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Abstract

Cyanobacteria are the ancient group of photosynthetic prokaryotes having pro-
nounced variations in their physiological capacities, cellular differentiation
strategies, and choice of habitats. They are the inventors of oxygenic photosyn-
thesis on this planet and hence have played a crucial role in the evolution of
biodiversity on Earth by gradually changing the atmospheric chemistry to be
suitable for the evolution of eukaryotes. This conversion of atmosphere from
anaerobic to an aerobic one was started by cyanobacteria through oxygenic
photosynthesis, which finally supplied oxygen to the atmosphere for ~1.5 billion
years leading to greater diversification of life on the Earth. Cyanobacteria inhabit
a wide range of terrestrial and aquatic environments varying from the hot springs
to polar region and other extreme environments. Their long-standing evolutionary
history might be the reason for their success in acclimatization and sustenance in
such diverse habitats. A high tolerance level of free sulfide and low oxygen,
tolerance to lethal ultraviolet radiations, and the capacity to use H2S in place of
H2O as a photoreductant are some of the various features of cyanobacteria that
have aided in supporting their long history on this planet. Still, the picture
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regarding evolution and diversification of this ecologically and biotechnologi-
cally important group of photoautotrophs is not very clear. In this chapter, we
present an overview of structural and genomic evolution of cyanobacteria and
their distribution in diverse habitats on Earth.
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1.1 Introduction

Cyanobacteria (blue-green algae) constitute a large and diverse group of photosyn-
thetic bacteria, which range from single cells to large filamentous thallus and have
tremendous potentials for applications in biotechnology, mariculture, agriculture,
food and fuel, and biomedicals (Rastogi and Sinha 2009; Rajneesh et al. 2017; Singh
2017; Pathak et al. 2018). Being at the base of global carbon and nitrogen biogeo-
chemical cycles, cyanobacteria have played crucial roles in the evolutionary past and
in modern ecosystems (Kopp et al. 2005; Larsson et al. 2011). Global oxygenation of
the atmosphere resulted in a radical transformation of the Earth, which occurred
~2.45–2.23 billion years ago, and this transformation was termed as the “Great
Oxidation Event” (GOE), which changed the chemistry of atmosphere from a
reduced state to an oxidized state, and this event was probably associated with the
development of cyanobacteria-producing oxygen (Canfield 2005; Holland 2006;
Shestakov and Karbysheva 2017; Sánchez-Baracaldo and Cardona 2020).
Cyanobacteria might have emerged �3 billion years ago and transformed the
anoxygenic conditions of Earth to the oxygenic conditions through photosynthesis
(Schirrmeister et al. 2011a). First oxygenic photosynthesis performing cyanobacteria
could have arisen in the Archean time period in the local environments (Anbar et al.
2007; Lyons and Reinhard 2011), and this rise of oxygen on Earth facilitated the
growth and development of complex multicellular life with aerobic respiration and
profoundly altered the course of evolution on Earth (Soo et al. 2017). Surprisingly,
the fossilized forms of cyanobacteria showed similarity to the cyanobacterial species
of the present times, hence indicating the slow pace of evolutionary advancement in
cyanobacteria (Henson et al. 2002). During their course of evolution, cyanobacteria
became one of the most widely distributed and diverse prokaryotes, which occupy
several niches within aquatic, benthic, and terrestrial habitats (Rastogi et al. 2012;
Pathak et al. 2017; Walter et al. 2017; Gaysina et al. 2019).

Cyanobacteria have been named according to the Botanical Code as they share
similar features with eukaryotic algae (Kauff and Büdel 2010; Walter et al. 2017).
Currently, there is no consensus regarding taxa nomenclature of cyanobacteria and
this has long been a topic of discussion (Hoffmann et al. 2005; Oren and Tindall
2005; Oren et al. 2009; Schirrmeister et al. 2011a; Oren and Ventura 2017; Singh
2017). Owing to their photosynthetic ability, the presence of chlorophyll a and
distinct cell wall cyanobacteria have been grouped with plants and classified as
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algae. The prime basis of this classification design was their morphological attributes
and the developmental characteristics (Rippka et al. 1979; Rippka 1988; Rippka and
Herdman 1992; Castenholz 2001). According to this classification design,
cyanobacteria were formally recognized into five sections (Fig. 1.1).

Section I constitutes unicellular cyanobacteria in which division takes place by
binary fission or budding, whereas in Section II division takes place by multiple
fission, resulting in the development of baeocytes. Sections III, IV, and V constitute
the filamentous forms of cyanobacteria. In Section III, members were filamentous
but nonheterocystous that proliferated by trichome breakage. Sections IV and V
represented the heterocystous cyanobacteria having ability to develop akinetes and
heterocysts, and hormogonia formation was their main mode of reproduction. These
two sections were further subdivided into two subsections, viz. Stigonematales and
Nostocales on the basis of the plane of division. Section IV consisted of the
nostocalean members, which comprised of the cyanobacterial strains that divided
in only one plane, while the stigonematalean line represented by Section V
constituted cyanobacteria, which have the ability to divide in more than one plane
(Rippka et al. 1979; Rippka 1988).
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Section I 

Section II 

Section III 

Section IV 

Section V 

• Unicellular/ colonial, aggregate in a
common mucilaginous sheath

• Divide by binary fission/budding
(e.g., Synechococcus sp.;Cyanothece sp.)

• Unicellular/colonial, aggregated in a
common mucilaginous sheath

• Divide by binary/multiple fission, resulting
into the formation of baeocytes.

(e.g., Dermocarpa sp.; Pleurocapsa sp.)

• Filamentous, uni/ multi-seriate
• Reproduction by fragmentation/

hormogonium/ akinetes
• Non-heterocystous.

(e.g., Spirulina sp.; Oscillatoria sp.)

• Filamentous, uni/ multiseriate, division in
only one plane

• Reproduction by fragmentation/
hormogonium/ akinetes

• Heterocysts develops during nitrogen
starvation.
(e.g., Anabaena sp.; Nostoc sp.)

• Filamentous, uni/multiseriate, division in
both planes

• Reproduction by fragmentation/
hormogonium/ akinetes

• In absence of nitrogenous source,
heterocysts are developed
(e.g., Fischerella sp.)

