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Preface

Following recent developments in computational biology, a research project enti-
tled “Establishing International Research Networks of Mathematical Oncology” has
been carried out for five years and nine months since April 2015 as a part of the
Core-to-Core Program of the Japan Society for the Promotion of Science (JSPS).
This project has established a permanent and collaborative network, to foster
research leaders in mathematical oncology and to strive to build an international
research base.

In this project, the Center for Mathematical Modeling and Data Science
(MMDS) at Osaka University (Professor Takashi Suzuki, representative researcher)
has engaged in collaborative research with the following prestigious organizations:
INRIA Research Center of Bordeaux-Sud-Ouest in France (Professor Clair
Poignard, representative coordinator); University of St. Andrews in the UK
(Professor Mark Chaplain, representative coordinator); and Vanderbilt University in
the USA (Professor Vito Quaranta, representative coordinator). The Program has
also been supported by the following renowned institutions in Japan: The Institute
of Medical Science, The University of Tokyo, and Kanagawa Cancer Center
Research Institute. By utilizing their respective strength and realizing the fusion of
life science and mathematical science, the base organization has achieved the
cooperation of “mathematical analysis,” “verification by biomedical experiments,”
and “statistical analysis of a chemical database.”

As the core event for the final year of the project, the international symposium
entitled “Fusion of Mathematics and Biology” and organized by Professor Takashi
Suzuki at MMDS was held during October 26–28, 2020, at Osaka University in
Japan to provide valuable opportunities for researchers to share their innovative
ideas with eminent speakers. The international symposium was originally scheduled
to take place in March 2020, but it was postponed due to the worldwide outbreak of
COVID-19.

All sessions were basically delivered live through the Zoom webinar.
Furthermore, we set up a hybrid conference platform combined with a real venue
and online meetings. Speakers from eight countries led 20 sessions and provided 62
talks. The total number of session chairs and speakers was 82, and they attended as

v



panelists. In addition, 91 participants registered as an audience through the JSPS
2020 website. The number of participants by Zoom was continuously 50–70.
Despite the differences in time zones of the participants, there was an enthusiastic
exchange of questions, comments, and discussions.

This book consists of original manuscripts offered by speakers who have con-
tributed to the symposium and researchers who are dedicated to mathematical
oncology and mathematical biology, among other topics. In addition to the pro-
ceedings of the international symposium, this book includes an attractive review
of the latest in mathematical science.

Individual contributions were all reviewed by authoritative, credible researchers
in the field. We hope that this contribution is valuable and useful for a wide range of
researchers and scientists.
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Constitutive Modelling of Soft Biological
Tissue from Ex Vivo to in Vivo:

Myocardium as an Example

Debao Guan, Xiaoyu Luo, and Hao Gao(B)

School of Mathematics and Statistics, University of Glasgow, Glasgow, UK
d.guan.1@research.gla.ac.uk, {xiaoyu.luo,hao.gao}@glasgow.ac.uk

Abstract. Imbalance of stress/strain microenvironment can lead to
adverse remodelling and pathogenesis in various soft tissues, tumour
included. Therefore, there is a critical need for accurate quantification of
the biomechanical homeostasis in soft tissue through mathematical mod-
elling, which is critically dependent on constitutive models, the math-
ematical descriptions that approximate the mechanical behaviours of
material under specific conditions by considering information from sub-
cellular, cellular and tissue levels. In most soft biological tissue, colla-
gen is the major component of the extracellular matrix, its architecture
largely determines the material property (stiffness). In this work, we
will use myocardium as an example to show how we can develop a con-
stitutive law from various ex vivo experiments within the continuum
mechanics framework, and demonstrate the applications to real patient
data. We will further focus on parameter calibrations from ex/in vivo
measurements. We believe this approach of constitutive modelling and
calibration can be applied to various soft biological tissues and shed light
on physiological and pathological mechanobiology.

1 Introduction

Imbalance of stress/strain micro-environment can lead to adverse remodelling
in various organs and further causing functional deterioration. For example,
imbalance of stress/strain can regulate tumour immunity and even promote
metastasis [6]. The kinematics of soft tissue can be quantitatively measured
by various experimental techniques [4,17,20]. However, direct measurements of
in vivo solid stress have not been achieved, and still challenging in in vivo sit-
uation. To overcome this difficulty, a common way is to compute stresses by
using constitutive models which characterize the relation between kinematics and
stresses. In this respect, there is a critical need for accurate quantification of the
biomechanical micro-environment in soft tissue through mathematical modelling,
which is essentially dependent on constitutive models. Constitutive models are

c© Springer Nature Singapore Pte Ltd. 2021
T. Suzuki et al. (Eds.): MMDS 2020, PROMS 370, pp. 3–14, 2021.
https://doi.org/10.1007/978-981-16-4866-3_1
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mathematical descriptions that approximate the mechanical behaviours of mate-
rial under specific conditions, which can further take into account information
from different scales [12]. In most soft biological tissue, collagen is the major com-
ponent of the extracellular matrix, and largely determines the material property
(stiffness), cancerous tissue included [6].

In this study, we will use myocardium as an example to show how we can
develop a constitutive law from various ex vivo experiments, and further show
the applications to real patient data by encompassing a wide range of cross-scale
soft tissue mathematical models. In the past several decades, a few constitutive
models have been proposed for myocardium [12]. Myocardium is usually treated
as an anisotropic, hyper-elastic material with layered collagen network [8,10,11].
One of very widely used model is the Holzapfel and Ogden (HO) model and its
variations [12]. To account for fine structures of collagen fibres, general structural
tensors were further introduced to describe fibre dispersion by Eriksson et al.[5].
Calibrating unknown parameters in the HO model has been investigated in [10]
using three different sets of ex vivo experiment data, and inverse estimation of
its unknown parameters from in vivo data was first reported in [8] by using
magnetic resonance imaging.

2 Constitutive Modelling of Soft Biological Tissue

In this section, we will briefly introduce the essential continuum mechanics for
soft tissue mechanics. Consider a soft tissue under certain external loading, and
the material point X in the reference configuration will move to a new position
x = x(X, t) at time t. The deformation gradient associated with the soft tissue is
defined as F = ∂x/∂X, the shape change in 3-dimension. By assuming the soft
tissue is hyperelastic and incompressible, then there exists a constitutive law W,
and the Cauchy stress is σ = F ∂W

∂F −pI, where the Lagrange multiplier p enforces
incompressibility and I is the identity tensor. In addition, associated with F are
the left and right Cauchy-Green tensors, they are B = FFT and C = FTF,
respectively, and the Green-Lagrange strain tensor is E = (C − I)/2.

Invariants of the right Cauchy–Green deformation tensor C are commonly
used in formulating the strain energy function W, likewise I1 = tr(C), I2 =
1
2{[tr(C)]2 − tr(C2)}, I3 = det(C). An example is the incompressible Neo-
Hooken material W = C1(I1 − 3), in which C1 is a material constant. Strain
invariant-based constitutive laws can be widely found for characterizing and
modelling various soft tissues, such as myocardium [12] and solid cancer [23].

In order to characterize anisotropic hyperelastic myocardium, for example,
to take into account the stiffening effects of the collagen network and its pre-
ferred orientation, extra strain invariants are needed. Transversely isotropic mod-
els were firstly proposed by assuming all fibres (mainly collagen) are aligned
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perfectly in one direction and share the same mechanical properties. Denote the
fibre direction f0 in the reference configuration, two related strain invariants can
be introduced,

I4f = f0 · (Cf0), I5f = f0 · (C2f0). (1)

The strain energy function for such one family fibre can be formulated as
W(I1, I2, I3, I4f, I5f) with I1, I2, I3 for its isotropic response and I4f, I5f for fibre
contributions. In actual applications, reduced formula W(I1, I4f) is often found
[11]. The corresponding Cauchy stress is

σ = 2
∂W
∂I1

B + 2
∂W
∂I4f

f ⊗ f − pI, and f = Ff0. (2)

Experimental studies have shown that myocardium has layered myofi-
bre structure with three families of fibres, the so-called fibre (f0)–sheet(s0)–
normal(n0) system, or f − s − n in short. Additional strain invariants are

I4s = s0 · (Cs0), I5s = s0 · (C2s0), I4n = n0 · (Cn0), I5n = n0 · (C2n0),
I8fs = f0 · (Cs0), I8fn = f0 · (Cn0), I8ns = n0 · (Cs0).

(3)

As discussed in [12], not all strain invariants are independent, thus we can omit
some of these in the functional dependence of the strain energy function. Based
on the simple shear data of ex vivo porcine myocardium [4], Holzapfel and Ogden
proposed the micro-structure informed strain energy function for myocardium
by only including I1, I4f, I4s, I8fs (the HO law),

W =
a

2b
{eb(I1−3) − 1} +

∑

i=f,s

ai

2bi
{ebi(I4i−1)2 − 1} +

afs

2bfs
{eI2

8fs − 1}, (4)

where a, b, af, bf,as, bs, afs and bfs are material parameters. The corresponding
Cauchy stress tensor is

σ = a1e
b1(I1−3)B + 2af(I4f − 1)ebf(I4f−1)2f ⊗ f

+ 2as(I4s − 1)ebs(I4s−1)2s ⊗ s + afsI8fse
I2
8fs(f ⊗ s + s ⊗ f),

(5)

in which s = Fs0. Since its introduce, the HO law in Eq. (4) has been widely used
in characterizing myocardial mechanic behaviours in various ex vivo experiments
[10] and in vivo cardiac function modelling [8] (Fig. 1).
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Fig. 1. The sketch of layered organization of myocytes and the collagen fibres between
the sheets in the orthonormal coordinate system with fibre axis f0, sheet axis s0 and
sheet-normal axis n0. An additional cube of layered tissue serving as the base for the
constitutive model in the simulation. (Figure is cited from Holzapfel & Ogden [12])

3 Ex Vivo Calibration

Experimental tests of passive properties of the myocardium are usually per-
formed on tissue level at ex vivo condition because of easy setup and operation
compared to the experiments on the cellular level [4,20]. By assuming the exper-
imental specimen to be homogeneous, measured stresses and strains can be used
to inform the underlying formulations of constitutive behaviours. For example,
simple shear tests have been found necessary for characterizing the orthotropic
nonlinear behaviours of the myocardium [4], recently extended to the combina-
tion with bi-axial tests [20], and further demonstrated in [10].

In this study, we choose the simple shear experimental data from Dokos et
al. [4] for inferring material constants in Eq. (4). Dokos et al. firstly reported
ex vivo simple shear tests on passive myocardium from porcine hearts with six
different shear modes, shown in Fig. 2(a) where (ij) refers to shearing in the j
direction within the ij plane, where i �= j ∈ {f, s, n}. Details of the experimental
protocols can be found in [4].

The loading path in simple shear experiments can be quantified by deforma-
tion gradient tensors under homogeneous deformation assumption. For the six
simple shear tests in Fig. 2(a), we have

(ns): F =

⎡

⎣
1 0 0
0 1 0
0 γns 1

⎤

⎦ , (fn): F =

⎡

⎣
1 0 0

γfn 1 0
0 0 1

⎤

⎦ , (sf): F =

⎡

⎣
1 0 γsf
0 1 0
0 0 1

⎤

⎦ ,

(nf): F =

⎡

⎣
1 γnf 0
0 1 0
0 0 1

⎤

⎦ , (fs): F =

⎡

⎣
1 0 0
0 1 0
γfs 0 1

⎤

⎦ , (sn): F =

⎡

⎣
1 0 0
0 1 γsn
0 0 1

⎤

⎦ , (6)

where γij is the shear amount with respect to the Cartesian coordi-
nates {e1, e2, e3}, which are coincident with the local material coordinates
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(a) (b)

Fig. 2. Parameter inference from ex vivo experiments. (a) a sketch of all six shear
modes of a cubic myocardial sample adapted from [4], f , s and n denote the fibre,
sheet and normal direction, respectively; (b) fitted simple shear experimental data
using the HO model from the optimized parameter set in Table 1.

{f0, n0, s0}. We now use the six shear experimental data [4] to inversely deter-
mine the 8 unknown parameters in Eq. (4) by using those above deformation
gradients for each corresponding simple shear experiment. The inverse problem
is similar as in our previous study [10] by minimising the loss function defined
as the squared errors between the predicted stress from the HO law to the mea-
sured values. The goodness of fits are shown in Fig. 2(b), from which we can see
that the HO law is able to capture all mechanical responses of six simple shears,
and the optimised parameters are listed in Table 1.

Table 1. Optimised parameters in the HO law based on the experimental data of six
simple shear tests [4] and from in vivo measurements using clinical cardiac magnetic
resonance imaging [9]

Parameters a (kPa) b af (kPa) bf as (kPa) bs afs (kPa) bfs

Ex vivo 0.2362 10.81 20.037 14.154 3.7245 5.1645 0.4109 11.3

In vivo 0.1 2.49 1.99456 4.92 0.243 1.188 0.1 2.6

4 Move to in Vivo

To estimate myocardial passive stiffness from in vivo data is still very challeng-
ing, there is no established approach on how to adjust parameters derived from
ex vivo experiments directly to in vivo situations. Studies have found that the
passive stiffness estimated from ex vivo experiments will over-estimate in vivo
stiffness, thus not suitable for personalized modelling. For this reason, a few
studies have tried to re-scale ex vivo experimental data to match measured in
vivo dynamics. In this section, an in vivo human left ventricular (LV) model
reconstructed from cardiac magnetic resonance (CMR) imaging from our previ-
ous studies [9] is used as shown in Fig. 3(a) superimposed with a CMR image.
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The LV geometry is reconstructed at early-diastole when the LV pressure is at
the lowest.

We previously proposed a three-step algorithm [8] to inversely infer the 8
constitutive parameters by matching the simulated LV dynamics at diastole to
in vivo measured LV motion (the cavity volume and 24 segmental strains). To
simulate the LV passive filling at diastole, a quasi-static biomechanical model is
developed using the finite-element discretization and solved by ABAQUS. The
boundary value problem of the LV passive filling is

∇ · σ + b = 0 in Ω
σ · n = t in ΓN

u = u0 in ΓD

⎫
⎬

⎭ , (7)

where Ω is the LV computational domain, σ is Cauchy stress of Eq. (5), n denotes
the normal direction of ∂Ω, b is the body force density per unit volume, which is
zero in this study, t is the traction force resulted from the LV cavity pressure, ΓD

is the basal plane with prescribed displacements u0, and ΓN is the endocardial
surface with linearly ramped pressure from 0 mmHg to 8 mmHg at end-diastole.
Details of the LV biomechanical model can be found in our previous studies
[8,25].

Here, we introduce a modified version by taking into account ex vivo
pressure–volume relationship reported by Klotz et al. [14] in the multi-step opti-
mization procedure. In detail,

1. Optimise Ca, Cb by minimising fO1 using grid search within [0.1, 1.0], follow-
ing the widely used scaling approach by grouping the 8 parameters into two
groups: agroup = {a, af, as, afs}, bgroup = {b, bf, bs, bfs}, respectively. Ca and Cb

are scaling parameters as

agroup = Caagroup
0 and bgroup = Cbb

group
0 ,

in which agroup
0 and bgroup0 are from ex vivo data (see Sect. 3). The objective

function is defined as

fO1 = (V simulated − V in vivo)2 +
24∑

i=1

(εsimulated
i − εin vivo)2,

in which V is the LV cavity volume, and ε is the myocardial strains.
2. Refine Ca, Cb by minimising fKlotz

O1 , which is defined as

fKlotz
O1 =

(V simulate
8 − V8

V8

)2 +
(V simulate

30 − V30

V30

)2 +
N∑

i=1

(εsimulated
i − εin vivo)2,

where V8 and V30 are the LV cavity volumes at 8 mmHg and 30 mmHg derived
from the Klotz relationship [14].

3. Optimise af, bf by minimising fO2, which is similar as fKlotz
O1 by excluding the

term
(
(V simulate

30 − V30)/V30

)2.
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Note steps 2 and 3 use the MATLAB function fmincon for finding the best
parameters. Details of this multistep optimization procedure can be found in
[8] and its application in [9]. Figure 3 (b) compares the strains from ex vivo
parameters and from the optimal set of parameters to the in vivo measured
values. As pointed out in other studies [8], ex vivo parameters lead to a very
stiff myocardium which has a much small strain magnitude at end-diastole, and
away from the measurements (Fig. 3 (b)). The optimized parameters from this
in vivo heart can be found in Table 1, which is largely different from the ex vivo
values.

(a) (b)

Fig. 3. Parameter calibration from in vivo data. (a) Fitted LV mesh according to the
MR cine image; (b) Comparisons of regional circumferential strain at end of diastole
after each optimization step.

We further compare the mechanical responses between in vivo and ex vivo
parameters from Table 1 using a virtual shear experiment by shearing a cubic
sample along 6 different directions up to 0.5, as shown in Fig. 4(a). Clearly,
in vivo myocardium is much softer than ex vivo myocardium. We then fur-
ther simulate the LV filling phase by using the optimal parameters from Table 1
using the in vivo finite-element LV model (see Fig. 3 and Eq.(7)) with a pres-
sure of 8 mmHg at end-diastole. Figure 2(b) shows the deformed LV shape at
end-diastole with in vivo estimated parameters (left) and ex vivo estimated
parameters (right). A much larger end-diastolic volume is achieved for the in
vivo parameter set (140 mL) compared to the ex vivo parameter set (70 mL),
the corresponding filling volume is 85 mL and 15 mL, respectively. Figure 4(b)
is further contoured by the maximum principal Cauchy stresses at end-diastole,
again the two-parameter sets give very different stress levels and patterns. This
suggests cautions are needed when using ex vivo experimental data for modelling
the in vivo biomechanical environment.

5 Biomechanical Study to Cancer

There is an increased appreciation of the biomechanical environment in deter-
mining tissue development, cell differentiation and adaptation to maintain the
homeostasis in healthy tissue, and the loss of this ability to maintain the local
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(a) (b)

Fig. 4. Comparisons between the passive property between the ex vivo and in vivo
derived parameter sets. (a) Predicted simple shear stress; (b) Simulated maximum
principal stress distributions at end diastole in a human left ventricle.

biomechanical homeostasis, such as tumour cells, will potentially contribute to its
progression [6]. As has been discussed in [21], the mechanical stress environment
from both the solid and fluid phases of the tumour can play an important role
in the progression and response to treatment. The elevated solid stress not only
compresses intratumoral blood and lymphatic vessels, but also reduces perfusion,
a major barrier to the delivery of chemotherapeutic agents and nanomedicine,
causing low efficiency of those treatments. The reduced perfusion further pro-
motes tumour progression and metastasis. Therefore, accurate quantification
of solid stress in the tumour is critical for treatment planning, such as stress-
reducing therapy [21]. Measuring stress is very difficult and challenging, espe-
cially in vivo, thus biomechanical predictions by solving conservations of mass,
momentum, energy and entropy are usually employed along with the constitutive
models of tumour tissue [23].

It is well known that solid tumour tissues are nonlinear, hierarchical and
heterogeneous, thus very different from healthy tissues [13,19]. This inherent
spatially heterogeneous and hierarchical structure with its active nature make
it very difficult when developing an accurate constitutive model [23]. The inter-
plays between tumour cells and surrounding environments further complicate the
accurate stress predictions. Almost over a decade ago, Unnikrishnan et al. [23]
reviewed the constitutive models of tumour tissue within the single-phase con-
tinuum models, the multiphase continuum models and the poroelastic models.
Constitutive modelling of the myocardium presented in this study can be classi-
fied as a single phase continuum model. In this category, Chaplain and Sleeman
[2] implemented a non-linear elastic material model for a growing tumour. Other
constitutive laws include the incompressible neo-Hookean [15], the Blatz-Ko type
model [1], etc.

Most of the aforementioned models of tumour tissue are isotropic [23], an
oversimplification of the nonlinear, hierarchical heterogeneous tumour tissue.
Except for tumour cells and blood and lymphatic vessels, the extracellular matrix
is another major structural component with collagen being one of the most com-
mon constituents and the scaffold of tumour micro-environment, which not only
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behaves as a barrier to tumour cell migration, but also actively regulates tumour
progression [6,26]. Torzilli et al. [22] has suggested a new paradigm in which they
suggested the imbalanced biomechanical force in tumour tissue, is the key trigger
of Epithelial-mesenchymal transition, and further leads to tumour cell escaping.
Therefore, it is essentially necessary to take into account local collagen network
into the constitutive modelling of tumour tissue with its active adaption during
tumour progression. Few studies have incorporated micro-structure of collagen
network in modelling biomechanics in tumour tissues. The knowledge learned
from modelling soft tissue in general, will benefit the biomechanics modelling of
tumour, in particular including complex collage network through fibre-reinforced
models presented in this study, dispersion described by probability distributions
[11,18] and tension-compression switch [12], etc.

The procedures of inferring material constants for a selected tumour model
can be obtained from ex/in vivo measurements in a similar way as presented in
this study for myocardium, usually, an inverse problem is formulated. By con-
ducting an unconfined compression experiment in tumour tissues, Voutouri et
al. [24] found that an exponential constitutive law can better fit the experimen-
tal data compared to widely used neo-Hookean and Blatz-Ko models. Colin et
al. [3] estimated the residual stress using the Ciarlet-Geymonat material model
in a spherical tumour tissue combined with an in vitro incision experiment.
The Ciarlet-Geymonat model describes an isotropic material consisting of four
terms using the three invariants I1, I2 and I3 of C, with three material param-
eters. Unlike the material model used in this study, strain invariants arising
from collage fibres are included for describing the anisotropic behaviours. Their
parameter studies further demonstrated that with limited measurements, i.e.
the opening distance of the incision, only one model parameter can be identi-
fied with confidence, and the radial stored stress could be estimated accurately.
Recently, magnetic resonance elastography has been used to infer peritumoural
tissue stiffness for non-invasively estimating tumour pressure through a nonlin-
ear biomechanical model [7]. Future studies shall include different stretch modes
on different types of tumour tissues at various stages and different spatial scales
in order to develop competent constitutive laws, further studies shall also explore
different non-invasive in vivo approaches for calibrating tumour biomechanical
behaviours.

The reliability and accuracy of the biomechanical models critically depend
on the model inputs, not just material properties, but also the geometry, etc.
Patient-specific geometries are usually constructed by manual or semi-automatic
approaches, which can have a big impact on the model predictions. While to take
into account geometry uncertainty can be challenging because of its high dimen-
sion. For example, the LV geometry in this study is discretized with 133,042
nodes. The image-based geometry reconstruction procedure used in this study
has recently been examined by Li et al. [16], in which an LV geometry from one
patient has been reconstructed five times using the same in vivo imaging data
by the same operator, and the results showed that the differences of the end-
diastolic LV cavity volume and the wall volume are less than 1%. Thus, the LV
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geometry reconstruction procedure is highly reproducible and reliable. Interested
readers refer to [9,16] for details of image processing and geometry reconstruc-
tion. Future studies shall quantify how sensitive the geometric uncertainty affects
the biomechanical environment and constitutive parameter calibration.

As discussed in [3], not all parameters can be uniquely identified from limited
measured data. The identifiability issue also exists for the constitutive law used
in this study, which has more parameters than the Ciarlet–Geymonat model [3].
Furthermore, parameters in the HO law is highly correlated as discussed in [8].
In our previous study [10], a repeated random initialization strategy was used
for inversely estimating the parameters of the HO law using ex vivo experiments.
Our results also suggest that with more measured data, more parameters can be
identified. For the in vivo estimation procedure, our previous study [8] has found
that even though it is very challenging to establish the uniqueness of the solu-
tion of the inverse problem because of its ill-posed nature, the same mechanical
responses in the physiological range can be achieved though the parameters are
somewhat different. The dilemma in the in vivo inverse problem is that fewer
data makes the inverse problem more ill-posed, but more measurements not only
bring in extra uncertainties but also make the experiments challenging or inap-
plicable in vivo. By using a Bayesian statistical approach, we recently found
that a and b in the HO law are identifiable, af is weakly identifiable, but not for
other parameters if only using circumferential strains and the cavity volume. We
are currently investigating which extra measurements (i.e. radial strain, shear
strain, etc.) are needed in order to identify all parameters of the HO law through
a global sensitivity study and uncertainty quantification. A further limitation in
the HO law is that it does not take into account collagen fibre dispersion thought
it can fit the experimental data very well [11], while a complex constitutive model
will further complicate the identifiability issue of the inverse problem.

6 Conclusion

Studies on the constitutive modelling of soft tissues are critical for understand-
ing the complex mechanobiology and pathogonesis, i.e. tumour progression and
heart disease. In this study, the invariant-based fibre-reinforced strain energy
function is introduced first within the continuum mechanics. The myocardium
is then used as an example to demonstrate how to determine unknown mate-
rial parameters from limited ex vivo experimental data, and later from in vivo
measurements, which still remains a great challenge in the biomechanics com-
munity. The significant differences between the ex vivo and in vivo material
property suggest that future studies are needed to bridge the gap from ex vivo
to in vivo by taking into account inherent spatial heterogeneity and hierarchical
microstructures, and the active growth and remodelling in biological tissue.
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Abstract. In this paper, we study a continuum mechanics model of
gastrointestinal stroma tumor (GIST) evolution under the action of two
specific treatments. The first-line treatment is a specific tyrosine kinase
inhibitor (TKI), with a cytotoxic effect, that induces direct cell death.
The second-line treatment is a multi-targeted TKI, with both cytotoxic
and anti-angiogenic effect. The model is a coupled hyperbolic/elliptic
system based on mass balance equations on cell densities coupled with
a diffusion equation on the nutrients and oxygen concentrations. The
tumor model involves 3 proliferating cell densities and a necrotic phase.
Each proliferating cell density responds differently to the treatments: P1-
cells are killed by both treatments, P2-cells are affected by the second-line
treatment only, and P3 cells are resistant to both therapies. The necrotic
cells are eliminated at a rate 1/τ . We first prove the well-posedness of the
model for any non-negative τ . Then we study the asymptotic behavior
of the solution as τ goes to zero. In particular, we proved that the limit
problem correspond to a tumor growth model without necrosis. This is
of great interest regarding the modeling, since it proves the continuity
with respect to τ of the family of τ -dependent, ensuring the consistency
of the modeling.

Keywords: Tumor growth modeling · Drug resistance · Partial
differential equations · Well-posedness · Asymptotic analysis
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1 Introduction

The impact of mathematical modeling in biology has increased dramatically
during the last two decades. Particularly in oncology, the expansion of biological
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knowledge combined with the data obtained by invasive and non-invasive tech-
niques makes it possible to elaborate more and more accurate models of tumor
growth and to study the impact of different treatments.

Many kinds of mathematical models for solid tumor growth have been devel-
oped over the last few decades. Among them, we can find discrete models, models
based on ordinary differential equations (ODE models) and partial differential
equations (PDE models). ODE models describe the time evolution of volume
or masses of tumors, but they account neither for the spatial behavior of the
tumor nor for its spatial heterogeneity. Discrete models like cellular automata
and agent-based models [3,12] can reproduce the growth at the cell-scale but
they fail to describe the cancer evolution at the tissue scale. To this end, macro-
scopic PDE models are deemed to be adequate for accounting for both time
and spatial behavior of the tumor at the macroscale. This paper falls in this
framework which seems more appropriate for clinical purpose.

Regarding PDEs descriptions of tumor, there is a wide spectrum of literature
researches on the modeling of solid tumor growth with or without treatments and
it is impossible to give an extensive list here. However, the reader can refer to [7,
14,17,22,25] and the references therein. Among PDE models, we can distinguish
two families of models: the models based on reaction-diffusion equation and the
models based on mass balance equations. Models based on reaction-diffusion
equations are used to describe the active motion of tumor cells in invasive tumors
(see [16] or [23]). Models based on mass balance equations on cell densities
are used when cell proliferation is the only cause of tumor growth. Roughly
speaking, on the one hand, primary tumors are composed of degenerate cells
of the host organ. These cells are in their initial host organ, which is their
original growing environment. This makes it hard to determine precisely the
boundary of the tumor. On the other hand, metastases are composed of cells that
come from a different tissue than the host organ. They are more regular, with
sharp interfaces. These interfaces can be described using free boundary methods
[9,11,15,20] or multiphase mixtures [8], which consider both cell densities and
extracellular matrix [21,24]. The model we study comes from [4] and it is based
on mass balance equations. It describes the spatial heterogeneity as a mixture of
several cell populations. For the closure of the model, we assume that the tumor
behaves like a fluid in a porous media and we close the system by a Darcy’s
law on the velocity field [2]. Other closure such as viscoelastic laws can be used
(see [5]) however based on our experience, Darcy’s law is sufficient as a first
approximation to address some clinical issues [10].

In this paper, we consider the PDE models of gastrointestinal stroma tumor
(GIST) metastases located in the liver. The model has been studied numerically
in [18]. The aim of this paper is to study the mathematical properties, namely
well-posedness and asymptotic behavior of the solution. Let us present briefly
the heuristics of the model. It is commonly known that mutations will lead to the
creation of tumor cells which are resistant to cytotoxic drugs. At the time being,
it is not possible to know when such mutations appear since this may depend on
several parameters (such as treatment time, patient variability, external condi-
tions). Therefore, it has been assumed in [18] that different populations of cells
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co-exist at the initial time of the model. Other models for drug resistance can be
studied, by considering that the transition from being sensitive to a treatment to
becoming resistant to a treatment is continuous [19]. One of the features of the
model [18] is that it describes the necrosis. Such a necrosis is composed of cells
that die because of drugs or hypoxia (the lack of oxygen/nutrients). This necro-
sis is evacuated at a given rate 1/τ . The main objective of this paper is to study
the well-posedness of the model proposed in [18] and to study its asymptotic
behavior for small τ .

The outline of the paper is as follows. In Sect. 2 we briefly present the model.
The model will be considered in a bounded domain in dimension 2 or 3 in
space. Then we present the model without necrosis which will be proved to be
the limit model when the necrosis is immediately evacuated. In Sect. 3 we state
the main results. Section 4 is devoted to preliminary results required for Sects. 5
and 6. These results use classical estimates for hyperbolic, elliptic, and parabolic
equations. In Sect. 5, we prove the well-posedness of the model. The proof is based
on a fixed-point method. Finally, we perform the asymptotic analysis for τ → 0
in Sect. 6. As it will be shown hereafter, it is a singular perturbation problem.
The interesting fact is that, based on our analysis, we can describe the tumor
growth evolution under treatment continuously with respect to τ .

Remark 1.1 (On the necrotic phase in tumor model). Besides GIST metas-
tases, such a necrotic compartment is also important for other kinds of tumors.
For example, one can cite thyroid metastases to the lung (Fig. 1.a) or meningioma
(Fig. 1.b), in which few necrotic tissue is visible. Much more aggressive tumors,
such as glioblastoma (Fig. 1.d), generate a rather big necrotic core. In contrast
to these tumors, the necrotic cells of GIST metastases to the liver (Fig. 1.c) are
more diffused inside the tumor.

2 The Model

In this section, we present the model of Lefebvre et al. provided in [18]. The
typical evolution of the volume of GIST metastasis is provided by Fig. 2. Once
the GIST metastasis has been diagnosed and the specific TKI (typically Imatinib
drug) has been chosen the tumor starts its shrinkage, synonym of a good response
to the treatment and the disease is under control. However, after a specific period
of time, which depends on the patient, the volume stabilises and the shrinkage
stops. On the image, one can see a recolonisation of the necrotic core as shown
in [18]. Then the tumor restarts growing, meaning that the first-line treatment is
no more efficient. The second line treatment is then a multi-targeted TKI (often
Sunitinib), which is followed by a shrinkage much shorter than the previous one,
and then the disease is out of control. The model proposed in [18] consists in
describing the evolution of three cancer cell populations subjected to two lines
of treatment. The first-line treatment denoted by T1 is a specific tyrosine kinase
inhibitor (TKI), which has a cytotoxic effect, as reported by clinical studies.
The second-line treatment denoted by T2 is a multi-targeted TKI, with both
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Fig. 1. a) Metastasis to the lung (Courtesy of J. Palussière, MD at Institut Bergonié,
33000 Bordeaux, France), b) brain meningioma (Courtesy of H. Loiseau, MD at Hôpital
Pellegrin, CHU Bordeaux, 33000 Bordeaux, France), c) GIST metastasis to the liver
(Courtesy of J. Palussière, MD at Institut Bergonié, 33000 Bordeaux, France), d) brain
glioma (Courtesy of H. M. Fathallah-Shaykh, MD at University of Alabama at Birm-
ingham, Birmingham, AL 35294, USA).

Fig. 2. The typical evolution of the volume of GIST metastasis under 2 lines of tyrosine
kinase inhibitor treatment from [18]. The continuous line is the polynomial interpola-
tion of the volumes computed from medical imaging. a) the first-line treament begins.
b) the tumor shrinks and the core is dark (necrotic) on the MRI. c) The shrinkage has
stops and the core of the tumor is enhanced. d) the disease if out of control: another
treatment has to be chosen. e) the second line treatment seems efficient. f) In terms of
volume the disease seems under control but the texture of the image is changing. One
month later the disease relapse.
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cytotoxic and anti-angiogenic effect. P1 stands for the density of the proliferating
cells which are assumed to be sensitive to both treatments T1 and T2. P2 denotes
the density of proliferating cells which are resistant to T1 and sensitive to T2.
The density of cells that are affected neither by T1 nor by T2 is denoted by P3.

The nutrient (and oxygen) supply, that comes from the healthy tissue, is
denoted by M . It drives the cell proliferation rate γ1(M) − γ2(M) of the three
cancer cell species, where γ1 and γ2 are positive functions, standing respectively
for the proliferation rate and the death rate due to hypoxia. In [18], they set
(1)

γ1(M) =
1 + tanh(K1(M − Mhyp))

2
, γ2(M) =

1 − tanh(K2(M − Mhyp))
2

,

where K0,K1 are coefficients, and Mhyp is the hypoxia threshold.
The treatments efficiency is described by using the smooth functions t →

μ1(t) and t → μ2(t), which stand for the cytotoxic effect of the treatments T1

and T2 respectively. We assume that the absorption of these drugs is proportional
to the nutrient/oxygen supply rate.

When the cells die because of the treatment or due to hypoxia, they enter to
a necrotic phase, whose density is denoted by N . The necrotic compartment is
assumed to be evacuated at the rate 1/τ where τ is the characteristic evacuation
time.

S is the density of the healthy cells, which do not divide since their
metabolism is slow compared to the metabolism of proliferating cells.

The tumor grows at a speed v whose divergence is obtained by using the
saturation assumption:

(2) P1 + P2 + P3 + N + S = 1.

The factor ξ is introduced in order to account for the VEGF signal produced
by the tumor cells to involve angiogenesis (see [13]). It is assumed to be global
at any time and proportional to the number of cells dying by hypoxia, which
is the fraction γ2(M)

max γ2
(P1 + P2 + P3). The smooth function of time ν2 stands

for the anti-angiogenic effect of treatment T2, it can be a regularization of the
time-characteristic function of treatment T2. The parameter λ is the coefficient
of absorption of this signal by the organism. For further details concerning the
modeling, the reader may refer to [18].

For the sake of conciseness, we introduce the following notations in order to
write the problem in a factorized way.

Notation 2.1. For any α ∈ R
n, β ∈ R

d we denote by

(α ⊗ β)i,j = αiβj , for i = 1, . . . , n, j = 1, . . . , d,

∇ · (α ⊗ β) = (∇ · β)α + (β · ∇)α.
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The vector u stands for (P1, P2, P3, S)t and we denote by γ(M) := γ1(M) −
γ2(M). Now we define

A(M) :=

⎛
⎜⎜⎝

γ(M) − (μ1 + μ2)M 0 0 0
0 γ(M) − μ2M 0 0
0 0 γ(M) 0
0 0 0 0

⎞
⎟⎟⎠,

b(M) := (γ1(M), γ1(M), γ1(M), 0)t,

d(M) := (γ2(M) + (μ1 + μ2)M,γ2(M) + μ2M,γ2(M), 0)t,

p := (1, 1, 1, 0)t,

p1,2:= (1, 1, 0, 0)t,

s := (0, 0, 0, 1)t,

and we denote by n the outward normal to Ω, where Ω is a bounded domain in
R

2 or R
3.

The model of Lefebvre et al. can be written as

∂tu + ∇ · (u ⊗ v) = A(M)u,(3a)
u = s, if v · n < 0 on ∂Ω,(3b)

∂tN + ∇ · (vN) = d(M) · u − (1/τ)N,(3c)
N = 0, if v · n < 0 on ∂Ω,(3d)

∇ · v = b(M) · u − (1/τ)N,(3e)
v = −k∇Π,(3f)

Π|∂Ω = 0,(3g)
∂tM − ΔM + ∇ · (Mξ∇(p · u)) = −ηMp · u + C0s · u(1 − M),(3h)

M |∂Ω = 1,(3i)

∂tξ = α

∫

Ω

γ2(M)
max γ2

(p − ν2p1,2) · udx − λξ,(3j)

with initial conditions on u, N , M , and ξ given later on.
Without necrosis, similar modeling considerations lead to the following

model:

∂tu + ∇ · (u ⊗ v) = A(M)u,(4a)
u = s, if v · n < 0 on ∂Ω,(4b)

∇ · v = (b(M) − d(M)) · u,(4c)
v = −k∇Π,(4d)

Π|∂Ω = 0,(4e)
∂tM − ΔM + ∇ · (Mξ∇(p · u)) = −ηMp · u + C0s · u(1 − M),(4f)

M |∂Ω = 1,(4g)

∂tξ = α

∫

Ω

γ2(M)
max γ2

(p − ν2p1,2) · udx − λξ.(4h)

Here again the initial conditions on u, M , and ξ are made precise later on.
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It is worth noting that for both systems (3) and (4) the Eqs. (3e)–(3f)–
(3g) (resp. (4c)–(4d)–(4e)) uniquely determines the pressure Π, from which the
velocity v is deduced thanks to the Darcy type law (3f) (resp. (4d)). Note that in
both cases homogeneous Dirichlet condition is imposed to the pressure Π. This
implicitly states that the tumor growth has no influence on the tissue far from
the tumor location.

3 Main Results and Interpretation

In this paper, we prove the local existence and uniqueness of the solution to the
problems (3) and (4), under appropriate assumptions on the initial data and the
boundary, as well as the asymptotic behavior of the solution to (3) when τ → 0.
In particular we prove that under high enough Sobolev regularity the two above
problems are well-posed as long as the tumor does not reach the boundary of
the domain.

In our study, we consider a bounded domain denoted by Ω included in R
d, for

d = 2, 3. For the spatial regularity, we use the algebra structure of the Sobolev
space Hs(Ω) for s large enough. This algebra structure is a consequence of the
two following results:

• the Sobolev embedding Hs(Ω) ↪→ L∞(Ω) for s integer such that s > d/2 (see
Corollary 9.13 and Corollary 9.15 in [6]);

• the algebra structure of Hs(Ω) ∩ L∞(Ω) for s > 0 (see Chapter II. §A.2
Application to the study of products and composition, Proposition 2.1.1 in
[1]).

Hypothesis 3.1. Throughout the paper, the following hypothesis hold:

• the domain Ω is a bounded domain in R
2 or R

3 with C∞ boundary,
• the rates γ1(M) and γ2(M) are non-negative and C∞ functions (this is the

case for the examples given by (1)),
• the parameters μ1, μ2, and ν2 are C∞ non-negative functions of time, such

as regularization of the time-characteristic functions of treatment T1, T2 and
we assume that ν2 ∈ [0, 1],

• the parameters k, η, C0, α, and λ are non-negative.

Before stating our theoretical resulst, we introduce the following notations:

Notation 3.2. The solution of each equation belongs to specific space:

• for any T > 0, p ∈ [1,+∞], and s ≥ 0, we denote by Lp
T ;Hs the space

Lp(0, T ;Hs(Ω)) endowed with the norm

‖ϕ‖Lp
T ;Hs := ‖ϕ‖Lp(0,T ;Hs(Ω)), ∀ϕ ∈ Lp

T ;Hs,

for the purpose of clarity, for u ∈ Lp(0, T ;Hs(Ω))n we denote by ‖u‖Lp
T ;Hs

the norm of u components by components,
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• for any T > 0, p1, p2 ∈ [1,+∞], and s1, s2 ≥ 0, we denote by Lp1
T ;Hs1 ∩

Lp2
T ;Hs2 the space Lp1(0, T ;Hs1(Ω)) ∩ Lp2(0, T ;Hs2(Ω)) endowed with the

norm

‖ϕ‖L
p1
T ;Hs1∩L

p2
T ;Hs2 := ‖ϕ‖L

p1
T ;Hs1 + ‖ϕ‖L

p2
T ;Hs2 , ∀ϕ ∈ Lp1

T ;Hs1 ∩ Lp2
T ;Hs2 ,

• for any s ≥ 1, we denote by Es
0 the space Hs(Ω)4 × Hs−1(Ω) × R endowed

with the norm:

‖(u0,M0, ξ0)‖Es
0

:= ‖u0‖Hs + ‖M0‖Hs−1 + |ξ0|, ∀(u0,M0, ξ0) ∈ Es
0 ,

• for any T > 0 and s ≥ 1, we denote by Es
T the space (L∞

T ;Hs)4 × L2
T ;Hs ∩

L∞
T ;Hs−1 × C0([0, T ]) endowed with the norm:

‖(u,M, ξ)‖Es
T

:= ‖u‖L∞
T ;Hs + ‖M‖L2

T ;Hs∩L∞
T ;Hs−1 + ‖ξ‖∞, ∀(u,M, ξ) ∈ Es

T ,

• for any T > 0 and s ≥ 0, we denote by E2,s
T the space (L2

T ;Hs)4 × L2
T ;Hs ×

L2(0, T ) endowed with the norm:

‖(u,M, ξ)‖E2,s
T

:= ‖u‖L2
T ;Hs + ‖M‖L2

T ;Hs + ‖ξ‖L2(0,T ), ∀(u,M, ξ) ∈ E2,s
T .

Then the local existence and uniqueness result is the following:

Theorem 3.3 (Well-posedness of problems (3) and (4)). Assume the hypothe-
ses 3.1 hold. Let s ≥ 3.

(i) Let τ > 0, (u0,M0, ξ0) ∈ Es
0 , and N0 ∈ Hs(Ω) such that u0 − s (where

s = (0, 0, 0, 1)t) and N0 are compactly supported in Ω. Let us assume that
the cell densities u0 = (P1,0, P2,0, P3,0, S0)t and N0 satisfy
• P1,0, P2,0, P3,0, and N0 have compact support in Ω,
• P1,0, P2,0, P3,0, S0, N0 ≥ 0,
• P1,0 + P2,0 + P3,0 + N0 + S0 = 1.
Then, there exist R ≥ ‖(u0,M0, ξ0)‖Es

0
+ ‖N0‖Hs and a maximal time

of existence T τ > 0 such that the problem (3) has a unique solution
((u,M, ξ),v, N) in Es

T τ × L2
T ;Hs+1 ∩ L∞

T ;Hs × L∞
T ;Hs. This solution sat-

isfies
(a) ‖(u,M, ξ)‖Es

T τ
+ ‖N‖L∞

T τ ;Hs ≤ R,
(b) u, N , v ∈ C0([0, T τ ];Hs−1(Ω)), M ∈ C0([0, T τ ];Hs−2(Ω)), and ξ ∈

C1([0, T τ ]),
(c) the cell densities u = (P1, P2, P3, S)t and N satisfy

• for all t < T τ , P1(t, ·), P2(t, ·), P3(t, ·), N(t, ·) have compact support
in Ω (i.e. the tumor does not hit the boundary),

• P1, P2, P3, S,N ≥ 0,
• P1 + P2 + P3 + N + S = 1.

(ii) Let (u0,M0, ξ0) ∈ Es
0 such that u0 − s (where s = (0, 0, 0, 1)t) is

compactly supported in Ω. Let us assume that the cells densities u0 =
(P1,0, P2,0, P3,0, S0)t satisfy
• P1,0, P2,0, P3,0 have compact support in Ω,
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• P1,0, P2,0, P3,0, S0 ≥ 0,
• P1,0 + P2,0 + P3,0 + S0 = 1.
Then, there exist R ≥ ‖(u0,M0, ξ0)‖Es

0
and a maximal time of existence

T > 0 such that the problem (4) has a unique solution ((u,M, ξ),v) in
Es

T × L2
T ;Hs+1 ∩ L∞

T ;Hs. This solution satisfies
(a) ‖(u,M, ξ)‖Es

T
≤ R,

(b) u,v ∈ C0([0, T ];Hs−1(Ω)), M ∈ C0([0, T ];Hs−2(Ω)), ξ ∈ C1([0, T ]),
(c) the cell densities u = (P1, P2, P3, S)t satisfy

• for all t < T , P1(t, ·), P2(t, ·), P3(t, ·) have compact support in Ω (i.e.
the tumor does not hit the boundary),

• P1, P2, P3, S ≥ 0,
• P1 + P2 + P3 + S = 1.

Remark 3.4. For the purpose of simplicity, we prove the theorem for s integer
such that s ≥ 3, then interpolation theorem gives the result for any real s ≥ 3.
The only hypothesis needed is that s > d/2+1 (which implies that the embedding
Hs−1(Ω) ↪→ L∞(Ω) is continuous).

Remark 3.5 (Continuity with respect to initial conditions). Under the assump-
tions of Theorem 3.3 we have

(i) Let τ > 0. For i = 1, 2, let X0,i := (u0,i,M0,i, ξ0,i) ∈ Es
0 and N0,i ∈ Hs(Ω)

as in Theorem 3.3 (i) and assume that these initial conditions X0,i, N0,i are
bounded by R > 0. Let ((ui,Mi, ξi),vi, Ni) be the solution to problem (3)
with initial conditions u0,i,M0,i, ξ0,i, and N0,i. Denote by Xi the vector
(ui,Mi, ξi). Then there exists CR > 0 such that

‖(X1,v1, N1) − (X2,v2, N2)‖2
E2,s−1

T τ ×L2
T τ ;Hs×L2

T τ ;Hs−1

≤ CR‖(X0,1, N0,1) − (X0,2, N0,2)‖2
Es−1
0 ×Hs−1 .

(ii) For i = 1, 2, let X0,i := (u0,i,M0,i, ξ0,i) ∈ Es
0 as in Theorem 3.3 (ii)

and assume that these initial conditions X0,i are bounded by R > 0.
Let ((ui,Mi, ξi),vi) be the solution to problem (4) with initial conditions
u0,i,M0,i, ξ0,i. Denote by Xi the vector (ui,Mi, ξi). Then there exists CR > 0
such that

‖(X1,v1) − (X2,v2)‖2
E2,s−1

T τ ×L2
T τ ;Hs ≤ CR‖X0,1 − X0,2‖2

Es−1
0

.

The second result states that, if the initial data are well-prepared, the solution
to problem (3) converges to the solution to problem (4) when τ → 0:

Theorem 3.6 (Asymptotic behavior). For any τ > 0, let uτ
0 , Nτ

0 , Mτ
0 , and ξτ

0

be as in Theorem 3.3 (i). Let u0, M0, and ξ0 be as in Theorem 3.3 (ii). Assume
that
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• lim
τ→0+

1√
τ

‖Nτ
0 ‖Hs = 0,

• lim
τ→0+

(uτ
0 ,Mτ

0 , ξτ
0 ) = (u0,M0, ξ0) in Es−1

0 .

Then there exists T > 0 (independent of τ) such that

• for any τ > 0, the problem (3) has a unique solution on [0, T ] denoted by
((uτ ,Mτ , ξτ ),vτ , Nτ ) and the problem (4) has a unique solution on [0, T ]
denoted by ((u,M, ξ),v),

• there exists C > 0 such that for any τ > 0 small enough

1√
τ

‖Nτ‖L∞
T ;Hs +

1
τ

‖Nτ‖L2
T ;Hs ≤ C,

• lim
τ→0+

((uτ ,Mτ , ξτ ),vτ ) = (u,M, ξ,v) in E2,s−1
T ×L2

T ;Hs.

4 Preliminary Results

Throughout the paper, we consider d = 2, 3 and s ≥ 3. In this section, we prove
estimates on the solutions to the two models. The key argument to obtain these
estimates is that if the initial data of P1, P2, P3, N have compact support in Ω,
then any solution to (3) or (4) is compactly supported in Ω. One can obtain a
priori estimates on the system using nonlinear estimates in high order Sobolev
spaces (similarly to nonlinear hyperbolic systems, see [1]) and usual parabolic
estimates on M . The strategy is therefore to construct a suitable mapping such
that this property remains true. In a first step, we start to define the operators
which give the solution of each equation and we construct the mappings on which
we apply the fixed-point strategy.

Definition 4.1. We consider the following operators

• V : f 
−→ v, where v is the solution1 to

(5)

⎧⎨
⎩

∇ · v = f, (in Ω)
v = −k∇Π, (in Ω)
Π = 0, (on ∂Ω)

• U : (u0,v,M) 
−→ u, where u is the solution to

(6)

⎧⎨
⎩

∂tu + ∇ · (u ⊗ v) = A(M)u, (in Ω)
u = s, (if v · n < 0 on ∂Ω)

u|t=0 = u0, (in Ω)

1 Note that Π is uniquely determined as the elliptic solution to (5), ans v is deduced
by v = −k∇Π.
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• N : (N0,u0,v,M, τ) 
−→ N , where N is the solution to

(7)

⎧⎨
⎩

∂tN + ∇ · (vN) = d(M) · u − (1/τ)N, (in Ω)
N = 0, (if v · n < 0 on ∂Ω)

N |t=0 = N0, (in Ω)

with u := U(u0,v,M).
• M : (M0,u, ξ) 
−→ M , where M is the solution to

(8)⎧⎨
⎩

∂tM − ΔM + ∇ · (Mξ∇(p · u)) = −ηMp · u + C0s · u(1 − M), (on Ω)
M |∂Ω = 1,
M |t=0 = M0,

• Ξ : (ξ0,u,M) 
−→ ξ, where ξ is the solution to

(9)

⎧⎨
⎩

∂tξ = α

∫

Ω

γ2(M)
max γ2

(p − ν2p1,2) · udx − λξ,

ξ|t=0 = ξ0.

To apply the fixed-point strategy on problem (3), we define the operator Φ
as follows: for any X0 := (u0,M0, ξ0), N0, and X := (u,M, ξ), N , we define

(X̃, Ñ) := Φ((X,N), (X0, N0), τ),

where X̃ := (ũ, M̃ , ξ̃) with

ũ := U(u0,V(b(M) · u − (1/τ)N),M),

Ñ := N (N0,u0,V(b(M) · u − (1/τ)N),M),

M̃ := M(M0,u, ξ),

ξ̃ := Ξ(ξ0,u,M),

To apply the fixed-point strategy on problem (4), we define the operator Ψ
as follows: for any X0 := (u0,M0, ξ0) and X := (u,M, ξ), we define

X̃ := Ψ(X,X0),

where X̃ := (ũ, M̃ , ξ̃) with

ũ := U(u0,V((b(M) − d(M)) · u),M),

M̃ := M(M0,u, ξ),

ξ̃ := Ξ(ξ0,u,M).

In order to prove the well-posedness of problems (3) and (4), we use the facts
that

• if it exists, the solution to (3) satisfies (Xτ , Nτ ) = Φ((Xτ , Nτ ), (X0, N0), τ),
• if the solution to (4) exists, it satisfies X = Ψ(X,X0).

It is crucial to exhibit the stability and the Lipschitz-continuity properties of
the operators Φ and Ψ. Such properties will be deduced after the analysis of the
operators V,U ,N ,M, and Ξ.
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4.1 Estimates for Operator V
Since Ω is smooth, the following estimate on V is a consequence of classical
results on linear elliptic equations that can be found in [6] (see Theorem 9.25 in
[6]). For the sake of conciseness, the proof of the following property is left to the
reader.

Proposition 4.2 (Estimate for V). Let s′ ≤ s, p ∈ [1,+∞], and f ∈ Lp
T ;Hs′

be given. Then the solution v to (5) belongs to Lp
T ;Hs′+1 and there exists C > 0

such that v satisfies

‖v‖2
Lp

T ;Hs′+1 ≤ C‖f‖2
Lp

T ;Hs′ .

Moreover, if f ∈ C0([0, T ];Hs−2(Ω)) then v ∈ C0([0, T ];Hs−1(Ω)).

4.2 Estimates for Operators U , N
Let u0 ∈ Hs(Ω)4, N0 ∈ Hs(Ω), v ∈ (L2

T ;Hs+1)d, and M ∈ L2
T ;Hs be given.

We consider u and N the solutions to (6) and (7). In order to derive explicit
formulas of u and N , we use the characteristic method. The difficulty lies in the
fact that ∇·v is not necessarily non-negative and thus we must be able to move
forward and backward along the characteristic curves. We use the assumption
that u0 − s (where s = (0, 0, 0, 1)t) and N0 have compact support in Ω and we
restrict T to an upper bound so that the tumor does not reach the boundary
∂Ω. More precisely we introduce the following domains:

Definition 4.3. Let Ω0 be an open set compactly embedded in Ω and assume
that supp(u0 − s) ∪ supp(N0) ⊂ Ω0. For i = 1, 2, 3, we define the open domain
Ωi (see Fig. 3) by

Ωi :=
{
x ∈ Ω,d(x,Ω0) <

i

4
d(∂Ω,Ω0)

}
, for i = 1, 2, 3.

In order to prevent that characteristic curves go out of Ω we assume in the
following that T is small enough such that

(10)
√

T‖v‖L2
T ;Hs+1 <

1
4
d(∂Ω,Ω0).

The upper bound (10) on T ensures the two following points:

• The characteristic curves are well-defined for any t, t′ ∈ [0, T ], and x ∈ Ω3 by
{

∂t′ x̃(t′, t, x) = v(t′, x̃(t′, t, x)),
x̃(t, t, x) = x,

• For i = 0, 1, 2, the characteristic curves coming from Ωi at t = 0 stay in Ωi+1

for any t ≤ T . Indeed for any t, t′ ∈ [0, T ], and x ∈ Ω2, we have

|x̃(t′, t, x) − x| ≤
√

|t − t′|‖v‖L2
T ;Hs+1 <

√
|t − t′|

T

1
4
d(∂Ω,Ω0).
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Ω0

Ω1

Ω2
Ω3

Ω

Ω0 is such that

supp(u0 − s) ∪ supp(N0) ⊂⊂ Ω0,

Ω1 satisfies
⋃

t∈[0,T ]

supp(p·u(t, ·))∪supp(N(t, ·))) ⊂⊂ Ω1,

Ω2 is such that u and N have explicit for-
mula in Ω2 and satisfy

⋃

t∈[0,T ]

supp(u(t, ·) − s) ⊂⊂ Ω2,

characteristic curves are defined in Ω3.

Fig. 3. The domains defined for the characteristic method.

By using the change of coordinates along the characteristic curves, we can
come back from Ω3 to Ω2 and obtain the following explicit formulas of the
solutions to (6) and (7) in Ω2:
∀(t, x) ∈ [0, T ] × Ω2,

u(t, x) = exp
( ∫ t

0

(A(M) − ∇ · v)(t′, x̃(t′, t, x))dt′
)
u0(x̃(0, t, x)),(11)

N(t, x) = exp
(

−
∫ t

0

(∇ · v +
1

τ

)
(t′, x̃(t′, t, x))dt′

)
N0(x̃(0, t, x))

+

∫ t

0

exp
(

−
∫ t

t′

(∇ · v +
1

τ

)
(t′′, x̃(t′′, t, x))dt′′

)(
d(M) · u)

(t′, x̃(t′, t, x))dt′.

(12)

This leads to the following property:

Proposition 4.4. Let u0 ∈ Hs(Ω)4, N0 ∈ Hs(Ω), v ∈ (L2
T ;Hs+1)d, and M ∈

L2
T ;Hs. Assume the 3 following facts:

(i) N0 and the components of u0 are non-negative,
(ii) supp(u0 − s) ∪ supp(N0) is compactly embedded in Ω0,
(iii)

⋃
t∈[0,T ]

supp((∇ · v)(t, ·)) is compactly embedded in Ω1.

Then u := U(u0,v,M) and N := N (N0,u0,v,M, τ) satisfy

(i) N and the components of u are non-negative,
(ii)

⋃
t∈[0,T ]

(
supp(p · u(t, ·)) ∪ supp(N(t, ·))

)
is compactly embedded in Ω1,

(iii)
⋃

t∈[0,T ]

supp(u(t, ·) − s) is compactly embedded in Ω2.
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Remark 4.5. The property that
⋃

t∈[0,T ]

(
supp(p·u(t, ·))∪supp(N(t, ·))

)
is com-

pactly embedded in Ω1 implies the 2 followings points:

•
⋃

t∈[0,T ]

supp
(
(∇ · V(b(M) · u − (1/τ)N)

)
(t, ·)

)
is compactly embedded in Ω1,

•
⋃

t∈[0,T ]

supp
(
(∇ · V((b(M) − d(M)) · u)

)
(t, ·)

)
is compactly embedded in Ω1,

which will be useful for the fixed point in Sect. 5.

Proof. The property that the components of u are non-negative is a consequence
of the assumption on u0 and of the explicit formula (11). Then since d(M) · u
is non-negative, the explicit formula (12) and the assumption on N0 lead to the
property that N is non-negative.

Denote by K0 ⊂ Ω0 the compact supp(u0 − s) ∪ supp(N0) and denote by
K1 ⊂ Ω1 a compact such that

•
⋃

t∈[0,T ]

supp
(
(∇ · v)(t, ·)

)
⊂ K1,

•
{
x ∈ Ω,d(x,K0) ≤ 1

4d(∂Ω,Ω0)
}

⊂ K1.

We consider also K2 the compact
{
x ∈ Ω,d(x,K1) ≤ 1

4d(∂Ω,Ω0)
}

⊂ Ω2.
Let us focus on (11). For any t ∈ [0, T ] and x ∈ Ω2 \ K1, assumption (10)

on T ensures that u0(x̃(0, t, x)) = s. The fact that A(M)s = 0 implies that
exp(A(M))s = s and leads to

u(t, x) = exp
(∫ t

0

−(∇ · v)(t′, x̃(t′, t, x))dt′
)
s,

for any t ∈ [0, T ] and x ∈ Ω2 \ K1. Then we obtain that p · u(t, ·) = 0 in Ω2 \ K1

for any t ∈ [0, T ].
Since x̃(t′, t, x) ∈ Ω \ K1 for any t, t′ ∈ [0, T ], and x ∈ Ω2 \ K2, we deduce

from the above formula that u(t, ·) = s in Ω2 \ K2 for any t ∈ [0, T ].
From the explicit expressions for N and u respectively given in (12) and (11),

we deduce that d(M) · u(t′, x̃(t′, t, x)) = 0 for any t, t′ ∈ [0, T ], and x ∈ Ω2 \ K1.
Since N0(x̃(0, t, x)) = 0 for any t ∈ [0, T ] and x ∈ Ω2 \ K1, we conclude that
N(t, ·) = 0 in Ω2 \ K1.

In conclusion, the solutions u and N given by the characteristic method in
Ω2 satisfy u = s and N = 0 in a neighborhood of ∂Ω2. Based on the Eqs. (6)
and (7), u can be smoothly extended by u = s in Ω\Ω2 and N can be smoothly
extended by N = 0 in Ω \ Ω2. This concludes the proof of the Proposition. ��

For the purpose of clarity, hereafter we denote by ∂k
x , for k ∈ N, any partial

derivative of order k (which is the partial derivative ∂α
x for any multi-index

α ∈ N
d such that |α| = α1 + · · · + αd = k). The following Lemma provides

estimates on the product ∂m
x ∇ · (vu)∂m

x u in terms of ‖u‖Hm for u ∈ Hm(Ω):
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Lemma 4.6. Let s′ be an integer such that s′ > d/2 and let K ∈ R be given.
Let m ∈ N be such that m ≤ s′. Let v ∈ Hs′+1(Ω). We assume that u ∈ Hm(Ω)
is such that u = K in a neighborhood of ∂Ω. Therefore ∂k

xu|∂Ω = 0 for any
1 ≤ k ≤ m. Then there exists C > 0 such that the following estimate holds:

∣∣∣∣
∫

Ω

∂m
x ∇ · (vu)∂m

x u

∣∣∣∣ ≤ C‖v‖Hs′+1

(
K2δm,0 + ‖u‖2

Hm

)
,

where δm,0 is the Kronecker symbol equal to 1 for m = 0 and equal to 0 elsewhere.

Proof. In the proof, we use the Gagliardo-Nirenberg interpolation inequality that
is a consequence of Theorem 9.9, Corollary 9.11 and Corollary 9.14 given in [6]:
there exists C > 0 such that

‖u‖L4 ≤ C‖u‖H1 , ∀u ∈ H1(Ω).

We start by applying Leibniz formula on the left-hand side

∣∣∣
∫

Ω

∂m
x ∇ · (vu)∂m

x u
∣∣∣ ≤

m∑
k=0

Ck
m

∣∣∣
∫

Ω

∇ · (∂k
xv∂m−k

x u)∂m
x u

︸ ︷︷ ︸
=Ik

m

∣∣∣.

• If k = 0,

I0
m =

∫

Ω

∇ · (v∂m
x u)∂m

x u =
∫

Ω

(∇ · v)(∂m
x u)2 +

∫

Ω

v · 1
2
∇
(
(∂m

x u)2
)
,

then integrate by parts the second integral to obtain successively

I0
m =

∫

Ω

(∇ · v)(∂m
x u)2 +

1
2

(
K2δm,0

∫

∂Ω

v · ndσ −
∫

Ω

(∇ · v)(∂m
x u)2

)
,

=
1
2

∫

Ω

(∇ · v)
(
K2δm,0 + (∂m

x u)2
)
.

By using the continuous embedding Hs′
(Ω) ↪→ L∞(Ω) we infer

∣∣I0
m

∣∣ ≤ C‖v‖Hs′+1

(
K2δm,0 + ‖u‖2

Hm

)
.

• If 1 ≤ k ≤ m, the integral Ik
m can be rewritten as

Ik
m =

∫

Ω

(
∇ · ∂k

xv
)
∂m−k

x u∂m
x u

︸ ︷︷ ︸
I1

+
∫

Ω

∂k
xv · ∇

(
∂m−k

x u
)
∂m

x u

︸ ︷︷ ︸
I2

.

Let first estimate I1.
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(i) If m ≥ 2 and k = m:

|I1| ≤ ‖∇ · ∂m
x v‖L2‖u‖L∞‖∂m

x u‖L2 ,

and we use the continuous embedding Hm ↪→ L∞ to obtain

|I1| ≤ C‖v‖Hs′+1‖u‖2
Hm .

(ii) Otherwise I1 satisfies

|I1| ≤ ‖∇ · ∂k
xv‖L4‖∂m−k

x u‖L4‖∂m
x u‖L2 ,

Gagliardo-Nirenberg inequality and using the fact that s′ + 1 ≥ 3 lead to

|I1| ≤ C‖v‖Hs′+1‖u‖2
Hm .

Then we focus on I2.
(i) If k = 1:

|I2| ≤ ‖∂xv‖L∞‖∇(∂m−1
x u)‖L2‖∂m

x u‖L2 ,

here again the embedding H2(Ω) ↪→ L∞(Ω) and the fact that s′ + 1 ≥ 3
lead to

|I2| ≤ C‖v‖Hs′+1‖u‖2
Hm .

(ii) Otherwise, for k ≥ 2, the integral I2 satisfies

|I2| ≤ ‖∂k
xv‖L4‖∇(∂m−k

x u)‖L4‖∂m
x u‖L2 ,

and Gagliardo-Nirenberg inequality leads to

|I2| ≤ C‖v‖Hs′+1‖u‖2
Hm .

��

The previous Lemma makes it possible to prove the following estimate on
the solution to the scalar advection Eq. (13):

Proposition 4.7. Let K ∈ R, u0 ∈ Hs(Ω), v ∈ (L2
T ;Hs+1)d, a, b1, b2 ∈

L2
T ;Hs. Let u be a solution to

(13)

⎧⎨
⎩

∂tu + ∇ · (vu) = au + b1 + b2,
u|t=0 = u0,
u|∂Ω = K, if v · n < 0 on ∂Ω

and assume that u = K in a neighborhood of Ω. Then for all s′ ∈ N such that
d/2 < s′ ≤ s, there exists C > 0 such that
(14)
‖u‖2

L∞
T ;Hs′ ≤

(
‖u0‖2

Hs′ + C
√

T
(
K2‖v‖L2

T ;Hs′+1 + ‖b1‖L2
T ;Hs′

)
+ ‖b2‖2

L2
T ;Hs′

)

× exp
(
CT + C

√
T (‖v‖L2

T ;Hs′+1 + ‖a‖L2
T ;Hs′ + ‖b1‖L2

T ;Hs′ )
)

.
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Remark 4.8. A priori, b1 and b2 play the same role. However for the stability
of the operator N and the Lipschitz continuity of U and N , it is important to
discriminate their roles. More precisely, the fact that the term ‖b2‖L2

T ;Hs′ does
not appear in the exponential term in (14) will be crucial in the following (see
the proof of the Lipschitz continuity in Proposition 4.9).

Proof. Let m ∈ N, m ≤ s′, apply the derivative ∂m
x to (13), multiply by ∂m

x u
and integrate over Ω. First we observe that since Hs′

is an algebra,∣∣∣∣
∫

Ω

∂m
x (au)∂m

x u

∣∣∣∣ ≤ ‖au‖Hs′ ‖u‖Hs′ ,

≤ C‖a‖Hs′ ‖u‖2
Hs′ .

Then we have ∣∣∣∣
∫

Ω

∂m
x b1∂

m
x u

∣∣∣∣ ≤ ‖b1‖Hs′ ‖u‖Hs′ ,

≤ ‖b1‖Hs′ (1 + ‖u‖2
Hs′ ),

and similarly ∣∣∣∣
∫

Ω

∂m
x b2∂

m
x u

∣∣∣∣ ≤ 1
2
(‖b2‖2

Hs′ + ‖u‖2
Hs′ ).

By summing the above inequalities and by using Lemma 4.6 we obtain straight-
forwardly

∂t‖u‖2
Hs′ ≤ C

[
(1 + ‖v‖Hs′+1 + ‖a‖Hs′ + ‖b1‖Hs′ ) ‖u‖2

Hs′

+ K2‖v‖Hs′+1 + ‖b1‖Hs′ + ‖b2‖2
Hs′

]
,

then integrating in time between 0 and t < T and applying Gronwall’s inequality
lead to the result. ��

By using Proposition 4.7, we deduce the stability and the Lipschitz continuity
of the operators U and N .

Proposition 4.9 (Estimate for U , N ). Operators U and N satisfy the following
properties:

(i) (Stability) Let u0 ∈ Hs(Ω)4, N0 ∈ Hs(Ω), v ∈ (L2
T ;Hs+1)d ∩ (L∞

T ;Hs)d,
and M ∈ L2

T ;Hs ∩L∞
T ;Hs−1 satisfying the assumptions of Proposition 4.4.

