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Abstract. Angiogenesis is the morphogenetic phenomenon in which
new blood vessels emerge from an existing vascular network and con-
figure a new network. To understand complex movements of endothelial
cells and molecular processes that drive angiogenic morphogenesis, time-
lapse live imaging of dynamic collective cell migration and mathematical
modeling have proven highly informative. This paper focuses on recent
mathematical models for the dynamics of endothelial cells during angio-
genesis and presents the importance of both repulsive and attractive
two-body interactions by showing results of simulation.

1 Introduction

Angiogenesis is a phenomenon that new blood vessels are formed by sprout-
ing from existing vessels. Branch elongation and bifurcation during angiogenesis
are driven by collective motion of endothelial cells (ECs). Angiogenesis occurs
in response to tissue ischemia or increased oxygen demand during various pro-
cesses such as wound healing, placenta formation and tumor growth. Therefore,
elucidation of mechanisms of angiogenesis is essential to expand our knowledge
about physiological and pathological phenomena.

Collective cell migration in morphogenesis is often regulated by leader cells,
which are accompanied by other follower cells that uniformly migrate. As for
angiogenic elongation, an EC called a “tip cell”, is commonly thought to migrate
in the direction of new vessel [1,2]. The adjacent ECs are assumed to follow the
tip cell as stalk cells connected to each other through cell-cell junctions. However,
experiments with time-lapse live imaging have revealed that cell migration dur-
ing angiogenic morphogenesis involves complex behavior. Individual ECs exhibit
dynamic and heterogeneous motion, move forwards and backward along the
path of the elongation and change often their positions even at the tips. This
‘cell mixing’ effect was observed in both in vitro and in vivo experiments [3,4].
Furthermore, Sugihara et al. observed the dynamics of ECs in sprouting blood
vessels of zebrafish and found that the movement of tip cells depends on the
presence of stalk cells within a proper distance [5]. For a tip cell and stalk cells
moving forward along the elongating branch, the isolated tip cell stopped mov-
ing after a laser shot ablated the follower EC. However, the tip cell started
moving again when another EC approached it. This result suggests that the
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interaction between ECs plays an essential role in the complex multicellular
dynamics in angiogenesis. To uncover hidden laws driving angiogenic morpho-
genesis, Takubo et al. analyzed EC behaviors in an in vitro angiogenic sprouting
assay using mouse aortic explants [6]. Time-lapse imaging of sprouting from cell
sheets around tissue explants showed directional collective cell movements with
frequent U-turns. Imaging of isolated branches with basal cell sheets removed
revealed that a constant supply of migrating cells is required for ECs to branch
forward.

A lot of mathematical models for angiogenesis have been proposed from var-
ious points of view: a hybrid model of cell migration on an elastic matrix of
fibers [7], a mesoscopic lattice-based stochastic model in relation to determin-
istic continuous models [8], a phase-field continuous model of sprouting angio-
genesis described by compact partial differential equations [9], and continuous
model described by differential equations [10]. A stochastic states model and
the differential equation model corresponding to its continuous limit have been
discussed to explain the observation in the dynamics of ECs along an elongating
branch [5]. Matsuya et al. focused on the effects of cell-to-cell interaction and
proposed a one-dimensional discrete model that incorporates deterministic two-
body interaction between ECs, which do not consider stochastic fluctuation and
a gradient distribution of angiogenic factors such as vascular endothelial growth
factor (VEGF) [11]. This model has succeeded in explaining complex EC behav-
iors by cell-to-cell interactions. Takubo et al. quantitatively verified the two-body
interaction, which had not been quantified in the one-dimensional model. Fur-
thermore, they extended the model to take into account the interaction, which
is thought to be caused by the polarity of ECs.

In Sect. 2, we present the one-dimensional model proposed by Matsuya et
al. and show numerical simulation results. A power-law scaling behavior in this
model is shown and analyzed. We present the extended model and a parameter
estimation in Sect. 3. Section 4 is devoted to concluding remarks.