Fig. 1.1 Conventional classification of cyanobacteria. (For details, see the Refs. Rippka et al.
1979; Schirrmeister et al. 2016)
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Another remarkable feature of cyanobacteria is its capacity to form stable symbi-
otic interactions with different eukaryotic hosts, and this has led to the plastid, i.e.,
chloroplasts, and this eventually resulted in plant dominated biosphere of the Earth
(Moreira et al. 2000; Reyes-Prieto and Bhattacharya 2007). These eukaryotic hosts
range from the amoeboid Paulinella chromatophora (harboring unicellular endo-
symbiotic cyanobacterium), to several plant species found within the plant kingdom
(Marin et al. 2005; Usher et al. 2007; Reyes-Prieto et al. 2010). The flexibility and
adaptability of cyanobacteria are because of their highly diverse morphology (uni-
cellular, multicellularity, and filamentous) and their self-sufficiency in terms of
physiological capabilities (photosynthesis and nitrogen fixation), which allows
them to occupy wide range of habitats on a global scale (soils/freshwater/marine),
including extreme environments (from desert regions, hot springs to cold arctic)
(Larsson et al. 2011; Rastogi et al. 2012; Gaysina et al. 2019).

Cyanobacteria show diversity at the genomic level also. Sequencing data revealed
significant variation in the genomes within the cyanobacterial phylum in different
aspects such as size of genome (~1.4–9.1 Mbp), number of coding nucleotide
proportion (52–94%), G + C content (31–63%), and number of protein-coding
genes (1214–8446) (Meeks et al. 2001; Welsh et al. 2008; Ran et al. 2010; Tripp
et al. 2010). Cyanobacteria are equally diverse with respect to size and protein-
coding capacity. In the history of evolution of cyanobacteria, two routes of genome
development have been suggested on the basis of multicopy gene abundance and
different rates of genome size evolution, which are as follows (Larsson et al. 2011):

1. The genome expansion
2. The genome streamlining

The genome expansion is achieved by gene family enlargement and develops a
broad adaptive potential, whereas the genome streamlining imposes adaptations to
highly specific niches and is also indicated in their different functional capacities
(Larsson et al. 2011). Based on 16S rRNA gene sequences, 170 genera of
cyanobacteria have been proposed (Kozlov et al. 2016). Farrant et al. (2016)
delineated 15 Synechococcus and 121 Prochlorococcus ecologically significant
taxonomic units in the marine ecosystems utilizing single-copy petB sequences
(encoding cytochrome b6) and different environmental cues. Cyanobacteria consti-
tute a challenging group for the ecologists and microbiologists. Traditional taxon-
omy based on only morphologic traits does not completely reflect the results of
phylogenetic analyses in cyanobacteria (Singh 2017). The 16S rRNA gene sequences
can be a useful data in characterizing and charting microbial communities, but it lack
the sensitivity for evolutionary changes that take place in ecological dynamics,
where physicochemical parameters determine the microbial diversity (Choudoir
et al. 2012; Becraft et al. 2015; Kozlov et al. 2016). The long history of
cyanobacteria provided them with a broad heterogeneity comprising multicellular
and unicellular with genomes sizes ranging from 1 to 10 Mb, nonphotosynthetic
(Melainabacteria) and photosynthetic, symbiotic, free-living, toxic, and predatory
organisms (Schirrmeister et al. 2011b; Di Rienzi et al. 2013; Shih et al. 2013; Soo
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et al. 2014, 2015). The processes that shaped cyanobacterial communities over time
and space are still not very clear, and this chapter endeavors to decipher the complex
evolutionary pattern in this group of oxygenic photoautotrophs along with their
mesmerizing diversity in a wide range of habitats.

1.2 Evolution of Cyanobacteria

It is believed that the first cyanobacteria could have appeared ~2.7–2.6 billion years
ago in local warm shallow water bodies that formed small oxygen “oases” within the
biosphere, which was anoxygenic (Buick 2008; Blank and Sanchez-Baracaldo
2010). In Archean sediments, microfossils morphologically similar to filamentous
cyanobacteria were found (Schopf 1993; Buick 2008). Previously, carbonate
stromatolites were considered as analogs of modern cyanobacterial mats, which
were dated back ~3.5–3.2 billion years old. In later studies, it was found that both
ancient mats and microfossils were probably formed by filamentous anaerobic
bacteria and not by cyanobacteria (Brasier et al. 2006; Fedonkin 2006; Bosak
et al. 2013). Among some eukaryotic clades, oxygenic photosynthesis spread at
least 1.05 Ga ago, which resulted in diverse types of algae and plants (Fig. 1.2)
(Demoulina et al. 2019).

This crucial evolutionary process was because of the primary endosymbiosis of a
cyanobacterium within a unicellular eukaryote and subsequent endosymbiotic
events of higher order (Sagan 1967; Delwiche 1999; Schirrmeister et al. 2011b).
Despite the importance of cyanobacteria in the early evolution of life on Earth, basic
questions remain about the origin of these ancient groups of photoautotrophs, origin
of oxygenic photosynthesis, and pattern and timing of diversification of
cyanobacteria, in the time range from the Archean to the GOE (Fischer et al.
2016). Discrepancy between the unambiguous record of cyanobacterial fossil
(starting at 1.9 Ga, the GOE at 2.4 Ga), and several older geochemical data
suggestive of oxygenic photosynthesis, is one crucial problem, which needs to be
addressed carefully (Rosing and Frei 2004; Shen and Buick 2004). For
reconstructing the fossil record of cyanobacteria, several types of evidence are
used but all have their challenges and limitations (Demoulina et al. 2019).
Cyanobacterial fossil stromatolites are usually associated with cyanobacterial activ-
ity; however, although conical stromatolites seem indicate for oxygenic photosyn-
thesis, microbially induced sedimentary structures (MISSs) and other types of
stromatolites may have been produced by noncyanobacterial lineages such as
anoxygenic phototrophs and their association with methanotrophs (Noffke et al.
2001; Bosak et al. 2009, 2013; Heubeck 2009; Slotznick and Fischer 2016; Homann
et al. 2018). These studies indicate that MISS and stromatolites do not reflect
cyanobacterial activity and not even photosynthesis by cyanobacteria (Suosaari
et al. 2016). Direct evidence for cyanobacteria may be provided by microfossils,
but because of their ambiguous identification they are not very reliable (Demoulina
et al. 2019). Presently, identity of only three cyanobacterial fossil taxa is not debated
namely Polybessurus, Eohyella, and Eoentophysalis. The oldest cyanobacterial
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microfossil interpreted with certainty as a cyanobacterium is Eoentophysalis
belcherensis, which is silicified stromatolites of the Belcher supergroup found
from Hudson Bay, Canada, and dates back to 1.89–1.84 Ga (Hofmann 1976).