Then there exists C > 0 such that u := U(u0,v,M) satisfies

‖u‖2
L∞

T
;Hs ≤

(
‖u0‖2

Hs + C
√

T‖v‖L2
T

;Hs+1

)
exp

(
C

√
T (‖v‖L2

T
;Hs+1 + ‖M‖L2

T
;Hs )

)
,

and N := N (N0,u0,v,M, τ) satisfies

‖N‖2
L∞

T ;Hs ≤
(
‖N0‖2

Hs + C
√

T (‖v‖L2
T ;Hs+1 + ‖u‖L∞

T ;Hs‖M‖L2
T ;Hs)

)

× exp
(
C

√
T (‖v‖L2

T ;Hs+1 + ‖u‖L∞
T ;Hs‖M‖L2

T ;Hs)
)

.

moreover u, N ∈ C0([0, T ];Hs−1(Ω)).
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(ii) (Lipschitz continuity) For i = 1, 2, let u0,i, N0,i, vi, Mi be as previously
and let ui := U(u0,i,vi,Mi) and Ni := N (N0,i,u0,i,vi,Mi, τ). Assume
there exists R > 0 such that

‖(ui,Mi, ξi)‖Es
T

+ ‖Ni‖L∞
T ;Hs ≤ R,

then there exists CR > 0 such that

‖u1 − u2‖2
L∞

T ;Hs−1 ≤ CR

(
‖u0,1 − u0,2‖2

Hs−1

+ ‖v1 − v2‖2
L2

T ;Hs + ‖M1 − M2‖2
L2

T ;Hs−1

)
,

and

‖N1 − N2‖2
L∞

T ;Hs−1 ≤ CR

(
‖N0,1 − N0,2‖2

Hs−1 + ‖v1 − v2‖2
L2

T ;Hs

+ ‖M1 − M2‖2
L2

T ;Hs−1 + ‖u1 − u2‖2
L2

T ;Hs−1

)
.

Proof. (i) We apply Proposition 4.7 with s′ = s, b1, and b2 identically null.
For 1 ≤ i ≤ 4, let u be the ith component of u, and a equals to the ith

diagonal component of A(M) (recall that A(M) is diagonal) and we apply
Proposition 4.7 to obtain the estimate for u.
Applying Proposition 4.7 with s′ = s, b1 equal to d(M) · u, a, and b2

identically null leads to the estimate for N2.
To prove the time continuity, the assumptions on v, M , and the Eq. (6)
imply that ∂tu belongs to (L∞

T ;Hs−1)d. By integrating ∂tu in time between
t1 and t2 (with 0 ≤ t1 ≤ t2 ≤ T ) and using the fact that u0 ∈ Hs(Ω), we
obtain that u ∈ C0([0, T ];Hs−1(Ω)) (even Lipschitz continuous). The same
result holds for N .

(ii) Let u1, u2 be as in Proposition 4.9, then u1 − u2 satisfies the following
equation:

∂t(u1 − u2) + ∇ · ((u1 − u2) ⊗ v1)
= A(M1)(u1 − u2) − ∇ · (u2 ⊗ (v1 − v2)) + (A(M1) − A(M2))u2.

For 1 ≤ i ≤ 4, we apply Proposition 4.7 with s′ = s − 1, v = v1, u equal
to the ith component of u1 − u2, a equal to the ith diagonal component
of A(M1), b1 identically null, and b2 equal to the ith component of −∇ ·
(u2 ⊗ (v1 − v2)) + (A(M1) − A(M2))u2. By observing that

‖∇ · (u2 ⊗ (v1 − v2)) ‖2
Hs−1 ≤ ‖u2 ⊗ (v1 − v2)‖2

Hs ,

≤ C‖u2‖2
Hs‖v1 − v2‖2

Hs ,

≤ CR‖v1 − v2‖2
Hs ,

2 Note that the linear term −(1/τ)N in Eq. (7) is easy to handle: it provides a constant
e−t/τ ≤ 1 for any 0 ≤ t ≤ T .



Mathematical Modeling of Gastro-Intestinal Metastasis Resistance 33

and by integrating in time between 0 and T , we obtain

‖∇ · (u2 ⊗ (v1 − v2)) ‖2
L2

T ;Hs−1 ≤ CR‖v1 − v2‖2
L2

T ;Hs .

Similarly, we get the following estimate on A(M1) − A(M2):

‖(A(M1) − A(M2))u2‖2
L2

T ;Hs−1 ≤ CR‖M1 − M2‖2
L2

T ;Hs−1 .

Then we apply Proposition 4.7 to obtain

‖u1 − u2‖2
L∞

T ;Hs−1

≤
(
‖u0,1 − u0,2‖2

Hs−1 + CR

(
‖v1 − v2‖2

L2
T ;Hs + ‖M1 − M2‖2

L2
T ;Hs−1

))

× exp
(
CT + CR

√
T
)

.

Finally, since T is bounded by some arbitrary constant, we have proven the
estimate on u1 − u2.
We use the same ideas to get the estimate on N1 − N2.

��

4.3 Estimate for M
To prove the estimates on M, we start proving estimates on the following equa-
tion:

⎧⎨
⎩

∂tM̃ − ΔM̃ + ∇ · (w1M̃ + w2) = aM̃ + b,

M̃ |∂Ω = 0,

M̃ |t=0 = M̃0,

(15)

where M̃0 satisfies the boundary condition, w1, w2, and b have compact support
in Ω. The estimates on M̃ make it possible to prove the stability and the Lipschitz
continuity estimates on M. To prove the estimates on M̃ , we build M̃ by a
Galerkin approximation using the eigenvalues of the operator (−Δ) endowed
with the Dirichlet boundary conditions. This makes it possible to assume in
the following computations that for any k ∈ N, (−Δ)kM̃ = 0 on the boundary
(we can also see this from the equation satisfied by M̃). In order to prove the
estimate on M̃ , we need the following Lemma:

Lemma 4.10. Let M̃0 ∈ Hs−1(Ω). Let w1 ∈ (L2
T ;Hs−1)d, a ∈ L2

T ;Hs−1, and
w2 ∈ (L2

T ;L2)d, b ∈ L2
T ;L2. Assume that M̃0|∂Ω = 0 and that w1, w2, and b

have compact support in Ω. Then the solution M̃ to (15) satisfies

(i) for any k ∈ N, such that 2k + 1 ≤ s and w2 ∈ (L2
T ;H2k)d, b ∈ L2

T ;H2k,
there exists C > 0 such that

(16)
∂t‖(−Δ)kM̃‖2

L2 + ‖(−Δ)k∇M̃‖2
L2

≤ C
[
‖w2‖2

H2k + ‖b‖2
H2k +

(
1 + ‖w1‖2

Hs−1 + ‖a‖2
Hs−1

) ‖(−Δ)kM̃‖2
L2

]
,
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(ii) for any k ∈ N, such that 2k + 2 ≤ s and w2 ∈ (L2
T ;H2k+1)d, b ∈ L2

T ;H2k+1,
there exists C > 0 such that

(17)
∂t‖(−Δ)k∇M̃‖2

L2 + ‖(−Δ)k+1M̃‖2
L2

≤ C
[
‖w2‖2

H2k+1 + ‖b‖2
H2k+1 +

(
1 + ‖w1‖2

Hs−1 + ‖a‖2
Hs−1

) ‖∇(−Δ)kM̃‖2
L2

]
.

Proof. First, we prove the result for k = 0 since it uses different estimates from
the general case.

• For k = 0.
To prove (16), multiply the Eq. (15) by M̃ and integrate by parts:

1
2
∂t‖M̃‖2

L2 + ‖∇M̃‖2
L2 ≤

∣∣∣∣
∫

Ω

(w1M̃ + w2) · ∇M̃

∣∣∣∣+
∣∣∣∣
∫

Ω

(aM̃ + b)M̃
∣∣∣∣ .

Using Young’s inequality leads to

1

2
∂t‖M̃‖2

L2 + ‖∇M̃‖2
L2

≤ 1

2

(
‖w1M̃ + w2)‖2

L2 + ‖∇M̃‖2
L2 + ‖aM̃‖2

L2 + ‖M̃‖2
L2 + ‖b‖2

L2 + ‖M̃‖2
L2

)
,

then we use the continuous embedding H2(Ω) ↪→ L∞(Ω) for w1 and we
get (16) for k = 0.
To prove (17), we apply the operator (−Δ) to (15), multiply by M̃ and
integrate by parts:

1

2
∂t‖∇M̃‖2

L2 + ‖ΔM̃‖2
L2 ≤

∣∣∣∣
∫

Ω

∇ · (w1M̃ + w2))ΔM̃

∣∣∣∣ +

∣∣∣∣
∫

Ω

∇(aM̃ + b) · ∇M̃

∣∣∣∣ .

Using Young’s inequality leads to

1

2
∂t‖∇M̃‖2

L2 + ‖ΔM̃‖2
L2

≤ 1

2

(
‖∇ · (w1M̃ + w2))‖2

L2 + ‖ΔM̃‖2
L2 + ‖∇(aM̃)‖2

L2 + ‖∇b‖2
L2 + 2‖∇M̃‖2

L2

)
.

Observe that

‖∇ · (w1M̃)‖L2 ≤ ‖(∇ · w1)M̃‖L2 + ‖w1 · ∇M̃‖L2 ,

≤ ‖(∇ · w1)‖L4‖M̃‖L4 + ‖w1 · ∇M̃‖L2 .

Using Gagliardo-Nirenberg inequality on the first term and the continuous
embedding H2(Ω) ↪→ L∞(Ω) on the second term lead to

‖∇ · (w1M̃)‖L2 ≤ C‖w1‖H2‖∇M̃‖L2 ,

The same idea applied to ∇(aM̃) makes it possible to infer

‖∇(aM̃)‖L2 ≤ C‖a‖H2‖∇M‖L2 .
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• For k ≥ 1.
To prove (16), apply (−Δ)k to (15), multiply by (−Δ)kM̃ and integrate by
parts:

1
2
∂t‖(−Δ)kM‖2

L2 + ‖(−Δ)k∇M‖2
L2

≤
∣∣∣∣
∫

Ω

(−Δ)k(w1M̃ + w2)) · (−Δ)k∇M̃

∣∣∣∣+
∣∣∣∣
∫

Ω

(−Δ)k(aM̃ + b)(−Δ)kM̃

∣∣∣∣ .

Using Young’s inequality leads to

1

2
∂t‖(−Δ)kM̃‖2

L2 + ‖(−Δ)k∇M̃‖2
L2

≤ 1

2

(
‖(−Δ)k(w1M̃ + w2))‖2

L2 + ‖(−Δ)k∇M̃‖2
L2 + ‖(−Δ)k(aM̃)‖2

L2

+‖(−Δ)kM̃‖2
L2 + ‖(−Δ)kb‖2

L2 + ‖(−Δ)kM̃‖2
L2

)
,

then use the fact that H2k(Ω) is an algebra to deduce (16).
To prove (17), apply (−Δ)k+1 to (15), multiply by (−Δ)kM̃ and integrate
by parts:

1
2
∂t‖(−Δ)k∇M̃‖2

L2 + ‖(−Δ)k+1M̃‖2
L2

≤
∣∣∣∣
∫

Ω

(−Δ)k∇ · (w1M̃ + w2))(−Δ)k+1M̃

∣∣∣∣

+
∣∣∣∣
∫

Ω

(−Δ)k∇(aM̃ + b) · (−Δ)k∇M̃

∣∣∣∣ .

Using Young’s inequality leads to

1
2
∂t‖(−Δ)k∇M̃‖2

L2 + ‖(−Δ)k+1M̃‖2
L2

≤ 1
2

(
‖(−Δ)k∇ · (w1M̃ + w2))‖2

L2 + ‖(−Δ)k+1M̃‖2
L2 + ‖(−Δ)k∇(aM̃)‖2

L2

+‖(−Δ)k∇M̃‖2
L2 + ‖(−Δ)k∇b‖2

L2 + ‖(−Δ)k∇M̃‖2
L2

)
,

then use the fact that H2k+1(Ω) is an algebra to obtain (17). ��

The previous Lemma leads to the following Proposition, which makes it pos-
sible to prove the estimates on M:

Proposition 4.11. Under the assumption of Lemma 4.10, for any s′ ∈ N such
that s′ ≤ s, there exists C > 0 such that

(18)
‖M̃‖2

L∞
T ;Hs′−1 ≤

(
‖M̃0‖2

Hs′−1 + C(‖w2‖2
L2

T ;Hs′−1 + ‖b‖2
L2

T ;Hs′−1)
)

× exp
[
C
(
T + ‖w1‖2

L2
T ;Hs−1 + ‖a‖2

L2
T ;Hs−1

)]
.
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(19)
‖M̃‖2

L2
T ;Hs′ ≤ ‖M̃0‖2

Hs′−1 + C
[
‖w2‖2

L2
T ;Hs′−1 + ‖b‖2

L2
T ;Hs′−1

+
(
T + ‖w1‖2

L2
T ;Hs−1 + ‖a‖2

L2
T ;Hs−1

)
‖M̃‖2

L∞
T ;Hs′−1

]
.

Proof. We use Lemma 4.10 and the facts that for k ∈ N, the norm ‖ · ‖L2 +
‖(−Δ)k · ‖L2 is equivalent to ‖ · ‖H2k and the norm ‖ · ‖L2 + ‖(−Δ)k∇ · ‖L2 is
equivalent to ‖ · ‖H2k+1 .

• If s′ = 2m + 1, with m ∈ N
∗, we apply (16) for k = 0 and k = m and sum

them.
• If s′ = 2m + 2, m ∈ N

∗, we apply (16) for k = 0 and (17) for k = m and sum
them.

Theses calculations lead to the following estimates:

(20)
∂t‖M̃‖2

Hs′−1 + ‖M̃‖2
Hs′ ≤ C

[
‖w2‖2

Hs′−1 + ‖b‖2
Hs′−1

+
(
1 + ‖w1‖2

Hs−1 + ‖a‖2
Hs−1

)
‖M̃‖2

Hs′−1

]
.

We start by omitting the term ‖M̃‖2
Hs ≥ 0 and we integrate in time between

0 and t ≤ T . Applying Gronwall’s inequality leads to (18). To prove (19),
we go back to (20), integrate in time between 0 and T and omit the term
‖M̃(T, ·)‖2

Hs′−1 . ��
Now we can prove the main estimates on operator M:

Proposition 4.12. Operator M satisfies the following properties:

(i) (Stability) Let M0 ∈ Hs−1(Ω) such that M0 = 1 on ∂Ω. Let u ∈ (L∞
T ;Hs)4

such that p · u has support in Ω, where p = (0, 0, 0, 1)t. Let ξ ∈ C0([0, T ]).
Then there exists C > 0 such that M := M(M0,u, ξ) satisfies

‖M‖2
L∞

T ;Hs−1 ≤ 1 +
(
‖M0‖2

Hs−1 + CT (‖u‖2
L∞

T ;Hs + ‖ξ‖2
∞)

)

× exp
[
CT

(
1 + ‖u‖2

L∞
T ;Hs + ‖ξ‖2

∞
)]

,

‖M‖2
L2

T ;Hs ≤ 1 + ‖M0‖2
Hs−1 + CT

[
‖u‖2

L∞
T ;Hs + ‖ξ‖2

∞

+
(
1 + ‖u‖2

L∞
T ;Hs + ‖ξ‖2

∞
)

‖M‖2
L∞

T ;Hs−1

]
.

Furthermore M belongs to C0([0, T ];Hs−2(Ω)).
(ii) (Lipschitz continuity) For i = 1, 2, let M0,i,ui, ξi be as previously and let

Mi := M(M0,i,ui, ξi). Assume there exists R > 0 such that

‖(ui,Mi, ξi)‖Es
T

≤ R,

then there exists CR > 0 such that

‖M1 − M2‖2
L2

T ;Hs−1

≤ CR

(
‖M0,1 − M0,2‖2

Hs−2 + ‖u1 − u2‖2
L2

T ;Hs−1 + ‖ξ1 − ξ2‖2
L2

T

)
.
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Proof. (i) The proof is a consequence of Proposition 4.11 with s′ = s and

M̃ := 1 − M,

M̃0 := 1 − M0,

w1 := ξ∇(p · u),
w2 := w1,

a := −(ηp + C0s) · u,

b := ηp · u.

(ii) We consider

M̃ := M1 − M2,

M̃0 := M0,1 − M0,2,

w1 := ξ1∇(p · u1),

w2 := −
(
(ξ1∇(p · u1) − ξ2∇(p · u2))M2

)
,

a := −(ηp + C0s) · u1,

b := −(ηp + C0s) · (u1 − u2)M2 + ηp · (u1 − u2),

and we apply Proposition 4.11 with s′ = s − 1. The assumptions and the
equation (18) lead to

‖M1 − M2‖2
L∞

T
;Hs−2

≤ (‖M0,1 − M0,2‖2
Hs−2 + CR(‖u1 − u2‖2

L2
T

;Hs−1 + ‖ξ1 − ξ2‖2
L2

T
)
) × exp(CRT ),

then from (19) we infer

‖M1 − M2‖2
L2

T ;Hs−1 ≤ ‖M0,1 − M0,2‖2
Hs−2

+ CR

[
‖u1 − u2‖2

L2
T ;Hs−1 + ‖ξ1 − ξ2‖2

L2
T

+ T‖M1 − M2‖2
L∞

T ;Hs−2

]
,

this ends the proof since T is bounded by some arbitrary constant.
��

4.4 Estimates for Ξ

Estimates on Ξ are consequences of Gronwall’s inequality

Proposition 4.13. Operator Ξ satisfies the following properties:

(i) (Stability) Let ξ0 ∈ R. Let u ∈ (L∞
T ;Hs)d and M ∈ L2

T ;Hs. Then ξ :=
Ξ(ξ0,u,M) satisfies

‖ξ‖2
∞ ≤

(
|ξ0|2 + CT‖u‖2

L∞
T ;L1

)
exp(CT ),

where C > 0 depends only on α, ‖ν2‖∞.
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(ii) (Lipschitz continuity) For i = 1, 2, let ξ0,i,ui, and Mi be as previously and
let ξi := Ξ(ξ0,i,ui,Mi). Assume there exists R > 0 such that

‖(ui,Mi, ξi)‖Es
T

≤ R,

then we have

‖ξ1 − ξ2‖2
∞ ≤ CR

(
|ξ0,1 − ξ0,2|2 + ‖u1 − u2‖2

L2
T ;L1 + ‖M1 − M2‖2

L2
T ;L1

)
,

where CR > 0 depends only on α, ‖ν2‖∞, and R.

Proof. Multiply by ξ the equation satisfied by ξ and apply Young’s inequality:

1
2
∂tξ

2 ≤ C

[(∫

Ω

|u|
)2

+ ξ2

]
− λξ2,

integrate over time and apply Gronwall’s inequality to obtain the estimate for
ξ. The estimate for ξ1 − ξ2 follows the same line. ��

5 Local Existence and Uniqueness for Problems (3) and
(4)

Let us summarize the stability estimates for the operators U ,N ,V,M, and Ξ.
Based on Proposition 4.4 and Remark 4.5, if u0 − s, N0, p ·u, u− s, and N have
compact support in Ω, then the solutions ũ and Ñ defined by operators Φ or Ψ
have also compact support in Ω and these solutions stay in the same compact.
We obtain straightforwardly

Proposition 5.1 (Stability estimates for Φ and Ψ). For i = 0, 1, 2, let Ωi be
as in Definition 4.3. Operators Φ and Ψ satisfies the following estimates:

(i) Let X0 := (u0,M0, ξ0) ∈ Es
0 and N0 ∈ Hs(Ω) be such that supp(u0 − s) ∪

supp(N0) is compactly embedded in Ω0.
There exist R ≥ ‖X0‖Es

0
+ ‖N0‖Hs and T τ

1 > 0 depending only on R and
the parameters of the model (such as γ1, γ2, . . . ) such that for any X :=
(u,M, ξ) ∈ Es

T τ
1
and N ∈ L∞

T τ
1
;Hs satisfying

•
⋃

t∈[0,T ]

(
supp(p · u(t, ·)) ∪ supp(N(t, ·))

)
is compactly embedded in Ω1,

•
⋃

t∈[0,T ]

supp(u(t, ·)) − s) is compactly embedded in Ω2,

• u(t = 0, ·) = u0, N(t = 0, ·) = N0,M(t = 0, ·) = M0, ξ(t = 0) = ξ0,
• ‖X‖Es

T τ
1

+ ‖N‖L∞
T τ
1

;Hs ≤ R,

therefore (X̃, Ñ) := Φ((X,N), (X0, N0), τ) satisfies
•

⋃
t∈[0,T ]

(
supp(p · ũ(t, ·)) ∪ supp(Ñ(t, ·))

)
is compactly embedded in Ω1,

•
⋃

t∈[0,T ]

supp(ũ(t, ·)) − s) is compactly embedded in Ω2,
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• ‖X̃‖Es
T τ
1

+ ‖Ñ‖L∞
T τ
1

;Hs ≤ R.

(ii) Let X0 := (u0,M0, ξ0) ∈ Es
0 be such that supp(u0 −s) is compactly embedded

in Ω0.
There exist R ≥ ‖X0‖Es

0
and T1 > 0 depending only on R and the parameters

of the model (such as γ1, γ2, . . . ) such that for any X := (u,M, ξ) ∈ Es
T1

satisfying
•

⋃
t∈[0,T ]

supp(p · u(t, ·)) is compactly embedded in Ω1,

•
⋃

t∈[0,T ]

supp(u(t, ·)) − s) is compactly embedded in Ω2,

• u(t = 0, ·) = u0,M(t = 0, ·) = M0, ξ(t = 0) = ξ0,
• ‖X‖Es

T1
≤ R,

we deduce that X̃ := Ψ(X,X0) satisfies
•

⋃
t∈[0,T ]

supp(p · ũ(t, ·)) is compactly embedded in Ω1,

•
⋃

t∈[0,T ]

supp(ũ(t, ·)) − s) is compactly embedded in Ω2,

• ‖X̃‖Es
T1

≤ R.

Remark 5.2. The dependence on τ of the final time T τ
1 is due to (10) and

Proposition 4.9 since the speed defined by Φ satisfies

‖v‖L2
T ;Hs+1 ≤ C

(
‖b(M) · u‖L2

T ;Hs +
1
τ

‖N‖L2
T ;Hs

)
.

Then Proposition 4.9 requires that C
√

T‖v‖L2
T ;Hs+1 is small enough to obtain

‖ũ‖L∞
T ;Hs , ‖Ñ‖L∞

T ;Hs ≤ R.

Now we summarize the Lipschitz estimates on U ,N ,M, and Ξ:

Proposition 5.3 (Lipschitz continuity estimates for Φ and Ψ). Φ and Ψ satisfy
the following estimates:

(i) For i = 1, 2, let X0,i, N0,i, R, T τ
1 , and Xi, Ni as in Proposition 5.1 (i) and

denote

( ˜̃Xi,
˜̃Ni) := Φ(Φ((Xi, Ni), (X0,i, N0,i), τ), (X0,i, N0,i), τ).

Then there exists CR > 0 such that for all T ≤ T τ
1 , one has

(21)

‖( ˜̃X1,
˜̃N1) − ( ˜̃X2,

˜̃N2)‖2
E2,s−1

T ×L2
T ;Hs−1

≤ CR

(
‖(X0,1, N0,1) − (X0,2, N0,2)‖2

Es−1
0 ×Hs−1

+ T‖(X1, N1) − (X2, N2)‖2
E2,s−1

T ×L2
T ;Hs−1

)
.
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(ii) For i = 1, 2, let X0,i, R, T1, and Xi as in Proposition 5.1 (ii) and denote

˜̃Xi := Ψ(Ψ(Xi,X0,i),X0,i).

Then there exists CR > 0 such that for all T ≤ T1, one has

(22) ‖ ˜̃X1 − ˜̃X2‖2
E2,s−1

T

≤ CR

(
‖X0,1 − X0,2‖2

Es−1
0

+ T‖X1 − X2‖2
E2,s−1

T

)
.

Therefore, taking X0,1 = X0,2 = X0 and N0,1 = N0,2 = N0 in the previous
Proposition leads to the following result:

Corollary 5.4. Operators Φ and Ψ satisfy

(i) Under the assumptions of Proposition 5.1 (i), there exists 0 < T τ
2 ≤ T τ

1

small enough such that

ΛΦ : (X,N) 
−→ Φ((X,N), (X0, N0), τ),

is such that Λ2
Φ is a contraction in the set

EΛΦ :=
{

(X,N) ∈ Es
T τ

2
× L∞

T τ
2
;Hs such that ‖X‖Es

T τ
2

+ ‖N‖L∞
T τ
2

;Hs ≤ R)
}

endowed with the usual norm on E2,s−1
T τ

2
× L2

T τ
2
;Hs−1.

(ii) Under the assumptions of Proposition 5.1 (ii), there exists 0 < T2 ≤ T1

small enough such that

ΛΨ : X 
−→ Ψ(X,X0),

is such that Λ2
Ψ is a contraction in the set

EΛΨ :=
{

(u,M, ξ) ∈ Es
T2

such that ‖X‖Es
T2

≤ R)
}

endowed with the usual norm on E2,s−1
T2

.

Proof. The proofs of (i) and (ii) are direct consequences of Proposition 5.3 for
T > 0 small enough such that CRT < 1. ��

Remark 5.5. The dependence of the final time T τ
2 on τ is similar to the one of

T τ
1 in Proposition 5.1.

By using Proposition 5.1 and Corollary 5.4, we can prove Theorem 3.3.

Proof of Theorem 3.3. We consider T = T τ
2 and the set EΛΦ endowed with the

usual norm on the Banach space (L2
T ;Hs−1)4 ×L2

T ;Hs−1 ×L2(0, T )×L2
T ;Hs−1.

Since the closed unit ball in L2
T ;Hs is compact in the weak topology and the

closed unit balls in L∞
T ;Hs−1 and in L∞

T ;Hs are compact in the weak∗ topology
[6], we get that EΛΦ is a closed subspace of (L2

T ;Hs−1)4 ×L2
T ;Hs−1 ×L2(0, T )×

L2
T ;Hs−1. Then we apply the contraction mapping theorem in EΛΦ to obtain
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the existence and uniqueness of the fixed point (XΦ, NΦ) ∈ EΛΦ to Λ2
Φ. Then

applying ΛΦ to Λ2
Φ(XΦ, NΦ) = (XΦ, NΦ) leads to the existence and uniqueness

of the fixed point (XΦ, NΦ) to ΛΦ.
Propositions 4.9 and 4.12 lead to the time continuity of u and M stated

in Theorem 3.3 (i)b. Then from Propositions 4.2 and 4.13 we infer the time
continuity of v and ξ.

By construction of the solution, we get

P1, P2, P3, N, S ≥ 0, where (P1, P2, P3, S)t := u.

In conclusion, the saturation P1+P2+P3+N +S = 1 is a consequence of the
equation satisfied by P1 + P2 + P3 + N + S obtained by summing the equations
on P1, P2, P3, N , and S and Gronwall’s inequality.

The exact same reasoning holds for ΛΨ. ��

Remark 5.6. Remark 3.5 is a consequence of Theorem 3.3 and Proposition 5.3,
assuming that CRT ≤ 1

2 in Proposition 5.3.

6 Asymptotic Behavior of the Solution as τ Decreases
to 0

The goal of this section is to prove Theorem 3.6, which states that the solution
to model (3) converges towards the solution to model (4) as τ → 0+.

In the previous section, the time of existence T > 0 depends a priori on the
norm of v, which in turn depends on τ thanks to (3e). More precisely, in the
proof of existence, we can see that the time T depends only on ‖v‖L2

T ;Hs+1 . Note
that according to Remark 5.2, this norm could blow up as τ → 0+. Our first goal
consists in finding a bound to ensure that the time of existence does not depend
on τ . In the last subsection, we perform the asymptotic analysis to obtain the
convergence of model (3) to model (4).

6.1 Uniform Bound on the Final Time of Existence

Let τ > 0 be given. Let u, M , v, and N as in Theorem 3.3 (i). According to
Remark 5.2, v satisfies

(23) ‖v‖L2
T ;Hs+1 ≤ C

(
‖b(M) · u‖L2

T ;Hs +
1
τ

‖N‖L2
T ;Hs

)
.

The right-hand side blows up as τ → 0+. The goal of the following results is to
prove more precise estimates. First let us prove the next Lemma:
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Lemma 6.1. Under the assumptions of Theorem 3.3 (i), N satisfies the follow-
ing inequality:

(24)

(
1√
τ

‖N‖L∞
T ;Hs

)2

+
(

1
τ

‖N‖L2
T ;Hs

)2

≤ C
√

T

(
‖b(M) · u‖L2

T ;Hs +
1
τ

‖N‖L2
T ;Hs

)
×
(

1√
τ

‖N‖L∞
T ;Hs

)2

+ C‖d(M) · u‖2
L2

T ;Hs +
(

1√
τ

‖N0‖Hs

)2

.

where C > 0 does not depend on τ .

Proof. We consider the equation satisfied by
N√
τ

:

(25) ∂t

(
N√
τ

)
+ ∇ ·

(
v

N√
τ

)
=

d(M) · u√
τ

− 1
τ

(
N√
τ

)
,

Let m ∈ N such that m ≤ s. Apply ∂m
x to (25), multiply by ∂m

x (1/
√

τ)N
and apply Lemma 4.6 to ∂m

x ∇ · (v(1/
√

τ)N)∂m
x (1/

√
τ)N , sum over m ≤ s and

use (23). This leads to

1
2
∂t

(
1√
τ

‖N‖Hs

)2

≤ C

(
‖b(M) · u‖Hs +

(
1
τ

‖N‖Hs

))(
1√
τ

‖N‖Hs

)2

+ C‖d(M) · u‖Hs

(
1
τ

‖N‖Hs

)
− 1

τ

(
1√
τ

‖N‖Hs

)2

.

Applying Young’s inequality, we obtain for almost every time t ∈ [0, T ]:

1
2
∂t

(
1√
τ

‖N‖Hs

)2

≤ C

(
‖b(M) · u‖Hs +

(
1
τ

‖N‖Hs

))(
1√
τ

‖N‖Hs

)2

+
1
2

(
C2‖d(M) · u‖2

Hs +
1
τ

(
1√
τ

‖N‖Hs

)2
)

− 1
τ

(
1√
τ

‖N‖Hs

)2

,

then we integrate in time between 0 and t and we take the supremum for t ∈ [0, T ]
to obtain

(
1√
τ

‖N‖L∞
T ;Hs

)2

+
(

1
τ

‖N‖L2
T ;Hs

)2

≤ C

(
‖b(M) · u‖L1

T ;Hs +
1
τ

‖N‖L1
T ;Hs

)
×
(

1√
τ

‖N‖L∞
T ;Hs

)2

+ C‖d(M) · u‖2
L2

T ;Hs +
(

1√
τ

‖N0‖Hs

)2

,

and we estimate the L1
T -norm by the L2

T -norm to conclude the proof. ��
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The previous Lemma makes it possible to prove the following result:

Lemma 6.2. Assume the assumptions of Theorem 3.3 (i) hold. Denote by

Y1 := ‖u‖L∞
T ;Hs ,

Y2 :=
√

‖M‖2
L∞

T ;Hs−1 + ‖M‖2
L2

T ;Hs ,

Y3 := ‖ξ‖∞,

Y4 :=
√

((1/
√

τ)‖N‖L∞
T ;Hs)2 + ((1/τ)‖N‖L2

T ;Hs)2.

Then there exists a constant C > 0 which does not depend on τ > 0 such that
Y := (Y1, Y2, Y3, Y4) satisfies the following estimates

Y 2
i ≤ F (T,Y), i = 1, · · · , 4,(26)

where

F1(T,Y) =
(
‖u0‖2

Hs + C
√

T (Y1Y2 + Y4)
)

exp
(
C

√
T (Y1Y2 + Y4)

)
,

F2(T,Y) =
[
1 +

(
‖M0‖2

Hs−1 + CT
(
Y 2

1 + Y 2
3

))
exp

(
CT

(
1 + Y 2

1 + Y 2
3

))]

×
[
1 + CT

(
1 + Y 2

1 + Y 2
3

)]
+ 1 + ‖M0‖2

Hs−1 + CT
(
Y 2

1 + Y 2
3

)
,

F3(T,Y) = |ξ0|2 + CTY 2
1 exp (CT ) ,

F4(T,Y) = C
[√

TY 2
4 (Y1Y2 + Y4) + F1(T,Y)2F2(T,Y)2

]
+
(

1√
τ

‖N0‖Hs

)2

.

Proof. The estimates on Y 2
1 , Y 2

2 , and Y 2
3 are simply consequence of stability

estimates on U ,M, and Ξ given by Proposition 4.9, 4.12, and 4.13. For the
estimates on Y 2

4 , the estimate (24) leads to

Y 2
4 ≤ C

[√
TY 2

4 (Y1Y2 + Y4) + Y 2
1 Y 2

2

]
+
(

1√
τ

‖N0‖Hs

)2

,

and we use (26) to bound Y 2
1 Y 2

2 by F1(T,Y)2F2(T,Y)2. ��

Now we can prove that, for T small enough, Y is uniformly bounded with
respect to τ . For any R > 0 one has

lim
T→0+

Fi(T, (R,R,R,R))

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

‖u0‖2
Hs , if i = 1,

2(1 + ‖M0‖2
Hs−1), if i = 2,

|ξ0|2, if i = 3,(
2C‖u0‖2

Hs(1 + ‖M0‖2
Hs−1) +

1√
τ

‖N0‖Hs

)2

, if i = 4.
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Assume there exists C > 0 such that

∀τ > 0,

(
1√
τ

‖N0‖Hs

)2

≤ C,

then we take

R =
√

2max
(
‖u0‖2

Hs , 2(1 + ‖M0‖2
Hs−1), |ξ0|2, 2C‖u0‖2

Hs(1 + ‖M0‖2
Hs−1

)
+ C,

and we obtain that there exists T > 0, which depends only on R, such that
Y 2

i ≤ R2 for 1 ≤ i ≤ 4. We thus have proved the following result

Proposition 6.3. Assume the assumptions of Theorem 3.3 (i) hold. If there
exists C > 0 such that

∀τ > 0, ‖u0‖2
Hs + ‖M0‖2

Hs−1 + |ξ0|2 +
(

1√
τ

‖N0‖Hs

)2

≤ C,

then there exists R > 0 and T > 0 such that

∀τ > 0,

(
1√
τ

‖N‖L∞
T ;Hs

)2

+
(

1
τ

‖N‖L2
T ;Hs

)2

≤ R2,

‖u‖2
L∞

T ;Hs ≤ R2,

‖M‖2
L∞

T ;Hs−1 + ‖M‖2
L2

T ;Hs ≤ R2,

‖ξ‖2
∞ ≤ R2.

Therefore the time of existence of the solution to (3) is independent of τ .

In order to finish the asymptotic analysis, we also need estimates on the time
derivative of u, M , ξ, and N :

Corollary 6.4. Under the assumptions of Proposition 6.3, there exists CR > 0,
such that for any τ > 0 small enough

(i) ‖∂tu‖2
L2

T ;Hs−1 ≤ CR,
(ii) ‖∂tM‖2

L2
T ;Hs−1 ≤ CR,

(iii) ‖∂tξ‖2
∞ ≤ CR,

(iv) ‖∂tN‖2
L2

T ;Hs−1 ≤ CR

(
τ +

(
1√
τ

‖N0‖Hs

)2
)
.

Proof. (i) and (iii) are consequences of Eqs. (3a), (3j), and Proposition 6.3.
To prove (ii), differentiate in time Eq. (3h) and apply Proposition 4.11 with

s′ = s − 1 and

M̃ := ∂tM,

M̃0 := 0,
w1 := ξ∇(p · u),
w2 := M∂tw1,

a := −(ηp + C0s) · u,

b := ∂t(ηp · u) + M∂ta.
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Then Proposition 6.3 and previous estimates on ∂tu and ∂tξ leads to (ii).
To prove (iv), we denote by Ñ := ∂tN , then Ñ satisfies

∂tÑ + ∇ ·
(
vÑ

)
= −∇ · (∂tvN) + ∂t (d(M) · u) − 1

τ
Ñ .

Applying Lemma 4.6 leads to

1
2
‖Ñ‖2

Hs−1 ≤
[
C‖v‖Hs − 1

τ

]
‖Ñ‖2

Hs−1

+ C (‖∂tv‖Hs‖N‖Hs + ‖∂t (d(M) · u) ‖Hs−1) ‖Ñ‖Hs−1 ,

By using Eq. (3e) and Proposition 6.3, we have the following estimates

‖v‖L∞
T ;Hs ≤ CR

(
1 +

1√
τ

)
,(27)

and for almost every t ∈ [0, T ]:

‖∂tv‖Hs‖N‖Hs ≤ CR

(
‖∂t (b(M) · u) ‖Hs−1 +

1√
τ

‖Ñ‖Hs−1

)
,

these estimates lead to

1
2
‖Ñ‖2

Hs−1 ≤
[
CR

(
1 +

1√
τ

)
− 1

τ

]
‖Ñ‖2

Hs−1

+ CR (‖∂t (b(M) · u) ‖Hs−1 + ‖∂t (d(M) · u) ‖Hs−1) ‖Ñ‖Hs−1 .

Apply Young’s formula to

CR (‖∂t (b(M) · u) ‖Hs−1 + ‖∂t (d(M) · u) ‖Hs−1) ‖Ñ‖Hs−1 ,

then for τ small enough, Ñ satisfies the following estimate:

‖Ñ‖2
Hs−1 +

1
τ

‖Ñ‖2
Hs−1 ≤ CR

(
‖∂t (b(M) · u) ‖2

Hs−1 + ‖∂t (d(M) · u) ‖2
Hs−1

)
.

Integrate the previous estimate in time between 0 and t and take the supremum
for t ∈ [0, T ] to obtain

‖Ñ‖2
L∞

T ;Hs−1 +
1
τ

‖Ñ‖2
L2

T ;Hs−1

≤ ‖Ñ(0, ·)‖2
Hs−1 + CR

(
‖∂t (b(M) · u) ‖2

L2
T ;Hs−1 + ‖∂t (d(M) · u) ‖2

L2
T ;Hs−1

)
.

Based on Proposition 6.3 and previous estimates on ∂tu and ∂tM , there exists
CR > 0 such that for any τ > 0 small enough

‖Ñ‖2
L∞

T ;Hs−1 +
1
τ

‖Ñ‖2
L2

T ;Hs−1 ≤ ‖Ñ(0, ·)‖2
Hs−1 + CR.(28)
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We focus on the term ‖Ñ(0, ·)‖2
Hs−1 . Based on Eq. (3c), Ñ(0, ·) satisfies

Ñ(0, ·) + ∇ · (v(0, ·)N0) = d(M0) · u0 − 1
τ

N0,

then we have the following estimate

‖Ñ(0, ·)‖Hs−1 ≤ C‖v(0, ·)‖Hs‖N0‖Hs + C‖M0‖Hs−1‖u0‖Hs−1 +
1
τ

‖N0‖Hs−1 .

By using Eq. (27), we have

‖Ñ(0, ·)‖2
Hs−1 ≤ CR

(
1 +

1
τ2

‖N0‖2
Hs

)
,

then multiply (28) by τ and omit the non-negative term ‖Ñ‖2
L∞

T ;Hs−1 to obtain

‖Ñ‖2
L2

T ;Hs−1 ≤ CR

(
τ +

1
τ

‖N0‖2
Hs

)
.(29)

��

6.2 The Limit Case for τ → 0

Proposition 6.3 makes it possible to pass to the limit as τ → 0+ and
implies also that N converges to 0 in L∞

T ;Hs. However the assumption that
(1/

√
τ)‖N0‖Hs ≤ C is not sufficient to prove the convergence of the whole solu-

tion ((uτ ,Mτ , ξτ ),vτ , Nτ ). We need to suppose that (1/
√

τ)‖N0‖Hs → 0 as
τ → 0+ to prove Theorem 3.6. The following Lemma ends the proof of Theo-
rem 3.6:

Lemma 6.5. For any τ > 0, let Xτ
0 , Nτ

0 , X0 be as in Theorem 3.3 and Theo-
rem 3.6 and denote by

• (Xτ , Nτ ) the solution to (Xτ , Nτ ) = Φ((Xτ , Nτ ), (Xτ
0 , Nτ

0 ), τ),
• X the solution to X = Ψ(X,X0).

Then lim
τ→0+

‖Xτ − X‖2
E2,s−1

T

= 0.

Proof. Assumptions and Proposition 6.3 ensures that there exists R > 0
(depending only on Xτ

0 , Nτ
0 , and X0) such that for any τ > 0, Xτ , (1/τ)Nτ ,

and X are bounded by R.
Denote by (uτ ,Mτ , ξτ ) := Xτ and by (u,M, ξ) := X. Remind the Lipschitz

estimates on U ,M, and Ξ:

‖uτ − u‖L2
T ;Hs−1

≤ CRT
(
‖uτ

0 − u0‖2
Hs−1 + ‖vτ − v‖2

L2
T ;Hs + ‖Mτ − M‖2

L2
T ;Hs−1

)
,

‖Mτ − M‖2
L2

T ;Hs−1 ≤ CR

(
‖Mτ

0 − M0‖2
Hs−2 + ‖uτ − u‖2

L2
T ;Hs−1 + ‖ξτ − ξ‖2

L2
T

)
,

‖ξτ − ξ‖2
L2

T
≤ CRT

(
|ξτ

0 − ξ0|2 + ‖uτ − u‖2
L2

T ;L1 + ‖Mτ − M‖2
L2

T ;L1

)
.
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We need to find an estimate on vτ − v. Observe that

vτ − v = V(b(Mτ ) · uτ − (1/τ)Nτ ) − V((b(M) − d(M)) · u),

then we have

vτ − v = V((b(Mτ ) − d(Mτ )) · uτ − (b(M) − d(M)) · u)
+ V(d(Mτ ) · uτ − (1/τ)Nτ ),

and we obtain the following estimate:

‖vτ − v‖2
L2

T ;Hs ≤ CR

(
‖uτ − u‖2

L2
T ;Hs−1 + ‖Mτ − M‖2

L2
T ;Hs−1 + ετ

)
,

where ετ = ‖d(Mτ ) · uτ − (1/τ)Nτ‖2
L2

T ;Hs−1 . By using Proposition 6.3 and
Corollary 6.4 and by using the fact that (1/

√
τ)‖N0‖Hs → 0, we obtain

lim
τ→0+

‖∂tN
τ‖2

L2
T ;Hs−1 + ‖∇ · (vτNτ ) ‖2

L2
T ;Hs−1 = 0,

then Eq. (3c) ensures that lim
τ→0+

ετ = 0.

Gathering together all the previous estimates (for Mτ − M , we use the esti-
mates on uτ − u and ξτ − ξ to obtain the T term) we obtain

‖Xτ − X‖2
E2,s−1

T

≤ CR

(
‖Xτ

0 − X0‖2
Es−1
0

+ T‖Xτ − X‖2
E2,s−1

T

+ ετ
)
,

then we assume that CRT ≤ 1
2 to get

‖Xτ − X‖2
E2,s−1

T

≤ CR

(
‖Xτ

0 − X0‖2
Es−1
0

+ ετ
)
,

this conclude the proof of the Lemma. ��

7 Conclusion

A constructive proof of the solution to the tumor growth model of Lefebvre et
al. has been derived. The main idea of the proof lies in the fact that the tumor
remains compactly supported in the domain of interest up to a given time. We
proved that the minimum time for well-posedness can be bounded independently
of the characteristic time τ of necrosis evacuation. This proves that the model
is consistent with the model without necrosis. In particular, the solution to the
model without necrosis is the limit of the solutions to the model with necrosis as
τ → 0. This result ensures the continuity of the family of the considered tumor
growth model, proving the consistency of the modeling.

Acknowledgments. C.P wishes to acknowledge Prof. T. Suzuki support of MMDS
at Osaka University. The manuscript was finalized during the visit of C.P in January
2020. C.P. is partly granted by Plan Cancer NUMEP (PC201615).



48 T. Colin et al.

References

1. Alinhac, S., Gérard, P.: Pseudo-Differential Operators and the Nash-Moser Theo-
rem, vol. 82. American Mathematical Society (2007)

2. Ambrosi, D., Preziosi, L.: On the closure of mass balance models for tumor growth.
Math. Models Methods Appl. Sci. 12, 737–754 (2002)

3. Anderson, A.R., Chaplain, M.: Continuous and discrete mathematical models of
tumor-induced angiogenesis. Bull. Math. Biol. 60, 857–899 (1998)

4. Billy, F., et al.: A pharmacologically based multiscale mathematical model of angio-
genesis and its use in investigating the efficacy of a new cancer treatment strategy.
J. Theor. Biol. 260, 545–562 (2009)

5. Bresch, D., Colin, T., Grenier, E., Ribba, B., Saut, O.: A viscoelastic model for
avascular tumor growth. Discret. Continuous Dyn. Syst. Suppl. 2009, 101–108
(2009)

6. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations.
Springer, Heidelberg (2010)

7. Byrne, H.M., Chaplain, M.: Growth of necrotic tumors in the presence and absence
of inhibitors. Math. Biosci. 135, 187–216 (1996)

8. Byrne, H., Preziosi, L.: Modelling solid tumour growth using the theory of mix-
tures. Math. Med. Biol. 20, 341–366 (2003)

9. Chen, X., Cui, S., Friedman, A.: A hyperbolic free boundary problem modeling
tumor growth: asymptotic behavior. Trans. Am. Math. Soc. 357, 4771–4804 (2005)

10. Colin, T., Cornelis, F., Jouganous, J., Palussière, J., Saut, O.: Patient-specific
simulation of tumor growth, response to the treatment, and relapse of a lung
metastasis: a clinical case. J. Comput. Surgery 2(1), 1–17 (2015). https://doi.org/
10.1186/s40244-014-0014-1

11. Cui, S., Friedman, A.: Analysis of a mathematical model of the growth of necrotic
tumors. J. Math. Anal. Appl. 255, 636–677 (2001)
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Abstract. Spatio-temporal pattern formation during development is
regulated by interactions of multiple signaling pathways. To understand
complex signaling networks, we used the Drosophila visual system as
a model because neural differentiation progresses in a spatiotemporally
ordered manner. During the development of the visual system, a wave of
differentiation, called the proneural wave, sweeps across the brain sur-
face and determines the timing of differentiation of neuroepithelial cells
into neuroblasts, which are neural stem cells in Drosophila. Propagation
of the proneural wave is regulated through a combination of signaling
pathways, including the Notch, EGF, and JAK/STAT. We combined
mathematical modeling with in vivo experiments, the results of which
revealed that Notch-mediated lateral inhibition and EGF-mediated reac-
tion diffusion determine the speed of progression of the proneural wave.
We reported that JAK/STAT signaling has a noise-canceling function to
assure robust neuroblast differentiation. Furthermore, we introduced a
continuation method from spatially discretized models while conserving
the cell size and lattice. This mathematical method enables us to intro-
duce information from spatially discrete to spatially continuous models,
rendering it suitable for applications in both experimental and mathe-
matical analyses. Our interdisciplinary studies have revealed new func-
tions of signaling pathways that have previously been difficult to address
by conventional biological experiments.

Keywords: Drosophila · Proneural wave · Mathematical modeling ·
Continuation method

1 Introduction

Spatio-temporal pattern formation of multicellular organisms is regulated
through the inter- and intracellular communications of the signaling pathways.
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In many cases, several signaling pathways act on the same developmental pro-
cesses and show complex mutual interactions. Therefore, the interactions among
signaling pathways have been difficult to address solely through biological exper-
iments. To describe the mechanisms of a spatio-temporal pattern formation, it
has become popular during the past few decades to formulate mathematical
models by describing the function of each signaling pathway and the interaction
among multiple pathways.

To theoretically and experimentally investigate the dynamic interaction of
signaling pathways, the developing Drosophila visual system provides an excel-
lent model (Fig. 1A) [1–3]. During the early stages of larval development, neu-
roepithelial cells (NEs) proliferate, and these NEs later differentiate into neu-
roblasts (NBs), which are neural stem-like cells in Drosophila [4,5]. A differen-
tiation wave called the “proneural wave” (PW) sweeps across the brain surface
and defines the timing of differentiation from NEs to NBs (Fig. 1A, B). The
progression starts at the medial edge of the NE sheet and extends toward the
lateral side. The differentiating “wavefront” cells start expressing Achaete-Scute
Complex (AS-C) proneural transcription factors, such as Scute, Lethal of Scute
(L’sc), and Asense (Ase) [5,6]. Among them, L’sc shows a transient expression
in cells at the transition interface between NEs and NBs, and this transient
L’sc expression acts as a trigger for NB differentiation (Fig. 1C) [6]. During
the progression of the PW, several signaling pathways, such as EGF, Notch,
JAK/STAT, and Hippo, play major roles [2,6–9]. The EGF and Notch signal-
ing pathways are activated in the wavefront cells (Fig. 1C). EGF signaling is
required for PW progression and NB differentiation [9]. Meanwhile, Notch sig-
naling inhibits precocious PW progression [8–13]. Unpaired (Upd), a ligand of
JAK/STAT signaling, is expressed in lateral NEs and generates an activity gra-
dient of JAK/STAT signaling, which is higher in lateral NEs and lower in medial
NEs (Fig. 1C). JAK/STAT signaling also acts as a negative regulator of PW pro-
gression [6,14]. Hippo signaling regulates the proliferation of NEs and promotes
the progression of PW [7,8,15]. Although the functions of each signaling path-
way and the interactions among the pathways have been extensively studied,
the regulation of unidirectional NB differentiation remains difficult to explain
(Fig. 1D). Hence, we formulated mathematical models to understand the inter-
actions among the EGF, Notch, and JAK/STAT pathways in the progression of
PW.

In this paper, we report that a mathematical model that includes the inter-
action between Notch and EGF can recapitulate the PW progression in silico.
In addition, the mathematical model shows resistance to noise by including the
function of JAK/STAT signaling, suggesting that JAK/STAT signaling may
cancel the noise in vivo. This assumption from mathematical modeling is con-
firmed through in vivo experiments. We further show a continuation method from
spatially discretized models. This versatile approach enables us to more effec-
tively include cell proliferation or cell death during numerical simulations. These
results suggest that combining mathematical modeling with in vivo experiments
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Fig. 1. Progression of the proneural wave. (A) Schematic of the larval optic lobe.
NE, NB, and PW represent a neuroepithelial cell, neuroblast, and proneural wave,
respectively. (B) Development of optic lobe during the larval stages. (C) Activation
of AS-C (A), EGF signaling (E), Notch signaling (N), Delta (D), and JAK/STAT
signaling (J). (D) Genetic interaction among AS-C (A), EGF signaling (E), Notch
signaling (N), Delta (D), and JAK/STAT signaling (J). (E) Notch signaling between
adjacent cells.

will enhance our knowledge on the interaction of multiple signaling pathways
and its regulation of spatio-temporal patterning during development.

2 Mathematical Model of the PW

To understand the mechanism of PW progression, we first focused on the inter-
action between Notch and EGF signaling and formulated a mathematical model
[16]. The function of Notch signaling in neural development is known as a lateral
inhibition (Fig. 1E) [17,18]. Binding of the Delta ligand expressed in neighboring
cells to the Notch receptor activates Notch signaling and inhibits AS-C expres-
sion. This effect is called a trans-activation. It is also known that Delta and
Notch expressed in the same cell bind together and inactivate the Notch sig-
naling, which is referred to as cis-inhibition [19–21]. AS-C proteins induce the
Delta expression. During PW progression, Delta is expressed in the wavefront
cells and activates Notch signaling in neighboring cells (Fig. 1C) [9]. Because the
major components of Notch signaling, including Delta, Notch, and AS-C, are
all involved in PW progression, we introduced the effect of Notch signaling by
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applying a lateral inhibition system in the mathematical model. The secretion of
the EGF ligand is spatially restricted by the function of the protease Rhomboid
(Rho), which is also a target of EGF signaling [9]. Because it can be presumed
that the activation of EGF signaling is dependent on the concentration of the
diffusible EGF ligand, we described the function of EGF signaling using a reac-
tion diffusion system [22]. In addition, in vivo experiments also showed mutual
activation between EGF signaling and AS-C [9,16]. Based on this biological evi-
dence, we formulated a mathematical model to elucidate the dynamics of the
interaction between Notch and EGF signaling during PW progression [16]:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂E

∂t
= deΔE − keE + aeA(A0 − A),

dNi,j

dt
= −knNi,j + dt

∑

l,m∈Λi,j

Dl,m − dcNi,jDi,j ,

dDi,j

dt
= −kdDi,j + adAi,j(A0 − Ai,j),

dAi,j

dt
= ea(A0 − Ai,j)max{Ei,j − Ni,j , 0},

(x, y) ∈ Ω, t > 0, (1)

where Ω = [0, Lx]× [0, Ly] is a calculation region with positive constants Lx and
Ly, and E = E(x, y, t) is a composite variable for the concentration of the EGF
ligand and activation of EGF signaling. Here, Ni,j = Ni,j(t) and Di,j = Di,j(t)
represent the activity of Notch signaling and the amount of Delta protein in the
ith and jth cells at time t > 0, respectively. In addition, Ni,j is influenced by
its degradation (knNi,j), trans-activation by Delta expressed in the neighboring
lth and mth cells (dt

∑
l,m∈Λi,j

Dl,m), and cis-inhibition by Delta expressed in
the ith and jth cell (dcNi,jDi,j). Moreover, Di,j is regulated by its degradation
(kdDi,j) and receives a positive input from AS-C (adAi,j(A0 −Ai,j)), and Ai,j =
Ai,j(t) is a variable for the level of differentiation and reflects the expression of
AS-C in the ith and jth cell at time t. Further, Ai,j is positively regulated by
Ei,j and negatively regulated by Ni,j .

Numerical simulations of the above model recapitulate the PW progression.
When we set adequate parameters, the simulation shows a unidirectional differ-
entiation wave (Fig. 2A) [16]. In addition, numerical simulations can reproduce
the phenotypes of EGF, Notch, or Delta mutants. These results suggest that the
combination of Notch-mediated lateral inhibition and EGF-mediated reaction
diffusion adequately explains the progression of PW in vivo.

We next analyzed the spatio-temporal patterning of the Notch activity. In
the context of lateral inhibition, AS-C-expressing cells activate Notch signal-
ing and inhibit neuronal differentiation in neighboring cells. This lateral inhi-
bition mechanism generates a complementary pattern of Notch-ON cells and
AS-C expressing cells, which is commonly known as a salt-and-pepper pattern
(Fig. 1E). However, during PW progression, wavefront cells express both the AS-
C and Notch target genes (Fig. 2C). This contradicts the conserved mechanism of
Notch-mediated lateral inhibition. We challenged this paradox by changing the
parameters in the mathematical model and found that reducing the EGF acti-
vation shows a complementary pattern of AS-C-expressing cells and Notch-ON
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Fig. 2. A partial reduction of the EGF activity shows the salt-and-pepper-like pattern
in the activation of Notch signaling. (A, B) Simulation results of control (A) and
partial EGF knockdown (B) conditions. The activation of A and N is shown. (C,
D) Experimental results of control (C) and partial EGF knockdown (D) conditions.
Expression of L’sc (magenta) and E(spl)mγ-GFP (green, Notch activity marker) is
shown. (Color figure online)

cells (Fig. 2B). We confirmed this prediction from the simulation by decreas-
ing the EGF activity in vivo (Fig. 2D). This result suggests that EGF signaling
cancels the formation of a salt-and-pepper pattern, which is mediated through
Notch signaling.

Notch signaling is conserved among the species and plays diverse roles in
development, homeostasis, and cancer [23]. Although similar key regulators act
in Notch signaling, they exhibit different outcomes. A salt-and-pepper pattern
is shown in the sensory organ precursor formation in Drosophila, and a striped
pattern appears in the segmentation in vertebrates [18,24,25]. Our study results
demonstrate that Notch signaling generates a pulse wave when combined with
EGF signaling and regulates the timing of the neural stem cell formation in the
Drosophila visual system.

3 Noise Canceling Function Using JAK/STAT

Although the mathematical model applied to the interaction between Notch
and EGF recapitulated the states of the wild type and mutant in vivo, it showed
weakness against noise. The addition of a small amount of noise for E in the
undifferentiated NE region causes an ectopic NB differentiation, in addition
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to the original PW (Fig. 3A). These simulation results suggest that a noise-
canceling mechanism ensuring a robust PW progression exists. As a candidate
mechanism, we focused on the function of JAK/STAT signaling based on pre-
vious reports. First, JAK/STAT signaling generates an activity gradient that is
high in the lateral side and low in the medial side within the NE region [6]. Sec-
ond, a loss-of-function of JAK/STAT signaling accelerates the wave progression,
whereas an ectopic activation of JAK/STAT signaling delays the progression
[6]. Third, JAK/STAT signaling positively regulates the expression of the Notch
target genes in the optic lobe (Fig. 1D) [26]. Based on these findings, we revised
the fourth equation of the mathematical formula by including the function of
JAK/STAT signaling [27]:

dAi,j

dt
= ea(A0 − Ai,j)max{Ei,j − Ni,j − kinJ∞, 0},

where J = J(x, y, t) represents the activation of JAK/STAT signaling, and kin is
a positive constant for the regulation rate of JAK/STAT signaling for the Notch
target genes. We induced the role of JAK/STAT signaling in inhibiting AS-C
expression by activating the function of Notch signaling (Fig. 1D). In addition,
we defined the function of JAK/STAT signaling by the reaction diffusion system
as JAK/STAT signaling creates an activity gradient. We imposed J∞ = J∞(x, y)
as a stationary state for the following reaction diffusion model:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂J

∂t
= diΔJ − kiJ, t > 0, (x, y) ∈ Ω,

∂J

∂y
(x, 0, t) =

∂J

∂y
(x,Ly, t) = 0, x ∈ [0, Lx],

∂J

∂x
(0, y, t) = 0, J(Lx, y, t) = J0, y ∈ [0, Ly],

where di, ki, and J0 are the diffusion coefficients of the JAK/STAT signaling,
degradation rate, or positive constant corresponding to the JAK/STAT activa-
tion on the lateral side, respectively.

Next, we conducted a numerical simulation based on the revised model. In
the original model, a small perturbation for E causes stochastic NB differenti-
ation, and the differentiation wave is absent. By contrast, in the revised model,
including the function of JAK/STAT, the PW progresses unidirectionally even in
the presence of noise for E. This result indicates that the revised model, includ-
ing the function of JAK/STAT signaling, shows resistance to EGF perturbation,
and there is a possibility that JAK/STAT signaling is able to cancel the noise to
assure a normal PW progression in vivo. To confirm this possibility, we reduced
the activity of JAK/STAT signaling by inducing RNAi against Stat92E, which
is the only STAT gene in Drosophila. Compared with the control, Stat92E RNAi
brains show an ectopic and random L’sc expression and NB differentiation in a
stochastic manner (Fig. 3B, C). These in silico and in vivo results suggest that
JAK/STAT signaling is required to prevent spontaneous NB differentiation by
suppressing the effect of noise [27].
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A B C

PWNB NE

control partial STAT KDA

NB
L'sc

NB
L'sc

Fig. 3. JAK/STAT signaling is required for preventing spontaneous NB differentia-
tion. (A) Simulation results from the mathematical model that excludes the effect of
JAK/STAT signaling. A minor perturbation of EGF activity in the NE region (white
arrowhead) induces ectopic NB differentiation. Activation of A is shown. (B, C) Exper-
imental results of control (B) and partial STAT knockdown (C) conditions. The yellow
arrowhead indicates the ectopic expression of L’sc (green) and Deadpan (magenta, NB
marker). (Color figure online)

During the development of multicellular organisms, the behavior of each cell
is influenced by stochastic noise. Even in the presence of noise, spatio-temporal
patterning progresses in a robust manner. Therefore, noise resistance mecha-
nisms are crucial during development [28]. However, it has been challenging to
address the mechanism of noise regulation because of the limitation of approaches
for noise detection. The mechanism of noise-resistant reproducibility in verte-
brate somite formation has recently been elucidated by combining mathematical
modeling with in vivo experiments [29,30]. These accumulating data will expand
the field of noise-canceling mechanisms in multicellular systems.

4 Continuation Method from Spatially Discretized
Models

As introduced in the previous sections, the discrete model of PW on square or
hexagonal lattices, as shown in Fig. 4, was proposed. In this section, we describe
a continuation method for spatially discretized models containing the intercellu-
lar interaction and reaction terms while conserving the shapes and sizes of the
cells and lattices. This detailed method is reported in our previous study [31].
In this section, we label the mathematical models with discrete spatial indepen-
dent variables as discrete models and those with continuous spatial independent
variables as continuous models. Furthermore, we do not distinguish between the
spatial and intercellular interactions.

4.1 Scalar Equation in One-Dimensional Space

Labeling the ith cell as ci, (i = 1, . . . , N) with a uniform length l > 0, we
suppose N cells are packed in a one-dimensional space. Let ui = ui(t) be the
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Fig. 4. Schematic figures of the (A) square and (B) hexagonal lattices with indexes.

concentration or density of some substances on ci at time t > 0. Imposing the
periodic boundary condition ui±N (t) = ui(t), (i = 1, 2, . . . , N), we consider the
following discrete model in this subsection:

⎧
⎨

⎩

ui,t = f
(
ui−[N−1

2 ], · · · , ui, · · · , ui+[N−1
2 ]

)
+ g(ui), t > 0, i = 1, . . . , N,

ui(0) = ui,0,

(PD)

where f : R2[N−1/2]+1 → R and g : R → R are functions corresponding to the
interaction and reaction, respectively, and [·] is a Gauss symbol. Although the
intercellular interaction f can be influenced by cells other than the neighboring
cells, the intercellular interaction f includes a typical form of intercellular inter-
actions as f = f(ui−1, ui, ui+1). The one-dimensional space is set as follows:

T := [0, Nl].

If f is linear, the function f is then generally defined in the following manner:

f(u−[N−1
2 ], · · · , u0, · · · , u[N−1

2 ]) =
[N−1

2 ]∑

i=−[N−1
2 ]

aiui, (2)

where {ai}[(N−1)/2]
i=−[(N−1)/2] are constants. Typical examples of function f include dif-

fusion, a lateral inhibition such as a Delta-Notch interaction, and planar cellular
polarity [32] as given by the following:

fΔ(ui−1, ui, ui+1) =
ui−1 − 2ui + ui+1

l2
,

flat(ui−1, ui+1) =
−ui−1 − ui+1

2
,

fpcp(ui−1, ui, ui+1) = sin(ui−1 − ui) + sin(ui+1 − ui).
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As introduced in [33,34], we will utilize the piecewise constant functions for
our continuation method. For equation (PD) with i = 1, . . . , N on each cell ci,
we define the characteristic function as

χci(x) =
{

1, x ∈ ci,
0, x /∈ ci,

and define the following:

u(x, t) :=
N∑

i=1

ui(t)χci(x).

For the continuous method of the discrete model, we set the following assump-
tion:

For any N, there exists a unique global solution u(x, t) ∈ C([0, T ], L1(T))
of (PD).

By changing the variable in the ith equation (PD) by multiplying the unknown
function ui by the characteristic function χci(x), and adding ui(t)χci(x) with
respect to i = 1, · · · , N , we have the following:

ut = f

(
N∑

i=1

ui−[N−1
2 ](t)χci(x), · · · , u, · · · ,

N∑

i=1

ui+[N−1
2 ](t)χci(x)

)

+ g(u).

Because we can compute

N∑

i=1

ui+jχci(x) =
N∑

i=1

uiχci(x + jl) = u(x + jl, t)

for j = 0,±1, · · · ,±N , we obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = f

(

u

(

x −
[
N − 1

2

]

l, t
)
, · · · , u,

· · · , u
(
x +

[
N − 1

2

]

l, t

))

+ g(u), x ∈ T, t > 0,

u(x, 0) = u0(x) =
N∑

i=1

ui(0)χci(x), x ∈ T.

(PS)

In addition, because the spatially independent variable is continuous, the dis-
crete model (PD) is successfully converted into a continuous model. The equa-
tion of (PS) is pointwise equivalent to equation (PD). Thus, if the initial condi-
tions of equations (PD) and (PS) are the same by imposing u0(x) := u(x, 0) =
∑N

i=1 ui(0)χci(x), the solutions to both equations are equivalent.
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Furthermore, to apply the continuous model to the experiments and ana-
lyze them in a convenient manner, we approximate the shift operator using the
convolution on the mollifier. We define the shift operator as follows:

τlu(x) := u(x + l).

The shift operator is regarded as the convolution of the shifted Dirac Delta
function δl := τlδ = δ(x + l), and we can describe the model (PS) as follows:

ut = f
(
u ∗ δ−[N−1

2 ]l, · · · , u, · · · , u ∗ δ[N−1
2 ]l

)
+ g(u).

Herein, we suppose that the Dirac Delta function is periodic with Nl, that is,
δ(x) = δ(x + Nl), and we define the convolution k ∗ v with respect to x in T as
follows:

(k ∗ v)(x) :=
∫

T

k(x − y)v(y)dy,

where T can be replaced with a given region in this study. Setting the Friedrichs
mollifier with a small parameter 0 < ε � 1 as

ρε(x) :=
1
ε
ρ
(1

ε
x
)
, ρ(x) :=

{
C0 exp

(
− 1

1−|x|2
)

, |x| < 1,

0, |x| ≥ 1

and using a constant for normalization of the integration C0 > 0, we assume that
ρε is also periodic with Nl. We use the symbol ρε for the mollifier in the higher-
dimensional case. Approximating the Dirac Delta function using the mollifier
ρε(x), we have

uε
t = f

(
uε ∗ ρε,−[N−1

2 ]l, · · · , uε, · · · , uε ∗ ρε,[N−1
2 ]l

)
+ g(uε),

where the shifted mollifier is given by ρε,l := ρε(x + l). Further, because the
solution to this equation depends on ε, we denote the unknown variable as
uε(x, t). If the intercellular interaction f is linear, we derive the typical nonlocal
evolution equation by summarizing the kernel of the convolution as follows:

⎧
⎪⎪⎨

⎪⎪⎩

uε
t = K ∗ uε + a0u

ε + g(uε), x ∈ T, t > 0,

uε(x, 0) = u0(x) =
N∑

i=1

ui(0)χci(x), x ∈ T,
(Pε)

where

K =
[N−1

2 ]∑

j=−[N−1
2 ],j �=0

ajτjlρε. (3)

Therefore, the profile of K depends on the function f and the lattice shape.
This type of nonlocal evolution has been analyzed in numerous studies [35,36].
Similarly, the proposed continuation method can be applied to the case of the
systems and in higher dimensions.
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4.2 Singular Limit Analysis

In this subsection, we demonstrate that the solution to (Pε) is sufficiently close
to that of (PS) in L2(T) based on a singular limit analysis. We first assume
that f is a form of (2). For the condition g, we assume that there exist positive
constants g0, g2, g4 and a non-negative constant g1, g3 such that for u ∈ R

g(u)u ≤ −g0|u|p+1 + g1|u|3 + g2|u|2,
|gu(u) + pg0|u|p−1| ≤ g3|u| + g4,

p ≥ 3 or g1 = g3 = 0 if 2 < p < 3.

A typical example of g is g(u) = u(1−u2), where g0 = g2 = g4 = 1, g1 = g3 = 0,
and p = 3.

We can show the uniqueness and global existence of the solutions of (PS)
and (Pε).