2 Discrete Dynamics System Model for Angiogenesis

The system is essentially two dimensional because murine aortic rings were
embedded and ECs were cultured in collagen gel placed in a shallow petri dish.
We neglect the effects of anastomosis(reconstruction of vessels) and cell division
of ECs in neogenetic vessels. Actually cell division is rarely observed in the time
span of the experiment (∼5% a day). We consider formation of one of the newly
generated blood vessel networks which arise from the aortic ring. We suppose
that there is no neogenetic vessel sprouts in a certain direction according to the
supply of ECs for t > 0. The nth (n = 0, 1, 2, . . . ) EC comes to the origin of
this neogenetic vessel network at time step t =

∑n
i=1 ai with an initial velocity

vini(n) ≥ 0, where ai ∈ Z+ is the time interval between the incidence of ith EC and
that of (i−1)th EC. Here, we focus on the dynamics of ECs only in the first neo-
genetic vessel and the effects of two-body interactions between ECs in a branch.
Interactions among ECs are quite complicated and have not been well uncov-
ered. We assume that the interaction between ECs is caused by direct contact
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Fig. 1. Schematic figure of two-body interaction in the present model.

of their membranes; chemical signals or mechanical force induced by cell-to-cell
contact yields the driving force of ECs. For short distance, the interaction force
will turn out to be repulsive due to excluded volume effect, while it will turn out
to be attractive if the distance becomes larger because of the interaction with
pseudopodia. Thus the mathematical model we present here is given as

xt+1
n − xtn = vtn (1)

vt+1
n − vtn = −γvtn +

∑

k�n

F
(
xtn − xtk

)
, (2)

where xtn ≥ 0 is the position of the nth EC at time step t ∈ Z+, the time unit
(Δt = 1) may correspond to the specific response time, the parameter γ(0 < γ <
1) denotes the coefficient of conflict, and F denotes the two-body interaction
between ECs.

The interaction F is adopted the following simple form by taking the three
characteristic lengths Rr, Re, Ra into account:

F(x) :=

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪
⎩

sgn(x) fr (0 < |x | ≤ Rr )
−sgn(x) fe (Rr < |x | ≤ Re)

−sgn(x) fa (Re < |x | ≤ Ra)

0 (Ra < |x |)

(3)

where sgn(x) := x/|x | and fr, fe, fa are the positive constant for interaction
strengths (Fig. 1). Although the case xtn = xt

k
(n � k) may be possible in principle,

practically this model can neglect this case in numerical simulation.
Equation (1) means that vtn is the velocity of the nth EC at time step t and

(2) is the discrete analogue of the Newtonian equation of motion. We do not
consider the effect that ECs in the neogenetic vessels go back into the existing
aortic ring, and xtn has to take non-negative value. To avoid back flow of ECs
into the source, we reset xt+1

n =0 and vt+1
n = 0 if xt+1

n ≤ 0 in (1). In order to see
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Fig. 2. Trajectories of EC movements during elongation with parameters Rr = 0.2, Re =

0.4, Ra = 0.7, γ = 0.6, a = 5, vini = 0.3, vmax = 1.0 and (a) Repulsive force only: fr =

0.6, fe = 0, fa = 0, (b) Attractive force only: fr = 0, fe = 0.15, fa = 0.05 and (c) Both:
fr = 0.6, fe = 0.15, fa = 0.05.

the effects of repulsive and attractive interactions, we simulated (1) and (2) for
three types of two-body interactions: (a) only repulsive ( fe → − fe, fa → − fa in
(1), (b) only attractive ( fr → − fr), and (c) both interactions given in (1). A
typical result is shown in Fig. 2, where we put ai = a(constant) and vini(i) = vini
(constant) for all i.