Biomarkers (fossil molecules) can also serve as indicator of oxygenic photosyn-
thesis, but these biomolecules are present only in the well-preserved
unmetamorphosed rocks and their contamination is a big challenge to study these
fossil molecules (Alleon and Summons 2019). Among such biomarkers, pigments
such as porphyrins with N isotope composition and lipids such as 2-methyl-hopanes
are produced by some cyanobacteria (Rashby et al. 2007; Schinteie and Brocks
2017; Gueneli et al. 2018). The fossilized porphyrins exhibit a specific fractionation
of N isotope reflecting a cyanobacterial source and also indicate that in
mid-proterozoic oceans cyanobacteria were the main primary producers (Gueneli
et al. 2018). Ultraviolet-absorbing (sunscreen) pigments/compounds such as the
mycosporine-like amino acids (MAAs), and two pigments specific to cyanobacteria,
i.e., scytonemin and gloeocapsin, may be used as biosignature for bacterial life
(Rastogi and Sinha 2009; Rastogi et al. 2013; Pathak et al. 2015; Demoulina et al.
2019).

Scytonemin, the novel multipurpose pigment, is a sun-screening molecule com-
posed of phenolic and indolic subunits and is specific to cyanobacteria (Proteau et al.
1993; Rastogi et al. 2013; Pathak et al. 2020). It is biosynthesized in several species
of cyanobacteria having exopolysaccharide sheaths (Rastogi et al. 2013; Pathak et al.
2017; Pandey et al. 2020) including benthic filaments of Calothrix sp. (Lepot et al.
2014), Hyella sp., and Solentia sp. (the endolithic cyanobacteria) from coastal
carbonates (Storme et al. 2015). Scytonemin may be a promising biosignature of
cyanobacterial presence given that it can be fossilized (Fulton et al. 2012; Lepot et al.
2014). Carotenoids and derivatives of scytonemin can be extracted from
125,000 years BP sediments in older deposits from Antarctica (Hodgson et al.
1997). However, there is scarce information about the preservation potential of
scytonemin in older rocks. The recalcitrance of filamentous polysaccharide sheaths,
possibly helped by the presence of pigments, was observed by artificial taphonomic
experiments of decaying cyanobacterial cultures (Bartley 1996). However, both
transparent (scytonemin-poor) and brown (scytonemin-rich) filamentous sheaths
were found to be well preserved in lake sediments from Antarctica; hence, it was
found that scytonemin probably was not the factor responsible for their preservation
(Lepot et al. 2014).

For piecing together the events that occurred around the Earth’s oxygenation,
understanding of the origins of cyanobacteria and oxygenic photosynthesis is
required (Sánchez-Baracaldo and Cardona 2020). It is believed that evolution of
photosynthesis occurred within bacterial lineages, which are not extant; hence,
studying the early history of photosynthesis becomes challenging. Our knowledge
about the evolution of cyanobacteria and evolution of photosynthetic reaction
centers has changed significantly due to recent findings on molecular and genomic
and evolution (Sánchez-Baracaldo and Cardona 2020). In cyanobacteria, the photo-
synthetic apparatus was optimized and various strategies for protection against the
lethal effects of the oxygen produced from cyanobacteria were developed during the
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slow evolution of these ancient photoautotrophs, which lasted for hundreds of
millions of years (Garcia-Pichel 1998). After oxidation of the oceans which occurred
for a long time cyanobacteria relatively and rapidly occupied the photic zone on
surface of the oceans, whereas oxygenation of deeper layers of oceans occurred
much later (Johnston et al. 2009). As mentioned previously, these ancient
photoautotrophs changed the ecological and geochemical parameters of the planet
via production of oxygen and played crucial role in the evolution of the aerobic
atmosphere, which led to the formation of complex communities and eukaryotes
(Shestakov and Karbysheva 2017). Combination of paleobiological and geological
approaches aids in better understanding of microbiology of modern cyanobacteria
(Demoulina et al. 2019). Estimation of the origin of the oxygenic photosynthesis and
the origin of phylum cyanobacteria can be better understood through the increasing
cyanobacterial genetic data, which allow molecular clock analyses and phylogenetic
reconstructions (Demoulina et al. 2019). However, these estimates are quite variable
because of the contamination of genetic sequences, lack of tree calibrations from the
fossil record, chosen dataset, and differences/limitations in models (Schirrmeister
et al. 2016). Thus, there are discrepancies between the fossil and geological records
and molecular phylogenies and the origin and evolution of oxygenic photosynthesis,
cyanobacteria, and chloroplast are still debated (Demoulina et al. 2019).

1.2.1 Structural Evolution

Phylogenetic relationship based on conservative housekeeping genes and 16S rRNA
gene sequences reveals the relationship between the cyanobacterial taxa but does not
give a complete picture of the evolutionary relationships between different taxa
reflecting the pathways of losses and acquisitions of ecologically crucial properties
such as halophility, thermophility, production of toxins, and motility (Shestakov and
Karbysheva 2017). These properties can be expressed independently in
cyanobacteria, which are phylogenetically distant due to duplication, horizontal
gene transfer (HGT), genome rearrangements, and neofunctionalization, which
affect the regulation of cellular metabolism (Shestakov and Karbysheva 2017).

Certain tendencies of cyanobacteria such as their ability of aggregation and
colonies formation, specialized cells, and multicellular filaments increase adaptation
to varying environmental conditions due to enhancement in the reliability of meta-
bolic cooperation and functions. Initially, it was believed that multicellular blue-
green appeared from anoxygenic nitrogen-fixing heterotrophic bacteria during the
earliest stages of evolution on Earth (Gupta 1982). These multicellular forms could
have evolved simultaneously with the unicellular forms, which evolved from pho-
toautotrophic bacterium. Molecular phylogenetics studies suggested that phylum
cyanobacteria have monophyletic origin (Shestakov and Karbysheva 2017). Phylo-
genetic data indicate that multicellular cyanobacteria evolved from small unicellular
coccoid cyanobacteria inhabiting aquatic (freshwater) habitats (Blank and Sanchez-
Baracaldo 2010; Larsson et al. 2011). The phylogenetic trees constructed with
different methods revealed that bacterium Gloeobacter violaceus (living fossil),
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which possessed a photosynthetic apparatus of primitive organization, occupies a
root position distant from other cyanobacteria (Shi and Falkowski 2008; Gupta and
Mathews 2010; Nguyen et al. 2012; Shih et al. 2013).