Proposition 1. Assume that f is given by (2), and supj∈{−[(N−1)/2],...,[(N−1)/2]}
|aj | < ∞. There exists a unique solution u ∈ C[(0,∞), L∞(T)] to (PS) with an
initial datum u0 ∈ L∞(T). Furthermore,

sup
0≤t<∞

‖u(·, t)‖L∞(T) < C1, (4)

where C1 is a positive constant.

Proposition 2. Assume thatK is given by (3), and supj∈{−[(N−1)/2],...,[(N−1)/2]}
|aj | < ∞. There exists a unique solution uε ∈ C[(0,∞), L∞(T)] of (Pε) with an
initial datum u0 ∈ L∞(T). In addition,

sup
0≤t<∞

‖uε(·, t)‖L∞(T) < C2, (5)

where C2 is a positive constant independent of ε.

For the solutions to the models (PS) and (Pε), we have the following error
estimate:

Theorem 1. Suppose the same assumptions as in Propositions 1 and 2. Let
u(x, t) and uε(x, t) be the solutions to (PS) and (Pε) with the initial datum
u(x, 0) = uε(x, 0) = u0(x) =

∑N
i=1 ui(0)χci(x) ∈ L∞(T), respectively. Then, for

any time T > 0 and any small positive constant ε,

sup
0<t<T

‖uε(·, t) − u(·, t)‖L2(T) ≤
√

C4

C3

(
eC3T − 1

)
sup

|y|<ε,t>0

‖τyu − u‖L2(T),

where C3 and C4 are positive constants independent of ε. Thus, we have

‖uε(·, t) − u(·, t)‖L2(T) → 0

as ε → +0 for any 0 < t < T .



Mathematical Modeling and Experimental Verification of the PW 61

The proof is based on the energy method using the boundedness of the global
solutions (4) and (5), and the classical Gronwall inequality. From this estimation,
the solution to the continuous model (Pε) converges to that of (PS) in a L2(T)
space as ε tends toward 0. This implies that the solution of the nonlocal evolution
equation can approximate the solution of the discrete model.
Corollary 1. Assume that f is global Lipschitz continuous, that is, there exists
a positive constant L such that

∣
∣
∣f

(
u−[N−1

2 ], · · · , u0, · · · , u[N−1
2 ]

)
− f

(
v−[N−1

2 ], · · · , v0, · · · , v[N−1
2 ]

)∣
∣
∣

≤ L

[N−1
2 ]∑

j=−[N−1
2 ]

|uj − vj |,
(6)

and f(0) = 0 (0 ∈ R
N ). Then, for the solutions to (PS) and (Pε) with (6),

Proposition 1, Proposition 2, and Theorem 1 hold. 1 hold.
This corollary suggests that the convergence Theorem 1 is guaranteed in the
form of f , such as fpcp.

4.3 Application to the Discrete Model of PW

In this subsection, by applying our proposed continuation method to the discrete
model (1), we investigated the generation of patterns by the derived continuous
model through numerical simulations. Although an optic lobe has a hemispher-
ical shape, as shown in Fig. 1 A, we first consider the case of the discrete model
of (1) on two-dimensional planes. For the model of (1) using the characteristic
functions as in the previous subsection, we change the variables to

D(x, y, t) :=
N∑

i,j=1

Di,j(t)χci,j (x, y), N(x, y, t) :=
N∑

i,j=1

Ni,j(t)χci,j (x, y),

A(x, y, t) :=
N∑

i,j=1

Ai,j(t)χci,j (x, y).

In this modeling, we assume the following:

The trigger of differentiation at each point in the cells is determined by

the value of EGF instead of the value of the integration of EGF in a cell.
(A1)

Then, approximating the shift operators with the Dirac Delta function based on
the convolutions of the mollifier, we have the following continuous models:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂E

∂t
= deΔE − keE + aeA(A0 − A),

∂N

∂t
= −knN + dtK ∗ D − dcND,

∂D

∂t
= −kdD + adA(A0 − A),

∂A

∂t
= ea(A0 − A)max{E − N, 0},

in Ω × {t > 0}. (7)



62 Y. Tanaka and T. Yasugi

A
B

Fig. 5. (A) Notch activity as visualized using NRE-dVenus (white) is elevated in cells
adjacent to the clones expressing UAS-Delta under the control of AyGal4 (magenta)
owing to the trans-activation, but is repressed in cells expressing UAS-Delta owing to
the cis-inhibition (arrows) [31]. The wave front of the PW is visualized by L’sc (blue).
Scale bar = 20 µm. (B) Profile of the radially symmetric kernel (8) with ε = 0.7. (Color
figure online)

where kernel K is the linear sum of the shifted mollifiers depending on the shape
of the lattice. We also impose the local term of the max function of the fourth
equation based on the assumption (A1). We then define the division points as

Λk(n) :=
(
l sin

(2π(k − 1)
n

)
, l cos

(2π(k − 1)
n

))
, (k = 1, . . . , n).

These points divide the circumference of the concentric circles into n equal parts.
We define the shift operators as

τΛk(n)u(x, y) := u
(
x + l sin

(2π(k − 1)
n

)
, y + l cos

(2π(k − 1)
n

))
.

If the lattice shapes are square or hexagonal, the forms of the corresponding
kernel are given by

K(x, y) =
4∑

k=1

(τΛk(4)ρε)(x, y), K(x, y) =
6∑

k=1

(τΛk(6)ρε)(x, y),

respectively.

4.4 Radially Symmetric Kernel

Activation of Notch signaling is induced by binding the Notch receptor to the
Delta ligand expressed in adjacent cells (Fig. 1E). Therefore, the activation of
Notch signaling can be affected by the shape of the cell membrane. To exam-
ine whether the shape of the activated region of the Notch signaling shows an
isotropic or anisotropic pattern, we investigated the activation of such signaling
when Delta is artificially expressed. Notch signaling was activated in a group
of cells, forming a concentric distribution pattern adjacent to Delta-expressing
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Fig. 6. Results of the numerical simulations for the state of the differentiation A in the
continuous model (7) with the kernel corresponding to the averaged cell (8). Parameters
are described in [31]. (A) PW with ae = 3.0 and (B) salt-and-pepper pattern with
ae = 0.4.

cells (Fig. 5A). This result suggests that the shape of the cells does not affect
the spatial activation pattern of the Notch signaling in vivo.

Based on the experimental results, we propose radially symmetric kernels as

K(x, y) =
1

2πl
ρε(

√
x2 + y2 − l). (8)

The profile of this kernel is shown in Fig. 5B. The nonlocal operator becomes
radially symmetric when using this shape of kernel. Figure 6 shows the numerical
results of the model of (7) with (8). The wild type of the PW and the salt
and pepper patterns can be replicated using this continuous model, as shown
in Fig. 6A and B, respectively. These numerical results correspond to those of
Fig. 2.

4.5 Description of Discrete Model on Sphere Surface

As the optic lobe has a hemispherical shape and the PW sweeps across the
surface, as described in Sect. 1, it is natural to construct a discrete model for the
PW on a spherical surface. However, mathematical studies of the PW on a 2-D
plane have been discussed because it is technically difficult in general to deal with
discrete models mathematically on a spherical surface owing to the discreteness.
In this case, our continuation method can overcome these difficulties and enables
us to handle the model on the spherical surface as a continuous model equation.
In practice, by applying the continuation method with a radially symmetric
kernel with radius r > 0 in (8), we can compute the continuous model (7) on a
spherical surface using the spectrum method [31]. We can calculate the following
model of the PW on a spherical surface numerically:

⎧
⎪⎨

⎪⎩

∂E

∂t
= deΔrS2E − keE + aeA(A0 − A),

∂N

∂t
= −knN + dtK ∗rS2 D − dcND,

in rS2 × {t > 0}, (9)
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A B

Fig. 7. Results of the numerical simulations for the state of the differentiation A in
the continuous model on the spherical surface (11). The parameters are the same as
those in Fig. 6 and r = 10.0 and kinJ ≡ 1.0 × 10−3. (A) PW with ae = 2.0. (B)
Salt-and-pepper pattern with ae = 0.4.

where the equations of D and A are the same as in equation (1), and rS2 is a
sphere with radius r > 0 and K : [0, 2r] → R is defined as

K(x) := ρε(x − l), x ∈ [0, 2r].

In addition, the Laplace-Beltrami operator ΔrS2 on a general sphere with radius
r > 0 is given by

ΔrS2 =
1
r2

ΔS2 .

The convolution operator on a sphere ∗rS2 is computed as

K ∗rS2 u(x) :=
∫

rS2
K(|x − y|)u(y)dΩr(y),

= r2

∫

S2
Kr(|x − y|)ur(y)dΩ(y),

= Kr ∗S2 ur(x),

where
Kr(| · |) := K(r| · |), ur(x) := u(rx) (x ∈ S

2). (10)

Here, dΩr is denoted by the standard measure of rS2, and ∗S2 is the convolution
on the unit sphere. The details of the calculation are described in [31]. According
to the calculation, we can rewrite equation (9) on the unit sphere as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂Er

∂t
=

de

r2
ΔS2Er − keEr + aeAr(A0 − Ar),

∂Nr

∂t
= −knNr + dtr

2Kr ∗S2 Dr − dcNrDr,

∂Dr

∂t
= −kdDr + adAr(A0 − Ar),

∂Ar

∂t
= ea(A0 − Ar)max{Er − Nr − kinJr, 0},

in S
2 × {t > 0}, (11)
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where the notations of the unknown variables are based on (10). Through the
numerical simulation of Fig. 7, the parameters of which are the same as those
in Fig. 6, we obtain similar numerical results of the propagation of AS-C as the
case of a 2-D plane when r = 10.0.

5 Discussion

In this paper, we introduced our interdisciplinary studies using the PW in the
Drosophila visual system. We combined mathematical modeling with an experi-
mental analysis and showed that the combination of Notch-mediated lateral inhi-
bition and EGF-mediated reaction diffusion systems regulates the timing of neu-
ral stem cell differentiation. A further improvement of the mathematical model
through the inclusion of the JAK/STAT function points to the possibility that
JAK/STAT signaling can eliminate biological noise. Based on this prediction, we
manipulated the JAK/STAT activity in vivo and confirmed that JAK/STAT sig-
naling prevents spontaneous neural stem cell differentiation caused by noise. In
both studies, we conducted simulations on mathematical models to recapitulate
different situations in vivo and develop new biological predictions for analysis. To
verify the predictions, we partially decreased the activity of EGF or JAK/STAT
and found new functions of these pathways (Fig. 2D, 3C). Typically, biologists
attempt to completely eliminate the functions of the target genes. However, our
results show that we may find new functions of signaling pathways or molecules
by gradually changing their activities. This is an interesting perspective for future
biological research using mathematical modeling.

We also proposed a versatile continuation method from spatially discretized
models. We applied this method to a mathematical model of the PW and con-
firmed that the numerical calculation of the continuous model shows equivalent
results to those of the discrete model. We can easily include the effect of cell pro-
liferation by using continuous models and expand the simulation results from a
2-D plane to a 3-D spherical surface. In addition, Hippo signaling inhibits NE
proliferation and promotes NB differentiation [7,8,15]. Future studies including
the function of Hippo signaling, based on a mathematical model, will reveal the
spatio-temporal coupling of the proliferation and differentiation of undifferenti-
ated NEs.

The biological processes of multicellular organisms are regulated by the com-
plex intercellular communication of signaling pathways. It is often difficult to
predict the behavior of each signaling pathway and the final phenotype if the
functions of one or more pathways are compromised. Mathematical modeling
can be a powerful tool to understand the dynamic functions of signaling path-
ways. The mathematical method described above is not specific to studies of the
PW and is also useful for understanding many different biological systems. As
the functions of Notch, EGF, and JAK/STAT are conserved, we can easily for-
mulate similar mathematical models for other systems. A continuation method
developed from discrete models conserving the cell size and lattice will enable
us to efficiently conduct numerical calculations, both qualitatively and quantita-
tively. Finally, we can better understand the molecular basis of a wide variety of
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biological systems by combining mathematical modeling with an experimental
verification.
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1 Introduction

Cancer cells interact with tissue cells in a complex manner. Immune cells had that
initially participated in eliminating cancer cells are often educated to become
assisting cancer growth. Identifying causal relationship of cellular interactions
that mediate cancer progression is crucial to understand how cancer cells grow,
evolve, and persist. A mathematical model that describes dynamics of cancer
cell population is constructed based on a given causal relationship among model
ingredients. Mathematical modeling has been employed to explain cancer pro-
gression patterns in terms of dynamical system.

Time-series analysis provides prediction of a future state of a time-evolving
process such as cancer progression. A nonlinear time-series analysis method
called empirical dynamic modeling (EDM) has been recently applied in vari-
ous fields. EDM has model-free analysis to estimate causality that arose from
interactions among components. Convergent cross mapping (CCM) is a method
which analyzes system’s behavior by reconstructing a state space of a system
from time-series data without assuming any mathematical equations. Empirical
dynamic modeling (EDM) is a model-free method to infer causal relationships
from time-series data. EDM has been recently extensively applied in various
fields because of its usefulness and versatility.

Despite a variety of mathematical approaches have been available, less are
investigated to combine mathematical modeling and model-free analysis method.
In this chapter, we proposes a novel approach to bridge mathematical model-
ing and model-free causal inference method. We show that optimal embedding
dimension of observed time-series data determined by simplex projection exhibits
similarity with dynamical flow of a trajectory. In other words, pattern similarity
represented as the emergence of naturally clustered sub-regions on heatmap is
find between embedding dimension and vector field.

The organization of this chapter is as follows. In the next section, we intro-
duce basics of empirical dynamic modeling. Then we show pattern similarity can
be observed for two different population dynamics model representing ecological
interactions of species.
c© Springer Nature Singapore Pte Ltd. 2021
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2 What is Empirical Dynamic Modeling?

Can we capture relationships among populations from observed data? The bet-
ter we understand these relationships, the better we will be able to implement
interventions. This chapter lets us describe the applicability of empirical dynamic
modeling (EDM), which has been increasingly used in ecology. Among various
ecological studies, time-series data analysis of interacting populations has gained
considerable attention. These studies often focus on identifying relation of the
interactions among components, as a graph. In network analysis, the relation-
ship among components in a given state is inferred from observed data, and
represented as a network diagram. Although an inferred network may help to
understand the relationship of a given ecological community, the inferred net-
work is often represented as an undirected graph. In other words, no information
regarding the orientation of effect is present. Therefore, even if we could know
a relationship among components, it remains unclear whether the relationship
represents a causal relationship.

Quantification of intervention effects is one of the most exciting aspects of
time series analysis. Intervention effect quantifies how much intervention on a
causal factor changes the outcome factor when there is a causal relationship
among components. Intervention effect has been studied in medicine, economics,
and statistical science, referred to as causal inference. In the causal inference
study, a causal relationship is generally represented by drawing a directed acyclic
graph (DAG).

Time-series data analysis often faces difficulty in collecting samples that con-
tain all potentially important variables involved in a target ecosystem (e.g.,
grasses, rabbits, and foxes in the three-species ecological example) [1]. The the-
ory of state-space reconstruction (SSR) [2,4] based on Takens’ embedding the-
orem can provide a sophisticated solution to this problem [2]. Takens’ theorem
ensures to reconstruct an attractor that is equivalent to the original attractor if
enough length of time-series data for a single variable are available. In practice,
an attractor is reconstructed by projecting the original attractor to a state space
with E dimensional time-delayed coordinates of an observed species X, in which
a state vector contains E time-lagged species states [3]. In other words, vectors
consist of from time-delayed values of a single variable, {Xt,Xt−τ , ...,Xt−(E−1)},
where Xt is the population density of species X at time t. Note that τ is the
time step and E is the embedding dimension.

Empirical dynamic modeling (EDM) is a collection of practical tools that
apply to observed time-series data. EDM has several characteristic features: It
determines the complexity (dimensionality) of a system, distinguishing nonlinear
dynamical systems from linear stochastic systems, and quantifying nonlinearity
(i.e., state dependence), identifying causal variables, forecasting, tracking the
strength and sign of interaction, and exploring the scenario of external pertur-
bation [5]. These methods are suitable for analyzing complex systems because
they do not explicitly assume governing equations. Despite the potential useful-
ness, explicit formulation of governing equations often faces difficulty in mak-
ing reasonable a priori assumptions about underlying mechanisms. In the next
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section, we introduce how to utilize EDM to time-series data with special focus
on convergent cross mapping (CCM).

3 Inference of Causal Relationships: Example

Among the EDM methods, convergent cross mapping (CCM) analyzes a sys-
tem’s behavior by reconstructing the state space of a system from time-series
data without assuming any mathematical equations. Reconstruction of a dynam-
ical system’s attractor by applying Takens’ embedding theorem to time series
data assumed to be generated from a nonlinear dynamical system [1]. Causality
(i.e., changing one causes another to change) is inferred from a couple of attrac-
tors reconstructed from observations of two variables in multivariate time series
data [2]. The basic principle of cross-mapping involves reconstructing system
states from two-time series variables and then quantifying the correspondence
between them using nearest neighbor forecasting [3]. For each selected variable,
an attractor is reconstructed by delay embedding proposed in Takens’ theorem.
Then, one on another’s effect is measured by evaluating the error of the corre-
lation coefficient (Cross Map Skill) between the estimated time series and the
actual time series.

Hereafter we consider the following coupled logistic maps composed of two
variables, denoted by X and Y :

X(t + 1) = X(t)[3.8 − 2.8X(t)],
Y (t + 1) = Y (t)[3.5 − 0.35X(t) − 3.1Y (t)].

(1)

Synthetic time-series data are generated from system (1), and plotted in Fig. 1.
Note that the synthetic data should indicate a direction from X to Y .

Fig. 1. Time series of coupled logistic maps. Red and blue lines represent the time
series data of X and Y , respectively.
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A workflow of CCM analysis is as follows. First, the optimal embedding
dimension is determined. Let us denote the optimal embedding dimension of X
and Y by Ex and Ey, respectively. For each variable (X and Y ), the predicted
value of Y is calculated from the time-series data of X in Ex, followed by cal-
culating cross-map skill (CMS) as a measure of prediction accuracy from the
correlation coefficient with the measured value of Y . This procedure is repeated
for Y , and with increasing sample size, two CMSs are computed, one for Y
predicted from X and one for X predicted from Y .

In the first step, the dimensionality of a dynamical system can be determined
by simplex projection [4,5]. When using simplex projection, a time series dataset
is typically divided into two halves, where one half (X) is used as the library set
for out-of-sample forecasting and the rest are used for the prediction set (Y ) [2].
Following this procedure, the nearest neighbor is selected based on the Euclidean
distance between the target point and the other points. What we do here is to
find a point that shows “similar behavior” to the target point. Finding the
nearest neighbors corresponds to finding the points that show similar behavior
in the time series data. The second step is to calculate the weights at each
nearest neighbor and the predictions from these weights. Simplex projection
with different values of E are used to determine the best embedding dimension
according to the prediction skill. There exist several options to evaluate the
predictive skill of simplex projection, such as the correlation coefficient (ρ), the
mean absolute error (MAE), and root mean square error (RMSE) between the
observed value and predicted value (Fig. 2). In this case, E = 2 is the optimal
embedding dimension.

The third step is to evaluate the error of the correlation coefficient (CMS).
Following Takens’ theorem, an attractor reconstructed from a univariate embed-
ding (SSR with a single variable) gives a one-to-one map to the original system.
Since the reconstructed attractor has a one-to-one map to the original manifold,
it is natural that all reconstructed manifolds are mapped one-to-one. Based on
this idea, Sugihara et al. developed a cross-mapping algorithm to test the causal
relationship between pairs of variables in a dynamical system [2,6–9]. The algo-
rithm uses the time lag of another variable to predict one variable’s current
quantity and the other way around. If two variables belong to the same dynam-
ical system (i.e., if they are causally related), then the cross-mapping between
them must converge. Here the word “convergence” indicates that CMS improves
as library size increases [5]. To confirm the cross-mapping convergence, the state
space is reconstructed using different library sizes randomly subsampled from
time-series data. Here, the maximum library size equals to all points in the
time-series data.

For synthetic time-series data generated from system, prediction accuracy
by cross-mapping was calculated from the correlation coefficient between the
measured and predicted values (Fig. 3). The correlation coefficient increased with
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Fig. 2. Predictive skills using simplex projection and embedding dimension. Predictive
skills are evaluated by correlation coefficient (ρ), the mean absolute error (MAE), and
root mean square error (RMSE).

the increasing library size. In particular, the predicted and measured values of
Y predicted from the time-series data of X approached 1 as the library size
increases (see the red line in Fig. 3). On the other hand, the predicted and
measured values of X from the data of Y as described by the blue line in Fig. 3
are low, suggesting that there exists a directionality only from X to Y .

As demonstrated in this section, CCM allows us to infer causal relationship
between two components from multivariate time-series data.
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Fig. 3. Forecasting skills with different library sizes for convergent cross mapping
(CCM). These skills are evaluated by correlation coefficient (ρ). Red and blue lines
represent the library size of Y cross-map X (i.e., correlation coefficient of X predicted
by Y ) and X cross-map Y (i.e., correlation coefficient of Y predicted by X). The dash
lines represents the linear correlation coefficient.

4 Pattern Similarity Between Optimal Embedding
Dimension and Flow

In this section, we show that EDM can be used draw a phase diagram which is
similar to a flow (vector-field) of a dynamical system. We consider two ecological
species, denoted by x and y. We assume that x is not affected by y. More
specifically, we consider the following system of differential equations:

dx

dt
= x(a − bx),

dy

dt
= by(1 + x − y),

(2)

Note that x is affected by x only, while y is affected by both x and y. We cal-
culate an optimal embedding dimension for different initial values using simplex
projection. Each of top panels in Fig. 4 describes a heatmap of optimal embed-
ding dimension for different initial values. Interestingly, the right panel exhibits
a similar pattern to the vector field of system (2). Note that nullcline and equi-
librium point are clearly drawn in the heatmap of optimal embedding dimension.
Although the generation mechanism of pattern similarity still remains currently
unknown, these heuristic findings suggest that optimal embedding dimension
of information for the flow of a dynamical system may capture nullclines and
equilibrium.
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Fig. 4. Heatmaps of optimal embedding dimension for different initial values (top-left
and top-right) and vector field of system (2) (bottom). The parameters are a = 0.04
and b = 0.02 and time step is set to 400 points.

Next, we consider a different mathematical model to check whether the
heuristic findings shown in Fig. 4 can be observed as well. More specifically,
we consider a Holling type II prey-predator model:

dx

dt
= rx

(
1 − x

K

)
− axy

1 + hx
,

dy

dt
=

bxy

1 + hx
− cy,

(3)

where variables x and y denote the population density of prey and predator,
respectively.

Note that system (3) can undergo Hopf bifurcation by changing b as a bifur-
cation parameter, known as the paradox of enrichment. In other words, system
(3) can exhibit qualitatively different dynamical behaviors. Hence we generated
three different synthetic time-series datasets by changing parameter b to check
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whether the heatmap of optimal embedding dimension can capture the structure
of the dynamical system.

More specifically, we selected two numerical values b = 0.0120 and b = 0.0124:
the former value represents a situation that every trajectory converges to the
unique stable coexistence equilibrium (Case1: stable) while the latter represents
a situation that trajectories converge to a periodic orbit (Case2: unstable).

For each case, we calculated simplex projection for the synthetic time-series
data generated from system (3) for different initial values. We examine how the
values of the optimal embedding dimension change (represented in panels of
Fig. 5). Interestingly, each heatmap exhibits a similar pattern to the vector field
of system (3).

To quantitatively evaluate observed pattern similarities for systems (2) and
(3), several values were arbitrarily picked up from case 1 (stable) and case 2
(unstable), respectively. Taking Ex and Ey as the magnitude of the optimal
embedding dimension of X and Y , we define the following evaluation index:

M :=
m − Min(m)

Max(m) − Min(m)
, (4)

where m :=
√

(Ex)2 + (Ey)2. Note that index M represents the magnitude
of each optimal embedding dimension scaled by the minmax normalization [10].

Fig. 5. Heatmaps of optimal embedding dimension [left/middle] and vector field [right]
for Case 1 (stable) [top] and Case 2 (unstable) [bottom]. The parameters are r = 0.03,
K = 100, a = 0.002, h = 0.1, c = 0.1, and b = 0.0120 (Stable) or b = 0.0124 (Unstable).
Time step is set to 1000 points.
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Fig. 6. The heatmap of evaluation index M [top panel] and 3D scatter plot z [bottom]
for case 2 (unstable equilibrium), the corresponding. The entire region is naturally
classified into six inclusion such region (R01–R06) by the optimal embedding dimension
(different color panels). Note that each label (R01–R06) in the top panel corresponds
to the labels in the bottom panel.

Based on the index, we compare and verify the similarity of population dynamics
in regions with the same index value. On the other hand, to quantitatively
evaluate the magnitude of flow speed for each trajectory, we define Z as an
evaluation index (the bottom panel of Fig. 6):

Z :=

√
dx

xt

2

+
dy

xt

2

, (5)

By comparing heatmap of M and 3D scatterplot of Z, we find an interesting
observation that the entire region is naturally (without clastering) classified into
six exclusive sub-regions.

Note that optimal embedding dimension using simplex projection is higher
when trajectories are always close to each other (i.e., equilibrium). On the other
hand, optimal embedding dimension is lower for trajectories showing moderate
or rapid change (i.e., transition state).
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5 Concluding Remarks

Mathematical oncology has recently contributed to achieve the following three
significant milestones: (1) establishment of precise and reproducible predictions
for the spatio-temporal progression of cancer, (2) avoidance and reduction of
treatment resistance, and (3) integration of knowledge-based mathematical mod-
els with machine learning [11]. Despite the spreading availability of enormous
data, we often face challenges to define what constitutes appropriate data. The
current big data available in the field of cancer research do not necessarily cover
every aspect but are often limited to specific time and space, environment,
and context. Therefore, appropriate data collection is indispensable for building
an accurate prediction model. For instance, when investigating the relationship
among patient epidemiological characteristics [12], biopsy samples [13,14] and
biomarkers, it is often inevitable to construct a prediction model based on inper-
fect data because biomarkers are often sensitive to clinically unobservable events
such as the onset of metastases [15] and false-positive diagnoses [16]. Although
empirical dynamic modeling (EDM) has initially been utilized in population
dynamics study, the scope of its application has been spreading to the other
field other than ecology because of its versatility: reconstructing of the state
space of a system from observations of time series data and performs model-
free analysis [17–20]. A typical field of application includes brain science [21,22].
An extended application of EDM to cancer research may make it possible to
explore the relationship between patient conditions and biomarkers, or between
molecular and cellular interactions from observed data.

In this chapter, we focused on empirical dynamic modeling (EDM). The
present study has revealed a heuristic finding on relationship between optimal
embedding dimension of nonlinear time-series data and vector field of a dynam-
ical system. Although it is still not clear, the origin of the similarity observed
in Sect. 4 might be possibly due to dependence on transient dynamics. Further
considerations are left for our future work to obtain reasonable interpretations.
If nonlinear time-series data of cancer population dynamics are available, the
heuristic finding presented in this study may help to infer trajectories of cancer
cell dynamics progression from time-series data of cancer cell dynamics based
on the similarity to an optimal embedding dimension.
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Abstract. Angiogenesis is the morphogenetic phenomenon in which
new blood vessels emerge from an existing vascular network and con-
figure a new network. To understand complex movements of endothelial
cells and molecular processes that drive angiogenic morphogenesis, time-
lapse live imaging of dynamic collective cell migration and mathematical
modeling have proven highly informative. This paper focuses on recent
mathematical models for the dynamics of endothelial cells during angio-
genesis and presents the importance of both repulsive and attractive
two-body interactions by showing results of simulation.

1 Introduction

Angiogenesis is a phenomenon that new blood vessels are formed by sprout-
ing from existing vessels. Branch elongation and bifurcation during angiogenesis
are driven by collective motion of endothelial cells (ECs). Angiogenesis occurs
in response to tissue ischemia or increased oxygen demand during various pro-
cesses such as wound healing, placenta formation and tumor growth. Therefore,
elucidation of mechanisms of angiogenesis is essential to expand our knowledge
about physiological and pathological phenomena.

Collective cell migration in morphogenesis is often regulated by leader cells,
which are accompanied by other follower cells that uniformly migrate. As for
angiogenic elongation, an EC called a “tip cell”, is commonly thought to migrate
in the direction of new vessel [1,2]. The adjacent ECs are assumed to follow the
tip cell as stalk cells connected to each other through cell-cell junctions. However,
experiments with time-lapse live imaging have revealed that cell migration dur-
ing angiogenic morphogenesis involves complex behavior. Individual ECs exhibit
dynamic and heterogeneous motion, move forwards and backward along the
path of the elongation and change often their positions even at the tips. This
‘cell mixing’ effect was observed in both in vitro and in vivo experiments [3,4].
Furthermore, Sugihara et al. observed the dynamics of ECs in sprouting blood
vessels of zebrafish and found that the movement of tip cells depends on the
presence of stalk cells within a proper distance [5]. For a tip cell and stalk cells
moving forward along the elongating branch, the isolated tip cell stopped mov-
ing after a laser shot ablated the follower EC. However, the tip cell started
moving again when another EC approached it. This result suggests that the

c© Springer Nature Singapore Pte Ltd. 2021
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interaction between ECs plays an essential role in the complex multicellular
dynamics in angiogenesis. To uncover hidden laws driving angiogenic morpho-
genesis, Takubo et al. analyzed EC behaviors in an in vitro angiogenic sprouting
assay using mouse aortic explants [6]. Time-lapse imaging of sprouting from cell
sheets around tissue explants showed directional collective cell movements with
frequent U-turns. Imaging of isolated branches with basal cell sheets removed
revealed that a constant supply of migrating cells is required for ECs to branch
forward.

A lot of mathematical models for angiogenesis have been proposed from var-
ious points of view: a hybrid model of cell migration on an elastic matrix of
fibers [7], a mesoscopic lattice-based stochastic model in relation to determin-
istic continuous models [8], a phase-field continuous model of sprouting angio-
genesis described by compact partial differential equations [9], and continuous
model described by differential equations [10]. A stochastic states model and
the differential equation model corresponding to its continuous limit have been
discussed to explain the observation in the dynamics of ECs along an elongating
branch [5]. Matsuya et al. focused on the effects of cell-to-cell interaction and
proposed a one-dimensional discrete model that incorporates deterministic two-
body interaction between ECs, which do not consider stochastic fluctuation and
a gradient distribution of angiogenic factors such as vascular endothelial growth
factor (VEGF) [11]. This model has succeeded in explaining complex EC behav-
iors by cell-to-cell interactions. Takubo et al. quantitatively verified the two-body
interaction, which had not been quantified in the one-dimensional model. Fur-
thermore, they extended the model to take into account the interaction, which
is thought to be caused by the polarity of ECs.

In Sect. 2, we present the one-dimensional model proposed by Matsuya et
al. and show numerical simulation results. A power-law scaling behavior in this
model is shown and analyzed. We present the extended model and a parameter
estimation in Sect. 3. Section 4 is devoted to concluding remarks.

2 Discrete Dynamics System Model for Angiogenesis

The system is essentially two dimensional because murine aortic rings were
embedded and ECs were cultured in collagen gel placed in a shallow petri dish.
We neglect the effects of anastomosis(reconstruction of vessels) and cell division
of ECs in neogenetic vessels. Actually cell division is rarely observed in the time
span of the experiment (∼5% a day). We consider formation of one of the newly
generated blood vessel networks which arise from the aortic ring. We suppose
that there is no neogenetic vessel sprouts in a certain direction according to the
supply of ECs for t > 0. The nth (n = 0, 1, 2, . . . ) EC comes to the origin of
this neogenetic vessel network at time step t =

∑n
i=1 ai with an initial velocity

vini(n) ≥ 0, where ai ∈ Z+ is the time interval between the incidence of ith EC and
that of (i−1)th EC. Here, we focus on the dynamics of ECs only in the first neo-
genetic vessel and the effects of two-body interactions between ECs in a branch.
Interactions among ECs are quite complicated and have not been well uncov-
ered. We assume that the interaction between ECs is caused by direct contact
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Fig. 1. Schematic figure of two-body interaction in the present model.

of their membranes; chemical signals or mechanical force induced by cell-to-cell
contact yields the driving force of ECs. For short distance, the interaction force
will turn out to be repulsive due to excluded volume effect, while it will turn out
to be attractive if the distance becomes larger because of the interaction with
pseudopodia. Thus the mathematical model we present here is given as

xt+1
n − xtn = vtn (1)

vt+1
n − vtn = −γvtn +

∑

k�n

F
(
xtn − xtk

)
, (2)

where xtn ≥ 0 is the position of the nth EC at time step t ∈ Z+, the time unit
(Δt = 1) may correspond to the specific response time, the parameter γ(0 < γ <
1) denotes the coefficient of conflict, and F denotes the two-body interaction
between ECs.

The interaction F is adopted the following simple form by taking the three
characteristic lengths Rr, Re, Ra into account:

F(x) :=

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪
⎩

sgn(x) fr (0 < |x | ≤ Rr )
−sgn(x) fe (Rr < |x | ≤ Re)

−sgn(x) fa (Re < |x | ≤ Ra)

0 (Ra < |x |)

(3)

where sgn(x) := x/|x | and fr, fe, fa are the positive constant for interaction
strengths (Fig. 1). Although the case xtn = xt

k
(n � k) may be possible in principle,

practically this model can neglect this case in numerical simulation.
Equation (1) means that vtn is the velocity of the nth EC at time step t and

(2) is the discrete analogue of the Newtonian equation of motion. We do not
consider the effect that ECs in the neogenetic vessels go back into the existing
aortic ring, and xtn has to take non-negative value. To avoid back flow of ECs
into the source, we reset xt+1

n =0 and vt+1
n = 0 if xt+1

n ≤ 0 in (1). In order to see
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Fig. 2. Trajectories of EC movements during elongation with parameters Rr = 0.2, Re =

0.4, Ra = 0.7, γ = 0.6, a = 5, vini = 0.3, vmax = 1.0 and (a) Repulsive force only: fr =

0.6, fe = 0, fa = 0, (b) Attractive force only: fr = 0, fe = 0.15, fa = 0.05 and (c) Both:
fr = 0.6, fe = 0.15, fa = 0.05.

the effects of repulsive and attractive interactions, we simulated (1) and (2) for
three types of two-body interactions: (a) only repulsive ( fe → − fe, fa → − fa in
(1), (b) only attractive ( fr → − fr), and (c) both interactions given in (1). A
typical result is shown in Fig. 2, where we put ai = a(constant) and vini(i) = vini
(constant) for all i.

When interaction is only repulsive, the distribution of ECs is fairly uniform
as shown in Fig. 2(a), while if interaction is only attractive, ECs clump together
as in Fig. 2(b). In case both repulsive and attractive interactions coexist as is
supposed in this model, ECs clearly show the cell mixing behavior and the dis-
tribution of ECs is sufficiently uniform. The cell mixing behavior is also seen in
Fig. 2(a), though it is less frequent than in Fig. 2(c). As a consequence, repulsive
interaction between ECs is necessary for smoothing the distribution of ECs and
attractive interaction enhances the cell mixing behavior in the dynamics of ECs.
Figure 4 shows the time dependence of the reaching position of ECs, that is, the
position of an EC at the tip. As shown in Fig. 4(b), it almost scales as t2/3 for dif-
ferent strengths of attractive interaction. In fact, we can find that this exponent
2/3 is observed almost irrespective of the parameters for interactions, supply
rate, and initial velocity. In particular, the data of numerical simulation closely
fit, the curves ∝ t2/3 in the case of no attractive interaction. For random walk,
the reaching position scales as t1/2, while it scales as t1 for wave propagation.
The exponent 2/3 suggests that the ECs in the present model show the dynamics
between random walk and wave propagation. The theoretical explanation of this
universal exponent is given in Appendix.
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Fig. 3. Distributions of ECs at time step t = 104. Parameters are the same as those in
Fig. 2.

3 A Two-Dimensional Model Considering the Anisotropic
Nature of Two-Body Interactions

Under the assumption of simple two-body interactions between ECs, the mathe-
matical model discussed in previous section successfully reproduced the cell mix-
ing effects. However, the two-body interaction is not quantitatively validated. In
this section, we present the parameter estimation of the model from the position
data of ECs obtained by an automated cell tracking system. We first extended
the one-dimensional model to a two-dimensional one as follows,

xt+1
n − xtn = vtn (4)

vt+1
n − vtn = −γvtn +

∑

k�n

F
(


xtn − xtk





) xtn − xt

k


xtn − xt

k





, (5)

where xtn ∈ R
2 and vtn ∈ R

2 are the position and the velocity of the nth EC
at time step t, respectively, and γ > 0 denotes the coefficient of damping. The
interaction term is isotropic, which depends only on the relative positions xtn− xt

k
between two ECs. We estimate the parameter γ and the force function F from the
experimental data of the time-lapse live imaging of ECs. The interaction between
ECs are supposed to be short-range rather than long-range force. Therefore, let
us consider the rectangular kernel on bounded support as the density kernel,

F(x) =
N−1∑

k=0

bk

(

θ

(

x − k
Rd

N

)

− θ

(

x − (k + 1)
Rd

N

))

, (6)

Here Rd is the upper bound distance of cell-to-cell interaction, the range [0, Rd]

is divided into N equal intervals, and θ denotes the step function:

θ(x) :=
{
1 (x > 0)
0 (x ≤ 0) (7)
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Fig. 4. (a) The parameters are Rr = 0.2, Re = 0.4, Ra = 0.7, fr = 0.6, fa = 0, vini = 0, γ =
0.6, vmax = 1.0, 〈a〉 = 5, and (red curve) fe = 0, (green curve) fe = 0.2, (orange curve)
fe = 0.4. The blue curve satisfies y = 0.5092t0.6601. (b) Log-log plot of the four curves
in (a). The straight line satisfies ln(y) = 0.6601 ln(t) − 0.6749, which is fitted to the red
curve. “〈a〉 = 5” means that the injection period is random with average period 5.

Given N and Rd, we minimize the following error function E for the estimation
of the parameter γ and bk(k = 0, 1, . . . , N − 1):

E =
∑

t

∑

n












(

vt+1
n − vtn

)

−

(

−γvtn +
∑

k�n

F
(


xtn − xtk





) xtn − xtk


xtn − xtk






)










2

, (8)

where xtn is experimentally obtained cell position of nth EC at time t, and vtn is
the velocity as numerical difference. Since E is a quadratic polynomial of N + 1
variables γ and {bk}

N−1
k=0 , the minimum of E is unique.

Figure 5 shows the estimated function F and potential from F when N = 25
and Rd = 50µm. ECs experience distance-dependent interactions: with repulsive
force in ∼8 µm and attractive force in 8∼30 µm. Since each EC has its own
volume, proximity of two cells may produce the repulsive force as a result of
excluded volume effects. On the other hand, the attractive force may reflect
contact-dependence acceleration.

Furthermore, since the shape of an EC is anisotropic, we consider anisotropy
of cellular interactions. The presence of ECs moving backward produces dif-
ferent pattern of directionality as follows: (i) two ECs move into the opposite
direction apart from each other, (ii) two ECs move into the opposite direction
approaching each other, (iii) two ECs move in the same direction. Based on these
classifications, we extended Eq. (4) to the following equation.

vt+1
n − vtn = −γvtn +

∑

k�n

F1

(


xtn − xtk





) xtn − xt

k


xtn − xt

k





θ
( (
xtn − xtk

)
· vtn

)
θ
(
−

(
xtn − xtk

)
· vtk

)

+
∑

k�n

F2

(


xtn − xtk





) xtn − xt

k


xtn − xt

k





θ
(
−

(
xtn − xtk

)
· vtn

)
θ
( (
xtn − xtk

)
· vtk

)
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Fig. 5. (a) Estimated force F(x) with Rd = 50, N = 25. (b) −

∫ x

0
F(μ)dμ, potential of

(a).

(a) (b) (c)

(d) (e) (f)

Fig. 6. Estimated force (a) F1(x), (b) F2(x), (c) F3(x). These functions were obtained in
accordance with experimental results used in the estimation of F(x) (Fig. 5). Potentials
of each forces, (d) −

∫ x

0
F1(μ)dμ, (e) −

∫ x

0
F2(μ)dμ, (f) −

∫ x

0
F3(μ)dμ, respectively.

+
∑

k�n

F3

(


xtn − xtk





) xtn − xt

k


xtn − xt

k





θ
( (
xtn − xtk

)
· vtn

)
θ
( (
xtn − xtk

)
· vtk

)

+
∑

k�n

F3

(


xtn − xtk





) xtn − xt

k


xtn − xt

k





θ
(
−

(
xtn − xtk

)
· vtn

)
θ
(
−

(
xtn − xtk

)
· vtk

)

where the centered dot ‘·’ is the inner product and three force functions F1, F2,
F3, which correspond to the three patterns (i), (ii) and (iii), respectively, were
estimated by a similar method as above. Figures 6(a)–(c) show the estimated
three forces. In F1 and F2, both repulsion (∼8 µm) and attraction (8∼30 µm) were
evident. By contrast, F3 contained only a repulsive component in ∼8 µm with
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no evident attractive component. Figures 6(d)–(f) are the integrals of Figs. 6(a)–
(c) respectively, that is, potential. While Fig. 6(d) and (e) clearly indicate the
positive slope (8∼30 µm), Fig. 6(f) shows relatively flat in the region 6∼50 µm.
Hence, it is suggested that an attractive interaction occurs between a pair of a
cell moving forward and backward, resulting in accelerated cell movement when
passing each other. On the contrary for lateral cells, attractive force is not much
driven.

4 Concluding Remarks

In this paper, we have discussed a discrete dynamical model for angiogenesis
which fits well some aspects of collective cell migration during angiogenesis. The
dynamics of each ECs is assumed to be mainly ruled by deterministic two-body
interactions which consist of short-range repulsion due to excluded volume effect
and long-range force through pseudopodia and described by a one-dimensional
discrete Newtonian equation of motion. Under this interaction, the tip position
of a neogenetic vessel at time step t, l(t), develops as l(t) ∝ t2/3. We have given an
interpretation on this value of exponent, 2/3, based on the equation of continu-
ity and a hypothesis of existence of a scaling function. Although this model has
succeeded in explaining complex EC behaviors by cell-to-cell interactions based
on simple Newtonian dynamics, the assumption of two-body interactions is not
quantitatively validated. Furthermore, anisotropic nature of two-body interac-
tions, which may be caused by cellular polarity, is not considered. The parameter
estimation discussed in Sect. 3 revealed distance-dependent intercellular forces;
a repulsive force in ∼8 µm and attractive force in 8∼20 µm, which are consis-
tent with the assumption of the one-dimensional model. Theses results suggest
that the deterministic two-body interaction between ECs is an essential factor in
complex EC behaviors such as cell mixing. However, these models deal with the
early stage of angiogenesis and have not included chemotaxis, lumen formation,
and remodeling of blood vessels, which are important in construction of in vivo
blood vessel networks. Realistic mathematical modeling for angiogenesis and its
application to medicine are an important issue. Development of the models by
incorporating these factors is expected to uncover novel mechanisms and provide
a theoretical framework for clinical trials targeting angiogenesis in the future.

Acknowledgements. The author would like to thank Prof. Tetsuji Tokihiro, Prof.
Fumitaka Yura, Prof. Jun Mada, and Prof. Hiroki Kurihara for valuable comments.

Appendix

Here, we explain the scaling law of the position of an EC at the tip according to
the method in [11]. Let ρ(x, t) be the density of the ECs at time t and position
x. In continuum limit, ρ(x, t) satisfies the equation of continuity:

∂ρ(x, t)
∂t

+
∂

∂x
(ρ(x, t)v(x, t)) = 0, (9)
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where v(x, t) is the field of velocity ECs at (x, t). From (1), in quasi equilibrium,
we may approximate v(x, t) as

v(x, t) ∼
1
γ

∫

F(x − y)ρ(y, t)dy. (10)

If ρ(x, t) is a smooth function of x, we can expand

ρ(y, t) = ρ(x, t) +
∂ρ(x, t)
∂x

(y − x) +
∂2ρ(x, t)
∂x2

(y − x2
)

2
+ · · · . (11)

We further assume that higher derivatives of ρ(x, t) takes smaller absolute values
than its first derivate ∂ρ(x,t)

∂x . In fact, as shown in Figs. 3(a) and 3(c), the density
ρ(x, t) is approximately a linear function, which implies that its higher order
derivatives are negligible. Since F(x) is an odd function, neglecting the higher
order terms, we have

v(x, t) ∼
1
γ

∫

(y − x)F(x − y)ρ(y, t)
∂ρ(x, t)
∂x

dy =: Aeff
∂ρ(x, t)
∂x

, (12)

where Aeff is a constant depending on the parameter γ, fr, fe, fa, Rr, Re, Ra. Hence,
(9) gives

∂ρ(x, t)
∂t

+ Aeff
∂

∂x

(

ρ(x, t)
∂ρ(x, t)
∂x

)

= 0. (13)

Suppose that ρ(x, t) has a scaling form with exponents α, β as

ρ(x, t) = tαG
(

x/tβ
)

. (14)

Then, from (13), we have

tα−1
{αG(X) − βXG′

(X)} + t2(α−β)Aeff

{
G′

(X)2 + G(X)G′′

(X)
}
∼ 0 (X := x/tβ).

Hence, under the assumption of the scaling form (14), we find that

α − 1 = 2 (α − β) (15)

Since the number of ECs increases linearly in t,
∫ l(t)

0

ρ(x, t)dx =
t
〈a〉
, (16)

where l(t) is the position of the tip at which ρ(x, t) = 0 and a is the average
injection rate of ECs, and we have

tα+β
∫ Xl

0

G(X)dX =
t
〈a〉
, (17)

The constant Xl is considered to be the first 0 of G(X) for X > 0 (or a cut-off
length), and l(t) = Xltβ. Since the integral of G(X) over X does not depend on
time t, we have

α + β = 1. (18)
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From (15) and (18), we obtain

α =
1
3
, β =

2
3
. (19)

Therefore, l(t) ∝ t2/3 and the reaching position of ECs scales as t2/3.
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Abstract. In electromagnetism, a conductor that is not connected to
the ground is an equipotential whose value is implicitly determined by
the constraint of the problem. It leads to a nonlocal constraints on the
flux along the conductor interface, so-called floating potential problems.
Unlike previous numerical study that tackle the floating potential prob-
lems with the help of advanced and complex numerical methods, we show
how an appropriate use of Steklov-Poincaré operators enables to obtain
the solution to these partial differential equations with a non local con-
straint as a linear (and well-designed) combination of N + 1 Dirichlet
problems, N being the number of conductors not connected to a ground
potential. In the case of thin highly conductive inclusions, we perform
an asymptotic analysis to approach the electroquasistatic potential at
any order of accuracy. In particular, we show that the so-called floating
potential approaches the electroquasistatic potential with a first order
accuracy. This enables us to characterize the configurations for which
floating potential approximation has to be used to accurately solve the
electroquasistatic problem.

Keywords: Floating potential · Dirichlet to Neumann operator · Thin
conductive layer · Asymptotic analysis

1 Introduction

The computation of the electroquasistatic electric field in high contrasted
domains is a research field which is active for several decades in both electrical
engineering and applied mathematics research areas [1,3,4,9,12]. The interest
has increased a lot for the last decade with the use of pulsed electric field for
clinical ablation [5,7,8]. In particular, in the context of the insertion of multiple
needles, the influence of the inactive electrods on the electric field distribution
has to be precisely accounted to accurately determine the ablation region. The
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focus of this paper is to present an effective and rigorous way to compute the
static electric field in the case of highly conductive thin inclusions.

The electroquasistatic theory states that the surface of a highly conductive
conductor is an equipotential surface, whose value is determined implicitly by
the constraints of the problem. This is the so-called floating potential problem
which has been studied for several decades. In [1] Amann et al. have shown that
the penalization method, which consists in imposing a high conductivity in the
inclusion provides a less accurate electric potential than a well-designed numer-
ical method for the floating potential problem. This result may seem strange,
since the penalization is somehow the model of the real problem, while the float-
ing potential is a perfect conductor approximation. Thus it is natural to wonder
how the floating potential approaches the real electric potential, whether there is
a relation between the size and the conductivity of the high conductive material
which prevents the use of this approximation, and if it is possible to increase the
accuracy with an asymptotic analysis. The aim of this paper is to address these
questions for thin and highly conductive inclusions.

1.1 Preliminary Numerical Observations on Concentric Disks

As preliminary, we investigate the observations of Amann et al. on a simplistic
case, for which an explicit solution is available. We consider the case of a dielectric
(low) conductive material Ω which is the annulus of radii r0 ∈ (0, 1) and 1
and with conductivity equal to 1, surrounded by a high conductive sheet Oε

of thickness ε, and whose conductivity –after nondimensionalisation– is of order
1/ε�, where � = 1 or 2 and ε is a small parameter. The electroquasistatic potential
uε satisfies the following elliptic problem

1

r
∂r(r∂ruε) +

1

r2
∂2

θuε = 0 in ({r0 < r < 1} ∪ {1 < r < 1 + ε}) × R/(2πZ), (1a)

with the following transmission conditions:

uε|r=1− − uε|r=1+ = 0, ∂ruε|r=1− − 1
ε�

∂ruε|r=1+ = 0, (1b)

and the boundary conditions

∂ruε|r=1+ε = 0, uε|r=r0 = 1 + eiθ. (1c)

The corresponding floating potential problem consists in finding (u, α) ∈
H1(Ω) × Z such that

1
r
∂r(r∂ru) +

1
r2

∂2
θu = 0 in {r0 < r < 1} × R/(2πZ), (2a)

with the boundary conditions

u|r=1 = α, such that
∫ 2π

0

∂ru(1, θ) dθ = 0, (2b)

u|r=r0 = 1 + eiθ, (2c)
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To prevent errors due to numerical computations, it is convenient to give the
expression of the solution uexact to Problem (1). In {r0 < r < 1} × R/(2πZ),
uexact reads:

uexact
ε (r, θ) =

εr0eiθ

d(r0, ε)

((
εl+1 + 2εl + 2εl−1 − ε − 2

)
r +

(
εl+1 + 2εl + 2εl−1 + ε + 2

)
r

)
+ 1,

and in {1 < r < 1 + ε} × R/(2πZ) it reads

uexact
ε (r, θ) =

2εlr0e
iθ

d(r0, ε)

(
r +

(ε + 1)2

r

)
+ 1,

where d(r0, ε) = 2εlr2
0(1 + (ε + 1)2) − ε(r2

0 − 1)(εl+1 + 2εl + 2εl−1 + ε + 2).
This solution is then compared with the numerical resolution by standard

second order finite difference scheme. This enables us to compare simultaneously
how the solution to Problem (1) is approached by the solution to Problem (2),
and how accurate is the standard second order numerical scheme for Problem (1).
Numerical results are shown in Fig. 1. Two main observations arise from these
simplistic simulations.

First, for � = 1, the floating potential does not approach the solution to Prob-
lem (1), while it does with an order of accuracy in O(ε) for � = 2, which means
that floating potential cannot be used to approach the electric potential when
the ratio Rlength of the thickness of the conductor divided by the characteristic
length of the dielectric is of the same order as the ratio Rcond of the conduc-
tivity of the dielectric divided by the conductivity of the high conductive sheet.
Second, one can see that when ε becomes too small compared with the mesh
grid, the numerical solution to the Problem (1) is not accurate, which provides
an explanation to the statement by Amann et al. that the penalization method
is less accurate than the floating potential.

1.2 Outline of the Paper

As shown on the previous simplistic example, the direct resolution of the elec-
troquasistatic problem in a domain with highly conductive inclusion leads to
ill-conditioned matrix and floating potentials are preferred to avoid the compu-
tational cost. The numerical resolution of such floating potential problems has
been studied for several decades. One can cite for instance the paper by Dular
et al. [3], where the authors proposed a finite element method, which consists in
enriching the finite elements space with specific functions defined on the nodes
of the interfaces Γk. Amann et al. proposed in [1] a boundary element method
to tackle the problem using single boundary layer integral formulation of the
solution. Note that recently, a hybrid Galerkin method has been proposed by
Sala et al. for a similar problem in the context of ocular hemodynamic, the
electric potential being replaced by the Darcy pressure [11].

The aim of the paper is twofold. On the one hand, after the proof of the
well-posedness of the floating potential problem in the case of N multiple highly
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Fig. 1. (Left): Comparison of the explicit solution uexact
ε to Problem (1) with the

floating potential problem for � = 1 (dashed and dotted blue line) and 2 (red line),
and comparison of the explicit and the numerical solutions (1) (green dashed line) as
ε tends to zero. One can see that for � = 1 the floating potential is not accurate: the
conductive sheet is too thin to be an equipotential. For � = 2, the floating potential
approaches the exact solution with an order of accuracy in O(ε). Due a high condition
number of the matrix, a direct numerical resolution of Problem (1) gives a worse
approximation for smaller ε. (Right): Numerical convergence with the steps (dθ, dr) ∈
{(314, 200), (628, 400), (1256, 800), (2512, 1600)} of the second order scheme to solve
Problem (1) for ε = 1 (dashed blue line) and ε = 0.01 (red line). Condition number of
the matrix for the discretization of Problem (1) grows considerably when ε approaches
zero. With small discretization steps the instability increases and the numerical solution
has lower accuracy. (�) value not available due to not reasonable computational cost
to compute it. (Color figure online)

conductive inclusions, we propose a new numerical strategy to tackle the float-
ing potential problem. Unlike the previous works cited above, our numerical
strategy does not require any new specific numerical method. More precisely,
it consists in characterising the solution to the floating potential problem as a
linear combination of N + 1 explicit Dirichlet problems thanks to the definition
of well designed Steklov-Poincaré operators. On the second hand, we propose
an asymptotic analysis of the electroquasistatic potential in the case of a highly
conductive thin inclusion, in the asymptotic regime where the ratio of the con-
ductivities Rcond is of order ε2, while the ratio Rlength is of order ε. In particular,
we prove the convergence of the asymptotic approximation at any order as ε goes
to 0.

2 Analysis and Computation of the Floating Potential
Problem

Even though the use of well-designed numerical methods can be useful, they
require deep changes in the computing software that prevent the use of standard
softwares, which have been designed for Dirichlet, Neumann and/or Robin con-
ditions in most cases. In the following, we show that the solution to the floating
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potential problem can be obtained as the linear combination of N + 1 indepen-
dent potentials with Dirichlet conditions. The parallelization of the independent
problem implies that the floating potential is almost reduced to a Dirichlet prob-
lem, and the problem does not necessarily require the use of advanced numerical
strategies.

Let us state precisely the problem. Let O be a domain of Rd, d = 2, 3 and let
(Ok)N

k=1 be N highly conductive inclusions embedded in O. We denote by Γout

the outer boundary of O, and by Γk the boundary of Ok for k = 1, · · · N . Define
Ω = O \ ∪Ok. Let σ ∈ L∞(Ω) be the conductivity map of Ω which satisfies for
a given constant a > 0

a ≤ ‖σ‖L∞(Ω) ≤ 1/a.

Given (gk)N
k=1 ∈ R and f ∈ H−1(Ω), the floating potential problem1 consists

in finding the N + 1-uple (u, α1, ·, αN ) ∈ H1(Ω) × R
N such that

−∇ · (σ∇u) = f in Ω, u|Γout = 0, (3a)

and on Γk, for k = 1, · · · N

u|Γk
= αk,

∫
Γk

σ∂nu ds = gk. (3b)

2.1 Existence and Uniqueness of Floating Potential Problem

Even though the well-posedness of Problem (3) has been addressed by Amann et
al. in [1] for one inclusion, we present a variant proof for N inclusions that will
lead to our simple numerical strategy.

For i = 1, · · · , N , we consider the following Steklov-Poincaré operators
defined as

Λ(i)
out : H−1(Ω) −→ H−1/2(Γi)

f �−→ σ∂nv|Γi
s. t.

{
−∇ · (σ∇v) = f in Ω,

v|Γout
= 0, v|Γ�

= 0, for � = 1, · · · , N.

For k = 1, · · · , N , we define Λ(i)
k by

Λ(i)
k : H1/2(Γk) −→ H−1/2(Γi)

γ �−→ σ∂nv|Γi
s. t.

⎧⎪⎨
⎪⎩

−∇ · (σ∇v) = 0 in Ω,

v|Γi
= γ,

v|Γout
= 0, v|Γ�

= 0, for � 	= i.

If it exists, the solution (u, α1, · · · , αN ) to Problem (3) satisfies

σ∂nu|Γi
=

N∑
�=1

α�Λ
(i)
� (1) + Λ(i)

out(f), for i = 1, · · · , N,

1 Note that if the inclusion Ok is isolated, then gk is nothing but 0.
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and the nonlocal constraints (3b) read

gi =
N∑

�=1

α�

∫
Γi

Λ(i)
� (1)ds +

∫
Γi

Λ(i)
out(f)ds, fori = 1, · · · , N. (4)

Denoting by M = (Mij)i,j=1,··· ,N the matrix defined as

Mij =
∫

Γi

Λi
j(1)ds, (5a)

and B = (Bi)i=1,··· ,N the vector defined as

Bi = gi −
∫

Γi

Λi
out(f)ds. (5b)

Then equality (4) reads

M

⎛
⎜⎝

α1

...
αN

⎞
⎟⎠ = B, (5c)

and the proof of the well-posedness of Problem (3) is reduced to proving the
invertibility of M.

Proposition 1. Let Ω be a domain of R
d, d = 2, 3. Let us endow the space

(L2(Ω))d, d = 2, 3 with the scalar product <·, ·>(L2(Ω))d defined by

<F,G>σ
(L2(Ω))d =

∫
Ω

σF · Gdx, ∀(F,G) ∈ (L2(Ω))d.

The matrix M defined by (5a) is a Gram matrix of the linearly independent
vectors ∇v1, · · · ,∇vN of (L2(Ω))d, where the functions (v�)N

�=1 are defined by
⎧⎪⎨
⎪⎩

−∇ · (σ∇v�) = 0 in Ω,

v�|Γ�
= 1,

v�|Γout = 0, v�|Γk
= 0, fork 	= �.

(6)

Therefore M is invertible and there exists a unique N +1-uple (u, α1, · · · , αN ) ∈
H1(Ω) × R

N solution to Problem (3).

Proof. Observe first that thanks to the Dirichlet boundary conditions on Γk for
k = 1, · · · , N , the vectors (v�)N

�=1 are linearly independent in H1(Ω), hence the
vectors ∇v1, · · · ,∇vN are linearly independent in (L2(Ω))d.

By definition of M and by construction of vi, one has

Mij =
∫

Γi

σ∂nvjvidx =
∫

Ω

σ∇vj · ∇vi dx.

Thus M is a Gram matrix of linearly independent vectors of (L2(Ω))d, it is
therefore invertible (see for instance [2]). ��
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2.2 Numerical Strategy to Solve the Floating Potential Problem

Proposition 1 leads to a simple characterization of the solution to Problem (3),
and thus a simple numerical strategy which is as follows.

• Compute v� given defined by (6) for � = 1, · · · , N and compute vout, which
is the solution in H1

0 (Ω) to
{

−∇ · (σ∇vout) = f in Ω,

vout|∂Ω
= 0.

(7)

• Compute (Mij) and (Bij) given by (5a)–(5b) or equivalently

Mij =
∫

Ω

σ∇vi · ∇vj dx, Bi = gi −
∫

Ω

σ∇vout · ∇vi dx,

and deduce (α1, · · · , αN ) by solving the linear system (5c).
• Then the solution u to the floating potential problem (3) is obtained by the

following linear combination:

u = vout +
N∑

�=1

α�v�.

In other words, to compute u one just has to solve N+1 independent Dirichlet
problems, which can be easily parallelized.

3 Asymptotic Analysis and Generalization of the Floating
Potential Problem for Thin Highly Conductive Sheets

3.1 The Conductivity Problem

In this section, we present the electroquasistatic problem in the case of one thin
high conductive inclusion. We consider the asymptotic regime where the ratio
between the dielectric/low conductive material Rcond is 2 order of magnitude
greater than the ratio of the characteristic length Rlength of the dielectric/low
conductive material divided by the (small) thickness of sheet.

More precisely, we consider a smooth bounded domain Ω of R
d, d = 2 or

3, which represents a conductive domain with a hole. We denote by Γout the
external boundary of Ω, and by Γ the inner boundary corresponding the interface
between Ω and the inner hole. The domain Ω is complemented with a thin
highly conducting sheet coating the hole, and denoted by Oε, where ε is the
ratio between the small thickness of the conductive sheet and the characteristic
length of Ω. In addition we assume that the magnitude of the highly conductive
sheet is of order 1/ε2. The domain Oε may represent a inner passive electrode
or a highly conductive thin inclusion as a surgical clip. We denote by Ωε the
assembly Ωε = Ω ∪ Γ ∪ Oε, and Γε is the interface between Ωε and the hole.
Figure 2 provides a schematic of the geometrical framework.
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Oε

Ω

Γ

Γout

Γε

Ω

Γ

Γout

Fig. 2. Schematics of the toy model. (Left): The domain with one thin highly conductive
inclusion of thickness ε. The domain Oε may represent a inner passive electrode or a
highly conductive thin inclusion as a surgical clip. (Right): The domain Ω in the limit
ε = 0.

The nondimensionalized conductivity2 map σε of the domain Ωε is given by

σε(x) =

{
σ(x), if x ∈ Ω,

ε−2, if x ∈ Oε,
(8)

where σ is a strictly positive function in Ω.
The electroquasistatic potential uε in Ω satisfies the following elliptic problem

− ∇ · (σε∇uε) = 1Ωf in Ω ∪ Oε, (9a)

with the transmission conditions on Γ:

uε|Γ+ − uε|Γ− = 0, σ∂nuε|Γ+ − 1
ε2

∂nuε|Γ− = 0, (9b)

and the boundary conditions

∂nuε|Γε
= 0, uε|Γout = 0, (9c)

where the source term f ∈ H−1(Ω). The following a priori estimate holds.

Proposition 2 (A priori estimate). Let Ω and Oε be smooth connected domains.
Denote by Ωε = Ω ∪ Γ ∪ Oε. Let f ∈ H−1(Ω). There exists a unique solution uε

to Problem (9) in H1(Ωε). Moreover there exists a constant C > 0 independent
of ε such that

‖uε‖H1(Ω) +
1
ε
‖∇uε‖L2(Oε) ≤ C‖f‖H−1(Ω).

2 To simplify notation, we consider the non dimension conductivity map σε, which
is the conductivity map divided by the characteristic conductivity of the domain,
which might the average of the conductivity on the low conductive domain.
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Proof. The well-posedness of the elliptic problem (9) is standard by a straight-
forward application of the Lax-Migram lemma. The proof of the estimate is
based on standard Poincaré estimate [6] in Ω since uε|Ω ∈ H1(Ω) is such that
uε|Γout = 0. Indeed, multiplying by uε and integrating by parts leads to∫

Ω
σ|∇uε|2dx +

1

ε2

∫
Oε

|∇uε|2dx ≤ ‖f‖H−1(Ω)‖uε‖H1(Ω) ≤ C‖f‖H−1(Ω)‖∇uε‖L2(Ω),

where C is independent of ε, which ends the proof. ��
The goal of this section is to provide the asymptotic expansion of uε as ε goes
to 0.

3.2 Local Coordinates and Laplace Operator

To perform the asymptotic expansion it is natural to introduce the following
change of variables which straightens up the thin inclusion. More precisely, let
xT = (ξ1, ξ2) be a system of local coordinates on Γ = {Ψ(xT)}, where Ψ is a
mapping of Γ. By abuse of notation, we denote by xT ∈ Γ the point Ψ(xT) ∈ Γ.
We define the following map Φ by

Φ(xT, ξ3) = Ψ(xT) + ξ3 n(xT) ∀(xT, ξ3) ∈ Γ × R,

where n is the outer normal vector of Γ. The layer Oε is parameterized by

Oε = {Φ(xT, ξ3) | (xT, ξ3) ∈ Γ × (0, ε)} .

The Euclidean metric tensor (gij)i j=1,2,3, defined as

gij = 〈∂iΦ, ∂jΦ〉
reads as follows [10]

g33 = 1, gα3 = g3α = 0 ∀α ∈ {1, 2},

gαβ(xT, ξ3) = g0
αβ(xT) + 2 ξ3 bαβ(xT, ξ3) + ξ3

2 cαβ(xT, ξ3) ∀α, β ∈ {1, 2}2,

where

g0
αβ = 〈∂αΨ, ∂βΨ〉, bαβ = 〈∂αn, ∂βΨ〉, cαβ = 〈∂αn, ∂βn〉.

The Laplace-Beltrami operator Δg in the system of local coordinates of Oε reads
then

Δg =
1√
g

∑
i,j=1,2,3

∂i(
√

ggij∂j),

where (gij) = (gij)−1 and g the absolute value of the tensor metric determinant.
Define ∀� ∈ N the coefficients

a�
ij = ∂�

3

(
∂i(

√
g gij)√
g

)∣∣∣∣
ξ3=0

, ∀(i, j) ∈ {1, 2, 3}2,

A�
αβ = ∂�

3

(
gα β

)∣∣
ξ3=0

, ∀(α, β) ∈ {1, 2}2,
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and let S�
Γ be the surface differential operator of order 2 on Γ defined as

S�
Γ =

∑
α,β=1,2

al
αβ∂β + Al

αβ∂α∂β .

Remark 1. As noticed in [10], the operator S0
Γ is nothing but the surface

Laplace-Beltrami operator on Γ, so S0
Γ = ΔΓ. Moreover a0

33 is the sum of the
principal curvatures of Γ, in other words, denoting by H the mean curvature of
Γ one has a0

33 = 2H.

The Laplace-Beltrami operator in Oε can be rewritten as

Δg = ∂2
3 +

∑
l≥0

ξl
3

l!
(al

33∂3 + Sl
Γ) ∀(xT, ξ3) ∈ Γ × (0, ε).

Performing the change of variable η = ξ3/ε, we denote by Φε(xT, η) = Φ(xT, εη),
and we obtain

Δg =
1
ε2

∂2
η +

1
ε
a0
33 ∂η +

∑
l≥0

εl η
l

l!

(
η

l + 1
al+1
33 ∂η + Sl

Γ

)
∀(xT, η) ∈ Γ × (0, 1).

3.3 Formal Expansion

Denote by Uε the electroquasistatic potential in local coordinates in Oε:

Uε(xT, η) = uε ◦ Φ(xT, εη), (xT, η) ∈ Γ × (0, 1).

Thanks to this change of variables, Problem (9) reads as follows

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∇ · (σ∇uε) = f in Ω,

−ΔgUε = 0 on Γ × (0, 1),

uε|Γ = Uε|η=0 ◦ Ψ−1,

σ ∂nuε|Γ = ε−3 ∂ηUε|η=0 ◦ Ψ−1,

∂ηUε|η=1 = 0,

uε|Γout
= 0.

(10a)
(10b)

(10c)

(10d)

(10e)

(10f)

We are now ready to derive formally the expansion. Set the following Ansatz:

uε(x) =
∑
k≥0

εk uk(x), ∀x ∈ Ω, (11a)

Uε(xT, η) =
∑
k≥0

εk uk(xT, η), ∀(xT, η) ∈ Γ × (0, 1). (11b)
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Injecting the formal series in Problem (10) and identifying the terms with the
same power in ε lead to the following relations for any p ≥ 0,

− ∇ · (σ∇up) = δpf in Ω, (12a)

∂2
ηup = −a0

33∂ηup−1 −
p−2∑
l=0

ηl

l!