When interaction is only repulsive, the distribution of ECs is fairly uniform
as shown in Fig. 2(a), while if interaction is only attractive, ECs clump together
as in Fig. 2(b). In case both repulsive and attractive interactions coexist as is
supposed in this model, ECs clearly show the cell mixing behavior and the dis-
tribution of ECs is sufficiently uniform. The cell mixing behavior is also seen in
Fig. 2(a), though it is less frequent than in Fig. 2(c). As a consequence, repulsive
interaction between ECs is necessary for smoothing the distribution of ECs and
attractive interaction enhances the cell mixing behavior in the dynamics of ECs.
Figure 4 shows the time dependence of the reaching position of ECs, that is, the
position of an EC at the tip. As shown in Fig. 4(b), it almost scales as t2/3 for dif-
ferent strengths of attractive interaction. In fact, we can find that this exponent
2/3 is observed almost irrespective of the parameters for interactions, supply
rate, and initial velocity. In particular, the data of numerical simulation closely
fit, the curves ∝ t2/3 in the case of no attractive interaction. For random walk,
the reaching position scales as t1/2, while it scales as t1 for wave propagation.
The exponent 2/3 suggests that the ECs in the present model show the dynamics
between random walk and wave propagation. The theoretical explanation of this
universal exponent is given in Appendix.
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Fig. 3. Distributions of ECs at time step t = 104. Parameters are the same as those in
Fig. 2.

3 A Two-Dimensional Model Considering the Anisotropic
Nature of Two-Body Interactions

Under the assumption of simple two-body interactions between ECs, the mathe-
matical model discussed in previous section successfully reproduced the cell mix-
ing effects. However, the two-body interaction is not quantitatively validated. In
this section, we present the parameter estimation of the model from the position
data of ECs obtained by an automated cell tracking system. We first extended
the one-dimensional model to a two-dimensional one as follows,

xt+1
n − xtn = vtn (4)

vt+1
n − vtn = −γvtn +

∑

k�n

F
(


xtn − xtk





) xtn − xt

k


xtn − xt

k





, (5)

where xtn ∈ R
2 and vtn ∈ R

2 are the position and the velocity of the nth EC
at time step t, respectively, and γ > 0 denotes the coefficient of damping. The
interaction term is isotropic, which depends only on the relative positions xtn− xt

k
between two ECs. We estimate the parameter γ and the force function F from the
experimental data of the time-lapse live imaging of ECs. The interaction between
ECs are supposed to be short-range rather than long-range force. Therefore, let
us consider the rectangular kernel on bounded support as the density kernel,

F(x) =
N−1∑

k=0

bk

(

θ

(

x − k
Rd

N

)

− θ

(

x − (k + 1)
Rd

N

))

, (6)

Here Rd is the upper bound distance of cell-to-cell interaction, the range [0, Rd]

is divided into N equal intervals, and θ denotes the step function:

θ(x) :=
{
1 (x > 0)
0 (x ≤ 0) (7)
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Fig. 4. (a) The parameters are Rr = 0.2, Re = 0.4, Ra = 0.7, fr = 0.6, fa = 0, vini = 0, γ =
0.6, vmax = 1.0, 〈a〉 = 5, and (red curve) fe = 0, (green curve) fe = 0.2, (orange curve)
fe = 0.4. The blue curve satisfies y = 0.5092t0.6601. (b) Log-log plot of the four curves
in (a). The straight line satisfies ln(y) = 0.6601 ln(t) − 0.6749, which is fitted to the red
curve. “〈a〉 = 5” means that the injection period is random with average period 5.

Given N and Rd, we minimize the following error function E for the estimation
of the parameter γ and bk(k = 0, 1, . . . , N − 1):

E =
∑

t

∑

n












(

vt+1
n − vtn

)

−

(

−γvtn +
∑

k�n

F
(


xtn − xtk





) xtn − xtk


xtn − xtk






)










2

, (8)

where xtn is experimentally obtained cell position of nth EC at time t, and vtn is
the velocity as numerical difference. Since E is a quadratic polynomial of N + 1
variables γ and {bk}

N−1
k=0 , the minimum of E is unique.