During early stages of evolution, different groups of both unicellular and multi-
cellular families of cyanobacteria originated from ancestral unicellular form (related
to protocyanobacterium) (Schirrmeister et al. 2013). Polyphasic analysis revealed
representatives of phylogenetically related families Leptolyngbyaceae and
Pseudoanabaenaceae forming linear filaments composed of identical cells belonged
to the polyphyletic order Synechococcales, which earlier included unicellular spe-
cies of Acaryochloris, Prochlorococcus, Synechococcus, and other cyanobacteria,
which divide by binary fission (Komarek et al. 2014). Order Chroococcales
consisted of other unicellular cyanobacteria (Aphanothece, Microcystis, and
Crocosphaera) that are able to form colonies and cellular aggregates. Chroococcales
is phylogenetically distant from Synechococcales and more related to
Pleurocapsales, which is characterized by baeocytes formation and irregular multiple
fission. Chroococcales is more close to the recently separated order Spirulinales,
which consists of cyanobacteria having spiral filaments. Spirulina platensis was
excluded from this group (Spirulinales) as molecular biological and phylogenetic
tree studies revealed that it belonged to the genus Arthrospira of the order
Oscillatoriales, which lies in between Chroococcales and Synechococcales (unicel-
lular) (Komarek et al. 2014).

Families differing in thylakoid structure and cell division type such as multicel-
lular filamentous Microcoleaceae and unicellular Cyanothecaceae belonged to the
order Oscillatoriales (polyphyletic). Oscillatoria limnetica (filamentous cyanobacte-
rium), which can use H2S as instead of H2O as electron donor, was previously
considered as an evidence of phylogenetic relationship between green sulfur bacteria
and cyanobacteria. However, it was found that under selective environmental
conditions, cyanobacteria gained the capability for sulfide oxidation later through
HGT as revealed by the data of comparative ecolological genomics (Sanchez-
Baracaldo et al. 2005). Trichodesmium erythraeum, the marine nitrogen-fixing
cyanobacterium, which is phylogenetically related to Arthrospira and Lyngbya,
belonged to the family Microcoleaceae, but specificities of physiological, cytologi-
cal, and biochemical properties of this cyanobacterium make the issue of its origin
debatable. It differs from other nitrogen-fixing cyanbacteria of the monophyletic
cluster Nostocales, which is capable of differentiation of specialized cells such as
akinetes and heterocysts, which allow them to survive under unfavorable environ-
mental conditions. Several members of order Nostocales inhabiting different
environments live in symbiosis with different plants. The origin of symbiotic
cyanobacteria imprinted on the genomic structure, which occurred during the late
stages of evolution. For example, Anabaena azollae (obligate symbiont) is
characterized by presence of a high number of pseudogenes and genome reduction
indicating the incompleteness of the evolutionary optimization of the cyanobacterial
species (Larsson et al. 2011).

Among prokaryotes, multicellular cyanobacteria of the family Stigonematales
such as Scytonema hofmanii, Mastigocladus laminosus, Fischerella thermalis, and
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others forming branched trichomes possess the most complex morphology. These
cyanobacteria having branched filamentous were previously kept under a separate
morphotypes V, but the modern taxonomy included them in the order Nostocales, as
they were found to have the same ancestors (Rippka et al. 1979; Komarek et al.
2014). Their proteomes contained only few specific proteins coding for the capabil-
ity of “branching,” and these findings suggest that functioning of certain regulatory
genes encoding for intercellular communications and cell division determines
branching in these cyanobacteria (Dagan et al. 2013; Nürnberg et al. 2014).

Phylogenetic analysis of large number of cyanobacterial species belonging to
different orders suggested that cyanobacterial evolution was not in a unidirectional
pathway from unicellular forms to multicellular taxa. The process of loss of multi-
cellularity was going simultaneously along with complications of morphotypes in
cyanobacteria (Schirrmeister et al. 2011b). Secondary transitions from unicellular
forms to multicellular taxa occurred during the course of evolution as indicated by
the polyphasic analysis, and this probably occurred during the appearance of the
cyanobacterial genus Spirulina (Schirrmeister et al. 2011b). Thus, in order to
evaluate phylogenetic relationships between different cyanobacterial taxa the mor-
phological properties such as cell shape, size, and cell division type are taxonomi-
cally important but insufficient to reach at any reliable conclusion as
morphologically taxa could be formed due to a convergence of phylogenetically
different cyanobacteria for allowing them to adapt to the same environmental
conditions/ecological habitats (Dvořák et al. 2015). Variability in cyanobacterial
phylogeny is typical of certain crucial physiological property such as nitrogen
fixation, which is specific to many multicellular and some unicellular cyanobacteria.
During the course of cyanobacterial evolution, they were selected on the basis of the
possession of the “nitrogenase gene cluster” and different strategies for protection of
nitrogenase enzyme from oxygen, whereas selection of symbiotic forms was on the
basis of their ability to interact with their host organism/partner. The enzyme
complex “nitrogenases” appeared for the first time in archaea in anoxygenic bacteria
and later on through HGT it could be transferred in cyanobacteria (Raymond et al.
2004).

1.2.2 Genome Evolution

The enormous biodiversity of phylum cyanobacteria is also reflected in the sizes of
their genomes, which range from 1 to 13 Mb (Larsson et al. 2011). The combination
of various genetic processes forms the evolutionary trajectories of cyanobacterial
genomes (Fig. 1.3) as these trajectories are not constituted by simple bifurcation
schemes (Zhaxybayeva et al. 2006; Shestakov 2007; Shi and Falkowski 2008).

Discovery of new cyanobacterial species and strains and increasing data of their
genome sequencing have resulted in continuously change in the sizes of pangenomes
of the phylum cyanobacteria along with its taxonomic groups. Recently, significant
progress in this field of research has been observed owing to metagenomic studies
and the advancements in the methods/techniques for the analysis of genomes of
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noncultivated cyanobacteria. Decrease in the size of the general cyanobacterial core
genome has been observed as studies showed that the core set comprised 1044 genes
in 2006, whereas it included only 559 genes in 2015 showing a significant decrease
(Mulkidjanian et al. 2006; Simm et al. 2015). On the basis of genomic analyses of
60 cyanobacterial species and strains, two main trajectories of cyanobacterial geno-
mic transformations have been suggested (Sun and Blanchard 2014):

1. Reduction in genome size
It is achieved through deletion along the entire genome sequence and fixed by
stabilizing selection.

2. Increase genome size
It occurs via gene family expansion and the presence of repeated sequences,
plasmids, and mobile elements.