(
η

l + 1
al+1
33 ∂ηup−2−l + Sl

Γup−2−l

)
on Γ × (0, 1), (12b)

up|Γ = up|η=0
, (12c)

σ ∂nup−3|Γ = ∂ηup|η=0
, (12d)

∂ηup|η=1
= 0, (12e)

up|Γout
= 0, (12f)

where δp is the Kronecker symbol equal to 1 if p = 0 and 0 elsewhere, and with
the convention up and up are 0 if p ≤ 0.

3.3.1 Derivation of the 0th and 1rst Order Coefficients
Using (12b) with p = 0 together with the boundary condition (12e), implies
that ∂ηu0 = 0 and thus u0 = u0(xT), and then similarly ∂ηu1 = 0 and thus
u1 = u1(xT). Then using (12b) for p = 2 implies that

∂2
ηu2 = −ΔΓu0(xT).

The boundary conditions (12d)–(12e) imply thus that ∂ηu2 = 0 and −ΔΓu0 = 0.
Therefore we infer that u0 is a constant denoted by α0 and thus u0|Γ = α0. Then
using (12b) for p = 3 implies that

∂2
ηu3 = −ΔΓu1(xT), (13)

since ∂ηu2 = 0, and S1
Γu0 = 0. We thus infer thanks to (12e) that
∫

Γ

∂ηu3(xT, 1)dxT = −
∫

Γ

ΔΓu1 = 0,

from which we infer using (12d) the floating potential problem:

Find(u0, α0) ∈ H1(Ω) × Rsuch that
− ∇ · (σ∇u0) = f, in Ω, u0|Γout

= 0, (14a)

u0|Γ − α0 = 0, such that
∫

Γ

σ∂nu0 ds = 0. (14b)

Note also that the derivation process leads

u0 = α0, ∂ηu1 = ∂ηu2 = 0. (15a)

To get the 1rst order coefficient, since ∂ηu1 = 0, using (13) with (12d) implies
that

∂ηu3(xT, η) = (1 − η)ΔΓu1, and ΔΓu1 = σ∂nu0|Γ ,
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thus one can write u1 = g1(xT) + α1 where g1 is uniquely determined by

ΔΓg1 = σ∂nu0|Γ ,

∫
Γ

g1ds = 0,

and thanks to (12c), u1|Γ − α1 = g1 ◦ Ψ−1. It remains to determine the constant
α1. Using (12b) with p = 4, one has

∂2
ηu4 = −a0

33∂ηu3 −
2∑

l=0

ηl

l!

(
η

l + 1
al+1
33 ∂ηu2−l + Sl

Γu2−l

)

= −(1 − η)a0
33ΔΓu1 − ΔΓu2 − ηS1

Γu1,

and thanks to (12e) one infers

∂ηu4 = − (
η − η2/2 − 1/2

)
a0
33ΔΓu1 − (η − 1)ΔΓu2 − (η2/2 − 1/2)S1

Γu1.

Note that since u2 is not determined, the above equality does not define ∂ηu4.
However, integrating over Γ and using (12d), we obtain∫

Γ

σ∂nu1 ds =
1
2

∫
Γ

(
a0
33ΔΓu1 + S1

Γu1

)
ds =

1
2

∫
Γ

(
a0
33ΔΓg1 + S1

Γg1

)
ds,

and then (u1, α1) is the solution to the following problem:

Find(u1, α1) ∈ H1(Ω) × R such that:
− ∇ · (σ∇u1) = 0, in Ω, u1|Γout

= 0,

u1|Γ − α1 = g1 ◦ Ψ−1, such that
∫

Γ

σ∂nu1ds = h1,

where g1 and h1 are given by

ΔΓg1 = σ∂nu0|Γ ,

∫
Γ

g1ds = 0,

h1 =
1
2

∫
Γ

a0
33ΔΓg1 + S1

Γg1ds.

Then one also has

u1(xT) = g1(xT) + α1, ∂ηu2 = 0, ∂ηu3 = (1 − η)ΔΓg1.

3.3.2 Derivation of the Coefficients at Any Order k by Induction
Assume that there exists a smooth enough function gk defined on Γ such that∫
Γ

gkds = 0 and a constant hk such that (uk, αk) is the solution to the following
problem:

Find(uk, αk) ∈ H1(Ω) × R such that
− ∇ · (σ∇uk) = δkf, in Ω, uk|Γout

= 0,

uk|Γ − αk = gk ◦ Ψ−1, such that
∫

Γ

σ∂nukds = hk,
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and assume that the following profile terms u� for � = k, k + 1, k + 2 read as

u�(xT, η) = P�−1(xT, η) + g�(xT) + α�,∫
Γ

∂ηuk+3(xT, 0) = hk,

where P�−1 is a given polynomial of order � − 1 in η and vanishing in η = 0, for
� = k, k + 1, k + 2, and g� and α� are unknown for � = k + 1, k + 2, with the
constraint

∫
Γ

g�ds = 0.
Then, using (12b)–(12e) with p = k + 3, we infer that for any r ∈ (0, 1)

∂ηuk+3(xT, r) −
∫ 1

r

ΔΓuk+1dη =
∫ 1

r

a0
33∂ηuk+2 + a1

33η∂ηuk+1

+
k+1∑
l=1

ηl

l!

(
η

l + 1
al+1
33 ∂ηuk+1−l + Sl

Γuk+1−l

)
dη.

We thus infer that ∂ηuk+3 is polynomial of order k + 2 or in other words uk+3

reads as
uk+3(xT, η) = Pk+2(xT, η) + gk+3(xT) + αk+3,

where Pk+2 is explicitly given by the above equality vanishes in η = 0, and gk+3

is not determined but its mean value over Γ is 0 and αk+3 is a still undetermined
constant. Using (12d) and the recurrence hypothesis, we also infer

−ΔΓgk+1 = −σ∂nuk +

∫ 1

0
ηΔΓPk(xT, η)dη

+

∫ 1

0
a0
33∂ηuk+2 + a1

33η∂ηuk+1

k+1∑
l=1

ηl

l!

(
η

l + 1
al+1
33 ∂ηuk+1−l + Sl

Γuk+1−l

)
ds,

which entirely determines gk+1 using the recurrence assumption since∫
Γ

gk+1ds = 0. It remains to determine the constant αk+1. Using (12b)–(12e)
with p = k + 4 we infer that

∫
Γ

∂ηuk+4ds =

∫
Γ

∫ 1

η
a0
33∂ηuk+3 +

k+2∑
l=0

rl

l!

(
r

l + 1
al+1
33 ∂ηup−2−l + Sl

Γup−2−l

)
drds,

and (12d) leads to
∫
Γ

σ∂nuk+1ds =

∫
Γ

∫ 1

0
a0
33∂ηuk+3 +

k+2∑
l=0

rl

l!

(
r

l + 1
al+1
33 ∂ηup−2−l + Sl

Γup−2−l

)
drds := hk+1.

The condition (12c) implies then that (uk+1, αk+1) is the solution to the follow-
ing problem:

Find (uk+1, αk+1) ∈ H1(Ω) × R such that
− ∇ · (σ∇uk+1) = 0, in Ω, uk+1|Γout

= 0,

uk+1|Γ − αk+1 = gk+1 ◦ Ψ−1, such that
∫

Γ

σ∂nuk+1ds = hk+1,



104 A. Collin et al.

Remark 2. It is worth noting that thanks to Proposition 1, the elementary prob-
lems are well-posed at any order.

3.3.3 Proof of the Expansion
Let us now prove the convergence of the expansion.

Theorem 1. Let N ≥ 0. Let f ∈ C∞(Ω), such that the above inductive process
to obtain the coefficients of the expansion (11) holds at any order. Let uε be the
smooth solution to Problem (9). Let uε,N be the function defined by

uε,N =

⎧⎪⎨
⎪⎩

∑N
k=0 εkuk, in Ω,

∑N+2
k=0 εkuk ◦ Φ−1

ε , in Oε,

where the functions uk, uk are defined by the above inductive process.
Then there exists a constant CN independent of ε such that

‖uε − uε,N‖H1(Ω) +
1
ε
‖∇(uε − uε,N )‖L2(Oε) ≤ CNεN+1.

Proof. Note that by hypothesis on f , uN ∈ C∞(Ω) and uN ∈ C∞(Γ× (0, 1)) (as
well as their traces on Γ and derivatives) are uniformly bounded independently
of ε.

Denote by vε = uε − uε,N . By construction of the expansion coefficients, vε

satisfies the following problem:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∇ · (σ ∇vε) = 0, in Ω,

−Δvε = Δuε,N (= OL∞(Ω)(ε
N+1)), in Oε,

vε|Γ− − vε|Γ+ = 0,

σ∂nvε|Γ− − 1

ε2
∂nvε|Γ+ = σ∂nuε,N |Γ− − 1

ε2
∂nuε,N |Γ+ (= OL∞(Γ)(ε

N )),

∂nvε|Γε
= 0,

vε|Γout
= 0.

(16a)

(16b)
(16c)

(16d)

(16e)

(16f)

Using the fact that

‖OL∞(Ω)(εN )‖L2(Oε) ≤ CεN+1/2,

multiplying by vε and integrating lead to
∫

Ω

σ|∇vε|2dx +
1
ε2

∫
Oε

|∇vε|2dx ≤ C
(
εN+1/2‖vε‖L2(Oε) + εN+1|vε|L2(Γ)

)
.

Since the diameter of Ωε is bounded below by the diameter of Ω, uniform
Poincaré estimate holds for any function in H1(Ωε) vanishing on Γout. Thus
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thanks to Dirichlet trace estimate, there exists a constant C independent of ε
such that∫

Ω

σ|∇vε|2dx +
1
ε2

∫
Oε

|∇vε|2dx ≤ C
(
εN+1/2‖∇vε‖L2(Ωε) + CεN+1|vε|L2(Γ)

)

≤ CεN+1/2‖∇vε‖L2(Ωε),

hence
‖uε − uε,N‖H1(Ω) +

1
ε
‖∇(uε − uε,N )‖L2(Oε) ≤ CNεN+1/2.

We similarly have

‖uε − uε,N+1‖H1(Ω) +
1
ε
‖∇(uε − uε,N+1)‖L2(Oε) ≤ CNεN+3/2.

Observing that wε,N defined by wε,N = uε,N+1 − uε,N , satisfies

‖wε,N‖H1(Ω) +
1
ε
‖∇wε,N‖L2(Oε) ≤ CNεN+1,

we infer the result. ��

4 Conclusion

In this paper, we have proposed an asymptotic analysis to approach accurately
the solution to the electroquasistatic potential in a smooth domain with a
highly conductive inclusion. We have shown that the so-called floating potential
approaches the electroquasistatic potential with a first order accuracy, and we
have given the expansion at any order. For the sake of simplicity, we have only
considered the case where the relative thickness of the inclusion is of order ε
and the ratio of the conductivities (the conductivity of the conductive inclusion
divided by the conductivity of the domain) is of order 1/ε2. It is worth noting
that in the case of higher conductive thin inclusions – that is for ratios of the
conductivities of order 1/ε2+s, with s > 0 – the floating potential provides an
approximation of order ε1+�s�, since the terms ui for i = 1, · · · , �s� vanish. This
observation, which easily comes from the formal derivation of Sect. 3.3 is left to
the reader.

This paper also provides an efficient numerical method to compute accurately
the floating potential problem in the case of N highly conductive inclusions, by
replacing the PDE with nonlocal constraints on the total flux along the interfaces
by the resolution of N + 1 Dirichlet problems uncoupled, the solution of the
floating potential problem being obtained thanks to the inversion of a definite
Gram matrix of size N . This efficient and rigorous approach has been used
recently by the authors and colleagues in [12].
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Abstract. A novel approach of free boundary problem of invadopo-
dia formation and invasion is proposed in this paper. The modeling
of invadopodia formation and invasion of cell involving the interaction
across plasma membrane is considered. The formation is formulated by
Stefan problem approach which is known as free boundary problem where
the boundary membrane is priori unknown. Changes in cell membrane
will lead to protrusions of cell membrane. A normal growing cell in tissue
on an organ will be altered into cancerous cells after some processes of
mutation in genes. We proposed level set method to indicate the moving
plasma membrane and to represent the behavior of the cell interface. An
efficient and a straightforward enthalpy method (phase change problem)
is then used to provide the description of the cell membrane diffusion.
We successfully show the formation of invadopodia and migration of a
single cell modeling.

1 Introduction

A tumor is an abnormal lump or growth of tissue located in clusters in different
body part which can cause malignant or benign tumor. In this study, we focus
on tumor cell deformation and invasion across tissue boundaries. Tumor cell
invasion is the capacity of tumor cells to disrupt the basement membrane (BMs)
and penetrate the underlying stroma. It depends on the capability of cancer
cells to breach the basement membrane, remodel extracellular matrix (ECM)
and migrate through meshwork [20]. In order for a primary solid tumor to be
developed, it begins with a single normal cell being transformed into cancer cell
through multiple certain key genes mutation. An individual tumor cell has the
potential over successive divisions to develop into a cluster (or nodule) of tumour
cell [2].

Invadopodia are dynamic actin-rich plasma membrane protrusions that
degrade the extracellular matrix through the local deposition of proteases
involved in cancer cell invasiveness and metastasis. It has a shape of a small
punctuated finger which we called protrusion and formed during cell invasion.
c© Springer Nature Singapore Pte Ltd. 2021
T. Suzuki et al. (Eds.): MMDS 2020, PROMS 370, pp. 107–123, 2021.
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Based on several reports [19], cancer cells can form few (1–10) invadopodia with
lifetime in the range from several tens up to 60 and size measuring between 0.05
up to 2µm [17]. From biological point of view, invadopodia formation involves
specific signaling pathways in cell, that results from extracellular stimuli, which
in addition, it is the interaction of specific chemical between cell membrane and
the extracellular matrix [9]. In this study, we present in silico model of a single
cell deformation from a normal cell in a tissue or organ in human body that will
transform into cancer cell. The modeling of this cell incorporate the interaction
between signal in the inner cell and, ligand outside the cell and this interaction
occurs across the cell membrane.

2 Cell-Deformation-ECM Degradation

Invadopodia formed by tumor cells at contact sites between invasive tumor cells
and in contact with ECM. Invadopodia present at the basal surfaces of cells
and capable of crossing the extracellular barriers. It triggers matrix proteolytic
activity and is capable of penetrating through basement membranes (BMs). It
also continues with stromal invasion and intravasation to enter the blood, see
Fig. 1 a) and b).

Invadopodia core proteins consisting of cortactin, cofilin and N-WASP form
an initial nucleus or core structure are first binding the tip to ECM [18]. It is
a dynamic extension of plasma membrane where it mimic the contact sites that
form between tumor cells and the BMs during cell invasion [20].

The formation of invadopodia begins when matrix metallopeptidases
(MMPs) generate a domain (DIII) from ECM macromolecule laminin-5 (Ln-5)γ2
where DIII fragment will bind the epidermal growth factor (EGFR) and stimu-
late the cell scattering and migration [15,16]. MMPs plays a crucial role in tissue
remodeling such that membrane type 1-matrix metalloproteinases (MT1-MMP)
is an essential to ECM component macromolecule disruption via degradation.
MT1-MMP processed Ln-5γ2 chain which is an ECM substrate for cell adhesion,
promotes migration and invasion of epithelial and tumor cells [16]. Based on [20],
MT1-MMP expression is important not only in proteolytic activity but also in
the formation of invadopodia.

EGFR bind directly to filamentous actin (F-actin) via its cytoplasmic domain
with no other proteins involved [7]. From [1], the F-actin structural polarity
during actin assembly has an implications on the rate, and direction of filament
growth at the opposite ends of the actin filament. EGF ligand bind to EGFR
to induced signalling transduction pathways. It trigger a reactions path which
linked through several elements from membrane till nucleus which are sufficient
enough for actin polymerization and matrix degradation. These pathways appear
to converge at the level of the Rho family GTPases and Cdc42 [3]. Both RhoA
and Cdc42 regulate matrix degradation through a mechanism which involves the
delivery of MT1-MMP to the invadopodia and activates local matrix degradation
[8,13].
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(a) (b)

Fig. 1. a) An invasive cancer cell with invadopodia and b) Metastasis: invasion of
tumor cell to blood vessel.

3 Individual Cell Model

In this section, we describe the mathematical modeling of a single cell defor-
mation that describe the protrusions formation process, see Fig. 2. From [9], we
define ECM is on the outside domain of the cell. Assume MT1-MMP enzymes
flux denoted by g(x, t) be given at any time on the cell membrane. It generates a
flux degraded matrix (called ligands, c∗) on the cell boundary which will diffuse
in the extracelullar medium. When bound to the cell membrane, the ligands will
generate a signal σ which diffuses inside the cell. We describe the problem in
Eulerian approach for this single cell model problem. Let ψ(x, t) be a function
for detecting the cell membrane is defined in the entire domain Ω. Define plasma
membrane as

Γt = {x ∈ Ω|ψ(x, t) = 0}. (1)

where Ω be Lipschitz domain indicating the cancer cell with smooth boundary
∂Ω and x is a particle on the moving interface Γt .

The plasma membrane location is detected by the zero level set function, ψ
which satisfies

ψt (x, t) + υ · ∇ψ(x, t) = 0 (2)

be smooth level set function and υ is the plasma membrane velocity on the
interface

υ = γn(∇σ − ∇c∗) on Γt (3)

where γn is a positive constant, σ is the gradient of signal inside the cell and c∗
is the gradient of ligand outside cell. Hence, from (2) and (3),

ψt + υ · ∇ψ = 0 on Γt . (4)

We know the plasma membrane of the cell will either shrinks or expands. Degra-
dation of ECM c by MMPs f happened on the plasma membrane Γt and produces
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ligands (ECM fragment). The chemical reaction between this ECM and MMPs
are formulated by

ct +∇·υc = −κc f c, c∗t +∇·υc∗ = κc f c on
⋃

0<t<T

Γt ×{t} (5)

where κc is reaction rate diffusion coefficent. We restrict c∗ and σ outside and
inside the cell. Hence, we defined f and σ inside the cell,

σt = dσΔσ in
⋃

0<t<T

ωt
n × {t}, σ |Γt = c∗ on

⋃

0<t<T

ωt
n × {t}

ft = dfΔ f + k fσ − λ f f in
⋃

0<t<T

ωt
n × {t}. (6)

Since there are no changes on MMPs density while cutting through fiber pro-
teinases of ECM, it holds that

c∗t = dc∗Δc∗ in Qc,
∂c∗
∂ν

= g on
⋃

0<t<T

ωt
c × {t}. (7)

3.1 Classical Solution Scheme

In this section, define ωt
n = {x ∈ Ω|ψ(x, t) < 0} ⊂⊂ Ω as be one domain inside

cell. Hence,
Qn =

⋃

0<t<T

ωt
n × {t} (8)

and ωt
c = {x ∈ Ω|ψ(x, t) > 0} as an outside cell. Thus,

Qc =
⋃

0<t<T

ωt
c × {t}. (9)

If the solution of y = y(t) to

dy
dt

= υ(y, t), y |t=s = x

is denoted by y = U(t, s)x. Then we have

Dψ
Dt

= ψt + υ · ∇ = − (∇ · υ)ψ.

The plasma membrane location is detected by the zero level set function and
ψ is defined in the entire domain which satisfies

ψt (x, t) +
dx
dt

· ∇ψ(x, t) = 0 (10)

be smooth level set function and dx
dt = υ(x, t) is the driving force of plasma

membrane movement at the interface and defined by

υ = γn(∇σ − ∇c∗) on Γ (11)
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where γn is a positive constant, σ is the gradient of signal inside the cell and
c∗ is the gradient of ligand outside cell. Since velocity υ is only defined on the
boundary, it would be difficult for the domain to increase the volume of its
shape and can cause discontinuities. As the plasma membrane is taken by the
zero level set function, velocity extension is define in the whole domain to avoid
discontinuities as

(∇ψ · ∇)w = 0, ∀x ∈ Ω, w ∈ (x, y)

w = υ Γ (12)

where
υ |ψ(x,t)=0 = ∇σ |ψ(x,t)=0 − ∇c∗ |ψ(x,t=)=0.

Hence, from (10) and (11),

ψt + υ · ∇ψ = 0 on Γ. (13)

To detect the membrane location, we define membrane boundary as

Γ = {x ∈ Ω|ψ(x, t) = 0}. (14)

where Ω ⊂ R
N , N = 1, 2, . . . be Lipschitz domain indicating the cancer cell and

its environment with smooth boundary ∂Ω and x is a particle on the moving
interface Γ. Based on Stefan problems, Γ is either pulled into interior region of
a cell or pushed out towards the outer region of a cell.

Define f as MMPs and c as ECM, during cell transformation, f degrade c
on the plasma membrane Γ and produces ligands (ECM fragment). Since MMPs
act as a cutting tool for fiber-proteinases, there will be no changes on the MMPs
density on the boundary. This act causes ligands to be produced in the domain
outside cell.

When bound to the cell membrane, ligands will generate signal that will
diffuse inside the cell that lead to actin polymerization. Actin polymerization is
the key to protrusion at the leading edge and is counted by the gradient of inner
sginal. This process will lead to the following equations,

σt = dσΔσ in Qn, σ |Γt = c∗ on Γ
ft = dfΔ f + k fσ − λ f f in Qn. (15)

Liouville’s theorem guarantees the total mass of conservation of f , is conserved.
Hence, produce the following derivations on the boundary

df
∂ f
∂ν

+ (ν · υ) f = 0 on Γ =
⋃

0<t<T

Γt × {t}. (16)

As there are no changes on MMPs density while cutting through fiber pro-
teinases of ECM, it holds that

c∗t = dc∗Δc∗ in Qc, c∗ |∂Ω = 0,
∂c∗
∂ν

= g on Γ. (17)
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3.2 Free Boundary Problem

Proposedly, we extended the domain of applications to free boundary problem in
order to simulate cell protrusions formation. We transformed the cell model from
Fig. 2 into a simple cell model, see Fig. 3. From [9], free boundary problem makes
it possible to localize membrane precisely while the velocity of the protrusion
formation is not imposed but it is unknown of the PDE systems. Therefore,
we treated cell membrane as free boundary surface to separate any activity
happening in intracellular and extracellular regions.

Fig. 2. An individual cell model

Let MT1-MMP be given at any time on the cell membrane. It generates a
flux of degraded matrix called ligands denoted as c∗ on the cell boundary and
these ligands will diffuse in the extracellular medium. When bound to the cell
membrane, ligands will generate a signal σ which will diffuse inside cell and the
membrane is then transported by the normal velocity at the interface [9]. Thus,
generation of signal for actin polymerization is represented by

d−1σ σt = Δσ in Qn, σ |∂ωt
c
= c∗ (18)

and degradation of ECM becomes

d−1c∗ c∗t = Δc∗ in Qc,
∂c∗
∂ν

= 0 (19)

where d > 0 is a diffusion coefficient. Consider the core part problem of the cell.
Let σ = c∗ = g(x, t) where the value is known. Define,

θ =

{
σ in Qn = {ψ < 0}
c∗ in Qc = {ψ > 0}. (20)
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Fig. 3. A simple cell model

Now, we define the free boundary condition (Stefan condition). If g is continuous
and diffuse where ±ψ > 0 if and only if ±g > 0, it holds that

θ = g, v = − [∇θ]+− . (21)

Therefore,

γ−1n ψt = −γ−1n (υ · ν)
∂ψ

∂ν

=

(
∂c∗
∂ν

−
∂σ

∂ν

)
∂ψ

∂ν

=

[
∂θ

∂ν

]+

−

∂ψ

∂ν

where θ = g = c∗ on Γ.

4 Numerical Scheme

4.1 Weak Form Derivation

In this section, we want to solve the modeling of invadopodia formation and
migration of a single cell. The mathematical model used to solve these problems
are based on the enthalpy formulation. From [6,11], the problems are described
to be time dependent differential equations that satisfy boundary conditions at
unknown interface where it has to be determined as part of the solution. Let
Ω ⊂ R

N , N = 1, 2, . . . be a smooth bounded domain. Let

H(u)t = Δu in Q = Ω × (0,T) (22)
u |∂Ω = 0, u |t=0= u0(x)

where H is the enthalpy function and u = u(x, t) is the temperature distribution.
Let ϕ ∈ H1(Ω) be trial function,

−

∫

Ω

(
∂

∂x
∂u
∂x

+
∂

∂y

∂u
∂y

)
ϕ −

∫

Ω

H(u)tϕ = 0.
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Using integration by parts,

−

∫

Ω

∂

∂x

(
ϕ
∂u
∂x

)
+
∂

∂y

(
ϕ
∂u
∂y

)
−

(
∂u
∂x
∂ϕ

∂x
+
∂u
∂y

∂ϕ

∂y

)
− H(u)tϕ dΩ = 0

Hence,
∫

Ω

(∇u · ∇ϕ) − H(u)tϕ dΩ −

∫

∂Ω
(∇u) · ϕν dΩ = 0.

4.2 Stefan Problems - Enthaply Formulation

Typically, Stefan problems involved in the evolution of smooth boundaries or
interfaces between different phases of a pure substances that arises from the
unstable solidification [5]. Define the temperature field is given by u : Q = Ω ×

(0,T) and its evolution is given by

H(u)t = Δu in Q \ Γ (23)
[u]+− = 0, [H(u)]+− = 
 on Γ

where Γ = {Φ = 0}. On jump condition Γ, it holds


υ = −

[
k+
∂u+
∂ν

− k−
∂u−
∂ν

]

where 
 is the latent heat solidification, k± are the constant of thermal diffusivi-
ties of the material on Ω and ν is the outward normal vector. The jump is taken
between solid to liquid or otherwise. Setting 
 � 1. Thus, we simplified problem
into finding u(x, t) and Γt such that,

υ = −
1



[
∂u
∂ν

]+

−

, x ∈ Γ. (24)

Define the outward normal vector, ν by

ν = ∇Φ/| ∇Φ | (25)

and curvature term κ by

κ = ∇ν = ∇ ·

(
∇Φ

| ∇Φ |
,

)

Rewrite the expression υ from (24) and (25),

υ = − [∇u] · ν = − [∇u] ·

(
∇Φ

| ∇Φ |

)

where υ is the jump [∇u] taken between two regions; solid to liquid or otherwise.
Hence, from (13), we obtain,

Φt + υ · ∇Φ = 0, υ = (υ · ν) ν

where υ · ν is the Stefan condition.
The total mass of conservation is guaranteed by Liouville’s theorem of the

first volume of enthalpy H between two regions must be equal during the process
of physical or chemical changes.
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Theorem 1 (Liouville’s Theorem). Assume that Ω ⊂ R
N , N = 1, 2, . . . and

boundary ∂Ω. Let ϕ ∈ C∞
0 (Q) be an arbitrary constant and Ω±

t {±Φ(·, t) > 0},

d
dt

∫

Ω±
t

H(u)tϕ =
∫

Ω±
t

H(u)tϕ

+ H(u)ϕt dx ±
∫

∂Ω±
t

H(u)ϕυ · ν (26)

= ±

∫

∂Ω±
t

ϕ
∂u
∂ν

−
∂ϕ

∂ν
u + H(u)υ · νϕ dS

+

∫

Ω±
t

uΔϕ + H(u)ϕt dx

Hence,

d
dt

∫

Ω

H(u)ϕ =
∫

Ω

uΔϕ + H(u)ϕt dx

⇒

∫ ∫

Ω

uΔϕ + H(u)ϕt dxdt = 0

where dS denotes the surface element.

4.3 Degenerate Parabolic Equations

Define X = L1(Ω). Let f : R → R be a Lipschitz continuous non-decreasing
function on every bounded intervals satisfying f (0) = 0. Then the heat equation,

υt = Δ f (υ), in Q

f (υ)|∂Ω = 0, on ∂Ω
υ |t=0 =υ0(x)

(27)

describe few phenomena including free boundary problem. By assumption from
[4] We put L = −Δ with

L = −Δ, D(L) = {z ∈ W1,1
0 (Ω) | Δz ∈ L1(Ω)}

and Av = −Δ f (v) by
D(A) = {v ∈ X | f (v) ∈ D(L)}. (28)

Consider initial value problem,

dυ
∂t

+ Aυ = 0 (29)

υ(0) = υ0

in X. Generate a contraction semi-group in X, denoted by {Tt }t>0. If (29) has a
solution for every υ0 ∈ L1(Ω), define υ = υ(·, t) ≡ Ttυ0 ∈

(
[0,+∞), L1 (Ω)

)
as the

nonlinear semi-group.
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Hence,

Ttv0 = s − lim
k→∞

H
( t
k

)k
v0, (30)

where Ttv0 is uniform and bounded on intervals t and strongly differentiable
almost everywhere. Therefore, (30) can be considered as “generalized solution”
of (29). Suppose that A does not change rapidly and integral term by quasistatic
approximation and integral term in (29) is relatively small, then we define H

′
(0) =

A. Hence the solution of (29) can be simplify as H(t)g = etΔ f (g) as the semigroup
operator generated by −A.

Let A be the maximal monotone operator. Given any θ0 ∈ D(A) exists a
unique function

θ = θ0 ∈L∞(Ω × (0,T))
θ(0) = θ0.

(31)

Moreover,

‖θ(t) ≤ ‖θ0‖ ‖H(θ)t ‖ = ‖Aθ(t)‖ ≤ ‖Aθ0‖, ∀t > 0.

However, ζ±(ξ, t) = lim
x→ξ,±ψ(x,t)>0

ζ(x, t), ζ(x, t) ∈ Γ. From (18), (19), and (20),

let θ = f (υ) if and only if υ = H(θ), then,

Hg(θ)t = Δθ in Q/Γ,
∂θ

∂ν





t=0

= 0 (32)

where

Hg(θ) =

{
d−1c∗ θ + 
 in {θ > g}

d−1σ θ − 
 in {θ < g}.

since 
 > 0 and υ > 0.

5 Numerical Simulation and Results

We start our numerical experiments to verify our methods. This section is divided
into two parts; level set method and enthalpy formulation (phase change formu-
lation).

Since we treated the problem as free boundary, level set is suitable to deal
with membrane cell to indicate the membrane interface as it is easy to imple-
ment with low computational cost. Even though the calculation of curvature
and velocity of interface in order to indicate the plasma membrane interface is
straightforward using level set method, when two interfaces between outer and
inner cell are close to each other, the discontinuity in the derivatives of level set
function between the these two interfaces can effect the estimation of velocity
and curvature. Thus, we define the velocity extension to the whole domain in
order to avoid singularities and instabilities as in Sect. 3.1.
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While phase field method (enthalpy formulation) employ phase field variable
that varies smoothly from zero to unity between two phases over the diffuse
interface region which has a small but numerically resolvable thickness [21]. Thus,
it provide the diffuse description of vanishing thickness of membrane interface
between outer and inner cell.

We will discuss the results obtained from the simulations. All numerical cal-
culations and simulations has been done in FreeFem++ [12].

5.1 Level Set Methods

Numerical works for free boundary problem of this model face a crucial difficulty
in dealing with moving boundary. First, we implement level set method to a
single cell model. Let level set function ψ = ψ(·, t) be smooth level function.
Recall from Sect. 3.1.

Assume that there is no signal density at the start of the computation. ECM
will degrade and produce ligands outside cell that diffuse and the density of
ligands will bind to receptor and generate a signal inside cell. Signal density
diffuse inside the cell and leads to actin polymerization.

From (18) and (19) we define the boundary data as:

1. Test I: Let σ = c∗ = g = 0.1 [2 + cos(3π(x + y)) cos(π(x + 0.3))] [10] and the
solution of level set as ψ = 0.05 × tanh(((x − y)1/2 − R)/εh) where ε = 2 and
h = 0.3 [14].

2. Test II: We then do some modification on the equations from Test I.
Let σ = c∗ = g = 0.01 [2 + sin(2π(x + y)) cos(π(x + 0.2))] and the solution of
level set become, ψ = 0.05× sinh(((x − y)1/2 − R)/εh) where ε = 5 and h = 0.2.

Fig. 4. Initial cell shape

Figure 4 shows the initial shape of a cell and Fig. 5a) and 5b) show the exis-
tence of invadopodia and protrusion formed at the boundary of the cell from
Test I and II. The displacement of the membrane due to presence of signal gra-
dient that has been stimulated from the interactions between membrane and the
surrounding ECM cause the existence of protrusion.
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(a) (b)

Fig. 5. a) and b) Simulation of cell deformation leads to invadopodia formation based
on Test I and II.

5.2 Cell Deformation: Free Boundary Conversion

During phase change process between outer and inner cell, abrupt changes can
happen at phase interfaces of a cell between outside and inner cell which can
produce singularities and instabilities. Here, invadopodia will perforate and pass
through collagen walls which have complex appearances.

Let the plasma membrane be time dependent. Therefore, simulation of
enthalpy formulation is done based on time dependent with an implicit time
scheme. As time is self discretized, the simulation process takes place through
discrete time steps. Phase change starts when invadopodia begin to perforate
and penetrate through cell to go outside the cell which we called invasion that
is easy to see based on 2-dimensional rather than 3-dimensional. Let

Hg(θ)t = Δθ in Q = Ω × (0,T)
∂θ

∂ν





∂Ω

= 0, (33)

θ |t=0 = θ0(x) ≥ 0

where

Hg(θ) =

{
α+θ + 
 in {θ > g}

α−θ − 
 in {θ < g} .

We discretize the problem based on time discretization, Nt+1 time steps into
tn = t0 + nΔt, n = 0, 1, . . . , Nt by denoting the time step size and implicit Euler
time discretization is applied to problem (33). For n = 0, 1, . . . , Nt , find θn+1 ≈

θ(·, tn+1) such that
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θn+1

δt
− ∇ · (κ∇θn+1) = f n+1 +

θn

δt
, in Q = Ω × (0,T)

∂θn+1

∂ν
= 0, on ∂Ωt (34)

θn+1 |t=0 = θ0(x) ≥ 0.

5.3 Enthalpy Formulation

In this problem, the density of signals and ligands are not time dependent but
the plasma membrane is treated as free boundary and time dependent. From
(33) we define enthalpy υ = Hg(θ) by,

f (v) =

⎧⎪⎪⎨
⎪⎪⎩

α−1− (υ + 
), υ < 

0, −
 ≤ υ ≤ 


α−1+ (υ − 
), 
 < υ.
(35)

if and only if θ = fg(v) = f (v) + g. Hence,

υt = Δ f (υ) + Δg in Q (36)
∂

∂ν
f (υ)





∂Ω

= 0
∂g

∂ν





∂Ω

= 0

υ |t=0 = υ0(x) ≥ 0.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6. A signal inside cell activated by ligand outside cell, start to produce invadopodia
and migration happened from Test I.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7. Protrusion of invadopodia and migration of a cell from Test II .

Theorem 2. Let Ω be an open bounded domain subset RN , N = 1, 2 with bound-
ary ∂Ω is at least C2. Let g be a nonnegative solution that g is bounded in
L1(0,T ; L∞(Ω)). Hence, Δg is also bounded in L1(0,T ; L∞(Ω)). Assume that tri-
angular structure guarantees that it is easily bounded for positive time from
L1(Ω) → L∞(Ω). Therefore, there exists at least one weak solution that is con-
tinuous from [0,∞) into L1(Ω). Since, a priori L1(Ω)-estimates hold uniformly
in time of solution (36), therefore, υ ∈ L∞(0,∞; Lp(Ω)), 1 ≤ p < ∞.

Similarly, as in Sect. 5.2, we discretize the problem (36) into

υn+1

δt
− ∇ · (κ∇ f n+1) − ∇ · (κ∇gn+1) = hn+1 +

υn

δt
, in Q = Ω × (0,T)

∂ f n+1

∂ν
= 0,

∂gn+1

∂ν
= 0 on ∂Ωt (37)

υn+1 |t=0 = υ0(x) ≥ 0.

An enzyme MT1-MMP will degrade extracellular matrix (ECM) and pro-
duces ligands that diffuse and bind to membrane receptors. This process dis-
trupted the architecture of the plasma membrane. Hence, generate signal inside
cell that diffuse and lead to actin polymerization. Phase change starts on the
plasma membrane during this process and invadopodia start to protrude at the
cell membrane and migrate.

Figure 6, 7, 8 and 9 show cell deformation process when mutation happens to
a normal cell before it turns into cancer cell. Invasion starts in cancer cell after
protrusion of invadopodia and starts to break away from the main cell. The
changes and movement on cell is the consequence from the interactions between
cell membrane and surrounding ECM that stimulates the existence of ligands
and then activate the signal gradient. As time increases, the cell migrates to the
nearby areas as to settle and grows in different parts of the body and become
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(a) (b) (c) (d)

(e) (f)

Fig. 8. Invasion process start faster from Fig. 6.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 9. A signal inside cell activated by ligand outside cell and start to produce
invadopodia. Cancer cell start migrating to other cells faster than Fig. 7.

dispersed. However, the results from Fig. 8 and 9 show that the phase change
of cell membrane from Eq. (36) is much more faster than Eq. (33). Equation
(36) explains why the phase change problem from Fig. 8 and 9 happened faster
than Fig. 6 and 7. In Eq. (36), we considered the concentration of MT1-MMP,
f embedded in cell membrane degrades the ECM by contact and, taken signal
density to be equal as function g(x, t) which also represents MT1-MMP at any
time t on the interface. While Eq. (33) only considers the density of signal or
ligand based on Eq. (20).

As protrusion happened, the cell starts migrating through disrupted mem-
brane, the protrusion velocity decreases, indicating the stabilization of invadopo-
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dia formation. Phase change interface position decreases on increasing time and
the density of signal decreases due to being away from the main cell.

6 Conclusion

We developed a numerical approach to solve Stefan problem of invadopodia
formation using level set and enthalpy formulation (phase change problems).
All described methods are implemented using FreeFem++. Level set is used to
detect membrane location by zero level function of ψ and phase change prob-
lems in cancer cell has been developed using enthalpy formulation. The enthalpy
method is demonstrated to be proficient and accurate in dealing with this type
of problem. Both methods are used to solve cancer cell deformation and invasion
numerically where protrusions appeared by the existence of invadopodia and
invasion happened when cancer cell starts to spread to a different part of the
cell.

Acknowledgements. This study has been supported by JSPS Core to Core Program
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Abstract. The aim of this contribution is to put together in a sys-
tematic way several approaches operating at different scales that were
recently developed to describe the phenomenon of physical limit of migra-
tion, that occurs when the environment surrounding cells results restric-
tive, and to apply it to tumour growth and invasion. In particular, we
will present: (i) a mechanical model of the behaviour of a cell within a
microchannel that gives a blockage criterium for its penetration; (ii) a
cellular Potts model to describe the dependence of the speed of a malig-
nant cell from the mechanical characteristics both of its compartments
(i.e., nucleus and cytosol) and of its environment; (iii) a multiphase model
embodying such effects; (iv) the proper interface conditions to implement
to deal with tumour invasion across matrix membranes and cell linings.

Keywords: Cell migration · Cancer modelling · Extracellular matrix ·
Nucleus elasticity · Cell deformability

1 Introduction

Cell migratory ability is crucial in many physiological processes, occurring both
during embryonic development and in adult life. In pathological conditions, cell
motile behaviour is involved in chronic inflammatory diseases, such as arthe-
riosclerosis, and in cancer growth. In particular, malignant cells have to migrate
through confined environments, full of steric obstacles and physical barriers,
whose opening and space available for locomotion might be substantially lim-
ited. It is the case of (i) dense extracellular matrix (ECM) regions, constituted by
tightly-packed collagenous bundles, (ii) layers or membranes of non-malignant
cells, that even compartmentalize the pathological tissue from the surrounding
host (e.g., a mesothelial membrane prevents ovary tumour spreading), and (iii)
walls of blood or lymphatic vessels, that have to be penetrated by cancer indi-
viduals to initiate the metastatic cascade.

In all these situations, tumour cells can achieve significant movement by
squeezing through the available space. In this process, experimental evidence
widely shows that cell cytoplasm is very flexible and is able to accommodate
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nearly any pore size. On the contrary, the cell nucleus, being one order of mag-
nitude stiffer than the surrounding cytosolic region, might not be able to adapt
so well its shape to pores smaller than its diameter. As a result, the locomo-
tion of the entire cell might be blocked. The critical pore size below which cells
remain trapped has been denoted in the experimental literature as the physical
limit of migration [28] and has been empirically estimated to be of the order of
10% of the relaxed nucleus cross-section.

One way to describe such a difficulty consists in observing that tumour cells
need to do some work to deform their nucleus to be able to penetrate through
constraining geometries. This energetic cost may become prohibitive when these
constrictions become too small. In these cases, the nuclear deformability becomes
a limiting factor for the overall cell migration [27,29]. In order to circumvent this
difficulty, malignant cells produce matrix degrading enzymes (MDEs), that are
capable to digest ECM components. This action has the effect of widening the
pores of the fiber network, making the migration condition less restrictive and
allowing the cell to escape and invade the surrounding tissue.

In the present contribution, we will put together several approaches dealing
with cell migration in confined environments, that we have recently developed.
The aim is to organically give the reader a summary of the results obtained
at different scales of examination and to highlight the links between them. In
particular, we will start from descriptions at the single-cell level getting infor-
mation that will be then upscaled and nested in macroscopic models analyzing
growth and invasion of entire multicellular tumour masses. In more details, in
the following section, we will focus on the mechanics of a single cell and on the
evaluation of the work it has to do to penetrate a microchannel. This will give
us a blockage criterium depending on the mechanical characteristics both of the
cell and of the matrix microstructure. In Sect. 3, we will use a cellular Potts
model to mimick cell motion within different extracellular enviroments, includ-
ing microchannels, regular fiber networks and micropillar arrays that are used in
in vitro experiments. The resulting outcomes will give a relationship between cell
speed, cell deformability and some structural characteristics of the surrounding
extracellular elements. In Sect. 4, we will nest the information obtained at the
single-cell level in a multiphase continuum mechanics model, so that the macro-
scopic invasive behavior of a tumour mass will be properly linked to specific
microscopic characteristics of the component malignant cells. Finally, in Sect. 5,
we will show how such models can be applied to problems involving basal mem-
branes, cell linings and sheets that compartimentalise in situ tumours and have
to be broken up to give rise to further invasion.

2 Mechanical and Geometrical Conditions for Cell
Penetration in Narrow Channels

We first start to focus on cell-level mechanisms. In this respect, we deal with a
bi-compartmental individual, i.e., differentiated in the nucleus and the surround-
ing cytoplasm. The nucleus is the stiffest component: its deformability is mainly
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regulated both by the chromatin structure and by lamin intermediate filaments
that form a part of its envelope. The cytoplasm, contained in the plasmamem-
brane (PM), is made of a complex mixture of cytoskeletal filaments, dissolved
macro-molecules, and water. It also contains many organelles and sub-structures
that are fundamental for a wide range of cell functions and is much more flexible
than the nucleus [8,9].

As already recalled in the Introduction, the cell and its nucleus have to deform
when crawling within three-dimensional confining environments, such as ECM
regions where the typical distance between collagenous fibers is small enough.
It is clear that the possibility of success in this action mainly depends on two
characteristics

(i) the ability of the cell to exert sufficiently high traction forces to pull its body
ahead carrying its nucleus along;

(ii) the mechanical properties of the nucleus itself.

In fact, the deformability of the cytoplasm is not an issue here, because it has
practically no difficulties in squeezing anywhere.

This process is modeled and analyzed in [10] and [11] in the simplified sce-
nario of an individual cell entering a cylindrical microchannel, that has a diam-
eter smaller than the size of the nucleus. The cell is assumed to exert traction
forces where its membrane is in contact with the walls of the external structure.
The deformation achieved by the nucleus is then prescribed with the obvious
constraint that its cross section perpendicular to the direction of motion has to
fit the cross section of the microchannel.

Our basic assumption is that, in order to have microchannel invasion, the
work that can be performed by the cell to pull itself within the cylinder must be
larger than the energy needed to obtain sufficient squeezing of the nucleus. As
mentioned above, the cytoplasm is instead treated as an inviscid liquid that can
easily adapt to fit any channel size, so that the energetic contribution related to
its deformation is neglected. Entering in more details, the energy provided to the
cell can derive both by the activation of its acto-myosin contraction machinery
joined with the formation of integrin-mediated adhesion bonds and by passive
stresses exterted on the individual by external elements (e.g., pressure from sur-
rounding cells in the case of multicellular aggregates or fluid pressure in microflu-
idic devices). Such two types of contributions are hereafter denoted with Wactive

and Wpassive, respectively.
The energy needed for nuclear morphological variations is given by the sum

of two components, the former (WS) relative to the deformation of the elastic
membrane, the latter (WV ) to the compression of the internal genetic material,
described as a neo-Hookean elastic solid. The energy required to squeeze in a
sufficient way the nucleus to pass through the microchannel is then compared
with the work that can be performed by the cell to pull itself within the cylinder,
that is

Wactive + Wpassive > WS + WV . (1)

In order to compute the terms in Eq. (1), some assumptions need be made are
necessary. Experimental evidences [28] suggest that, when the cell is forced to
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fit in a cylindrical microchannels of restricting geometries, the nucleus takes an
elongated shape oriented along the cell longer axis, that resembles an ellipsoid
or a sigar with a cylindrical inner part ending with two spherical caps. Despite
the geometrical difference, in [11] we show that the energy required to achieve
these two different configurations is practically identical. So, one can consider a
prolate ellipsoid, with minor semi-axes equal to the radius of the channel pore,
i.e., Rp, with the same volume V = 4

3πR3
n as the spherical shape the nucleus

had before entering the microchannel.
In [10] and [11] the internal bulk of the nucleus is described as a neo-Hookean

incompressible material for which

WV =
∫

Vsphere

WV dV =
∫

Vsphere

μ

2
(trC − 3) dV , (2)

where C is the Cauchy-Green strain tensor that in the case of a deformation
into an ellipsoid is simply

C = diag

{
R2

p

R2
n

,
R2

p

R2
n

,
R4

n

R4
p

}
. (3)

This gives

WV =
2
3
μπR3

n

(
2R̂2

p +
1

R̂4
p

− 3

)
, (4)

where R̂p = Rp/Rn. Of course, there are no conceptual difficulties in using
different constitutive laws, such as Gent’s constitutive model

WV = − μ

2
K ln

(
1 − trC − 3

K

)
,

or Ogden’s constitutive model written in terms of principal stretches λj

WV =
3∑

i=1

μi

αi

[
λαi
1 + λαi

2 + (λ1λ2)−αi − 3
]

,

or the one that takes into account of compressibility

WV =
μ

2

[
(detC)−1/3trC − 3 − ln(detC)

]
+

κ

2

[
(detC)1/2 − 1

]2
.

Actually, Ogden’s models are found to fit best the mechanical response of bio-
logical materials. However, it makes sense to use more complicated constitutive
models when there are enough experimental evidences suggesting that one model
is better than others. This knowledge at present is not available yet.

Following [7], in [10] the energy required to deform the nuclear surface area
(i.e., the nuclear envelope) is taken to be equal to

WS = λ(ΔS)(ΔS)2. (5)
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In Eq. (5), ΔS is the increment in the surface area resulting from the passage
from the initial spherical shape to the final ellipsoidal configuration whereas
λ(ΔS) is an increasing function of the increment of surface area, or possibly
constantly equal to λ0. This is done to include the observation that there is a
maximum possible area extension of the nuclear envelope, that the underlying
lamin network is able to achieve due to the stretched configuration. In the case
of a deformation into an ellipsoid

ΔS = 2πR2
p

⎛
⎝1 +

he

Rpe
sin−1

√
1 − R2

p

h2
e

⎞
⎠ − 4πR2

n (6)

where he =
R3

n

R2
p

is the longest semi-axis of the prolate ellipsoid.

The other relevant component to be evaluated in Eq. (1) is the work Wactive

done by the traction forces that involve both formation of integrin-mediated
adhesion bonds with the extra-cellular matrix (ECM) and actomyosin-mediated
contraction to propel the nucleus forward. What is known by traction force
microscopy [2,6,16,20] is that traction forces are exerted mainly in the regions
close to the head and to the tail of polarized cells and that the traction force
deriving from single cell-ECM bond is about 10 pN. Thus, the total force also
depends on the extension of the surface of contact composed by ECM ligands
(i.e., the portion αm of the channel surface the cell can be actually bound to)
and on the density of integrins that are expressed and activated over this area,
denoted by ρb. Then, Wactive can be evaluated by computing the work done by
adhesion forces Fz to pull the nucleus completely in from the entrance of the
microchannel, that is, for a distance

ΔL = 2
R3

n

R2
p

− Rn +
√

R2
n − R2

p.

Referring to [11] for more details, the above procedure allows to specify Eq.
(1) and to determine a criterium able to describe when a cell with undeformed
nucleus radius Rn can penetrate a cylindrical microchannel with a cross-section
area Ap. The criterium involves the dimensionless numbers

G =
ρbαmF

μ
and β =

λ0Rn

μ
. (7)

The former compares quantities related to traction forces with the nucleus shear
modulus μ. Hence, large G’s correspond, for instance, to larger traction forces,
better ability to adhere to the substratum, or softer cell nuclei. The latter is
proportional to the ratio between μ and the stiffness of the nuclear membrane
quantified, as seen in Eq. (5), by λ0. So, β becomes important when the mem-
brane stiffness (times the nucleus radius) is substantially larger than the nucleus
shear modulus.

Introducing the normalized counterparts of cell radius and microchannel cross
section

R̂c =
Rc

Rn
and Âp =

Ap

πR2
n

,
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the criterium reads as

G =
ρbαmF

μ
<

a(Âp) + 8πβb(Âp)
c(Âp)L(Âp, R̂c)

:= Ḡ , (8)

where
a(Âp) =

2
3
Âp +

1
3Â2

p

− 1,

b(Âp) =

⎡
⎣ Âp

2

⎛
⎝1 +

sin−1
√

1 − Â3
p

Â
3/2
p

√
1 − Â3

p

⎞
⎠ − 1

⎤
⎦
2

,

c(Âp) =
2

Âp

− 1 +
√

1 − Âp,

and

L(Âp, R̂c)=
4R̂3

c − 3Âp − 2Â
3/2
p − 2 − 2(1 − Âp)3/2

3
√

Âp

.

It can be noticed that if the effect of the stiffness of the nuclear membrane
is neglected, i.e., β = 0, the r.h.s. of (8) is a function of geometric quantities
only, namely the normalized channel cross section Âp and cell size (through L)
whereas all relevant mechanical characteristics are contained in the l.h.s. in G.

More importantly and independently from its specific form, the criterium
allows to discriminate whether a cell is able to squeeze through a narrow passage
or not. In particular, as sketched in Fig. 1, given a cell of radius Rc (normalized
with respect to the nucleus of radius Rn), one can identify in the parameter space
(G, Âp) a “no-pass” region (shaded in Fig. 1). For instance, knowing the density
ρb of expressed and activated integrins on the contact surface, the portion αm of
the channel available to form bonds, the cytoskeletal traction force F generated
by a single bond and, finally, the mechanical properties of the nucleus (i.e.,
its shear modulus μ and the envelope stiffness β), moving rightward along the
dotted arrow for a given G (path in blue in Fig. 1) it is possible to identify the
minimum cross section of ECM channels that can be penetrated by the cell.

Conversely, knowing the characteristic dimensions of the ECM pores, of the
cell, and of the nucleus, moving first upward on the graph along the dashed
arrow it is possible to identify the minimum value of the parameter G that the
cell must have in order to be able to penetrate the matrix environment. For
instance, for constant adhesion parameters, this means that the nucleus must be
soft enough (i.e., μ has to be below a threshold value) or the traction force must
be strong enough (i.e., F has to be above a threshold value).

Such a criterium may represent a plausible explanation of different behaviours
occurring in a malignant cell population, which yields to moving and non-moving
clones due to differentiated nucleus stiffness or cell traction abilities.
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Fig. 1. Schematic representation of the biological interpretation of the relation between
Ḡ and Âp = Ap/(πR2

n) for given values of β and of the cell radius. The region below
the curve identifies the set of parameters for which the cell cannot enter inside the
ECM pore.

3 Cell Migration Speed in Constrained Environments

The model described in the previous section gives a criterium that determines
whether a cell is able or not to enter a microchannel or a fibrous network accord-
ing to its ability to do the required work. In order to get a dynamic view of this
process, one can instead use individual cell-based approaches. One of them is
the cellular Potts model (CPM), that is a grid-based stochastic method able to
mimic cell dynamics using a stochastic algorithm for energy minimization. In
particular, the CPM represents cell-level objects as patches of domain grid sites
sharing the same identification number. The fundamental assumption is that
cell behavior and interactions with the local microenvironment can be described
by a hamiltonian function: at each time-step, the system configuration is then
updated according to a modified Metropolis method for Monte Carlo-Boltzmann
dynamics, i.e., cell behaviors that require more energy are more unlikely to hap-
pen.

The advantage of this approach for the problem of our interest consists in
the possibility to relate the speed of a tumour cell within constraining envi-
roments both to the mechanical characteristics of its main compartments (i.e.,
nucleus and cytoplasm) and to the geometry of the surrounding elements. In
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particular, in [23–25], we focused on cell motion inside different typologies of
matrix structures: microchannels, fiber networks, and microfluidic-based devices
characterized by the presence of constrictions formed by arrays of pillars, as
shown in Fig. 2(A-B-C).

Independently of the specific geometry, the generalized energy H establishing
cell behavior is given by the sum of two contributions:

H = Hadhesion + Hshape. (9)

Hadhesion is the general extension of the Steinberg’s differential adhesion hypoth-
esis. It takes into account both the generalized contact tension between the
nucleus and the cytoplasm within the cell and the effective adhesion between the
migrating individual and the extracellular components. Hshape instead sums the
energetic components that describe the geometrical attributes of the two subcel-
lular compartments included in the model, say Hnucleus

surface, Hcytosol
surface, Hnucleus

volume and
Hcytosol

volume. Referring to [23–26] for the specific contributions used, generally speak-
ing they take the form of elastic energetic penalties that increase when the two
cell subunits deviate from their relaxed configuration. In this respect, the elastic
modulus of Hnucleus

surface (resp., Hcytosol
surface) measures the deformation potential of the

nucleus (resp., of the cytosol), whereas the elastic modulus of Hnucleus
volume (resp.,

Hcytosol
volume) measures the compressibility of the nucleus (resp., of the cytosol). To

model sustained cell migration Eq. (9) may also include energetic terms relative
to chemotactic stimuli and/or inertial locomotion, as done in [24] and [25].

The discrete nature of the CPM also allows to reproduce in details the geom-
etry of the extracellular environment. For instance, it is possible to easily rep-
resent both single matrix fibers, therefore tuning their characteristic distance
(Fig. 2(A)), and microchannels with different openings or with different distri-
butions of structural pillars (Fig. 2(B-C)).

Numerical results relative to the different scenarios consistently show that cell
migration is completely inhibited in the case of prohibitively small environmental
pores. In the case of matrix constrictions whose size is not negligible but remains
smaller than the diameter of the nucleus, cell speed mainly depends on the
deformability of its voluminous organelle. When the size of the narrow passages
exceeds nucleus diameter, cell velocity instead relies on cytoplasmic dynamics.
Finally, when the dimension of environmental constrictions is large enough, the
migratory capacity of the cell drops, because of its difficulty to build adhesion
bonds and to exert efficient traction forces. In this respect, simulation outcomes
reveal that maximal cell velocity is achieved in the case of pore sizes slightly
larger than then nuclear mean dimension but smaller than the diameter of the
overall individual. Such outcomes are summarized in Fig. 2(D).

The proposed CPMs also show that when the nucleus is squeezing through a
small enough constriction, its side edges are characterized by significant inwards
stresses. Outwards forces are instead active at the trailing and leading borders, as
put in evidence in Fig. 2(E). As soon as the intracellular organelle has overcome
the mid point of the constriction, the inward stresses momentarily point almost
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towards the direction of cell movement, thereby acting as a further instantaneous
push for cell locomotion, see again Fig. 2(E).

Fig. 2. Cellular Potts model reproducing single cell migration in selected confined
environments: (A) regular scaffold of matrix fibers, (B) microchannels with different
widths, and (C) microfluidic device formed by arrays of fixed pillars. (D) Cell speed
vs characteristic pore size for different nucleus stiffness. (E) Force field at the nuclear
membrane during cell penetration within a narrow passage.

4 Nesting Cell-Level Information in Multiphase Models
of Tumour Growth

As already mentioned in the Introduction, tumour cells live in an environment
made of several constituents, such as interstitial liquid, capillary and lymphatic
vessels, ECM fibers, in addition to several other tissue cells. One way to describe
such an heterogeneity from a macroscopic point of view and to take into account
of mechanical issues was originally proposed in [4], devoted to the development of
a model based on the theory of mixture and of deformable porous media. Recent
developments of the model presented in [18,19] are aimed at the validation of the
results with experimental data on tumours growing under compression. Referring
to [21] for more details on the mechanical framework the model is based upon,
the evolution law for the tumour cell population stems from a mass balance
equation

∂φc

∂t
+ ∇ · (φcvc) = γc(φc,C)φc − δc(φc,C)φc, (10)
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where φc is the volume ratio occupied by cells and vc is their velocity. The
growth and death terms, i.e., γc and δc, respectively, may depend on nutrients
and growth factors (generically denoted by the vector C = (C1, . . . , Cn where n
is the number of chemical factors of interest) and on the volume ratio itself. For
instance, when contact inhibition of growth is taken into account γc vanishes
for φc ≥ φmax, φmax being a sort of carrying capacity describing the fact that
when cells feel a compression larger than a threshold, they do not duplicate any
longer.

In order to determine vc, Eq. (10) can be joined with a momentum balance
equation, that actually writes as a force balance equation because inertial effects
can be neglected in growth phenomena. Without entering in detail that can be
found, for instance, [21] when the mechanical interaction of the tumour mass
with the extracellular fluid can be neglected compared with the one with the
ECM, and the ECM can be described as a rigid substratum, this approach is
able to determine the velocity of malignant cells as

vc = −Mcm∇Σ(φc), (11)

where Σ(φc) describes the mechanical response of cells under compression, e.g.,
due to growth, whereas Mcm is the motility tensor related to cell-ECM interac-
tion. The model (10) can be therefore rewritten, in its simplest version, as

∂φc

∂t
= ∇ · [φcMcm∇Σ(φc)] + γc(φc,C)φc − δc(φc,C)φc. (12)

The crucial term on which we want to focus here is the motility tensor that,
in order to simplify the discussion, is hereafter assumed to be isotropic, i.e.,
Mcm = McmI where I is the identity tensor. On the basis of the experiments
described in [28] and of the discussion done in previous sections (see for instance,
Eq. (8)), we can affirm that

(i) it depends on the characteristic ECM pore cross section Ap

(ii) there exists a threshold pore cross section A0 that establishes a physical
limit for cell migration (i.e., cells cannot penetrate an ECM passage whose
dimension is lower than A0).

In addition, cell speed has been experimentally shown in [28] to increase linearly
for small values of the quantity Ap −A0. Recalling (11), this suggests that, close
to A0, Mcm behaves as

Mcm = m(Ap(x) − A0)+, (13)

where (f)+ = (f + |f |)/2 is the positive part of f , so that when Ap(x) < A0 the
motility coefficient vanishes.

However, cell speed can not increase indefinitely, but it must saturate or
present a biphasic behaviour, as shown in Sect. 3 and in Fig. 2(D). This suggests
to set

Mcm = m
(Ap(x) − A0)+(
1 + Ap(x)−A0

A1

)n , (14)

where the coefficient A1 can be evaluated from experiments in the following way:
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(i) If cell speed saturates, i.e., n = 1, then A1 is identified by the motility asymp-
totic value divided by m;

(ii) If there is an optimal pore size Ap,max favouring cell migration as shown in
Fig. 2(D), corresponding to n > 1, then A1 = (n − 1)(Ap,max − A0).

The model (10) describing tumour growth in a constraining environment can be
therefore specified as

∂φc

∂t
= ∇ ·

⎡
⎣m

(Ap(x) − A0)+(
1 + Ap(x)−A0

A1

)n φc∇Σ(φc)

⎤
⎦ + γc(φc,C)φc − δc(φc,C)φc. (15)

As we have discussed in Sect. 2, the value of A0 is not constant but actually
depends on (i) nucleus size and elasticity, (ii) nuclear membrane stiffness, (iii)
the effective adhesion between malignant cells and matrix elements, and (iv) the
ability of malignant cells to exert traction forces. So, a dependence like the one
in Fig. 1 is expected if we replace the force F in G with a macroscopic measure
of cell stress having both an active and a passive origin.

It can be noticed that Eq. (15) reduces to a simple growth model without
any space derivative when and where Ap(x) ≤ A0.

The model can be also applied to the case of tumour invasion of highly hetero-
geneous tissues in presence of discontinuities in ECM density and organization,
i.e., in pore size. In such situations, the motility coefficient m can be discontinu-
ous and proper interface conditions, namely continuity of fluxes and of pressure,
must be imposed.

This is done in the simulations reported in Fig. 3, where a malignant mass
grows in a very heterogeneous environment, e.g., a glandular or a fatty tissue,
with jump discontinuities in ECM pore sizes. In this respect, the matrix pore
size is 100 µm2, i.e., substantially larger than the nucleus cross section, outside
the ellipsoidal regions, whereas it drops up to 20 times within the ellipsoids. In
the simulation shown in the left column, the typical interfiber distance within
the ellipsoids is 4.5 µm: tumour cells have indeed difficulties in penetrating such
denser regions, but they finally achieve full invasion. At the other extremum, in
the right column, the ellipsoidal regions are not penetrable because they mimic
an ECM network with interfiber distance close to 2.5 µm, i.e., characterized by
Ap < A0. So, when cells arrive at the boundaries of these areas, they can not
move in.

In this specific simulation setting, the stress-free volume ratio is φ0 = 0.5
(i.e., Σ(φ0) = 0) and compression inhibits growth at φmax = 0.7. It can be
finally noticed that the healthy tissue is compressed by the growing tumour.
To focus on the effect of ECM heterogeneity, nutrients are assumed to be fully
available and growth factors are not considered.

5 Tumour Invasion Across Membranes

In the initial stages of cancer progression, non-invasive dysplastic cells locally
proliferate and form a carcinoma in situ that is separated from the physiologi-
cal tissue by membrane-like structures. For instance, ductual carcinoma in situ
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(a) t = 30days

(b) t = 50days

(c) t = 70days

Fig. 3. Tumour growth (delimited by the black line) in an heterogeneous environment.
In particular, the ellipsoidal regions represent dense matrix regions, characterized by
different values of charactiristic pore size Ap. Left column: Ap = 16 μm2, which corre-
sponds to a typical interfiber distance equal to ≈ 4.5µm. Middle columns: Ap = 7µm2,
which corresponds to a typical interfiber distance equal to ≈ 3µm. Right column:
Ap = 5µm2 < A0 = 6µm2, which corresponds to a typical interfiber distance equal
to ≈2.5µm. In all cases, the pore dimension characterizing the regions outside the
ellipsoids is Ap = 100µm2, which is larger than the typical nucleus cross section.

grows in a breast duct, endocrine pancreatic tumours in the islets of Langherans,
uterin tumours at its wall, the myometrium, and similarly for prostate, ovary,
bladder tumours, an so on. All these lesions are contained by a basal membrane,
that is a thin, dense and highly cross-linked sheet-like network of ECM macro-
molecules that underlies, amongst others, all epithelial and endothelial layers
(see [14] and [15] for a more complete description). Only small molecules such
as nutrients and other chemical factors are able to passively diffuse across the
basal membrane, since its characteristic pore size is of the order of 50 nm (see
[14] and [22]). Such a structural barrier can be also crossed by immune cells [13],
that are very soft and therefore able to considerably deform.

In principle, also in this situations, one could use the same modelling app-
roach used in the previous section, e.g., Eq. (12), extending it to account for
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tumour cell transmigration across basal membranes. However, their cross section
is substantially smaller than typical cell dimensions. So, from the computational
viewpoint, it is not convenient to build a numerical grid adapted to its thickness;
rather, it is much better to model its action through suitable interface conditions.
With this aim in mind, in [3,5] a suitable limit procedure is proposed to replace
the basal membrane with an effective zero thickness interface. In particular, the
correct interface conditions than need be imposed at the membrane are proved
to be the following

M in
cmφin

c n · ∇Σ(φin
c ) = Mout

cm φout
c n · ∇Σ(φout

c ) = M̂bm[Π(φout
c ) − Π(φin

c )], (16)

where φin
c and φout

c are as usual the tumour volume fractions on the two sides
of the membrane (say, Din and Dout) and Π′(φc) = φcΣ

′(φc) (primes stand for
derivative), while n identifies the outward normal to the membrane (see Fig. 4).
The first equality in (16) represents the usual continuity of mass flux across
the interface that is to be expected. On the other hand, the second equality
takes into account of the reduced motility across the basal membrane. Like M in

cm

and Mout
cm , M̂bm inherits the same structure as in (14). However, it is expected

that while the formers are not restrictive, the latter usually is. Specifically, for
prohibitively small pore cross sections of the basal membrane, i.e., below the
mentioned physical limit of migration cross section A0, M̂bm vanishes yielding
the classical no-flux conditions

M in
cmφin

c n · ∇Σ(φin
c ) = Mout

cm φout
c n · ∇Σ(φout

c ) = 0. (17)

It can also be noticed that (16) is a generalization of the classical Kedem-
Katchalsky interface condition. In fact, formally speaking, if Σ(φc) = Σ0 lnφc

φ0

(which is experimentally unphysical as a relation describing the mechanical
response of cell to compression), then Eq. (15) reduces to a linear, though het-
erogeneous, diffusion equation and the condition (16) reads as

M in
cmn · ∇φin

c = Mout
cm n · ∇φout

c = M̂bm(φout
c − φin

c ), (18)

i.e., the classical Kedem-Katchalsky interface condition used to describe the
diffusion of molecules through permeable membranes.

Fig. 4. Notation for basal membrane problem.

The application of the interface condition (16) to the model proposed in the
previous section indeed allows to relate macroscopic tumour invasion or segrega-
tion by basal membranes to microscopic determinants, such as the mechanical
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characteristic of the nuclear envelope and the stiffness of the nuclear bulk, the
traction ability of malignant cells, in addition to the typical membrane pore size.

However, some cancer cells can acquire the ability to produce matrix degrad-
ing enzymes (MDEs) that digest collagen fibers constituting the basal membrane.
In this way, malignant individuals are able to widen ECM pores or even to per-
forate the basal membrane and invade the adjacent tissue, thus switching to a
more aggressive and metastatic phenotype. From the modelling point of view,
this means that Ap in (13) or (14) increases and that Eq. (16) might pass from
a no-flux interface condition (i.e., Eq. (17) when Ap is below A0 and therefore
M̂bm = 0) to a flow condition.

Specifically, we can assume that

∂Ap

∂t
= μ(Āp − Ap) + ηCMDE , (19)

where CMDE defines the local amount of tumour-secreted MDEs and Āp is the
physiological pore area of the basal membrane that is restored by the action of
ECM producing cells, mainly fibroblasts, at a rate μ, e.g., when CMDE = 0. In
Eq. (19), η is instead related to the rate at which MDEs enlarge the membrane
pore size.