Figure 5 shows the estimated function F and potential from F when N = 25
and Rd = 50µm. ECs experience distance-dependent interactions: with repulsive
force in ∼8 µm and attractive force in 8∼30 µm. Since each EC has its own
volume, proximity of two cells may produce the repulsive force as a result of
excluded volume effects. On the other hand, the attractive force may reflect
contact-dependence acceleration.

Furthermore, since the shape of an EC is anisotropic, we consider anisotropy
of cellular interactions. The presence of ECs moving backward produces dif-
ferent pattern of directionality as follows: (i) two ECs move into the opposite
direction apart from each other, (ii) two ECs move into the opposite direction
approaching each other, (iii) two ECs move in the same direction. Based on these
classifications, we extended Eq. (4) to the following equation.

vt+1
n − vtn = −γvtn +

∑

k�n

F1

(


xtn − xtk





) xtn − xt

k


xtn − xt

k





θ
( (
xtn − xtk

)
· vtn

)
θ
(
−

(
xtn − xtk

)
· vtk

)

+
∑

k�n

F2

(


xtn − xtk





) xtn − xt

k


xtn − xt

k





θ
(
−

(
xtn − xtk

)
· vtn

)
θ
( (
xtn − xtk

)
· vtk

)
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Fig. 5. (a) Estimated force F(x) with Rd = 50, N = 25. (b) −

∫ x

0
F(μ)dμ, potential of

(a).

(a) (b) (c)

(d) (e) (f)

Fig. 6. Estimated force (a) F1(x), (b) F2(x), (c) F3(x). These functions were obtained in
accordance with experimental results used in the estimation of F(x) (Fig. 5). Potentials
of each forces, (d) −

∫ x

0
F1(μ)dμ, (e) −

∫ x

0
F2(μ)dμ, (f) −

∫ x

0
F3(μ)dμ, respectively.

+
∑

k�n

F3

(


xtn − xtk





) xtn − xt

k


xtn − xt

k





θ
( (
xtn − xtk

)
· vtn

)
θ
( (
xtn − xtk

)
· vtk

)

+
∑

k�n

F3

(


xtn − xtk





) xtn − xt

k


xtn − xt

k





θ
(
−

(
xtn − xtk

)
· vtn

)
θ
(
−

(
xtn − xtk

)
· vtk

)

where the centered dot ‘·’ is the inner product and three force functions F1, F2,
F3, which correspond to the three patterns (i), (ii) and (iii), respectively, were
estimated by a similar method as above. Figures 6(a)–(c) show the estimated
three forces. In F1 and F2, both repulsion (∼8 µm) and attraction (8∼30 µm) were
evident. By contrast, F3 contained only a repulsive component in ∼8 µm with
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no evident attractive component. Figures 6(d)–(f) are the integrals of Figs. 6(a)–
(c) respectively, that is, potential. While Fig. 6(d) and (e) clearly indicate the
positive slope (8∼30 µm), Fig. 6(f) shows relatively flat in the region 6∼50 µm.
Hence, it is suggested that an attractive interaction occurs between a pair of a
cell moving forward and backward, resulting in accelerated cell movement when
passing each other. On the contrary for lateral cells, attractive force is not much
driven.