Majority of cyanobacterial species having a large number of mobile elements
show low gene polymorphism and their genomes evolution occurred primarily via
genomic rearrangements through site-specific transposases and integrases responsi-
ble for movements, which altered the nature of regulation of genes responsible for
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genomes
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divergence and 
selection
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reduction

Horizontal gene 
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Fig. 1.3 The evolutionary trajectories of cyanobacterial genomes. (For details, see the Ref.
Shestakov and Karbysheva 2017)
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expression of ecologically significant characters. This enhancement in the number of
genes is related not only to extension of the adaptive responses range but is also
associated with construction of genome-scale metabolic networks of complex
nature, which aids in cell differentiation, toxin synthesis, symbiogenesis, and opera-
tion of alternative metabolic pathways in cyanobacteria (Larsson et al. 2011).
Simultaneously, trend toward genome reduction may operate along with the ten-
dency of gene families to expand (Ran et al. 2010). Different studies suggest that
~10–50% of the genes in the genomes of cyanobacteria were transferred via the
process of HGT, which made significant contribution in the evolutionary processes
of cyanobacteria by helping in the rapid acquisition of valuable characters in
cyanobacteria (Zhaxybayeva et al. 2006; Shi and Falkowski 2008; Yerrapragada
et al. 2009). It is believed that majority of these gene transfers occurred during
intensive diversification of the cyanobacterial families in the earliest stages (Puigbò
et al. 2014). It was found that the probability of acquisition of novel gene from
another phylum (phylogenetically distant donor) is less in comparison with proba-
bility of transfer of gene within the cyanobacteria phylum itself. Homologous
recombination results in the highest frequency of genetic exchange at intraspecific
(between the strains) and interspecific levels and helps in selecting more valuable
variants by the replacement of orthologs (Shestakov and Karbysheva 2015). In
representatives of Synechococcus/Prochlorococcus group, psbAD genes of photo-
system II, genes of photosystem I, plastocyanin, ferredoxin, and other components
of energy metabolism have been transferred horizontally (Lindell et al. 2004; Millard
et al. 2004). During the interaction of cyanobacteria with cyanophages, the factors
which determine strain specificity (such as formation of light-proof Hli proteins and
proteins contributing in the cell surface formation) were acquired by the process of
HGT (Shestakov and Karbysheva 2015). Still, the mechanisms involved in the
process of HGT in cyanobacteria are not very clear. In the evolution of
cyanobacteria, cyanophages have thought to play a crucial role as they control the
number of natural populations and providing preservation of their gene pool during
unfavorable environmental conditions (Shestakov and Karbysheva 2015). Although
the involvement of cyanophages in gene transfer between cyanobacteria is obvious,
reproducible transduction systems have not yet been developed (Lindell et al. 2004;
Dammeyer et al. 2008; Ignacio-Espinoza and Sullivan 2012; Shestakov and
Karbysheva 2015). However, recent large-scale genome sequencing studies
suggested that the viruses such as Chlorovirus, Coccolithovirus, Pandoravirus,
Marseillevirus, and Tupanvirus have played crucial role in the evolution of
microalgae (Nelson et al. 2021).

1.3 Diverse Habitats of Cyanobacteria

Cyanobacteria can be found in diverse and extreme habitats ranging from the very
extreme hot springs to extremely cold deserts of the Arctic and Antarctic Zones and
thus represent an interesting and diverse form of life in a variety of terrestrial and
aquatic environments (Whitton and Potts 2000a, b; Mataloni and Komarek 2004;
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Rastogi et al. 2012; Gaysina et al. 2019). A wide range of symbiotic relationships are
formed by cyanobacteria (nitrogen fixing) with almost all groups of plant such as
Geosiphon pyriforme (fungi) with Nostoc, Hemiaulus hauckii (algae) with Richelia
intracellularis, Anthoceros (bryophyte) with Nostoc, Azolla (pteridophyte) with
Anabaena, Cycas (gymnosperm) with Nostoc, and Gunnera (angiosperm) with
Nostoc (Morot-Gaudry and Touraine 2001). Their enormous physiological flexibil-
ity and plasticity enable them to be present in almost all geographical regions of the
earth (Castenholz 1973; Whitton 1973; Skulberg 1994; Laamanen 1996; Gaysina
et al. 2019). Figure 1.4 depicts the wide distribution of cyanobacteria in different
habitats on Earth.

1.3.1 Terrestrial Habitats

Cyanobacteria constitute the major microorganisms in the biological soil crusts
(Büdel et al. 2009). In different regions of India, biological soil crusts constitute
genera with sheath such as Plectonema, Lyngbya, and Scytonema, which were found
to be dominant, whereas Phormidium, Oscillatoria, Nostoc, Microcoleus, Aulosira,
Calothrix, Westiellopsis, Hapalosiphon, and Fischerella were also found frequently
(Tirkey and Adhikary 2005). In Baja California Desert in Mexico, Desmonostoc
muscorum (Nostoc muscorum) and Schizothrix calcicola were found to be the
dominant taxa (Flechtner et al. 1998). Cyanobacteria Chroococcidiopsis sp.,
Microcoleus paludosus, Phormidium spp., Pseudanabaena spp., Nostoc spp., and
Leptolyngbya spp. were detected frequently in biological soil crusts in four biomes in
Africa (Büdel et al. 2009). Microcoleus, Scytonema, Nostoc, Lyngbya, and

Fig. 1.4 Distribution of cyanobacteria in different habitats on Earth such as marine water (A), rock
surface (B), rice paddy field (C), fresh water (D), tree bark (E) and mudflatS (F)
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Phormidiumwere also found frequently (Issa et al. 1999). In biological crusts around
the world, Microcoleus vaginatus was found to be the most dominant and
ecologically important cyanobacteria (Johansen and Shubert 2001). In soils of
North American deserts together with the cyanobacterium, Microcoleus vaginatus,
Nostoc commune, Schizothrix calcicola, N. paludosum, N. punctiforme,
N. muscorum, Leptolyngbya tenuis (as Phormidium tenue), Trichormus variabilis
(as Anabaena variabilis), Phormidium minnesotense, and Tolypothrix tenuis have
been found in the biological crusts (Johansen 1993). Microcoleus vaginatus,
Scytonema sp., and Nostoc spp. were the dominant cyanobacteria found in the desert
crusts of Southeastern Utah (Garcia-Pichel and Belnap 1996). In steppes
and semideserts in the territory of USSR, Scytonema ocellatum, Nostoc commune,
and Microcoleus vaginatus formed Nostoc–Scytonema communities (Gollerbach
and Shtina 1969). Scytonema sp., Scytonema cf. ocellatum, Microcoleus
cf. paludosus, M. cf. sociatus, Calothrix cf. marchica, Calothrix cf. elenkinii,
Phormidium sp., and Nostoc cf. microscopicum were detected in microbiotic crusts
in eroded soils of а tropical dry forest in Mexico (Maya et al. 2002). Xenococcus
lyngbyae, Microcoleus paludosus, and M. vaginatus were the most dominant
cyanobacteria in the biological soil crusts in the Gurbantunggut Desert in Western
China (Chen et al. 2007). Several cyanobacteria including Microcoleus vaginatus
were detected in the microbiotic crusts on sand dunes (artificially stabilized) in
Tengger Desert, China, during first stages of dune stabilization (after 0–8 years);
however, in stylized dune after 24 years, these species were not found (Li et al.
2002). Anabaena azotica, Jaaginema pseudogeminatum (as Oscillatoria
pseudogeminata), Limnoraphis cryptovaginata (as Lyngbya cryptovaginata),
Oscillatoria obscura, O. subbrevis, Leptolyngbya tenuis (as Phormidium tenue),
Leptolyngbya lurida (as Phormidium luridum), Microcoleus autumnalis
(as Phormidium autumnale), Schizothrix rupicola, Scytonema javanicum, and
S. millei were also found together with Microcoleus vaginatus. Filamentous
cyanobacteria Scytonema sp. and Sypmplocastrum purpurascens were found to be
the dominating cyanobacteria in the dry savanna ecosystem in Australia (Büdel et al.
2018).