The evolution of MDEs can then be classically modelled by the following
reaction-diffusion equation

∂CMDE

∂t
= D∇2CMDE + p(Ap)φc − qCMDE , (20)

where D is the diffusion coefficient of MDEs, q the degradation or wash-out
rate, and p the production rate by tumour cells. It can also depend on the local
pore area, which means that MDEs are produced only if needed. As MDEs are
small, then they can easily pass through the pores of the basal membrane, so
that continuity of concentration and flux can be assumed there.

In order to show the applicability of the model (15) joined with (16) we also
add (19) and (20) to describe the invasion process of an ovarian tumour. These
tumours originate either on the surface of the ovary or in the fallopian tube.
Referring to [1] and [17] for more details on the phenomenological cascade of
events, the invasion process from the primary tumour starts with the degradation
of the basement membrane underling the ovarian capsule (i.e., the ovarian surface
epithelium) by the production of MDEs. Cancer cells can subsequently break
through the ovarian capsule as single cells or, more frequently, as aggregates.
Such multicellular masses grow and passively move in the peritoneal cavity.
Some ovarian cancer individuals may eventually reach the walls of the cavity and
attach to the mesothelial cells that constitute the peritoneal lining. This fraction
of tumour cells can then (i) degrade the basement membrane underling the
mesothelium by secreting MDEs and (ii) cleave cell-cell adhesion molecules (e.g.,
N-cadherins) that hold mesothelial cells together by producing other enzymes
such as CD-44 and CD-157 [17]. This leads to the retraction of mesothelial cells
at the cancer cells’ attachment sites and brings about the formation of foci of
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(a) t = 15days (b) t = 25days

(c) t = 35days (d) t = 50days

Fig. 5. Invasion of mesothelial layer by an ovary cancer originating at the start of the
fallopian tube with final infiltration of the mesothelial cell lining.

invasion, which enable the malignant individuals to invade the healthy tissue
adjacent to the peritoneum and form secondary tumours [12].

The ovarian capsule and the peritoneal lining consist of layers of epithelial
cells attaching to the ECM. So, their size is much smaller that the characteristic
size of the ovary and of the peritoneal cavity. For this reason, it is convenient
to represent both of them as thin membranes and to use the effective interface
condition (16) with different coefficients M̂bm. The former has in fact a thicker
ECM while the latter also involves the presence of a sheet of mesothelial cells,
whose adhesion can loosen upon because of CD-44 and CD-157 activity.

In Fig. 5 the structure of the ovary is self-evident, while the mesothelial lining
is represented by the lower horizontal line. Invasion starts at the beginning of
the fallopian tube and continues through the peritoneal cavity till it reaches the
mesothelial lining. Referring to [5] for a deeper discussion of the process, we
want here to notice how well the model passes from a no-flux interface condition
(17), where the membrane is intact or nearly intact, to condition (16). In the
former case the solution is obviously discontinuous, while in the latter the jump
discontinuity decreases in time and the pores in the membrane become wider
and wider.
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One can also notice that, at the early stages of the phenomenon, the mesothe-
lial layer behaves as a solid wall containg the malignant mass, but it eventually
breaks up due to the action of tumour-produced MDEs that allow cancer cell
infiltration.
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Abstract. One of the obstacles for cancer therapies is the heterogene-
ity of cancers. Heterogeneity in signal transduction within the same cell
population contributes to drug resistance and stemness, and the diversity
of cancer subtypes contributes to different therapeutic efficacy between
individuals. However, the whole mechanisms associated with heterogene-
ity in signal transduction are poorly understood. In this review, I intro-
duce several mathematical modeling studies to deal with cell-to-cell vari-
ability and diversity of cancer subtypes. Mathematical modeling studies
to analyze the heterogeneity of signal transduction should provide new
insights that will promote the next generation of cancer therapies, such
as overcoming drug resistance and personalized medicine.

1 Introduction

Intracellular signaling induced by extracellular stimuli such as growth factors
plays an important role in the physiological proliferation and differentiation of
cells. On the other hand, abnormal activation of the signaling contributes to
cancer survival and malignant transformation. Various molecular-targeted drugs
have been developed to target mutated growth factor receptors and protein
kinases responsible for downstream signaling. However, the efficacy of thera-
peutic agents are greatly influenced by the two heterogeneity properties of can-
cers; Non-genetic cell-to-cell variability and variability among cancer subtypes
or individuals (Fig. 1). Non-genetic cell-to-cell variability means intratumor het-
erogeneity without genetic alteration; i.e., heterogeneity within the same cancer
cell population without genetic heterogeneity, in which each cell behaves differ-
ently to external stimuli. This variability is known to be one of the sources of
drug resistance. Although cancer is a disease driven by genetic mutations, cellu-
lar phenotypes in the presence of anti-cancer agents such as growth arrest, drug
resistance, or stemness are initially regulated by the structure and spatiotempo-
ral dynamics of signaling networks without genetic mutation [23]. Therefore, if
signaling dynamics targeted by an anti-cancer agent are heterogeneous between
individual cells, there may be a chance for some cells to differentiate in an unde-
sirable phenotype such as drug resistance, even if a major population of the cells
was killed.
c© Springer Nature Singapore Pte Ltd. 2021
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Variability of cancer subtypes and individuals mean inter-tumor diversity
with genetic differences, i.e., a diversity generated among cell populations with
different genetic backgrounds due to genetic mutations or individual differences.
It is responsible for differences in the efficacy of therapeutic agents. It is antici-
pated that the technologies stratifying individual patients and cancer subtypes
for personalized medicine based on genetic mutation and expression levels of
biomarkers. From the above background, a mathematical model of cancer sig-
naling that can support drug discovery research in the future requires not only
simulating ideal cells that behave like an average of the whole cell population,
but also reproducing tumor heterogeneity in the model. In this review, we will
introduce mathematical modeling studies that help us understand (i) non-genetic
cell-to-cell variability and (ii) diversity among cancer subtypes.

Fig. 1. Hierarchy of cancer heterogeneity. Non-genetic cell-to-cell variability are gen-
erally classified into the variability of signaling network parameters (a) and stochastic
fluctuation in gene expression systems (b). These variabilities produce subpopulations
with different characteristics. Variabilities of cancer subtypes and individuals (c) are
partially provided by cell-to-cell variability, but other factors such as genetic mutations
and interaction with immune cells or cancer-associated fibroblast much contribute to
the variabilities. a1, k1, and TF represent a concentration of a molecule, a parameter
in a chemical reaction, and an abbreviation of a transcription factor, respectively.

2 Modeling of Non-genetic Cell-to-Cell Variability in
Cancer Signaling

The sources of heterogeneity within a cell population are thought to be broadly
classified into two types; intrinsic noise and extrinsic noise. These terms are firstly
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defined and experimentally measured by quantifying the expression levels of two
fluorescent proteins regulated by the same promoter at a single-cell level [9].
According to the dual-reporter method, two components of total noise (η2

total),
intrinsic noise (η2

int), and extrinsic noise (η2
ext) were defined as follows:

η2
total = η2

int + η2
ext, η2

int =
〈(a − b)2〉
2〈a〉 · 〈b〉 , and η2

ext =
〈ab〉 − 〈a〉 · 〈b〉

〈a〉 · 〈b〉 . (1)

The i-th elements of the vectors a and b, ai and bi, denote the measurements
of two fluorescent molecules of the i-th cell, respectively. Angle bracket denotes
means over the cell population. The sources of extrinsic noise include the dif-
ferences in cell cycle phase, cell size, concentrations of cellular components, and
microenvironment. In this review, the term “extrinsic noise” is used in the sense
of the variabilities of reaction coefficients and abundances of biochemical species
between individual cells. These variabilities are thought to produce differences
in developmental cell fate decisions and responses to chemotherapeutic agents
through downstream gene expression [1,4,12,34].

Intrinsic noise is a stochastic process of intracellular components and can
be observed as the uncorrelated fluctuations between two fluorescent proteins
in the dual-reporter method. Ozbudak et al. experimentally showed that the
variance of the expression levels in a cell population is proportional to the mean
expression level [32]. Their results mean that the larger the average expression
of the reaction molecules, the more the dispersion of the reaction products is
dominated by extrinsic noise. In fact, it has been shown that the contribution
of extrinsic noise in the MAPK signaling pathway is much larger than intrinsic
noise [20]. On the other hand, intrinsic noise should be considered when the
amount of chemical species in a reaction is few.

2.1 Modeling of Extrinsic Noise

A signal transduction system is a sequence of biochemical reactions described by
such as low of mass action and Michaelis-Menten equation, has been described
as an ordinary differential equations (ODE) model. Traditional mathematical
models on signal transduction have been developed to reproduce the averaged
temporal dynamics of chemical species in a cell population obtained by western
blotting [17,22,29]. Considering extrinsic noise in the ODE model, it must be
assumed that the parameters in the model are not identical but differ among
every individual cell. Therefore, the construction and validation of the model
considering extrinsic noise require experimental data at single-cell resolution to
constrain the parameter distribution.

Single-cell experimental data can be broadly classified into two types: snap-
shot data from flow cytometry (reviewed in section V in [5]), mass cytometry
(section VIII.3 in [5] and [15,28]), or imaging cytometry (section VIII.1 in [5]
and [37]), and time-lapse data from live-cell imaging [11]. These data provide
us different information about the cells. Snapshot data contains the expression
or activation levels of molecules in more than thousands of cells and are suit-
able for measuring the dispersion and correlation of multiple molecules in a cell
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population, but does not contain the trajectories of individual cells because the
data in different time points are not obtained from an identical cell population
by technical reasons; in most cases, the cells must be physically fixed or lysed in
the process of sampling. On the other hand, time-lapse can trace the temporal
changes of individual cells, but it is difficult to measure a large number of cells
and molecules simultaneously.

Some modeling studies based on snapshot data have used a parametric dis-
tribution of parameters to represent single-cell data. Filippi et al. analyzed the
cell-to-cell variability of the MAPK cascade based on the assumption that the
20 parameters in the MEK-ERK phosphorylation model follow a log-normal
distribution [10]. They measured the total amount of doubly phosphorylated
MEK and ERK, denoted respectively by x∗

i,t and y∗
i,t, in cells 1 � i � Nt at

each time point t. θi,t denotes a vector of 20 parameters of the i-th cell at time
t. The distribution of the parameters across the cell population is assumed a
log-normal distribution with mean μθ and covariance matrix Σθ. Besides, they
assumed no correlation between parameters and the covariance matrix is diag-
onal Σθ = diag(σ2

θ) because of the computational cost. To approximate the
two moments of the distribution p({x∗

i,t, y
∗
i,t}i,t|μθ,Σ2

θ), they used the Unscented
Transformation (UT) [21]. UT is an algorithm that allows us to approximate
the moments of the output of a non-linear function given the moments of the
input. Based on the UT algorithm, they set up a series of weighed particles called
sigma points in the variable space with the capturing both the mean μθ, and
the variances σ2

θ , and solved ODEs at each sigma point separately. By compar-
ing the posterior distribution of the coefficient of variation of each parameter,
they found variables that do or don’t contribute to cell-to-cell variability in ERK
phosphorylation. Magi et al. also hypothesized that the number of molecules in
the model follows a log-normal distribution in their study on cell-to-cell vari-
ability of growth factor signaling [26]. They simulated the ODE model based on
the initial values obtained by Monte Carlo sampling that takes into account the
correlation between two molecular species which could be experimentally mea-
sured and predicted the mechanism of PHLDA1 molecule as a negative feedback
regulator in growth factor receptor signaling.

The researches listed above assume that the parameters in the model follow
a unimodal distribution, and therefore cannot take into account the existence of
subpopulations. To address this issue, Hasenauer et al. [16] reported ODE con-
strained mixture modeling, a combined method of mixture distribution modeling
at each time point and ODE modeling of time series mean dynamics of each sub-
population. Experimental snapshot data can be interpreted as a summation of
subpopulations by conventional Gaussian mixture modeling,

p(y|θ) =
m∑

i=1

wiN(y|μi,Σi) with θ = {(wi, μi,Σi)}m
i=1, (2)

where y is a measured quantity of a molecule, θ is a parameter set of Gaussian
mixture model including probability weights wi, mean μi, and variance Σi of the
i-th subpopulation. They also described the “average dynamics” of cells in the
i-th subpopulation using ODE modeling,
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ẋi = f(xi, ξi, u), xi(0) = x0(ξi, u), i = 1, ...,m (3)

in which xi(t) ∈ R
nx
+ is the state of the i-th subpopulation at time t, ξi ∈ R

nξ

+

is the parameter vector of the i-th subpopulation, and u(t) ∈ R
nu
+ is the exper-

imental condition. The vector field f encodes the biochemical pathways and
x0 models the dependence of the initial condition on subpopulation parameters
and experimental conditions. Assuming that interaction and transition between
subpopulations can be neglected, the dynamics of the whole cell population are
calculated by the weighted dynamics of each subpopulation. This method con-
strains the mean value of subpopulation by the ODE model (3), and thereby
establishes a mechanistic link between different experimental conditions or time
points based on ODE models and differences among subpopulations based on
mixture modeling. However, since the component covariances Σi = Σi(t, u),
which summarise cell-to-cell variability within the i-th subpopulation and mea-
surement noise, are not constrained by the ODE model, cell-to-cell variability
within the subpopulation cannot be related to the chemical reaction network.
Besides, this method is only applicable to one-dimensional measurements.

Thus they developed another approach that can capture cell-to-cell variability
within subpopulations and fully leverage the correlation information in multi-
variate data [25]. In this method, the parameter distributions in the ODE model
such as initial conditions or kinetic rates, are described by mixture distributions
represented by the mean and covariance of the subpopulations to cover different
levels of heterogeneity (Fig. 2). Each cell j has cellular properties encoded in the
parameter vector ψj , are considered to be drawn from a mixture distribution,
as follows:

ψj ∼
∑

s

wsN(βs,Ds), (4)

with subpopulation weight ws, mean βs, and covariance Ds for subpopulation
s = 1, ..., N . The subpopulation parameters βs and Ds classify the variability of
property ψj as indicated in the top of Fig. 2.

These approaches enable quantifying the contributions of neuronal subpop-
ulations, culture conditions, and expression levels of signaling proteins to the
cell-to-cell variability of nerve growth factor-induced signal transduction. The
method introduced above assumes that biochemical parameters follow a pre-
defined distribution, and estimates hyperparameters such as variance and mean
that define the distribution. However, there are two major limitations of the
parametric models described above. First, parametric formulations become ana-
lytically intractable when the component of the subpopulation and the chemical
reaction model becomes complex. This problem has been addressed by param-
eter reduction techniques such as ignoring the covariance between variables or
restricting the number of dimensions of variables, but such manipulations may
result in the loss of important information in multivariate single-cell data. Sec-
ond, the model likely to be incorrect if the assumption that the distribution of
parameters can be pre-defined distribution is not accurate.
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Fig. 2. Overview of ODE modeling study for cancer signaling considering extrinsic
noise. The approaches are largely classified by modeling strategy (parametric or non-
parametric) and the dimension of measurements. Parametric approaches are further
classified by the assumptions to the distribution of single-cell property: homogeneous,
the property being the same for the whole cell population; cell-to-cell variable, the
property having a unimodal distribution; subpopulation variable, the population
can be separated into subpopulations, but, within each subpopulation, the property
does not vary; and inter-and intra-subpopulation variable, the property splitting
the population into sub-populations and also varying between cells within a subpopu-
lation.

Other ODE modeling studies have used non-parametric descriptions of the
distributions. Dixit et al. developed a framework for non-parametric estimation
of parameter distributions, MERIDIAN, based on the maximum entropy dis-
tribution [8]. Briefly, they firstly binned experimentally measured distribution
into the fraction φk of cells that populate the kth abundance bins. On the other
hand, they simulate dynamical trajectory based on distinct parameters obtained
by Markov chain Monte Carlo sampling and estimate the predicted fraction ψk

as the fraction of sampled trajectories for which dynamical trajectory passed
through the kth bin. Parameter distribution was investigated by performing
entropy maximization so that all predicted fractions ψk agree with those from
experimental measurements, φk. Using this framework, they inferred parameter
distribution in the growth factor-regulated Akt phosphorylation model. Wade et
al., recently reported a non-parametric framework for parameter estimation of
multidimensional single-cell modeling called DISCO (Distribution-Independent
Single-Cell ODE modeling) [36]. They simulate the trajectories of many indi-
vidual cells and calculate the maximum mean discrepancy (MMD) [14], which
represents the similarity between the distribution of experimental and simula-
tion results. Let H is the unit ball in a reproducing kernel Hilbert space with
associated kernel k. Given m samples from a distribution X and n samples from
a distribution Y , an empirical estimate of MMD between X and Y is
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MMDb[H,X, Y ] = [
1

m2

m2∑

i,j=1

k(xi, xj) − 2
mn

m,n∑

i,j=1

k(xi, yj) +
1
n2

n2∑

i,j=1

k(yi, yj)].

(5)
By minimizing the sum of MMD where kernel k is the Gaussian kernel in all
time points as a cost function, they reproduced experimental data of MAPK
signaling dynamics in HEK293T monitored by multiplexed mass cytometry of
more than 11 chemical species and optimize parameter set of MAPK singling
model.

In summary, many powerful methods for model-based analysis of extrin-
sic noise, both parametric and non-parametric, have been proposed in the last
decade. It has been shown that a parametric model may be sufficient for small-
scale experimental data focusing on only a few molecules, while a distribution-
free approach is useful for higher-order experimental data such as mass cytom-
etry Fig. 2. It is now possible to measure the expression levels of thousands of
genes simultaneously by single-cell sequencing. Once the solution of the compu-
tational cost problem and the experimental techniques to obtain higher-order
data at the protein level like those available in mRNA level are established, the
application of the distribution-free approach will provide new biological insights
in the future.

2.2 Modeling of Intrinsic Noise

Although whether and how intrinsic noise in transcription machinery determines
cell fate decisions are not well understood, gene expression systems with intrin-
sic noise are usually simulated with stochastic simulation such as the Gillespie
algorithm [13]. The Gillespie algorithm draws the time elapsed until the next
event by given propensity function of reaction, and then determines the next
event from all available events. By running this simulation multiple times inde-
pendently, intrinsic noise-derived cell-to-cell variability can be evaluated. The
simplest model of gene expression can be written as a six-reaction model gov-
erned by the following parameters: the initiation rate into the transcription state,
kon; the rate where the promoter switches off, koff ; the rates of transcription
and translation, km, and kp, respectively; the degradation rates of mRNAs and
proteins, γm, and γp, respectively (Fig. 3, more complex models are reviewed in
[35]). Stochastic simulation of the simplest model can recapture one of the funda-
mental properties in gene expression systems celled “transcriptional bursting”
which results from intrinsic noise in each reaction step. Although the general
definition of transcriptional bursting is vague, it refers to the occurrence of tran-
scriptional response in a series of short pulses of a few minutes in a period
when no transcription occurs. Such discontinuous behavior cannot be explained
by deterministic ODE models. There are two main types of characterization of
transcriptional bursting that can contribute to the increase in non-genetic cell-
to-cell variability: bursting frequency determined by kon and bursting size (the
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number of generated mRNAs at a pulse) determined by km

koff
. These parame-

ters can be inferred by experimental data of single-molecule RNA fluorescence
in-situ hybridization (FISH) or single-cell RNA techniques [24,31]. Some experi-
mental researches confirmed that the bursting frequency is controlled by histone
acetylation [30], especially H3K27Ac in the enhancer region [24], or transcrip-
tion elongation factors [31]. In contrast, bursting size correlates to the presence
of TATA box [24], RNA polymerase level, and cell size [33]. These factors may
need to be taken into account in the stochastic simulation of gene expression
systems

There is a case that intrinsic noise-derived transcriptional noise can be a
drug target. A drug discovery research focusing on this transcriptional noise
found several candidate compounds that inhibit human immunodeficiency virus
(HIV) replication. Dar et al. searched for compounds that change only the coef-
ficient of variation without changing the expression level of the fluorescent pro-
tein which is encoded downstream of the HIV long terminal repeat promoter
[6]. They found some chromatin modifying compounds increased intrinsic noise
in HIV gene expression systems and showed these compounds synergized with
a transcriptional activator to enhance HIV reactivation. Their finding may con-
tribute to an HIV treatment strategy that tries to re-activate the latent virus to
a replicative phenotype which is sensitive to antiretroviral therapy [7].

However, it remains unclear that the simplest model is sufficient for explain-
ing transcriptomic variability in human cells, especially in human cancer cells. In
luminal breast cancer cells, the expression level of histone demethylase KDM5B,
which erases transcriptionally active methylation in histone H3K4, is associated
with transcriptomic heterogeneity [18]. Their finding is not explained by only
using the simplest model of the gene expression process (Fig. 3) because high
expression level of KDM5B may increase koff and thereby reduce the bursting
size in the model. Other researchers also reported that gene expression levels reg-
ulated by polycomb repressive complex showed non-genetic cell-to-cell variabil-
ity [3], suggesting that epigenetic changing increase of koff does not necessarily
reduce the variability of gene expression.

Another possible source of intrinsic noise is RNA degradation rate (γm).
Baudrimont, et al., investigated the contribution of RNA degradation to both
intrinsic and extrinsic noise in gene expression systems [2]. They concluded that
fluctuation of degradation rate in unstable RNAs is buffered by stable expression
of exonuclease XRN1 which targets unstable RNAs, while ribonucleases target-
ing stable RNA have large fluctuation. In other words, intrinsic noise in RNA
degradation is fine-tuned by extrinsic noise in the expression levels of RNases.
Taken together, we should consider the extrinsic variability of gene expression
systems in addition to intrinsic noise, or expand when discussing transcriptional
cell-to-cell variability.
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Fig. 3. Simple scheme of stochastic gene expression model. This model consists
of six biochemical reactions: switching ON/OFF of epigenetic status, and produc-
tion/degradation of mRNAs and proteins.

3 Modeling of Variability Among Cancer Subtypes

Variability among cancer cell types generated by the difference of genetic muta-
tion and polymorphism beyond non-genetic factors. At present, it is very difficult
to simulate the process of generating variability of cancer subtypes at a molecu-
lar resolution. However, if we focus on not modeling the process but the results of
molecular differences in cancer subtypes including the difference of gene expres-
sion levels and enzymatic activities caused by a genetic mutation, we can deal
with them in the same way as the extrinsic noise framework. Namely, even if
some genetic mutation alters gene expression profiles or generates point-mutated
or fusion oncoproteins, these can be conceptually represented on a model as the
difference of molecular expression levels or reaction constants. Imoto et al. have
developed BioMASS (Modeling and Analysis of Signaling Systems), a simula-
tion platform that reproduces the dynamics of growth factor signaling across
cell types using the RNA-seq expression data of 19 genes responsible for growth
factor signaling as input [19]. The platform assumes that kinetic parameters such
as transport, binding, and phosphorylation rates are identical across cell types,
and estimated each kinetic parameter using the signal transduction dynamics
of three breast cancer cells with different subtypes as training data. Using the
estimated parameters, they successfully reproduced the signaling dynamics of a
cancer cell line that was not used for training. The platform also provides func-
tions for sensitivity analysis of reaction parameters and initial conditions with
high usability for experimental biologists.

Considering genetic mutations that affect molecular function such as con-
stitutive active mutations, it may be necessary to check the possibility that
reaction constants may differ among cell types. In this case, we must be careful
not to overfit simulation results to experimental data. Merkle et al. successfully
inferred common and cell type-specific parameters by applying L1 regulariza-
tion in machine learning, incorporating a penalty in the objective function based
on the number of cell type-specific parameters, to parameter estimation in the
model [27]. They recapitulated erythropoietin-induced JAK-STAT signaling in
non-small cell lung cancer and erythroid progenitor cells and revealed a poten-
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tial target to inhibit only the signaling in tumor cells. Their approach has the
potential to mathematically reveal not only the diversity among cancer cells but
also the differences between normal cells and tumor cells that are associated
with side effects of anticancer drugs.

4 Conclusion

In this review, we have listed examples of studies that analyze tumor heterogene-
ity at various levels by using mathematical modeling. This field has matured
during the last decade, and new methods are still being proposed. However,
there is still much room for improvement to obtain useful biological findings
from the model-based analysis, such as adopting hypotheses that are consistent
with actual experimental data, using accurate modeling parameter obtained from
single-molecule measurements, and developing software tools that are easy to use
for everyone, including experimental researchers. I believe that these challenges
can be remedied by greater cooperation between mathematical oncologists and
experimental researchers than has been possible to date.
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Abstract. A defining feature of cancer is the capability to spread locally
into the surrounding tissue, with cancer cells spreading beyond any
normal boundaries. Cancer invasion is a complex phenomenon involv-
ing many inter-connected processes at different spatial and temporal
scales. A key component of invasion is the ability of cancer cells to alter
and degrade the extracellular matrix through the secretion of matrix-
degrading enzymes. Combined with excessive cell proliferation and cell
migration (individual and collective), this facilitates the spread of can-
cer cells into the local tissue. Along with tumour-induced angiogenesis,
invasion is a critical component of metastatic spread, ultimately leading
to the formation of secondary tumours in other parts of the host body.
In this paper we present an overview of the various mathematical models
and different modelling techniques and approaches that have been devel-
oped over the past 25 years or so and which focus on various aspects of
the invasive process.

1 Introduction

In their ground-breaking paper The Hallmarks of Cancer, Hanahan and Wein-
berg (2000) identified six essential alterations in cell physiology that distinguish
cancer cells/tissue from normal cells/tissue. Tissue invasion and metastasis was
one of these key “hallmarks”. Although the first use of the term “metastasis”
can be traced back to Jean Claude Recamier in his 1829 book “Recherches sur
le traitement du cancer sur la compression méthodique simple ou combinée et
sur l’histoire générale de la meme maladie” (Recamier 1829), tissue invasion by
cancer cells goes back to classical antiquity, with the phenomenon recognised by
Hippocrates and Galen (among others). The word cancer itself derives from the
Latin cancer, -cri (m) meaning crab, in turn derived from the Greek
[cf. carcinoma] also meaning crab. The physicians of classical antiquity already
recognised the distinctive spreading pattern of an invasive cancer, with cellular
projections into the surrounding tissue like the arms of a crab.

An excellent historical overview of the biology of cancer metastasis can be
found in the article by Talmadge and Fidler (Talmadge and Fidler 2010), while an
overview of the core aspects of invasion can be found in the articles of Hanahan
and Weinberg (Hanahan and Weinberg 2000, 2011) and the review article of
Friedl and Wolf (Friedl and Wolf 2003).
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The mathematical modelling of cancer invasion, part of the broader topic of
mathematical oncology, may have a somewhat shorter history than its biolog-
ical/pathological counterpart, but nonetheless mathematical models of cancer
cell migration and invasion have the potential to shed light on this complex phe-
nomenon and can play a role in improving treatment protocols. The purpose of
this review paper is to give an overview of the key developments in the mathe-
matical modelling of cancer invasion starting in the mid-1990s. Before embarking
on this task, we first of all give a brief description of the main cellular processes
involved in cancer invasion.

2 Biological Background

Cancer invasion is a complex process involving numerous interactions between
the cancer cells and the extracellular matrix (ECM) (cf. the tumour microenvi-
ronment) facilitated by matrix degrading enzymes. Along with active cell migra-
tion (both individual and collective) and increased/excessive proliferation, these
processes enable the local spread of cancer cells into the surrounding tissue.
Any encounter with blood or lymphatic vessels (cf. tumour-induced angiogen-
esis, lymph-angiogenesis) in the tumour microenvironment initiates the spread
of the cancer to secondary locations in the host, i.e., metastasis or metastatic
spread.

Critical steps in the invasion-metastatic cascade include the following:

• metastatic cells arise within a population of neoplastic/tumourigenic cells as
a result of genomic instabilities;

• vascularization of the primary solid tumour through tumour-induced angio-
genesis;

• detachment of any metastatic-competent cells that have already evolved;
• migration of the metastatic cells;
• local invasion of cancer cells into the surrounding tissue, requiring adhesion

to and subsequent degradation of ECM components;
• transport of metastatic cells either travelling individually or as emboli com-

posed of tumour cells (homotypic) or of tumour cells and host cells (het-
erotypic);

• metastatic cells survive their journey in the circulation system;
• adhesion/arrest of the metastatic cells at the secondary site, cells or emboli

arrest either because of physical limitations (i.e. too large to traverse a lumen)
or by binding to specific molecules in particular organs or tissues;

• escape from the blood circulation (extravasation);
• proliferation of the metastatic tumour cells;
• growth of the secondary tumour in the new organ.

Further details of the invasion-metastasis process (and also extensive biolog-
ical/clinical references) can be found in the papers of Hanahan and Weinberg
(2000, 2011), Friedl and Wolf (2003), Valster et al. (2005), Nyström et al. (2005),
Talmadge and Fidler (2010).
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In the next section we present a number of mathematical models which have
been developed since the mid-1990s, exploring a range of issues associated with
cancer invasion and using a range of different mathematical approaches and
techniques.

3 Mathematical Models of Cancer Invasion

3.1 Early ODE and PDE Models

We start with the seminal paper of Gatenby (1995) where he proposes a macro-
scopic mathematical model in which the tumour is viewed as a dynamic com-
munity of malignant cells, rather than a collection of individual cells, interacting
and competing for resources with the normal tissue. This allows for an analyt-
ical insight in the mechanisms by which an initially small malignancy grows to
replace a much larger and stable population of normal cells. In particular the
author proposes the following model

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪
⎩

dN1

dt
= r1N1

K1 − N1 − a12N2

K1

dN2

dt
= r2N2

K2 − N2 − a21N1

K2

(1)

where N1, N2 represent the populations of cancer and normal cells respectively,
r1, r2 the intrinsic growth rates of each population, and K1, K2 the carrying
capacities or maximum numbers of cells from each population which can occupy
the tissue and be supported by the environment. Furthermore a12, a21 are the
competition coefficients that measure the effects on the population N2 (respec-
tively N1) from the presence of N1 (respectively N2).

Further to the fundamental formulations introduced in (1), Gatenby and
Gawlinski (1996) made the modelling assumption that tumour-induced alter-
ation of microenvironmental pH provides a mechanism for cancer invasion. In
particular they propose the following reaction-diffusion system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪
⎩

∂N1

∂t
= ∇ ·

(
DN1[N2]∇N1

)
+ r1N1

(

1 −

N1

K1
− a12

N2

K2

)

− d1LN1

∂N2

∂t
= ∇ ·

(
DN2[N1]∇N2

)
+ r2N2

(

1 −

N2

K2
− a21

N1

K1

)

∂L
∂t

= D3∇
2L + r3N2 − d3L

(2)

where N1, N2 represent the density of the normal and neoplastic tissue respec-
tively, and L the excess concentration of H+ ions. d1L is the death rate of the
normal tissue due to excess acid concentration.

Investigations of the structure and dynamics of the proposed model demon-
strate a transition from benign to malignant growth analogous to the adenoma-
carcinoma progression. Accordingly, the authors conclude that their model pre-
dicts crossover behaviour that is consistent with clinical observations on the
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growth of in-situ tumours before the development of an invasive phenotype.
Their model moreover predicts a variable interfacial structure, including a previ-
ously unrecognised hypocellular interstitial gap in some malignancies, and show
some evidence in support of this prediction in both clinical observations and in
vitro experiments.

In a follow-up paper, Gatenby et al. (2006) consider a direct simplification
of the model (2). Namely, they consider a healthy tissue that is well organised
and regulated in an organ and will therefore be immovable i.e. DN1[N2] = 0; and
the diffusivity of the cancer cells DN2[N1] = D2

(

1 −
N1
K1

)

attains the value D2 in
the absence of healthy tissue and the value zero when the density of the healthy
tissue N1 is at carrying capacity K1.

This simpler model allows the authors to perform numerical simulations that
provide testable predictions concerning the morphology of cellular and extracel-
lular dynamics at the interface between tumour and host. On the other hand,
in-vivo experiments confirm the presence of peritumoral acid gradients as well as
cellular toxicity and ECM degradation in the normal tissue exposed to the acidic
microenvironment. They conclude that their acid-mediated invasion model (2)
can provide a description mechanism to link altered glucose metabolism with
the ability of cancer cells to form invasive tumours.

Along similar lines of modelling, Perumpanani et al. (1996) proposed a cancer
invasion model that accounts for the competition between the invasive cancer
cells, the non-invasive cancer cells, the normal tissue, and the ECM. They more-
over account for the proteases responsible for the degradation of the ECM and
the product of proteolysis.

In particular, the model they propose reads as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

∂n
∂t

= k1n (k2 − n − m − u) +
∂

∂x

[

Θ(c)

(

Γn(u,m, n)
∂u
∂x

)]

∂m
∂t

= k4m (k5 − n − m − u) +
∂

∂x

[

Θ(c)

(

Γn(u,m, n)
∂m
∂x

)]

∂u
∂t

= k4u (k5 − n − m − u)

+
∂

∂x

[

Θ(c)

(

Γu(u,m, n)
∂u
∂x

− k17u
∂c
∂x

− k16u
∂s
∂x

)]

∂c
∂t

= − k8pc

+
∂

∂x
K

[

cΘ(c)

(

Γn

(
∂u
∂x

+
∂m
∂x

)

+ Γu
∂u
∂x

− k17u
∂c
∂x

− k16u
∂s
∂x

)]

∂s
∂t

= k21pc + Ds
∂2 s
∂x2

∂p
∂t

= k1uc − k12p − k13pu − k14pc + Dp
∂2p
∂x2

(3)
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where n represents the concentration of the normal cells, m the non-invasive
cancer cells, u the invasive cancer cells, c a generic ECM protein (e.g. collagen,
vitronectin or other), s the product of the ECM proteolysis, and p a generic
protease. Moreover, Θ is the ramp function

Θ(c) =

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪
⎩

k26, 0 < c < k27
k28 − c
k28 − k27

, k27 < c < k28

0, k28 < c

(4)

and

Γn = k3
k18

k19 + k25 (k25n + k25m + k20u)
(5)

Γu = k6
k18

k19 + k20 (k25n + k25m + k20u)
(6)

In a follow-up work, Perumpanani et al. (1998) investigate further the degra-
dation of the ECM. During the invasion, a gradient of ECM fragments is estab-
lished counter to the direction of the invasion. This results in anti-invasive
chemotactic attraction which opposes the haptotaxis migration of the cancer
cell towards higher ECM concentrations. They then conclude that the invasion
potential of the cancer cells depends on the action of matrix metalloproteinases
(MMPs) in “a biphasic manner”; excessive degradation of the ECM can lead to
the opposite than the invasion effect.

For u, c, p, s representing the concentrations of HT1080 cells, intact
fibronectin, MMP-2, and the MMP-2-digested soluble fibronectin respectively,
the model reads as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

∂u
∂t

= k1u(k2 − u) −
∂

∂x

(

k3ψ(s)u
∂s
∂x

− k4 χ(c)u
∂c
∂x

)

∂c
∂t

= −k5pc

∂s
∂t

= k5k6pc + h(p, s) + Ds
∂2 s
∂x2

∂p
∂t

= k7uc − k8pu − k9p + Dp
∂2p
∂x2

(7)

where ki, s are positive constants and the functions ψ(s), and χ(c) represent the
extend of chemo- and haptotaxis respectively. The proteolysis of the fibronectin
is represented by −pc and h(p, s) the continued action of the proteases.

Furthermore, Perumpanani et al. (1999) develop and analyse a model for
malignant invasion, that combines proteolysis and haptotaxis; a common feature
of these two mechanisms is that they can be produced by contact with the ECM.
Namely, the model they study reads:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪
⎩

∂u
∂t

= f (u) − k3
∂

∂x

(

u
∂c
∂x

)

∂c
∂t

= −g(c, p)

∂p
∂t

= h(u, c) − Kp

(8)

where u, c, and p represent the concentrations of the invasive cancer cells, the
ECM, and the matrix degrading proteases, and where

f (u) = k1 u(k2 − u), g(c, p) = k4 pc, h(u, c) = k5 uc,

with k1, . . . , k5,K ≥ 0.
Compared with the previous works of these authors, i.e. Perumpanani et al.

(1996, 1998), special characteristic of the model (8) is the absence of cancer cell
diffusion. In the search for travelling wave solutions, the model (8) is reduced to
a system of ordinary differential equations (ODEs) which the authors then study
using phase plane analysis. They are able to demonstrate that the model admits
a family of travelling waves with speeds depending on the ECM concentration,
and hence identify an expected qualitative property on behalf of cancer invasion.

Following the steps laid in Perumpanani et al. (1996), Marchant et al. (2000,
2001) address a haptotaxis model that accounts for three variables: the concen-
tration u of the invasive cells, the connective tissue c, and of the proteases p. In
the non-dimensional form the model they study takes the form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪
⎩

∂u
∂t

= u(1 − u) −
∂

∂x

(

u
∂c
∂x

)

∂c
∂t

= −pc

∂p
∂t

=
1
ε
(uc − p)

, (9)

where 0 < ε represents the relative timescale of the dynamics of the protease p
versus the cell growth dynamics. The time variable t is scaled so that u grows
as O(1) to the carrying capacity of unity; the space variable x is scaled so that
the rate of haptotaxis is of the same order, p is scaled so that c dissolves on the
same timescale and, c is scaled so that p and uc are of the same order in the
p-equation. This implies that the p timescale is relatively much faster, so that
0 < ε<<1 is small. This allows the authors to re-model the proteases dynamics,
i.e. p-equation in (9), into

p = uc

and accordingly (9) recasts to:

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪
⎩

∂u
∂t

= u(1 − u) −
∂

∂x

(

u
∂c
∂x

)

∂c
∂t

= −uc2
(10)
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The authors were then able to identify a host of travelling wave solutions in
the system (10), among which (discontinuous) shock waves. The latter being of
a particularly high interest as, according to the authors, the sharpness of the
invading profile better approximates the sharp invasion front observed experi-
mentally in cancer growth.

In a follow-up work Marchant et al. (2006) adopted the sequence of models
(3), (7), and (8) to obtain the following haptotaxis invasion model

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪
⎩

∂u
∂t

= ru(1 −

u
U0

) − kuc − χ
∂

∂x

(

u
∂c
∂x

)

∂c
∂t

= −αpc

∂p
∂t

= βuc − γp

(11)

where u represents the concentration of tumour cells; c the concentration of the
ECM, and p the concentration of a matrix-degrading protease.

With arguments similar as in the case of (9), the authors were able to reduce
the model (11) to a two-equation system similar to (10) that exhibits discon-
tinuous solutions, and is able to reproduce the biphasic behaviour first seen in
(3).

In a different approach, still though within the general modelling of cancer
invasion, Swanson et al. (2000), develops further a mathematical model of glioma
growth—the most common type of brain tumour—previously proposed in a series
of papers by Cruywagen et al. (1995), Tracqui et al. (1995), and Woodward et
al. (1996).

The proposed model describes the time evolution of of the glioma cell pop-
ulation based solely on proliferation and diffusion. It is comprised of a single
equation, namely,

∂c
∂t

= ∇ · (D(x)∇c) + ρc (12)

where c(x, t) represents the density of the glioma cells, and where the Fickian
diffusivity depends on the local tissue

D(x) =

{

Dg, x ∈ grey matter
Dw, x ∈ white matter

, Dw > Dg .

The authors argue that, although the linear proliferation term ρc lacks a sat-
uration effect (like e.g. a logistic term) that would make it more accurate, still
it is adequate for the time scale of the experiment considered. The previously
observed fit of the model predictions with in-vivo computerised tomography (CT)
scan measurements, is further investigated under the availability of information
regarding the local composition of the brain in grey and white matter.

In a follow up work Swanson et al. (2003) introduce chemotherapy in the
model (12), administered in the form of a time dependent decay of the tumour
cell population c. Namely, the authors propose the model
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∂c
∂t

= ∇ · (D(x)∇c) + ρc − G(t)c (13)

where the therapy schedule G is given by

G(t) =

{

k, during administration periods
0, otherwise

Besides chemotherapy though, the authors consider the effect of surgical resec-
tion in the treatment of high- and low-grade gliomas. The mathematical app-
roach they followed has allowed them to demonstrate that any local treatment
of a diffusely invading glioma will fail, since the invasion is still more peripheral
than any localizable treatment can reach.

In a follow-up work, Swanson (2008) studied further the model (12) discussed
in Swanson et al. (2000, 2003), and compared its predictions against in vitro
experimental measurement data.

The authors then argue that the model sufficiently describes the key dynamics
of gliomas in-vitro and that these results provide a foundation for using this
model for more complicated scenarios in-vivo. In any case, they argue, that they
have obtained with their model a better understanding of glioma cell behaviour
since the model provides a means for quantification of experimental observations.

3.2 A Hybrid Continuum-Discrete Model

In the next milestone in the evolution towards hybrid invasion models, Anderson
et al. (2000) propose a blend of continuum deterministic modelling and discrete
stochastic modelling in 1- and 2- space dimensions.

The continuum model they study examines the migratory response of cancer
cells to self-generated haptotaxis gradients. Namely, the authors consider cancer
cell mediated production and activation of matrix degrading enzymes (MDEs),
the ensuing degradation of the ECM, and the subsequent haptotaxis response of
the cancer cells to the induced gradient of the matrix. The model itself reads as
follows

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪
⎩

∂n
∂t

= Dn∇
2n − χ∇ · (n∇ f )

∂ f
∂t

= −δm f

∂m
∂t

= Dm∇
2 m + μn − λm

(14)

where n, f , m, denote the densities of the cancer cells, the ECM, and the MDEs
respectively, and Dn, Dm and χ the diffusion and haptotaxis coefficients respec-
tively.

They can verify with their model that the cancer cells are split in two groups:
those driven primarily by diffusion that form a propagating front and degrade
the matrix, and those driven by haptotaxis that follow the gradient formed in
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the ECM. The self-generated haptotaxis effect is still present when a heteroge-
neous ECM is considered, although not clearly seen due to the pre-existing ECM
gradients.

The authors formulate also a discrete model which tracks the positions of
migratory cancer cells while accounting for the extracellular stimuli (haptotaxis
in this instance). The model reads as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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⎩

nq+1
l,m

= P0n
q
l,m

+ P1n
q
l+1,m

+ P2n
q
l−1,m

+ P3n
q
l,m+1

+ P4n
q
l,m−1

P0 = 1 −

4kD
h2

−

kγ
h2

(

f q
l+1,m

+ f q
l−1,m

− 4 f q
l,m

+ f q
l,m+1

+ f q
l,m−1

)

,

P1 =
kD
h2

−

kγ
4h2

(

f q
l+1,m

− f q
l−1,m

)

P2 =
kD
h2

+
kγ
4h2

(

f q
l+1,m

− f q
l−1,m

)

P3 =
kD
h2

−

kγ
4h2

(

f q
l,m+1

− f q
l,m−1

)

P4 =
kD
h2

+
kγ
4h2

(

f q
l,m+1

− f q
l,m−1

)

(15)

where P0, · · · , P4 are termed directional transition rates. In the above k, h rep-
resent the time- and space-step of the discretisation method.

This discrete version allows the authors to track individual cells as they move
in the two-dimensional tissue. They can then make remarks on the migration of
the cancer cells which have important implications in metastasis.

The authors also combine the discrete and continuum versions of their mod-
els, acting in different scales of the cancer invasion, and compare the model
predictions with clinical observations of cancer invasion in breast cancer.

3.3 A Model of Trophoblast Invasion

Further in the macroscopic tissue invasion, although not cancerous, Byrne et al.
(2000) present a mathematical model that describes the initial stages of placental
development during which trophoblast cells begin to invade the uterine tissue as
a continuous mass of cells.

The proposed model accounts for the density of the trophoblast cells n(x, t),
trophoblast-derived proteases u(x, t), and uterine tissue ρ(x, t), and reads as
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

∂n
∂t

= Dn
∂

∂x

(

n2
∂n
∂x

)

− χ
∂

∂x

(

n
∂v

∂x

)

+ k1n(1 − n − p)

∂u
∂t

= Du
∂2u
∂x2

+ k2un(1 − n) − k3uv

∂v

∂t
= Dv

∂2v

∂x2
+ k4uρ − k3uv

∂ρ

∂t
= k5ρ(1 − n − ρ) − k6uρ

(16)
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where Dn, Du, Dv > 0, χ > 0 are the corresponding linear diffusion and hapto-
taxis coefficients, k1, k2, k5 > 0 the logistic proliferation rates, and k3, k4, k6 > 0
are kinetic rate parameters.

The mathematical analysis of a simpler submodel that the authors under-
take, describes the final stages of normal embryo implantation and suggests that
as the timescale of interest increases, the dominant migratory mechanism of
the trophoblasts switches from chemotaxis to nonlinear random motion. More
precisely, the initial invasion of the system is dominated by the chemotactic
response of the trophoblast cells to the inhibitor w. In addition, when the pro-
tease is relaxing to a uniform steady state, chemotaxis plays an important role
in defining the depth of penetration of the trophoblasts while the limiting profile
adopted is determined by nonlinear random motility.

3.4 An Individual-Based Cellular Potts Model

Switching back to cancer invasion, Turner and Sherratt (2002) develop a discrete
model of malignant invasion using a thermodynamic argument. They employ
an extension of the Potts model to simulate a population of malignant cells
experiencing interactions due to both homotypic and heterotypic adhesion while
also secreting proteolytic enzymes and experiencing a haptotactic gradient.

Specifically, the authors consider a square lattice and assign at every point
(i, j) a label σi j . Neighbouring lattice sites with the same value of σ are assumed
to lie within the same cell. The interaction between the cell surfaces follows
from the coupling constants Jτ(σi j ),τ(σi′ j′ )

, which account for the energy/strength
of the interaction between adjacent points with different values of σi j (i.e. of
different cells). This is described in the first term in the total energy H:

H =
∑

i j

∑

i′ j′

Jτ(σi j ),τ(σi′ j′ )

{

1 − δσi j,σi′ j′

}

+
∑

σ

λ (uσ − VT )
2 (17)

The second term describes the energy required for the growth and mechanical
deformation of the cells where vσ is the volume of the cell σ, VT is the target
volume, and λ the corresponding Lagrange-multiplier. Furthermore, the model
accounts for haptotaxis by attaching in every lattice point a parameter fi j that
accounts for the local density of the ECM protein concentration.

The overall energy change is then calculated as

ΔHi j = ΔH1,i j + ΔH2,i j + kH ( fi′ j′ − fi j) (18)

where kH > 0 represents the strength of haptotaxis, and where ΔH1,i j , ΔH2,i j

correspond to the surface and mechanical energy changes between the two con-
formations H1 and H2, given by the corresponding total energy formulas (17).

With this approach the authors demonstrate that the morphology of the
invading front is influenced by changes in the adhesiveness parameters, and detail
how the invasiveness of the tumour is related to adhesion. Their model suggests
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that cell-cell adhesion has less of an influence on invasion compared to cell-
matrix adhesion, and that increases in both proteolytic enzyme secretion rate
and the coefficient of haptotaxis act in synergy to promote invasion. By including
cell proliferation, they extend their algorithm for cell division rates that depend
on changes in the relative magnitudes of homotypic and heterotypic cell-cell
adhesiveness.

3.5 A Model of the Urokinase-Plasminogen uPA System

Further on the macroscopic description, Chaplain and Lolas (2005) present a
mathematical model of the invasion of the ECM by cancer cells through the
secretion of MDEs. The model focuses specifically on the role of the urokinase
plasminogen activation system and is more complex than other mathematical
models of invasion, in the sense that it accounts for more key biological compo-
nents of tissue invasion.

Denoting the cancer cell density by c, the urokinase plasminogen activator
(uPA) concentration by u, the plasminogen activator inhibitor-1 (PAI-1) concen-
tration by p, the plasmin concentration by m and the ECM substrate (vitronectin
in this case) density by v, the model reads as:
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⎩

∂c
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∂2c
∂x2
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∂

∂x
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χcc
∂u
∂x

+ ζcc
∂p
∂x

+ ξcc
∂v

∂x

)

+ φ13cu + μ1c

(

1 −

c
c0

)

∂v

∂t
= −δvm + φ21up − φ22vp + μ2v

(

1 −

v

v0

)

∂u
∂t

= Du
∂2u
∂x2

− φ31pu − φ33cu + a31c

∂p
∂t

= Dp
∂2p
∂x2

− φ41pu − φ42pv + a41m

∂m
∂t

= Dm
∂2 m
∂x2

− φ51pu − φ52pv + a53uc

(19)

where Dc, Du, Dp, Dm ≥ 0 and χc, ζc, ξc > 0 are the diffusion and taxis coeffi-
cients, μ1, μ2 the cell proliferation and matrix reconstruction rates, and the rest
of the parameters are the kinetic rate parameters.

The main achievement of this model is that fairly simple mathematical rep-
resentation of the binding interactions of the components of the plasminogen
activation system coupled with cell migration were able to capture the main char-
acteristic effects of the system in cancer progression and invasion. The results
show a very rich dynamic spatio-temporal behaviour which are in line with
recent experimental results, that show that when breast cells become malignant,
plasmin is activated on their membrane and their morphology is changed from
sheet-like structures to multicellular heterogeneous masses.
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3.6 Modelling the Role of Acidity in Invasion

With a series of papers, Smallbone et al. (2005, 2007, 2008) turn their attention
to the role of acidity in cancer invasion and connect with the previous works
of Gatenby et al. (2006). Smallbone et al. (2005). In particular, they develop a
simple model of three-dimensional tumour growth to examine the role of acidosis
in the interaction between normal and tumour cell populations. The tumours
under investigation are assumed to be at the first avascular and early vascular
stages and in effect, expect the formation of necrotic cores. The model they
discuss reads

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪
⎩

∂H
∂t

= DH∇
2 H + FH

dR3
2

dt
= S

(
R3
2 − R3

1

)
− LR3

1

(20)

where H represents the concentration of the acid, DH > 0 represent the diffusion
coefficient and FH the combined rate of acid production and removal from the
system. The second equation stems after an assumption of rotational symmetry
on the tumour—which is assumed to be of radius R2—and the formation of
a (rotational symmetric) necrotic core—with radius R1. The proliferation term
S
(
R3
2 − R3

1

)
refers solely to the living part of the tumour, the only part of the

tumour where proliferation takes place.
With this modelling setting, the authors are able to observe a number of

different behaviours. The analysis they perform predicts three regimes of tumour
growth. If the rate of acid removal from the tumour is insufficient, there is growth
followed by auto-toxicity, resulting in a benign tumour. This is found always to
occur in an avascular tumour. A vascular tumour displays sustained growth, and
invades the whole of the normal tissue space. If the tumour is sufficiently small,
there is no growth as the acid perturbations cannot to induce normal cell death.

3.7 Modelling the Role of Cell-Cell Adhesion Using PDEs

Armstrong et al. (2006) move away from the interactions between the cancer cells
and the tumour microenvironment, and turn their attention to the interactions
between the cancer cells themselves. Accordingly, they develop a macroscopic
model of cell-cell adhesion by considering the movement of cells in response to
the adhesive forces generated through transcellular binding proteins.

Namely, for u(t, x), v(t, x), t ≥ 0 and x ∈ R denoting the population densities
of two cell types, the model reads:

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪
⎩

∂

∂t
u =

∂2

∂x2
u −

∂

∂x
(uKu

(u, v))

∂

∂t
v =

∂2

∂x2
v −
∂

∂x
(vKv

(u, v))

(21)
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where the adhesion terms Ku, Kv encompass both self- and cross-population
adhesion for the u and v cell family respectively, and read:

Ku
(u, v) = Su

∫ 1

−1

guu (u(x + x0), v(x + x0))ω
uu
(x0)dx0

+ C
∫ 1

−1

guv (u(x + x0), v(x + x0))ω
uu
(x0)dx0

Kv
(u, v) = Sv

∫ 1

−1

gvv (u(x + x0), v(x + x0))ω
vv
(x0)dx0

+ C
∫ 1

−1

gvu (u(x + x0), v(x + x0))ω
uv
(x0)dx0

Here Su, Sv and C represent the self-adhesive strength of the populations u and
v, and the cross-adhesive strength between the populations, respectively. Differ-
ences in cell geometry can be modelled through the specific choices of Su, Sv and
C as well as of guu, guv, gvv and ωuu, ωuv, ωvv.

The authors employ both analytical and numerical techniques to demonstrate
the that (21) can predict the aggregation behaviour of a disassociated adhesive
cell populations and can replicate the different types of cell sorting behaviour
that is observed experimentally. The authors argue that the resulting aggrega-
tion and pattern formation phenomena is a direct consequence of the relative
strengths of self-population and cross-population adhesive bonds in the model.

Further on the modelling of cell-cell and cell-matrix interactions, Gerisch and
Chaplain (2008) explore the spatio-temporal evolution of cancer invasion by cell-
cell adhesion and haptotaxis by accounting for local and non-local contributions
in the cell-cell adhesion tensor.

For a single family of cancer cells, the model the authors propose reads as

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪
⎩

∂c
∂t

= ∇ ·

(
D1∇c − cA

{

u(t, ·)
})

+ μ1c (1 − c − v)

∂v

∂t
= −γmv + μ2 (1 − c − v)

∂m
∂t

= ∇ · (D3∇m) + αc − λm

(22)

where the non-local cell-cell adhesion term A

{

u(t, ·)
}

is defined for x ∈ R, as:

A

{

u(t, ·)
}

(x) =
1
R

∫ R

0

1∑

k=0

η(k) · Ω(r)g(u(t, x + rη(k))))dr

where η(k) = (−1)k , k = 0, 1. In a two dimensional extension, x ∈ R
2 the authors

define the non-local cell-cell adhesion term to be

A

{

u(t, ·)
}

(x) =
1
R

∫ R

0

r
∫ 2π

0

η(θ) · Ω(r)g(u(t, x + rη(θ))))dθdr
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where η(θ) = (cos θ, sin θ)T is the unit outer normal vector corresponding to the
angle θ.

Furthermore Domschke et al. (2014) extend (22) to a two-cancer-cell species
non-local as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

∂c1
∂t

= ∇ ·

(
D1,1∇c1 − c1A1

{

t, x, u(t, ·)
})

+ μ1,1c1 (1 − ρ(u)) + M1,1(t, u)c1

∂c2
∂t

= ∇ ·

(
D1,2∇c2 − c2A2

{

t, x, u(t, ·)
})

+ μ1,2c2 (1 − ρ(u)) + M2,1(t, u)c1

∂v

∂t
= −γmv + μ2 (1 − ρ(u))+

∂m
∂t

= ∇ · (D3∇m) + α1c1 + α2c2 − λm

(23)

Another extension that the model (23) introduces to (22) is the possibility for
a change of adhesion properties during the growth of the caner; this is achieved
through time-dependent cell-cell and cell-matrix adhesion functions.

Numerical experiments of both (22) and (23) demonstrate a range of hetero-
geneous dynamics which are qualitatively similar to the invasive growth patterns
observed experimentally in a number of different types of cancer, such as tumour
infiltrative growth patterns (INF).

3.8 Multiscale Moving Boundary Models of Cancer Invasion

Amalgamating the previous ideas of mutliscale interactions between the cancer
cells and their microenvironment, Trucu et al. (2013), Peng et al. (2017), Shuttle-
worth and Trucu (2019a, 2019b, 2019c) formulate in a series of papers a moving
boundary two-scale model for cancer invasion of the tissue. Their approach com-
bines the macroscopic dynamics of the distributions of cancer cells and of the
surrounding ECM, and microscopic scale dynamics of the MDEs, produced by
the individual cancer cells. These microscopic scale dynamics are assumed to
take place at the interface of the cancer cells and the ECM and give rise to a
moving boundary at the macroscopic scale.

To be more specific, Peng et al. (2017) consider the macroscopic urokinase
model (19), which was earlier introduced by Chaplain and Lolas (2005). In its
original derivation, the macroscopic equation for the urokinase u reads as

∂u
∂t

= Du
∂2u
∂x2

− φ31pu − φ33cu + a31c.

The approach of the authors amounts to reconsidering the u-equation in, what
they call “microscopic regime”, as follows:

∂u
∂τ

= Du
∂2u
∂x2

− φ31pu + (−φ33u + a31) f
εY
1 (y, τ)

where the “source” f εY1 of the urokinase is given in terms of the cancer cell
concentration c by:

f εY1 (y, τ) =
1

λ (B(y, γ) ∩Ω(t0))

∫

B(y,γ)∩Ω(t0)
c(x, t0 + τ)dx
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where λ is the usual Lebesgue measure and γ represents the maximal thickness of
the outer proliferating rim, and Ω(t0) the physical space occupied by the tumour.

The proposed modelling framework allows the authors to study the changes
in the macroscopic scale morphology of the tumour caused by the dynamical
urokinase processes occurring in the microscopic scale along the invasive edge of
the tumour.

3.9 A Framework for Modelling the Metastatic Spread of Cancer

Even more recently, the hybrid cancer and tissue modelling led Franssen et
al. (2019) to study the metastatic process, and to present a mathematical
modelling framework that captures the interconnected processes of invasion
and metastatic spread of individual cancer cells in a spatially explicit man-
ner a multigrid, hybrid, individual-based approach. This framework accounts
for the spatiotemporal evolution of mesenchymal- and epithelial-like cancer
cells, membrane-type-1 matrix metalloproteinase (MT1-MMP) and the diffusible
matrix metalloproteinase-2 (MMP-2), and for their interactions with the ECM.

The authors consider a modelling and computational representation of an
organism comprised of a number of compartments, each one representing a sep-
arate organ. One of the organs is designated as the primary spatial domain—
where the initial tumour is located—and assign locations within it to function
as entry points into the vasculature. Similarly they impose a spatial map of exit
locations from the vasculature to secondary locations organs. This allows can-
cer cells to use the vasculature and travel from the primary tumour site to the
metastatic sites.

Within every organ the authors consider the following dimensional cancer
growth/invasion model:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

∂cE
∂t

= dE∇
2cE − φE∇ · (cE∇w)

∂cM
∂t

= dM∇
2cM − φM∇ · (cM∇w)

∂m
∂t

= dm∇
2m + θcM − λm

∂w

∂t
= − (γ1cM + γ2m)w

(24)

where cE (t, x, y), cm(t, x, y) represent the two-dimensional densities of the
epithelial-like and mesenchymal-like cancer cells respectively. The MMP-2 con-
centration is represented by m(t, x, y), and the density of the ECM by m(t, x, y).
The diffusion of the epithelial-, mesenchymal-like cancer cells and the diffusible
MMPs is assumed ot be linear with diffusivities dE , dM and dm respectively. φE
and φM are the haptotaxis sensitivities of the epithelial- and mesenchymal-like
cancer cells respectively. Finally θm, λm and γ1, γ2 are the production and decay
rates of the MMPs, the degradation rates of the ECM.

With a series of numerical experiments, the authors were able to reproduce
a number qualitative observations/phenomena and quantitative measurements



168 N. Sfakianakis and M. A. J. Chaplain

made in in vivo experimental settings in human oral squamous carcinoma cells
invasion in myoma tissue.

In a follow up work, Franssen and Chaplain (2020) propose an extension of
(24), where besides the multiorgan and metastatic conformation of the two phe-
notypic states of epithelial- and mesenchymal-like cancer cells, they also consider
a partial-EMT phenotype. They allow for the switching between these pheno-
typic states via EMT (locally) and MET (in the metastatic site) and account for
the likelihood of spread of cancer cells to the various secondary sites. They also
consider the maladaptation of metastasized cancer cells at the secondary sites
and the effect of the immune response by accounting for cancer cell dormancy
and death. They achieve this by considering a discrete-continuous approach along
the lines proposed by Anderson et al. (2000) and presented here in (14).

3.10 A Novel Hybrid Continuum-Discrete Multiscale Model of
Invasion

We close this review with most recent and genuinely hybrid modelling of cancer
invasion. Sfakianakis et al. (2020) propose a modelling framework to study the
combined invasion of the ECM by two types of cancer cells, the epithelial- and
the mesenchymal-like cancer cells. The proposed framework is a genuinely hybrid
multiscale model that treats the epithelial-like cancer cells in a macroscopic and
deterministic fashion and the mesenchymal-like cancer cells in an atomistic and
stochastic way.

This modelling framework is a coupled system of macroscopic deterministic
PDEs and Stochastic Differential Equations (SDEs) for the migration of the
individual mesenchymal-like cancer cells.

The macroscopic sub-model—for the time evolution of the macroscopic quan-
tities, such as the ECM, MMPs, and the densities of the epithelial-like cancer
cells—reads as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

∂

∂t
cα(x, t) =DαΔc

α
(x, t) − μEMT

α (x, t)cα(x, t) + μMET
β (x, t)cβ(x, t)

+ ραc c
α
(x, t)

(

1 − cα(x, t) − cβ(x, t) − v(x, t)
)

,

∂

∂t
m(x, t) =DmΔm(x, t) + ρ

α
mc

α
(x, t) + ρβmc

β
(x, t) − λmm(x, t)

∂

∂t
v(x, t) = −

(

λαv c
α
(x, t) + λβv c

β
(x, t)

)

m(x, t)v(x, t),

(25)

where μEMT
α (x, t) = μαXE(t)(x), μMET

β (x, t) = μβXM(t)(x), with E(t),M(t) ⊂ Ω, and

Dα, μα, μβ, ρ
α
c ≥ 0, and Dm, ρ

α
m, ρ

β
m, λm ≥ 0 constants. Alternative approaches

could also be considered, e.g. an ECM-density dependent production of the
MMPs by the cancer cells, and λαv , λ

β
v ≥ 0 constants. Possible extensions of the

model could include non-diffusible MMPs, MC-only matrix degradation, matrix
reconstruction, and other biologically relevant processes.
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The stochastic submodel—responsible for the migration of the individual
mesenchymal-like cancer cells—reads:

dXp
t = μ

(
X

p
t , t

)
dt + σ

(
X

p
t , t

)
dWp

t , for p ∈ P, (26)

where X
p
t represents the position vector of the mesenchymal-cell with index

p ∈ {1, . . . , N(t)}, Wp
t is a Wiener process with independent components, μ and

σ2 are the drift and diffusion coefficients that encode the modelling assumptions
made on the directed and random parts of the motion of the mesenchymal-cells.

The coupling between the macroscopic and stochastic submodels (25) and
(26) is happening via phase transition operators that connect the isolated cellular
description with the density formulation:

{

(xp(t),mp), p = 1, . . . , N(t)
}

� c(x, t)

mp(t) =
∫

Mp

c(x, t)dx, xp(t) = the (bary-)centre of Mp

This approach allows them to reproduce, in a very natural way, fundamental
qualitative features, of the current biomedical understanding of cancer invasion,
that are not easily captured by classical modelling approaches, for example,
the invasion of the ECM by self-generated gradients and the formation of EC
invasion islands outside of the main body of the tumour.

With the atomistic stochastic sub-model, they reproduce a sustainable inva-
sion of the ECM by means of a self-induced haptotaxis gradient ; this verifies the
experimentally invasion behaviour and at the same time it serves as verification
of the propagating invasion front seen in numerical simulations of macroscopic
deterministic cancer invasion models.

With the full model, they reproduce the spread of the tumour and the inva-
sion of the ECM in the form of invasion “islands”. These are well known to
appear in many cases of cancer, outside the main body of the tumour, and are
quite difficult to reproduce by either macroscopic or atomistic cancer invasion
models. With this approach these invasion “islands” are a naturally emerging
property of modelling framework, which has very recently been used to model
oral squamous cell carcinoma cell migration and invasion in an in vitro organ-
otypic invasion assay experiment (Franssen et al. 2021).

4 Discussion and Conclusion

In a prescient statement from 50 years ago, Judah Folkman (the “father” of
tumour-induced angiogenesis and angiogenesis research) stated that the inter-
actions between tumour cells and endothelial cells “...may constitute a highly
integrated ecosystem. In this ecosystem the mitotic index of the two cell popula-
tions may depend on each other.” (Folkman 1971). This viewpoint was echoed
in the 2011 paper of Hanahan and Weinberg, where they note: “When viewed
from this perspective, the biology of a tumor can only be understood by studying
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the individual specialized cell types within it as well as the “tumor microenvi-
ronment” that they construct during the course of multistep tumorigenesis. This
depiction contrasts starkly with the earlier, reductionist view of a tumor as noth-
ing more than a collection of relatively homogeneous cancer cells, whose entire
biology could be understood by elucidating the cell-autonomous properties of these
cells.” (Hanahan and Weinberg 2011).

The first paper discussed in this review (Gatenby 1995) considered the inter-
actions of cancer cells with the host tissue precisely from this “ecological” per-
spective. The subsequent papers reviewed here also take a “holistic approach” to
the problem, focussing on the complex dynamic interactions between the (solid)
tumour and the tumour microenvironment (between the cancer cells and nor-
mal cells of the host tissue). The results of these mathematical modelling efforts
(both analytical and computational) have helped to elucidate some of the details
of the interplay between cancer cells and normal tissue during invasion across a
range of spatial and temporal scales. Insight into how better treatment protocols
could be developed have arisen from the results of several models e.g. changing
the level of acidity within the tumour or interrupting the hypoxia-glycolysis-
acidosis cycle (Smallbone et al. 2005, 2007, 2008), estimating the amount of
healthy tissue to resect during breast cancer surgery (Anderson et al. 2000),
estimating the depth of invasion and its relation to cell adhesion (Turner and
Sherratt 2002), and estimating the depth of spread of gliomas into brain tissue
(Swanson et al. 2000, 2003; Swanson 2008). Moreover, the complexity of cancer
invasion has necessitated the development of new modelling approaches result-
ing in advances on the mathematical side over and above the biological insight
provided.

While a lot of the insight from the modelling has been qualitative in nature,
the recent work of Franssen et al. (2021), focussing on modelling cell invasion in
a 3D organotypic assay with a novel hybrid continuum-discrete model, indicates
a possible way to combine and include real data from in vitro experiments,
parameterise the model accurately and robustly, calibrate the model and then
use the model to make further predictions on the in vitro system, while opening
up possible avenues to make use of this as a platform to simulate in vivo invasion
in a predictive and quantitative manner cf. Brady and Enderling (2019).
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Abstract. The role of matrix metalloproteinases-8 (MMP-8) in the can-
cer progression is quite complex, with contradictory indications as to
whether it suppresses or assists the local growth of cancer. In addi-
tion, while other types of MMPs appear in either soluble or (cancer cell)
membrane-bound form MMP-8 seems to appear in both. We take the first
step in unravelling this dual nature of MMP-8 by shedding some mathe-
matical light into its properties. To this end, we develop a mathematical
model to investigate the impact of both soluble and membrane-bound
MMPs in the early stages of local invasion of cancer cells. We propose an
extension to a previously developed three-dimensional, hybrid atomistic-
collective, cancer invasion model that allows the description of individual
cancer cells along side with macroscopic tissue representations, and for
the natural transition between these phases. We further assume that
the soluble MMPs are produced by polymorphonuclear neutrophils, that
pre-exist in the environment, and that they get activated by the cancer
cells. The membrane-bound MMPs are expressed on the membrane of the
cancer cells and along with the soluble MMPs, participate in the degra-
dation of the extracellular matrix and, in effect, directly influence the
migration of the cancer cells in what is understood to be a self-generated
haptotaxis invasion strategy. With a series of numerical experiments and
simulations we investigate the potential of the model in producing var-
ious invasion patterns, some resembling, qualitatively, to experimental
invasion assays.