4 Concluding Remarks

In this paper, we have discussed a discrete dynamical model for angiogenesis
which fits well some aspects of collective cell migration during angiogenesis. The
dynamics of each ECs is assumed to be mainly ruled by deterministic two-body
interactions which consist of short-range repulsion due to excluded volume effect
and long-range force through pseudopodia and described by a one-dimensional
discrete Newtonian equation of motion. Under this interaction, the tip position
of a neogenetic vessel at time step t, l(t), develops as l(t) ∝ t2/3. We have given an
interpretation on this value of exponent, 2/3, based on the equation of continu-
ity and a hypothesis of existence of a scaling function. Although this model has
succeeded in explaining complex EC behaviors by cell-to-cell interactions based
on simple Newtonian dynamics, the assumption of two-body interactions is not
quantitatively validated. Furthermore, anisotropic nature of two-body interac-
tions, which may be caused by cellular polarity, is not considered. The parameter
estimation discussed in Sect. 3 revealed distance-dependent intercellular forces;
a repulsive force in ∼8 µm and attractive force in 8∼20 µm, which are consis-
tent with the assumption of the one-dimensional model. Theses results suggest
that the deterministic two-body interaction between ECs is an essential factor in
complex EC behaviors such as cell mixing. However, these models deal with the
early stage of angiogenesis and have not included chemotaxis, lumen formation,
and remodeling of blood vessels, which are important in construction of in vivo
blood vessel networks. Realistic mathematical modeling for angiogenesis and its
application to medicine are an important issue. Development of the models by
incorporating these factors is expected to uncover novel mechanisms and provide
a theoretical framework for clinical trials targeting angiogenesis in the future.
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Appendix

Here, we explain the scaling law of the position of an EC at the tip according to
the method in [11]. Let ρ(x, t) be the density of the ECs at time t and position
x. In continuum limit, ρ(x, t) satisfies the equation of continuity:

∂ρ(x, t)
∂t

+
∂

∂x
(ρ(x, t)v(x, t)) = 0, (9)
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where v(x, t) is the field of velocity ECs at (x, t). From (1), in quasi equilibrium,
we may approximate v(x, t) as

v(x, t) ∼
1
γ

∫

F(x − y)ρ(y, t)dy. (10)

If ρ(x, t) is a smooth function of x, we can expand

ρ(y, t) = ρ(x, t) +
∂ρ(x, t)
∂x

(y − x) +
∂2ρ(x, t)
∂x2

(y − x2
)

2
+ · · · . (11)

We further assume that higher derivatives of ρ(x, t) takes smaller absolute values
than its first derivate ∂ρ(x,t)

∂x . In fact, as shown in Figs. 3(a) and 3(c), the density
ρ(x, t) is approximately a linear function, which implies that its higher order
derivatives are negligible. Since F(x) is an odd function, neglecting the higher
order terms, we have

v(x, t) ∼
1
γ

∫

(y − x)F(x − y)ρ(y, t)
∂ρ(x, t)
∂x

dy =: Aeff
∂ρ(x, t)
∂x

, (12)

where Aeff is a constant depending on the parameter γ, fr, fe, fa, Rr, Re, Ra. Hence,
(9) gives

∂ρ(x, t)
∂t

+ Aeff
∂

∂x

(

ρ(x, t)
∂ρ(x, t)
∂x

)

= 0. (13)

Suppose that ρ(x, t) has a scaling form with exponents α, β as

ρ(x, t) = tαG
(

x/tβ
)

. (14)

Then, from (13), we have

tα−1
{αG(X) − βXG′

(X)} + t2(α−β)Aeff

{
G′

(X)2 + G(X)G′′

(X)
}
∼ 0 (X := x/tβ).

Hence, under the assumption of the scaling form (14), we find that

α − 1 = 2 (α − β) (15)

Since the number of ECs increases linearly in t,
∫ l(t)

0

ρ(x, t)dx =
t
〈a〉
, (16)

where l(t) is the position of the tip at which ρ(x, t) = 0 and a is the average
injection rate of ECs, and we have

tα+β
∫ Xl

0

G(X)dX =
t
〈a〉
, (17)

The constant Xl is considered to be the first 0 of G(X) for X > 0 (or a cut-off
length), and l(t) = Xltβ. Since the integral of G(X) over X does not depend on
time t, we have

α + β = 1. (18)
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From (15) and (18), we obtain

α =
1
3
, β =

2
3
. (19)

Therefore, l(t) ∝ t2/3 and the reaching position of ECs scales as t2/3.
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