In temperate forest soils, Nostoc punctiforme, Desmonostoc muscorum (Nostoc
muscorum), Leptolyngbya foveolarum (Phormidium foveolarum), and Microcoleus
autumnalis (Phormidium autumnale) were the dominant cyanobacterial species
(Aleksakhina and Shtina 1984). Microcoleus autumnalis (Phormidium autumnale)
and Leptolyngbya foveolarum were detected in the algal flora of unlimed and limed
forest soils in the Ardennes (Belgium) (Hoffmann et al. 2007). Symplocastrum friesii
was detected in the soils of the northern part of the Great Smoky Mountains National
Park, USA (Khaybullina et al. 2010). Several cyanobacterial species such as
Aphanothece stagnina, Leptolyngbya cf. nostocorum, Leptolyngbya
cf. hansgirgiana,Hormoscilla pringsheimii, Kamptonema laetevirens, Kamptonema
animale, Oxynema cf. acuminatum, Phormidium cf. retzii, Phormidium aerugineo-
caeruleum, Phormidium uncinatum, Phormidium tergestinum, and Nostoc
cf. ellipsosporum were reported only in the boreal forest zone. In the broad-leaved
forest zone, cf. Trichocoleus hospitus was the widely distributed cyanobacteria.
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Chroococcus varius and Myxosarcina cf. tatrica were found only in this type of
environment (Gaysina et al. 2018). In flood plain forest having trees Padus avium
Mill. and Alnus glutinosa (L.) Gaertn., a maximum number of cyanobacteria were
found namely Borzia trilocularis, Cylindrospermum sp., Cylindrospermum majus,
Leptolyngbya voronichiniana, Leptolyngbya foveolarum, Microcoleus vaginatus,
Nostoc cf. calcicola, N. cf. punctiforme, Phormidium ambiguum, P. breve,
P. corium, P. dimorphum, Roholtiella bashkiriorum, Trichormus variabilis, and
cf. Trichocoleus hospitus (Gaysina et al. 2018). In the Yuraktau and Tratau Mounts
in the forest steppe zone of Bashkiria, 56 species of cyanobacteria were reported,
among which dominant species were Phormidium jadinianum, Leptolyngbya
foveolarum, Microcoleus autumnalis (Phormidium autumnale), and Nostoc
punctiforme (Bakieva et al. 2012). Unique cenoses in the arid regions were created
by Nostoc commune, Microcoleus vaginatus, and Scytonema ocellatum (Gollerbach
and Shtina 1969). In a forb–grass steppe near Sibay town and a sand savanna of
Northwestern Ohio, Cyanothece aeruginosa was found in the biological soil crusts
(Neher et al. 2003; Gaysina et al. 2018).

Filamentous cyanobacteria like Anabaena and Tolypothrix were dominant in the
restoration of soils damaged by volcano eruption (Treub 1888). Cyanobacteria were
dominant only near lava flows after volcanic activity in Surtsey Island (Schwabe
1972). Several Nostoc Vausher species and Anabaena variabilis Küzting were
reported (Henriksson et al. 1972). On the volcanic ash of Kuril–Kamchatka arcs,
inside the edge of the crater nine cyanobacterial taxa were found namely
Aphanocapsa muscicola (Microcystis muscicola), Syneсhocystis aquatilis,
Desmonostoc muscorum (Nostoc muscorum), Mastigocladus laminosus,
Aphanothece castagnei, Nostoc gelatinosum, N. humifusum, Oscillatoria geminata
f. sulphurea, Leptolyngbya (Plectonema nostocorum), and Leptolyngbya gracillima
(Plectonema gracillimum) (Shtina et al. 1992). Mastigocladus laminosus Cohn is
usually found in the hot springs (Shtina et al. 1992). Phylogenetic analysis of
cyanobacterial strains through 16S rRNA gene sequencing was done for the
cyanobacteria isolated from hot springs in Rajgir, India. These cyanobacteria were
identified as Cyanothece sp. strain HKAR-1, Nostoc sp. strain HKAR-2, Scytonema
sp. strain HKAR-3, and Rivularia sp. strain HKAR-4 (Rastogi et al. 2012).

Reclamation of the highly alkaline “usar” soil in India by blue-green algae with
the dominance of Nostoc commune was detected by Singh (1950). In deserts of
USSR, cyanobacteria were extensively grown in the wet period on “takyr” soils
having pH 9–10 and Nostoc commune (Desmonostoc commune), Microcoleus, and
Phormidium were the dominant species (Gollerbach et al. 1956). It was found that
Microcoleus vaginatus crusts started to grow in liquid media after cultivation in salt
solutions (Bolyshev et al. 1965). In halophytic solonchaks (salted soils) of the
Sahara–Gobi desert area, cyanobacteria Anabaena, Anabaenopsis, Aulosira,
Calothrix, Nostoc, and Tolypothrix were found to be widely distributed. In various
types of salted soils and vegetation true solonchak, saline steppes, meadow
halophilous 49 cyanobacterial species were reported and the dominant genera were
Calothrix, Leptolyngbya, Lyngbya, Phormidium, Anabaena, Jaaginema, and Nos-
toc. Nostoc linckia, Leptolyngbya fragilis, and L. tenuis were the most dominant
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species. Phormidium paulsenianum, Leptolyngbya fragilis, and Nostoc linckia were
reported to grow on soils covered by meadow halophilous vegetation (Vinogradova
and Darienko 2008).

Different cyanobacteria such as Phormidium paulsenianum, P. jadinianum,
P. breve (Oscillatoria brevis), and Leptolyngbya foveolarum (Phormidium
foveolarum) were found to be grown in all types of solonchaks, and Microcoleus
autumnalis (Phormidium autumnale) was typically found in the meadow solonetz
(Khaibullina and Gaisina 2008). Recently, for examining the cyanobacterial com-
munity structure, pooled mat sample was studied from the Rann of Kachchh, India,
which is desert area on the western part of India and is exposed to dynamic
environmental changes such as temperature, salinity, and nutrients (Patel et al.
2019). Taxonomic profiling revealed that the mats predominately contained the
members of Pseudanabaenales and Oscillatoriales. Other abundant cyanobacterial
orders were Nostocales, Chroococcales, and unclassified cyanobacteria (Patel et al.
2019).