Keywords: Cancer invasion · Metalloproteinases · Polymorphonuclear
neutrophils · Mathematical models · Partial differential equations ·
Stochastic differential equations · Genuinely hybrid models

1 Introduction

Cancer cells are different from normal cells, in that, among others, they develop
capabilities that allow them to escape the body of tumour and migrate in the
healthy tissue. This process, i.e. the local tissue invasion has been identified

c© Springer Nature Singapore Pte Ltd. 2021
T. Suzuki et al. (Eds.): MMDS 2020, PROMS 370, pp. 173–192, 2021.
https://doi.org/10.1007/978-981-16-4866-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-4866-3_11&domain=pdf
https://doi.org/10.1007/978-981-16-4866-3_11


174 A. Wilson et al.

as one of the hallmarks of cancer, (Hanahan and Weinberg 2000, 2011). It is
understood that the invasion of the local tissue is a key process in more than
90% of cancer related deaths, (Sporn 1996).

Cancer types may be grouped in a number of ways, one of which is with
respect to the organ from which they originate. Using such categorisation, the
most prevalent types of cancer are carcinomas. As the malignancy of a carci-
noma increases, a set of typical progressions are commonly seen. We refer here
to but a few, a loss of cell-to-cell adhesion is caused by lower levels of cad-
herin, and various additional proteins, which affect the cell-to-matrix adhesion
(Hanahan and Weinberg 2011). This matrix is understood to be the extracellu-
lar matrix (ECM), a collection of macromolecules which provide structure and
integrity to the tissues and organs. The ECM can be “invaded” by cancer cells
in a proteolytic or non-proteolytic fashion. Protease-dependent invasion utilises
matrix metalloproteinases (MMPs) as well as a cathespins and serine proteases,
to degrade the ECM, and to create a preferential environment for the progression
of cancer (Wolf and Friedl 2011).

MMPs are the key enzyme in the degradation of the ECM, (Itoh and Nagase
2002). There have currently been identified 23 different types of MMPs and which
are usually categorised into collagenases, gelatinases, stromelysins, matrilysins,
membrane-type (MT-MMPs), and others depending on their structural domains,
(Wang and Khali 2018). Although traditionally MMPs were thought to aid the
progression, and in particular the invasion, of cancer there are certain cases where
it has been shown that MMP-8 and MMP-11 are oncosuppressive, (Noël et al.
2012). More specifically, in humans MMP-8 is oncosuppressive in the breast and
skin tissues, (Gutierrez-Fernanez et al. 2008), however they are a sign of poor
prognosis in ovarian, and gastric cancers, (Juurikka et al. 2019; Van Lint and
Libert 2006).

MMP-8 is a collagenase, originally thought to be produced only by polymor-
phonuclear neutrophils (PMNs). However, although PMNs are the most common
source of MMP-8, it is known that they are produced by fibrolast and plasma
and oral epithelial cells, (Van Lint and Libert 2006). MMP-8 is thought to have
a role in managing inflammation through tissue remodelling and wound healing,
Owen et al. (2004b).

Often MMPs are divided in to membrane bound and soluble (or diffus-
able), however MMP-8 and MMP-9 can be produced in both forms. All MMP-8
expressing cells have the ability to produce the pro-proteinase which allows the
soluble form to be developed, and PMNs or mature white blood cells, can pro-
duce a membrane bound form on their surface, as well as the soluble type (Craig
et al. 2014). The form of MMP-8 that is produced depends on the presence of
a degranulating agonist which activates the pro-MMP-8 and triggers the move-
ment from the granules it was stored in, to the plasma membrane. Both forms
of MMP-8 are similar, but with a key difference in how they interact with tis-
sue inhibitors of metalloproteinases (TIMPs). TIMP-1 is able to inhibit soluble
MMP-8 however membrane bound MMP-8 has a greater resistance to it (Wang
et al. 2019).
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MMP-8 is predominantly produced by neutrophils (Sirniö et al. 2018). More
generally, leukocytes are a type of blood cell, of which PMN-leukocytes or neu-
trophils (also referred to as white blood cells), are the most common type
(Di Carlo et al. 2001). Neutrophils are produced in the bone marrow and the
extramedullary tissues, by common myeloid progentors (CMP) (Hidalgo et al.
2019). The neutrophil life cycle has multiple stages, but of interest to us are
mature neutrophils which are capable of producing MMP-8. There are large dis-
crepancies in the estimates for the half life of neutrophils with estimates varying
between 6 h and 5 days. The number of neutrophils produced per kg is of the
order of 1 − 2 × 109, or 3 − 6 × 109 per litre of blood Borregaard (2016). The
density of neutrophils is ≥1.080 g/ml (Zipursky et al. 1976).

The Metalloproteinases and the Progression of Cancer

The MMPs are fundamental in key alterations that take place in the tumour
microenvironment during the progression of cancer. These alterations involve,
among others, the degradation of the adjacent tissue and the components of the
basal membrane, the secretion of growth factors and the activation of surface
receptors, and more. These interactions with the ECM have an impact on the
cancer cells’ response to the local tissue, in particular the cancer cells become
less adherent and hence more migratory.

To be more specific, the roles the MMPs can play, during the progression
of the cancer, depend on the stage of tumour progression. In early stages, the
proteolysis of MMP-3 and MMP-7 contributes to cellular proliferation, but later,
the cleavage of E-cadherin activates the motility of the cancer cells facilitating
metastasis (Chabottaux and Noel 2007). In contrast, MMP-8 has a protective
effect as it diminishes the metastatic potential of breast cancer cells (Decock et
al. 2008), but in the case of the overexpression of MMP-2 and -9, which indicates
an unfavourable prognosis as it degrades type 4 collagen, located in the basal
membranes, and induces the expression of angiogenic factors (Gonzalez et al.
2008).

The local invasion of the tumours depends on the degradation of the pro-
teins of the basal membranes, such as type 4 or 5 collagen, and the proteolysis
of type 1, 2, or 3 interstitial collagen present in the connective tissue that sur-
rounds the tumour cells (Rucci et al. 2011). In addition, the MMPs intervene
in angiogenesis, promoting the migration of the endothelial cells, liberating vas-
cular endothelial growth factor (VEGF) and other proangiogenic factors of the
ECM, such as fibroblast growth factors (FGF)-2 and transforming growth factor
(TGF-β), which also favour the proliferation and migration of these cells (Hua et
al. 2011). The transcription of the MMPs is induced by inflammatory cytokines,
such as interleukin IL-1, IL-6, tumor necrosis factor (TNF-α), and growth fac-
tors such as epidermal growth factor (EGF), hepatyocyte growth factor (HGF),
and TGF-β, giving them a preponderant role in the chronic inflammation which
is present in the tumour microenvironment. Other factors, such as TGF-α and
IL-4 inhibit their expression, and can be considered as therapeutic targets for
cancer, (Kessenbrock et al. 2010).
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It is hence understood that the role of MMP-8 in the progression of cancer
is quite complex. So, our aim in this paper is to shed some mathematical light
into these complex dynamics by formulating and discussing a first mathematical
model that considers both soluble and membrane-bound MMPs, (Wang et al.
2019; Owen et al. 2004a).

2 Model Description

The model we formulate a three-dimensional, hybrid atomistic-continuum model
that accounts for the MMP-assisted degradation of the ECM and invasion
strategy of the cancer cells. The present model is based upon the previous
works by Sfakianakis et al. (2020), Franssen et al. (2021) where a two- and
three-dimensional hybrid atomistic-continuum invasion strategy of the ECM
was developed. in the atomistic/individual-cell scale the dynamics were dic-
tated by a system of stochastic differential equations (SDE)s, whereas the collec-
tive/macroscopic scale dynamics are governed by one or more partial differential
equations (PDEs).

The novelty of the current model is to contribute to these previous works by
primarily accounting for the compound degradation of the ECM by both types
of MMPs, soluble and membrane-bound. A further addition to the model is the
inclusion PMNs—throughout the tissue—as the source of soluble MMPs. This
adds to the level of detail and biological realism.

The hybrid nature of the our model incorporates simultaneously multiple
biological scales, i.e. the continuum macroscopic scale, where a density descrip-
tion is more appropriate, and the microscopic scale of discrete cells, where an
individual description and a stochastic approach is better fitted. For the number
of cancer cells which we consider in the present paper, which is in the order of
102 cells, a density description is not appropriate. We assume hence that these
cells can be described by a SDE, and furthermore, as was previously done by
Sfakianakis et al. (2020), Franssen et al. (2021), the cancer cells are able to
interact with the density components of the model—namely, the ECM, the sol-
uble and membrane-bound MMPs and the PMNs—through a phase transition
process which is described in some detail in Appendix 5.1.

In effect, the cancer invasion model we formulate is comprised of two parts:
a density- and an individual-based submodel.

Density-Based Submodel

We consider Ω ⊂ R
3 to be a Lipschitz domain and denote by c(x, t), mb(x, t),

ms(x, t), n(x, t), and w(x, t), with x ∈ Ω and t ≥ 0, the corresponding den-
sities of the cancer cells (whenever the density description of the cancer cells
is appropriate), the membrane bound and soluble MMPs, the PMNs, and the
ECM, respectively.
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• The cancer cells are primarily described through their individual-cell formu-
lation. Still, their corresponding density formulation, denoted by c partici-
pates in the evolution of other model components. We deduce their density
description from their individual-cell formulation—using the individual-cell-
to-density transition that is discussed in Appendix 5.1—which reads

c(x, t) =
∑

p∈P(t)

mp(t)
K

XKp(t)(x). (1a)

Here mp(t) is the mass of the cancer cell p ∈ P(t) = {1, . . . , N(t)}, Kp(t) ⊂ Ω
is the physical space it occupies at time t, and K = |Kp(t)| the (assumed
uniform with respect to p) size/volume of the cancer cells. Further details of
this transition are provided in Appendix 5.1.

• The membrane bound MMPs are expressed solely on the membrane of the
cancer cells. We assume, for the sake of simplicity, that the same number of
MMPs is expressed on every cell at any given time. We denote their density
by mb and account for them through the relation

mb(x, t) =
∑

p∈P(t)

aXKp(t)(x) (1b)

where Kp(t) ⊂ Ω the physical space that the cell p ∈ P(t) = {1, . . . , N(t)}
occupies; XKp(t) the corresponding characteristic function; and a represents
the “number” of MMPs on the surface of every cell.

• We assume that the PMNs pre-exist in the tissue, and that, for the sake
of simplicity, they evolve in a time-scale much slower than the experiment
under consideration. This allows to consider them being in a quasi-steady
state; hence we model their evolution by

∂

∂t
n(x, t) = 0 (1c)

• We assume that the soluble MMPs are produced by the PMNs, disperse freely
in the tissue, and undergo molecular decay. We model their time evolution
through

∂

∂t
ms(x, t) = DsΔms(x, t) + rsn(x, t) − dsms(x, t) (1d)

where rs > 0, ds > 0, are the constant production and decay rates respec-
tively, and Ds > 0 their (linear) diffusivity.

• We also assume that the extracellular tissue is well established, healthy, and
stable, hence, its constituents can be considered to be an immovable com-
ponent of the system that neither diffuses nor otherwise translocates; it is
moreover assumed not to be reconstructed in any way. It is only expected
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to be degraded by both the soluble and the membrane-bound MMPs. These
assumptions are encoded in the equation:

∂

∂t
w(x, t) = −

⎛
⎜⎜⎜⎜⎜⎝

λs ms(x, t)
∑

p∈P(t)

XKp(t)(x)

︸ ︷︷ ︸
soluble MMPs/cancer cells complex

+λb mb(x, t)︸ ︷︷ ︸
membrane bound MMPs

⎞
⎟⎟⎟⎟⎟⎠

w(x, t)

= −
⎛
⎝λsms(x, t)

∑
p∈P(t)

XKp(t)(x) + λba
∑

p∈P(t)

XKp(t)(x)

⎞
⎠ w(x, t)

= − (λsms(x, t) + λd)
∑

p∈P(t)

XKp(t)(x)w(x, t) (1e)

where λs, λb > 0 and λd = λb a is the effective degradation rate of the ECM
by the membrane bound MMPs.

The density sub-model is augmented with initial conditions, the construction of
which is discussed in Sect. 3 and in Appendix 6.

Individual-Cell-Based Submodel

The cancer cells are modelled as a collection of individual cells that migrate
through the tissue by performing a biased random motion. The biased part of
their motion is due to their haptotactic response of the cells’ migratory mecha-
nism to gradients of ECM-bound chemoattractants and cellular adhesion sites,
while the random part of the motion is understood as a manifestation of the
cells’ tendency to investigate its surrounding; the latter is modelled as a Brow-
nian motion. We don’t consider here any direct interaction between the cancer
cells or between the cancer cells and the surrounding tissue.

We model these properties following the previous works (Sfakianakis et al.
2020; Franssen et al. 2021), where we also refer for more detail. At any given
time t ≥ 0, we consider a system of N(t) ∈ N cancer cells, for which we account
their positions and masses i.e.

{
(xp(t),mp(t)) ∈ Ω × [0,∞)

}
, p ∈ P = {1, . . . , N(t)} . (2)

Their migration is modelled by a system of SDEs and accounts for the biased
and the random part of the motion of the cancer cells, namely a directed motion
component that represents the haptotactic response of the cells to gradients of
ECM-bound adhesion sites, and a random motion that is modelled as a Brownian
motion. Namely,

dXp
t = μ(Xp

t , t)dt + σ(Xp
t , t)dW

p
t , for p ∈ P, (3)
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where Xp
t represents the position of the individual-cell in the tissue Ω ⊂ R

3, and
Wp

t is a Wiener process. The drift term μ encodes the directed (or biased) part
of the motion, whereas the diffusion term σ encodes its random component. We
refer to (Sfakianakis et al. 2020, Franssen et al. 2021) for a thorough discussion
on the formulation of the μ and σ.

The individual cancer cells serve as carriers of the membrane bound MMPs
(1b) and participate in the degradation of the ECM through the activation of
the soluble MMPs (1e). Yet, the their migration equation (3) does not include
any of these interactions. Instead, these are accounted for in the following way:
at any given time t the cancer cells are transformed to a density profile via the
individual-cell-to-density operator and participate in the dynamics of the system
(1b)–(1e). The converse is also possible, this density profile of the cancer cells
c is transformed into individual cells via the individual-cell-to-density operator.
We refer to Appendix 5.3 and to (Sfakianakis et al. 2020; Franssen et al. 2021)
for a thorough discussion of the coupling of the two biological phases.

3 Parametrisation, Simulations, and Results

For the numerical treatment of the coupled system of deterministic PDEs (1a)–
(1e) and SDEs (3) we employ an elaborate numerical solver that has been previ-
ously described in Sfakianakis et al. (2020), Franssen et al. (2021) and in Kolbe
et al. (2016), Sfakianakis et al. (2017). We refer to these papers and the refer-
ences therein for more detail. Moreover, we note that all numerical simulations
and visualisations were conducted using MATLAB (2019).

For all experiments, we consider the domain

Ω = [−0.05, 0.05]3 ⊂ R
3

in cm and perform the numerical simulations for the time period t ∈ [0, 6] days.
In this series of experiments we consider N = 400 individual cancer cells,

of the same mass mp, for p = 1, . . . , N , initially placed (with some random
perturbations) close to the centre of the domain, Ω, cf. Fig. 1. As no cell-mitosis,
or other cell-number or cell-mass altering processes are assumed, we expect that
their number and mass will not change with time, i.e. for all t ≥ 0, N(t) = N
and mp(t) = mp, p = 1, . . . , N , see also (2) and the parameter Table 1.

On the membrane of the cancer cells we consider an amount a of membrane-
bound MMPs, this is assumed to be the same for all N cancer cells and not to
change with time, see also (1b). This is directly involved in the degradation of
the ECM, cf. (1e) and the parameter Table 1.
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Table 1. Basis parameter set, used in all experiments unless otherwise indicated.

Description Value Range Reference

s Maximum cancer

cell speed

2.16 cm d−1 1.83 × 10−5–3.83 × 10−5 cm s−1 Butler et al. (2010)

m
ref

Cancer cell

reference mass

2.3 × 10−9 g cell−1 2.3 × 10−9–3.3 × 10−9 g cell−1 Park et al. (2008)

|V0| Cancer reference

volume

2.3 × 10−9 cm3 2.2 × 10−9–5.2 × 10−9 cm3 Puck et al. (1956)

wmax Maximum (initial)

ECM density

1.06 g cm−3 1.02–1.05 g cm−3 ICRP (2009)

nmax Maximum (initial)

PMN density

1.08 g cm−3 0.9–1.10 g cm−3 ICRP (2009)

σ Cancer cell

diffusion coefficient

0.1 cm d−1/2 Our choice

μ Cancer cell drift

coefficient

0.1 cm2 d−1 Our choice

λs Soluble MMP 1 × 10−2 M cm−3 d−1 Our choice

ECM degradation

rate

λd Membrane-bound

MMP

1 × 10−2 M cm−3 d−1 Our choice

ECM degradation

rate

as Initial soluble

MMP ratio

9 × 10−2 Our choice

Ds Soluble-MMP diff 1 × 10−4 cm d−1/2 Our choice

rs Soluble-MMP prod 5 M d−1 Our choice

ds Soluble-MMP

decay

4.5 × 10−1 M d−1 Our choice

The ECM, denoted by w in (1e), is represented by a three-dimensional land-
scape that is initially randomly structured with values, in compliance to ICRP
(2009), within a biologically relevant range, cf. Table 1. We assume that the ECM
predates the experiments of cancer invasion considered here. Although randomly
constructed, we use the same ECM in all our numerical investigations, unless
otherwise stated, as we want to produce results that are directly comparable.

Similarly, the PMNs, denoted by n in (1c), are represented by a three-
dimensional concentration that is also initially randomly distributed, in compli-
ance with Zipursky et al. (1976), within a biologically relevant range, cf. Table 1.
As with the ECM, we also consider that the PMNs predate the invasion experi-
ments considered here. The PMN concentration is randomly produced, still, for
the sake of comparison between the numerical experiments, we employ the same
PMN in all our investigations.

The construction of the initial PMN and ECM concentrations is quite elabo-
rate and we refer to Appendix 6 and the previous works (Sfakianakis et al. 2020;
Franssen et al. 2021) for a detailed discussion.

The soluble-MMPs, denoted by ms in (1d) and (1e), are understood to be
a product of the PMNs, independently of the action of the cancer cells. Since
the PMNs predate the invasion experiments considered here, so do the soluble-
MMPs. For the sake of simplicity, we assume that their initial concentration is
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given as a fraction of the initial PMN concentration, i.e.

ms(x, 0) = asn(x, 0), x ∈ Ω (4)

where as > 0 is a constant, cf. Table 1.

Fig. 1. Experiment 1—No ECM degradation: Showing here is the time evolution of
the N = 400 cancer cells within the domain Ω along with the ECM (grey background)
plotted at the three main planes x = 0, y = 0, z = 0. Due to the lack of matrix
degradation, the cancer cells do not migrate away from their initial placement, they
rather converge to a location of local maximum of ECM density around which they
then perform small oscillations. It is clear that in with this parameter set, haptotaxis
dominates over the random migration.

Throughout this work, we do not allow the individual cancer cells to leave
the domain Ω. Instead, every time a cancer cell escapes, it is returned to its last
known position within Ω and is allowed to resume its biased random motion
according to (3). Accordingly, we do not impose any boundary conditions on the
membrane-bound MMPs as the “inherit” those from the individual cancer cells.
Also, no boundary conditions are needed for the PMNs and the ECM as they
are assumed to be immovable components of the system. Finally, we consider
zero Neumann boundary conditions for the soluble-MMPs.

The parameters we employ are extracted from the relevant biomedical lit-
erature, although the aim of this paper is not to reproduce realistic biological
scenarios. These are summarised in Table 1 together with the corresponding lit-
erature sources.
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Experiment 1—No ECM Degradation

This first experiment experiment serves primarily as a benchmark for the ones
that follow. We completely knockout the ability of the cancer cells to degrade the
ECM, neither from membrane-bound nor from soluble MMPs. This is achieved
by setting the ECM degradation parameters λs = λd = 0 in parameter set
Table 1. As a result, see Fig. 1, the cancer cells do not migrate and rather con-
verge to a position of local maximum of the ECM around which they then per-
form oscillatory motions of small magnitude. With this experiment it becomes
clear that, in this parameter set the haptotaxis dominates over the random cell
migration.

Fig. 2. Experiment 2—Membrane-bound MMP only ECM degradation: As in Fig. 1,
showing here is the time evolution of the N = 400 cancer cells within the domain
Ω along with the ECM (grey background). This time though, the membrane-bound
MMP mediated ECM degradation is responsible for the self-sustained migration of the
cancer cells that we witness. We can also see a collective invasion behaviour unfolding
despite the fact that there is no cell-cell adhesion or other form of “communication”
between the cancer cells.

Experiment 2—Membrane-Bound MMP only ECM Degradation

In this experiment we knockout the ability of cancer cells to activate the soluble-
MMPs, and, as a result, the ECM is degraded exclusively by the membrane-
bound MMPs. This is achieved by setting the soluble-MMP ECM degradation
parameter λs = 0 in parameter Table 1. As a result, and when comparing with
the previous Experiment 1, the cancer cells migrate further as they degrade the
ECM at their current location and, subsequently, respond in haptotaxis way to
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the newly formed ECM gradients. This style of cell migration is often charac-
terised/termed as self-generated haptotaxis strategy, see Fig. 2, a phenomenon
that is expected in the cancer invasion of the tissue. It is furthermore so that the
migration of the cancer cells follow a direction that is dictated by the “original”
gradients of the ECM (cf. Experiment 5), and by some few “leading” cells.

Fig. 3. Experiment 3—Soluble MMP only ECM degradation: Comparing these sim-
ulation results with the membrane-bound MMP only ECM degradation in Fig. 2 it
becomes apparent the current migration strategy is less efficient; still it is not negligi-
ble, as can be seen when compared with the no-degradation case in Fig. 1.

Experiment 3—Soluble MMP only ECM Degradation

In this experiment we knockout the ability of the cancer cells to degrade the
matrix using their membrane-bound MMPs; this comes in contrast to the Exper-
iment 2; and as a result the ECM is degraded exclusively by the action of the acti-
vated soluble MMP-mediated ECM. This is achieved by setting the membrane-
bound MMP ECM degradation parameter λd = 0 in parameter Table 1. As it
is expected that lower rather than higher concentrations of soluble MMPs are
present in the environment we accordingly set the initial MMP concentrations
to a moderate value, relative to the PMNs. This is achieved by setting the ini-
tial soluble MMP ratio as = 0.09. It becomes clear with this experiment, see
Fig. 3, that the cancer cells migrate further than they do in the case of no ECM
degradation, i.e. with Experiment 1 and Fig. 1, but still remain much closer to
their initial location than they do in the case of membrane-bound MMPs, cf.
Experiment 2 and Fig. 2.
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Fig. 4. Experiment 4—Both MMP Types ECM Degradation: When both types of
MMPs participate in the degradation of the ECM, it becomes apparent that the effect
of the membrane-bound MMP ECM degradation on the migration strategy of the
cancer cells, dominates over contribution of the the soluble MMPs. The direction of
the (again collective migration) is dictated by the original gradient of the ECM, and
it is enhanced to a sustained invasion by both types of MMP. The soluble-MMPs have
a slight, but still visible, impact in widening the spread of the cancer cell migration.

Experiment 4—Both MMP Types ECM Degradation I

In this experiment, we allow for ECM degradation by both types of MMPs
with degradation parameters as reported in Table 1. The overall effect resembles
more the membrane-bound only migration pattern as in Experiment 2 and Fig. 2
rather than the soluble only MMP migration of Experiment 3 and Fig. 3. It can
be seen that the average direction of the cancer cell migration is similar to
the membrane-bound case Fig. 2, since this is primarily influenced by the pre-
existing gradients on the ECM—enhanced of course by the degrading action of
the MMPs. A more careful investigation indicates that the leading cells play
a relatively less prominent role in the invasion; this can be seen by the wider
spread of the (still collective and directed) cancer cell migration through the
tissue.

Experiment 5—Both MMP Types ECM Degradation II

This is a similar experiment to the previous one, i.e. Experiment 4, except for
the fact that we employ a different (but still randomly produced in the same
fashion) initial concentration of the ECM. As can be seen in Fig. 5, and compared
with Fig. 4, the cancer cells perform again a collective migration indicating that
this particular migration strategy is qualitatively robust and independent of the
ECM.
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Fig. 5. Experiment 5—Both MMP types ECM degradation II: Although the ECM is
different here than in Experiment 4, the are qualitatively similar, cf. Fig. 4. This is a
strong indicates that the particular migration strategy, along with the chosen parameter
values, is quite robust and independent of the ECM.

Experiment 6—Cluster Migration Pattern

In this last experiment we investigate the effect that the magnitude of the adhe-
sion and diffusion coefficients. This experiment is understood to be the first step
in a new direction of study, where realistic parameter values are estimated based
on experimental data. Still, we include it in the current paper as it provides a
useful insight on the wealth of invasion patterns that our modelling approach
can produce. In more detail, we decrease the values of the two cancer cell migra-
tion parameters σ and μ to half their previous value reported in Table 1, namely
we set σ = 5 × 10−2 and μ = 5 × 10−2. We notice that this reduction of the
“aggressiveness” in the migration of the cancer cells leads to a larger spread of
the cancer cells. Still they form small clusters, of few cancer cells each, that move
in a coherent way; these clusters “flock” together in what seems to be a uniform
direction. This is a very interesting invasion pattern that resembles, qualita-
tively, to observation made in in vitro invasion assays, see e.g. (Nurmenniemi et
al. 2009).

4 Discussion

It was understood in the past that MMPs assist in cancer invasion, still, it has
been shown recently that in certain animals, humans among those, MMP-8 is
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Fig. 6. Experiment 6—Cluster migration pattern: Reducing the cancer cell migration
parameters μ and σ to half the values used in the Experiments 4 and 5, we notice a
widening of the spread of the cancer cells, the formation of small clusters, of a few
cancer cells each, and a “flocking” of those clusters. This last remark will certainly
spawn a new study, as it resembles with experimental observations in invasion assays.

oncosuppressive in breast and skin tissues, whereas it is a sign of poor prog-
nosis in ovarian, and gastric cancers, (Gutierrez-Fernanez et al. 2008; Juurikka
et al. 2019; Van Lint and Libert 2006). Most, out of the 23 known types of
MMPs, can be classified either as membrane-bound or soluble, however MMP-8
can be produced in both forms. MMP-8 expressing cells have the ability to pro-
duce the pro-proteinase which allows the soluble form to be developed. PMNs
in particular—that are the most common source of MMP-8—can produce a
membrane-bound form on their surface, as well as the soluble type, (Van Lint
and Libert 2006; Craig et al. 2014).

Our objective in the current paper was to take the first step to mathemati-
cally unravel this complex role of MMP-8 in cancer. With this in mind we have
investigated aspects of the dynamical behaviour of soluble and membrane-bound
MMPs in the degradation of the ECM.

We have based our model derivation on previous works, (Sfakianakis et al.
2020; Franssen et al. 2021), These PDEs account for the evolution of the ECM,
the PMNs and the soluble MMPs, but they are coupled to the individual cell
scale via specialised phase transition operators, cf. Appendix 5.1. The transi-
tion between the two phases, the individual-cell and collective-continuum phases
takes place in real time and is dynamically exploited.

The novelty that the current model adds to the previous works, (Sfakianakis
et al. 2020, Franssen et al. 2021), lies primarily with the compound degradation
of the ECM by both types of MMPs, soluble and membrane-bound. This is
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encoded in (1e) where we do the modelling approximations of a) the in-situ
activation, by the cancer cells, of the soluble MMPs, and b) the tautochronous
degradation of the ECM by both the activated-soluble and the membrane-bound
MMPs.

With our numerical simulations, we were able to exhibit the potential of this
particular modelling approach and the effect that the two ECM degradation
types have in the migration of the cancer cells and the invasion of the healthy
tissue. In some more detail, although it is not our objective in this paper to do a
specialised parameter estimation, we were still able identify—and comparatively
evaluate—the difference between membrane-bound and soluble MMP degrada-
tion, cf. Figs. 2 and 3. Even more, combining both ECM degradation types MMPs
we were able to verify a consistent invasion strategy of the cancer cells, in the
form of a large collective migration, independent of the initial distribution of
the ECM, cf. Figs. 4 and 5. We should note again, at this point that no cell-cell
adhesion is assumed throughout this work, so this collective behaviour on behalf
of the cancer cells is understood to be an emerging property of their synchronous
action on the ECM. Furthermore, by reducing the migratory “aggressiveness” of
the cancer cells we were able to lead the system to the formation of numerous
small and robust clusters of cancer cells, each one migrating through the tissue
as a coherent unit, cf. Fig. 6. This last experiment is of particular interest as
it reproduces, qualitatively, a known tissue invasion pattern which is not easily
“captured” through mathematical approach.

In closing, we note that this first step in the modelling of the complex ECM
degradation by membrane-bound and soluble MMPs, has clearly indicated the
potential of this particular modelling approach in the mathematical modelling
of the MMP-8 dynamics. It will serve as a building block for follow-up works as
they account for more biochemically realistic scenarios, and, possibly, with the
inclusion of experimental and other measurement data.

Appendix

5 Phase Transition Operators

5.1 Individual-Cell-to-Density Transition Operator

Let
{
(xM

p ,mM
p ), p ∈ P

}
be a collection of individual cells. Using (13) and (14),

we define the individual-cell-to-density operator F as
{
(xM

p ,mM
p ), p ∈ P

} F−→ c(x, t). (5)

To define the function c(x, t), we go through all the cancer cells and consider
their corresponding density formulation according to (12). The support Kp of
every cell overlaps with several of the partition cells Mi, i ∈ I. We assign the
corresponding portion of the cell’s mass to every partition cell Mi:

mM
p

∣∣
Mi

=
mM

p

K

∣∣Kp ∩ Mi

∣∣. (6)
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In a similar fashion, we account for the contribution of all cells p ∈ P to a
partition cell Mi:

ci(t) =
∑

p∈P

1
K

mM
p

∣∣
Mi

(6)
=

∑

p∈P

mM
p (t)
K2

∣∣Kp ∩ Mi

∣∣, for i ∈ I . (7)

In view of equations (12) and (7), we deduce the density function c(x, t) over
the full domain Ω to be

c(x, t) =
∑

i∈I

ci(t)XMi
(x), x ∈ Ω. (8)

5.2 Density-to-Individual-Cell Transition Operator

Given a density function c = c(x, t), we define the density-to-individual-cell
operator B for a general individual cell as

c(x, t) B−→ {(xp(t),mp(t)), p ∈ P} . (9)

We assign one cell with mass

mi(t) =
∫

Mi

c(x, t)dx (10)

and position
xi(t) = the (bary-)centre of Mi (11)

to every cube partition cell Mi, i ∈ I.

5.3 Hybrid Formulation of Cancer Cells

We assume that the domain Ω is sufficiently large and regular to be uniformly
partitioned as Ω =

⋃
i∈I Mi, where every Mi, i ∈ I is a translation of a generic

cube K0 ⊂ R
3, representing the volume occupied by a single biological cell.

This partition allows to represent every scalar (measurable) density function
c : Ω × (0,∞) → R by its simple-function decomposition

∑

i∈I

ci(t)XMi
(x), (12)

where XMi
is the characteristic function of Mi ⊂ Ω, and ci(t) the mean value of

c(·, t) over Mi, i.e.

ci(t) =
1
K

∫

Mi

c(x, t)dx, (13)

where K is the volume of K0 and, effectively, of Mi.
Accordingly, the hybrid description upon which this work is based reads

(xp(t), mp(t)) ←→ mp(t)
K

XKp
(x), p ∈ P, (14)
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where xp(t) and mp(t) represent the time-dependent position and mass of the
individual cell; Kp is the translation of the generic cube K0 with centre xp; and
K = |Kp| = |K0| is the volume of these cubes. Based on (14), the transition
between the two cell phases is conducted by the individual-cell-to-density and
the density-to-individual-cell transition operators.

6 Construction of the Initially Randomly Structured
ECM and PMN

We use the following technique to construct the three-dimensional randomly
structured initial ECM and PMN densities that we use in our simulations. For
the sake of simplicity we describe here the one-dimensional case, over the domain
[0, 1), and refer to Fig. 7 for a graphical representation of the same process in
two-dimensional domains.

At first, a coarse approximation of the ECM or PMN is decided by setting
the number of major “hills” and “valleys” in the density of the matrix. Should
this number be 8 (to coincide with Fig. 7), the first approximation to the ECM
or PMN is set

8∑

i=1

c
(8)
i X

C
(8)
i

(x), x ∈ [0, 1),

where C
(8)
i , with |C(8)

i | = Δx(8) for i = 1, ..., 8, represent the 8 computational
cells of the uniform discretization of [0, 1), and where the coefficients c

(8)
i are

uniformly distributed random numbers within [0, 1). When we globally refine (by
bisection), the domain [0, 1) is discretized by 16 equivalent computational cells
C

(16)
i , i = 1, ..., 16. Accordingly, the ECM or PMN concentration is approximated

by the simple/piecewise constant function

16∑

i=1

c
(16)
i X

C
(16)
i

(x), x ∈ [0, 1).

The new coefficients c
(16)
i interpolate—with the addition of some random noise—

between the previous values, i.e.

c
(16)
i =

(
1 + 0.002

(
r
(16)
i − 0.5

)) c
(8)
�i/2� + c

(8)
�i/2�+1

2
, i = 1 . . . 16,

where 	 · 
 represents the Gauss floor function, and where r
(16)
i are uniformly

distributed random numbers within [0, 1). The first and last coefficients, c
(16)
1 and

c
(16)
16 , are computed periodically with respect to the c

(8)
·. values. The rescaling

factor 0.002 is chosen so that the multiplicative randomness/noise is adjusted to
0.1% of the interpolated value. A similar refinement process is iterated until the
desired resolution of the domain is reached. Then values of the ECM or PMN
density are rescaled within their biological range of a minimum and maximum
ECM or PMN density.
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Fig. 7. Construction of the randomly-structured ECM or PMN with a sequence of grid
refinements steps. The first stage of this process is the construction of a random 8 × 8
grid (top left panel) with values normally distributed in [0, 1]. This grid is progressively
refined to the final (for this case) resolution of 256×256 (bottom right panel). At every
refinement step the number of computational cells is doubled along each dimension and
the new values are obtained by a) averaging the values of the neighboring cells of the
coarser grid, and b) adding some random and normally distributed noise. Periodic
interpolations are employed at the “boundary” the discretization domain. It can be
clearly seen that the coarse structure of the ECM that was randomly chosen in the
8 × 8 matrix is still visible in the refined 256 × 256 grid.
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Abstract. The most common driver mutations in lung adenocarcinoma
occur in the EGFR gene. Gefitinib, an EGFR tyrosine kinase inhibitor,
is an effective therapy for lung adenocarcinoma with EGFR mutations.
However, resistant tumors inevitably arise. One of the mechanisms con-
ferring gefitinib resistance is the amplification of the MET gene, which
is observed in 5–22% of all cases. A previous study suggested that MET
overexpression may cause gefitinib resistance through ErbB3, and most
likely through the formation of EGFR-ErbB3 heterodimers. In this study,
we focused on the dimer formation of EGFR and ErbB3 in lung adenocar-
cinoma cells and built a mathematical model using ordinary differential
equations. To simulate the dimerization process of EGFR and ErbB3,
we determined the molecular concentrations of each on the cell surface
by flow cytometry and estimated unknown reaction constants by dimen-
sional analysis. Our mathematical model would provide a quantitative
understanding of dimer formation, one which cannot be obtained by a
molecular biology methods.

Keywords: Dimerization · EGFR · ErbB3 · Dimensional analysis

1 Introduction

The epidermal growth factor receptor (EGFR), also known as ErbB1, is a tyro-
sine kinase receptor for epidermal growth factor (EGF) and several other lig-
ands. EGFR can form a homo- or heterodimer with other ErbB family mem-
bers. Upon ligand binding, EGFR homo- or heterodimers undergo autophos-
phorylation and/or transphosphorylation on multiple tyrosine residues to acti-
vate downstream signaling cascades, including mitogen-activated protein kinase
(MAPK), phosphoinositide-3 kinase (PI3K), and signal transducer and activa-
tor of transcription (STAT) pathways [1]. Activating mutations in the EGFR
gene, which drive cancer cell proliferation, are frequently observed in a variety
of cancers including non-small-cell lung cancer (NSCLC) [2]. ErbB3, another
c© Springer Nature Singapore Pte Ltd. 2021
T. Suzuki et al. (Eds.): MMDS 2020, PROMS 370, pp. 195–202, 2021.
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ErbB family member, is a receptor for Neuregulin 1 and 2, and can also form a
homo- or a heterodimer with other ErbB family members. ErbB3 homodimers
would be non-functional because ErbB3 lacks intrinsic kinase activity and require
transphosphorylation by its dimerization partners to gain activity. Importantly,
the EGFR-ErbB3 and ErbB2-ErbB3 heterodimers play important roles in the
growth and survival of cancer cells [3].

In East Asia, EGFR mutations are observed in approximately half of all
NSCLC cases and especially in lung adenocarcinoma cases. Gefitinib (Iressa),
an EGFR tyrosine kinase inhibitor, is an approved first-line therapy for lung
adenocarcinomas with EGFR mutations. However, most cases acquire gefitinib
resistance within a year [4]. One mechanism which confers gefitinib resistance
is the amplification of the MET gene, which is observed in 5–22% of the cases.
Overexpression of MET, a tyrosine kinase receptor for hepatocyte growth fac-
tor (HGF), causes gefitinib resistance by activating the PI3K pathway through
ErbB3 in a ligand-independent manner [5]. To understand the dimerization and
phosphorylation status of each receptor tyrosine kinase in gefitinib resistance by
MET amplification, we performed a simulation of molecular reactions using a
mathematical model and showed the limited contribution of ErbB3 in gefitinib
resistance [6]. Herein, we focus on the mathematical modeling of the dimeriza-
tion of EGFR and ErbB3, and describe methods to determine the molecular
concentrations and reaction constants to simulate the dimerization process in
lung adenocarcinoma cells.

2 Mathematical Modeling of the Dimerization of EGFR
and ErbB3

EGFR and ErbB3 form homo- and heterodimers with one another with three
possible types of dimers; EGFR-EGFR, ErbB3-ErbB3, and EGFR-ErbB3. When
EGFR (ErbB1) and ErbB3 were represented as B1 and B3, respectively, for
simplicity, molecular reactions of dimerization can be described as follows:

B1 + B1 ↔ B1B1,

B3 + B3 ↔ B3B3,

B1 + B3 ↔ B1B3.

In these equations, the rate constants of association between B1 and B1, between
B3 and B3, and between B1 and B3 in the absence of their ligands were defined
as k1, k2, and k3, respectively. The dissociation rate constants of B1B1, B3B3,
and B1B3 were also defined as l1, l2, and l3, respectively. The effects of ligands
on dimerization were not considered because MET -driven gefitinib resistance is
ligand-independent. In addition, we assumed that EGFR and ErbB3 localization
was restricted to the plasma membrane which is homogeneous.

Evolution equations of the concentration of each molecule were derived from
the laws of mass action and mass conservation as represented by the following
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ordinary differential equations (ODEs):

d
dt

[B1] = −k1[B1]2 + 2l1[B1B1] − k3[B1][B3] + l3[B1B3] (1)

d
dt

[B3] = −k2[B3]2 + 2l2[B3B3] − k3[B1][B3] + l3[B1B3] (2)

d
dt

[B1B1] =
1
2
k1[B1]2 − l1[B1B1] (3)

d
dt

[B3B3] =
1
2
k2[B3]2 − l2[B3B3] (4)

d
dt

[B1B3] = k3[B1][B3] − l3[B1B3] (5)

By assuming that the reaction network is closed, the following equations were
obtained from the law of mass conservation concerning EGFR and ErbB3:

d
dt

([B1] + 2[B1B1] + [B1B3]) = 0 (6)

d
dt

([B3] + 2[B3B3] + [B1B3]) = 0 (7)

To simulate EGFR and ErbB3 dimerization using the ODEs (1)–(5), we deter-
mined the concentrations of EGFR and ErbB3 in a lung adenocarcinoma cell
line and estimated the reaction constants as described below.

3 Quantification of Cell-Surface EGFR and ErbB3

The number of EGFR and ErbB3 molecules on the cell surface can be quantified
by flow cytometry using specific antibodies and calibration beads [7]. For exam-
ple, the Quantum Simply Cellular kit consists of 5 bead populations, 1 blank
and 4 with increasing levels of an anti-mouse IgG antibody. The fluorescence
intensity of each bead population after incubating with a mouse monoclonal
anti-EGFR antibody and an FITC-conjugated anti-mouse IgG secondary anti-
body was analyzed by flow cytometry (Fig. 1A). A calibration curve was obtained
by plotting the number of antibodies (i.e., Antibody Binding Capacity) against
the normalized fluorescence intensity of each bead population (Fig. 1B).

Next, flow cytometric analyses of HCC116 (colon cancer), HaCaT (ker-
atinocyte), and A431 (epidermoid carcinoma) cell lines, which exhibit differential
expression of EGFR [8], were performed using an anti-EGFR antibody and an
FITC-labeled secondary antibody (Fig. 1C). The number of cell-surface EGFRs
was estimated to be 2.6 × 105, 3.5 × 106, and 7.9 × 106, respectively, in a unit
of Antibody Binding Capacity, from the median fluorescence intensities. These
values were close to the previously published values of 2.2 × 105, 8.7 × 105, and
1.65×106 cell−1, respectively [8]. These data confirmed that we could successfully
estimate the number of cell-surface EGFR molecules by flow cytometry.
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Subsequently, we investigated the number of cell-surface EGFRs in HCC827
cell line, which harbors an EGFR mutation and is commonly used as a model
of gefitinib resistance in lung adenocarcinoma. Using flow cytometry, we esti-
mated the number of cell-surface EGFRs on HCC827 cells to be 5.0 × 105 cell−1

(Fig. 1C). Moreover, the concentration of cell-surface EGFRs was calculated as
4.2 × 10−12 mol/dm2 assuming a surface area of 2.0 × 103 µm2 in HCC827 cells.
The unit of mol/dm2, which is referred to as D, was used as a molar concentra-
tion in 2 dimensions according to a previous study [9]. In addition, we estimated
the number of cell-surface ErbB3s in HCC827 cells to be 3.6 × 103 cell−1 with a
cell surface concentration of 3.0 × 10−14 D [6]. This quantification method can-
not distinguish monomers from dimers of EGFR and ErbB3. Consequently, the
concentration of each molecule represents the sum of monomers and dimers.
Therefore, the following equations are obtained from the Eqs. (6) and (7).

[B1] + 2[B1B1] + [B1B3] = 4.2 × 10−12 (8)

[B3] + 2[B3B3] + [B1B3] = 3.0 × 10−14 (9)

4 Estimation of the Reaction Constants by Dimensional
Analysis

Regarding the previously published reaction constants, the equilibrium constant
of EGFR dimerization (k1/l1) was determined to be 4.8 × 1010 D−1 by single-
molecule imaging of the binding of fluorescent-labeled EGF to the surface of
HeLa cells [10] or to be 5.3 × 1011 D−1 by analyzing the binding of radiolabeled
EGF to the surface of CHO cells [9]. The dissociation rate constant (l1) was
determined as 1.24 s−1 by single particle tracking of the fluorescent-labeled anti-
EGFR antibody bound to A431 cells [11]. In similar experiments, the equilibrium
constant of ErbB3 dimerization (k2/l2) was determined to be 1.7 × 1012 D−1 in
MCF7 breast cancer cells [12] and the dissociation rate constant (l2) was shown
to be 1.08 s−1 in SKBR3 breast cancer cells [13]. Therefore, k1 and k2 were
calculated as 6.0×1010 (or 6.6×1011) D−1s−1 and 1.9×1012 D−1s−1, respectively.
In contrast, the reaction constants of EGFR-ErbB3 heterodimerization, k3 and
l3, have not been reported. Since the dissociation rate constant of the ErbB2-
ErbB3 heterodimer was similar to that of the ErbB3 homodimer (l2) [13], the
dissociation rate constant of EGFR-ErbB3 (l3) was assumed to be equal to l2.
The value of k3 was estimated by dimensional analysis as follows.

In Eq. (2), dt, which corresponds to the time taken in the reactions involving
ErbB3, was assumed to be 1 s because the dissociation rate constants of ErbB3
homodimerization (l2) and EGFR-ErbB3 heterodimerization (l3) are approxi-
mately 1 s−1. In addition, if all of the EGFR and ErbB3 molecules were assumed
to be monomers, [B1] = 4.2× 10−12, [B3] = 3.0× 10−14, and [B1B1] = [B1B3] =
0 according to Eqs. (8) and (9). By substituting these values into the both sides
of Eq. (2), the following expressions were obtained:

d
dt

[B3] =
�
�
�
�

3.0 × 10−14

1

�
�
�
�

(10)
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Fig. 1. Quantification of cell-surface EGFR molecules using Quantum Simply Cellular
anti-mouse IgG beads. (A) One blank and four labeled beads with increasing amounts
of anti-mouse IgG antibody were incubated with an anti-EGFR antibody and an FITC-
conjugated secondary antibody. The fluorescence intensity of each bead was analyzed
by flow cytometry. (B) The normalized fluorescence intensity values of the labeled beads
were plotted against the numbers of anti-mouse IgG antibody molecules labeled on the
beads, termed Antibody Binding Capacity. (C) The fluorescence intensity of HCC116,
HaCaT, A431, and HCC827 cells were analyzed by flow cytometry after labelling with
an anti-EGFR antibody (solid line) or normal mouse IgG (dotted line).

−k2[B3]2 + 2l2[B3B3] − k3[B1][B3] + l3[B1B3] =
−1.9 × 1012 • (3.0 × 10−14)2 + 0 − k3 • 4.2 × 10−12 • 3.0 × 10−14 + 0 (11)

Based on expressions (10) and (11), k3 was estimated to be 2.2 × 1011 D−1s−1.

5 Simulation Results

A simulation of the dimerization of EGFR and ErbB3 in HCC827 cells was per-
formed using the ODEs (1)–(5) and the estimated molecular concentration and
reaction constants. All of the EGFR and ErbB3 molecules were assumed to be
monomers in the initial conditions. The results of the simulation at t = 0–10 s
are shown in Fig. 2. Dimerization of EGFR and ErbB3 reached equilibrium after
approximately 1 s, and the amount of each molecule at equilibrium was; EGFR:
4.3 × 105, ErbB3: 2.1 × 103, EGFR-EGFR: 3.7 × 104, ErbB3-ErbB3: 31, EGFR-
ErbB3: 1.5× 102 cell−1. These results suggest that the number of EGFR homod-
imers is approximately 25 times higher than the EGFR-ErbB3 heterodimers,
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and that only a few ErbB3 homodimers are formed in lung adenocarcinoma cells.
Moreover, we have shown that the ODEs can be explicitly solved and that the
concentration of each molecule can be derived theoretically by classification as
either monomers (EGFR and ErbB3) or dimers (EGFR-EGFR, ErbB3-ErbB3,
and EGFR-ErbB3) [14].

Fig. 2. A simulation of the time-course of dimerization of EGFR and ErbB3 on the sur-
face of HCC827 cells. All of EGFR and ErbB3 molecules are assumed to be monomers
at t = 0. The x- and y-axis represent the time and the concentration of each molecule
on the cell surface, respectively.

6 Discussion

In this study, we built a mathematical model of the dimerization of EGFR and
ErbB3 on the surface of lung adenocarcinoma cells in the absence of their ligands.
We also described the methods to quantify their molecular concentrations on the
cell surface and to estimate unknown reaction constants by dimensional analysis.
This approach is useful for simulating a variety of molecular reactions on the
cell surface and our model would provide a quantitative understanding of dimer
formation, which cannot be analyzed by a common biological approach.

The EGFR-ErbB3 heterodimer has higher mitogenic activity than the EGFR
homodimer partly because the heterodimer is more likely to be recycled to the
cell surface after endocytosis [15]. The EGFR-ErbB3 heterodimer is reported
to be involved in the resistance of cancer cells to gefitinib, an EGFR tyrosine
kinase inhibitor, or cetuximab, an anti-EGFR antibody [5,16]. In our previous
study, we simulated the dimer formation and phosphorylation of EGFR, ErbB3,
and MET in HCC827 gefitinib-resistant (GR) cells, which acquired resistance to
gefitinib by MET amplification. Although ErbB3 activation induced by MET
was reported to be essential for gefitinib resistance, our simulation showed that
the number of active EGFR-ErbB3 dimers was only less than 1% of active MET



Dimerization of EGFR and ErbB3 in Lung Cancer 201

homodimers. Since knockdown of ErbB3 did not sensitize HCC827 GR cells to
gefitinib and the cells were also resistant to AZD8931, a dual inhibitor against
EGFR and ErbB3, we concluded that the contribution of ErbB3 to gefitinib resis-
tance by MET is rather limited [6]. It would be important to further investigate
the ratio of the EGFR-ErbB3 heterodimer to the EGFR or MET homodimer by
experiments using single-molecule imaging or other techniques.

In lung adenocarcinoma cells with EGFR mutation, the formation of an
EGFR homodimer and an EGFR-ErbB3 heterodimer would cause phosphory-
lation of EGFR, ErbB3, and its downstream effectors, thereby promoting cell
proliferation and survival. On the other hand, in cells with wild-type EGFR
alleles, ligand-independent EGFR dimer formation caused some EGFR phos-
phorylation but this was not enough to activate its downstream signaling [17].
Therefore, to apply this mathematical model to cells with wild-type EGFR, lig-
ands for EGFR and ErbB3 should also be considered. In the presence of EGF,
the equilibrium constant of EGFR dimerization (k1/l1) is about 12 times smaller
and the dissociation rate constant (l2) is about 4.5 times smaller in the absence
of EGF [9,11] (Table 1). This is probably due to the conformational changes in
EGFR in response to EGF binding [18]. Thus, the dynamics of the dimeriza-
tion of EGFR and ErbB3 are likely quite different depending on the presence or
absence of their ligands.

A more detailed simulation including the involvement of other ErbB family
proteins, turnover of the receptors, and activation of downstream signaling would
be useful to gain a full understanding of EGFR and ErbB3 functions in cancer
cells. Further studies are required for the development of such an extended model.

Table 1. Reaction constants of the homodimerization of EGFR in the presence or
absence of EGF.

Constant (unit) w/o EGF w/EGF Reference

k1/l1 (D−1) 5.3 × 1011 4.5 × 1010 [9]

l1 (s−1) 1.24 0.273 [11]

k1 (D−1s−1) 6.6 × 1011 1.2 × 1010 Calculated
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Abstract. Insulin exhibits several temporal patterns, such as the 10- to 15-min
pulsatile (minutes), additional (hours), and basal (days) secretions, leading to
selective insulin responses in vivo; however, the mechanisms by which different
temporal patterns of insulin selectively regulate downstream molecules remain
unknown. Revealing the mechanisms of selective regulation by temporal patterns
of insulin is pivotal for understanding insulin actions in vivo.

We examined selective regulation of the insulin-Akt pathway and its mech-
anisms in the liver under hyperinsulinemic-euglycemic clamp conditions. We
obtained time series data of the insulin-Akt pathway molecules using different
stimulation patterns and developed a mathematical model that could reproduce
these data. We found that all temporal patterns of the blood insulin levels are
encoded into the insulin receptor (IR), and downstream molecules selectively and
simultaneously decode them via protein kinase B (Akt or PKB). Mathematical
modeling revealed the mechanisms via differences in network structures, sensi-
tivity, and time constants. Moreover, we simulated the type II diabetes mellitus
(T2DM) condition using the model and found that abnormal blood insulin pat-
terns might contribute to the pathogenesis and/or progression of T2DM. Given
that almost all hormones exhibit distinct temporal patterns, temporal coding may
be a general principle of system homeostasis by hormones.

1 Temporal Patterns of the Blood Insulin Level

Almost all hormones exhibit distinct temporal patterns that are important for their func-
tions [1]. Insulin is a well-studied hormone that exhibits several secretion patterns,
such as the 10- to 15-min pulsatile secretions (minutes) [2, 3], the additional secretion
(hours) which is observed in response to meals, and the basal secretion (days) which is
a low constant secretion observed during fasting [4]. The importance of these insulin
secretion patterns has been reported: 13 min of pulsatile insulin stimulation was more
effective than continuous stimulation in regulating hepatic glucose production in vivo
[5, 6]. Moreover, the relationship between insulin secretion abnormalities and type 2
diabetes mellitus (T2DM) has also been reported: the 10- to 15-min pulsatile secretion
was diminished in T2DM patients [3], and both the additional and basal secretions were
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increased (hyperinsulinemia) in the early stages of T2DM patients [4]. Furthermore, a
discrepancy is observed in patients with the early stages of T2DM: the ability to suppress
the blood glucose levels decreases, whereas the liver stores a lot of fat, both of which
are activated by insulin [7].

In the hepatoma cell line, Fao cells, the Akt pathway [8], metabolites [9], and gene
expression [10] can be selectively regulated by insulin stimulation patterns. However,
since Fao cells are derived from hepatoma cells, they are distinct from the normal liver
cells; various liver responses were collapsed, revealed infinite proliferation, and their
environmental conditions did not match the in vivo conditions. Therefore, whether dif-
ferent secretion patterns of insulin selectively regulate the responses in the liver remains
unclear.

2 Obtaining Experimental Data

An experimental design that is suitable for its purpose is necessary to obtain good results.
In particular, to develop a precise model, we require abundant data, including a lot of
information, such as detailed time course data, dose response, and different stimulation
patterns.

2.1 Animal Experiments

In this study, we focused on the temporal patterns of insulin in vivo. Therefore, insulin
needs to be administered in vivo at the site of insulin secretion. Insulin is secreted from
the pancreas and released into the portal vein, which delivers blood to the liver; how-
ever, because the portal vein is located deep inside the body, it is difficult to administer
insulin through the portal vein. Hence, we administered insulin through the mesenteric
vein, which led to the portal vein. Moreover, somatostatin was administered through
the jugular vein to suppress endogenous insulin secretion. Since insulin lowers blood
glucose level, we evaluated the blood glucose level every 5 min and maintained it a
constant value by changing the glucose infusion rate through the jugular vein. In the
present study, to develop a precise model, we administered insulin at three stimulation
patterns (Fig. 1B); 1) constant infusion rate at three doses (step stimulation), 2) con-
tinuous increase stimulation (ramp stimulation), and 3) two-pulse stimulation (pulse
stimulation). At the indicated time points, the rats were sacrificed, and their livers were
obtained. Thereafter, we obtained time series data of the molecules via quantitative
western blotting and qPCR analyses.

2.2 Different Temporal Patterns of Insulin-Akt Pathway Molecules

We measured phosphorylated insulin receptor (pIR), Akt (pAkt), S6K (pS6K), GSK3β
(pGSK3β), FoxO1 (pFoxO1), and gene expression of G6Pase (G6Pase) (Fig. 1A and
1C), which play pivotal roles in metabolic responses in the liver [11].

We initially examined the responses using step stimulation (Fig. 1B and 1C) and
observed sustained responses of pIR, pAkt, and pGSK3β in an insulin dose dependent
manner. Furthermore, pFoxO1 and G6Pase exhibited similar sustained responses and
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Fig. 1. Different temporal patterns of pIR, pAkt, pS6K, pGSK3β, pFoxO1, andG6Pase in the liver.
(A) Schematic overview of the insulin-Akt pathway. (B) Time courses of the blood insulin levels
in step, ramp, and pulse stimulations. (C) Time courses of pIR, pAkt, pS6K, pGSK3β, pFoxO1,
and G6Pase in step, ramp, and pulse stimulation. (B, C) Lines and dots indicate simulation and
experimental results (means), respectively. Blue, green, and red indicate time courses stimulated
by 20, 6.7, and 2 μM insulin, respectively.

gradual decreases regardless of the insulin dose, respectively. According to our previous
studies [8–10], these results indicated that the molecules responded to the concentration
of the blood insulin levels. On the other hand, only pS6K exhibited transient responses
by reacting to the increasing rate of the blood insulin levels. These different temporal
patterns indicated that the insulin-Akt pathway molecules captured distinct properties
of the temporal patterns of the blood insulin levels.

To confirm these characteristics, we examined responses using ramp stimulation. The
ramp stimulation induced gradual changes in pIR, pAkt, pGSK3β, pFoxO1, andG6Pase
and reached the same values as those of step stimulation regardless of the stimulation
patterns (Fig. 1B and 1C), indicating that thesemolecules responded to the concentration
of the blood insulin levels. In contrast, the transient response of pS6K decreased. Thus,
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a higher increase in the blood insulin levels induced a remarkable transient response of
pS6K and vice versa, indicating that pS6K responded to the increasing rate of the blood
insulin levels.

To further confirm these characteristics, we examined the responses using pulse stim-
ulation. The pulse stimulation induced two transient responses of pIR, pAkt, pGSK3β,
and pFoxO1, similar to the blood insulin level (Fig. 1B and 1C), indicating that these
molecules could rapidly follow changes in the blood insulin levels. Thus, thesemolecules
responded to the concentration of blood insulin levels. In contrast,G6Pase revealed a sim-
ilar response to step stimulation.Moreover, pS6K also exhibited two transient responses;
however, the second peak was smaller than the first one, indicating that pS6K responded
to the increasing rate of the blood insulin levels (see below).

The experiments using different insulin stimulation patterns revealed that the insulin-
Akt pathway molecules in the liver are regulated by the temporal patterns of the blood
insulin levels.

3 Developing the Insulin-Akt Pathway Model

To understand the selective regulation mechanisms, we developed an ordinal differential
equation (ODE) model that can reproduce the behavior of the experimental results.
Furthermore, we examined the responses of molecules in the progression of T2DM
using this model.

3.1 Developing the Insulin-Akt Pathway Model

We developed an insulin-Akt pathway model based on our previous model (Fig. 1A) [8,
12]. In thepresentmodel,wemade the following three changes; First,we incorporated IR,
which was not considered in our previous model. Second, we carried out the degradation
of insulin receptor substrate proteins (IRSs). It has been reported that protein levels
of IRSs decrease in response to prolonged insulin exposure [13]; however, under our
experimental conditions of mice within 2 h, no significant decrease was observed in the
amount of IRSs. Therefore,we did not incorporate the degradation termof the IRSs in our
present model. Third, we put a restriction on GSK3ß regulation. In our previous model,
GSK3ß phosphorylation was only regulated by pAkt; however, the previousmodel could
not reproduce the behavior of pGSK3ß in the liver. Therefore, we developed amodelwith
an unknown molecule X, which regulates the phosphorylation of GSK3ß by an insulin
independent pathways (Fig. 1A), such ILK and PKA. As a result of an investigation by
the Akaike Information Criterion, we chose the model with regulation X. Recently, we
found another difference, that is, a negative feedback loop from mTOR to the IRSs [14,
15]. We have confirmed the negative feedback loop in Fao cells in our previous study
[8]; however, the parameter of the feedback loop in the current model is very small.
Therefore, we experimentally confirmed whether the negative feedback loop played a
pivotal role in the liver using the mTOR-specific inhibitor rapamycin, and found that
the negative feedback loop was not effective or its effect was limited; an increase in
pAKT was not observed, though phosphorylation of S6K was completely inhibited by
rapamycin. These results indicate qualitative differences between the liver and Fao cells.
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Even if the overall network structure remains conserved among different cell types, the
quantitative differences (parameters) can cause different dynamics, leading to distinct
temporal coding and decoding depending on the cell type.

3.2 Selective Regulation Mechanisms of the Insulin-Akt Pathway

Our model reproduced the characteristics of the aforementioned molecules (Fig. 1C).
This indicated that our model captured the mechanisms by which insulin temporal pat-
terns regulate the insulin-Akt pathway molecules in the liver. Therefore, we further
investigated the type of information that the insulin-Akt pathway molecules responded
and the manner in which these molecules decoded the information. If the signaling path-
way does not carry out complicated information processing, correlation is a good index
of information transfer efficiency. Therefore, to tackle these issues, we calculated the
absolute value of the correlation coefficient (SIs) between insulin and a molecule in both
experimental and simulation results (Fig. 2A).

According to our model, pIR, pAkt, pGSK3β, pFoxO1, andG6Pase can be assumed
the same network structure, feed-forward (FF); however, the SIs differed (Fig. 2A), that
is, those of pIR, pAkt, and pGSK3β were high, whereas those of pFoxO1 and G6Pase
were moderate and low, respectively. The information transferred and untransferred to
the molecules was assessed. Two indices characterize an FF, that is, the time constant
(Ƭ ) and EC50. We calculated these values to understand these differences.

First, we calculated the apparent time constants of the molecules against insulin
(Fig. 2B). The time constant indicates how rapidly the downstream molecule can follow
changes in the upstream molecule. The time constant is defined as the time to reach
63.2% of the steady state by step stimulation and is the reciprocal of the dephosphory-
lation parameter in a linear system. A molecule with a small time constant can rapidly
follow changes in the upstream molecule, indicating that the molecule can receive much
information on the increasing rate. The only apparent time constant ofG6Pasewas large,
indicating that only G6Pase cannot receive much information on the increasing rate of
insulin.

Furthermore, we calculated the EC50s of molecules against insulin (Fig. 2C, upper
panel). EC50 is a half-maximal effective concentration, which provides 50% of the max-
imal response. EC50 is determined by a ratio between the parameters of phosphorylation
and dephosphorylation. A molecule with a large EC50 can respond to a wide range
of input, indicating that the molecule can receive much information on concentration.
The largest EC50 of IR indicated that pIR can receive more information on concentra-
tion than the other molecules. On the other hand, because of the small EC50s, pFoxO1
and G6Pase cannot receive much information on concentration. Considering that the
maximum blood insulin level is approximately 1 nM, pIR, pAkt, and pGSK3β can
receive enough information on the concentration of the blood insulin levels. To further
investigate the mechanisms, we calculated the EC50s of molecules against the molecules
located just above them (Fig. 2C, lower panel). Interestingly, the EC50 ofG6Pase against
pFoxO1 was larger than those of pAkt, pGSK3β, and pFoxO1 against each upstream
molecule. This indicated thatG6Pase could potentially receive much information on the
concentration of pFoxO1; however, since pFoxO1 did not receive much information on
concentration, it could no longer transfer enough information to G6Pase.
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Fig. 2. Selective regulationmechanisms of the insulin-Akt pathwaymolecules. (A) The similarity
indices (SIs) of the indicatedmolecules in simulation (left panel) and experiments (right panel). (B)
The apparent time constant of the indicated molecules. (C) The EC50s of the indicated molecules
against insulin (upper) and the molecule located above them (lower).

In contrast to the aforementioned molecules, the network structure of pS6K is an
incoherent feed-forward loop (IFFL) (Fig. 1A). During pulse stimulation, pS6K exhib-
ited two transient responses similar to the othermolecules (Fig. 1C); however, the second
peak was smaller than the first one. This phenomenon is termed as the refractory period,
which is a characteristic of IFFL; at the second stimulation, since the phosphatase activity
activated by the first stimulation was retained, the kinase could not fully phosphorylate
pS6K. Owing to the characteristics of IFFL, pS6K responded to the increasing rate, but
it did not respond to the concentration of the blood insulin levels.

We investigated the regulatory mechanisms of the insulin-Akt pathway. Due to the
small time constant and large EC50, pIR, pAkt, and pGSK3β can receive much informa-
tion on both the increasing rate and concentration of the blood insulin levels, indicating
large SIs (Fig. 2A). Due to the small time constant and low EC50, pFoxO1 can mainly
receive information on the increasing rate, thereby indicating a moderate SI. Consider-
ing the large time constant and small EC50 against insulin, G6Pase can receive limited
information on both the increasing rate and concentration of the blood insulin levels,
thereby revealing a small SI. Furthermore, due to the different network structure, IFFL,
pS6K can only receive information on the increasing rate of the blood insulin levels,
thereby indicating a small SI.
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3.3 Decoding of the Blood Insulin Level In Vivo

We found that the insulin-Akt pathway molecules selectively responded to the tempo-
ral patterns of the blood insulin levels in the liver and their mechanisms (Fig. 3). We
further investigated the possible physiological roles of insulin function based on these
characteristics.

pIR and pAkt: Owing to the small time constant and large EC50, pIR and pAkt can
receive much information on both the increasing rate and concentration of the blood
insulin levels. Therefore, pIR and pAkt can respond to all secretion patterns (Fig. 3).
Considering that IR is the “only gate” of the cell for insulin, blood insulin may encode
much information into pIR. Thereafter, the information is transferred to Akt, which acts
as the branch point of the pathway, without much attenuation of the information.

pGSK3β: Owing to the small time constant and large EC50, pGSK3β can receive
much information on both the increasing rate and concentration of the blood insulin
levels. Therefore, pGSK3β has the ability to respond to all secretion patterns. Moreover,
GSK3β should immediately regulate glycogen synthesis depending on the blood insulin
levels, since glycogen in the liver acts as a blood glucose buffer [16]. In response to the
additional secretion during high blood glucose, GSK3β immediately activates glycogen
synthesis, and vice versa.

pFoxO1: Owing to the small time constant and small EC50, pFoxO1 can mainly
receive information on the increasing rate of the blood insulin levels. Therefore, although
pFoxO1 cannot distinguish the concentration of the blood insulin levels effectively, it
can respond to all secretion patterns. Considering that FoxO1 is a transcriptional factor
[17], all gene expressions regulated by FoxO1, including G6Pase, may not be able to
respond to information on the concentration of the blood insulin levels.

G6Pase: Owing to the large time constant and small EC50 against insulin, G6Pase
can receive a little information on both the increasing rate and concentration of the
blood insulin levels. Interestingly, G6Pase can potentially receive much information on
the concentration of pFoxO1, because it possesses a large EC50 against the upstream
molecule, pFoxO1; however, since pFoxO1 cannot receive much information on the
concentration of the blood insulin levels,G6Pase cannot also receive much information.
G6Pase responded to ramp and pulse stimulations similar to step stimulation (Fig. 1C);
however, it could not distinguish the stimulation patterns, since G6Pase cannot receive
much information on both the increasing rate and concentration of the blood insulin
levels. As a result,G6Pase preferentially responds to the basal secretion, which is similar
to ramp stimulation. Considering that G6Pase regulates gluconeogenesis, it may be
used for regulating gluconeogenesis in days rather than in hours to avoid unnecessary
consumption of energy.

pS6K: Owing to the network structure, IFFL, pS6K can only receive information on
the increasing rate of the blood insulin levels. Therefore, pS6K can respond to the addi-
tional and 10- to 15-min pulsatile secretions, but not to the basal secretion. Considering
that S6K regulates protein synthesis, S6K activates protein synthesis in response to the
additional secretion when the blood is rich in nutrients, including amino acids.
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Fig. 3. Summary of the selective regulation mechanisms of the insulin-Akt pathway molecules
in the liver.

4 Simulation of the T2DM Condition

We predicted the responses of the molecules in the early stages of T2DM patients using
the aforementionedmodel. It has been reported that the expression level and/or activity of
IR decreased (insulin resistance) in the early stages of T2DMpatients [18, 19].Moreover,
the ratio between the basal and additional secretion in the healthy and early stages of
T2DM patients remains the same [4]. In the early stages of T2DM patients, one large
discrepancy was found, that is, both fatty acid synthesis and gluconeogenesis were
increased [7]. Fatty acid synthesis is activated by insulin, whereas gluconeogenesis is
suppressed. To address this issue, we used our model to predict T2DM progression.

