producing the faith in it that if one response remains non-
credited, then theotheronemustberewarded.Suchassumptionbythesubjectofexper-
iment may result from the administered commands or may arise without the experi-
menter suggestion. The scheme of the experiment is arranged in such a way that the
assumption is correct, but more often than not the subject is not certain about it.

In such a situation, it is quite reasonable to believe that the rewarded response M
has almost the unchanged impact on the behavior of the non-credited response N and
conversely. Such a condition may be termed as equal alpha-beta condition (α = β).

In that case, we can rewrite Eq. (1) as

ψ(x) = xψ(αx + γ ) + (1 − x)ψ(αx + δ), (3)

for all x ∈ [0, 1], where ψ ∈ C[0, 1] and 0 < α < 1. Thus, we have the following
consequences of our main result from the previous section.

Corollary 1 LetΔ be a closed andΓ -invariant subset of C[0, 1], whereΓ : Δ → Δ

is defined as
(Γ ψ)(x) = xψ(αx + γ ) + (1 − x)ψ(αx + δ),

for each f ∈ Δ and for all x ∈ [0, 1]. If 0 < α < 1
6 and γ, δ ∈ [0, 1] be such that

γ, δ ≤ α, then Γ is a Banach contraction mapping.

Corollary 2 If 6α < 1, then functional Eq. (3) has a unique solution and there
exists a closed and Γ -invariant subset Δ of C[0, 1], where the operator Γ : Δ → Δ

is defined as
(Γ ψ)(x) = xψ(αx + γ ) + (1 − x)ψ(αx + δ),

for each ψ ∈ Δ and for all x ∈ [0, 1].
Moreover, the iteration of functions {ψn} in Δ defined by

(ψn)(x) = xψn−1(αx + γ ) + (1 − x)ψn−1(αx + δ),

for all n ∈ N with ψ0 ∈ Δ, converges to the unique solution of functional Eq. (3)
with respect to the metric induced by the norm || · ||C .

6 Discussion and Interpretation of the Problem in Hand

In each trial of an infinite sequence, we assume that the monkey may choose a box
in one of the two ways. For the ease of interpretation, we specify the choices as M
and N . Also suppose that on a given trial the probability of selecting M is x and that
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of N is 1 − x where x ∈ [0, 1]. If M is selected, the probability of choosing M in
the next trial is αx + γ , whereas if N is chosen, the probability of M in the next trial
is βx + δ with 0 < α ≤ β < 1 and γ, δ ≤ β.

Suppose that ψ(x, α, β) is the probability that an infinite sequence of trials ter-
minates with selections of M . Thus, if xn is the probability of selecting M on trial
n, then the probability of M on the next trial is

xn+1 =
{

αx + γ, if M is the choice on trial n
βx + δ, if N is the choice on trial n.

7 Conclusion and Future Work

The investigation of stability of functional equations in connection with Ulam–Hyers
and Ulam–Hyers–Rassias stability [1, 8, 10, 11] is of fundamental importance. The
study of stability of the following functional equation calls for an interesting future
study:

ψ(x) = xψ(αx + γ ) + (1 − x)ψ(βx + δ), (4)

for all x ∈ [0, 1], where ψ ∈ C[0, 1], 0 < α ≤ β < 1, and γ, δ ∈ [0, 1] with γ, δ ≤
β.

Also, we have assumed the closedness of the setΔ in our study. It would be worth
investigating if this condition can be relaxed.
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