Cyanobacteria also play an important role in the restoration of disturbed ecologi-
cal areas by colonizing the lifeless substrates left after anthropogenic degradation
such as mine spoils, heavy metals, and contaminated soils. Such degraded habitats
are characterized by lack of water high concentrations of heavy metals, deficient
nutrient contents, and high levels of isolation (Trzcińska and Pawlik-Skowrońska
2008). Cyanobacterial species such as Lyngbya, Microcoleus, Nostoc edaphicum,
Nostoc sp., Oscillatoria sp., and Phormidium sp. were present in the soils polluted
with heavy metal contaminations (García-Meza et al. 2006; Trzcińska and Pawlik-
Skowrońska 2008; Cabala et al. 2011). In reclaimed soils in brown coal and lignite
postmining area of Czech Republic and Germany, Microcoleus vaginatus,
M. autumnalis, Nostoc muscorum, N. cf. calcicola, and representatives of the genera
Phormidium, Leptolyngbya, Pseudophormidium, and Schizothrix were found
(Lukešová 2001). The cyanobacterial genera Microcoleus, Oscillatoria, and
Phormidium were reported as dominant taxa in the spoils of age 1–2 years of coal
deposits of Russia where as on the spoils of age 5–9 years, Pseudophormidium,
Phormidium, and Oscillatoria were reported as dominant genera (Kabirov 1997).

The polar region of Earth comprises the Antarctic and Arctic regions and
constitutes about 14% of the Earth’s biosphere (Rampelotto 2014). In these
ecosystems, cyanobacteria have been reported as dominant phototrophs because of
their ability to tolerate the abiotic stresses such as low temperature and ultraviolet
radiation in these regions of Earth (Vincent 2007). Cyanobacterial species such as
Aphanocapsa fusco-lutea, A. grevillei, Chroococcus cohaerens, C. spelaeus,
Desmonostoc muscorum, Gloeocapsa ralfsii, G. sanguinea, G. violacea,
Kamptonema animale, Leptolyngbya boryana, L. foveolarum, Microcoleus
autumnalis, Nostoc commune, N. punctiforme, and Phormidium ambiguum were
reported from aerophytic habitats in Hypoarctic and Arctic regions, and these were
on the soil surface and inside the soil layer (Davydov and Patova 2018).
Cyanobacterial diversity in the Arctic was found to be higher as compared to the
Antarctic regions (dry valleys) (Zakhia et al. 2008). Chroococcus and Gloeocapsa
were found to be dominant in the crust in the Arctic conditions, whereas Stigonema
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ocellatum, S. minutum, and S. informe with associated Gloeocapsopsis magma and
Gloeocapsa violascea were found to be most frequent species in crusts in hypoarctic
regions (Davydov and Patova 2018). Gloeocapsopsis magma, Leptolyngbya
foveolarum, Nostoc commune, Scytonema hofmannii, Stigonema minutum, and
S. ocellatum were reported as permanent species of BSC in the mountain tundras
of the Polar and Subpolar Urals (Patova et al. 2018). Several cyanobacterial taxa
such as Microcoleus autumnalis, Merismopedia tenuissima, Nostoc punctiforme,
N. commune, Pseudanabaena frigida, and Schizothrix cf. calcicola were identified
in the Hornsund area, Spitsbergen (Matuła et al. 2007). On wet soils in Antarctica,
wide distribution of filamentous cyanobacteria from the order Oscillatoriales, espe-
cially Microcoleus autumnalis, was found (Strunecký et al. 2012).

1.3.2 Aquatic Habitats

Cyanobacteria inhabiting aquatic habitats can be divided into two broad ecological
groups (Fogg et al. 1973):

1. Planktonic cyanobacteria (float freely in the water column)
2. Benthic cyanobacteria (adhere to submerged solid surfaces)

In many ocean regions, cyanobacteria genera such as Cyanobium,
Prochlorococcus, Synechococcus, and Synechocystis are widely distributed as
marine planktonic communities (Flombaum et al. 2013; Costa et al. 2014). Some
filamentous genus such as Romeria also inhabits oceans as marine plankton
(Komárek 2001). During favorable environmental conditions, cyanobacteria form
blooms as a result of their rapid growth (Sellner 1997; De Figueiredo et al. 2006;
Sciuto and Moro 2015). The colonial filamentous cyanobacteria Trichodesmium is
one of the most abundant bloom-forming genus in the marine pelagic zone and is
distributed panglobally in subtropical and tropical oceans having oligotrophic
environments (Capone et al. 1997; LaRoche and Breitbarth 2005). Cyanobacterium
Crocosphaera watsonii contributes significantly to oceanic nitrogen fixation, and
Crocosphaera also inhabit regions having low iron content due to its ability to
reduce its iron metalloenzyme inventory (Zehr et al. 2001; Montoya et al. 2004;
Moisander et al. 2010; Saito et al. 2011). In the Baltic Sea, cyanobacterial genera
Anabaena, Aphanizomenon, and Nodularia are found as the most important bloom-
forming cyanobacteria (O’Neil et al. 2012). Worldwide, filamentous cyanobacteria
Lyngbya are commonly found as benthic communities (Paul et al. 2005; Jones et al.
2011; O’Neil et al. 2012). The cyanobacterial genus Lyngbya majuscule belongs to
the benthic zones forming dense mats and is widely distributed in tropics in reef and
lagoons (Whitton and Potts 1982, 2000a, b; Hoffmann 1994; Thacker and Paul
2004). Another filamentous genus Moorea belongs to a cosmopolitan pantropical
ecological group, which is abundant in the marine benthos. In intertidal flats of the
German Wadden Sea, the cyanobacterial genera Coleofasciculus, Hydrocoleum, and
Lyngbya are dominant in all the sediment types in cyanobacterial populations (Vogt
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et al. 2018). Common cyanobacterial species in marine littoral and intertidal habitats
are constituted by Microcoleus ethnoplasts and representatives of the genera
Oscillatoria sp. and Spirulina (Kulasooriya 2011). In the Portugal coast, the fila-
mentous cyanobacterial genus Leptolyngbya, Nodosilinea, Pseudanabaena, and
Romeria constitute a large group of the marine cyanobacterial strains (Costa et al.
2014). Among the most widely distributed cyanobacterial mangrove dwellers world-
wide, Aphanocapsa, Calothrix, Chroococcus, Coleofasciculus, Lyngbya,
Oscillatoria, and Schizothrix constitute the most important genera (Alvarenga
et al. 2015).