We focused on the basal and additional secretion patterns in the simulation and
approximated them using a sinusoidal curve (Fig. 4). Since it has been reported that the
ratio between the additional and basal secretion remains the same between the healthy
and early stages of T2DM patients, we maintained the same ratio in our model. Blue
lines indicate normal IR phosphorylation activity with normal insulin stimulation (a
normal condition) (Fig. 4). Yellow lines indicate 1/3 of the normal IR phosphorylation
activity with normal insulin stimulation (the early stages of T2DM condition without
insulin secretion increase). In the early stages of T2DM patients, the pancreas increases
insulin secretion and recovers the responses to compensate for insulin resistance (red
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Fig. 4. Simulation of the T2DM condition. The basal and additional secretion patterns were
approximated using a sinusoidal curve. Blue, orange, and red lines indicate normal IR phospho-
rylation activity with normal insulin stimulation, 1/3 of the normal IR phosphorylation activity
with normal insulin stimulation, and 1/3 of the normal IR phosphorylation activity with 3.5 times
insulin stimulation patterns, respectively. Notably, many of orange lines overlap with those of the
blue lines.

lines); however, after a short duration, the pancreas is exhausted, and it cannot produce
enough insulin, thereby impairing insulin secretion. This is a state of diabetes mellitus
(yellow lines). Most responses in the early stages of T2DM condition (red lines) were
recovered to those in the heathy condition (blue lines); however, interestingly, the basal
levels of pFoxO1 and G6Pase increased, indicating the activation of gluconeogenesis.
This was caused by the small EC50 of pFoxO1 against insulin (Fig. 2C and 3). There
were slight differences between the blue and red lines for pIR and pAkt. The differences
were enhanced by pFoxO1, with a small EC50. Our model suggested that the small EC50
of pFoxO1 against the blood insulin levels might be the reason for the hyperactivation
of gluconeogenesis in the early stages of T2DM.

5 Conclusions

In the early stages of T2DM patients, a discrepancy has been reported; the ability to
suppress the blood glucose levels decreases, whereas the liver stores a lot of fat, both of
which are activated by insulin [7]. Controlling both responses is important for T2DM
treatment. In this study, we predicted that different sensitivity (EC50s) against the blood
insulin level might be a reason for the hyperactivation of gluconeogenesis in the early
stage of T2DMpatients. Prescribing insulin secretagogues, which increase insulin secre-
tion, is a common treatment for T2DM. However, our model predicted that reducing the
basal secretion rather than increasing insulin secretionmight be effective for suppressing
gluconeogenesis. This result may provide new insights into T2DM treatment.

Given that almost all hormones exhibit distinct temporal patterns [1], other hormones
are also presumed to possess similar temporal coding properties. Thus, temporal coding
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may be the general principle of system homeostasis by hormones. The secretion pat-
terns of growth factors remain unclear; however, growth factors may also exhibit distinct
secretion patterns, which are important for their functions. Therefore, the pathogenesis
and/or progression of cancer is presumed to be affected by the temporal patterns of var-
ious hormones and growth factors. Perturbation of circadian rhythms has been reported
to be associated with cancer pathogenesis [20]. The concept of temporal coding will
provide new insights into the understanding and treatment of various cancer types.
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Abstract. The linear ubiquitin chain assembly complex (LUBAC), composed
of the HOIP, HOIL-1L, and SHARPIN subunits, activates the canonical nuclear
factor-κB (NF-κB) pathway through the Met1 (M1)-linked linear ubiquitination
activity. On the course of the T cell receptor (TCR)-mediated NF-κB activa-
tion pathway, LUBAC transiently associates with and linearly ubiquitinates the
CARMA1-BCL10-MALT1 (CBM) complex. In contrast, the linear ubiquitina-
tion of NEMO, a substrate of the TNF-α-induced NF-κB activation pathway, was
limited in the TCR pathway. A linear ubiquitin-specific deubiquitinase (DUB),
OTULIN, plays a major role in downregulating LUBAC-mediated TCR sig-
naling. Mathematical modeling indicated that linear ubiquitination of the CBM
complex accelerates the activation of IκB kinase (IKK), as compared with the
activity induced by linear ubiquitination of NEMO alone. Moreover, simulations
of the sequential linear ubiquitination of the CBM complex suggested that the
allosteric regulation of linear (de)ubiquitination of CBM subunits is controlled
by the ubiquitin-linkage lengths. Thus, unlike the TNF-α-induced NF-κB activa-
tion pathway, the TCR-mediated NF-κB activation in T cells has a characteristic
mechanism to induce LUBAC-mediated NF-κB activation.

1 Involvement of LUBAC in TCR-Mediated NF-κB Activation

NF-κB is a crucial transcription factor controlling immune responses, inflammation,
and anti-apoptosis [1, 2]. Therefore, impaired NF-κB activity is implicated in multi-
ple diseases, including cancers, metabolic syndrome, and inflammatory, autoimmune,
and neurodegenerative diseases. NF-κB activation is typically classified into canoni-
cal and non-canonical pathways [1, 2]. LUBAC is a ubiquitin ligase (E3) complex,
comprising the HOIP, HOIL-1, and SHARPIN subunits (Fig. 1), that specifically gen-
erates the M1-linked linear ubiquitin chain through the E3 activity in HOIP. LUBAC
linearly polyubiquitinates NF-κB essential modulator (NEMO) and receptor-interacting
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serine/threonine protein kinase 1 (RIP1) upon stimulation by inflammatory cytokines,
such as TNF-α and IL-1β, and activates the canonical NF-κB pathway [3–5]. Since
NEMO contains a linear ubiquitin-specific binding site, the so called UBAN domain,
the linear ubiquitin chain functions as a scaffold to recruit and activate the canonical
IKK [6, 7]. LUBAC and its linear ubiquitination activity participate in several canonical
NF-κB pathways induced by proinflammatory cytokines, pathogen-associated molecu-
lar patterns (PAMPs), and T cell receptor (TCR) pathways [8, 9], but not in the B cell
receptor (BCR)-mediated canonical or the noncanonical NF-κB activation pathways
[10, 11]. Importantly, LUBAC binds negative regulators of DUBs, such as OTULIN
and CYLD-SPATA2 complex, through the N-terminal PUB domain of HOIP (Fig. 1)
[12–14]. OTULIN, an ovarian tumor (OTU)-family DUB, directly binds to HOIP and
exclusively cleaves M1-linked ubiquitin chains. OTULIN plays crucial roles in limiting
cell death and inflammation [15]. Therefore, LUBAC is a unique E3-DUB complex to
scrap-and-build linear ubiquitin chains.

Fig. 1. Domain structure and functional regions of the LUBAC subunits, HOIL-1L, HOIP, and
SHARPIN, and linear ubiquitin chain-specific DUB, OTULIN. LTM, LUBAC-tethering motif;
UBL, ubiquitin-like; NZF, Npl4-type zinc finger; RING, really interesting new gene; IBR, in-
between RING; PUB, PNGase/UBA or UBX; ZF, zinc finger; UBA, ubiquitin-associated; LDD,
linear ubiquitin chain determining domain; PH, Pleckstrin-homology; PIM, PUB-interacting
motif; OTU, ovarian tumor; P, phosphorylation.

TCR recognizes major histocompatibility complex (MHC) molecules expressed on
the surface of antigen-presenting cells [16]. In the TCR-mediatedNF-κB activation path-
way, the protein tyrosine kinase ZAP70 is initially activated upon co-stimulation through
TCR and CD28 [17], leading to the activation of protein kinase Cθ (PKCθ). Then, PKCθ

phosphorylates the scaffold protein CARMA1 (CARD-containing MAGUK protein 1,
also called CARD11 and Bimp3) (Fig. 2A) [18, 19]. The activated CARMA1 recruits
heterodimers of B cell lymphoma 10 (BCL10) and the paracaspase mucosa-associated
lymphoid tissue lymphoma translocation protein1 (MALT1) to form the oligomerized
CARMA1-BCL10-MALT1 (CBM) complex, which functions as a scaffold to activate
the NF-κB signaling(Fig. 2A) [18, 19]. In TCR signaling, LUBAC linearly ubiquitinates
BCL10 [20–22], andMALT1 cleaves HOIL-1L upon stimulation [23, 24].We here sum-
marize our recently study on the cellular and mathematical analyses of LUBAC in the
TCR-mediated NF-κB pathway [25].
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1.1 Linear Ubiquitination of CBM Complex by LUBAC Induces TCR-Mediated
NF-κB Activation

Using HOIP-deficient human leukemic T cell lymphoblast Jurkat cells (HOIP-KO),
we identified that TCR-mediated NF-κB activation upon stimulation with agonistic
anti-CD3 and anti-CD28 antibodies was markedly suppressed in HOIP-KO cells [25].
Whereas, the ZAP70 was similarly phosphorylated in parental andHOIP-KO cells upon
TCR stimulation. In contrast, the phosphorylation of IKKα/β, which represents IKK
activation, was strongly impaired by the ablation of HOIP. Thus, the LUBAC activity
is involved downstream from ZAP70, and upstream from IKK activation (Fig. 2A). In
the absence of LUBAC activity, the expression of IL-2 was suppressed, which caused
the reduced T cell activation. Thus, LUBAC plays a pivotal role in the TCR-mediated
NF-κB activation and T cell activation [25].

Upon TCR stimulation, endogenous LUBAC transiently binds with the CBM com-
plex (Fig. 2A). Co-immunoprecipitation experiments indicated that HOIP, but notHOIL-
1LorSHARPIN, bound toCARMA1andMALT1,whereas the direct bindingofLUBAC
subunits with BCL10 was negligible. LUBAC reportedly linearly ubiquitinates BCL10
in the CBM complex [22], whereas we showed that CBM subunits were transiently
linearly ubiquitinated after TCR stimulation with different time courses. Thus, MALT1
was initially linearly ubiquitinated after 15 min as the maximum, and subsequently,
CARMA1 (20 min) and BCL10 (25 min) were linearly ubiquitinated (Fig. 2B) [25].
NEMO is a physiological substrate of LUBACupon TNF-α stimulation [26], and it func-
tions as a scaffold to recruit other IKK molecules [6]. The recruited and concentrated
IKKmolecules are then activated by trans-phosphorylation [7]. Indeed, NEMOwas effi-
ciently linearly ubiquitinated upon TNF-α stimulation, whereas the linear ubiquitination
of NEMOwas suppressed upon TCR stimulation. In contrast,MALT1was linearly ubiq-
uitinated by a TCR stimulation, but not by TNF-α stimulation. These results suggested
that the CBM complex is the major substrate of LUBAC during TCR-mediated NF-κB
activation. Furthermore, upon TCR stimulation, the canonical IKK activity reached the
maximumafter 15min of stimulation, and declined thereafter, suggesting the linear ubiq-
uitination of MALT1 triggers IKK activation (Fig. 2B) [25]. Collectively, these results
suggested that the linear ubiquitination of the CBM complex by LUBAC correlates with
the canonical IKK activation in the TCR-mediated NF-κB activation pathway.

1.2 OTULIN Is the Predominant Regulator of TCR-Mediated NF-κB Activation

DUBs, such as OTULIN and the CYLD-SPATA2 complex, bind to the PUB domain
of HOIP and downregulate NF-κB activity by hydrolyzing the ubiquitin chains [12–
14]. To examine the effect of these DUBs on the TCR-mediated NF-κB activation,
we constructed CYLD- and OTULIN-deficient Jurkat cells. Upon TCR stimulation, the
phosphorylation of NF-κB factors was enhanced inOTULIN-KO cells, but not inCYLD-
KO cells. In OTULIN-KO cells, linear ubiquitination of MALT1 was augmented ~3-
fold over that of the parental Jurkat cells [25]. In OTULIN-deficient cells, canonical
IKK was transiently activated with a time course similar to that of the parental cells.
These results suggested that OTULIN plays a major role in the downregulation of the
LUBAC-mediated canonical NF-κB activation pathways in T cells.
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Fig. 2. Linear ubiquitination of CBM complex and resulting IKK activation. (A) Scheme for
LUBAC-mediated linear ubiquitination of CBM complex in TCR pathway. (B) TCR-mediated
linear ubiquitination of CBM complex and canonical IKK activation in Jurkat cells. Taking the
maximum intensities of linear ubiquitination and IKK activity as 100%, the relative intensities are
indicated.

2 Mathematical Simulation of Linear Ubiquitination-Mediated
IKK Activation in TCR Pathway

To investigate the characteristics of LUBAC in the TCR-mediated NF-κB activation
pathway, we mathematically considered the reaction of LUBAC-mediated IKK acti-
vation through the linear ubiquitination of NEMO and CBM (Fig. 3A). Since IKK is
trans-activated by using the linear ubiquitin chain as a scaffold, the NEMO-mediated
activation of IKK occurs between ubiquitinated IKKs or between ubiquitinated IKKs
and non-ubiquitinated IKKs. On the other hand, the CBM-mediated activation of IKK
occurs by contact between ubiquitinated CBM and IKKs that are not distinguished by
their ubiquitination state. In addition, the mass conservation law for the LUBAC and
CBM complex holds, because protein production and degradation are not considered.
Then, we constructedmathematical models of NF-κB signaling based on the law ofmass
action [27]. In order to investigate the effect of the CBM complex on IKK activation
in T cells, the following two models were constructed. The first was the CBM simplify
model (CBM_SM), which includes the reaction of IKK activation depending on the
linear ubiquitin chain of NEMO and the CBM complex. In this model, we simulated the
effect of the CBM complex on the IKK activation by changing the parameters related
to ubiquitination. The reaction involves the transient binding of LUBAC with NEMO
or CBM, followed by the LUBAC-mediated linear ubiquitination of the proteins in the
bound state.

L + NEMO → LNEMO, LNEMO → LNEMOu
L + CBM → LCBM, LCBM → LCBMu
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Fig. 3. Mathematical simulation of the effects of linear ubiquitination of the CBM complex and
NEMO on the TCR-mediated IKK activation. (A) LUBAC ubiquitinates NEMO and the CBM
complex. In this model, ubiquitination is assumed to be a first-order reaction. (B) Fitting result
by GA. Solid lines represent simulation results, and dots represent experimental data. Figure 3A,
3B, and 3C are originally shown in Fig. 6A, Table 1, and Fig. 6B, respectively, of Ref. [25].

After dissociation, the LUBAC-bound NEMO or CBM was postulated to exist in a
temporarily inactive form (prime symbol (′) represents inactive state).
LNEMO → L + NEMO′
LCBM → L + CBM′

The linear ubiquitin chains are cleaved by DUBs, such as CYLD and OTULIN.
Since CYLD and OTULIN stably bind LUBAC, LUBAC/NEMOu and NEMOu may
have different deubiquitination coefficients. The model is characterized by the following
equations, and parameters are shown in Fig. 3B;

dCBM

dt
= −kC CBM (t)(Ltot − LCBM (t) − LCBMu(t) − LIKK(t) − LIKKu(t))

dLCBM

dt
= kC CBM (t)(Ltot − LCBM (t) − LCBMu(t) − LIKK(t) − LIKKu(t))

− (uC + lC) LCBM (t) + dC LCBMu(t)

dLCBMu

dt
= uC LCBM (t) − (dC + lC) LCBMu(t)

dCBMdu

dt
= lC LCBMu(t) − a dC CBMdu(t)

dLIK

dt
= kN (Ltot −LCBM (t) − LCBMu(t) − LIKK(t) − LIKKu(t)) (IKKtot − IKKu(t)

− LIKK(t) − LIKKu(t) − IKKp(t) − IKKup(t) − IKKd(t) − IKKdu(t)
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−LIKKp(t) − LIKKup(t) − IKKdp(t) − IKKdup(t)
) − (lC + uN ) LIKK(t)

+ dN LIKKu(t) + dp LIKKp(t) − pC(LCBMu(t) + CBMdu(t)) LIKK(t)IKKtot

− pI LIKK(t)
(
LIKKu(t) + IKKu(t) + IKKup(t) + IKKdup(t)

)

dLIKKu
dt = uN LIKK(t) − (dN + lC) LIKKu(t) + dp LIKKup(t)

−pC(LCBMu(t) + CBMdu(t)) LIKKu(t) IKKtot − pI LIKKu(t) IKKtot

dIKKu

dt
= −pC(LCBMu(t) + CBMdu(t)) IKKu(t) IKKtot

dIKKd

dt
= lC LIKK(t) + dN IKKdu(t) + dp IKKdp(t)

− pC(LCBMu(t) + CBMdu(t)) IKKd(t) IKKtot

− pI IKKd(t)
(
LIKKu(t) + IKKu(t) + IKKup(t) + IKKdup(t)

)

dIKKdu
dt = lC LIKKu(t) − dN IKKdu(t) + dp IKKdup(t)

−pC(LCBMu(t) + CBMdu(t)) IKKdu(t) IKKtot − pI IKKdu(t) IKKtot
dIKKp

dt
= pC(LCBMu(t) + CBMdu(t))

(
IKKtot − IKKu(t) − LIKK(t) − LIKKu(t) − IKKp(t)

− IKKup(t) − IKKd(t) − IKKdu(t) − LIKKp(t) − LIKKup(t) − IKKdp(t)

−IKKdup(t)
)
IKKtot

+ pI
(
IKKtot − IKKu(t) − LIKK(t) − LIKKu(t) − IKKp(t) − IKKup(t)

− IKKd(t) − IKKdu(t) − LIKKp(t) − LIKKup(t) − IKKdp(t)

−IKKdup(t)
)(
LIKKu(t) + IKKu(t) + IKKup(t) + IKKdup(t)

)

dLIKKp

dt
= pC(LCBMu(t) + CBMdu(t))LIKK(t) IKKtot

+ pI LIKK(t)
(
LIKKu(t) + IKKu(t) + IKKup(t) + IKKdup(t)

) − dp LIKKp(t)

+ dN LIKKup(t)

dLIKKup

dt
= pC(LCBMu(t) + CBMdu(t)) LIKKu(t) IKKtot + pI LIKKu(t) IKKtot

− (
dp + dN

)
LIKKup(t)

dIKKup

dt
= pC(LCBMu(t) + CBMdu(t)) IKKu(t) IKKtot + pI IKKu(t) IKKtot

−(
dp + dN

)
IKKup(t)

dIKKdp
dt

= pC(LCBMu(t) + CBMdu(t)) IKKd(t) IKKtot

+ pI IKKd(t)
(
LIKKu(t) + IKKu(t) + IKKup(t) + IKKdup(t)

) − dp IKKdp(t)

+ dN IKKdup(t)

dIKKdup
dt

= pC(LCBMu(t) + CBMdu(t)) IKKdu(t) IKKtot + pI IKKdu(t) IKKtot
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− (
dp + dN

)
IKKdup(t)

The parameters of CBM_SM were set by a genetic algorithm (GA), using experi-
mental data of the ubiquitinated CBM complex and phosphorylated IKK (Fig. 3C) [25].
The estimation was performed 1,000 times with the setting to generate 1,000 genera-
tions.We set the estimation results such that the error from the experimental data is small
and the concentrations of LUBAC, CBM, and IKK were close to the concentrations of
general signal transduction factors (0.1μM). However, all of the parameter settings were
values larger than 0.1 μM, since proteins with different molecular weights accumulate
and are locally concentrated on the linear ubiquitin chains, and T cells are smaller than
general somatic cells. Importantly, the parameters obtained by the GA showed that the
CBM complex is more likely to bind to LUBAC than NEMO (kC > kN) (Fig. 3B, C).
Moreover, the ubiquitination rate of the CBM complex was faster than that of NEMO
(uC > uN). These results suggested that IKK activation induced by the linear ubiquiti-
nation of the CBM complex plays a major role to activate IKK in T cells, by the linear
ubiquitination of NEMO.

3 Mathematical Simulation for Linear Ubiquitination of CBM
Complex Components

Finally, we constructed an expanded model to analyze the timing deviations in the linear
ubiquitinations of CARMA1, BCL10, and MALT1. By focusing on the linear ubiqui-
tination of the CBM complex, we constructed a model that distinguishes CARMA1,
BCL10, and MALT1. The amounts of ubiquitinated proteins were then simulated. If
the ubiquitination and deubiquitination rates of CARMA1, BCL10, and MALT1 were
the same values, then the CBM detailed model (CBM_DM) is represented by the same
model as the CBM_SM, by equating CARMA1, BCL10, and MALT1. In this model,
we assumed that ubiquitination is a first-order reaction for simplicity (Fig. 4A).

The CBM_DM focused only on the ubiquitination reaction of the CBM complex
to elucidate the mechanisms of timing shift of ubiquitination. CARMA1, BCL10, and
MALT1 were distinguished, and the reaction coefficients of the ubiquitination of each
protein were compared.

x′
0(t) = −k0x0(t) LUBAC(t)

LUBAC ′(t) = −k0x0(t)LUBAC(t)

+ l0(x1(t) + x2(t) + x3(t) + x4(t) + x5(t) + x6(t) + x7(t) + x8(t))

x′
1(t) = k0x0(t) LUBAC(t) − k1x1(t) + l1x2(t) − k2x1(t) + l2x3(t) − k3x1(t) + l3x4(t)

− l0x1(t)

x′
2(t) = k1x1(t) − l1x2(t) − k4x2(t) + l4x5(t) − k5x2(t) + l5x6(t) − l0x2(t)

x′
3(t) = k2x1(t) − l2x3(t) − k6x3(t) + l6x5(t) − k7x3(t) + l7x7(t) − l0x3(t)
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x′
4(t) = k3x1(t) − l3x4(t) − k8x4(t) + l8x6(t) − k9x4(t) + l9x7(t) − l0x4(t)

x′
5(t) = k4x2(t) − l4x5(t) + k6x3(t) − l6x5(t) − k10x5(t) + l10x8(t) − l0x5(t)

x′
6(t) = k5x2(t) − l5x6(t) + k8x4(t) − l8x6(t) − k11x6(t) + l11x8(t) − l0x6(t)

x′
7(t) = k7x3(t) − l7x7(t) + k9x4(t) − l9x7(t) − k12x7(t) + l12x8(t) − l0x7(t)

x′
8(t) = k10x5(t) − l10x8(t) + k11x6(t) − l11x8(t) + k12x7(t) − l12x8(t) − l0x8(t)

y′
1(t) = a(l1y2(t) + l2y3(t) + l3y4(t)) + l0x1(t)

y′
2(t) = a(−l1y2(t) + l4y5(t) + l5y6(t)) + l0x2(t)

y′
3(t) = a(−l2y3(t) + l6y5(t) + l7y7(t)) + l0x3(t)

y′
4(t) = a(−l3y4(t) + l8y6(t) + l9y7(t)) + l0x4(t)

y′
5(t) = a(−l4y5(t) − l6y5(t) + l10y8(t)) + l0x5(t)

y′
6(t) = a(−l5y6(t) − l8y6(t) + l11y8(t)) + l0x6(t)

y′
7(t) = a(−l7y7(t) − l9y7(t) + l12y8(t)) + l0x7(t)

y′
8(t) = a(−l10y8(t) − l11y8(t) − l12y8(t)) + l0x8(t)

As a result of fittingwith theGA, the timing shifts of the peaks ofMALT1,CARMA1,
and BCL10 could be reproduced. However, in this simulation, the increase and decrease
of ubiquitination levels did not match well. Therefore, more detailed modeling of ubiq-
uitination is needed to solve this problem. Since ubiquitin is consecutively linked and its
activity changes depending on its length, ubiquitination cannot be expressed well by the
assumption of the first-order reaction. The model could be improved by considering the
production levels of linear (de)-ubiquitination of MALT1, CARMA1, and BCL10 as a
switch-like reaction; for example, by applying the Hill equation (Fig. 4B). These results
indicated that length of the ubiquitin-linkage allosterically regulates the generation and
degradation of linear ubiquitin chains.
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Fig. 4. Mathematicalmodel for different linear ubiquitinations of theCBMcomplex. (A)Detailed
reaction pathway of the ubiquitination of the CBM complex. The red lines show parameters that
are larger than the average value. The blue lines show parameters that are smaller than the average
value. (B) Fitting results by GA. The ubiquitination reaction is assumed to be a Hill function.
Figure 4A and 4B are originally shown in Fig. 7A and 7C, respectively, of Ref. [25].

4 Conclusion

T cells play crucial roles in the host defence against pathogens and tumors, and TCR
recognizes the MHC-bound antigen peptide fragments derived from them [16]. We
initially identified that LUBAC is indispensable for the TCR-mediated NF-κB pathway
and T cell activation. LUBAC physiologically associates with the CBM complex, and
BCL10, MALT1, and CARMA1 are linearly ubiquitinated by LUBAC, suggesting that
the CBM complex components are physiological substrates for LUBAC. Among them,
the linear ubiquitination of MALT1 seems to precede the canonical IKK activation.
Moreover, we determined that OTULIN plays a pivotal role in the suppression of TCR-
mediated NF-κB activation.

The mathematical analysis of the NF-κB signaling pathway has provided a novel
paradigm for spatiotemporal activation mechanism, target gene expression, feed-back
inhibition, and cytosol-nucleus oscillation of the transcription factor, and various math-
ematical models have been proposed [28–30]. In contrast to TNF-α-mediated NF-κB
activation pathway, the CBM complex, but not NEMO, was preferentially ubiquitinated
by LUBAC upon TCR stimulation, and the mathematical analysis indicated that lin-
ear ubiquitination of the CBM complex stably promotes IKK activation. On the other
hand, NEMO-mediated activation of IKK was required to increase the activation level
of IKK. In addition, we identified the differences in the timing of ubiquitination between
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CARMA1, BCL10, and MALT1 in the CBM complex, although its physiological func-
tion was not clear. The mathematical modeling suggested that by shifting the timing of
the MALT1, CARMA1, and BCL10 ubiquitinations, the scaffolding of ubiquitin chains
persists, and IKK can be stably activated due to the allosteric regulation. Moreover,
DUBs, such as OTULIN, can quickly downregulate IKK and then restore it to the orig-
inal state. Thus, these mathematical simulations were effective in characterizing the
experimentally obtained features in TCR-mediated NF-κB pathway.
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Abstract. Arteriovenous malformations consist of tangles of arteries
and veins that are often connected by a fistula. The causes of and mech-
anisms underlying the development of these clinical entities are not fully
understood. We previously reported a novel in vivo angiogenesis model as
a useful disease model of arteriovenous malformation. With this model,
the arterial graft was collected from the left carotid artery and sutured
to the left jugular vein as a patchwork. The neovasculature extended
from the branch of the subclavian artery toward the arterial graft. We
measured the neovasculature, which had sprouted from arterioles, in the
tissue samples. In the present study, we collected the arterial patch graft
and adipose tissue surrounding the arterial graft and examined the distri-
bution of the VEGF concentration by an enzyme-linked immunosorbent
assay. At the area most distant from the arterial graft, the VEGF-A con-
centration changed over time in a sine wave pattern that gradually atten-
uated. A mathematical model was then constructed using the results, and
a mathematical simulation of the neovasculature growth was performed.
The new vessels grew in a stair-like pattern in this simulation, a result
that matched those obtained through histological measurements.

1 Introduction

Angiogenesis is a fundamental developmental and adult physiological process,
requiring the coordinated action of a variety of growth factors and cell-adhesion
molecules in endothelial and mural cells [1–3]. At present, VEGF-A and its
receptors are the best-characterized signaling pathways in developmental angio-
genesis [1–3]. VEGF-A is produced by most cells in the body but is upregulated
under conditions of hypoxia [4,5]. In tumors, VEGF is produced by hypoxic
c© Springer Nature Singapore Pte Ltd. 2021
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tumor cells, endothelial cells (ECs) and infiltrating myeloid cells, termed tumor-
associated macrophages [5]. In mathematical oncology, mathematical modeling
of tumor angiogenesis has been performed, and the Anderson-Chaplain equation
is famous among such models [6]. In the mathematical modeling of tumor angio-
genesis, VEGF is released by malignant tumors, and new blood vessels then
sprout toward the tumor, expanding toward the site with the highest VEGF
concentration.

However, in our in vivo angiogenesis model that we previously reported, new
blood vessels sprouted from pre-existing arteries toward the arterial patch graft
(Fig. 1a) and opened around the arterial graft. We herein report the change in the
VEGF concentration in this angiogenesis model and propose a new mathematical
model modified from the Anderson-Chaplain model.

2 Quantification and Fluctuations of VEGF in Our
Angiogenesis Animal Model

2.1 Tissue Collection and VEGF Quantification

In the in vivo angiogenesis model developed by Ito et al., the arterial graft is
sutured to the wall of the left common jugular vein in male rabbits to initiate
angiogenesis [7]. In this model, we measured the VEGFA concentration of the
tissue involved in angiogenesis to observe its space and time variation. In brief,
two rabbits at each time point (5 min; 1 and 3 h; and 1, 3, 7, 10, and 14 days) after
grafting were euthanized, and the arterial graft and fatty tissue were divided and
collected from 8 areas (Fp and F1-7), as shown schematically in Fig. 1b.

Total protein was extracted from these collected tissues using a Minute
Detergent-Free Total Protein Extraction Kit obtained from Invent Biotechnolo-
gies, Inc. (Plymouth, MN, USA). The VEGFA concentration in the tissue was
measured using rabbit VEGFA enzyme-linked immunosorbent assay (ELISA)
kits purchased from Cusabio Biotech Co., Ltd. (Wuhan, China). The concentra-
tion of VEGFA in each sample was calculated based on the recombinant protein-
based standard curve. A Multiskan JX spectrophotometer (Thermo Fisher Sci-
entific Inc., Yokohama, Japan) was used to measure the absorbance. All assays
were performed in duplicate, and the mean value of the results was used in the
analyses.

2.2 Dampened Oscillation of VEGF Concentration at F4/5

We measured the VEGF concentration in eight areas (Fp and F1-7). The VEGF
concentration at Fp in each case was low and equal to that in serum. The VEGF
concentrations at tissue areas of F4 and F5 were higher than in other areas,
including Fp and F1, F2, and F3. Time-course analyses of the VEGF concentra-
tions at F4 and F5 with an ELISA revealed repeated increases and decreases with
gradual attenuation. The polynomial approximation of the fluctuation is shown
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Fig. 1. The method of this study and the fluctuations of VEGF concentration

in Fig. 1c. The waveform of the VEGF concentration at F4 and F5 showed atten-
uation with oscillation. This pattern suggested the involvement of the formation
of new blood vessels.

F4 and F5 are located approximately 1 to 1.5 cm from the common jugular
vein, which is the site of a pre-existing arterial branch that nourishes the adipose
tissue of the neck. We previously reported that new blood vessels sprouted from
this pre-existing arterial branch near F4 and F5 [7]. In our angiogenesis model,
new blood vessels originate from the pre-existing artery and head to Fp. Based
on these observations, we suspect that VEGF is released from the area where
new blood vessels sprout and grow.

3 Mathematical Modeling

3.1 VEGF Concentration and Sprouting Tip Cells in This Model

Our angiogenesis model incorporated two important components: the tip sprout
and VEGF distributions. Let n = n(x, t) and c = c(x, t) be the sprout tip dis-
tribution and VEGF concentration, respectively, on a two-dimensional domain,
x = (x, y) ∈ R2, 0 ≤ t ∈ R. First, we will explain the mathematical equation
for the VEGF distribution.
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3.2 VEGF Concentration Equation

The highest VEGF concentration is located most closely to the area of pre-
existing artery, F4 and F5. The VEGF concentration decreases as it approaches
the arterial patch but can be high or low in different periods. The data in Fig. 1c
show that the VEGF concentration is damped and oscillated in the area of
F4 and F5. We therefore assumed the VEGF distribution to oscillate with the
following pattern:

c =

{
c1
4 (1 + sin(π( 12 − x)))(1 + sin(2πσt)) (ct > 0)
0 (ct ≤ 0)

where c1, σ are constants that represent the peak concentration and oscillation
speed, respectively.

3.3 Sprouting Tip Cell Distribution Equation

The sprout tip is assumed to migrate under the influence of random movement
and chemotactic responses to VEGF. The general conservation equation is thus
as follows:

nt = dnΔn − ∇nvn,

where dn is a constant of random movement and vn = vn(x, t) is the chemotactic
velocity of the sprout tip.

Despite there being few sprouts growing from the arterial patch area to meet
new blood vessels growing from nearby pre-existing vessels, those new blood
vessels still reportedly extend from the nearby pre-existing vessel toward the
arterial patch [7]. We assume that the sprouted tip migrates due to a gradient
change in the VEGF concentrations. Thus, vn has the following form:

vn = ct

This notion of velocity stems from the aggregation of the Dictyostelium model
under a cyclic AMP (cAMP) non-dissipating wave. Dictyostelium continues to
aggregate toward the center of the cAMP source, while the cAMP waves are
emitted from the center in the opposite direction [8]. This means that the Dic-
tyostelium becomes the driving force in the reverse direction of cAMP. Through
this model, we can understand the three factors of signal gradient, moving speed,
and gradient change at the same time.

First, let us assume that cAMP, which we consider to stand for VEGF in the
angiogenesis model, is signal S, and the activator and inhibitor of the cellular
derived from signal S are A and I, respectively. The following are then equations
describing the chemical interactions between S-A-I

dA(t)
dt

= kaS(x, t) − γaA(t),
dI(t)
dt

= kiS(x, t) − γiI(t), (1)

where ka, ki, γa, and γi are constants.
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Through these S-A-I interactions, the output response of R as activation
within the cell, denoted as R, is expressed as follows:

dR(t)
dt

= F (R(t))A(t) − G(R(t))I(t), (2)

where,

F (R(t)) = kA
(R0 − R(t))

(R0 − R(t)) + K ′
A

, G(R(t)) = kI
R(t)

R(t) + K ′
I

are ultrasensitive transfer functions [8].
In the steady state of (2), we find that

Q ≡ A

I
=

G

F
(R). (3)

Now, consider (2) as

dR(t)
dt

= F (R)I(
A

I
− H(R))

where
H(R)=G(R)/F(R).

Second, we approximated the solution of A(t) and I(t). Define

E(t) ≡ A(t) − f(t − ε)

where ε = γ−1
a and

f(t − ε) = εkaS(t − ε)

We take
dE

dt
= gε(t) − 1

ε
E(t)

Since
gε(t) =

1
ε
(f(t) − f(t − ε)) − f ′(t − ε) = o(1)

is local uniformly in t, f ∈ C1(R),

E(t) = e− t
ε E(0) +

∫ t

0

e− (t−s)
ε gε(s)ds = e− t

ε E(0) + o(1)ε(1 − e− t
ε ) = o(ε)

is also local uniformly in t > 0. This means A(t) can be approximated by f(t−ε)
under the assumption of γa � 1. That is,

A(t) ∼ γ−1
a kaS(l, t − γ−1

a ). (4)

The same can be done to obtain an approximation of I(t).
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The cell is assumed to have polarity at the front and back sides, which is
represented by x = ±l. We therefore have A± = A(±l, t) and I± = I(±l, t).
With the approximation in (4), we have

dA+

dt
∼ γ−1

a kaSt(l, t − γ−1
a ) ∼ γ−1

a kaγa(S(l, t)−S(l, t − γ−1
a ))

∼ kaS(l, t) − γaA+(t)

as the approximation of (1). A− and I± can be obtained by the same manner.
The activator and inhibitor are assumed to occur locally and globally, respec-

tively. Thus, A± and I± are approximated as

A± ∼ γ−1
a kaS(±l, t − γ−1

a ), I± = I = γ−1
i kiSav(t − γ−1

i ), (5)

where
Sav(t) =

1
2
(S(l, t) + S(−l, t)).

Through a simple calculation, namely the activator/inhibitor ratio Q from
(3), (5), and γa, γi � 1, we obtain the following:

Q±(t) ∼ Q0{1 +
St(±l, t)
S(±l, t)

(γ−1
i − γ−1

a )} ± l · Sx(±l, t) − γ−1
i Sxt(±l, t)

S(±l, t)
, (6)

where Q0 = (kaγi)/(kiγa). From (5), we can see that the cell has polarity in the
direction of Sxt < 0.

3.4 Numerical Simulation

An angiogenesis simulation was performed using the mathematical equation
(Fig. 2a). We simulated from t = 1 to 14. The tip cells gradually moved, and
the behavior of these cells represented the elongation of new blood vessels. Some
of these tip cells formed a loop and then stopped growing. We measured the
distance that the tip cells moved and presented it in Fig. 2b. New blood vessels
showed a stair-like pattern of growth, and there was a point at which the growth
plateaued. The growth of new blood vessels stopped at t = 10.
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Fig. 2. The length of new blood vessels in the numerical simulation

4 The Histological Measurement of New Blood Vessels in
Our Angiogenesis Models

New blood vessels sprout and grow from arterioles (Fig. 3a; red arrowhead: arte-
riole, yellow arrowhead: new blood vessels). In Fig. 3a, the distance between the
dotted lines was considered to represent new blood vessels. This graph shows
the average length of the new blood vessels from days 0 to 10 (Fig. 3b). The
new blood vessels gradually grew until three days after the operation, but the
length did not increase markedly from days 3 to 5; however, from days 5 to 10,
the vessels grew again before ultimately reaching a plateau.

As previously reported, in this in vivo angiogenesis model, new blood vessels
reach the arterial patch graft at day 10 and open around the graft. The blood
in the new blood vessels flowed into the common jugular vein around the graft.
Therefore, we speculate that the new blood vessels reached the arterial graft on
day 10, at which point the angiogenesis process ceased. Measurements from days
10 to 14 should also be conducted.
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Fig. 3. The length of new blood vessels in the numerical simulation

5 Discussion

Our mathematical model of angiogenesis successfully depicted the growth of new
vessels to fit the experimental data. The results of our mathematical simulation
are similar to those in our previous work on the angiogenesis of arterial patch
graft. Although it is a site of VEGF production different from tumor angio-
genesis, it was possible to apply the pre-existing mathematical model by the
resolution of chemotaxis paradox. With this improvement, our mathematical
model of angiogenesis can be applied to not only tumor angiogenesis but also
typical angiogenesis occurring in vivo.

VEGF was measured by an ELISA after extracting the total protein from
tissue in the present study. While we are confident that most of the proteins were
extracted, a small amount may still have remained. However, most of the VEGF
was extracted, so any remaining protein was considered to have no significant
influence on the fluctuation of the VEGF concentration.

The number of cases and time points for which VEGF was measured were not
very large in the present study. Therefore, it is necessary to increase the number
of cases and improve the accuracy of the VEGF fluctuations. In addition, the
number of cases in which the length of new blood vessels was measured was
insufficient and should be increased to three per time point in a future study.
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Following such improvements, future studies should examine whether or not the
experiment and mathematical simulation match.
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Abstract. We construct a multi-scaled mathematical model of tumor
malignancy in bone microenvironment including tumor cells, osteoblasts,
and ostoclasts underlined by NF-κB family, RANKL, RNK, and OPG
molecules. Pathways causing change of the amounts of osteoblasts, osteo-
clast, and cancer cells are analyzed via numerical simulations.

1 Introduction

Bone maintains a normal state by repeating bone formation by osteoblasts
and bone resorption by osteoclasts. RANKL, secreted by the osteoblastic line,
induces the differentiation of the osteoclast lineage. When bone is decomposed
and absorbed, TGF-β contained in the bone matrix is released, which promotes
the differentiation of the osteoblast lineage. Due to such mutual relations, the
bone mass is kept constant. However, when cancer cells metastasize to the bone
microenvironment, their balance is lost.

In the tumor-bone microenvironment, interaction among cancer cells,
osteoblasts, and osteoclasts has been shown to play important roles for the pro-
gression of bone metastatic lesions. The mesenchymal stem cells (MSC), the
progenitors of osteoblasts, contribute to the regeneration of bone tissues [1,2].
Monocytic progenitors are well known to differentiate to osteoclasts from under
inflammatory conditions [3] through cytokine stimulation such as M-CSF [4] and
RANKL [5]. Cancer stem cells (CSCs) are a subpopulation of cancer cells which
are able to self-renew and differentiate, which make them to be considered as
the seeds of cancer, as they are responsible of cancer cells heterogeneity and
chemoresistance [6].

RANKL, OPG and TGFβ are well known cytokines to be involved in
the interaction of cancer cells, osteoblasts, and osteoclasts in the tumor-bone
microenvironment [7,8]. It is found that RANKL expressed in osteoblasts pro-
moted osteolysis associated with prostate cancer growth in the bone microen-
vironment [9]. TGFβ is released in the bone microenvironment by osteolysis
c© Springer Nature Singapore Pte Ltd. 2021
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because TGFβ is stored in the bone matrix. TGFβ promotes the induction of
osteoblasts associated with rat prostate cancer growth [10], MSCs [11–13], and
RAW267.4 cell line, which is the precursor of osteoclasts [10,14]. TGFβ also
promotes cell proliferation of rat prostate cancer [10] and mouse breast cancer
[14]. Recently it is shown that TGFβ is involved in the induction of cancer stem
cell in vivo [15].

In this study, we identify the factors that disrupt the equilibrium state in bone
formation by constructing a mathematical model that includes the interaction
between osteoblasts, osteoclasts, and cancer cells.

2 Modeling (1)

First, we construct a model of bone metabolism composed of osteoblast cell and
osteoclast cell. The number of MSCs (X1) changes by the physiological supply
(m0) and the consumption by the differentiation to osteoblasts (X2). Similarly,
the number of monocyte (X3) changes by the supply (m1) and the consumption
of the differentiation to osteoclast (X4). Amount of bone matrix (X6) changes
by the bone formation by osteoblasts (l2) and bone destruction by osteoclasts
(de) (Fig. 1 and Eq. (1)–(7) with m0 = m0(X7) and m1(X9) = am1) (Table 1).

Fig. 1. Model diagram including bone metabolism and bone metastasis. It is composed
of osteoblasts, osteoclasts, and cancer cells. Osteoblasts produce bone matrix and osteo-
clasts absorb bone. The growth of cancer cells is promoted by TGF-β released from
the bone microenvironment.
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dX1

dt
= m0(X7,X9) − l1(X7)X1 (1)

dX2

dt
= l1(X7)X1 − l2X2 (2)

dX3

dt
= m1(X9) − l3(X5, RANKL)X3 − d1(X5)X3 (3)

dX4

dt
= l3(X5, RANKL)X3 − d2X4 (4)

dX5

dt
= pX1 − d3X5 (5)

dX6

dt
= l2X2 − deX4X6 (6)

dX7

dt
= tg(X4)X6 − d4X7 (7)

dX8

dt
= m2X7 − d8X8 (8)

dX9

dt
= l4(X8) + (k9(X5,X7) − d8)X9 (9)

As far as the infinitesimal variation upon the differentiation coefficientes is
valid, we can assume the following linear relations of the change of these coeffi-
cients under the reaction of molecular level:

m0(X7) = am + bmX7 (10)
l1(X7) = al + blX7 (11)

l3(X5, RANKL) = l3(X5, kX2) = λ
kX2

X5 + kX2
(12)

d3(X5) = bdX5 (13)
tg(X4) = btgX4 (14)
l4(X8) = bl4X8 (15)

k9(X5,X7) = ak9 + bm2X7 (16)

Table 1. Variables in the bone metastasis model

Valuable Corresponding object

X1 mesechymal stem cell

X2 osteoblast

X3 monocyte

X4 osteoclast

X5 OPG

X6 bone matrix

X7 TGFβ

X8 cancer stem cell

X9 cancer cell
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3 Analysis via Simulations (1)

Although bone mass is a variable changing in time in the above bone metabolism
model, it is regarded as a constant in a dynamic equilibrium realized in the nor-
mal state. It is the case of dX6/dt=0, where the amount of bone in the dynamic
equilibrium state is determined by the number of osteoblasts and the num-
ber of osteoclasts. Since the solution cannot be obtained analytically, changes
of this dynamical equilibrium are analyzed numerically. Since constant bone
metabolism requires for each reaction to occur at the same rate, we put the
parameters to be roughly 1, except for protein degradation faster than cell degra-
dation. Thus d3 and d4 are set to be 10.

To execute sensitivity analysis, change of the equilibrium of the bone matrix
is examined numerically when each parameter is changed in the range of 0.1 to
10 times. It is observed that the bone mass greatly increases when am and bm

increase, and that the bone mass decreases when m1 increases. These parameters
correspond to the supply of pre-osteoblasts and pre-osteoclasts, respectively. In
contrast, change of the dynamical equilibrium is small relative to the perturba-
tions of differentiation constants.

We thus conclude that even if the differentiation is promoted, the precursor
cells used for differentiation are insufficient to promote reaction thereafter. In
other words, bone mass abnormally increases or decreases by the metastasis of
cancer, because cancer cells promote the supply of mesenchymal stem cell or
that of monocyte, respectively.

Fig. 2. Simulation of equilibrium bone matrix changing parameters related to the
increase of osteoblasts and osteoclasts (Model 2). The horizontal axis represents the
changing parameter and the vertical axis represents the equilibrium point of X6 (bone
matrix).
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4 Modeling (2)

Next, we construct a model of the stage when cancer has metastasized to bone.
We assume that the number of cancer cells (X9) changes by the supply of the
asymmetric cell division of CSC (X8) and division of cancer cell, and decrease by
the defense system by immune cells. From the above analysis of bone metabolism,
it is necessary for m0 or m1 to induce abnormally increasing or decreasing of
the bone mass, where cancer cells act on these pathways (Fig. 1 and Eq. (1)–(9)
with m0 = m0(X9), m1 = m1(X9)).

5 Analylsis via Simulations (2)

We investigate the change of bone mass due to the increase in cancer cells,
putting db = 0.01 and ak9 = 1. Numerical simulations show the change of dynam-
ical equilibrium when db decreases or ak9 increases due to immunosuppression
and cancer malignancy. It is observed also that this equilibrium collapses around
ak9 = 10, where cancer cells grow continuously (Fig. 2).

After this critcal point cancer cells are continuouosly proliferating, which
results in the increase of osteoclast (the decrease of bone mass) under the pre-
sense osteolytic bone metastasis indicated by m0(X9) = 0. According to the type
of cancer, actually, there arises either m0(X9) = 0 or m1(X7) = 0. In the model
containing both pathways, however, osteoblastic bone metastasis or osteolytic
bone metastases can switch in numerical simulations, depending on the nature
of the cancer cells (Table 2).

Table 2. Summary of parameter values

Symbol Value Description

am 1 supply of mesenchymal stem cell

bm 1 Promotion of mesenchymal stem cell supply by TGF-β

al 1 Differentiation of mesenchymal stem cell to osteoblasts

bl 1 Promotion of differentiation of mesenchymal stem cell by TGF-β

m1 1 supply of monocyte

λ 1 Differentiation of monocyte to osteoclasts

l2 1 Bone matrix formation by osteoblasts

de 1 Osteoclast-induced osteolysis of bone matrix

p 1 OPG secretion from preosteoclasts

tg 1 Release of TGF-β from bone matrix

d1 1 Disappearance of monocyte

d2 1 Disappearance of osteoclasts

d3 10 OPG decomposition

d4 10 Degradation of TGF-β

m2 1 Cancer stem cell supply

bl4 1 Asymmetric division of cancer stem cells into cancer cells

ak9 1 Promotion of cancer cell growth by TGF-β

bk9 1 Suppression of cancer cells by OPG

d8b 1 Suppression of cancer stem cells by in vivo defense mechanism

d9b 1 Suppression of cancer cells by in vivo defense mechanism
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6 Conclusion

In the first model of bone metabolism, it is observed that the change of bone
mass is large when there arises an abnormal pathway related to the supply of
progenitor cells. Therefore, if the bone mass is abnormal, the treatment that
suppresses the pathway related to supply rather than suppression of differen-
tiation is considered to be more effective. In the second model, next, increase
of the supply of cancer cells to osteoblasts or osteoclasts is switched between
osteoblastic and osteolytic.

7 Discussions

Among many mathematical models on bone metastasis [16–18], novelty of our
mathematical model are the following. (1) This model involves the mechanisms
by the regulation of precursors and differentiated type of cancer cells, osteoblasts,
and osteoclasts. (2) It reflects both osteolytic and osteoblastic bone metastasis.
We shall provide quantitative data in a forthcoming paper to treat bone metas-
tases in more details.
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Abstract. Breast cancer stemcells (CSCs) are involved themalignant transforma-
tion of breast cancer, including metastasis, because they are more stress-resistant
and have higher tumorigenicity than the surrounding breast cancer cells (non-
CSCs).We aimed to elucidate the various signaling networks involved in the trans-
formation of mammary epithelial cells into tumor cells based on literature review.
We found that constitutive activation of the NF-κB pathway maintains CSCs in
basal-like breast cancer, a subtype of triple-negative breast cancer, where NF-
κB-mediated induction of JAG1 in non-CSCs results in the stimulation of Notch
signaling in CSCs. On the other hand, epithelial-mesenchymal transition (EMT)
and its reverse reaction, mesenchymal-epithelial transition (MET), are thought to
be involved in breast cancer cell metastasis, which makes elucidating their regu-
latory mechanisms essential. We identified HCC38, a basal-like breast cancer cell
line, as a suitable model to investigate such mechanisms, because EMT and MET
are in intratumoral equilibrium with each other in HCC38. In the HCC38 study,
we found that multiple signaling pathways between epithelial and mesenchymal
cells are involved in the regulation of the dynamic equilibrium between EMT and
MET. Mathematical simulation of these intracellular and intercellular signaling
networks involved in the malignant transformation of breast cancer could lead
to the elucidation of the mechanisms of tumor malignant transformation and the
development of therapeutic targets.

Keywords: Triple-negative breast cancer · Basal-like breast cancer ·
Epithelial-mesenchymal transition · Signal transduction · Cell-cell interaction

1 Subtypes of Breast Cancer

Breast cancers are classified into four subtypes, including luminal-like, ERBB2-
enriched, basal-like, and claudin-low breast cancers, based on their gene expression
profiles [1–3]. Luminal-like breast cancers, which account for approximately 70% of
all breast cancers, depend on signals downstream of the estrogen receptor (ER) and
the progesterone receptor (PR) for survival and proliferation. Therefore, inhibitors of
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these receptors, such as selective androgen receptor modulators, and of hormone syn-
thesis, such as aromatase inhibitors, are effective, resulting in relatively good prognosis.
ERBB2-enriched breast cancers, which account for about 20% of all breast cancers, are
caused by genetic amplification of the oncogene ERBB2 (HER2) and depend on pro-
liferation signals downstream of ERBB2. Herceptin, an anti-ERBB2 antibody, binds to
ERBB2 overexpressed on the membrane of breast cancer cells and induces antibody-
dependent cytotoxic immune cell activity, resulting in an antitumor effect. In contrast,
triple negative breast cancer (TNBC), which does not express these therapeutic target
molecules, including ER, PR, and ERBB2, is found in approximately 10% of breast can-
cer patients and includes basal-like breast cancer and claudin-low breast cancer subtypes.
To date, there have been no molecular targeted therapies for TNBC, and chemotherapy
is mainly used in these cases. In addition, prognosis for TNBC patients is poor due to
the high malignancy of the cancer cells themselves, including their invasive potential
[4].

2 Differentiation and Malignant Transformation of Normal
Mammary Epithelial Cells

The mammary gland, origin of breast cancer, is formed by a ductal structure consisting
of two types of epithelial cells. During gestation, luminal epithelial cells on the inner
side of the lumen produce milk, while basal epithelial cells on the outer side transport
the milk from the lumen to the nipple by contraction. These epithelial cells differentiate
from a single mammary epithelial stem cell (MaSC) (Fig. 1). MaSCs differentiate into
luminal and basal progenitor cells, and the two types of progenitor cells mature by active
proliferation to form milk ducts. Each subtype of breast cancer arises from mammary
epithelial cells at different stages of differentiation [5–7]. Hormone receptor-positive
luminal-like breast cancer and ERBB2-enriched breast cancer develop from relatively
well-differentiated luminal epithelial cells. On the other hand, claudin-low breast cancer
originates fromMaSCs,while basal-like breast cancer originates from luminal progenitor
cells.

Fig. 1. Differentiation of normalmammary epithelial cell lineage and origins of each breast cancer
subtype.
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The two types of mammary epithelial cells, luminal and basal epithelial cells, com-
prise the mammary gland. These cells differentiate from a single mammary epithe-
lial stem cell (MaSC). Different breast cancer subtypes arise from different mammary
epithelial cells.

3 Signaling Networks that Maintain Cancer Stem Cells (CSCs)

3.1 Breast CSCs

Tumors are not a collection of cancer cells with uniform properties, but rather a “tissue”
composed of a variety of cells that can repair themselves in response to external damage
from surgery, drugs, and radiation therapy. This heterogeneity is not only due to the
presence of normal tissues, such as stroma and tumor blood vessels, but is also see in
the cancer cells. The ductal structure of some tumors is similar to that of normal tissues,
suggesting that cancer cells, like normal cells, are undifferentiated cells that can differ-
entiate and mature to form tumors. These undifferentiated cancer cells are named CSCs.
CSCs are thought to maintain their differentiation potential because of their similarity to
the undifferentiated normal cells, from which they originate. However, they also possess
features such as stress tolerance and immune evasion. This ability of CSCs also leads
to the recurrence, where new tumors are formed by the few remaining cancer cells after
treatment (Fig. 2). Metastasis also requires the migration of one or more cancer cells
from the primary tumor site to other organs through blood vessels and lymphatic vessels
to form new tumors, and CSCs are also important for this purpose (Fig. 2). Therefore,
understanding the nature of CSCs and constructing therapeutic strategies based on this
is important for the eradication of the primary tumor and for the control of metastasis.
The CSC hypothesis has been proposed for a long time, but with the development of
flow cytometry technology, it has become possible to analyze individual cells based on
the expression of surface antigens. CSCs from leukemia cells were first identified in
1997 [8]. In 2003, Al-hajj et al. isolated breast CSCs from solid tumors for the first time
[9] using surface antigens of various tissue stem cells as indicators and evaluated their
tumorigenicity in immunodeficientmice.They reported thatCD24lowCD44highEpCAM+

fraction in breast cancer cells showed higher tumorigenicity than other fractions. Sub-
sequently, it was reported that breast CSCs demonstrated high sphere-forming ability
in an anchorage-independent manner in floating cultures in vitro and high acetalde-
hyde dehydrogenase enzyme activity. Based on these characteristics, various methods
have been used to culture breast CSCs, allowing us to investigate various CSC signal
transduction pathways. Activation of PI3K/AKT signaling [10], IL6/STAT3 signaling
[11], Notch signaling [12], transcription factors related to epithelial-mesenchymal tran-
sition (EMT) [13], IL8/CXCR1 signaling [14], and NF-κB signaling [15–17], as well
as decreased expression of let7 miRNAs [18] were observed in breast CSCs, indicating
that these signaling pathways play an important role in tumorigenesis. Furthermore, it
was reported that high expression of reactive oxygen species (ROS) scavenger enzymes
resulted in resistance to radiotherapy [19], indicating the importance of CSCs. How-
ever, the activation and maintenance of these signaling pathways by breast CSCs is
still unclear. Therefore, analyzing their similarity to undifferentiated normal mammary
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epithelial cells, environmental factors surrounding CSCs, and metabolic effects is an
important point of interest.

Fig. 2. Importance of cancer stem cells in metastasis and recurrence

Most cancer cells undergo cell death due to anoikis and stress when they leave the
primary site. However, cancer stem cells are resistant to stress and migrate to distant
organs and metastasize due to their ability to form new tumors. Furthermore, CSCs have
been shown to be resistant to radiotherapy and anticancer drug treatments due to reactive
oxygen species (ROS) scavenging and the activation of drug efflux pump mechanisms.
Recurrence occurs when a few surviving CSCs form tumors.

3.2 Constitutive Activation of NF-κB in Breast Cancer

Although the transient activation of NF-κB is strictly regulated in normal cells, NF-κB
is constitutively activated in various cancer types including breast cancer, pancreatic
cancer, colon cancer and leukemia. The constitutive NF-κB activation induces cancer
cell survival, proliferation, andmetastasis.We have previously demonstrated that NF-κB
is constitutively and strongly activated in TNBCs, including basal-like and claudin-low
breast cancers, compared to luminal-like and ERBB2-enriched breast cancers, and NF-
κB activation is mediated by overexpression of NF-κB-inducing kinase (NIK) [20].
Furthermore, we have shown that NIK overexpression in TNBC occurs because of dis-
rupted epigenetic gene expression repression mechanisms [21]. In addition, since breast
CSCs are involved in the malignant transformations of cells, leading to metastasis and
recurrence, we reported the mechanism of breast CSC maintenance by basal-like breast
cancer-specific NF-κB-JAG1-Notch signaling [22].
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3.3 Maintenance of Breast CSCs via JAG1-Notch Signaling Induced
by Constitutive NF-κB Activation

Prior to our report, several research groups have reported NF-κB activation in breast
CSCs. For example, Iliopoulos et al. reported that the transformation of normalmammary
epithelial cell line MCF10A cells by IL-6 treatment resulted in an NF-κB activation-
dependent expansion of the breast CSC fraction [11], and Murohashi et al. reported that
the CD24low CSC fraction of MCF7 and basal-like breast cancer cell line HCC1954
cells showed stronger NF-κB activation than the CD24high non-CSC fraction [17]. How-
ever, these reports suggest that NF-κB activation in CSCs induces their proliferation
and survival. In contrast, we focused on the activation of signal transduction by inter-
action between CSC and non-CSC, since the expression of various ligand molecules is
induced downstream of NF-κB [22]. We found that when basal-like breast cancer cells
with enhanced NF-κB activation were co-cultured with the same breast cancer cells
with unaltered NF-κB activation, the percentage of CSCs in the unaltered NF-κB group
increased significantly. Under these conditions, the expression of Notch target genes
increased in CSCs of co-cultured breast cancer cells with unaltered NF-κB activation.
Therefore, we focused on Notch signaling. We found that JAG1, a Notch ligand, was
induced by NF-κB activation in basal-like breast cancer. Furthermore, knockdown of
JAG1 by RNAi suppressed the NF-κB-dependent increase of CSCs. Based on these
results, we proposed a model for NF-κB-mediated maintenance of CSC populations
in basal-like breast cancer, where NF-κB activation in non-CSCs surrounding CSCs
induces expression of JAG1, which in turn activates Notch signaling in CSCs, thereby
their maintenance (Fig. 3) [22]. Furthermore, since breast CSCs are thought to play an
important role in metastasis, we analyzed the relationship between JAG1 expression and
metastasis rate in clinical samples. The metastasis rate was significantly higher in the
JAG1high group compared to JAG1low group in basal-like breast cancer, suggesting that
Notch signaling may increase the number of breast CSCs in vivo [22]. In addition, pro-
gesterone secreted during the menstrual cycle and pregnancy induces the expression of
RANK ligand (RANKL) in luminal epithelial cells, in turn stimulating RANK in basal
epithelial cells, where NF-κB activation induces JAG1 expression. In other words, nor-
mal mammary epithelial cells are also involved in the maintenance of CSCs of basal-like
breast cancer [22, 23].

In basal-like breast cancer, NF-κB activation is induced by the overexpression of
NF-κB-inducing kinase (NIK) due to epigenetic abnormalities and by inflammatory
cytokines, such as TNF-α, leading to JAG1 expression in cancer cells (non-cancer stem
cells) that surround cancer stem cells (CSCs). JAG1 activates Notch signaling in breast
CSCs and induces self-renewal or survival activities, thereby maintaining breast CSCs
in tumors. Furthermore, surrounding normal cells, where NF-κB is activated due to
pregnancy or inflammation, also express JAG1, suggesting that normal cells may also
contribute to the maintenance of breast CSCs in the cancer microenvironment. This
figure was originally shown in Fig. 8c of Ref. [22].
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Fig. 3. Role of NF-κB-JAG1-Notch signaling in the maintenance of basal-like breast cancer stem
cells

4 Signaling Network Regulating Intratumoral Bidirectional
Transitions Between Epithelial and Mesenchymal Cells in TNBC

EMT and its reverse reaction, mesenchymal-epithelial transition (MET), are critical in
breast cancer metastasis, along with CSC maintenance (Fig. 4) [24, 25]. EMT reduces
cell-cell contact and promotes cell motility, allowing cancer cells to migrate from the
primary lesion to nearby blood vessels and pass through the vessel wall. Since EMT and
MET are dynamic processes, mesenchymal cancer cells that emerge from EMT tran-
siently undergoMET and revert to epithelial cancer cells by interacting with other cancer
and normal cells. Epithelial cancer cells may undergo EMT and reacquire the mesenchy-
mal phenotype before invading the blood vessels. In other words, EMT and MET may
be in equilibrium, and their equilibrium may be spatiotemporally regulated during the
process of metastasis, especially during the period from the primary lesion occurrence
to intravascular invasion and that from extravasation at the metastatic site to metastatic
tumor formation. Studies using immortalized non-cancerous mammary epithelial cells
have shown that the TGF-β andWnt pathways cooperate to induce EMT [26]. However,
the molecular mechanisms that regulate bidirectional EMT-MET equilibrium in breast
cancer cells remain unclear. Since epithelial and mesenchymal cancer cell populations
maintain an equilibrium state of interconversion in the basal-like breast cancer cell line
HCC38, we analyzed the regulatory mechanism of the EMT-MET interconversion as a
model system of in vivo metastasis [27].

Epithelial cancer cells, which form the primary tumor, have a high proliferative
capacity, strong intercellular adhesion, but low cell motility. On the other hand, mes-
enchymal cancer cells have low proliferative activity and intercellular adhesion, but
high viability and motility. In the primary tumor, EMT and MET are in equilibrium,
and the emerging mesenchymal cells migrate to blood vessels and invade them. They
then migrate within the blood vessel and exit the vessel at another location, where EMT
and MET are again in equilibrium, and epithelial cells proliferate and form metastatic
tumors.
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Fig. 4. Importance of epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial
transition (MET) in cancer metastasis

Fluorescence-activated cell sorter (FACS) analysis of HCC38 showed that there
were two populations of cells, EpCAM+CD44low and EpCAM–CD44high, with a ratio
of approximately 9:1. In addition to EpCAM, an epithelial cell marker, western blotting
and immunostaining analysis showed that EpCAM+ cells also express epithelial cell
markers such as E-cadherin, ZO-1, and Claudin-1, while EpCAM– cells express mes-
enchymal cell markers such as vimentin and N-cadherin. Forced expression of ZEB1,
a transcription factor that induces EMT, in HCC38 markedly increased EpCAM– cell
numbers. These results indicate that EpCAM+CD44low and EpCAM–CD44high cells are
epithelial and mesenchymal cells, respectively. Therefore, epithelial and mesenchymal
cancer cells were maintained at a 9:1 ratio in HCC38 cells (Fig. 5).

Fig. 5. Coexistence of epithelial and mesenchymal cell groups in HCC38

HCC38cellswere separated intoEpCAM+ andEpCAM– populations byFACS.Cells
before and after FACS sorting were immunostained with antibodies against E-cadherin
and vimentin. EpCAM+ cells are E-cadherin+ and vimentin–, while EpCAM– cells are
E-cadherin– and vimentin+. Western blotting analyses revealed that EpCAM+ cells were
positive for epithelial markers (E-cadherin, ZO-1, and Claudin-1), while EpCAM– cells
were positive for mesenchymal markers (N-cadherin and vimentin). This figure was
originally shown in Fig. 1b, 1c, and 1g of Ref. [27].
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More interestingly, whenGFPwas expressed only in EpCAM+ epithelial cells, GFP+

cells appeared in the EpCAM– mesenchymal population, and their ratio in themesenchy-
mal population increased over time. Conversely, GFP+ cells appeared in the EpCAM+

epithelial population over time when GFPwas expressed only in EpCAM–mesenchymal
cells. These results indicate that epithelial andmesenchymal cells are in equilibriumwith
each other in HCC38 cells. Furthermore, experiments where the ratio of EpCAM+ to
EpCAM– cells was artificially changed revealed that both epithelial and mesenchymal
populations promote the migration of cells from other populations to their own (Fig. 6)
[27]. Our data on the molecular mechanisms of equilibrium between epithelial and
mesenchymal cell populations in HCC38 can be summarized as follows:

1) HCC38 maintains EpCAM+ epithelial and EpCAM– mesenchymal cell populations
at a fixed ratio of 9:1;

2) EMT occurs, and it is enhanced by mesenchymal cells;
3) MET also occurs, and it is enhanced by epithelial cells;
4) Knockdown of EMT-inducing transcription factors ZEB1 or SLUG significantly

suppressed EMT, whereas knockdown of ZEB2 or SNAIL did not affect EMT;
5) Knockdown of ZEB1 or SLUG induced partial MET;
6) A JAK2/3 inhibitor suppressed EMT, but inhibitors against WNT, IL-8, NOTCH,

p38, and IKKβ did not affect EMT;
7) A GSK3β inhibitor enhanced EMT;
8) Neutralizing antibodies against TGF-β inhibited EMT.

These results suggest that the TGF-β signaling pathway in epithelial cells and an
unidentified pathway incorporating JAK2/3 in epithelial cells likely promote EMT by
inducingZEB1expression or SLUGactivation.On the other hand, theGSK3β-dependent
pathway may negatively regulate EMT, thus suppressing the expression and activity of
ZEB1 and SLUG. Interestingly, Wnt inhibitors, which suppress EMT in immortalized
mammary epithelial cells, had no effect on EMT inHCC38 cells [27], suggesting that the
regulatory mechanism of EMT differs between cancer and normal cells. The results of
the inhibitor experiments suggest that various ligands expressed by mesenchymal cells
in HCC38 may promote the EMT pathway or inhibit the EMT inhibitory pathway. TGF-
β1 is highly expressed in HCC38 mesenchymal cells and is specifically induced during
EMT in primary breast cancer, suggesting that TGF-β1 is a promising candidate for
such a ligand. However, it is necessary to identify the signaling pathways that inhibit the
expression of ZEB1 andCD44 [28]. Since the expression of ZEB1 andCD44 is repressed
by variousmiRNAs, including themiR-200 family for ZEB1 [29] andmiR-373 and 520c
for CD44, signals inducing the expression of these miRNAs may be involved in MET
promotion. The efficiency of EMT is approximately one order of magnitude higher than
that of MET, while the proliferation of mesenchymal cells is significantly slower than
that of epithelial cells. The migration rates of EMT and MET and the proliferation rates
of the two populations may be influenced by their size, but are likely coordinated to
maintain a fixed population ratio (Fig. 6) [27].

See Sect. 4 for details. EpCAM, epithelial cell adhesion molecule; GSK3β, glycogen
synthase kinase 3β; SLUG, zinc finger protein SNAI2; TGF-β1, transforming growth
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Fig. 6. Molecular mechanism of intra-tumoral equilibrium between epithelial and mesenchymal
cell populations in HCC38.

factor-β1; TGF-βR, transforming growth factor-β receptor; ZEB1, zinc finger E-box-
binding homeobox 1. This figure was originally shown in Fig. 7 of Ref. [27].