In the oceans and large transparent lakes, the autotrophic picoplanktons constitute
the major primary producers (Callieri and Stockner 2002; Ting et al. 2002). The
phycoerythrin-rich freshwater cyanobacteria Synechococcus is the dominant genus
among the autotrophic picoplanktons in oligotrophic lakes (Fahnenstiel and Carrick
1992; Ting et al. 2002). The cyanobacterial genera Cyanobium and Synechocystis
are also very important plankton in freshwater ecosystems (Stockner 1988;
Albertano et al. 1997; Komárek 2003). In freshwater bodies, large populations are
formed by the genus Aphanothece (Mur et al. 1999). In freshwater ecosystems,
common cyanobacterial genera are Chroococcus, Coelosphaerium, Coelomoron,
Cyanodictyon, Gomphosphaeria, Rhabdoderma, Merismopedia, and Snowella
(Komárek and Anagnostidis 1999; Komárek 2003). Ecostrategists focusing on
scum formation constitute large colonies of filaments or coccoid cells and genera
Anabaena, Aphanizomenon, and Microcystis belong to such ecological group. In
freshwater habitats, the genus Microcystis is one of the most widely distributed
microcystin-producing cyanobacteria, which forms blooms in eutrophic lakes and
springs of the temperate zone (Reynolds et al. 1981; Kurmayer et al. 2002; Rastogi
et al. 2014, 2015). Filamentous cyanobacterial species such as Limnothrix redekei
and Planktothrix agardhii inhabit eutrophic and hypertrophic shallow (<3 m depth)
lakes (Mur et al. 1999). Aphanothece, Oscillatoria, and Phormidium constitute
benthic mats, which usually grow on the sediments of ponds and lakes (Komárek
2003). Among epilithic cyanobacteria, Aphanocapsa, Aphanothece, Chroococcus,
Nostoc, and Leptolyngbya are the most distributed cyanobacterial genera from
freshwater streams of India (Saha et al. 2007). Oscillatoria, Phormidium, Lyngbya,
Leptolyngbya, Microcoleus, Tychonema, and Schizothrix are usually found as ben-
thic cyanobacteria (Steppe et al. 1996; Mez et al. 1997, 1998; Hitzfeld et al. 2000;
Aboal et al. 2005; Gugger et al. 2005). In freshwater habitats, Aphanothece and
Synechococcus along with nitrogen-fixing cyanobacteria Anabaena and Scytonema
are usually found as toxic cyanobacteria (Krienitz et al. 2003; Dasey et al. 2005;
Mohamed et al. 2006; Mohamed 2008; Smith et al. 2011). Macroscopic colonies
forming cyanobacteria of order Nostocales namely Nostoc caeruleum, N. commune,
N. microscopicum, N. parmelioides, N. pruniforme, N. verrucosum, and
N. zetterstedtii have been found from inland aquatic habitats (Mollenhauer et al.
1999).
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1.3.3 Symbiotic Associations

Corals, diatoms, dinoflagellates, seagrass, and sponges are the common marine
organisms, which form associations with cyanobacteria. Colonies of the coral
Montastraea cavernosa form endosymbiotic association with cyanobacteria, which
express nitrogenase and thus also provide fixed nitrogen to the host coral (Lesser
et al. 2007). Calothrix rhizosoleniae and Richelia intracellularis (heterocystous
cyanobacteria) form symbiotic relationship with diatoms such as Chaetoceros,
Hemiaulus, and Rhizosolenia (Foster et al. 2011). A unicellular nitrogen-fixing
cyanobacterium is present as endosymbiont in diatoms belonging to the family
Epithemiaceae (DeYoe et al. 1992). In sponges, Synechococcus sp. is commonly
found in symbiotic association, andOscillatoria spongeliae has also been reported to
form association with sponges over a wide geographic range in oceans (Usher 2008).
The leaves of the seagrass Cymodocea rotundata bear cyanobionts as small attached
patches of thin biofilms having pigmented microbial aggregates. The cyanobacte-
rium Nostoc is a prolific symbiotic partner, which forms association with several
eukaryotic organisms such as protists, fungi, plants, and animals (Rai et al. 2002).
Nostocacean cyanobacteria form the symbiotic association with members of the
plant kingdom ranging from bryophyta to pteridophyta (Azolla) and from
gymnosperms (family Cycadaceae) to angiosperms (family Gunneraceae). High
strain diversity has been observed both among and within different host species as
revealed by most of the studies on identification and diversity of the cyanobionts
from the individual hosts except Azolla (West and Adams 1997; Rasmussen and
Svenning 1998; Nilsson et al. 2000; Costa et al. 2001; Guevara et al. 2002;
Rasmussen and Nilsson 2002). Nostoc muscorum and N. punctiforme have been
identified as cyanobionts, which form symbiotic relationship with Cycas (Costa et al.
1999). Approximations of these cyanobionts have been assigned to the genera
Anabaena, Nostoc, and Trichormus, or all of these symbionts have been shifted to
a new separate genus, but all of these cyanobionts certainly belong to the order
Nostocales (Komárek and Anagnostidis 1989; Plazinski et al. 1990; Gebhardt and
Nierzwicki-Bauer 1991; Caudales et al. 1995; Baker et al. 2003; Pabby et al. 2003;
Svenning et al. 2005).

1.4 Perspective and Conclusion

Undoubtedly, the ancient photoautotrophs cyanobacteria have played crucial role in
the evolution of early Earth and its biosphere and are also responsible for the
oxygenation of the oceans and atmosphere. Diversity of cyanobacteria is expressed
by their morphological, physiological, and biochemical properties, which enable
them to survive and sustain in diverse range of ecological niches ranging from the
polar regions to the hot springs, thus representing life in almost every possible
environments on Earth. Their success in acclimatizing such wide range of diverse
habitats can be attributed to their long course of evolutionary process. Despite the
important role of cyanobacteria in the early evolution of life and Earth, fundamental
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questions still remain unanswered about the origin, timing, and pattern of diversifi-
cation of cyanobacteria. Hence, it is required to define new biosignatures, which
could serve as indicator of cyanobacteria in order to reassess their fossil record and
could aid in providing new calibration points for molecular clocks. These
biosignatures will help in combining analyses of the ultrastructure, morphology,
and ecology of cyanobacterial microfossils with their biomolecular (pigments and
lipids), metal, and isotopic composition. Identification of these promising fossils, not
only as cyanobacteria, but of specific clades within this ancient group of
photoautotrophs will improve the understanding of the diversification record of
cyanobacteria.
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