5 Conclusion

In this review, based on our studies, we describe the signaling networks involved in the
malignant transformation of breast cancer from two perspectives: CSCmaintenance and
EMT. Both systems are regulated by the intercellular signaling networks spread between
multiple cells and the intracellular signal networks in each cell. The factors involved in
these signaling networks have only been partially explored, and the full picture will be
elucidated by future molecular and cellular biological analyses. Mathematical simula-
tions of these signaling networks will be used to elucidate the mechanisms of malignant
tumor transformation and identify therapeutic targets.
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Abstract. Cell-free protein production technology can easily produce recombi-
nant proteins from cDNA temples, because it is synthesized in a tube without cell
culture. We developed a wheat cell-free protein production system from washed
wheat embryos. Since our cell-free system is based on eukaryotic translational
machinery, it is very suitable for synthesis of eukaryotic proteins such as human
protein. Using this system, recently wemade a protein array technology consisting
of proteins synthesized in 384-well formatted plates, and then constructed human
protein array consisting of more than 20,000 recombinant human proteins (20K-
HuPA). In addition, combinations with AlphaScreen or magnetic plate technol-
ogy promotes development of a new high-throughput and high-sensitive approach
for identification of protein–protein or protein–antibody interaction. Herein, we
demonstrate the results of protein interactomes and antibody validation by using
protein array.

1 Importance of Protein–Protein Interactome

Proteins are the basic molecules responsible for the biological phenomena of all living
organisms. Until now, proteins were thought to function alone, but recent many studies
have revealed that many proteins function by interacting with other proteins to form
multiple complexes [1]. In particular, in higher organisms such as humans, it has been
found that the formation of protein complex is an important regulatory mechanism for
protein function, andunderstanding of the protein complex is for elucidating higher-order
functions of higher organisms. Therefore, finding a protein that interacts with the protein
of interest has become an indispensable research for functional analysis of proteins. In
addition, the protein complex is also expected to be drug targets because they function
as switches for cell proliferation and response. In fact, in recent years, several inhibitors
that inhibit formation of the complex such as ledipasvir known as hepatitis C virus
therapeutic drug, have been put on the market and has shown great medicinal properties.
The technique for comprehensively identifying interacting proteins is called interactome
analysis. As mentioned above, this method is extremely important for the development
of life science in general, from basic research to applied research such as drug discovery.
Therefore, it is very important to understand how proteins interact with target proteins.
Identification of partner proteins has been carried out by several technologies like the
yeast two-hybrid system [2, 3], mass spectrometry analysis after immunoprecipitation
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[4, 5], and cell-free based protein arrays that we have previously described [6, 7]. These
methods provide many critical findings. Sine intracellular proteins are regulated by
quite complicated systems like signalling transduction cascades, multiple technologies
can strongly promote our understanding of cellular protein regulation.

1.1 Wheat Cell-Free Protein Production

In principle, if all proteins are prepared as a substrate, it is possible to identify partner
proteins. Because complete genomic DNA sequencing of various species showed a gene
set coding a protein, we can obtain DNA template for protein production. However,
protein production is not so simple. Currently, three strategies are being used for protein
production: chemical synthesis, in vivo expression, and cell-free protein synthesis. The
first two methods have severe limitations. Chemical synthesis is not practical for the
synthesis of peptides longer than 30 residues [8], and in vivo expression can produce
only those proteins which do not significantly interfere with host cell physiology [9–11].
Cell-free translation systems, in contrast, can synthesize proteins with high speed and
accuracy, approaching in vivo rates [12, 13], and they can express proteins that seriously
interfere with cell physiology. However, they are relatively inefficient because of their
instability [14].

Fig. 1. The mRNA synthesis from PCR-based cDNA template.

More than
20 years
ago, we
found that
plants
contain
endoge-
nous
inhibitors
of transla-
tion [15]
and we
demon-
strated
that elim-
ination
of these
inhibitors
led to an
extraordi-
narily stable and efficient translation system [16]. However, in order to adapt the cell-free
system to address the high-throughput needs of modern proteomics, several critical
improvements were needed. More recently, we improved the system performance by
examining the following critical design issues [17]: (a) optimization of the 5’- and
3’-UTRs of mRNA; (b) elimination of the 5’–7 mGpppG (cap) and poly(A)-tail (pA),
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thereby increasing translation initiation; (c) design of PCR primers to generate tran-
scription templates directly from Escherichia. coli cells carrying cDNAs (Fig. 1), thus
bypassing the time-consuming cloning steps; (d) construction of an expression vector,
specialized for the massive production of proteins; (e) continuous translation reactions;
(f) robotic automation of the whole translation steps starting with transcription. These
improvements provide a technology for highly productive eucaryotic cell-free protein
production from wheat embryo.

Fig. 2. Protein production on a 384-well plate using a wheat cell-free protein production method.

1.2 Cell-Free Based Protein Array

The wheat cell-free system is available to use PCR-based DNA template for large-size
protein production such as human [17]. In addition, protein production by the cell-free
system can carry out in a small well in 384-well plate [18], indicating that the cell-free
system can prepare a large number of proteins. Furthermore, recent developments in
DNA synthesis technology have been remarkable, and it has become possible to prepare
a full-length cDNA set possessed by one species because it is possible to synthesize
long DNA template found in higher eukaryotic genes. Therefore, the combination of the
wheat cell-free system and a set of full-length cDNA can construct protein array (Fig. 2).
Using this system, a set in which different cell-free synthetic proteins are mounted in
each hole of a 96-hole or 384-hole plate is called a cell-free based protein array [18]
(Fig. 3).
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Fig. 3. Cell-free based protein array.

2 E3 Ubiquitin Ligase Protein Array

Protein ubiquitination plays crucial roles in numerous cellular processes, including cell
growth, regulation of diverse signal transduction, and the development of disease [19–
21]. It is mediated by three enzymatic reactions, the ubiquitin-activating enzyme E1, the
ubiquitin-conjugating enzyme E2 and E3 ubiquitin ligase (E3). Because the substrate
specificity of protein ubiquitination iswidely thought to bedeterminedmainly byE3 [22],
identification of E3 interacting with target protein is a crucial step. To date, more than
600 E3s have been annotated in the human genome [23], and this diversity contributes to
the specific recognition of numerous target proteins in eukaryotic cells. Identifying the
E3 responsible for a target protein provides extensive information about the regulation
mechanisms of half-life, localization, and functions in both the target proteins and the
E3s in each biological phenomenon.

Assays based on living cells such as yeast, mammalian cultured cells, and model
mouse are currently the primary tools used to identify combinations of E3s and their tar-
get proteins. Indeed, many physiologically important interactions between E3 and tar-
get protein were identified with various kinds of the cell-based assay [24–27]. However,
because during the screening, a target protein is usually degraded immediately by 26S
proteasomes after ubiquitination, the E3s of many target proteins—even widely stud-
ied proteins—remain unidentified. To overcome these situations, we developed a novel
in vitro screening method by combining the cell-free based protein array and a high-
throughput luminescence-based binding assay that is able to use crude protein samples
(AlphaScreen) [7]. An E3 protein array consisting of 250 E3 ubiquitin ligases was made
by the wheat cell-free system. To establish the high-throughput binding assay, we used
an AlphaScreen, a luminescence-based interaction assay, to detect interaction between
recombinant MDM2 and p53. This assay is performed in a 384-well format with only
small amount (0.5 to 1.0 μL) of the crude translation mixtures from the wheat cell-free
systemwithout purification [28, 29]. As shown in Fig. 4A, luminescent signal is obtained
when FLAG-tagged E3 and biotinylated p53 are in proximity. Using this newmethod, we
foundnovel E3s interactingwith p53 (Fig. 4B).A several E3s in them induced ubiquitina-
tion of p53 (Fig. 4C). Therefore, these results demonstrated that the assaywedeveloped is
a powerful tool for the identification of novel E3s targeting proteins of interest. So far, the
E3protein arrayplatform identifiedmanyE3s responsible for the proteins of interests. For
examples,MINDbomb2 (MIB2) has been identified as the responsibleE3 involvingwith
the proteolysis of a deubiquitinating enzyme, CYLD that negatively regulate NF-κB sig-
naling through its deubiquitinating activity [30]. Interestingly, the array system revealed
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that MIB2 also involved in the proteolysis of cellular FLICE-inhibitory protein (cFLIP)
[31]. Furthermore, two E3s, STUB1 and RNF38 were identified as responsible E3s for
RUNX1, a transcription factor correlatingwith development of hematopoietic neoplasms
[32, 33]. These reports strongly indicated the robustness of the E3 array system.

Fig. 4. Screening of E3 ubiquitin ligase interacting with p53. (A) Schematic diagram of the
AlphaScreen assay. (B) The result of the AlphaScreen assay to detect the binding between p53 and
250 E3 ligases (E3s). Among the hit E3s with high AlphaScreen signal, the E3s that were already
reported to bind to p53 are indicated in blue characters, and the E3s thatwere newly identified in the
AlphaScreen are in red characters. (C) In vitro ubiquitination assay of p53 by hit E3s. Biotinylated
p53 was mixed with each E3 and HA-tagged ubiquitin, and the ubiquitination reaction was car-
ried out. Then the biotinylated p53 were pull-downed with streptavidin (STA)magnetic beads, and
polyubiquitin chains on the p53 were detected by immunoblot analysis using anti-HA-antibody.

3 CF-PA2Vtech (Cell-Free Based Protein Array for Antibody
Validation)

A molecule of antibody has three special features: 1) high specificity, 2) high affinity,
and 3) a high variety of recognition molecules [34–36]. Utilizing these features, the anti-
body is widely used to detect specific molecules such as proteins, peptides, nucleotides,
or small chemical compounds in a broad range of biotechnological applications such
as ELISA (enzyme-linked immunosorbent assay), immunoblotting, immunohistochem-
istry, and immunoprecipitation. In addition, the monoclonal antibody (mAb) has also
been used in many medical therapies such as cancer immunotherapies [37, 38] and
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infectious disease treatments [39–41]. In these utilizations of the antibody, especially
for antibody drugs, the specificity of the antibody is the most important feature because
the antibody is expected to recognize a single specific target molecule only. However, it
is not easy to validate antibody specificity [42].

Since the antibody is widely used for multiple applications as described above,
the validation methods are based on these applications. For example, an antibody for
detecting a specific virus should be validated by using a wide variety of related viruses to
prevent false-positive reactions. According to this concept, the best validation technique
for an antibody against a specific human protein requires a method using all human
proteins. However, it is impossible to collect all human proteins from cells or tissues
because limited proteins are expressed in them. Thus, the cross-reactivity of a general
antibody is based on limited data using several kinds of extracts from selected cells
and/or tissues. A simple method for antibody validation using a wide-range of human
proteins would provide useful information for researchers and medical doctors.

Previously, a human full-length cDNA set for wheat cell-free protein synthesis was
reported [43]. All human recombinant proteins for the array were synthesized as a fusion
form of N-terminal FLAG-GST (FG) protein by a wheat cell-free protein production
system on 384-well (Fig. 2). In the construction of a protein array plate for antibody
validation, about 14 kinds of FG-proteins were mixed with glutathione-conjugated mag-
netic beads, and then were washed four times with buffer to remove extra proteins from
wheat embryo proteins. Because each well included about 14 kinds of proteins, CF-
PA2Vtech consists of a two-step screening, in which the first step is used to find positive
mixed spot(s) and the second screening identifies individual positive clones.

For antibody validation,we used a protein array of a 1536-well format, inwhich about
14 kinds of proteins were captured on each well as a single spot, and a set consisted of a
single plate. A notable feature of this format is that 19,712 human proteins weremounted
on a single plate. Before screening, to investigate whether proteins could be captured
on the 1536-well spot, a signal on each spot was detected by anti-FLAG antibody.
Fluorescence intensity showed that more than 80% of wells were found within the high
signal zone, indicating that a sufficient amount of FG-protein was captured in each well
on a 1536-well array. Recently, many kinds of mAbs from rabbits have been widely used
in cell biology. Thus, as an antibody for validation, we chose commercially available
anti-PD-1 rabbit mAb (D4W2J, Cell Signaling Technology). Since this anti-PD-1 mAb
has not been conjugated with the HRP enzyme, before the first screening, a background
signal from rabbit-IgG-HRP mAb (NA934, GE Healthcare) used as a second antibody
was analyzed. This pre-check indicated that a single spot (17–12, green colour) was
provided by the rabbit-IgG antibody, indicating that this rabbit-IgG-HRP mAb has very
low cross-reactivity with human proteins.

For the first screening (Fig. 5), anti-PD-1 mAb (100 ng/ml) was applied on a plate.
After washing, rabbit-IgG-HRP mAb was also applied, and then the plate was treated
with detection mixture after washing. On this human protein array, as a positive control,
human PD-1 protein was mounted as two spots (02–46 and 02–48 shown as the blue
colour on the right-upper area of a plate in Fig. 5B). The first screening results indicated
five spots (red colour in Fig. 5B) as positive by imaging. Since the two spots on the
right-upper area were human PD-1 protein (a blue ellipse), five spots (19–01, 19–46,
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19–48, and 25–28) were found as positive mixture proteins in the human protein array.
Detection of the PD-1 protein indicated that this screening worked well.

Fig. 5. The first screening procedure and results of cross-reactive antigen against anti-PD-1 anti-
body using CF-PA2Vtech. (A) First screening procedure using CF-PA2Vtech. 1) 19,712 human
full-length proteins array onto one 1536-well plate with 14 proteins per well. 2) Antibody-
containing solution is added and binding reaction is performed. 3) The plate is washed with
TBST solution. 4) A chemiluminescence reagent is used for detection of binding signals. (B)
The result images of the first screening using anti-PD-1 antibody by CF-PA2Vtech. Five spots
shown as black dots were positive. one spot was TRIM21 (green colour) reacting with secondary
antibody. A blue ellipse indicates the spots of human PD-1 protein as a positive control (Color
figure online).

Next, in the second screening (Fig. 6), a total of 170 proteins from the five positive
and three border spots (17–44, 25–33, and 32–44 in Fig. 5B), three randomly selected
spots (18–39, 26–35, and 31–33), 19 proteins, and control proteins including Venus (27–
37/38) and PD-1were individually spotted in a 1536-well plate as a dual spot. In the plate
for the second screening, the PD-1 protein was used as a double dual spot (05–5/16 and
27–33/34) shown in the two blue ellipses in Fig. 5B. The same reaction condition as that
of thefirst screeningwas used for this second screening. These results froma single image
clearly indicated that four dual clones (09–39/40, 13–09/10, 13–35/36, and 15–23/24
shown as red ellipses) and TRIM21 (07–17/18, green ellipse) from the human protein
array and two dual positive clones (two blue ellipses) reacted with anti-PD-1mAb. Since
TRIM21 has the ability to bind to IgG protein [44], this was considered background and
not cross reactivation. Fortunately, all four positive spots from the first screening had one
cross-reactive clone, indicating that the 1536-well formatted CF-PA2Vtech is suitable
for antigen screening against the antibody.
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Fig. 6. The second screening procedure and results of cross-reactive antigen against anti-PD-1
antibody using CF-PA2Vtech. (A) Second screening procedure using CF-PA2Vtech. 1) Individual
proteins from the first screening positive are re-arrayed a 1536-well plate with a single protein per
well as each dual spot. 2) Antibody-containing solution is added and binding reaction is performed.
3) The plate is washing with TBST solution. 4) A chemiluminescence reagent is used for detection
of binding signals. (B) The result images of the second screening using anti-PD-1 antibody by
CF-PA2Vtech. Four spots shown as black dots were positive. one spot was TRIM21 (green colour)
reacting with secondary antibody. A blue ellipse indicates the spots of human PD-1 protein as a
positive control (Color figure online).

4 Conclusion

In this review, we showed the two examples using the cell-free based protein array.
Because they currently identified substrates or target antigen with its epitope, the cell-
free based protein array would be very useful for screening of proteins interacting with
target protein. If you have an interesting protein, the interactor screening using the protein
array would provide the new insight with new partner protein(s).
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Abstract. Given the current progress in next-generation sequencing
and mass spectrometry, considerable attention has been given to omics
approaches and biomarker discovery to understand heterogeneous dis-
eases. However, it is difficult to analyze them in the biological experi-
mental community because the analysis processes are complicated. To
address this problem, we have introduced and explained in this chapter
the tools used for omics data analysis and how they are used.

Keywords: Biomarker · RNA-Seq analysis · Disease ontology ·
Metabolic networks

1 Introduction

While numerous biomarkers have been discovered for various diseases, their diag-
nostic and predictive abilities lack sensitivity and specificity in heterogeneous
diseases [1,2]. In recent years, the use of high-throughput omics technologies has
led to the rapid discovery of many candidate biomarkers [3]. Furthermore, the
quest to uncover the mechanisms underlying complex biological processes and
the proliferation of various high-throughput “omics” experiments has resulted
in an unprecedented surge in the diversity, volume, and complexity of genomic,
transcriptomic, proteomic, and metabolomic data among others [4]. Thus, these
omics technologies are expected to provide breakthroughs in the research field
of biomarker discovery.

In our recent study, combined metabolomic and transcriptomic analyses
revealed a novel candidate biomarker for idiopathic pulmonary fibrosis (IPF),
a chronic, progressive, and heterogeneous disease [5]. Mass spectrometry data
analyses are mainly performed on a graphical user interface (GUI), whereas
RNA-Seq data analyses are generally performed on a command line interface
(CLI). Data analysis via CLI is complicated because CLI is not user friendly. In
this chapter, we describe the tools that we used for RNA-Seq analysis in our pre-
vious study, and explain how to use them in CLI. Finally, we will introduce tools
for subsequent analyses to provide biological understanding of metabolomic and
transcriptomic data.
c© Springer Nature Singapore Pte Ltd. 2021
T. Suzuki et al. (Eds.): MMDS 2020, PROMS 370, pp. 266–273, 2021.
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2 Downloading and Analysis of Public RNA-Seq Data

2.1 Gene Expression Omnibus

Gene expression omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) is an inter-
national public repository for high-throughput microarray and next-generation
sequence functional genomic data sets submitted by the research community [6]
and is managed by the National Center for Biotechnology Information.

The descriptions below are the contents of the webpage of UC Berkley
library [7] and are useful for better understanding the GEO.

1. The three main goals of GEO are to
a. Provide a database of high-throughput functional genomic data.
b. Support complete and well-annotated data deposits from the research

community.
c. Allow users to query, locate, review, and download studies and gene

expression profiles of interest.
2. There are three types of GEO submitter records:

a. A platform record describes an array or a sequencer and, for array-based
platforms, a data table defines the array template. Sample records are
linked to the platform records.

b. A sample record describes the sample source, the protocols used in its
analysis, and the expression data derived from it. Samples can only ref-
erence a single platform.

c. A series record links together a group of related samples and describes a
whole study.

2.2 How to Download RNA-Seq Data from GEO

To investigate the expression profile of pulmonary fibrosis-related genes, we
obtained from GEO the public RNA-Seq data (GSE92592) of the lung tissues
obtained from IPF patients (n = 20) and healthy controls (n = 19).

To download the raw RNA-Seq data (.sra file), we used prefetch, one of
the programs of Sratoolkit (https://github.com/ncbi/sra-tools).

Use --option-file option to download multiple .sra files.

$ prefetch --option-file SraAccList.txt

SraAccList.txt is formatted as:

SRR5120902

SRR5120903

SRR5120904

...

SRR5120940

http://www.ncbi.nlm.nih.gov/geo/
https://github.com/ncbi/sra-tools
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Then, .sra files were converted to .fastq files using fastq-dump which is a
program of sratoolkit.

$ find . -name ’*.sra’ -exec fastq-dump --gzip

--split-files --outdir . /{} \;

2.3 RNA-Seq Analyses

We downloaded the RNA-Seq data from GEO as raw data and analyzed the
data using the method described below.

2.3.1 Quality Control and Read Trimming
The data quality of the fastq files was verified with the FastQC tool
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Read trimming
was performed with Trimmomatic version 0.36 (http://www.usadellab.org/
cms/?page=trimmomatic) [8] using the following command line.

$ java -jar trimmomatic-0.36.jar PE -threads

40 -phred33 read 1.fastq.gz read 2.fastq.gz

read 1 paired.fastq.gz read 1 unpaired.fastq.gz

read 2 paired.fastq.gz read 2 unpaired.fastq.gz

ILLUMINACLIP:Truseq adapter.fa:2:30:10 LEADING:20

TRAILING:20 SLIDINGWINDOW:4:20 MINLEN:2

2.3.2 Genome Mapping
Trimmed reads were mapped to the reference human genome, GRCh38, avail-
able in the Ensembl genome database (https://asia.ensembl.org/Homo sapiens/
Info/Index) using STAR program version 2.7.0b (https://github.com/alexdobin/
STAR) [9] with mismatch option --outFilterMismatchNmax 2. Prior to the
genome mapping, the genome index was generated using the following command
line.

$ mkdir star2.7.0b index

$ STAR --runMode genomeGenerate --genomeDir

star2.7.0b index/ --genomeFastaFiles

Homo sapiens.GRCh38.dna.primary assembly.fa --sjdbGTFfile

Homo sapiens.GRCh38.92.gtf --runThreadN 40

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.usadellab.org/cms/?page=trimmomatic
http://www.usadellab.org/cms/?page=trimmomatic
https://asia.ensembl.org/Homo_sapiens/Info/Index
https://asia.ensembl.org/Homo_sapiens/Info/Index
https://github.com/alexdobin/STAR
https://github.com/alexdobin/STAR
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Then, the genome mapping was run with the following command line.

$ STAR --runThreadN 40 --limitBAMsortRAM

187000000000 --outSAMtype BAM SortedByCoordinate

--outFilterMismatchNmax 2 --quantMode TranscriptomeSAM

GeneCounts --readFilesCommand gunzip -c --genomeDir

star2.7.0b index/ --readFilesIn read 1 paired.fastq.gz

read 2 paired.fastq.gz --outFileNamePrefix star output

2.3.3 Gene Abundance Calculation
RNA-seq by Expectation-Maximization software version 1.3.0 (https://github.
com/deweylab/RSEM) [10] was used to calculate the expression values in tran-
scripts per million (TPM). Prior to the gene abundance calculation, the reference
for the calculation was built using the following command line.

$ mkdir rsem ref

$ rsem-prepare-reference -p 40 --gtf

Homo sapiens.GRCh38.92.gtf --star --star-path

[PATH/TO/STAR] Homo sapiens.GRCh38.dna.primary assembly.fa

rsem ref/GRCh38

Then, TPM values were calculated with the following command line.

$ rsem-calculate-expression --num-threads

40 --paired-end --bam --no-bam-output

star output Aligned.toTranscriptome.out.bam

rsem ref/GRCh38 rsem output

2.3.4 Differentially Expressed Gene
Differentially expressed genes (DEGs) were defined by false discovery rate (FDR)
and fold change (FC). P value was calculated by Welch’s t-test, and FDR was
calculated using Storey’s method [11]. FC was removed by FC < 2.

The workflow of RNA-Seq analysis described in Sec. 2 is shown in Fig. 1.

https://github.com/deweylab/RSEM
https://github.com/deweylab/RSEM
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Fig. 1. The workflow of the downloading and analysis of public RNA-Seq data.

3 Disease Ontology

Disease ontology has been developed as a standardized ontology for human dis-
ease with the purpose of providing the biomedical community with consistent,
reusable, and sustainable descriptions of human disease terms, phenotype char-
acteristics, and related medical vocabulary disease concepts [12]. Using the infor-
mation about disease ontology, disease enrichment analysis was performed using
DOSE R package, which analyzed whether the input genes or proteins have the
feature of any diseases. Generally, differentially expressed genes or proteins have
the potential to be novel biomarker candidates. Thus, it is very important to
know whether the features of the disease could be interpreted using these genes
or proteins. ClusterProfiler R package was designed by considering the support
of multiple ontologies/pathways, up-to-date gene annotation, multiple organ-
isms, user’s annotation data, and comparative analysis [13]. After obtaining the
output results from DOSE, clusterProfiler provided the P value of each disease
term using Fisher’s exact test [14] according to the following equation:

P =
a+bCa × c+dCc

a+b+c+dCa+c

a, b, c and d are defined in Table 1.
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Table 1. The number of genes or proteins in the input list and the number not in the
input list

In the input
list

Not in the
input list

Total

Associated genes or proteins a b a + b

Unassociated genes or proteins c d c + d

Total a + c b + d a + b + c + d

a; the number of the associated genes or proteins in the input list
b; the number of the associated genes or proteins not included in the input list
c; the number of the unassociated genes or proteins in the input list
d; the number of the unassociated genes or proteins not included in the input list

4 Metabolic Networks

Metabolic networks describe the relationships between metabolites and the
enzymes (proteins) that interact with them to catalyze a biochemical reac-
tion [15].

MetaCore (Clarivate Analytics, Philadelphia, United States) is a commercial
tool for functional analysis and visualization of different kinds of high-throughput
omics data [16], which provide the core capabilities of precise pathway analysis,
knowledge mining, simple bioinformatics, and effective visualizations in a com-
prehensive off-the-shelf package. High-quality 100% manually curated biological
pathway data from peer-reviewed literature are used to accelerate drug devel-
opment by rapidly generating and validating hypotheses for novel biomarkers,
targets, and mechanisms of action [17].

We used “Metabolic Networks (Endogenous)”, which is a function of
MetaCore, to perform metabolic network analysis. The Enrichment Analy-
sis “Metabolic Networks (Endogenous)” ontology only includes networks built
around endogenous metabolic processes, that is, processes related to internal
metabolic processes [18]. MetaCore is able to concurrently input the gene and
metabolic list, and thus, both genes and metabolites are mapped in one net-
work (Fig. 2). This function helps to better understand the metabolism and the
related factors of the biomarker.
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Fig. 2. An example of the metabolic network outputted from MetaCore. The green,
red, and gray arrows indicate positive effect, negative effect, and unspecified effects,
respectively. Closed red circles or mixed red/blue circles indicate differentially changed
metabolites. Further explanations are provided at https://portal.genego.com/legends/
MetaCoreQuickReferenceGuide.pdf. (Color figure online)

5 Conclusion

In this chapter, we have described RNA-Seq analysis tools and explained how to
use them. We subsequently introduced tools and methods to biologically under-
stand metabolomic and transcriptomic data. Using methods described in this
chapter, we recently found that the proline and methionine in bronchoalveo-
lar lavage fluid and serum are candidate diagnostic biomarkers for IPF, as our
data suggest that proline and methionine-related genes are involved in their
metabolism and transport [5]. Therefore, multi-layer combination omics studies
have the potential to discover novel biomarker candidates and reveal mechanisms
of biomarker involvement at different levels. We hope that this chapter will help
researchers better understand and analyze omics data.
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Abstact. Post-translational modifications (PTMs), such as phosphorylation,
ubiquitination and acetylation, are known to be widely involved in the regulation
of various biological processes through extensive diversification of each protein
function at the cellular network level. Previous functional analyses of cancer cell
signaling under a variety of experimental conditions revealed many of the key
molecules and their associated protein modifications in relation to each type of
cancer. In order to systematically discover critical modulators from diversified sig-
naling molecules, we have developed a high-resolution mass spectrometry-based
proteomics platform for integrative identification and quantification of multiple
post-translational modifications from various types of cancer cells. In this chapter,
we would like to highlight the potential impact of computational network dissec-
tion based on PTM-directed proteomic data towards systematic understanding of
cellular signaling principles.

1 Shotgun Proteomics Enables Comprehensive Identification
and Quantification of the Focused Protein Modifications

Signal transduction is known to play a diverse role in regulating complex biological
events such as proliferation, differentiation and apoptosis. Protein modifications includ-
ing phosphorylation, ubiquitination, and acetylation is known to regulate hub protein
molecules, such as epidermal growth factor receptor (EGFR) and p53 in cancer cell
signaling as described in the PTM knowledgebase [1]. Shotgun proteomic analysis of
cellular protein-protein interaction networks revealed many of the key molecules and
their associated protein modifications in relation to each biological context [2–8].

Based on the highly sensitive mass spectrometry technology, we have developed
a high-resolution proteomics platform for integrative identification and quantification
of multiple post-translational modifications (PTMs) from various types of cancer cells.
Our analytical workflow allows us to perform comprehensive detection of representative
proteinmodifications, such as phosphorylation, ubiquitination and acetylation, leading to
system-wide extraction of significantmolecules from large-scale PTMdata in a statistical
manner (Fig. 1).

© Springer Nature Singapore Pte Ltd. 2021
T. Suzuki et al. (Eds.): MMDS 2020, PROMS 370, pp. 274–282, 2021.
https://doi.org/10.1007/978-981-16-4866-3_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-16-4866-3_20&domain=pdf
https://doi.org/10.1007/978-981-16-4866-3_20


Integrative Network Analysis of Cancer Cell Signaling by High-Resolution Proteomics 275

Fig. 1. Schematic workflow for integrative analysis of protein modifications by shotgun pro-
teomics

2 Global Regulation of Cancer Cell Signaling Networks
by Post-Translational Modification Dynamics

2.1 Phosphoproteomics

Recent technological advances regarding high-resolution quantitative proteomics, in
combination with phosphorylation-directed protein/peptide enrichment methodology,
have enabled us to grasp the dynamic status of phosphorylated cellular signaling
molecules in a comprehensive and unbiased manner [9, 10]. Our in-depth phosphopro-
teome analysis of glioblastoma initiating cells led to identification of 6,073 phosphopep-
tides derived from 2,282 proteins and showed 516 up-regulated and 275 down-regulated
phosphorylation sites upon epidermal growth factor (EGF) stimulation [11]. Very inter-
estingly, the phosphorylation levels of the cellular molecules related to the ERK/MAPK
and mTOR signaling pathways were dynamically changed in response to this external
input (Fig. 2).

2.2 Lysine Modification Proteomics

Further in-depth proteomic analyses of protein lysine acetylation and ubiquitination
based on shotgun mass spectrometric detection in combination with antibody-based
affinity enrichment of lysine-modified peptides enabled global identification of more
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Fig. 2. Phosphorylation-dependent signaling regulation of human glioblastoma initiating cells
in response to EGF stimulation. Pathway-level description of the phosphorylated molecules were
visualized by Ingenuity PathwayAnalysis (IPA) [12]. The red nodes indicate upregulated signaling
effectors, whereas the green ones represent downregulated molecules.
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than 6,000 ubiquitination and acetylation sites including 236 lysine residues regulated
through both of the two modification modes [13]. The integrative pathway analysis of
the large-scale lysine modification proteome data uncovered cell type-dependent lysine
modification diversity at the cellular network level (Fig. 3). We found that that the EIF2
signaling pathway was relatively enriched in brain-derived cancer cell lines such as
U251, T98G and U87 cells.

Fig. 3. IPA-based canonical pathway analysis of the dually lysine-modified proteins identified
from each cancer cell line. The IPA canonical pathways relevant to the molecules modified with
ubiquitination as well as acetylation are shown with the corresponding score (−log [p value]),
adapted from Ref. [13].

2.3 Mathematical Modeling of Cellular Signaling Networks Based
on PTM-Directed Quantitative Proteomic Data

The proteomics-oriented computational approaches have also opened up a new gate for
mathematical modeling of cellular signaling networks involved in cancer. We developed
a computational framework based on data assimilation and applied it for analyzing
mutated EGFR signaling through phosphoproteomics-driven numerical modeling [14].
The hybrid functional petri net with extension (HFPNe) is a computational modeling
architecture which can deal with discrete biological events as well as continuous ones
and enables us to analyze temporal data on biological entities such as phosphorylated
signaling molecules within the data assimilation framework (Fig. 4).
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Fig. 4. Mathematical modeling of EGF signaling networks based on tyrosine phosphoproteome
dynamics regarding NIH3T3 cells expressing full-length human EGFR (WT) and mutant EGFR
with substitution of tyrosine to phenylalanine at position 992 (Y992F) upon EGF stimulation,
adapted from Ref. [14].

The previous study based on the protein microarray analysis indicated that phos-
phorylated Y992 bound to multiple cellular proteins, serving as a multifunctional dock-
ing site of EGFR [15]. The HFPNe-based computational modeling of aberrant EGFR
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(Y992F) signaling allowed us to reduce the factors responsible for mutational effect
to several alterations in the reaction parameters and provided a mechanistic descrip-
tion of the signaling disorders at the network level (Fig. 5). Our mathematical model-
based analyses indicated that Y992F mutation caused rapid EGFR degradation through
the upregulation of EGFR ubiquitination and aberrant temporal activation of ERK1
by network-wide activation of tyrosine phosphorylation, which suggests that pY992
strengthens and attenuates phosphotyrosine singling by distinct regulatory mechanisms.

Fig. 5. Parameter-based evaluation of critical biochemical reactions in mutated EGFR signaling.
The numbers attached to the arrows represent the reaction indexes of this simulation model. Each
of the 38 estimated parameters in the Y992F model was reset to the value in the WT model, and
the likelihood for the measured data was evaluated. The color bar shows the log-transformed fold
change of the likelihood against the value in the original Y992F model, adapted from Ref. [14].
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Fig. 5. (continued)

3 Future Prospects

Our high-resolution proteomic platform based on affinity enrichment of post-
translationallymodified peptides in combinationwith high-resolutionmass spectrometry
enabled us to unveil global phosphorylation and lysine acetylation/ubiquitination regula-
tion in various types of human cancer cells.We consider that integrative network analysis
based on multiple PTM-directed proteomic big data will lead to detailed dissection of
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signaling dynamics and facilitate systematic visualization of complex signaling hubs
related to each cell fate regulation [16–18].
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Abstract. It has recently been recognized that seemingly identical cell
populations can exhibit functional heterogeneity in vivo. However, the
unsupervised extraction of features to understand such heterogeneous
cell behaviors has been a challenging task. Here, we present a novel,
data-driven method to visualize cell heterogeneity as a set of points in
a low-dimensional Euclidean space, based on a distance matrix between
individual cells. The axes of this space serve as a guide for finding the
characteristic features in the population. By using cell motility as an
example, we show that our visualization can distinguish three types of
simulated cell movements as separate clusters, without knowing a priori
the mathematical models they follow. By applying our method to time-
lapse two-photon imaging data of neutrophils, we successfully extract
critical features that characterize different types of cell motility. We
expect that our method would be applicable to other cellular pheno-
types.

1 Introduction

Cell motility is observed in many types of cells and plays essential roles in a wide
variety of biological phenomena, ranging from bacterial chemotaxis and wound
healing with fibroblasts to immune cell migration and cancer cell metastasis [1].
It is often studied using the imaging data recorded with time-lapse microscopy.
The method of analysis commonly employed for extracting the characteristic fea-
tures related to cell motility from the imaging data involves fitting the motility
of the entire cell population with a single equation of motion with noise, consid-
ering individual cells as different realizations of a stochastic process [2]. In this
approach, we can obtain statistically robust results by gathering the data of all
cells in the imaging field. However, it suffers from two major problems. First, the
equations of motion that need to be used should be known beforehand. Second,
it neglects cell-to-cell heterogeneity, which may have biological significance that
is yet to be uncovered, as suggested in recent literature [3–6].
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In this paper, we propose a new data-driven approach wherein no prior knowl-
edge of cell models is necessary. Instead of fitting data to known mathematical
models, we first extract and visualize the important axes that dominate the vari-
ability between cells. We can then use them as a guide to search for appropriate
mathematical models of cell motility.

2 Problem Formulation

Here, we state our problem of extracting motility features using a simulated
dataset consisting of three types of two-dimensional (2D) cell movements: 100
cells following random walk, 100 cells following persistent random walk, and 100
cells following Lévy walk (Fig. 1). We simulated the coordinates (xt, yt) of the
same cells for 31 consecutive time frames (t = 0, . . . , 30), so that the length of
the cell trajectories is 31 for all cells. However, as we see later in the real dataset,
the length can be different for different cells. Note that we ignore the cell size
and treat individual cells as points. Details of the simulations are described in
the Appendix.

We first consider the cell velocities, which are defined here as 2D vectors
(xt+1 − xt, yt+1 − yt) with discrete steps from time t to t + 1 (t = 0, . . . , 29).
We use this collection of velocities, expressed as a 30 × 2 matrix for each cell, as
one type of input data. We also focus on the angles between adjacent velocities,
(xt+2−xt+1, yt+2 −yt+1) and (xt+1−xt, yt+1−yt) (t = 0, . . . , 28). These angles
take values in [−π, π). We use this collection of angles, expressed as a 29 × 1
matrix for each cell, as another type of input data. In general, the input data
consists of a collection of k-dimensional vectors, expressed as an n × k matrix
for each cell, where n is the number of observations.

Our goal is to condense these input data and obtain the characteristic features
that can best explain cell-to-cell heterogeneity and distinguish different types of
movements.

Fig. 1. Examples of simulated trajectories: random walk (solid green line); persistent
random walk (dashed red line); and Lévy walk (dotted blue line). In this figure, the
starting points (black dots) were shifted to prevent trajectories from overlapping. (Color
figure online)
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3 The Proposed Method

The proposed method is comprised of three steps (Fig. 2): (1) treat the input data
(velocities or angles of cell trajectories) as random samples from a probability
density, which can be regarded as a hidden phenotype of a cell; (2) construct a
distance matrix (whose size is equal to the number of cells) between probability
densities; (3) use multidimensional scaling to express each cell as a point in a
low-dimensional Euclidean space.

Fig. 2. The proposed method. The input data (such as velocities or angles of cell
trajectories) are treated as random samples from a probability density. A distance
matrix is constucted between these probability densities. Multidimensional scaling is
then used to embed each point in a new Euclidean space.

3.1 Step 1

We assume that each cell i has its own probability density pi, from which the
input data Si is randomly sampled. In the examples given in the previous section,
the probability of velocities is defined on R

2, and the probability of angles is
defined on [−π, π).

3.2 Step 2

We next calculate the distance between different cells by estimating the Jensen-
Shannon divergence between pi and pj for all pairs (i, j) of cells:

JS(pi||pj) =
∫
Rk

(
1
2
pi log

2pi
pi + pj

+
1
2
pj log

2pj
pi + pj

)
dx,
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where log indicates natural logarithm throughout the paper. We define the dis-
tance between cells i and j as the square root of this divergence. The square
root of the Jensen-Shannon divergence is known to be a metric, which satisfies
all the intuitive properties of a distance, including the triangle inequality [7].

We estimate the above divergence from the input data Si and Sj as follows.
By using the k nearest neighbors density estimation, we estimate the density of
pi and pj , denoted by p̂i and p̂j , respectively, at each sample point belonging to
the input data. We find that

2JS(pi||pj) =
∫
Rk

(pi + pj)
pi

pi + pj
log

2pi
pi + pj

dx

+
∫
Rk

(pi + pj)
pj

pi + pj
log

2pj
pi + pj

dx

= Epi

[
pi

pi + pj
log

2pi
pi + pj

]
+ Epj

[
pi

pi + pj
log

2pi
pi + pj

]

+ Epi

[
pj

pi + pj
log

2pj
pi + pj

]
+ Epj

[
pj

pi + pj
log

2pj
pi + pj

]
,

where Ep[ ] denotes the expectation value over probability density p. Therefore,
the divergence JS(pi||pj) can be estimated from the input data Si and Sj as:

1
2#Si

∑
v∈Si

(
p̂i

p̂i + p̂j
log

2p̂i
p̂i + p̂j

+
p̂j

p̂i + p̂j
log

2p̂j
p̂i + p̂j

)
+

1
2#Sj

∑
v∈Sj

(
p̂i

p̂i + p̂j
log

2p̂i
p̂i + p̂j

+
p̂j

p̂i + p̂j
log

2p̂j
p̂i + p̂j

)
.

Since x log 2x + (1 − x) log 2(1 − x) is nonnegative for 0 < x < 1, the divergence
estimated using the above formula is also nonnegative.

3.3 Step 3

Having obtained a distance matrix consisting of distances between all pairs of
probability densities, we perform classical multidimensional scaling to place each
sample in a new coordinate space according to the estimated distances. The first
few coordinates are critical features that best express the cell-to-cell heterogene-
ity.

4 Results

4.1 Simulated Dataset

We tested our method to see if it can distinguish three types of simulated cell
movements, namely random walk, persistent random walk and Lévy walk.

When we chose a set of velocities as the input data, we obtained Fig. 3A,
where each point corresponds to a cell trajectory of either type. Here, the Lévy
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Fig. 3. Application of the proposed method to the simulated cell motility dataset:
random walk (green squares); persistent random walk (red circles); and Lévy walks
(blue triangles). (A) A set of velocities were given as the input data. (B) A set of
angles between adjacent velocities were given as the input data. (C) The first axes of
(A) and (B) were combined in the same plot. In (A) and (B), the proportions of the
variance explained by each axis are also shown. (Color figure online)

walks (blue triangles) were separated from the other walks (multi-response per-
mutation procedures, p = 0.0001 with 10,000 permutations), but the random
walks (green squares) and persistent random walks (red circles) were indistin-
guishable (p = 0.1417). This is consistent with the fact that the theoretical
distributions of velocities in random walks and persistent random walks are the
same in our setting.
We also tried a set of angles between adjacent velocities as another type of input
data. This time we obtained Fig. 3B, where the persistent random walks were
well separated from the other walks (p = 0.0001), but the random walks and
Lévy walks were not distinguishable (p = 0.0247). This is again consistent with
the fact that the theoretical distributions of angles in random walks and Lévy
walks are the same (the uniform distribution over [0, 2π)) in our setting.

By combining the first axes of these two plots, we were able to distinguish
three types of cell movements (Fig. 3C).
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Fig. 4. Motility of neutrophils observed in mouse skin. (A) 8 h, (B) 12 h, and (C) 24 h
after stimulation with PMA (n = 41, 97, 183 cells). The units of x and y are µm.

4.2 Real Dataset

We next applied our method to the real dataset of neutrophil motility (Fig. 4,
details in the Appendix).

As in the simulation dataset, we first chose a set of velocities as the input
data. The result (Fig. 5A) showed that the 8 h, 12 h and 24 h cell populations
showed overlapping, but identifiable clusters (multi-response permutation pro-
cedures, p = 0.0001 with 10,000 permutations). Note that, because the multi-
response permutation procedures test uses the original distance matrix (i.e. all
the axes obtained from multidimensional scaling) for cluster separation, the sep-
aration is better than is suggested by Fig. 5A, which shows only the first and
second axes.
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Fig. 5. Application of the proposed method to the neutrophil motility dataset: 8 h
(blue triangles); 12 h (red circles); and 24 h (green squares). (A) A set of velocities were
given as the input data. (B) Difference in median cell velocities between experimental
conditions. (C) A set of angles between adjacent velocities were given as the input data.
(D) Difference in kurtosis of angles between majority cells and outliers. (E) The first
axes of (A) and (B) combined in the same plot. (F) Correlation between the median
cell speed and kurtosis of angles. (Color figure online)
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In our search for characteristic features correlated with the first axis of
Fig. 5A, we find that the median cell speed differs between these populations
(Fig. 5B). We also used a set of angles between adjacent velocities as another type
of input data. The result (Fig. 5C) showed overlapping clusters that were less dis-
tinguishable than Fig. 5A (multi-response permutation procedures, p = 0.0004
with 10,000 permutations). However, this time, a small subset of outlier cells
(defined by the values of the second axis being larger than 0.2) containing 12 h
and 24 h cells was identified. The trajectories of the outlier cells are shown in
Fig. 6.

After searching for characteristic features correlated with the first axis of
Fig. 5C, we found that the angle distribution of these outlier populations has
a higher kurtosis (characterized by heavier tails) compared with a majority of
the cells (Fig. 5D). Interestingly, the first axis of Fig. 5A and the first axis of
Fig. 5C were highly correlated with a correlation coefficient of 0.78 (Fig. 5E).
The median cell speed and the kurtosis of the angles were also highly correlated
with a correlation coefficient of 0.59 (Fig. 5F).

We note the difference in the shape of distributions in the multidimensional
scaling space between the simulated dataset and the real dataset. The former
(Fig. 3) is circular and homogeneous, whereas the latter (especially Fig. 5C) is
separated and concave. This reflects the fact that the simulated dataset is gen-
erated from exactly the same parameter sets, while the real dataset consists of
different types of neutrophils having presumably varied parameter sets.

Fig. 6. Trajectories of outlier cells shown in Fig. 5C. (A) 12 h after PMA application.
(B) 24 h after PMA application.

5 Conclusion

We have proposed a new method for detecting and visualizing cell-to-cell hetero-
geneity in a population, and have demonstrated its effectiveness using simulated
and real datasets of cell motility. Our method is broadly applicable to cases
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where the phenotype of individual cells (or in general, entities) can be expressed
as a probability distribution [13].

We used the square root of the Jensen-Shannon divergence to quantify the
difference between probability distributions. This divergence is derived from the
Kullback-Leibler divergence

∫
pi log pi

pj
dx, which, compared with

∫
log pi

pj
dx =∫

(log pi − log pj) dx, puts less weight on sparse areas where pi is small. This is
suitable for accentuating the dense, important areas in the distribution while
ignoring the less important ones.

However, depending on the purpose of research, one might be interested in
outliers in the distribution and might want to focus on them. For example, one
possible application of this method is to detect errors in cell segmentation or
tracking as outliers in the population. In such cases, other types of metrics, such
as Wasserstein distances with appropriate weights (cost functions), might be
useful.
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Shigeta and Dr. Shigeto Seno (Osaka University, Hideo Matsuda lab) for extracting
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JPMJCR15G1 and MEXT KAKENHI Grant Number JP19H05422.

7 Appendix

7.1 Simulated Dataset of Cell Motility

We simulated three types of 2D cell movements: random walk, persistent random
walk and Lévy walk. To simulate the experimental data, all the cell movements
were observed only at discrete time points (t = 0, 1, . . . , 30).

Each step (xt+1 − xt, yt+1 − yt) of a random walk was defined to be a vector
whose x and y coordinates were independently chosen from the standard normal
distribution N(0, 1). Each step of a persistent random walk was defined to be a
vector whose x and y coordinates independently follow an Ornstein-Uhlenbeck
process dX = − 1

2Xdt+dWt (Wt is the Wiener process), with the initial step cho-
sen randomly from the stationary distribution N(0, 1). Each step of a Lévy walk
was given by (r cos θ, r sin θ), where the radius r was chosen with the probability

density p(r) =

{
r−3 (r ≥ 1√

2
)

0 (r < 1√
2
)
, and the angle θ was chosen from the uniform

distribution over [0, 2π). In all types of cell movements, the mean (expected)
length of each step was equal to

√
2.

In the case of random walks, the individual step sizes are independently
taken from the chi distribution with two degrees of freedom, whereas in the case
of persistent random walks, they are correlated with their recent past history, as
if they have a memory. In the case of Lévy walks, the individual step sizes are
independently taken from a power-law probability distribution with heavy tails.
The latter two walks have been previously reported as mathematical models of
cell motility [8–10].
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7.2 Real Dataset of Cell Motility

The real dataset used here is that of neutrophils at different time points (8 h,
12 h and 24 h) after an external stimulation of PMA to the mouse skin. In more
detail, LysM-EGFP mice expressing fluorescent neutrophils were used to record
cell motility. The ears of LysM-EGFP mice were treated with 30 μg/mL PMA
(Phorbol 12-myristate 13-acetate), a stimulant of protein kinase C that causes
contact dermatitis. After a period of 8, 12 or 24 hours, a group of neutrophils
in close proximity to the skin was identified and observed for 40 min at 1-min
intervals using two-photon microscopy. An in-house Python script was used to
extract the individual 2D cell trajectories from the microscopy images [11,12].
All the cell trajectories with length > 30 (i.e. cells successfully tracked for more
than 30 consecutive time frames) were used for this study. The maximum length
of the cell trajectories was 40. Owing to the chemotaxis of the cells, different
time points include different numbers of cells (n = 41, 97, 183 cells for 8 h, 12 h,
24 h).

7.3 Implementation of the Proposed Method in R

The k nearest neighbor density estimation was performed using the R package
TDA. The value of k was taken to be 8; however, in cases where the maximum
number of observations of a point exceeded 8, that maximum value was used
as k. The simulation of an Ornstein-Uhlenbeck process was carried out using
the R package sde. Classical multidimensional scaling was performed using the
R command cmdscale. Multi-response permutation procedures were performed
using the R package vegan. All the other calculations were performed in R.
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Abstract. This study aims to elucidate the underlying genetic mecha-
nism for ovarian carcinoma using single-cell RNA-seq data. We propose
a unique data-driven approach to understand the nature of the data as
it is as far as possible. Precisely, we draw a scatter plot, called distance-
direction expression pattern, and show it presents several channels of
progresses of gene interactions. Then we apply it to the above data. As
a result, we found that two channels are presented in the pattern, one
for moderate exacerbation of TGF-β and the other for TGF-β-induced
highly expressed genes that are more directly connected to cancer growth.

Keywords: sc RNA-seq data · Distance and direction of vectors ·
TGF-β

1 Introduction

This study aims to elucidate the genetic mechanisms underlying carcinogenesis
in ovarian clear-cell carcinoma (OCCC), a historical type of clear-cell carcinoma,
using single-cell RNA-sequencing (scRNA-seq) data from tumor samples.

In general, gene expression data obtained by scRNA-seq are large-scale hav-
ing dimension of hundreds to thousands or more for cells and genes. In recent
years, in order to reveal genetic mechanisms of life phenomena from such data,
various analysis methods by tools or algorithms have been developed (see,
for example, [1,2]). While they are making steady progress through repeated
improvements, analysis of the data is still developing. In fact, in not a few cases,
the results obtained are difficult to understand their plausibility or appropriate-
ness. We would like here to adopt a data-driven method, to make data tell their
identity or nature as they are, as far as possible.

In this study, we propose a novel approach in which expression vectors are
presented in a kind of scatter plot, called distance-direction expression pattern
(DDEP) that incorporate a concept of topology of expression vectors, and con-
sider its characteristics and how to read it, to identify progresses of genetic
c© Springer Nature Singapore Pte Ltd. 2021
T. Suzuki et al. (Eds.): MMDS 2020, PROMS 370, pp. 294–305, 2021.
https://doi.org/10.1007/978-981-16-4866-3_22
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interactions. Then we apply it to the above data. As a result, we found that two
channels are presented in the pattern, one for upstream toward TGF-β exacer-
bation and the other for downstream to TGF-β-induced highly expressed genes
that are more directly connected to cancer growth.

2 Distance-Direction Pattern of the Expression

We have normalised the expression value dataset to a matrix of 298 cells ×
12324 genes. Note that the analysis here is neither cell lineage estimation nor
cell-to-cell analysis. In fact, it is a gene-to-gene analysis. We intend to elucidate
genetic mechanism, i.e. progress of gene interactions from the expression data.
A matrix of the above size has information of amount of 298 × 298 at most, as
linear algebra tells. Working with 298 row vectors or 298 column vectors have
essentially the same amount of information. Hence, the gene-to-gene analysis
here must be able to provide an analysis method of the genetic mechanism with
the same amount of information as cell-to-cell analysis.

We began our analysis by finding genes expressed in only a small number of
cells, among the expression vectors xxxk (k = 1, · · · , 12324) of length 298. Then,
we extracted the five genes shown in Table 1, all of which expressed only in four
cells. No genes were expressed in three cells or fewer. There were no genes that
have expressions only at three or less cells. For example, for the gene {1673,
RP11-181E10.3} in the first row of the table, xxx1673 was expressed only in cells
{34, 99, 123, 297} and 0 otherwise. Also, there were ten genes with exactly
the same expression levels in the four cells, such as {305, RBBP4}, including
{1673} itself. We will take the 21 genes in the fifth row, to exemplify further
analysis. The four cells and 21 genes associated with {8185, RP11-141M1.3}
are denoted by c(4-5) and g(4-5), respectively. For the usual inner product
(zzz1, zzz2) of two vectors zzz1 and zzz2, we use their correlation

<zzz1, zzz2> =
( zzz1 − z̄zz1

‖zzz1 − z̄zz1‖ ,
zzz2 − z̄zz2

‖zzz2 − z̄zz2‖
)

(z̄zzi is the arithmetic mean of zzzi).

We construct a scatter plot of expression vectors as shown in Fig. 1. Here
we used the correlation of xxx8185 and xxxk, ρk = <xxxk,xxx8185> for horizontal axis
and the difference norms ‖xxxk − xxx8185‖ for vertical axis, respectively. Since the
difference norm is distance and the correlation corresponds to angle or direction
of two vectors, we refer to this plot as Distance-Direction Expression Pattern
(DDEP for short) of expression vectors. In the figure, it is observed that several
stream-like patterns from bottom right to top left are formed. We call the pat-
terns layers in this paper. Precisely, we used the sorted index k∗ of k, according to
the values of ρk ∈ [−1, 1] so that −1 � ρk∗(1) � ρk∗(2) � · · · � ρk∗(12324) � 1 for
the horizontal axis. Given that the DDEP represents a certain transition/flow
of genetic expression, we sought to gain insight into the mechanism underly-
ing ovarian carcinoma from various perspectives using the pattern. Note that
this specific DDEP here is based on {8185}. Two vectors may not be near one
another in the figure, even though the two have close interactions. Conversely,
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Table 1. Five genes positively expressed in only four cells.

Fig. 1. Red dots indicate 21 genes in g(4-5), among which, the bottom right one is
{8185, RP11-141M1.3}. The black dotted line indicates ρk∗ = 0, so that the left side
region is ρk∗ < 0 and the right side region ρk∗ > 0. (Color figure online)

it is not necessarily true that two genes closely located in the figure have close
interactions.

This DDEP is motivated by considering when two vectors are really close.
An answer may be given by the Law of Cosine:

‖zzz1 − zzz2‖2 = ‖zzz1‖2 + ‖zzz2‖2 − 2‖zzz1‖‖zzz2‖ cos θ
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for the angle θ between zzz1 and zzz2. If ‖zzz1 − zzz2‖ � 0 and cos θ � 1, then we have
‖zzz1‖ � ‖zzz2‖ and, in this case, zzz1 � zzz2 as well. As a substitute for cos θ, we use
the correlation in this paper.

Now, in the DDEP, we may consider that a progress of the interaction of
gene expressions is taking place along with each of the layers from right bottom
to left top, starting with {8185, RP11-141M1.3}, by the reason as follows:

• In each of the layers, the distance ‖xxxk −xxx8185‖ basically increases from right
bottom to left top. In a layer, the genes have exactly the same expres-
sion level at cells c(4-5)={78,221,225,233}. {8185, RP11-141M1.3} is
expressed only at c(4-5) and is 0 at other cells c̄(4 − 5). Especially, in

‖xxxk − xxx8185‖2 = ‖xxxk − xxx8185 | c(4-5)c(4-5)‖2 + ‖xxxk − xxx8185 | c̄(4-5)‖2,
the first term on the right hand side is a constant for g(4-5), so that the
increase of ‖xxxk −xxx8185‖2 is 1 to 1 with the increase of ‖xxxk −xxx8185 | c̄(4-5)‖2
i.e. progress of xxxk | c̄(4-5), basically. Sometimes, there may be two genes g1
and g2 such that g1 is expressed in cells in a subset c1 ⊂ c(4-5) and g2 is
expressed at cells in other subset c2 ⊂ c̄(4-5), with c1 ∩ c2 = ∅. But, as
shown in Fig. 2, such are only a few cases and we may consider the 1 to 1
property to hold in general. In the figure, the number of cells in the maximally
same number of cells (MSCE) is basically decreasing from right to left and
it is synchronous with the increase in the distance. Also, the shape of the
curves seems to correspond with the shape of the distance curves in Fig. 2,
respectively.

In addition, when we take the MSCE genes for xxx8185 in each of the layers, we
have the genes depicted in Fig. 3. For example, the gene {6211, RP11-545E17.3}
in the table has the MSCE as {8185, RP11-141M1.3} at 292 cells, and top 300
of such MSCE genes are located at right end of each of the layers in the top left
figure. The location gradually moves to left over the four figures.

• If ‖xxxk − xxx8185‖ � ‖xxx8185‖, then the increase of ‖xxxk − xxx8185‖ imply the same
for ‖xxx8185‖ as well, which in turn suggests the progress of expressions fur-
thermore. This ‖xxxk − xxx8185‖ � ‖xxx8185‖ is actually right for genes in g(4-5),
since

‖xxxk‖2 = ‖xxxk − xxx8185‖2 + ‖xxx8185‖2
and, ‖xxxk−xxx8185‖ and ‖xxxk‖ are both increasing and 1 to 1. For genes other than
g(4-5), it is right for at least those k such that ‖xxxk − xxx8185‖ are sufficiently
larger than ‖xxx8185‖, since ‖xxxk − xxx8185‖ − ‖xxx8185‖ � ‖xxxk‖ � ‖xxxk − xxx8185‖ +
‖xxx8185‖. These relationships are easily understood since xxx8185 is expressed
only at c(4-5).

When we think the progress of gene expressions as above, the progress may
have 20–30 ‘types’ corresponding to the number of layers. We would thus like to
study genetic mechanism of the ovarian carcinoma through the DDEP, expecting
that the ‘types’ may correspond to pathways of gene expression.
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Fig. 2. Number of the MSCE cells in Layer 1 (left) and 2 (right). While the distance
increases from right bottom to left top for each layer as in Fig. 1, the number decreases.
This observation suggests that the distance increases through expressing at c̄(4 − 5),
and thus progress of the expressions. The horizontal axis here is the order of distance
of genes in the layer.

Fig. 3. 300 MSCE genes for {8185, RP11-141M1.3}, k = 1 to 300, 1000 to 1300, 2000
to 2300 and 3000 to 3300 of the listed MSCE genes, top left to bottom right. The list
indicates, for example, that {6211, RP11-545E17.3} has the MSCE at 292 cells, and
such top 300 MSCE genes are located at right end of each of the layers in the top left
figure. The location gradually moves to the left.
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3 Genes Related to TGF-β Pathways

We expect that pathways related to TGF-β play a major role in our system
based on preliminary study. Here, we examined how these genes are captured
on the DDEP. For the TGF-β related genetic pathway, see e.g. [3] for exposition
and [4] for an analysis of the pathways involved in ovarian cancer.

We first examined how the DDEP was composed based on the genes in
g(4-5). For each of xxxk, we took the norm of the subvectors yyyk = xxxk

∣∣c(4-5)
consisting of only the four cells c(4-5)={78,221,225,233}. We then sorted the
norms according to magnitudes and plotted them as shown in Fig. 4. As in the
figure, we can see some intervals wherein the norms have constant values. We set
a certain threshold value for the jumps to distinguish the intervals. In Table 2,
we list the genes for the first four intervals. We plotted the genes in each of the
intervals on the DDEP, to produce Fig. 5. It is apparent that the genes in each
interval correspond to one of the layers in the DDEP.

What is important here is that the order of the subnorms are exactly the
same as the order of the layers from bottom to top in DDEP. Since the the
latter, the order of distance, is the norm of a whole vector, the progress in terms
of distance may be understood by the subvectors. This argument complements
the notion of ‘types’ of progress of gene interaction in Sect. 2.

Next, in order to see a progress of gene interactions along the layers, we
depicted four blocks of 500 MSCE genes for {11544, TGFB1}, as in Fig. 6. The
blocks are taken by k = 500×(j−1)+1, · · · , 500×j (k is the order of genes having
MSCE. See Fig. 3) and j = 1, 7, 13, 20. It shows the corresponding transition of
interacting genes along with layers. We can observe that the MSCE genes are
located close to {11544, TGFB1} only for the block j = 20, in which case genes
with only small number of MSCEs are contained, while in other blocks having
high MSCEs, MSCE genes are not necessarily located close to {11544, TGFB1}
in the plane.

In the pattern, genes in the blocks seem to be approaching to {11544,
TGFB1} from the bottom right to the top left, over j. It may be considered
from

(xxx11544,xxx8185) = (xxx11544 − xxxk,xxx8185) + (xxxk,xxx8185),

that genes are transiting from those approximately satisfying (xxx11544 − xxxk) ‖
xxx8185 to those close to satisfying (xxx11544 − xxxk) ⊥ xxx8185. That is, along with
the layers, genes are losing the vector component parallel to xxx8185 and gaining
the vector component perpendicular to xxx8185. The parallel component may be
composed of a subvector composed almost of the MSCE. Thus, letting C1 the
subvector with MSCE component and C2 the complementary subvector (C1 ∪
C2 = {1, 2, · · · , 298}, C1 ∩ C2 = ∅), we have (xxx11544 − xxxk)

∣∣C1 ≡ 000 and

(xxx11544 − xxxk,xxx8185) =
(
xxx11544 − xxxk

∣∣C2, xxx8185

∣∣C2

)
.

Using this argument, we may consider the origin of the components of xxx11544.
Among the component, cells in xxx11544|C1 may have received interactions from
MSCE genes, so that xxx11544|C1 had the same subvector component as the MSCE
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Fig. 4. Norm of yyyk, sorted according to magnitude. Genes corresponding to each of
the pieces are specified.

Table 2. List of genes corresponding to each of the constant intervals.

genes. We then investigated where the complementary subvector component
xxx11544|C2 came from. We took the top 1000 MSCE genes for {11544, TGFB1}
and the union of each of the C1 sets of cells; we denote the union again C1. Then,
we obtain the 262 genes shown as C1 in Table 3 (top). We searched for genes
that contain the complement subvector C2 (298 − 262 = 36 cells). Twenty-two
genes that had at least 10 MSCE cells were extracted, and are shown in Table 3
(middle). For example, the gene {233, HMGN2} has the same cellular expression
level as {11544, TGFB1} at 10 cells {5, 71, 128, · · · }. Here, the union of such cells
over 22 genes becomes just the remaining 36 cells in C2, as in Table 3 (bottom).
xxx11544

∣∣C1 is shared by the top MSCE genes and they are distributed as blue dots
in Layer1 in Fig. 6 (j = 1). How about xxx11544

∣∣C2? Where do the genes sharing
C2-component come from (see Fig. 7)? To see this, we examined their location
in the DDEP. It is shown in Fig. 8. Figure 8 (left) indicates genes that have at
least 10 C2-MSCE cells and Fig. 8 (right) those having at least five.
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Fig. 5. Genes in the k-th interval in Fig. 4 corresponding to each of the layers in the
DDEP: k = 1 to 4, top left to bottom right.

Fig. 6. Each of the blocks of 500 genes from the top of the MSCE genes and their
intersection with layers: j = 1, 7, 12, 20, from left top to right bottom.
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Table 3. Cells obtained by the union of all of C1 cells for genes of the top 1000 MSCE
genes. We write the union C1 again. (middle) The top 22 genes containing cells with
the same cellular expressions as C2 = C̄1 (complement of C1). (bottom) Union of the
cells in (middle) becomes just C2 (Note that 262 + 36 = 298).

Fig. 7. xxx11544 is considered to have the components C1 and C2.

Fig. 8. Genes in C2-MSCE. (left) Red stars indicate those C2-MSCE genes that have
at least 10 MSCE cells, and similarly, (right) those that have al least 5 MSCE cells.

We can observe that C2-MSCE genes are all located in the upper part of
the figure, mostly higher than {11544, TGFB1}. These genes are those, with
large distance, that have basically high expression levels, and are therefore in
the phase of intensive exacerbation of certain pathways. We may then infer a
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two stage process of {11544, TGFB1}; in the first, {11544, TGFB1} receives gene
interactions and progresses through pathways along the layers, and in turn, it
produces much stronger expressions of genes that are more directly connected
to cancer formation.

On the contrary, C1-MSCE genes for {11544, TGFB1}, indicated by the blue
dots in Layer1 as in Fig. 6, have small distances ‖xxxk − xxx8185‖ and are located
on the lower part of the figures. This is partly because xxxk − xxx8185|C1 cancels
out, and hence we have ‖xxxk − xxx8185‖ = ‖xxxk − xxx8185|C2‖. However, the large
values of distances for C2-MSCE genes is due to the fact that ‖xxxk − xxx11544‖ =
‖xxxk −xxx11544|C1‖ has been largely exacerbated after {11544, TGFB1} in the gene
interaction process. From Table 3 and the Law of Cosine

‖xxxk − xxx8185‖2 = ‖(xxxk − xxx11544) − (xxx8185 − xxx11544)‖2

= ‖xxxk − xxx11544‖2 + ‖xxx8185 − xxx11544‖2 − 2(xxxk − xxx11544, xxx8185 − xxx11544),

it follows that the contribution of ‖xxxk − xxx11544‖2 in ‖xxxk − xxx8185‖2 is dominant
(about 80–90%) and (xxxk,xxx11544) is approximately twice as large as (xxxk,xxx8185).
The C2-component of xxx11544, it is thus seen to make relevant C2-MSCE genes
jump to a status of strong exacerbation.

How about C1-component? While Layers 2, 3, · · · are growing from the bot-
tom right to the top left, they appear to contact on their way each other. For
example, Layer 1 does not begin from right bottom but from the left side of the
black dotted line representing ρk = 0. This may be understood as receiving the
interactions from other layers, the genes in the right-hand end of Layer 1 have
been activated, and Layer 1 is thus formed. In order to see this effect, we note
some specific genes of Layer1 existing sparsely alone above the mainstream of
Layer 1 in block j = 1, 7, 13 in Fig. 2 or 6. For example, Fig. 9 is an enlarged
view of Layer 2 crossing Layer 1, around the right-hand end of Layer 1. In the
figure, we can see a Layer 2 gene {6870, NOX4} having Layer 1 genes closely
surrounding it. When we determine the surrounding genes, we set certain hor-
izontal and vertical ranges. We may then consider that interactions in Layer 2
have progressed along the genes in the Layer, and the movement is then moved
to Layer 1 by the surrounding genes. We took a series of MSCE cell sets for each
of the surrounding genes and the union of the MSCE sets. In the union 284 out
of a total of 298 cells coincide with {6870, NOX4}. Of course, if one takes a larger
range to determine the surroundings, the number of MSCE cells will be larger.
This situation is similar for other genes in layer 2 that have such surrounding
genes (Tables 4 and 5).

To summarise, the above inferences may suggest a hypothesis, as follows.
Starting from {8185, RP11-141M1.3}, gene expressions interactively progress
along several layers. Each of the layers thus embraces a gradual exacerbation of
expression values, which correspond to genetic pathways. However, sometimes
a rapid exacerbation occurs, as in the C2 process described above. The analysis
in this study may list all relevant genes that are in the course of the layers or
the bridges in a data analytic way. This is a better approach than searching for
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Table 4. Values of terms in the Law of Cosine for ‖xxxk−xxx8185‖2. The rightmost column
is (xxxk − xxx11544, xxx8185 − xxx11544).

Table 5. (top) Genes surrounding {6870, NOX4}. (bottom) Union of MSCEs for the
27 genes.

relevant genes in the literature or databases, one by one. We would like to develop
analytical methods for genetic mechanisms using DDEP in future research.

By continuing the analysis, one can see the interaction with {11544, TGFB1}
propagated through Layer 1 by the C1 component of the xxx11544, and was trans-
mitted to Layer 2 via some bridging genes. Another component of xxx11544 rises
above on the field to a higher position than xxx11544. These two processes may be
considered to correspond to a small acceleration toward producing the expression
of xxx8185, and a significant acceleration toward malignant alteration of TGF-β-
related pathways. Further analysis on the vector field may elucidate the gene
interactions and mechanism underlying the development of cancer.
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Fig. 9. Neighborhood of genes where Layer 1 and 2 crosses each other. For the extracted
27 genes, MSCEs for {6870, NOX4} are taken and then their union. The resulting cells
of the union are 284 MSCE for {6870, NOX4} among 298.
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